Liana abundance and functional diversity along an altitudinal gradient in northern Ecuador

Camille Meeussen
Persbericht

Lianen: planten met een pittige persoonlijkheid.

U kent het allemaal wel, klimop kruipend langs traliewerk, krinkelend rond bomen of klimmend langs onze gevels. Minder bekend zijn echter hun grote broertjes, houtige lianen, groeiend in de tropische bossen rond de evenaar. Nog raadselachtiger is echter waarom deze plots in aantallen blijken toe te nemen.

Lianen zijn onlosmakelijk verbonden met de filmheld Tarzan maar daar stopt dan vaak ook onze kennis over deze magische groep planten. Begrijpelijk want lianen groeien niet goed in onze contreien. Ze zijn namelijk niet bestand tegen vriestemperaturen en gedijen dus beter onder een tropische warmte. Hoe meer we richting evenaar trekken, hoe talrijker lianen voorkomen. Een natuurlijk fenomeen, echter is in de laatste decennia een sterke toename in biomassa en het aantal lianen geconstateerd in Midden- en Zuid-Amerika. Lianen profiteren van de stijgende temperatuur en zijn ook beter bestand tegen de toenemende droogte. De klimaatverandering is dus hun ultieme kans om aan aandeel te winnen in tropische bossen. Daarnaast zijn ze ook niet vies van wat verstoring en kunnen ze zich dus gemakkelijker voortplanten in open plekken in het bos ontstaan na stormen of de kap van bomen of stukken bos. Het is dus niet onwaarschijnlijk dat deze stijging in aantal lianen en lianen biomassa zich verderzet in de toekomst en dat de lianen ook hun verspreidingsareaal zullen uitbreiden. Een fenomeen met grootschalige gevolgen dat van dichtbij moet worden opgevolgd.

“Om te groeien maken lianen namelijk gebruik van de aanwezige bomen, via hun stam en takken klimmen ze omhoog om boven in de kruinen hun bladeren te laten groeien in veel lichtrijkere omstandigheden. Hierdoor treden ze in competitie met de bomen in het bos, waarvan de bladeren dan weer in de schaduw van deze van de lianen groeien. Naast competitie voor zonlicht strijden ze ook voor hetzelfde water en dezelfde voedingstoffen in de grond. Deze rivaliteit leidt uiteindelijk tot een verminderde groei of zelfs het afsterven van bomen” zegt Hans Verbeeck, professor aan de Universiteit van Gent. “Een toename aan lianen zal dus enkel de competitie met bomen verhogen en als gevolg zal er ook een verlaagde koolstofopname zijn in deze bossen. Hoe minder koolstof er wordt opgeslagen, hoe hoger de CO2 concentratie in de atmosfeer wat weer een positieve feedback zal veroorzaken op de opwarming van onze planeet. Uiteindelijk komen we in een vicieuze cirkel terecht waarbij klimaatopwarming de wedloop tussen liaan en boom versterkt en deze dan weer de klimaatopwarming.”

Om de groei en de opkomst van lianen verder te monitoren, bestudeerde Camille, masterstudente aan de Universiteit van Gent het voorbije jaar lianen langsheen een hoogtegradiënt in tropische bossen in Ecuador, Zuid-Amerika. In het Andesgebergte werden het aantal lianen en hun biomassa onderzocht, startend in bossen op 400 meter boven de zeespiegel tot 3200 meter hoog in de bergen, waar het een stuk koeler is. Via zo’n hoogtegradiënt kan op een korte afstand dus vrij efficiënt het effect van een met de hoogte dalende temperatuur op het voorkomen van lianen bestudeerd worden. “Bij de start van het onderzoek verwachtten we dus eigenlijk een daling van het aantal lianen waar te nemen als we ons hoger in de bergen bevonden, aangezien lianen niet zo goed bestand zijn tegen koudere temperaturen”, aldus Camille. “Deze hypothese bleek echter niet te kloppen. We vonden geen duidelijke daling in het aantal lianen langsheen de hoogtegradiënt en ook de verhouding lianen ten opzichte van bomen veranderde niet. Zowel lianen als bomen blijken het dus eigenlijk goed te doen op alle hoogtes langsheen de gradiënt. Naast de temperatuur spelen uiteraard ook andere factoren een rol; zoals de beschikbare hoeveelheid water en nutriënten in de bodem of de verstoring in het bos op de plaats van het onderzoek. Dit maakt het extra moeilijk om te achterhalen waarom het aantal lianen niet afneemt met een dalende temperatuur of dus toenemende hoogte. Een trend die dus wel wordt waargenomen indien je van de tropen naar de polen trekt.”

“Kortom, blijken lianen dus net iets sterker te zijn.”

 

Verder werd ook onderzocht of de lianen zich aanpasten aan de moeilijkere groeiomstandigheden; een lagere temperatuur in combinatie met een verminderde beschikbaarheid aan water en voedingsstoffen op hogere hoogtes. Camille: “Er was een duidelijke daling in de stikstof en fosfor concentratie in lianen bladeren te vinden hoger in de bergen. Deze twee nutriënten zijn noodzakelijk voor het aanmaken van suikers, voeding voor de plant, en dus het goed functioneren van de plant. Verder steeg ook het gewicht van het blad per oppervlakte-eenheid of werden de bladeren dus dikker. Dit zijn duidelijke tekens van aanpassingsmechanismen van de plant aan de lastigere groeiomstandigheden. Meer specifiek wijzen ze erop dat de lianen eerder conservatief en defensief gaan leven hoger in de bergen in de plaats van volop te investeren in hun groei. Ook bomen volgen dezelfde strategie langsheen de gradiënt. Echter lagen gemiddeld de waarden van de nutriënten, stikstof en fosfor, hoger in de bladeren van lianen in vergelijking met die van de bomen en waren hun bladeren ook iets minder dik. De lianen hebben, in vergelijking met de bomen, zich dus minder drastisch moeten aanpassen aan de veranderende groeiomstandigheden. Als gevolg kunnen ze dus iets efficiënter groeien terwijl de bomen het moeilijker hebben en meer energie zullen steken in het voortbestaan en de verdediging van hun weefsels. Kortom, blijken lianen dus net iets sterker te zijn.”

