Energieverbruik voorspellen en clusteren met Gaussiaanse processen
Vandaag de dag is elektriciteit een basisbehoefte. Doordat de elektriciteitsvraag elk jaar sterk stijgt, moet ook de hoeveelheid opgewekte energie elk jaar opgedreven worden. Dit gebeurt meer en meer op een duurzame manier. Het nadeel hiervan is echter dat de productie op deze manier zeer sterk kan fluctueren, afhankelijk van de weersomstandigheden. Energiebedrijven hebben daarom een goed zicht nodig op de consumptie van elektrische energie en doen hiervoor vaak beroep op voorspellings- en/of clustermethoden. In deze context stelt dit werk een voorspellings- en cluster- methode voor, die gebaseerd zijn op Gaussiaanse processen.
Deze thesis is opgedeeld in een voorspellings- en een clustergedeelte. In het voor- spellingsgedeelte bespreken we hoe we de ruwe data verwerken tot input voor de Gaussiaanse proces regressie en focussen we ons op een voorspelling voor de volgende twee dagen per uur.
Het clustergedeelte van de thesis stelt een nieuwe clustermethode voor, die gebaseerd is op Gaussiaanse proces regressie (GPRC), en passen we toe op het consumptiegedrag van huishoudens om er inzichten in te ontdekken. Dit doen we door de weekprofielen (tijdreeksen) van de huishoudens te beschouwen. Om deze te clusteren zal de methode gebruik maken van een algemeen model dat geleerd wordt op een set van tijdreeksen, gebaseerd op hun waarschijnlijkheid. Het voordeel van de voorgestelde techniek is dat ze geen paarsgewijze vergelijking van de tijdreeksen nodig heeft, in tegenstelling tot vele andere clustermethoden voor tijdreeksen.
Deze methoden worden geëvalueerd op een real-life dataset van 71 huishoudens, die historische consumptie en meteo-data van één jaar bevat. De voorspellingsme- thode wordt geëvalueerd en vergeleken met lineaire regressie, support vector regressie en een baseline methode die de waarde van een week geleden teruggeeft als voorspel- ling.
De clustermethode wordt vergeleken met k-medoids met dynamic time warping en hiërarchisch agglomeratief clusteren met dynamic time warping. Er wordt enerzijds aangetoond dat GPRC een betere schaalbaarheid heeft en anderzijds dat de resultaten ervan nuttig zijn in het beslissingsproces van een bedrijf uit de energiesector.
Meer lezen