Combined effects of heat and cadmium toxicity on Populus canadensis 'Robusta'

Marlies
Christiaens

Opwarming aarde beschermt populier tegen bodemverontreiniging

De opwarming van de aarde blijkt niet enkel negatieve effecten te hebben. Zo blijken populieren gekweekt in met cadmium verontreinigde potgrond hier beter tegen bestand te zijn wanneer ze onderworpen worden aan een hitteperiode.

In het kader van de masterthesis van Marlies Christiaens werd aan het Laboratorium voor Plantecologie, UGent, het gecombineerde effect van hitte en cadmium op de groei van populier onderzocht.

Naar aanleiding van de klimaatsrapporten gepubliceerd door het IPCC (Intergovernmental Panel on Climate Change) en de daaruit voortgevloeide media-aandacht zijn de meeste mensen het er wel over eens dat de aarde opwarmt en de gevolgen daarvan stilaan zichtbaar worden in de wereld zoals het smelten van de ijskappen en natuurrampen. Waar evenwel veel minder mensen zich bewust van zijn, zijn de effecten die de stijgende temperaturen hebben op bomen, voornamelijk door de complexiteit en interactie met andere negatieve fenomenen zoals bijvoorbeeld bodemverontreiniging. 

Geïndustrialiseerde landen hebben vaak te kampen met te hoge concentraties aan zware metalen in de bodem, maar ook andere landen waar bijvoorbeeld mijnbouw aanwezig is lijden hieronder. Planten kunnen deze zware metalen, waaronder cadmium, opnemen vanuit de bodem en accumuleren in hun weefsel. Dit principe wordt aangewend om vervuilde terreinen langzaam te remediëren, ookwel fytoremediatie genoemd. Een boomsoort die daarvoor heel geschikt is omwille van zijn snelle groei is populier, maar omdat cadmium een niet-essentieel nutriënt is met toxische eigenschappen kan het veel schade aanrichten aan de plant.

Heat-shock proteins

Uit het onderzoek bleek inderdaad dat populieren blootgesteld aan cadmium het veel sneller voor bekeken hielden dan hun gezonde collega’s. De groei neemt vrij snel af en naar het einde van het groeiseizoen toe verademt de plant enkel nog suikers zonder er nieuwe bij te maken. Ook populieren die onderworpen worden aan hittetemperaturen doen het aanzienlijk slechter.

Als een populierboom verontreinigd met cadmium ook wordt blootgesteld aan hitte, zal hij minder stress hebben dan je zou verwachten, met andere woorden de stress is minder dan de stress van cadmium en hitte samen. Dit komt omdat de hoge temperaturen het schadelijke effect van cadmium deels teniet doen. De verklaring hiervoor kan gezocht worden bij een bepaald soort eiwitten waarvan de productie geïnduceerd wordt door zowel cadmium als hitte en zelfs als een algemene reactie op een breed gamma aan stressfactors dienst doet, zoals bijvoorbeeld ook droogte. De naam voor deze eiwitten, heat-shock proteins, dateert nog uit vroegere tijden en dient dus eigenlijk herzien te worden. Door het induceren van een hitteperiode zal de concentratie aan deze eiwitten sterk verhogen waarbij ze zich eerder gaan richten op de bescherming tegen cadmium van het fotosynthetisch apparaat van populier, dat instaat voor de groei, dan tegen hitte. Toch geven deze eiwitten geen complete bescherming waardoor de stress van hitte en cadmium samen steeds groter zal zijn dan een van beide apart.

Om nu te veronderstellen dat het dus eigenlijk weinig kwaad kan, vervuiling en klimaatsverandering, is toch wat kort door de bocht. Los van het positieve effect van stijgende temperaturen op het cadmiumeffect in planten zijn er ook negatieve effecten. Zo zal bodemverontreiniging meer mobiel worden waardoor saneringen nog moeilijker en kostelijker zullen worden. Dit onderzoek wil enkel meegeven dat planten zich nog wel eens goed zouden kunnen aanpassen aan de omstandigheden waarin wij hen gebracht hebben. Misschien wel beter dan de mens…

 

 