Lianen hoeven met hun sterk karakter dus zeker niet onder te doen voor bomen. Integendeel, ze profiteren van verstoring in de bossen en groeien goed bij warme temperaturen zonder in te boeten als de temperatuur daalt. Daarnaast blijken ze ook nog eens sterker in hun schoenen te staan in minder geschikte groeiomstandigheden. Hoewel lianen een belangrijk deel uitmaken van tropische bossen en bijdragen aan de biodiversiteit is de trend van een stijgende lianen biomassa en aantallen dus op zijn minst verontrustend te noemen. In de natuur geldt namelijk nog steeds de wet van de sterkste. 

Bibliografie

Aiba, S., & Kitayama, K. (1999). Structure, Composition and Species Diversity in an Altitude-Substrate Matrix of Rain Forest Tree Communities on Mount Kinabalu, Borneo. Plant Ecology,140(2), 139-157.

Alves, L. F., Assis, M. A., van Melis, J., Barros, A. L., Vieira, S. A., Martins, F. R., ... & Joly, C. A. (2012). Variation in liana abundance and biomass along an elevational gradient in the tropical Atlantic Forest (Brazil). Ecological research, 27(2), 323-332.

Andrade JL, Meinzer FC, Goldstein G, Schnitzer SA. (2005). Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest. Trees – Structure and Function 19: 282–289.

Arnalds, O. (2008). Andosols. In Encyclopedia of Soil Science (pp. 39-46). Springer Netherlands.

Asner, G. P., & Martin, R. E. (2012). Contrasting leaf chemical traits in tropical lianas and trees: implications for future forest composition. Ecology Letters15(9), 1001-1007.

Asner, G. P., & Martin, R. E. (2015). Canopy chemistry expresses the life-history strategies of lianas and trees. ch21, 299-308.

Asner, G. P., Townsend, A. R., & Braswell, B. H. (2000). Satellite observation of El Nino effects on Amazon forest phenology and productivity. Geophysical research letters, 27(7), 981-984.

Avalos, G., Mulkey, S. S., Kitajima, K., & Wright, S. J. (2007). Colonization strategies of two liana species in a tropical dry forest canopy. Biotropica, 39(3), 393-399.

Baas, P., Ewers, F. W., Davis, S. D., & Wheeler, E. A. (2004). Evolution of xylem physiology. The evolution of plant physiology, 273-295.

Bader, M. Y., Rietkerk, M., & Bregt, A. K. (2007). Vegetation structure and temperature regimes of tropical alpine treelines. Arctic, Antarctic, and Alpine Research, 39(3), 353-364.

Balfour, D.A. & Bond, W.J. (1993). Factors limiting climber distribution and abundance in a southern, African forest, Journal of Ecology, 81,93–99

Balslev, H. (1988). Distribution patterns of Ecuadorean plant species. Taxon, 567-577.

Barcelo, J., & Poschenrieder, C. (2002). Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environmental and Experimental Botany, 48(1), 75-92.

Barry, R. G. (1992). Mountain weather and climate. Psychology Press.

Belote, R.T., Weltzen, J.F. & Norby, R.J. (2003). Response of an understory plant community to elevated [CO2] depends on differential responses of dominant invasive species and is mediated by soil water availability. New Phytol., 161, 827–835

Blumthaler, M., Ambach, W., & Ellinger, R. (1997). Increase in solar UV radiation with altitude. Journal of photochemistry and Photobiology B: Biology, 39(2), 130-134.

Bongers, F., Parren, M. P., & Traoré, D. (Eds.). (2005). Forest climbing plants of West Africa: diversity, ecology and management. CABI.

Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R., Lloyd, J., ... & Martinez, R. V. (2015). Long-term decline of the Amazon carbon sink. Nature, 519(7543), 344-348.

Brooks, T.M. et al. (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923

Bruijnzeel, L. A., Mulligan, M., & Scatena, F. N. (2011). Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrological Processes, 25(3), 465-498.

Bruneel, S. (2016). Carbon sequestration along an elevational gradient in the Andes region of Ecuador. Masterthesis, Ghent University

Bubb, P., May, I., Miles, L., Sayer, J. (2004). Cloud forest agenda. UNEP-WCMC, Cambridge

Burnham, R. J. (2004). Alpha and beta diversity of lianas in Yasunı, Ecuador. Forest Ecology and Management190(1), 43-55.

Caballé, G. & Martin, A. (2001). Thirteen years of change in trees and lianas in a Gabonese rainforest. Plant Ecol., 152, 167–173.

Cai ZQ, Schnitzer SA, Bongers F (2009b) Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest. Oecologia 161(1):25–33

Cai, Z. Q., & Bongers, F. (2007). Contrasting nitrogen and phosphorus resorption efficiencies in trees and lianas from a tropical montane rain forest in Xishuangbanna, south-west China. Journal of Tropical Ecology, 23(01), 115-118.

Cai, Z. Q., Schnitzer, S. A., Wen, B., Chen, Y. J., & Bongers, F. (2009a). Liana communities in three tropical forest types in Xishuangbanna, South-West China. Journal of Tropical Forest Science, 252-264.

Castellanos, A. (2011). Andean bear home ranges in the Intag region, Ecuador. Ursus, 22(1), 65-73.

Chapin FS, Matson PA, Mooney HA. (2002). Principles of Terrestrial Ecosystem Ecology. New York, USA: Springer.

Chapin, F.S., III et al. (2000) Consequences of changing biodiversity. Nature 405, 234–242

Chapman, H. D. & Pratt, F. P. (1961). Ammonium vandate-molybdate method for determination of phosphorus. In: Methods of analysis for soils, plants and water. California: California University, Agriculture Division, p. 184-203

Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology letters, 12(4), 351-366.

Chave, Jérôme, Bernard Riéra, and Marc-A. Dubois (2001). Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. Journal of Tropical Ecology 17.01: 79-96.

Chazdon, R. L., Careaga, S., Webb, C., & Vargas, O. (2003). Community and phylogenetic structure of reproductive traits of woody species in wet tropical forests. Ecological monographs, 73(3), 331-348.

Chazdon, R.L. (2003). Tropical forest recovery: legacies of human impact and natural disturbances. Perspect. Plant. Ecol. Evol. Syst 6, 51-71

Chen, Y. J., Cao, K. F., Schnitzer, S. A., Fan, Z. X., Zhang, J. L., & Bongers, F. (2015). Water‐use advantage for lianas over trees in tropical seasonal forests. New Phytologist, 205(1), 128-136.

Churkina, G., & Running, S. W. (1998). Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems, 1(2), 206-215.

Clinebell II, R. R., Phillips, O. L., Gentry, A. H., Stark, N., & Zuuring, H. (1995). Prediction of neotropical tree and liana species richness from soil and climatic data. Biodiversity & Conservation, 4(1), 56-90.

Coley, P. D. (1983). Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological monographs, 53(2), 209-234.

Coley, P. D., Bryant, J. P., & Chapin III, F. S. (1985). Resource availability and plant antiherbivore defense. Science230, 895-900.

Collins, C. G., Wright, S. J., & Wurzburger, N. (2016). Root and leaf traits reflect distinct resource acquisition strategies in tropical lianas and trees. Oecologia, 180(4), 1037-1047.

Cornelissen, J. H. C., Lavorel, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D. E., ... & Pausas, J. G. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian journal of Botany, 51(4), 335-380.

Cramer, W., Bondeau, A., Schaphoff, S., Lucht, W., Smith, B., & Sitch, S. (2004). Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1443), 331-343.

de Oliveira, E. A., Marimon, B. S., Feldpausch, T. R., Colli, G. R., Marimon-Junior, B. H., Lloyd, J., ... & Phillips, O. L. (2014). Diversity, abundance and distribution of lianas of the Cerrado–Amazonian forest transition, Brazil. Plant Ecology & Diversity7(1-2), 231-240.

Demol, M., (2016). Functional diversity in natural forests along an altitudinal gradient in Northern Ecuador, Masterthesis, Ghent University

Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, 105(18), 6668-6672.

DeWalt, S. J., & Chave, J. (2004). Structure and Biomass of Four Lowland Neotropical Forests1. Biotropica, 36(1), 7-19.

DeWalt, S. J., Ickes, K., Nilus, R., Harms, K. E., & Burslem, D. F. (2006). Liana habitat associations and community structure in a Bornean lowland tropical forest. Plant Ecology186(2), 203-216.

DeWalt, S. J., Schnitzer, S. A., & Denslow, J. S. (2000). Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. Journal of Tropical Ecology, 16(01), 1-19.

DeWalt, S. J., Schnitzer, S. A., Alves, L. F., Bongers, F., Burnham, R. J., Cai, Z., ... & Ewango, C. E. (2015). Biogeographical patterns of liana abundance and diversity. Ecology of lianas, 131-146.

Dı́az, S., & Cabido, M. (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16(11), 646-655.

Dirzo, R., Raven, P. H. (2003). Global State of Biodiversity and Loss. Annual Review of Environment and Resources, 28(1): 137–167.

Doumenge, C., Gilmour, D., Pérez, M. R., & Blockhus, J. (1995). Tropical montane cloud forests: conservation status and management issues. In Tropical montane cloud forests (pp. 24-37). Springer US.

Dunbar, R. B. (2000). El Niño: clues from corals. Nature 407:956–959

Earth System Research Laboratory, NOAA’s Annual Greenhouse Gas Index Online (1/06/2017), Available on https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html (Update of 5 may, 2017)

Eissenstat, D. M., Wells, C. E., Yanai, R. D., & Whitbeck, J. L. (2000). Building roots in a changing environment: implications for root longevity. New Phytologist, 147(1), 33-42.

Ewango, C. E., Bongers, F., Makana, J. R., Poorter, L., & Sosef, M. S. (2015). Structure and composition of the liana assemblage of a mixed rain forest in the Congo Basin. Plant Ecology and Evolution, 148(1), 29-42.

Ewango, C.E.N. (2010). The liana assemblage of a Congolian rainforest. Diversity structure and function. PhD Thesis, Wageningen University, Wageningen, The Netherlands.

Ewers, F. W., J. B. Fisher, and K. Fichtner. (1991). Water flux and xylem structure in vines. Pages 127–160 in F. E. Putz and H. A. Mooney, eds. The biology of vines. Cambridge University Press, Cambridge

Ewers, F. W., Rosell, J. A., & Olson, M. E. (2015). Lianas as structural parasites. In Functional and ecological xylem anatomy (pp. 163-188). Springer International Publishing.

Ewers, F. (1985). Xylem structure and water conductions in conifer trees, dicot trees, and lianas. International Association of Wood Anatomists Bulletin 6: 309–317.

Ewing, H. A., Weathers, K. C., Templer, P. H., Dawson, T. E., Firestone, M. K., Elliott, A. M., & Boukili, V. K. (2009). Fog water and ecosystem function: heterogeneity in a California redwood forest. Ecosystems, 12(3), 417-433.

Fadrique, B., & Homeier, J. (2016). Elevation and topography influence community structure, biomass and host tree interactions of lianas in tropical montane forests of southern Ecuador. Journal of Vegetation Science, 27(5), 958-968.

Falster, D. S., & Westoby, M. (2003). Leaf size and angle vary widely across species: what consequences for light interception? New Phytologist, 158(3), 509-525.

FAO, (2012). Global Ecological zones for FAO forest reporting: 2010 update. Online (10/12/2016) Available on http://www.fao.org/docrep/017/ap861e/ap861e00.pdf

FAO, (2015). Global Forest Resources Assessment 2015. Online (7/12/2016). Available on http://www.fao.org/3/a-i4808e.pdf

FAO, (2016). State of the world’s forests 2016. Online on (8/12:2016). Available on http://www.fao.org/3/a-i5850e.pdf

Farquhar, G. D., & Richards, R. A. (1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Functional Plant Biology, 11(6), 539-552.

Ferry Slik, J. W., Verburg, R. W., & KEßLER, P. J. (2002). Effects of fire and selective logging on the tree species composition of lowland dipterocarp forest in East Kalimantan, Indonesia. Biodiversity and Conservation, 11(1), 85-98.

Fisher, J. B., Malhi, Y., Torres, I. C., Metcalfe, D. B., van de Weg, M. J., Meir, P., ... & Huasco, W. H. (2013). Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia, 172(3), 889-902.

Fortunel, C., Paine, C. E., Fine, P. V., Kraft, N. J., & Baraloto, C. (2014). Environmental factors predict community functional composition in Amazonian forests. Journal of Ecology102(1), 145-155.

Foster, P. (2001). The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews, 55(1), 73-106.

Funnell, D., & Parish, R. (2005). Mountain environments and communities. Routledge.

Gallagher, R. V., & Leishman, M. R. (2012a). A global analysis of trait variation and evolution in climbing plants. Journal of Biogeography, 39(10), 1757-1771.

Gallagher, R. V., & Leishman, M. R. (2012b). Contrasting patterns of trait‐based community assembly in lianas and trees from temperate Australia. Oikos, 121(12), 2026-2035.