Bibliografie


Ainsworth, E.A. & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant, Cell and Environment, 30, 258-270.
Alcamo, J., Moreno, J.M., Nováky, B., Bindi, M., Corobov, R., Devoy, R.J.N., Giannakopoulos, C., Martin, E., Olesen, J.E. & Shvidenko, A. (2007). Europe. In: Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J. & Hanson, C.E. (eds) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 541-580.
Allakhverdiev, S.I., Kreslavski, V.D., Klimov, V.V., Los, D.A., Carpentier, R. & Mohanty, P. (2008). Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis Research, 98, 541-550.
Asada, K. (2006). Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions. Plant Physiology, 141, 391-396.
ATSDR, U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry (2008). Draft toxicological profile for cadmium. http://www.atsdr.cdc.gov/toxprofiles/tp5.pdf (consulted 5 April 2012), 512p.
Baker, N.R. (2008). Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annual Review of Plant Biology, 59, 89-113.
Baker, N.R. & Oxborough, K. (2004). Chlorophyll Fluorescence as a Probe of Photosynthetic Productivity. In: Papageorgiou, G.C. & Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. The Netherlands, 65-82.
Barceló, J., Cabot, C. & Poschenrieder, CH. (1986). Cadmium-Induced Decrease of Water Stress Resistance in Bush Bean Plants (Phaseolus vulgaris L. cv. Contender) II. Effects of Cd on Endogenous Abscisic Acid Levels. Journal of Plant Physiology, 125, 27-34.
Bassman, J.H. & Zwier, J.C. (1991). Gas exchange characteristics of Populus trichocarpa, Populus deltoides and Populus trichocarpa x P. deltoids clones. Tree Physiology, 8, 145-159.
Bernacchi, C.J., Portis, A.R., Nakano, H., von Caemmerer, S. & Long, S.P. (2002). Temperature Response of Mesophyll Conductance. Implications for the Determination of Rubisco Enzyme Kinetics and for Limitations to Photosynthesis in Vivo. Plant Physiology, 130, 1992-1998.
Berry, J. & Björkman, O. (1980). Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31, 491-543.
Bierkens, J., De Raeymaecker, B., Cornelis, C., Schoeters, G., Hooghe, R., Verbeiren, S., Ruttens, A., Vangronsveld, J., Smolders, E., Schoeters, I., Van Geert, K., Van Gestel, G., Geysen, D., Dedecker, D. & Van De Wiele, K. (2010). Voorstel voor herziening bodemsaneringsnormen voor cadmium. OVAM, België, Mechelen, 78p.
Blaudez, D., Botton, B. & Chalot, M. (2000). Cadmiup uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology, 146, 1109-1117.
75
Bolhàr-Nordenkampf, H.R. & Öquist, G. (1993). Chlorophyll fluorescence as a tool in photosynthesis research. In: Hall, D.O., Scurlock, J.M.O., Bolhàr-Nordenkampf, H.R., Leegood, R.C., & Long, S.P. (eds) Photosynthesis and Production in a Changing Environment: a field and laboratory manual. U.K., London, 193 – 206.
Bradl, H.B. (2004). Adsoprtion of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277, 1-18.
Brooks, A. & Farquhar, G.D. (1985). Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphospate carboxylase/oxygenase and the rate of respiration in the light. Planta, 165, 397-406.
Brooks, R.R., Chambers, M.F., Nicks, L.J. & Robinson, B.H. (1998). Phytomining. TRENDS in Plant Science, 3, 359-362.
Bukhov, N.G., Wiese, C., Neimanis, S. & Heber, U. (1999). Heat sensitivity of chloroplasts and leaves: Leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynthesis Research, 59, 81-93.
Burzyński, M. & Kłobus, G. (2004). Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. Photosynthetica, 42, 505-510.
Cheng, S. (2003). Effects of Heavy Metals on Plants and Resistance Mechanisms. Environmental Science & Pollution Research, 10, 256-264.
Clemens, S., Palmgren, M.G. & Krämer, U. (2002). A long way ahead: understanding and engineering plant metal accumulation. TRENDS in Plant Science, 7, 309-315.