Gallagher, R.V., Hughes, L., Leishman, M.R. & Wilson, P.D. (2010). Predicted impact of exotic vines on an endangered ecological community under future climate change. Biol. Invasions, 12, 4049–4063.

Gartner, B. L., & Meinzer, F. C. (2005). Structure-function relationships in sapwood water transport and storage. Vascular transport in plants, 307-318.

Geldenhuys, C. J. (1994). The challenge of sustainable forest management: what future for the world's forests?.

Gentry, A. H. (1982). Patterns of neotropical plant species diversity (pp. 1-84). Springer US.

Gentry, A. H. (1985). An ecotaxonomic survey of Panamanian lianas. Monographs in systematic botany from the Missouri Botanical Garden (USA).

Gentry, A. H. (1992). Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos, 19-28.

Gentry, A. H. (1983). Dispersal ecology and diversity in Neotropical forest communities. InK.Kubitzki (Ed.). Dispersal and distribution: An international symposium, pp. 303–314. Paul Parey, Hamburg, Germany

Gentry, A.H. (1991) The distribution and evolution of climbing plants. Biology of vines (ed. by F.E.Putz and H.A.Mooney), pp. 3–49. Cambridge University Press, Cambridge.

Gerwing, J. J., Schnitzer, S. A., Burnham, R. J., Bongers, F., Chave, J., DeWalt, S. J., ... & Parren, M. (2006). A standard protocol for Liana Censuses1. Biotropica, 38(2), 256-261.

Girardin, C. A. J., Malhi, Y., Aragao, L. E. O. C., Mamani, M., Huaraca Huasco, W., Durand, L., ... & Salinas, N. (2010). Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology, 16(12), 3176-3192.

Gotelli, N. J., & Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology letters, 4(4), 379-391.

Gotelli, N. J., & Colwell, R. K. (2011). Estimating species richness. Biological diversity: frontiers in measurement and assessment, 12, 39-54.

Gotsch, S. G., Asbjornsen, H., & Goldsmith, G. R. (2016). Plant carbon and water fluxes in tropical montane cloud forests. Journal of Tropical Ecology, 1-17.

Graham, E.A., Mulkey, S.S., Kitajima, K., Phillips, N.G. & Wright, S.J. (2003). Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. Proc. Natl Acad. Sci. USA, 100, 572–576.

Green, D. S., & Kruger, E. L. (2001). Light-mediated constraints on leaf function correlate with leaf structure among deciduous and evergreen tree species. Tree Physiology, 21(18), 1341-1346.

Hardy, J. T. (2003). Climate change: causes, effects, and solutions. John Wiley & Sons.

Hättenschwiler, S., Aeschlimann, B., Coûteaux, M. M., Roy, J., & Bonal, D. (2008). High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytologist179(1), 165-175.

Heaney, A. & Proctor, J.(1990). Preliminary studies on forest structure and floristic on Volcan Barva, Costa Rica. Journal of Tropical Ecology 11: 481–495.

Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis, (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. 

Hollander, M., Wolfe, D. A., & Chicken, E. (2013). Nonparametric statistical methods. John Wiley & Sons.

Homeier, J., Englert, F., Leuschner, C., Weigelt, P., & Unger, M. (2010). Factors controlling the abundance of lianas along an altitudinal transect of tropical forests in Ecuador. Forest Ecology and Management, 259(8), 1399-1405.

Hu, J., & Riveros-Iregui, D. A. (2016). Life in the clouds: are tropical montane cloud forests responding to changes in climate? Oecologia, 180(4), 1061-1073.

Hughes, L., Dunlop, M., French, K., Leishman, M. R., Rice, B., Rodgerson, L., & Westoby, M. (1994). Predicting dispersal spectra: a minimal set of hypotheses based on plant attributes. Journal of Ecology, 933-950.

Ibarra-Manríquez, G., & Martínez-Ramos, M. (2002). Landscape variation of liana communities in a Neotropical rain forest. Plant ecology, 160(1), 91-112.

Ingwell, L.L., Wright, S.J., Becklund, K.K., Hubbell, S.P. & Schnitzer, S.A. (2010). The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. J. Ecol., 98, 879–887.

IPCC (2002) Climate change 2001: the scientific basis. Cambridge University Press.

IUSS Working Group. (2014). World reference base for soil resources 2014 international soil classification system for naming soils and creating legends for soil maps. FAO, Rome.

Jarvis, A., & Mulligan, M. (2011). The climate of cloud forests. Hydrological Processes, 25(3), 327-343.

Jiménez‐Castillo, M., Wiser, S. K., & Lusk, C. H. (2007). Elevational parallels of latitudinal variation in the proportion of lianas in woody floras. Journal of Biogeography, 34(1), 163-168.

Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A., & Lindquist, E. (2015). Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. Forest Ecology and Management, 352, 9-20.

Kelly, D. L. (1985). Epiphytes and climbers of a Jamaican rain forest: vertical distribution, life forms and life histories. Journal of Biogeography, 223-241.

Koerselman, W., & Meuleman, A. F. (1996). The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. Journal of applied Ecology, 1441-1450.

Köppen, W., 1900: – Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. – Geogr. Zeitschr. 6, 593–611, 657–679.

Körner, C. (2007). The use of ‘altitude’in ecological research. Trends in ecology & evolution, 22(11), 569-574.

Körner, C. (2009). Responses of humid tropical trees to rising CO2. Annual Review of Ecology, Evolution, and Systematics, 40, 61-79.

Körner, C., & Paulsen, J. (2004). A world‐wide study of high altitude treeline temperatures. Journal of Biogeography, 31(5), 713-732.

Körner, C., Farquhar, G. D., & Wong, S. C. (1991). Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia, 88(1), 30-40.

Kurzel, B. P., Schnitzer, S. A., & Carson, W. P. (2006). Predicting Liana Crown Location from Stem Diameter in Three Panamanian Lowland Forests1. Biotropica, 38(2), 262-266.

Kusumoto, B., & Enoki, T. (2008). Contribution of a liana species, Mucuna macrocarpa Wall., to litterfall production and nitrogen input in a subtropical evergreen broad-leaved forest. Journal of forest research, 13(1), 35-42.

LaDeau, S. L., & Clark, J. S. (2001). Rising CO2 levels and the fecundity of forest trees. Science, 292(5514), 95-98.

Laliberté, E., & Legendre, P. (2010). A distance‐based framework for measuring functional diversity from multiple traits. Ecology, 91(1), 299-305.

Laliberté, E., Legendre, P., and B. Shipley. (2014). FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12.

Lambers, H., Pons, L. H. F. S. C. I. I. I., & Chapin III, F. S. (1998). Plant physiological ecology.

Laurance, W. F., Pérez-Salicrup, D., Delamônica, P., Fearnside, P. M., D'Angelo, S., Jerozolinski, A., ... & Lovejoy, T. E. (2001). Rain forest fragmentation and the structure of Amazonian liana communities. Ecology, 82(1), 105-116.

Laurance, W. F., Pérez-Salicrup, D., Delamônica, P., Fearnside, P. M., D'Angelo, S., Jerozolinski, A., ... & Lovejoy, T. E. (2001). Rain forest fragmentation and the structure of Amazonian liana communities. Ecology82(1), 105-116.

Laurance, W.F., Andrade, A.S., Magrach, A., Camargo, J.C., Valsko, J.J., Cambell, M., Fearnside, P.M., Edwards, W., Lovejoy, T.E. & Laurance, S.G. (2014). Long-term changes in liana abundance and forest dynamics in undisturbed Amazonian forests. Ecology 95: 1604–1611.

Laurance, W.F., Goosem, M. & Laurance, S.G.W. (2009). Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evol., 24, 659–669.

Lauscher, F. (1976). Weltweite Typen der Höhenabhängigkeit des Niederschlags. Verlag Wetter u. Leben.

Lauscher, F. (1977). Ergebnisse der Beobachtungen an den nordchilenischen Hochgebirgsstationen Collahuasi und Chuquicamata. In 74. –75. Jahresbericht des Sonnblick-Vereines für die Jahre 1976–1977 (pp. 43-66). Springer Vienna.

Ledo, A., & Schnitzer, S. A. (2014). Disturbance and clonal reproduction determine liana distribution and maintain liana diversity in a tropical forest. Ecology95(8), 2169-2178.

Leo, M. (1995). The importance of tropical montane cloud forest for preserving vertebrate endemism in Peru: the Rio Abiseo National Park as a case study. In Tropical montane cloud forests (pp. 198-211). Springer US.

Leuschner, C., Moser, G., Bertsch, C., Röderstein, M., & Hertel, D. (2007). Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic and Applied Ecology, 8(3), 219-230.

Levitt, J. (1980). Responses of plants to environmental stresses. Vol. 1. Chilling, freezing and high temperature stresses. 2nd ed. Springer, Berlin.

Lewis, S. L., Lopez-Gonzalez, G., Sonké, B., Affum-Baffoe, K., Baker, T. R., Ojo, L. O., ... & Ewango, C. E. (2009). Increasing carbon storage in intact African tropical forests. Nature, 457(7232), 1003-1006.

Lewis, S.L. et al (2004). Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 421-4356

Lieberman, D., Lieberman, M., Peralta, R., & Hartshorn, G. S. (1996). Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology, 137-152.

Lieth, H. (1975). Modeling the primary productivity of the world. Pages 237-263 in H. Lieth and R. H. Whittaker, eds. Primary productivity of the biosphere. Ecol. Stud. 14. Springer-Verlag, New York.

Lieth, H. (1976). The use of correlation models to predict primary productivity from precipitation or evapotranspiration. Pages 392-407 in 0. L. Lange, L. Kappen, and E.-D. Schulze, eds. Water and plant life: problems and modern approaches. Springer-Verlag, New York.

Loope, L. L., & Giambelluca, T. W. (1998). Vulnerability of island tropical montane cloud forests to climate change, with special reference to East Maui, Hawaii. Climatic Change, 39(2-3), 503-517.

Lü, X. T., Tang, J. W., Feng, Z. L., & Li, M. H. (2009). Diversity and aboveground biomass of lianas in the tropical seasonal rain forests of Xishuangbanna, SW China. Revista de biología tropical, 57(1-2), 211-222.

Lugo, A.E. and Helmer, E. (2004). Emerging forests on abandoned land: Puerto Rico’s new forests. For. Ecol. Manage. 190, 145-161

Madeira, B.G., Espírito-Santo, M.M., Neto, S.D., Nunes, Y., Sánchez Azofeifa, G.A., Fernandes, G.W. et al. (2009). Changes in tree and liana communities along successional gradient in a tropical dry forest in south-eastern Brazil. Plant Ecol., 201, 291–304.

Malhi, Y., & Grace, J. (2000). Tropical forests and atmospheric carbon dioxide. Trends in Ecology & Evolution, 15(8), 332-337.

Malhi, Y., & Wright, J. (2004). Spatial patterns and recent trends in the climate of tropical rainforest regions. Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1443), 311-329.

Malizia, A., & Grau, H. R. (2006). Liana–host tree associations in a subtropical montane forest of north-western Argentina. Journal of Tropical Ecology, 22(03), 331-339.

Malizia, A., Grau, H. R., & Lichstein, J. W. (2010). Soil phosphorus and disturbance influence liana communities in a subtropical montane forest. Journal of Vegetation Science21(3), 551-560.

Maréchaux, I., Bartlett, M. K., Iribar, A., Sack, L., & Chave, J. (2017). Stronger seasonal adjustment in leaf turgor loss point in lianas than trees in an Amazonian forest. Biology Letters13(1), 20160819.

Mares, M. A. (1992). Neotropical mammals and the myth of Amazonian biodiversity. Science, 255(5047), 976.

Marvin, D. C., Winter, K., Burnham, R. J., & Schnitzer, S. A. (2015). No evidence that elevated CO2 gives tropical lianas an advantage over tropical trees. Global change biology21(5), 2055-2069.

Mascaro, J., Schnitzer, S. A., & Carson, W. P. (2004). Liana diversity, abundance, and mortality in a tropical wet forest in Costa Rica. Forest Ecology and Management, 190(1), 3-14.

Mason, N. W., Mouillot, D., Lee, W. G., & Wilson, J. B. (2005). Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 111(1), 112-118.

McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in ecology & evolution, 21(4), 178-185.

McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Anderson, M. J., Benecha, H. K., ... & Hurlbert, A. H. (2007). Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology letters10(10), 995-1015.

Moles, A. T., & Westoby, M. (2000). Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos, 90(3), 517-524.

Moser, G., Hertel, D., & Leuschner, C. (2007). Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems, 10(6), 924-935.

Moser, G., Leuschner, C., Hertel, D., Graefe, S., Soethe, N., & Iost, S. (2011). Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Global Change Biology, 17(6), 2211-2226.

Müller, M. J. (1982). Selected climatic data for a global set of standard stations for vegetation science. Junk, The Hague.