Cottenie, A. & Verloo, M. (1984). Analytical diagnosis of soil pollution with heavy-metals. Fresenius’ Zeitschrift für Analytische Chemie, 317, 389-393.
Curie, C., Cassin, G., Couch, D., Divol, F., Higuch, K., Le Jean, M., Misson, J., Schikora, A., Czernic, P. & Mari, S. (2009). Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Annuals of Botany, 103, 1-11.
Dai, H., Wei, Y., Zhang, Y., Gao, P., Chen, J., Jia, G., Yang, T., Feng, S., Wang, C., Wang, Y., Sa, W. & Wei, A. (2012). Influence of photosynthesis and chlorophyll synthesis on Cd accumulation in Populus x canescens. Journal of Food Agriculture & Environment, 10, 1020-1023.
DalCorso, G., Farinati, S., Maistri, S. & Furini, A. (2008). How Plants Cope with Cadmium: Staking All on Metabolism and Gene Expression. Journal of Integrative Plant Biology, 50, 1268-1280.
De Boeck, H.J., Dreesen, F.E., Janssens, I.A. & Nijs, I. (2010). Climatic characteristics of heat waves and their simulation in plant experiments. Global Change Biology, 16, 1992-2000.
Dokmeci, A.H., Ongen, A. & Dagdeviren, S. (2009). Environmental toxicity of cadmium and health effect. Journal of Environmental Protection and Ecology, 10, 84-93.
Du Laing, G., Vanthuyne, D.R.J., Vandecasteele, B., Tack, F.M.G. & Verloo, M.G. (2007). Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil. Environmental Pollution, 147, 615-625.
76
Durand, T.C., Sergeant, K., Planchon, S., Carpin, S., Label, P., Morabito, D., Hausman, J. & Renaut, J. (2010). Acute metal stress in Populus tremula x P. alba (717-1B4 genotype): Leaf and cambial proteome changes induced by cadmium2+. Proteomics, 10, 349-368.
Efeo lu, B. (2009). Heat Shock Proteins and Heat Shock Response in Plants. Gazi University Journal of Science, 22, 67-75.
Ernst, W.H.O. (1980). Biochemical aspects of cadmium in plants. In: Nriagu, J.O. (ed) Cadmium in the Environment. Part I: Ecological Cycling. John Wiley and Sons, New York, 639-653.
Evans, L.J. (1989). Chemistry of metal retention by soils – several processes are explained. Environmental Science & Technology, 23, 1046-1056.
Fagioni, M., D’Amici, G.M., Timperio, A.M. & Zolla, L. (2009). Proteomic Analysis of Multiprotein Complexes in the Thylakoid Membrane upon Cadmium Treatment. Journal of Proteome Research, 8, 310-326.
Feller, U., Crafts-Brandner, S.J. & Salvucci, M.E. (1998). Moderately High Temperatures Inhibit Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (Rubisco) Activase-Mediated Activation of Rubisco. Plant Physiology, 116, 539-546.
Forstner, U. (1993). Metal speciation – Generall concepts and applications. International Journal of Environmental Analytical Chemistry, 51, 5-23.
Franco, E., Alessandrelli, S., Masojídek, J., Margonelli, A. & Giardi, M.T. (1999). Modulation of D1 protein turnover under cadmium and heat stresses monitored by [35S]methionine incorporation. Plant Science, 144, 53-61.
Gaudet, M., Pietrini, F., Beritognolo, I., Iori, V., Zacchini, M., Massacci, A., Mugnozza, G.S. & Sabatti, M. (2011). Intraspecific variation of physiological and molecular response to cadmium stress in Populus nigra L. Tree Physiology, 31, 1309-1318.
Genty, B., Briantais, J-M. & Baker, N.R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990, 87-92.
Goormachtigh, S. (2012). Hittestress, zware metalen en hun effect op Populus canadensis ‘Robusta’. Masterthesis, Gent, België, Faculteit Bio-ingenieurswetenschappen.
Govindjee (1995). 63 years since Kautsky – Chlorophyll-a fluorescence. Australian Journal of Plant Physiology, 22, 131-160.
Greger, M. & Ogren, E. (1991). Direct and indirect effects of Cd2+ on photosynthesis in sugar-beet (Beta vulgaris). Physiologia Plantarum, 83, 129-135.
Gu, J.G., Qi, L., Jiang, W. & Liu, D. (2007). Cadmium accumulation and its effects on growth and gas exchange in four Populus cultivars. Acta Biologica Cracoviensia series Botanica, 49, 7-14.
Habashi, F. (1997). Handbook of Extractive Metallurgy. Wiley-VCH, Weinheim, 869-890.
77
Haldimann, P. & Feller, U. (2004). Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphospate carboxylase/oxygenase. Plant, Cell and Environment, 27, 1169-1183.
Hall, J.L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53, 1-11.
Hanssens, J. (2010). Invloed van bodemvervuiling (metaaltoxiciteit) op de ecofysiologie van populier tijdens gesimuleerde hittegolven. Masterthesis, Gent, België, Faculteit Bio-ingenieurswetenschappen, 81p.
Hasan, S.A., Fariduddin, Q., Ali, B., Hayat, S. & Ahmad, A. (2009). Cadmium: Toxicity and tolerance in plants. Journal of Environmental Biology, 30, 165-174.
Havaux, M. (1993). Rapid photosynthetic adaptation to heat-stress triggered in potato leaves by moderately elevated-temperatures. Plant, Cell and Environment, 16, 461-467.
Havaux, M. (1996). Short-term responses of photosystem I to heat stress - Induction of a PSII-independent electron transport through PSI fed by stromal components. Photosynthesis Research, 47, 85-97.
Heber, U. (2002). Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynthesis Research, 73, 223-231.
Heckathorn, S.A., Downs, C.A. & Coleman, J.S. (1999). Small heat shock proteins protect electron transport in chloroplasts and mitochondria during stress. American Zoologist, 39, 865-876.
Hermle, S. Vollenweider, P., Günthardt-Goerg, M.S., McQuattie, C.J. & Matyssek, R. (2007). Leaf responsiveness of Populus tremula and Salix viminalis to soil contaminated with heavy metals and acidic rainwater. Tree Physiology, 27, 1517-1531.
Heyno, E., Klose, C. & Krieger-Liszkay, A. (2008). Origin of cadmium-induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase. New Phytologist, 179, 687-699.
Hozain, M.I., Salvucci, M.E., Fokar, M. & Holaday, A.S. (2009). The differential response of photosynthesis to high temperature for a boreal and temperate Populus species relates to differences in Rubisco activation and Rubisco activase properties. Tree Physiology, 30, 32-44.
Hüve, K, Bichele, I., Ivanova, H., Keerberg, O., Pärnik, T., Rasulov, B. Tobias, M. & Niinemets, Ü. (2012). Temperature responses of dark respiration in relation to leaf sugar concentration. Physiologia Plantarum, 144, 320-334.
IPCC (2007). IPCC, 2007: Summary for Policymakers. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. & Miller, H.L. (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 18p.
Kautsky, H. & Hirsch, A. (1931). Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften, 19, 964.
Kautsky, H., Appel, W. & Amann, H. (1960). Chlorophyllfluorescenz und Kohlensäureassimilation. Biochemische Zeitschrift, 322, 277-292.
78
Kieffer, P., Planchon, S., Oufir, M., Ziebel, J., Dommes, J., Hoffmann, L., Hausman, J. & Renaut, J. (2009a). Combining Proteomics and Metabolite Analyses To Unravel Cadmium Stress-Response in Poplar Leaves. Journal of Proteome Research, 8, 400-417.
Kieffer, P., Schröder, P., Dommes, J., Hoffmann, L., Renaut, J. & Hausman, J. (2009b). Proteomic and enzymatic response of poplar to cadmium stress. Journal of Proteomics, 72, 379-396.
Kim, K. & Portis, A.R. (2004). Oxygen-dependent H2O2 production by Rubisco. Febs Letters, 571, 124-128.
Kirkham, M.B. (2006). Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137, 19-32.
Krupa, Z., Öquist, G. & Huner, N.P.A. (1993). The effects of cadmium on photosynthesis of Phaseolus vulgaris – a fluorescence analysis. Physiologia Plantarum, 88, 626-630.
Krupa, Z. (1999). Cadmium against Higher Plant Photosynthesis – a Variety of Effects and Where Do They Possibly Come From? Zeitschrift für Naturforschung, 54c, 723-729.
Küpper, H., Parameswaran, A., Leitenmaier, B., Trtílek, M. & S etl k, I. (2007). Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in hyperaccumulator Thlaspi caerulescens. New Phytologist, 175, 655-674.