Nabe-Nielsen, J. (2001). Diversity and distribution of lianas in a neotropical rain forest, Yasuní National Park, Ecuador. Journal of Tropical Ecology, 17(01), 1-19.

Nadkarni, N. M., & Solano, R. (2002). Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia, 131(4), 580-586.

Nanzyo, M. (2002). Unique properties of volcanic ash soils. Global Environmental research edition-6(2), 99-112.

Neilson, R. P. (1995). A model for predicting continental‐scale vegetation distribution and water balance. Ecological Applications, 5(2), 362-385.

Niinemets, Ü. (2001). Global‐scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology82(2), 453-469.

Nogués-Bravo, D., Araújo, M. B., Errea, M. P., & Martinez-Rica, J. P. (2007). Exposure of global mountain systems to climate warming during the 21st Century. Global Environmental Change, 17(3), 420-428.

Oksanen, J. Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H, Szoecs, E., Wagner, H. (2017) package ‘Vegan (Community ecology package) Online (28/03/2017). Available on https://cran.r-project.org/web/packages/vegan/vegan.pdf

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., ... & Ciais, P. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988-993.

Pardo, L. H., Templer, P. H., Goodale, C. L., Duke, S., Groffman, P. M., Adams, M. B., ... & Compton, J. (2006). Regional Assessment of N Saturation using Foliar and Root\ varvec {\ delta} ^{\ bf 15}{\ bf N}. Biogeochemistry, 80(2), 143-171.

Parkhurst, D. F. (1994). Diffusion of CO2 and other gases inside leaves. New phytologist, 126(3), 449-479.

Parkhurst, D. F., & Loucks, O. L. (1972). Optimal leaf size in relation to environment. The Journal of Ecology, 505-537.

Parthasarathy, N., Muthuramkumar, S., & Reddy, M. S. (2004). Patterns of liana diversity in tropical evergreen forests of peninsular India. Forest Ecology and Management, 190(1), 15-31.

Pérez‐Salicrup, D. R., Sork, V. L., & Putz, F. E. (2001). Lianas and Trees in a Liana Forest of Amazonian Bolivia1. Biotropica, 33(1), 34-47.

Petchey, O. L., & Gaston, K. J. (2006). Functional diversity: back to basics and looking forward. Ecology letters, 9(6), 741-758.

Phillips, O. L., Malhi, Y., Vinceti, B., Baker, T., Lewis, S. L., Higuchi, N., ... & Ferreira, L. V. (2002b). Changes in growth of tropical forests: evaluating potential biases. Ecological Applications, 12(2), 576-587.

Phillips, O. L., Martínez, R. V., Arroyo, L., Baker, T. R., Killeen, T., Lewis, S. L., ... & Alexiades, M. (2002a). Increasing dominance of large lianas in Amazonian forests. Nature, 418(6899), 770-774.

Phillips, O. L., Vásquez Martínez, R., Monteagudo Mendoza, A., Baker, T. R., & Núñez Vargas, P. (2005). Large lianas as hyperdynamic elements of the tropical forest canopy. Ecology, 86(5), 1250-1258.

Phillips, O.L. et al (2004). Pattern and process in Amazon tree turnover 1976- 2001. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 381-407

Phillips, O.L., Gentry, A.H. (1994). Increasing turnover through time in tropical forests. Science 263: 954-958.

Phillips, O.L., Hall, P. Gentry, A.H., Vasquez, R., and Sawyer, S. (1994) Dynamics and species richness of tropical rain forests. Proc. Natl. Acad. Sci. USA. 91,2805-g.

Pielou, E. C. (1966). Species-diversity and pattern-diversity in the study of ecological succession. Journal of theoretical biology10(2), 370-383.

 

Poorter, L. (2008). The relationships of wood-, gas-and water fractions of tree stems to performance and life history variation in tropical trees. Annals of Botany, 102(3), 367-375.

 

Poorter, L., & Bongers, F. (2006). Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology87(7), 1733-1743.

 

Pratt, R. B., Jacobsen, A. L., Ewers, F. W., & Davis, S. D. (2007). Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytologist, 174(4), 787-798.

 

Putz, F. E. (1983). Liana biomass and leaf area of a" tierra firme" forest in the Rio Negro Basin, Venezuela. Biotropica, 185-189.

 

Putz, F. E. (1984b). How trees avoid and shed lianas. Biotropica, 19-23.

Putz, F. E. (1990). Liana stem diameter growth and mortality rates on Barro Colorado Island, Panama. Biotropica, 22(1), 103-105.

Putz, F. E., & Chai, P. (1987). Ecological studies of lianas in Lambir national park, Sarawak, Malaysia. The Journal of Ecology, 523-531.

Putz, F.E. (1984a). The natural history of lianas on Barro Colorado Island, Panama. Ecology, 65: 1713–1724.

Putz, F.E. and Mooney, H.A. (1991) The Biology of Vines, Cambridge University Press

Putz, F.E. & Windsor, D.M. (1987). Liana phenology on Barro Colorado Island, Panama. Biotropica, 19, 334–341.

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

R documentation  (06/04/2017)                                                                                                                                     (dist) https://stat.ethz.ch/R-manual/R-devel/library/stats/html/dist.html                         (hclust) https://stat.ethz.ch/R-manual/R-devel/library/stats/html/hclust.html

Ramankutty, N. and Foley, J. (1999). Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem. Cycles 13, 997-1027

Reddy, M. S., & Parthasarathy, N. (2003). Liana diversity and distribution in four tropical dry evergreen forests on the Coromandel coast of south India. Biodiversity and Conservation12(8), 1609-1627.

Reich, P. B. (2014). The world‐wide ‘fast–slow’plant economics spectrum: a traits manifesto. Journal of Ecology102(2), 275-301.

Reich, P. B., Wright, I. J., & Lusk, C. H. (2007). Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. Ecological Applications, 17(7), 1982-1988.

Restom, T. G., & Nepstad, D. C. (2004). Seedling growth dynamics of a deeply rooting liana in a secondary forest in eastern Amazonia. Forest Ecology and Management, 190(1), 109-118.

Rodbell, D. T., Seltzer, G. O., Anderson, D. M., Abbott, M. B., Enfield, D. B., & Newman, J. H. (1999). An~ 15,000-year record of El Niño-driven alluviation in southwestern Ecuador. Science, 283(5401), 516-520.

Romero-Saltos, H. G. (2011). Community and functional ecology of lianas in the Yasuní forest dynamics plot, Amazonian Ecuador (Doctoral dissertation, University of Miami).

Sakai, A. (1978). Freezing tolerance of evergreen and deciduous broadleaved trees in Japan with reference to tree regions, Low Temp. Sei., Ser. B. 36: 1-19.

Sánchez-Azofeifa, G. A., Castro, K., Wright, S. J., Gamon, J., Kalacska, M., Rivard, B., ... & Feng, J. L. (2009). Differences in leaf traits, leaf internal structure, and spectral reflectance between two communities of lianas and trees: implications for remote sensing in tropical environments. Remote Sensing of Environment, 113(10), 2076-2088.

Santiago, L. S., & Wright, S. J. (2007). Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology21(1), 19-27.

Schnitzer SA, van der Heijden GMF, Mascaro J, Carson WP (2014) Lianas in gaps reduce carbon accumulation in a tropical forest. Ecology 95:3008–3017

Schnitzer, S. A. (2005). A mechanistic explanation for global patterns of liana abundance and distribution. The American Naturalist, 166(2), 262-276.

Schnitzer, S. A., & Bongers, F. (2011). Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecology letters, 14(4), 397-406.

Schnitzer, S. A., & Carson, W. P. (2001). Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology82(4), 913-919.

Schnitzer, S. A., & Carson, W. P. (2010). Lianas suppress tree regeneration and diversity in treefall gaps. Ecology letters, 13(7), 849-857.

Schnitzer, S. A., DeWalt, S. J., & Chave, J. (2006). Censusing and measuring lianas: a quantitative comparison of the common methods1. Biotropica, 38(5), 581-591.

Schnitzer, S. A., Mangan, S. A., Dalling, J. W., Baldeck, C. A., Hubbell, S. P., Ledo, A., ... & Hernandez, A. (2012). Liana abundance, diversity, and distribution on Barro Colorado Island, Panama. PloS one, 7(12), e52114.

Schnitzer, S. A., Parren, M. P., & Bongers, F. (2004). Recruitment of lianas into logging gaps and the effects of pre-harvest climber cutting in a lowland forest in Cameroon. Forest Ecology and Management, 190(1), 87-98.

Schnitzer, S. A., Rutishauser, S., & Aguilar, S. (2008). Supplemental protocol for liana censuses. Forest Ecology and Management, 255(3), 1044-1049.

Schnitzer, S.A. & Bongers, F. (2002). The ecology of lianas and their role in forests. Trends Ecol. Evol., 17, 223–230.

Schnitzer, S.A., Dalling, J.W. & Carson, W.P. (2000). The impact of lianas on tree regeneration in tropical forests canopy gaps: evidence for an alternative pathway of gap-phase regeneration. J. Ecol., 88, 655–666

Schoener, T. W. (1974). Resource partitioning in ecological communities. Science, 185(4145), 27-39.

Schulze, E.-D. (1982). Plant life forms and their carbon, water and nutrient relations. In: O. L. Lange, P. S. Nobel, C. B. Osmond & H. Ziegler (eds), Encyclopedia of Plant Physiology, Vol. 12B, pp. 616-676.

Senbeta, F., Schmitt, C., Denich, M., Demissew, S., Velk, P. L., Preisinger, H., ... & Teketay, D. (2005). The diversity and distribution of lianas in the Afromontane rain forests of Ethiopia. Diversity and Distributions, 11(5), 443-452.

Shannon, C. E., and W. Weaver. (1963). The mathematical theory of communication. Univ. of Illinois Press, Urbana.

Simons, H. (2001) FRA 2000. Global Ecological Zoning for the Global Forest Resources Assessment 2000. FRA Working Paper 56. FAO, Rome.

Simpson, E. H. (1949). Measurement of diveristy. Nature 163:688

Slik, J. F., Arroyo-Rodríguez, V., Aiba, S. I., Alvarez-Loayza, P., Alves, L. F., Ashton, P., ... & Bernacci, L. (2015). An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences, 112(24), 7472-7477.

Spehn, E. M., Liberman, M., & Korner, C. (Eds.). (2006). Land use change and mountain biodiversity. CRC Press.

Sperry, J. S., Holbrook, N. M., Zimmermann, M. H., & Tyree, M. T. (1987). Spring filling of xylem vessels in wild grapevine. Plant Physiology, 83(2), 414-417.

Spracklen, D. V., & Righelato, R. (2014). Tropical montane forests are a larger than expected global carbon store. Biogeosciences, 11(10), 2741-2754.

Stadtmüller, T. (1987). Cloud forests in the humid tropics: a bibliographic review. Bib. Orton IICA/CATIE.

Stephenson, N. L. (1990). Climatic control of vegetation distribution: the role of the water balance. American Naturalist, 649-670.

Still, C. J., Foster, P. N., & Schneider, S. H. (1999). Simulating the effects of climate change on tropical montane cloud forests. Nature, 398(6728), 608-610.

Svenning, J. C., & Balslev, H. (1998). The palm flora of the Maquipucuna montane forest reserve, Ecuador. Principes, 42, 218-226.

Tanner, E. V. J., Vitousek, P. M., & Cuevas, E. (1998). Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology, 79(1), 10-22.

The US National Institutes of Health; http://www.nih.gov/

Thomas, D., Burnham, R. J., Chuyong, G., Kenfack, D., & Sainge, M. N. (2015). Liana abundance and diversity in Cameroon's Korup National Park. Ecology of Lianas, 11-22.

Thornthwaite, C. W., and J. R. Mather. (1955). The water balances. Publ. Climatol. 8:1-86.

Tibbets, T. J., and F. W. Ewers. (2000). Root pressure and specific conductivity in temperate lianas: exotic Celastrus orbiculatus (Celastraceae) vs. native Vitis riparia (Vitaceae). American Journal of Botany 87:1272–1278

Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., & Siemann, E. (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277(5330), 1300-1302.

Trenberth, K. E. (1997). The definition of el nino. Bulletin of the American Meteorological Society, 78(12), 2771.

Trewartha, G. T., & Horn, L. H. (1980). Köppen's classification of climates. An Introduction to climate. McGraw-Hill, New York, 397-403.

Tudhope, A. W., Chilcott, C. P., McCulloch, M. T., Cook, E. R., Chappell, J., Ellam, R. M., ... & Shimmield, G. B. (2001). Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle. Science, 291(5508), 1511-1517.

Tyree, M. T., & Ewers, F. W. (1991). The hydraulic architecture of trees and other woody plants. New Phytologist, 119(3), 345-360.