Larbi, A., Morales, F., Abadia, A., Gogorcena, Y., Lucena, J.J. & Abadia, J. (2002). Effects of Cd and Pb in sugar beet plants grown in nutrient solution: induced Fe deficiency and growth inhibition. Functional plant biology, 29, 1453-1464.
Larcher, W. (2003). Physiological Plant Ecology. Germany, Berlin Heidelberg New York, Springer, 519p.
Latowski, D., Kruk, J. & Strzałka, K. (2005). Inhibition of zeaxanthin epoxidase activity by cadmium ions in higher plants. Journal of Inorganic Biochemistry, 99, 2081-2087.
Law, R.D. & Crafts-Brandner, S.J. (1999). Inhibition and Acclimation of Photosynthesis to Heat Stress Is Closely Correlated with Activation of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase. Plant Physiology, 120, 173-181.
Lee, K.C., Cunningham, B.A., Paulsen, G.M., Liang, G.H. & Moore, R.B. (1976). Effects of Cadmium on Respiration Rate and Activities of Several Enzymes in Soybean Seedlings. Physiologia Plantarum, 36, 4-6.
Le Quéré, C., Raupach, M.R., Canadell, J.G., Marland, G., Bopp, L., Ciais, P., Conway, T.J., Doney, S.C., Feely, R.A., Foster, P., Friedlingstein, P., Gurney, K., Houghton, R.A., House, J.I., Huntingford, C., Levy, P.E., Lomas, M.R., Majkut, J., Metzl, N., Ometto, J.P., Peters, G.P., Prentice, C., Randerson, J.T., Running, S.W., Sarmiento, J.L., Schuster, U., Sitch, S., Takahashi, T., Viovy, N., van der Werf, G.R. & Woodward, F.I. (2009). Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2, 831-836.
LI-COR (2008). Using the LI-6400/LI-6400XT Portable Photosynthesis System. LI-COR Biosciences, Inc., Lincoln, NE, USA, version 6, 1280p. ftp://ftp.licor.com/perm/env/LI-6400/Manual/Using_the_LI-6400XT-v6.1.pdf (consulted 2 December 2011).
79
LI-COR (2011b). Leaf Chamber Fluorometer 6400-40, for use with the LI-6400 Portable Photosynthesis System. LI-COR Biosciences, Inc., Lincoln, NE, USA, 4p. http://www.licor.com/env/products/photosynthesis/brochures.html (consulted 3 December 2011).
LI-COR (2012). LI-6400XT System. Photosynthesis, Fluorescence, Respiration. LI-COR Biosciences, Inc., Lincoln, NE, USA, 13p. http://www.licor.com/env/pdf/photosynthesis/LI6400XTBrochure.pdf (consulted 4 February 2012).
Los, D.A. & Murata, N. (2004). Membrane fluidity and its roles in the perception of environmental signals. Biochimica et Biophysica Acta, 1666, 142-157.
Lunáčková, L., S ottn ková, A., Masarovičová, E., Lux, A., Stres ko, V. (2003). Comparsion of cadmium effect on willow and poplar in response to different cultivation conditions. Biologia Plantarum, 47, 403-411.
Lux, A., Martinka, M., Vaculík, M. & White, P.J. (2011). Root responses to cadmium in the rhizosphere: a review. Journal of Experimental Botany, 62, 21-37.
Malik, D., Sheoran, I.S. & Singh, R. (1992). Carbon metabolism in leaves of cadmium treated wheat seedlings. Plant Physiology and Biochemistry, 30, 223-229.
Martin, H.W. & Kaplan, D.I. (1996). Temporal changes in cadmium, thallium, and vanadium mobility in soil and phytoavailability under field conditions. Water, Air, and Soil Pollution, 101, 399-410.
Maxwell, K. & Johnson, G.N. (2000). Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany, 51, 345, 659-668.
Milone, M.T., Sgherri, C., Clijsters, H. & Navari-Izzo, F. (2003). Antioxidative responses of wheat treated with realistic concentration of cadmium. Environmental and Experimental Botany, 50, 265-276.
Meehl, G.A. & Tebaldi, C. (2004). More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science, 305, 994-997.
Mohanty, P., Vani, B. & Prakash, J.S.S. (2002). Elevated temperature treatment induced alteration in thylakoid membrane organization and energy distribution between the two photosystems in Pisum sativum. Zeitschrift für Naturforschung C-A Journal of Biosciences, 57, 836-842.
Mott, K.A. (1988). Do Stomata Respond to CO2 Concentrations Other than Intercellular? Plant Physiology, 86, 200-203.
Murata, N., Takahashi, S., Nishiyama, Y. & Allakhverdiev, S.I. (2007). Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta, 1767, 414-421.
Nash, D., Miyao, M. & Murata, N. (1985). Heat inactivation of oxygen evolution in Photosystem II particles and its acceleration by chloride depletion and exogenous manganese. Biochimica et Biophysica Acta, 807, 127-133.
Niinemets, Ü., Oja, V. & Kull, O. (1999). Shape of leaf photosynthetic electron transport versus temperature response curve is not constant along canopy light gradients in temperate deciduous trees. Plant, Cell and Environment, 22, 1497-1513.
80
Nishiyama, Y., Allakhverdiev, S.I. & Murata, N. (2006). A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochimica et Biophysica Acta, 1757, 742-749.
Niyogi, K.K. (1999). Photoprotection revisited: Geneticc and Molecular Approaches. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 333-359.
Nordberg, G.F. (2004). Cadmium and health in the 21st Century – historical remarks and trends for the future. Biometals, 17, 485-489.
Nordic Council of Ministers (2003). Cadmium Review. www.who.int/ifcs/documents/forums/forum5/nmr_cadmium.pdf (consulted 5 April 2012), 26p.
Nriagu, J.O. & Pacyna, J.M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134-139.
Pacyna, E.G., Pacyna, J.M., Fudala, J., Strzelecka-Jastrzab, E., Hlawiczka, S., Panasiuk, D., Nitter, S., Pregger, T., Pfeiffer, H. & Friedrich, R. (2007). Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe. Atmospheric Environment, 41, 8557-8566.
Pandey, S., Gupta, K. & Mukherjee, A.K. (2007). Impact of cadmium and lead on Catharanthus roseus – A phytoremediation study. Journal of Environmental Biology, 28, 655-662.
Pietrini, F., Zacchini, M., Iori, V., Pietrosanti, L., Ferretti, M. & Massacci, A. (2010). Spatial distribution of cadmium in leaves and its impact on photosynthesis: examples of different strategies in willow and poplar clones. Plant Biology, 10, 355-363.
Pinto, M. (1980). Control of photosynthesis by photosynthate demand – possible mechanisms. Photosynthetica, 14, 611-637.
Portis, A.R.Jr. (2003). Rubisco activase – Rubisco’s catalytic chaperone. Photosynthesis Research, 75, 11-27.
Poschenrieder, C., Gunsé, B. & Barceló, J. (1989). Influence of Cadmium on Water Relations, Stomatal Resistance, and Abscisic Acid Content in Expanding Bean Leaves. Plant Physiology, 90, 1365-1371.
Prasad, M.N.V. (1995). Cadmium toxicity and tolerance in vascular plants. Environmental and Experimental Botany, 35, 525-545.
Prasad, M.N.V. & Freitas, H.M. (2003). Metal hyperaccumulation in plants – Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6, 285-321.
Raven, P.H., Evert, R.F. & Eichhorn, S.E. (2005). Biology of Plants. New York, U.S., W.H. Freeman and Company Publishers, 686p.
Robinson, B.H., Mills, T.M., Petit, D., Fung, L.E., Green, S.R. & Clothier, B.E. (2000). Natural and induced cadmium-accumulation in poplar and willow: Implications for phytoremediation. Plant and Soil, 227, 301-306.
Roháček, K. (2002). Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica, 40, 13-29.
81
Roháček, K. & Barták, M. (1999). Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica, 37, 339-363.
Sadegh Safarzadeh, M., Bafghi, M.S., Moradkhani, D. & Ojaghi Ilkhchi, M. (2007) A review on hydrometallurgical extraction and recovery of cadmium from various resources. Minerals Engineering 20, 211-220.
Sage, R.F. & Kubien, D.S. (2007). The temperature response of C3 and C4 photosynthesis. Plant, Cell and Environment, 30, 1086-1106.
Salvucci, M.E. & Crafts-Brandner, S.J. (2004). Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiologia Plantarum, 120, 179-186.
Satarug, S., Baker, J.R., Urbenjapol, S., Haswell-Elkins, M., Reilly, P.E.B., Williams, D.J. & Moore, M.R. (2003). A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicology Letters, 137, 65-83.
Sárvári, É., Solti, Á., Basa, B., Mészáros, I., Lévai, L. & Fodor, F. (2011). Impact of moderate Fe excess under Cd stress on the photosynthetic performance of poplar (Populus jacquemontiana var. glauca cv. Kopeczkii). Plant Physiology and Biochemistry, 49, 499-505.
Sauvé, S., Manna, S., Turmel, M-C., Roy, A.G. & Courchesne, F. (2003). Solid-solution partitioning of Cd, Cu, Ni, Pb, and Zn in the organic horizons of a forest soil. Environmental Science & Technology, 37, 5191-5196.
Schär, C., Vidale, P.L., Lüthi, D., Frei, C., Häberli, C., Liniger, M.A. & Appenzeller, C. (2004). The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332-336.
Schmidt, W. (1988). Luminescence of organic molecules – theory and analytical applications in photosynthesis. In: Lichtenthaler, H.K. (ed) Applications of Chlorophyll Fluorescence. Kluwer Academic Publishers, 211-216.
Schrader, S.M., Wise, R.R., Wacholtz, W.F., Ort, D.R. & Sharkey, T.D. (2004). Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant, Cell and Environment, 27, 725-735.
Schreiber, U. & Armond, P.A. (1978). Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level. Biochimica et Biophysica Acta, 502, 138-151.
Schulze, E., Beck, E. & Müller-Hohenstein, K. (2005). Plant Ecology. Springer, Germany, Berlin, 702p.
Sell, J., Kayser, A., Schulin, R. & Brunner, I. (2005). Contribution of ectomycorrhizal fungi to cadmium uptake of poplars and willows from a heavily polluted soil. Plant and Soil, 277-245-253.
Seregin, I.V. & Ivanov, V.B. (2001). Physiological Aspects of Cadmium and Lead Toxic Effects on Higher Plants. Russian Journal of Plant Physiology, 48, 523-544.
Seuntjens, P., Tirez, K., S im nek, J., van Genuchten, M.Th., Cornelis, C. & Geuzens, P. (2001). Aging Effects on Cadmium Transport in Undisturbed Contaminated Sandy Soil Columns. Journal of Environmental Quality, 30, 1040-1050.
Sharkey, T.D. (2005). Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell and Environment, 28, 269-277.
82
Siedlecka, A. & Baszynski, T. (1993). Inhibition of electron flow around photosystem-I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron-deficiency. Physiologia Plantarum, 87, 199-202.
Sigfridsson, K.G.V., Bernát, G., Mamedov, F. & Styring, S. (2004). Molecular interference of Cd2+ with Photosystem II. Biochimica et Biophysica Acta, 1659, 19-31.
Silim, S.N., Ryan, N. & Kubien, D.S. (2010). Temperature responses of photosynthesis and respiration in Populus balsamifera L.: acclimation versus adaptation. Photosynthesis Research, 104, 19-30.
Silver, S. (1996). Bacterial resistances to toxic metal ions – a review. Gene, 179, 9-19.
Solti, Á., Szűcs, J., Basa, B. & Sárvári, É. (2009). Functional and organisational change of photosystem II in poplar thylakoids under Cd stress (Dissipative PSII centres in Cd treated poplar thylakoids). 8th Alps-Adria Scientific Workshop, Bosnia-Herzegovina, 4p.
Solti, Á., Gáspár, L., Mészáros, I., Szigeti, Z., Lévia, L. & Sárvári, É. (2008a). Impact of Iron Supply on the Kinetics of Recovery of Photosynthesis in Cd-stressed Poplar (Populus glauca). Annals of Botany, 102, 771-782.
Solti, Á., Szégi, P., Bása, B., Mészáros, I. & Sárvári, É. (2008b). Alleviation of Cd induced inhibition of photosynthesis under long-term Cd treatment in poplar. Cereal Research Communications, 36, 239-242.
Steppe, K. (2011). Ecofysiologie. Cursus, Gent, Faculteit Bio-ingenieurswetenschappen, Universiteit Gent, Vakgroep toegepaste ecologie en milieubiologie, Laboratorium voor Plantecologie, 182p.
Stitt, M. & Grosse, H. (1988). Interactions between Sucrose Synthesis and CO2 Fixation IV. Temperature-dependent adjustment of the relation between sucrose synthesis and CO2 fixation. Journal of Plant Physiology, 133, 392-400.
Tack, F.M.G. (2010). Trace elements: general soil chemistry, principles and processes. In: Hooda, P. (ed) Trace elements in soils. Wiley-Blackwell, 9-39.
Terry, N. (1980). Limiting factors in photosynthesis. 1. Use of iron stress to control photochemical capacity invivo. Plant Physiology, 65, 114-120.
Trenberth, K.E., Jones, P.D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., Parker, D., Rahimzadeh, F., Renwick, J.A., Rusticucci, M., Soden, B. & Zhai, P. (2007). Observations: Surface and Atmospheric Climate Change. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. & Miller, H.L. (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Tudoreanu, L. & Philips, C.JC. (2004). Empirical models of cadmium accumulation in maize, rye grass and soya bean plants. Journal of the Science of Food and Agriculture, 84, 845-852.
Unterbrunner, R., Puschenreiter, M., Sommer, P., Wieshammer, G., Tlustos , P., Zupan, M. & enzel, . . (2007). Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environmental Pollution, 148, 107-114.
83
Uraguchi, S., Mori, S., Kuramata, M., Kawasaki, A., Arao, T. & Ishikawa, S. (2009a). Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 60, 2677-2688.
Uraguchi, S., Kiyono, M., Sakamoto, T., Watanabe, I. & Kuno, K. (2009b). Contributions of apoplasmic cadmium accumulation, antioxidative enzymes and induction of phytochelatins in cadmium tolerance of the cadmium-accumulating cultivar of black oat (Avena strigosa Schreb.). Planta, 230, 267-276.
Valentini, R., Epron, D., De Angelis, P., Matteucci, G. & Dreyer, E. (1995). In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. Plant, Cell and Environment, 18, 631-640.
Van Kooten, O. & Snel, J.F.H. (1990). The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 25, 147-150.
Vassilev, A., Berova, M. & Zlatev, Z. (1998). Influence of Cd2+ on growth, chlorophyll content, and water relations in young barley plants. Biologia Plantarum, 41, 601-606.
Verbruggen, N., Hermans, C. & Schat, H. (2009). Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 12, 364-372.
Vierling, E. (1991). The roles of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 579-620.
Wahid, A., Gelani, S., Ashraf, M. & Foolad, M.R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61, 199-223.
Walker, D. (1987). Fluorescence. In: Walker, D. (ed) The Use of the Oxygen Electrode and Fluorescence Probes in Simple Measurements of Photosynthesis. Sheffield, U.K., 17-46.
Wang, W., Vinocur, B., Shoseyov, O. & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9, 244-252.
Weis, E. & Berry, J.A. (1988). Plants and high-temperature stress. Symposia of the Society for Experimental Biology, 42, 329-46.
White, P.J. & Brown, P.H. (2010). Plant nutrition for sustainable development and global health. Annals of Botany, 105, 1073-1080.
Yamada, M., Hidaka, T. & Fukamachi, H. (1996). Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Scientia Horticulturae, 67, 39-48.
Yamane, Y., Shikanai, T., Kashino, Y., Koike, H. & Satoh, K. (2000). Reduction of QA in the dark: Another cause of fluorescence F0 increases by high temperatures in higher plants. Photosynthesis Research, 63, 23-34.
Yamasaki, T., Yamakawa, T., Yamane, Y., Koike, H., Satoh, K. & Katoh, S. (2002). Temperature Acclimation of Photosynthesis and Related Changes in Photosystem II Electron Transport in Winter Wheat. Plant Physiology, 128, 1087-1097.
84
Yamashita, A., Nijo, N., Pospís il, P., Morita, N., Takenaka, D., Aminaka, R., Yamamoto, Y. & Yamamoto, Y. (2008). Quality Control of Photosystem II Reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress. The Journal of Biological Chemistry, 283, 28380-28391.
Yamori, W., Noguchi, K., Hanba, Y.T. & Terashima, I. (2006). Effects of internal conductance on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant and Cell Physiology, 47, 1069-1080.

Download scriptie (2.93 MB)
Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2012