Tyree, M., and F. W. Ewers. (1996). Hydraulic architecture of woody tropical plants. Pages 217–243 in S. S. Mulkey, R. L. Chazdon, and A. P. Smith, eds. Tropical forest plant ecophysiology. Chapman & Hall, New York.

van de Weg, M. J., Meir, P., Grace, J., & Atkin, O. K. (2009). Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Plant Ecology & Diversity, 2(3), 243-254.

van der Heijden GMF, Phillips OL (2009b) Liana infestation impacts tree growth in a lowland tropical moist forest. Biogeosciences 6:2217–2226

van der Heijden, G. M., & Phillips, O. L. (2008). What controls liana success in Neotropical forests? Global Ecology and Biogeography, 17(3), 372-383.

van der Heijden, G. M., & Phillips, O. L. (2009a). Environmental effects on Neotropical liana species richness. Journal of Biogeography, 36(8), 1561-1572.

van der Heijden, G. M., Healey, J. R., & Phillips, O. L. (2008). Infestation of trees by lianas in a tropical forest in Amazonian Peru. Journal of Vegetation Science, 19(6), 747-756.

van der Heijden, G. M., Powers, J. S., & Schnitzer, S. A. (2015). Lianas reduce carbon accumulation and storage in tropical forests. Proceedings of the National Academy of Sciences, 112(43), 13267-13271.

van der Heijden, G. M., Schnitzer, S. A., Powers, J. S., & Phillips, O. L. (2013). Liana impacts on carbon cycling, storage and sequestration in tropical forests. Biotropica, 45(6), 682-692.

van der Sande, M. T., Poorter, L., Schnitzer, S. A., & Markesteijn, L. (2013). Are lianas more drought-tolerant than trees? A test for the role of hydraulic architecture and other stem and leaf traits. Oecologia, 172(4), 961-972.

Villéger, S., Mason, N. W., & Mouillot, D. (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89(8), 2290-2301.

Vivek, P., & Parthasarathy, N. (2014). Liana community and functional trait analysis in tropical dry evergreen forest of India. Journal of Plant Ecology, rtu031.

Vogel, S. (2009). Leaves in the lowest and highest winds: temperature, force and shape. New Phytologist, 183(1), 13-26.

von Humboldt, A. & Bonpland. A., (1805). Essai sur la géographie des plantes; accompagné d'un tableau physique des régions equinoxales. Paris.

Weiher, E., Clarke, G. P., & Keddy, P. A. (1998). Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos, 309-322.

Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., & Wright, I. J. (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual review of ecology and systematics33(1), 125-159.

Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 213-251.

Wilcke, W., Oelmann, Y., Schmitt, A., Valarezo, C., Zech, W., & Homeier, J. (2008). Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest. Journal of plant nutrition and soil science, 171(2), 220-230.

Williamson, G. B., Laurance, W. F., Oliveira, A. A., Delamônica, P., Gascon, C., Lovejoy, T. E., & Pohl, L. (2000). Amazonian tree mortality during the 1997 El Nino drought. Conservation Biology, 14(5), 1538-1542.

Willig, M. R., Kaufman, D. M., & Stevens, R. D. (2003). Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics, 273-309.

Wolf, K., Veldkamp, E., Homeier, J., & Martinson, G. O. (2011). Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Global Biogeochemical Cycles, 25(4).

Woodward, F.I. & Williams, B. G. (1987). Climate and plant distribution at global and local scales. Vegetatio, 69(1), 189-197.

Worldclim, Worldclim database. Online (23/03/2017) available at http://www.worldclim.org/

Wright, I. J., & Westoby, M. (2002). Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytologist, 155(3), 403-416.

Wright, I. J., Reich, P. B., & Westoby, M. (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high‐and low‐rainfall and high‐and low‐nutrient habitats. Functional Ecology, 15(4), 423-434.

Wright, I. J., Reich, P. B., Cornelissen, J. H., Falster, D. S., Groom, P. K., Hikosaka, K., ... & Osada, N. (2005). Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography14(5), 411-421.

Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., ... & Flexas, J. (2004). The worldwide leaf economics spectrum. Nature, 428(6985), 821-827.

Wright, I. J., Westoby, M., & Reich, P. B. (2002). Convergence towards higher leaf mass per area in dry and nutrient‐poor habitats has different consequences for leaf life span. Journal of ecology90(3), 534-543.

Wright, S. J., and C. P. van Schaik. (1994). Light and the phenology of tropical trees. American Naturalist 143:192–199

Wright, S. J., Zeballos, H., Domínguez, I., Gallardo, M. M., Moreno, M. C., & Ibáñez, R. (2000). Poachers alter mammal abundance, seed dispersal, and seed predation in a Neotropical forest. Conservation Biology, 14(1), 227-239.1

Wright, S.J. (2003). The myriad effects of hunting for vertebrates and plants in tropical forests. Perspect. Plant Ecol. Evol. Syst.6, 73-86

Wright, S.J. (2005). Tropical forests in a changing environment. Trends in ecology and environment. 20 (10), 553-560

Wright, S.J., Hernandez, A., Condit, R. (2007). The Bushmeat Harvest Alters Seedling Banks by Favoring Lianas, Large Seeds, and Seeds Dispersed by Bats, Birds, and Wind. Biotropica, 39(3): 363-37

Yorke, S. R., Schnitzer, S. A., Mascaro, J., Letcher, S. G., & Carson, W. P. (2013). Increasing liana abundance and basal area in a tropical forest: the contribution of long‐distance clonal colonization. Biotropica, 45(3), 317-324.

Yuan, C. M., Liu, W. Y., Tang, C. Q., & Li, X. S. (2009). Species composition, diversity, and abundance of lianas in different secondary and primary forests in a subtropical mountainous area, SW China. Ecological research, 24(6), 1361-1370.

Zhu, S. D., & Cao, K. F. (2009). Hydraulic properties and photosynthetic rates in co-occurring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecology, 204(2), 295-304.

Zhu, S.-D. & Cao, K.-F. (2010). Contrasting cost–benefit strategy between lianas and trees in a tropical seasonal rain forest in southwestern China. Oecologia, 163, 591–599.

Zotz, G., Cueni, N. & Korner, C. (2006). In situ growth stimulation of a temperate zone liana (Hedera helix) in elevated CO2. Funct. Ecol., 20, 763–769.

Universiteit of Hogeschool
Master in de bio-ingenieurswetenschappen: bos- en natuurbeheer
Publicatiejaar
2017
Promotor(en)
Prof. dr. ir. Hans Verbeeck
Kernwoorden
Share this on: