»»> |UHASSELT

MASTERPROEF

Coordination-freeness and Parallel
Evaluation of Conjunctive Queries

Auteur: Promotor:
Brent CHESNY Prof. dr. Frank NEVEN
Begeleider:

Bas KETSMAN

Masterproef voorgedragen tot het behalen van de graad van master in
de informatica, afstudeerrichting databases

Academiejaar 2016-2017

Abstract

The interest in utilizing parallel and distributed systems to process large
amounts of data has grown immensely over the past few years. However, this
also brings along some interesting new challenges. In this thesis, we focus on
coordination on the one hand, and efficient parallel evaluation of conjunctive
queries on the other. We study the existing theoretical research regarding
coordination-freeness and the CALM-conjecture and formalize some varia-
tions on the current model. Then we turn our attention to more practical
evaluation strategies specifically for conjunctive queries. First, we look at
optimal broadcasting strategies based on oblivious broadcasting functions.
Next, we look at two algorithms in the MPC model: the single-round Hyper-
Cube algorithm which is optimal on skew-free input instances, and a multi-
round algorithm based on HyperCube which is worst-case optimal even on
skewed input instances. To conclude, we made an implementation of these
last two algorithms and conducted several experiments to better understand
their practical behaviour.

Acknowledgements

I would like to take this opportunity to express my gratitude to a number
of people who helped realize this thesis. First and foremost, I would like to
thank my promotor Prof. dr. Frank Neven for allowing me to study this topic
and guiding me through the process of creating this work. Furthermore, I'd
like to thank my supervisor Bas Ketsman for all his thoughtful remarks and
insights and the proofreading of my drafts.

I also want to thank dr. Geert Jan Bex for his help with the setup of the
VSC cluster for the conducted experiments.

Finally, I would like to thank my parents for giving me the opportunity to
study and for their invaluable support during that time. A special mention
also goes out to my friends for the interesting discussions and the necessary
moments of distraction during the past five years. Thank you!

Diepenbeek, June 2017

iii

In loving memory of my father

Dutch Summary

Nederlandse Samenvatting

Inleiding

De laatste jaren is big data een van de meest populaire begrippen in allerlei
industrién. Men spreekt over big data wanneer het verwerken van deze data
niet meer haalbaar is op één enkele computer. Een mogelijke manier om hier
mee om te gaan is de te verwerken data verdelen over meerdere computers
die door een netwerk verbonden zijn en zo de berekeningen in parallel uit
te voeren. Eén van de redenen waarom big data zo populair geworden is,
is dat dergelijke clusters van computers de laatste tijd veel toegankelijker
zijn geworden voor organisaties. Bovendien werden ondertussen ook heel
wat softwaresystemen ontwikkeld die gebruik maken van parallelisme, en die
het werk voor de gebruiker in deze context sterk verlichten. Voorbeelden
van zulke softwaresystemen zijn Apache Hadoop [1] en het recentere Apache
Spark [2, 18].

Deze parallelle manier van werken brengt echter ook heel wat uitdagingen
met zich mee. Een van deze uitdagingen betreft coordinatie. Indien verschil-
lende computers tijdens het berekenen van een query moeten coérdineren kan
dit een belangrijke bron van inefliciéntie zijn. Het is dus zeker interessant
om eens na te denken over welke queries te berekenen zijn zonder expliciete
cobrdinatie en welke niet. Een andere uitdaging betreft het herverdelen van
data in het netwerk. Moderne big data systemen kunnen een query meestal
volledig in het geheugen verwerken. De klassieke maat voor performantie, het
aantal disk I/Os, wordt dus vervangen door een nieuwe bottleneck, namelijk
het netwerkverkeer ten gevolge van het herverdelen van de data over de ver-
schillende computers. Dit fenomeen leidde reeds tot heel wat onderzoek naar
algoritmen die deze communicatie proberen te minimaliseren.

vii

viii DUTCH SUMMARY

Coordinatie-vrijheid

Hellerstein formuleerde in 2010 het CALM-conjecture [13]. Hiermee drukte
hij zijn vermoeden uit dat een query een uitvoeringsstrategie heeft zonder
expliciete codrdinatie die uiteindelijk consistent is, als en slechts als de query
uitdrukbaar is in monotone Datalog (zonder negatie of aggregatie). Dit ver-
moeden was echter niet geformaliseerd, omdat dit een formeel model vereist
om over gedistribueerde berekeningen te redeneren alsook duidelijke definities
van de begrippen coordinatie en uiteindelijke consistentie. Hiervoor stelde
Ameloot et al. [8] een model voor op basis van relationele transducers, samen
met de andere nodige definities.

Relationele transducer netwerken De basis voor een relationele trans-
ducer is het transducer schema T = (Yin, Tout; Tmsgs Tmem Lsys) dat bestaat
uit een aantal database schema’s voor input, output, messages, geheugen en
het systeem zelf. Een transducer staat voor een bepaald transducer schema
is vervolgens simpelweg een database instance over Tin U Yoyt U T mem U Teys.
De relationele transducer II zelf is een verzameling van queries over het trans-
ducer schema. Deze queries vormen het mechanisme om de transducer staat
aan te passen en messages uit te sturen. De overgang van een transducer
staat naar een andere noemen we een lokale transitie.

Een relationeel transducer netwerk 7 kunnen we vervolgens definiéren
als een netwerk van nodes A, waarbij op elke node in het netwerk dezelfde
relationele transducer draait. Verder kunnen we een gedistribueerde database
instance definiéren als een functie H die elke node van het netwerk mapt op
een gewone database instance. We kunnen een gewone database instance I als
input geven aan een transducer netwerk door deze instance te partitioneren
over het network. Zo een horizontale partitie kunnen we definiéren als een
gedistribueerde database H over N waarvoor geldt dat I = (U, c,ode son H (x).

De configuratie p van een transducer netwerk 7 voor een gegeven gedis-
tribueerde database instance H wordt gegeven door een staat-functie s(x)
die elke node mapt op een transducer staat en een buffer-functie b(z) die
elke node mapt op een multiset van message-facts. Een overgang tussen twee
configuraties noemen we een globale transitie. Hierbij wordt er een arbitraire
node in het netwerk actief. Deze node ontvangt vervolgens een submultiset
van de messages in zijn buffer en voert hiermee een locale transitie uit. De
output van een gegeven configuratie is de unie van alle output-facts over alle
nodes in het netwerk:

outp) = |J s(@)iow.

z€nodes(N)

Een run R van een transducer netwerk 7 over een gedistribueerde database
H is vervolgens een reeks configuraties pi, p2,.... We noemen het getal

DUTCH SUMMARY ix

i > 1 waarvoor out(p;) = out(p;) voor elke j > i een rustpunt voor R. De
overeenkomstige configuratie p; noemen we de rustconfiguratie. Elk trans-
ducer netwerk heeft zo een rustconfiguratie vanwege het feit dat er slechts
een eindig aantal output facts mogelijk zijn. We kunnen nu zeggen dat een
transducer netwerk 7 consistent is als voor elke input instance I geldt dat
alle runs van 7 dezelfde output hebben voor alle horizontale partities van
I over N. We zeggen dat T een query Q berekent indien de output van 7T
gelijk is aan Q([I) voor elke instance I waarvoor Q gedefinierd is. Verder
noemen we een transducer Il netwerk-onafhankelijk indien het overeenkom-
stige transducer netwerk 7 voor elk netwerk A consistent is en dezelfde query
berekent. In dat geval zeggen we dat Q gedistribueerd berekend wordt door
IT.

CALM-conjecture Nu dat we een formeel model voor gedistribueerde be-
rekeningen hebben, moeten we enkel nog het begrip codrdinatie-vrijheid defi-
niéren. Volgens de definitie van Ameloot et al. zeggen we dat een transducer
netwerk 7 codrdinatie-vrij is indien voor elke database instance I, er een
horizontale partitie H van I en een run R van T over H bestaan zodat R reeds
een rustconfiguratie bereikt zonder ooit messages te lezen uit de message-
buffers. We noemen een transducer II coordinatie-vrij indien voor elk netwerk
het overeenkomstig transducer netwerk coérdinatie-vrij is. We zeggen dat een
query Q gedistribueerd berekend kan worden op een coordinatie-vrije manier
als er een netwerk-onafhankelijke, codrdinatie-vrije transducer bestaat die Q
berekent. Dit komt erop neer dat wanneer de input data op de juiste manier
verdeeld is over de servers, er totaal geen communicatie nodig is om de query
te berekenen.

We kunnen nu het CALM-conjecture van Hellerstein herformuleren door
gebruik te maken van bovenstaande begrippen.

Conjecture. Fen query kan gedistribueerd berekend worden door een coor-
dinatie-vrije transducer als en slechts als hij uitdrukbaar is in Datalog.

Ameloot et al. wisten dit conjecture te formaliseren in de volgende zin.
Voor het volledig bewijs en een gedetailleerde uitleg verwijzen we naar Hoofd-
stuk 3 van deze thesis.

Theorem. Volgende uitspraken zijn equivalent voor een query Q:
1. Q kan gedistribueerd berekend worden door een codrdinatie-vrije trans-

ducer;

2. Q kan gedistribueerd berekend worden door een transducer die zich on-
bewust is van het netwerk waarin hij zich bevindt;

3. Q is monotoon.

X DUTCH SUMMARY

Alternatieve definities en modellen In sommige gevallen is het moeilijk
om te redeneren met de bovenstaande definitie van coordinatie-vrijheid, die
stelt dat er een horizontale moet bestaan zonder te specifiéren hoe deze er
moet uitzien. Daarom stellen wij een alternatieve definitie voor die wel een
specifieke partitionering van de data vermeldt. Deze definitie stelt dat een
query Q gedistribueerd berekend kan worden op een codrdinatie-vrije manier
indien er een netwerk-onafhankelijke transducer II bestaat die zich niet be-
wust is van het netwerk waarin hij zich bevindt zodat het transducer netwerk
voor II met één enkele node O steeds correct berekend wanneer die ene node
de volledige input krijgt.

Verder bekijken we ook een variatie op het transducer netwerk model
waarbij alle messages steeds worden ontvangen in dezelfde volgorde als dat ze
werden verzonden. Het originele model beschouwt een betrouwbaar netwerk
in de zin dat messages nooit verloren gaan, maar hun volgorde blijft niet
behouden. Dit in tegenstelling tot de betrouwbaarheidsgaranties van het
populaire TCP-protocol. We tonen aan dat deze aanpassing de eventuele
codrdinatie-vrijheid van een transducer behoudt.

Optimale Broadcasting Strategien

De coordinatie-vrije oplossingsstrategién die gebruikt worden in de forma-
lisatie van het CALM-conjecture zijn niet echt praktisch. Hierbij broadcas-
ten alle nodes hun lokaal fragment van de data zodat elke node de volledige
dataset kan verzamelen. Dit is natuurlijk niet heel efficiént. Daarom kijken
we naar meer economische broadcasting strategién die enkel de data broad-
casten die strikt noodzakelijk is om een query correct te berekenen [14].

In een oplossingsstrategie die gebaseerd is op broadcasting moet een re-
lationele transducer slechts twee dingen doen:

1. Bepalen welke facts naar de andere nodes in het netwerk gestuurd
dienen te worden;

2. Potentieel nieuwe output facts berekenen wanneer er nieuwe data bin-
nenkomt op een node.

De enige veranderende factor in deze strategie is de verzameling van facts die
gebroadcast moet worden.

Oblivious broadcasting functies We kunnen deze verzameling formali-
seren met behulp van oblivious broadcasting functies (OBF). Zo een OBF f is
een mapping van instances naar instances zodat f(J) C J voor alle instances
J. We noemen f(J) dan de gebroadcaste facts. De verzameling J \ f(J)
noemen we de statische facts. Niet alle OBFs leidden echter tot een correcte
berekening voor een gegeven query. We kunnen de correctheid van een OBF

DUTCH SUMMARY xi

f t.o.v. een query Q karakteriseren door te stellen dat twee compatibele
facts op verschillende nodes nooit allebei statisch kunnen zijn. We noemen
twee facts £ en g compatibel, genoteerd als f ~¢ g, indien ze beiden kunnen
bijdragen tot een geldige valuatie van Q.

Naast correct willen we natuurlijk ook dat een OBF zo weinig mogelijk
data broadcast. Daarom definiéren we de notie van lokale optimaliteit. Een
OBF f is lokaal optimaal indien er geen andere OBF ¢ bestaat die slechts
een subset van f broadcast voor een bepaalde instance. Ook dit kunnen
we karakteriseren in termen van compatibele facts. We noemen een OBF
f lokaal optimaal indien voor elke instance I en fact f waarvoor geldt dat
f e f(IU{f}), er een instance J en een fact g bestaan zodat f ~o g, g ¢ I,
f¢ Jengd¢ f(JU{g}). Dit is makkelijk in te zien. Namelijk, als er geen
compatibel fact g bestaat dat niet gebroadcast wordt, is het niet nodig om f
te broadcasten en kan er dus een optimalere OBF verkregen worden.

Broadcast dependency sets We introduceren broadcast dependency sets
(BDS) als een syntactisch alternatief om de semantische OBFs mee te be-
schrijven. Voor we hier dieper op ingaan introduceren we eerst het concept
van atomische types. Een atomisch type 7 = (R;, ¢,) wordt gedefiniéerd
over een query Q. Hierbij is R, een predicaat en ¢, een equality type. Dit
equality type is een binaire relatie tussen de variabelen in Q die aangeeft of
twee variabelen gelijk moeten zijn of niet. We kunnen nu zeggen dat een fact
f van het type 7 is als er een valuatie h bestaat zodat h(atom(R;)) = f en aan
7 voldoet wanneer we elke variabele z; vervangen door h(x;). We kunnen
een BDS nu in essentie definiéren als een verzameling van key-value paren
(1,T) waarbij T een atomisch type is en 7' een verzameling van atomische
types die we de dependency set noemen. Fen BDS § induceert een OBF
met het volgende gedrag: een fact f wordt gebroadcast als het type van f
gedefiniéerd is over Q en als de dependency fact set Dep(f,S) niet aanwezig
is in de lokale instance. De dependency fact set Dep(f,S) is gedefiniéerd
als {Vg(atom(7')) | 7 € T and 7 ~g 7'} indien (type(f),T) € S en is
ongedefiniéerd in het andere geval. Hierbij is V¢ -+ de valuatie van f uitgebreid
naar 7. Voor een BDS kunnen we eveneens syntactische condities geven
voor correctheid en lokale optimaliteit. Deze condities laten ons toe een
eenvoudig algoritme te beschrijven om een correcte en lokaal optimale OBF
te construeren voor een gegeven query Q.

Het HyperCube Algoritme

Het MPC model We kijken ook naar enkele andere algoritmen voor het
berekenen van conjunctieve queries. Deze zijn te situeren in een meer gesyn-
chroniseerde setting dan de broadcasting strategién. We noemen deze setting
het Massively Parallel Computation model. Hierin vindt de berekening plaats

xii DUTCH SUMMARY

in een aantal rounds. Elke round bestaat uit twee fases:

1. Communicatiefase: Elke server stuurt data uit naar een ontvangt
data van andere servers in het netwerk;

2. Berekeningsfase: Elke server voert lokaal een berekening uit op de
data die zich momenteel op die server bevindt.

Dit model maakt synchronisatie expliciet, omdat de servers op het einde
van elke round moeten wachten tot alle servers klaar zijn met hun berekening
voordat ze aan de volgende round kunnen beginnen. Een belangrijke maat
voor performantie in dit model is de maximale load van elke server. Dit is
de maximale hoeveelheid data die een server kan ontvangen in één round.

HyperCube Het eerste algoritme dat we bestuderen in deze context is
het HyperCube algoritme [7, 9]. Dit algoritme kan gebruikt worden om een
conjunctieve query van de vorm

Q(ml, - ,l'k) — Sl(fl), - ,Sl(.’i'l).

in één round te berekenen. Het algoritme kent aan elke variabele z; een
waarde p; toe zodat Hle p; = p. Deze waarden noemen we de shares. Elke
server kan nu worden voorgesteld door een punt y € P, met P = [p1] X - - X
[pk]. Met andere woorden, de servers worden gemapt naar punten in een k-
dimensionale hypercube. Het algoritme gebruikt vervolgens k onafhankelijke
hash-functies h; : dom — [p;] om elk tuple ¢ in relatie Sj(z;,,...,x;,) naar
alle servers in de verzameling

D(t) ={y € P|Vj € [n] : hi; (t[i;]) = yi; }-

te sturen. In deze uitdrukking gebruiken we t[i;] om de projectie van tuple
t op de variabele x;; aan te duiden. Tenslotte berekent elke server de query
Q lokaal op de ontvangen data tijdens de berekeningsfase. Dit algoritme is
optimaal over skew-free input.

Het HyperCube algoritme wordt geparameteriseerd door de keuze van
de shares. Er zijn verschillende manieren om deze shares te bepalen. Een
mogelijke manier is om de exacte optimale shares te bepalen m.b.v. linear
programming. Het nadeel hiervan is dat deze methode meestal geen integer-
waarden oplevert, wat wel vereist is voor het algoritme. De bekomen waarden
kunt wel naar beneden afgerond worden maar dit leidt vaak tot suboptimale
resultaten. Een andere optie is om de optimale integrale shares te bepalen
via een cost-based aanpak.

Multi-round algoritme Naast het HyperCube algoritme beschouwen we
ook een multi-round algoritme dat gebaseerd is op HyperCube [15]. Dit
algoritme is echter worst-case optimaal, wat wil zeggen dat het de minimale

DUTCH SUMMARY xiii

verwachte maximum load behaalt zonder restricties te plaatsen op de input.
Die input mag dus skew bevatten. Voor dit algoritme beschouwen we slechts
een deelklasse van de conjunctieve queries, namelijk de simple en connected
conjunctieve queries die een beschikken over een tight fractional edge packing.

Het idee achter dit algoritme is als volgt. Zij @ de query die we willen
berekenen. We beschouwen dan alle mogelijke heavy-hitter configuraties ¥
voor Q. Een heavy-hitter configuratie is een paar (H,¢) waarbij H een subset
is van de variabele van de query en ¢ een threshold die we gebruiken om heavy
en light waarden te onderscheiden. We noemen een waarde c¢ light voor een
variabele x als het aantal voorkomens van ¢ op een positie van variabele x
in de query kleiner is dan m/p®, waarbij m het aantal tuples in de grootste
relatie is. In het andere geval noemen we ¢ heavy. Vervolgens berekenen we
voor elke ¥ in parallel de query Q over de subinstance die compatibel is met
W gebruikmakend van een gespecialiseerd algoritme afhankelijk van H. De
output Q(I) is dan precies de unie van de berekeningen op deze subinstances.

Implementatie en Experimenten

Om een beter inzicht te krijgen in de algoritmen uit de vorige sectie wer-
den zowel het HyperCube algoritme als het multi-round algoritme geimple-
menteerd bovenop Apache Spark [2]. Bovendien implementeerde we een naief
algoritme voor het berekenen van conjunctieve queries, dat we als baseline
konden gebruiken bij de experimenten. Hierbij evalueren we de joins op een
traditionele manier, gebruikmakend van één round per join. Naast deze shuf-
fle algoritmen implementeerden we twee lokale join algoritmen: een klassieke
binaire hash-join en de multiway leapfrog trie-join [17]. Op die manier kunnen
we hun impact bestuderen wanneer we ze combineren met de verschillende
shuffle algoritmen.

Met behulp van deze implementatie werden eveneens enkele experimenten
uitgevoerd. In een eerste experiment trachtten we te achterhalen of een cost-
based aanpak voor het bepalen van de HyperCube shares tot een snellere
uitvoeringstijd leidt dan het afronden van de fractionele shares. Uit dit ex-
periment bleek dat de cost-based aanpak tot 26% performanter was. In een
tweede experiment vergeleken we de performantie van het HyperCube algo-
ritme en het naieve algoritme op skew-free data. Hier bleek het HyperCube
algoritme superieur, maar enkel voor queries die veel tussenliggende join re-
sultaten genereerden. Voor queries waar dit niet het geval was bleek de
naleve aanpak efficiénter. In een laatste experiment vergeleken we hoe de
verschillende algoritmen omgingen met skewed data. Hier bleek het multi-
round algoritme beter dan het HyperCube algoritme op voorwaarde dat er
voldoende skew was en het aantal heavy-hitters niet te groot. Ook konden
we concluderen dat de leapfrog trie-join in het algemeen zeer goed werkt in
combinatie met skewed data.

Contents

Abstract

Acknowledgements

Dutch Summary

Contents

List of Figures

List of Tables

1

Introduction

1.1 Big Data and Its Challenges
1.2 Goals and Contributions
1.3 Thesis Outline

Preliminaries

2.1 Relational Database Model
2.2 Conjunctive Queries oL
2.3 Datalog

Coordination-Freeness

3.1 Relational Transducers

3.2 Relational Transducer Networks
3.2.1 Operational Semantics
3.22 Fairness

3.3 Computing Queries
331 Imput & Output
3.3.2 Consistency
3.3.3 Network-Independence
3.3.4 Expressiveness00

3.4 The CALM-conjecture

3.5 Coordination-freeness: Alternative Definition

XV

iii

viil

xvi

xvii

xvii

W N = =

N O ot W

©

xvi CONTENTS
3.6 In-order Message Delivery 23
3.6.1 In-order Semantics and Obliviousness 26

4 Optimal Broadcasting Strategies 27
4.1 Oblivious Broadcasting Functions 27
4.2 Broadcast Dependency Set 29
4.3 Algorithm for Constructinga BDS 33

5 HyperCube 37
5.1 The MPC Parallel Model 37
5.2 The HyperCube Algorithm 38
5.3 Determining HyperCube Dimensions 39
5.3.1 Exact Fractional Shares 39

5.3.2 Estimating Optimal Integral Shares 40

5.4 Multi-Round Algorithm Based on HyperCube 41
5.4.1 Simple Connected Queries 41

5.4.2 Tight Fractional Edge Packings 42

5.4.3 Semi-join Decompositions 43

5.4.4 Heavy-Hitter Configurations. 44

5.4.5 Multi-Round Algorithm 45

6 Implementation 49
6.1 Apache Spark 49
6.1.1 Architecture 49

6.1.2 Resilient Distributed Datasets. 51

6.2 Implementation Details 52
6.2.1 T/O . .. 54

6.2.2 Shuffle Algorithms 54

6.2.3 Local Join Algorithms 56

6.3 Usage e 59

7 Experiments 61
7.1 Objectives 61
T2 Setup 62
7.3 Experiment 1: Determining HyperCube Shares 62
7.4 Experiment 2: Skew-free Data 65
7.5 Experiment 3: Skewed Data 68

8 Conclusion 73
Bibliography 75

List of Figures

5.1

6.1
6.2
6.3

7.1
7.2

7.3

7.4

7.5

The query graphs from Example 5.7. 42

A schematic overview of the Spark cluster architecture. [2] . . 50
An example of a leapfrog join of three relations A, B and C. 57
An example of a binary relation R(z,y) represented as a trie. 58

Visual representation of the results of Experiment 1. 64
Visual representation of the results of Experiment 2 on the
TRIANGLE-QUERY.« v v v v et e e e e e e e e 66
Visual representation of the results of Experiment 2 on the
CLIQUE-QUERY. . . « v v v v vt e e et e e e e e e e e 67
Visual representation of the results of Experiment 2 on the
GUARDED-QUERY. . . « v v v v i e et e e e e e e 68
Visual representation of the results of Experiment 3 on the
TRIANGLE-QUERY.« v v i v et e i e e e e 71

List of Tables

6.1
6.2
6.3
6.4

7.1
7.2

A list of common transformations on regular RDDs. 53
A list of common transformations on key/value RDDs. 93
A list of common actions on regular RDDs. 53
A list of common actions on key/value RDDs. 53
Spark configuration settings used for the experiments. 62

Summary of percentual increases in performance when using
the cost-based approach rather than the round-down approach. 65

Xvil

Chapter 1

Introduction

1.1 Big Data and Its Challenges

For several years, big data has been one of the hottest buzzwords across all
industries. But what exactly is big data? A common definition is the one
given by Douglas Laney in 2012:

“Big data is high volume, high velocity, and/or high variety in-
formation assets that require new forms of processing to enable
enhanced decision making, insight discovery and process optimiza-
tion.” [16]

This definition captures one of the most important aspects of big data.
Namely, that we’re really talking about big data when processing on a single
machine is no longer feasible. One of the main reasons for the popularity
of big data is that the rise of cloud computing and commodity hardware
clusters has made distributed processing a lot more accessible to organiza-
tions over the past few years. Additionally, many modern data management
systems have been developed to make use of the power of parallelism. Fx-
amples of such systems are Apache Hadoop [1] and the more recent Apache
Spark [2, 18].

However, systems like these also present us with some interesting new
challenges. One of those is regarding coordination. An inherent source of
inefficiency in distributed systems are the global barriers raised by the need
for synchronization during the computation of a query. It is therefore inter-
esting to look into what kind of queries can be computed without synchro-
nization, in a coordination-free fashion. This caused Hellerstein to formulate
the CALM-conjecture [13], which suggests a link between monotonicity on
one hand and eventual consistency without the need for coordination on the
other hand. However, a proper treatment of this conjecture requires clear def-
initions of eventual consistency and coordination. These were later provided
by Ameloot et al. [8], who proposed a formalization of the conjecture.

1

2 CHAPTER 1. INTRODUCTION

Another challenge of big data management systems is one of efficiency in
general. Systems like Spark are designed to process data in-memory, because
they can use a sufficient number of servers to make sure that all data fits
in main memory. This is great because it generally offers a performance im-
provement over older systems. However, the traditional performance measure
consisting of the number of disk I/Os is replaced by a new bottleneck: the
communication cost of reshuffling data across the network during computa-
tion. In this thesis, we study two kinds of algorithms for efficient evaluation
of conjunctive queries in particular. One is an improvement of the broadcast-
ing strategy used in the formalization of the CALM-conjecture, which states
that every monotone query can be evaluated in an eventually consistent and
coordination-free manner through a naive broadcasting strategy that makes
all data available to all nodes. This is however rather wasteful. The im-
proved broadcasting strategies that we consider in this work are optimal in
the sense that they broadcast no more data than strictly necessary in order
to correctly compute the query [14]. The second kind of algorithm that we
consider is one that can be modelled in the MPC model. In this model, a com-
putation proceeds in rounds: each round consists of some local computation
followed by global exchange of data between the servers. We first consider
the HyperCube algorithm that can compute any conjunctive query in a single
communication round, with optimal load on skew-free input instances [7, 9].
Next, we also look at a multi-round algorithm based on HyperCube which is
worst-case optimal even on skewed input instances [15]. To really understand
the practical behavior of these algorithms, we made an implementation on
top of Apache Spark. We finish by performing an experimental evaluation
of this implementation. In particular, we compare the algorithms to a naive
baseline implementation and investigate how well these algorithms perform
in combination with a modern sequential multi-way join algorithm [17].

1.2 Goals and Contributions

The goals and contributions of this thesis can be summarized as follows.

1. Study the existing theoretical research regarding coordination-freeness
and the CALM-conjecture and formalize some variations on the current
model.

2. Look into more practical computation strategies than those mentioned
in the research about coordination-freeness, specifically for conjunctive
queries.

3. Implement and experimentally verify some of these algorithms using
Apache Spark.

CHAPTER 1. INTRODUCTION 3

1.3 Thesis Outline

In Chapter 2, we give an overview of some basic concepts in database theory
that are used heavily throughout the rest of the text. In Chapter 3, we dive
deeper into coordination-freeness and the CALM-conjecture. We then study
a way to create more optimal broadcasting strategies in Chapter 4. Subse-
quently, we turn our attention to a more synchronized setting in which we
study the single-round HyperCube algorithm and a multi-round algorithm
based on HyperCube. This is covered in Chapter 5. We then detail our
implementation of these algorithms in Chapter 6. Next, we discuss the ex-
perimental validation of this implementation in Chapter 7. We end this thesis
by giving our conclusions and outlook on future work in Chapter 8.

Chapter 2

Preliminaries

In this chapter we give a short overview of some of the basic concepts that
are used throughout this thesis [6]. We first describe the relational model for
databases. Next, we introduce the notion of conjunctive queries. Lastly, we
also formally define the Datalog query language.

2.1 Relational Database Model

We recall Codd’s relational model. Formally, a relational database schema
o is a collection of relation names R, where each R has an associated ar-
ity ar(R). We also assume an infinite set dom of data values. We call
R(z1,...,x) a fact if R is a relation name and (x1,...,zy) is a tuple over
dom. We say that this fact is over a database schema o if R € ¢ and
ar(R) = k. We can then define a relational database instance I over o as
a finite set of facts over o. For an instance I over o, and a schema o', we
define I|,/ as the set of facts in I that are over ¢’. Throughout this text we
assume that o is clear from the context and do not mention it explicitly.
Furthermore, we define a query Q over a schema o to a schema o’ as a
generic mapping of instances over o to instances over o’. By genericity we
mean that for every permutation 7 of dom and every instance I, Q(w(I)) =

m(Q(1))-

Example 2.1. Consider a databse schema o = {R, S}, with ar(R) = 2 and
ar(S) = 3. An example of a database instance over o is

I ={R(a,b), R(a,c), R(b,c), S(a,b,d), S(c,e, f)}.

We also formally define the notion of monotonicity.

Definition 2.2. A query Q is monotone if Q(I) C Q(I U J) for all database
instances I and J.

6 CHAPTER 2. PRELIMINARIES

Intuitively, this means that when the instance grows, previously gener-
ated outputfacts remain valid also for the new instance.

To conclude, we introduce the following convenient notations. For a finite
set S we denote by |S| its cardinality, and by 2° its powerset. Additionally,
we denote {1,...,n} by [n], for n € N.

2.2 Conjunctive Queries

Let o be a database schema and assume a universe var of variables, disjoint
from dom. A conjunctive query (CQ) over o is an expression of the form

Q(u) < Ri(uy),...,Rp(uy)

where n > 1, Ry,..., R, are relation names in ¢ and 4, @y, ..., 4, are tuples
over var. Additionally, we require that 1, ..., 4, have the appropriate ari-
ties. That is, for u; = (z1,...,2x), we must have that k = ar(R;). Finally,
each variable occurring in @ must also occur at least once in 4y, ..., 4,. An
expression of the form R(z1,...,x)) is called an atom. Let A be an atom
of this form. We call R the predicate, denoted by pred(A). We denote the
variables {x1,...,z;} that occur in A as Vars(A).

Let Q be a CQ of the form described above. We call Q(u) the head
of Q, denoted as headg. Similarly, we call Ry(u1),..., R,(4,) the body of
Q, denoted as bodyg. By Vars(Q) we denote the set of variables occurring
in Q. For convenience, we also use the query name as the head-predicate
throughout the text. That is, for a query Q we assume o’ = {Q}.

Next, we describe the semantics of conjunctive queries in terms of val-
uations. Formally, a valuation for Q on an instance I is a total function
V : Vars(Q) — dom. The application of V' on an atom A = R(x1,...,%k)
results in a fact R(ay,...,ax) where a; = V(z;) for each i € [k]. We say that
a valuation V' is satisfying for Q over instance I if V(A) € I for all atoms A
in bodyg. In that case it is said that V' derives the fact V (headg). The result
of Q on I, denoted Q(I), is defined as the set of facts that can be derived by
satisfying valuations.

Example 2.3. Consider the database instance I from Example 2.1 and the
following CQ:
Q(w7 y’ Z) % R(x7 y)7 S(y? Z7 w)‘

One possible valuation for @ is given by V : {z +— a,y — ¢,z — e,w — f}.
Applying this valuation to the body atoms of @ yields R(a,c) and S(c, e, f),
both of which are contained in I. It follows that V' derives the fact Q(a,c, e).
The complete result of Q(I) is the set {Q(a,c,e),Q(b,c,e)}.

*

CHAPTER 2. PRELIMINARIES 7

To conclude, we mention a restricted class of conjunctive queries where
every conjunctive query is full and does not contain self-joins. Formally, this
means that pred(A) # pred(B) for every distinct pair of atoms A and B in
bodyg, and Vars(headg) = Uacpoay, Vars(A). In other words, every body
atom has a unique relation symbol and all variables occurring in body atoms
must also occur in the head.

Example 2.4. Consider the following conjunctive queries:

Q1(z,y,2) « R(x,y),S(y, 2), T(z, 2)
Q2(z,y) « R(x,y),S5(y, 2),T(x, z)
Qs(x,y,z) < R(z,y),S(y, 2),S(z, 2).

@1 is full and does not contain any self-joins. On the other hand, @2 is
not full, while (J3 contains a self-join. +

2.3 Datalog

In this section, we recall the more expressive query language Datalog with
negation, denoted Datalog™ [6]. A Datalog™ rule ¢ is a tuple (heady, pos,,
neg,) where head, is an atom, and pos, and neg, are both sets of atoms.
We call the components of this tuple the head, the positive body atoms and
the negative body atoms respectively. We require that pos, must contain
at least one atom, whereas neg, may be empty. If neg, = () then we call
¢ positive. The variables that appear in a rule ¢ are denoted by Vars(y).
We say that a rule ¢ is over schema o if for every atom R(uj,...,ur) €
{head,} U pos, U neg,, the arity of R in o is k.

A Datalog™ program P over schema o is a finite set of rules over o.
Furthermore, we write sch(P) to denote the minimal schema that P is over.
We also define the internsional database schema idb(P) C sch(P) as the
database schema consisting of all relations that occur in the heads of the
rules in P. We denote by edb(P) = sch(P) \ idb(P) the extensional database
schema. A Datalog™ program P is called positive is all its rules are positive.
It is said that P is semi-positive if for each rule ¢ € P, the atoms in neg,
are over edb(P).

A waluation for a rule ¢ in P w.r.t. an instance I over edb(P), is a
total function V' : Vars(p) — dom. The application of V' to an atom A =
R(u1,...,ux) in ¢, denoted V(A), results in the fact R(ay,...,ar) where
a; = V(u;) for each i € {1,...,k}. This is naturally extended to a set of
atoms, which results in a set of facts. The valuation V is said to be satisfying
for ¢ on I if V(pos,) C I and V(neg,) N1 = 0. If so, ¢ is said to derive the
fact V (head,).

We can now give the semantics of a semi-positive Datalog program P.
Let Tp be the immediate consequence operator that maps each instance J

8 CHAPTER 2. PRELIMINARIES

over sch(P) to an instance J' = J U A where A is the set of all facts derived
by all possible satisfying valuations for the rules of P on J. Now consider an
instance I over edb(P) and the infinite sequence Iy, I, I, ..., where Iy = I
and I; = Tp(I;—1). The output of P on instance I, denoted P(I), is defined

as U; 1.

Example 2.5. The following is an example of a positive Datalog™ program
which computes the transitive closure of an instance over schema o = { E()}.

T(x,y) < E(z,y).
T(x,y) < T(z,2), T(z,v).

Chapter 3

Coordination-Freeness

Back in 2010, Hellerstein conjectured a link between eventual consistent and
coordination-free distributed computations, and expressibility in monotonic
Datalog [13]. This conjecture, known as the CALM-conjecture, was not for-
malized however, as this requires clear definitions of the notions eventual
consistency and coordination as well as a distributed computational model.
Ameloot et al. [8] propose these definitions and a computational model based
on relational transducers. Subsequently they formalize and proof the CALM-
conjecture in their framework. In this chapter, we introduce the computa-
tional model of relational transducer networks. We then show how this model
can be used to formalize the CALM-conjecture. Next, we try to find a some-
what more intuitive definition of coordination-freeness. To conclude, we take
a look at a different semantics regarding message delivery for the relational
transducer model.

3.1 Relational Transducers

The notion of relational transducers can be used to formalize the computation
on a single node.

Definition 3.1. A transducer schema Y is a tuple (Yin, Yout; Tmsgs Lmem,
Tgys) of disjoint database schemas, representing ‘input’, ‘output’, ‘message’,
‘memory’ and ‘system’ respectively. We fix Ty to always contain the two
unary relations Id and All.

Definition 3.2. A transducer state for a transducer schema T is a database
instance over Ti, U Tout U Tmem U Tys.

Definition 3.3. A relational transducer Il over a transducer schema T is a
collection of queries:

e OF with output schema {R(k)} for each R € Yoy

out

9

10 CHAPTER 3. COORDINATION-FREENESS

e OF and QF both with output schema {R®} for each R®) € Y pem;
e O\ with output schema {R®} for each R € T gq;

where each of these queries have the same input schema, namely T, UY gyt U
Trnsg U Tmem U Tsys-

The queries that make up a relational transducer will form the mechanism
to send messages and update the state of a node. Notice that we use R*)
to denote a relation symbol R of arity k. Henceforth, we often abbreviate
‘relational transducer’ as simply ‘transducer’.

Next, we will describe how a transducer uses these queries to transition
from one state to another. Let II be a transducer over Y. We call a database
instance over Tps a message instance for Y. We can now define a local
transition as a 4-tuple (I, Licy, J, Jsnd), sometimes denoted as I, Iey — J, Jsnd,
where I and J are transducer states, and I, and Jg,q are message instances
such that, denoting I’ = I U I cy:

J‘(in,sys) = I|(in,sys);
J|(out) = I‘(out) U U Qﬁlt(/);

R<k)€Tout
J‘(mem) = U (I|RUR+)\R7;
R® €Y mem
Jsend - U led(/)7
RE) €Y e

with

R* = Qf.(I)\ Q§y(I'); and
R™ = Qf,y(I")\ Qfi(I).

Intuitively, this boils down to the following. When a node receives the
message facts contained in I,.y, a local transition updates the current trans-
ducer state I to a new state J, while sending out the message facts contained
in Jgng. The input and system relations remain unchanged during any lo-
cal transition. The output queries produce potentially more output facts
and each memory relation R is updated according to insertion and deletion
queries. More specifically, all facts produced by Qi]fls are added to R and
all facts produced by QF, are removed from R. There is no-op semantics
when a fact is both added and removed at the same time. This means that
the fact will not be added if it was not in the memory relations already, and
that it will not be deleted if it was. Also notice that output facts are never
removed. These local transitions are also deterministic: if I, I,ey — J, Jsng

CHAPTER 3. COORDINATION-FREENESS 11

and I, I,y — J',J. ., then J=J and Jgq = J'

» “snd? snd*

Remark 3.4. The transducer model can be parameterized by a query lan-
guage L that indicates the language in which the queries that make up the
transducer are specified. In that case we call II an L-transducer.

3.2 Relational Transducer Networks

We can now use the relational transducers from the previous section to for-
malize computing networks [8].

Definition 3.5. A network N is a finite, connected and undirected graph.
We write nodes(N) and edges(N) to denote the nodes and edges of N.
We require that nodes(N) C dom. Moreover, for x € nodes(N) we write
neighbor(z, N') to denote the set {y | (z,y) € edges(N)}.

Definition 3.6. A transducer network is a triple T = (N, Y, II) where N is
a network, Y is a transducer schema and II is a transducer over 1.

A transducer network as defined above is called homogeneous, because
copies of the same transducer II are running on all nodes of the netwerk. We
consider only homogeneous transducer networks.

We now formalize data distribution over a network.

Definition 3.7. A distributed database instance over a network N and a
database schema o is a total function H mapping each node of N to a regular
database instance over o.

Notice that by this definition, a data fact can be replicated over multiple
nodes in the network.

3.2.1 Operational Semantics

We are now ready to define the operational semantics of transducer networks.
Let T = (N,T,II) be a transducer network and let H be a distributed
database instance over N and Yi,. A configuration of T on H is a pair
p = (s,b) of functions where

e s is the state function that maps each = € nodes(N') to a transducer
state J = s(z) so that J|n) = H(x) and J| gy = {Id(7)} U {A11(y) |
y € nodes(N)}; and

e bis the buffer function that maps each = € nodes(N') to a finite multiset
of facts over T p,gq.

12 CHAPTER 3. COORDINATION-FREENESS

The state function initializes the input of each node based on the dis-
tributed database H. Additionally, it initializes the system relations Id and
A1l to provide the transducer at each node with the identity of the node
it is running on, as well as the identities of all other nodes in the network.
The buffer function on the other hand, maps each node in the network to a
multiset of message facts that were sent to this node but that have not been
received yet.

The start configuration of T on H, denoted as start(7, H), is the config-
uration p = (s,b) of 7 on H that defines s(2)|(out,mem) = 0 and b(x) = 0 for
each z € nodes(N). In other words, at the start configuration we have no
output or memory facts and there are no messages to receive.

Next, we define the actual computing mechanism of transducer networks.
A global transition of T on H is a 4-tuple (p1,z, m, p2), sometimes denoted
as p1 zm, p2, where x € nodes(N), and p; = (s1,b1) and p2 = (s2,b2) are
configurations of 7 on H so that

e m is a submultiset of by(z) and there exists a message instance Jgng
such that
s1(x), set(m) — s2(x), Jsna

is a local transition of transducer II;
e for each y € nodes(N) \ {z} we have s1(y) = s2(y);

o by(z) = by(x) \ m; for each y € neighbor(x, N') we have by(y) = b1(y) U
Jsna; and for all other nodes y we have ba(y) = b1(y).

Here, we call x the active node and set(m) the delivered messages. In-
tuitively, this means the following. The active node receives an arbitrary
submultiset of messages from its buffer. The node then performs a local
transition to update its output and memory relations, as well as send the
new messages contained in Jg,q. The states of the non-active nodes remain
unchanged. The messages that were sent by the active node are added to the
buffer of all neighboring nodes. A node does never send messages to itself. It
is possible that m = (). In that case we call the global transition a heartbeat
transition, otherwise we call it a delivery transition.

We can now define a run R of a transducer network 7 on a distributed
database instance H as an infinite sequence of global transitions p; RLULN Pit1
fori=1,2,3,..., where p; = start(7, H). Notice that the changes made to
the memory and output relations of the active node, are only visible to that
node starting from the next global transition in which it is active.

Remark 3.8. The mechanism described above does not define concurrent
global transitions, where more than one node is active at the same time.

CHAPTER 3. COORDINATION-FREENESS 13

These transitions can be simulated by using multiple sequential global tran-
sitions however, by letting each of the concurrent nodes become active in an
arbitrary order. Because of the deterministic nature of local transitions, the
nodes will behave exactly the same as during a concurrent transition.

3.2.2 Fairness

When talking about a distributed computation model, it is important to
consider a notion of ‘fairness’ in order to guarantee the liveness of the system.
This bascially means that eventually some progress has to be made and
the process cannot get stuck. As for transducer networks, we call a run of
T = (N, T,II) on some input fair if:

(1) every node is active in an infinite number of transitions; and

(2) if for some node a fact occurs in its message buffer in an infinite
number of configurations, then this fact is delivered to that node
during an infinite number of transitions.

Condition (1) means that every node becomes active once in a while. Con-
dition (2) requires that no messages are infinitely delayed. We only consider
fair runs.

3.3 Computing Queries

In this section, we describe how we can compute a query using a transducer
network. For this purpose we study the notions of consistency and network-
independence. But first, we will introduce terminology for transducers that
will come in handy later.

e Oblivious: An oblivious transducer does not use the relations Id and
A1l in its queries. This means that the transducer is unaware of the
network context, as it does not know the node it is running on and it
does not know about other nodes in the network.

e Inflationary: An inflationary transducer does never delete any facts
from its memory relations.

e Monotone: A transducer is monotone if all its queries are monotone.

3.3.1 Input & Output

Next, we look at how to define the input and output of a transducer network.
Let 7 = (N, T,II) be a transducer network and let I be a regular database
instance over Yi,. We can give I as an input to 7 by partitioning it across the

14 CHAPTER 3. COORDINATION-FREENESS

network. Formally we can define a horizontal partition of I as a distributed
database instance H over N for which I = Uzenodesvy H(2)-

Now consider a configuration p = (s,b) of T on input H. We can associate
an output database instance out(p) with this configuration which is defined
as follows:

OUt(p) = U S(:U)’(out)'

z€nodes(N)

Now let R be a run of 7 on some input and denote the sequence of con-
figurations of this run as pi1,p2,.... We call the number ¢ > 1 such that
out(p;) = out(p;) for every j > i a quiescence point for R. Similarly, we call
the corresponding configuration p; a quiescence configuration of R. Notice
that only quiescence configurations can follow a quiescence configuration and
that all quiescence configurations define the same output database.

Because we only consider finite input instances, only a finite number
of distinct output facts are possible. Therefore, a run will surely reach a
quiescence configuration at some point.

Property 3.9. For every transducer network, on every input, every run
contains a quiescence configuration.

We can now define the output of a run R as out(p;) where p; is a quiescence
configuration of R.

3.3.2 Consistency

Let’s define what it means for a transducer network to be consistent.

Definition 3.10. A transducer network 7 = (N, Y, II) is consistent if for
all database instances I over Yj, all fair runs of 7 have the same output,
denoted T (I), on all horizontal partitions of I over N.

We say that T computes a query Q over input schema Tj, and output
schema Yoy if T is consistent and 7 (I) = Q(I) for all instances I over Yi,
on which Q is defined.

The following example describes a consistent transducer network to com-
pute the well-known transitive closure query.

Example 3.11. Consider the transducer schema with schema Yi, = {E®)},

CHAPTER 3. COORDINATION-FREENESS 15

Yout = {T(Q)}, Tinsg = {U(Z)} and Y em = {M(Q)}, and the rules:

Usnd(‘r)y) — E(CL‘,y)
Usnd(‘r’y) — U(LE,y)

Mins($7 y) — U(:L’, y)

Tout(z,y) < E(z,y).
Tout(xay) «— M(:L’,y)
Tout(xay) — T(iL',Z), T(Zay)

This transducer uses the Ug,q rules to send its local input to all neighbors,
as well as forward any incoming message facts. It also uses the Miys rule
to add all received messages to its memory relation M. By doing so, the
complete input is accumulated at each node. Lastly, the transducer uses the
Tout Tules to compute the transitive closure based on its own local input and
the accumulated memory facts. The consistency of this transducer follows
from the monotonicity of the transitive closure query. This transducer is also
oblivious, inflationary and monotone. +

Example 3.12. We also give an example of a transducer network that is
not consistent. Consider the transducer schema with schema Tj, = {R(V},

Tous = {TW}, Trnsg = {UM} and Yem = 0, and the rules:

Usna(z) + R(x).

block() < T'(z).
Tous(x) < —block(), U(x).

We claim that a tranducer network of at least two nodes running this trans-
ducer is not consistent. The transducer forwards its local input to its neigh-
bors using the Ug,q rule. The T, rule subsequently outputs received mes-
sages, only if the output is still empty. If there are at least two distinct input
facts in R, different runs may deliver these facts in different orders resulting
in a different output. +

3.3.3 Network-Independence

When talking about queries, we don’t just want the transducer network to be
consistent. We also want that the query can be computed by the transducer
regardless of the network. We therefore introduce the notion of network-
independence.

16 CHAPTER 3. COORDINATION-FREENESS

Definition 3.13. Let II be a transducer over a schema Y. We say that 11
is a network-independent transducer if for all networks A, the transducer
networks 7 = (N, T,1II) are consistent and compute the same query Q. We
say that Q is distributedly computed by II.

The transducer that we described in Example 3.11 is network-independent.
In the following example however, we give a transducer that is not network-
independent.

Example 3.14. Consider the transducer schema with schema T;, = {R(l)},
Your = {TW}, Tinsg = {AM, B@} and Yipem = {SP}, and the rules:

Agng(x) + Id(x).

Bgna(z,y) «+ A(z), Id(y).
Bgna(z,y) «+ B(z,y).

Sins(7,y) < B(z,y).

missing() < All(x), All(y), = # y, —S(x,y).
Tout(x) + —missing(), R(z).

Here, the transducer uses the Ag,q rule to send its identifier to its neighbors.
Doing so, the transducer can discover the edges of the network. These edge
facts are flooded over the network using the Bg,q rule, as well as stored in
the memory relation S. Finally, the transducer uses the Tyt rule to output
its local input on the condition that the edges contained in the memory
relation S form a complete graph. Consequently, this transducer computes
the indentity query on networks that form a complete graph, and the empty
query on other networks. This transducer is also non-oblivious, as it relies
heavily on the relations Id and A1l in order to detect the network topology.

*

3.3.4 Expressiveness

In this section, we provide some insight into why the transducer model has
enough expressive power to study the distributed evaluation of queries. To
do this, we present two lemmas that show that each node in a transducer
network is always able to gather a local copy of all input facts on the network.

Lemma 3.15. Let o be a database schema. There exists a transducer schema
T with Y, = o and an oblivious, inflationary and monotone UCQ-transducer
IT over YT so that for every transducer network for 11, for every instance I of
o, on every horizontal partition of I, every fair run reaches a configuration
where every node has a local copy of the entire instance I in its memory.

CHAPTER 3. COORDINATION-FREENESS 17

Proof. The proof is by construction. The idea is as follows. Every node sends
its local input facts to its neighbors and will forward any messages it receive.
Furthermore, the node collects its local input facts and received messages in
memory relations. By fairness, every node will eventually have gathered the
complete input database instance in local memory.

For completeness, we provide a transducer that implements this idea. For
this, we need the following transducer schema: Ti, = o, Tyee = {Rmsg7(k) |
R®) € o} and Tyem = {R™™®) | RK) € 5}. We don’t include an output
schema since that is not part of this construction. The following transducer
rules formalize the mechanism described in this proof.

R™3(z) + R().

snd

R™3(z) « R™%(z).

snd

Ri™(z) <+ R(z).

mns

RMO™(3) ¢ R™SE(F).

mns

O
Note that we have already used the idea outlined above in Example 3.11.

Lemma 3.16. Let o be a database schema. There exists a transducer schema
T with Y, = 0 and an UCQ™ -transducer 11 over Y so that for every trans-
ducer network for 11, for every instance I of o, on every horizontal partition
of I, every fair run reaches a configuration where every node has a local copy
of the entire instance I in its memory, and a ‘ready’-flag is set to true. More-
over, this flag only becomes true after the node has the entire instance I in
1ts memory.

Proof. Again, the proof is by construction. The idea is as follows. Each node
z sends its local input facts over relation R*) € o to every other node, with
an additional last component containing its node identifier which we call the
tag. When a node y receives a tagged input fact, it removes the tag and
stores the fact in its memory relation. For each fact that y receives from =z,
y also sends an acknowledgement back to . Node x subsequently checks if
node y has acknowledged all input facts of x. If so, then x sends out the fact
done(x,y). If y has received done(z,y) for all other nodes z, the it knows it
has collected all input data on the network and created the ‘ready’-flag.

Next, we specify the transducer schema needed for this construction:
Tin = 0, Vg = {RV&EH) Rack(k42) | R() € 5} U {done®} and Ypem =
{ Rmem,(k) - gackMem,(k+2) | R(¥) ¢ 5} U {doneMen®), notDone(!) missing(®)}
U{started® ready(’}. We don’t include an output schema since that is
not part of this construction.

18 CHAPTER 3. COORDINATION-FREENESS

Finally, we give the necessary transducer rules to implement the idea
above. First, for each R®) € o, we have the following rules to let all nodes
send their tagged input facts to all other nodes, store them in their memory
relations and reply with the necessary acknowledgements:

R (W) = R(u), Id().
R™E(a,x) + R"™%(u,).

Riy™(u) + R(u).

1ms

R™eM (7)) < R™SE (g,).

1ms

Rigs(a, @, y) « R™5(a,x), 1d(y).
Ris (a2, y) « R*(a,2,y).

snd (U

RicEMem (g g y) < R**(a,2,y), Id().

ms

Next, we use the started relation to remember if the first transition already
happened:

startedips() < .
Then, on each node x, we compute the relation notDone which contains all
nodes that have not yet acknowledged all input facts of z. For each R*) € &
we have a rule of the form:

notDoneiys(y) « R(7), Id(z), A11(y), ~1d(y), ~R*Mem (g 1, 4)).

Also, since this relation is recomputed during every transition, we need to
make sure to delete all facts in it:

notDonege| (y) < notDone(y).

When a node z notices that another node y has acknowledged all its input
facts, it sends out done(z,y):

doneg,q(x,y) < started(), Id(z),Al1l(y), 7Id(y), notDone(y).
doneg,q(x,y) < done(z,y).

These done messages must be stored at the addressed node:

doneMem;ys(x, y) < done(z,y), Id(y).

CHAPTER 3. COORDINATION-FREENESS 19

Finally, when a node y has received done from all other nodes, the ready flag
can be set:

missing; () < Id(y),All(z), Id(z), ~doneMem(z,y).
missingg, () < missing().

ready; () < started(), -missing().

We can now make the following conclusion.

Theorem 3.17 ([8]). Let L be a query language containing UCQ™. FEvery
query expressible in L can be distributedly computed by an L-transducer.

Proof. Let Q be a query expressible in £ over input schema ¢ and output
schema ¢’. We specify an L-transducer that is able to compute Q. We
know from Lemma 3.16 that we can construct a transducer that collects
the complete input at every node using the UCQ™ query language. We
can construct this transducer over input schema o, but it does not produce
any output. We can extend this transducer by defining the output schema
Yout = o', and by adding output queries that compute Q once the ‘ready’-flag
is set to true, based on the collected input facts.]

Moreover, since monotone queries are important in the context of the
CALM-conjecture, which we will describe in more detail in the next section,
we can observe that we only need oblivious transducers to compute them.

Theorem 3.18 ([8]). Let L be a query language containing UCQ. FEvery
monotone query expressible in L can be distributedly computed by an oblivious
L-transducer.

Proof. Let Q be a monotone query expressible in £ over input schema o
and output schema o’/. We can use the same strategy as in the proof of
Theorem 3.17, but instead of using the construction from Lemma 3.16 we
use Lemma 3.15 to construct an oblivious transducer that gradually collects
the entire input at each node. The difference here is that, by monotonicity of
Q, we don’t need to wait until the entire input is available before outputting
results. We can output increasingly more facts when more input becomes
available, without ever outputting incorrect facts.]

3.4 The CALM-conjecture

In 2010, Hellerstein conjectured the following link between eventual consis-
tent and coordination-free distributed computations, and expressibility in
monotonic Datalog.

20 CHAPTER 3. COORDINATION-FREENESS

Conjecture 3.19 (CALM-conjecture [13]). A program has an eventually
consistent, coordination-free execution strategy if and only if it is expressible
1 monotonic Datalog.

In the previous sections we have seen how we can model distributed ex-
ecution strategies. It remains to be shown what it means for an execution
strategy to be coordination-free, as this seems to be a key part of the CALM-
conjecture. We have already seen an example of an execution strategy that
does require coordination in Lemma 3.16, where the nodes need to coordi-
nate to make sure every node has all necessary data. This coordination often
leads to a situation where nodes are simply waiting for each other before con-
tinuing with the actual computation, which we call a global synchronization
barrier. It may be clear that these barriers are a major source of inefficiency
in distributed z programs.

One possible definition of coordination-freeness would be to not allow
any communication at all. However, it seems like this approach would be
too drastic. Ameloot et al. [8] came up with an interesting formal definition
of coordination-freeness which does not prohibit communication as a whole,
but only requires the computation to be successful without communication
on specific horizontal partitions.

Definition 3.20. (Coordination-freeness) Let II be transducer over schema
T and 7 be a transducer network for II. We say that T is coordination-free
if for every database instance I over Ti,, there exists a horizontal partition
H of I and a run of 7 on H in which a quiescence configuration is reached by
only doing heartbeat transitions. We call transducer II coordination-free if
for every network its corresponding transducer network is coordination-free.
Furthermore, a query Q can be distributedly computed in a coordination-free
manner if there exists a network-independent, coordination-free transducer
IT that computes Q.

This basically means that when the data is distributed in the right way, no
communication is needed to compute the query. An example of a coordination-
free transducer was already given in Example 3.11, where we showed a trans-
ducer to compute the transitive closure. When every node is given the full
input, this transducer can correctly compute the transitive closure with only
heartbeat transitions.

Coordination-freeness is undecidable for FO-transducers. However, we
can define a syntactic class of transducers that is always coordination-free.

Proposition 3.21. Let L be a query language. Every network-independent,
oblivious L-transducer is coordination-free.

Proof. Let II be a network-independent, oblivious transducer over schema T
that distributedly computes a query Q. First, consider a single-node network

CHAPTER 3. COORDINATION-FREENESS 21

where this single node is always given the full input. In this case there can
only be heartbeat transitions. It then follows that for every input instance
I over Tj,, a quiescence configuration containing Q(I) is always reached by
only doing heartbeat transitions. Next, consider an arbitrary network N/,
any instance I over Yi,, and the horizontal partition which places the full
input at every node. Because II is oblivious, a node cannot detect that it is
on a multi-node network unless it receives a message. Therefore, every node
will initially act the same as on a single-node network when performing only
heartbeat transitions and will already output Q(I). Moreover, because II is
network-independent, the nodes will never output more than Q(I) when they
receive messages later on. [

Using the models and definitions described above, Ameloot et al. [8] sub-
sequently reformulated Hellerstein’s conjecture in a formal way.

Conjecture 3.22. A query can be distributedly computed by a coordination-
free transducer if and only if it is expressible in Datalog.

It is clear that the if-side of this formulation holds. Namely, every query
in Datalog is monotone. It then follows from Theorem 3.18 that there exists
an oblivious transducer which computes this query. Moreover, according to
Proposition 3.21, this transducer is coordination-free.

The only-if side on the other hand may does not hold in the strict sense,
mainly because there exist monotone queries that are not expressible in Dat-
alog. However, it is clear that the key aspect of the conjecture is the mono-
tonicity, as is confirmed by the following theorem.

Theorem 3.23 ([8]). Let L be a query language. Every query that is dis-
tributedly computed by a coordination-free L-transducer is monotone.

Proof. Let II be a transducer over schema Y that is coordination-free. Let
Q be the query that is distributedly computed by II. Let I and J be two
database instances over Yi, with I C J. We show that Q(I) C Q(J). Con-
sider an arbitrary transducer network 7 with at least two nodes, and a fact
f € Q(I). By definition of coordination-freeness, there exists a horizontal
partition H of I such that 7 has a run R in which Q(I) is already computed
in a prefix consisting of only heartbeat transitions. Let x denote the node that
output f during run R and let y denote a node different from x. Now consider
the horizontal partition H' with H'(z) = H(z) and H'(y) = H(y) U (J \ I).
Let n be the number of heartbeat transitions that = went through before
outputting f. Consider a prefix of a run of 7 on H’ where we initially do n
heartbeat transitions on node z. Because of the deterministic nature of local
transitions, node z will go through the same states as in run R, and there-
fore output f again. We can then extend this prefix to a full fair run of T of
H'. We know that f will be output on any partition of J and during every

22 CHAPTER 3. COORDINATION-FREENESS

fair run because T is consistent. Moreover, since II is network-independent,
this is true for every transducer network 7 for II so we can conclude that

fea). O

We can summarize the CALM-conjecture in the following equivalence
theorem.

Theorem 3.24. Let L be a query language containing UCQ. For every query
Q expressible in L, the following are equivalent:

1. Q can be distributedly computed by a coordination-free L-transducer;
2. Q can be distributedly computed by an oblivious L-transducer;

3. 9 is monotone.

Proof. (3) = (2) follows from Theorem 3.18. (2) = (1) follows from
Proposition 3.21. (1) = (3) follows from Theorem 3.23. O

3.5 Coordination-freeness: Alternative Definition

In this section, we take another look at the definition of coordination-freeness.
In some cases, it is hard to reason with the definition that was proposed by
Ameloot et al, which states that there should exist a horizontal partition,
without specifying what this partition should looks like. Therefore, it may
be interesting to investigate an alternative, maybe more intuitive, definition
that mentions a specific way of partitioning the data.

Definition 3.25. (Coordination-freeness, alternative) A query Q can be dis-
tributedly computed in a coordination-free manner if there exists a network-
independent, oblivious! transducer II over a schema Y so that a single-node
network T for II always correctly computes Q when it receives the full input.
In other words, 7 (I) = Q(I) for every database instance I over T, on which
Q is defined.

We claim that this definition is equivalent to the definition that Ameloot
et al. used, which we provided in the previous section.

Proposition 3.26. Definition 3.25 is equivalent to Definition 3.20.

Proof. First, we show that if a query can be distributedly computed in a
coordination-free manner according to Definition 3.20, it can also be dis-
tributedly computed in a coordination-free manner according to Defini-
tion 3.25. Assume a query Q that can be distributedly computed in a

!Otherwise a transducer could detect whether or not it is in a multi-node network.
Consequently, it could compute the query perfectly fine on a single-node network, but
require that it receives a message before outputting on a multi-node network. Therefore,
it wouldn’t guarantee coordination-freeness.

CHAPTER 3. COORDINATION-FREENESS 23

coordination-free manner according to Definition 3.20. Therefore, there ex-
ists a network-independent, coordination-free transducer II that computes Q.
This means that for every network N the corresponding transducer network
T for IT is coordination-free. Let’s denote the single-node transducer network
for II as 771. Since all transducer networks for II are coordination-free, this
one is as well. Therefore, as stated in Definition 3.20, there exists a horizontal
partition H of I and a run of 73 on H in which a quiescence configuration is
reached by only performing heartbeat transitions. The output at this quies-
cence configuration, 77 (1), is exactly Q(I) for every input database I, seeing
as II computes Q and II is network-independent. We note that H is the hor-
izontal partition that places the full input at the only node in the network,
as this is the only possible horizontal partition on a single-node network. We
can thus conclude that II satisfies the condition stated in Definition 3.25,
and therefore that Q can be distributedly computed in a coordination-free
manner according to Definition 3.25.

Next, we show that if a query can be distributedly computed in a
coordination-free manner according to Definition 3.25, it can also be dis-
tributedly computed in a coordination-free manner according to Defini-
tion 3.20. Assume a query Q that can be distributedly computed in a
coordination-free manner according to Definition 3.25. Therefore, there ex-
ists a network-independent, oblivious transducer II over a schema T so that
a single-node network 7T for II always correctly computes Q when it receives
the full input. Let A/ be an arbitrary network and 7 the corresponding trans-
ducer network for II. We show that for every database instance I, there exists
a horizontal partition H of I and a run of 7 on H in which a quiescence con-
figuration is reached by only performing heartbeat transitions. We claim that
the horizontal partition H that places the full input at every node satisfies
this condition. Indeed, according to Definition 3.25, II always correctly com-
putes Q(I) on a single-node network. Therefore, a quiescence configuration
containing Q(I) is always reached by doing only heartbeat transitions. Now
consider the network A and the horizontal partition H. Since II is oblivious
it cannot detect that it is on a multi-node network, unless it receives a mes-
sage. So, by only doing heartbeat transitions initially, it will act the same as
on the single-node network and output the entire Q(I). Also, because II is
network-independent, it cannot output more than Q(I). We conclude that
T is coordination-free, and therefore that Q can be distributedly computed
in a coordination-free manner according to Definition 3.20. O

3.6 In-order Message Delivery

A possible variation of the transducer networks model involves the order in
which messages are received. The earlier described model considers a reli-
able network in the sense that messages never get lost, but their order is not

24 CHAPTER 3. COORDINATION-FREENESS

preserved. This is in contrast with, for example, the reliability guarantees
of the popular TCP protocol. Therefore, in this section we study what the
effect is of adding ordering in the aforementioned model.

Recall the original operational semantics from Section 3.2.1 and more
specifically the buffer function b that maps each x € nodes(N) to a finite
multiset of facts over Ty.. In order to accommodate the in-order message
delivery, we need to modify the buffer function. A multiset of facts won’t
be sufficient to define the in-order delivery semantics, so we say b maps each
z € nodes(N) to a queue of facts over Tpge. This way we require that the
fact that was added to the buffer first, is also read from the buffer first.

Aside from this change, we also need to modify the notion of a global
transition. Under the in-order delivery semantics, m can no longer be just
an arbitrary submultiset of the message buffer by (x). We now define m to be
a multiset of facts constructed by popping zero or more facts from the queue
bl (ac)

We now show that these changes preserve coordination-freeness.

Proposition 3.27. Every transducer that distributedly computes a query Q
in a coordination-free manner under the original operational semantics, also
distributedly computes Q in a coordination-free manner under the in-order
delivery semantics.

Proof. Let 1I be a transducer that distributedly computes a query Q in a
coordination-free manner under the original operational semantics. By def-
inition of coordination-freeness, II is coordination-free for every network N
and its corresponding transducer network 7. Let 7 be an arbitrary trans-
ducer network for II. Since T is coordination-free, there exists a horizontal
partition H of I, for every database instance I, and a run of 7 on H in which a
quiescence configuration is reached by only performing heartbeat transitions.
Since no messages are received during heartbeat transitions (m = (), m is
trivially a valid multiset of facts to read under the in-order delivery semantics.
The same horizontal partition H and run of 7 on H are therefore evidence of
the coordination-freeness of 7 under the in-order delivery semantics. More-
over, since every fair run of 7 under the in-order semantics is also a fair
run under the original semantics, it follows that 7 is also consistent under
the in-order semantics. Therefore we know that Q can also be distributedly
computed by II in a coordination-free manner when messages are received in
the order they were sent in. O

The converse of Proposition 3.27 is not necessarily true, as the following
example demonstrates.

Example 3.28. We give a transducer that is coordination-free under the in-
order delivery semantics, but is not consistent under the original operational

CHAPTER 3. COORDINATION-FREENESS 25

semantics. The transducer has a single binary input relation £, and a ternary
output relation T". During its first transition, every node outputs all triangles
that can be found in its local facts. That is, it outputs all facts T'(x, y, z) such
that E(x,y), E(y,z) and E(z,x), with # y, y # z, z # z, are in its local
instance. Then it broadcasts its local facts to all other nodes, followed by a
done-message. Whenever a node received such a done-message, it recomputes
the output as it did in the first transition on its local instance as well as the
facts it received from other nodes.

Intuitively, it is clear that this transducer correctly computes the (mono-
tone) triangle query Qa (I) under the in-order delivery semantics. Indeed, the
transducer will never read a done-message before it has read all the facts that
were sent by the node that sent this done-message (because of the in-order
delivery). As a result, there is always a done-message left in the buffer after
a node has read all data facts sent by other node. Reading this done-message
will trigger a recompute of the query on the complete input I, resulting in
the complete output Qa(I). It is also coordination-free, because each node
can already compute the full output in the first (heartbeat) transition when
the full input is placed at every node.

Under the original operational semantics however, this transducer may
not always compute the same output. It is possible that the nodes read all
done-messages before the actual input facts sent by the other nodes. This
may lead to a situation where the last recompute of the output happens before
all input facts are available to a node, resulting in an incomplete output.

For completeness, we specify a transducer Il that implements this idea.
The transducer schema T is as follows: Yy, = {E@}, Tou = {TO}, Tinge =
{U® done}, Tpem = {SP), started®}. The rules for the transducer are:

Usnd(z,y) + E(z,y).
Usnd(xay) A U(ZL‘,y)

Sins(:l:a y) <~ E(Q’J, y)
Sins(l'a y) — U(‘T’ y)
startedips() < .

Tout(
Tout(

x,y,z) « done(), S(x,y),S(y, 2), S(z,%),x #y,y # 2,2 # x.
*

Although the example above shows that not every transducer that is
coordination-free under the in-order delivery semantics is coordination-free
under the original semantics, we can show that the expressiveness under both

26 CHAPTER 3. COORDINATION-FREENESS

semantics are the same. More specifically, we show that every coordination-
free transducer under the in-order delivery semantics has an equivalent trans-
ducer that is coordination-free under the original semantics. In order to proof
this statement, we first notice the following.

Proposition 3.29. Fvery query that is distributedly computable by a
coordination-free transducer under the in-order delivery semantics is mono-
tone.

Proof. The proof this proposition follows the exact same reasoning as the
proof of Theorem 3.23. O

We can now state the following.

Proposition 3.30. Every network-independent, coordination-free transducer
under the in-order delivery semantics has an equivalent network-independent
transducer that is coordination-free under the original semantics.

Proof. Let Il be a transducer that is coordination-free under the in-order
delivery semantics. Let Q be the query that is distributedly computed by I1.
According to Proposition 3.29, we know that Q is monotone. We also know
that every monotone query can be distributedly computed by a coordination-
free transducer (under the original semantics), following Theorem 3.24. Con-
sequently, there exists a transducer II' that is coordination-free under the

original semantics and distributedly computes Q, making it equivalent to
IT. O

3.6.1 In-order Semantics and Obliviousness

Proposition 3.31. FEvery network-independent, oblivious transducer under
the in-order semantics is coordination-free.

Proof. This proposition follows from the proof of Proposition 3.21, since the
same reasoning can be used here. O

As is the case under original semantics, the argument given in the proof
of Proposition 3.31 is still valid when the transducer reads on the system
relation Id since it can still not determine that it’s on a multi-node network.
Therefore, every network-independent transducer that reads only Id is still
coordination-free under the in-order semantics.

Chapter 4

Optimal Broadcasting
Strategies

The coordination-free evaluation strategies that we presented in the previous
chapter aren’t all that useful in practice. They mostly rely on all nodes broad-
casting their local fragment of the data in order to collect the full dataset at
every node. This is not desirable in a real world application. In this chapter,
we take a look at a more economical and hence more practical broadcasting
strategy [14]. First of all, we formally define broadcasting by means of broad-
casting functions. Next, we introduce the notion of broadcast dependency
sets which will finally lead us to an algorithm allowing to create broadcast-
ing functions that satisfy an optimality property, which we will define later.
In particular, we focus on broadcasting strategies for the evaluation of full
conjunctive queries without self-joins as described in Section 2.2.

4.1 Oblivious Broadcasting Functions

In an execution strategy based on broadcasting, a relational transducer only
has to do two things:

1. Determine which facts to send to the other nodes in the network;
2. Compute potentially new output facts whenever new data arrives.

This strategy works because we only consider conjunctive queries, which are
monotone. We can thus simply recompute the query when a message arrives
from another node. Consequently, this strategy is also coordination-free.
The only changing factor in this strategy is the set of facts which should be
broadcast. We’ll formalize this aspect by means of oblivious broadcasting
functions.

27

28 CHAPTER 4. OPTIMAL BROADCASTING STRATEGIES

Definition 4.1. An oblivious broadcasting function (OBF) f is a generic
mapping that maps instances to instances such that f(.J) C J for all instances
J.

An OBF specifies which of a node’s local input facts should be broadcast.
We therefore call f(.J) the broadcast facts. The remaining set of facts J\ f(.J)
are called the static facts. We use the term ‘oblivious’ in the sense that the
set of broadcast facts f(J) is not dependent on what other nodes on the
network are doing. This means that f(J) doesn’t change when messages
arrive.

We can model the output of a broadcasting algorithm based on an OBF
f in the following way. Let Q be a conjunctive query, I a database instance,
H a distribution of I and N a network. We can denote by B(f,H) =
Ueenr f(H(c)) the set of all broadcast facts. We can then define the output
of the algorithm eval(Q, f,H) = J.cpr Q(H (c) U B(f, H)) as the union of
result of @ on the local instance extended by the broadcast facts over all
nodes.

Definition 4.2. An OBF f is correct for a conjunctive query Q when Q(I) =
eval(Q, f, H) for every instance I and all distributions H of I. When f is
correct for Q, we also say that f is an OBF for Q.

In order to characterize this correctness, we need a way talk about facts
that can possibly contribute to a satisfying valuation together. We say that
two facts £ and g are compatible w.r.t. Q, denoted as f ~¢ g, if they can be
assigned to two atom from the body of Q under one valuation. In other words,
there exists a valuation V for Q and atom A, B € bodyg so that V(A) = f
and V(B) = g. We can characterize the correctness of an OBF in the sense
that two compatible facts located at different nodes can never both be static.
The reason for this is that if they are, the valuation V' that witnesses their
compatibility will not always be considered at any node. This would mean
that the fact V' (headg) would never be derived. A formal characterization is
given in [14].

Example 4.3. Consider the query Q(z,y, z) < A(z,y), B(y,x),C(z, z) and
the database instance I = {A(1,2), B(2,1), B(2,2),C(1,3)}. The facts A(1,2)
and B(2,1) are compatible w.r.t. Q because of the possible valuation V :
{z — 1,y — 2,z +— 3}. The same goes for facts A(1,2) and C(1,3). The
facts A(1,2) and B(2,2) are an example of two incompatible facts. +

Aside from being correct, we would also like that an OBF transmits as
little data as possible. For two OBFs f and g, we say that f is included in
g, denoted f C g, if and only if g(J) C g(J) for every instance J. We can
use this to define local optimality.

Definition 4.4. An OBF f for a conjunctive query Q is locally optimal if
and only if for every other OBF g for O, g C f implies f = g.

CHAPTER 4. OPTIMAL BROADCASTING STRATEGIES 29

In other words, this means that there exists no subdivision of f which
broadcasts only a strict subset of the facts broadcast by f. Again, we can
characterize local optimality in terms of compatible facts. We can say that f
is locally optimal is for every instance I and fact f for which f € f(I U {f}),
there exists an instance J and a fact g such that f ~o g, g ¢ I, f ¢ J and
g ¢ f(JU{g}). This holds because if there is no compatible fact g that
is not broadcast, there is no reason for us to broadcast f and thus a more
optimal OBF can be obtained.

4.2 Broadcast Dependency Set

Next, we introduce the concept of broadcast dependency sets (BDS) as a
syntactical alternative to specify the more semantical OBFs. A BDS is a set
of key-value pairs where the key is an equality type and the value is a list of
dependencies for this type. Before we can formally define a BDS however,
we need to define what these equality types are, as they are an important
aspect of the BDS formalism.

Let Q be the conjunctive query Ag < A1,..., A,. Since we only consider
full conjunctive queries without self joins, we know that each body atom is
uniquely identified by its predicate pred(A;). For a predicate R, denote by
atom(R) the unique atom A € bodyg for which pred(A) = R.

Definition 4.5. For a finite set of variables X, a partial equality type over X
is a pair of binary relations ¢ = (E, I,). We require that E,UI, C X x X,
E, is an equivalence relation, and I, is irreflexive and symmetric. When
E,Ul, =X x X, we call ¢ a complete equality type.

Intuitively, an equality type represents equalities and inequalities between
the variables in X. Furthermore we can also view each equality type as a
formula:

e=Nez=yl(@y) e EJANz#y|(x,y) €L}

We can now link these equality types to the atoms in our query.

Definition 4.6. A partial atomic type over Q is a pair 7 = (R;, @) where
R; is a predicate and ; is a partial equality type over Vars(atom(R;)). We
say 7T is a complete atomic type when @, is complete.

We provide a shorthand notation Vars(r) = Vars(atom(R;)) for the
variables over which 7 is defined, and atom(7) = atom(R.) for the atom
over which 7 is defined. For readability, we will always denote a partial
atomic type with 7 and a complete atomic type with w. Finally, we denote
by PTypes(Q) and Types(Q) respectively the set of all partial atomic types
and all complete atomic types over Q.

30 CHAPTER 4. OPTIMAL BROADCASTING STRATEGIES

Example 4.7. Consider the query Q(z,y,z) < A(z,x), B(x,y, z) and the
set of variables X = {z,y, z} and the following examples of equality types
over X:

e1 = (

N XK N < X

KON N < M

N < < W

< N M <

N MK N M

©ON N M
=

Or, in their alternative form:

prLi=rxFYANy#FzANr=z
Y= =2z

We can use these equality types to define the complete atomic type w =
(B, 1) and the partial atomic type 7 = (B, 2). +

We say that a fact f is of type 7 or satisfies 7, denoted f F 7, when
there is a valuation V¢ from the variables in atom(7) onto Adom(f) such that
Ve(atom(7)) = £ and the formula associated with the partial type evaluates to
true when each variable x; is substituted by Vg (z;). Notice that this valuation
is unique because we only consider full conjunctive queries. By type(f) we
denote the unique atomic type satisfied by f when it exists. However, type(f)
is not always defined since atomic types are defined w.r.t. a query Q. For
example, when f = R(a,b) (with a # b) and atom(R) = R(x,x), then there
isno 7 with f F 7.

We can also talk about compatibility in the context of atomic types. We
say that two partial atomic types 7, 7/ are compatible w.r.t. Q, denoted
T ~go 7', when there are two facts f and g with f E 7 and g F 7’ such that
f ~o g. Furthermore, we say that 7 implies 7/, denoted 7 E 7/, if for all facts
f, f F 7 implies f F 7/. Define Types(7) = {w € Types(Q) | w F 7} as the set
of all atomic types w that imply 7. For a set of partial atomic types T, we
define T'ypes(T') as a shorthand for | J o T'ypes(7).

Example 4.8. Recall the query and atomic types from Example 4.7. The
fact B(a,b,a) satisfies both w and 7. We can also see that w F 7. Now
define W’ = (A, z =). We can see that w ~g w’ because w F B(1,2,1) and
w F A(1,1). Furthermore, B(1,2,1) is compatible with A(1,1) due to the
valuation V' : {z — 1,y — 2,z — 1}. +

Before moving on, we mention another notational convenience. For two
sets of variables X and Y, and a partial atomic type 7, we say that X C. Y if
for every x € X either x € Y or there exists an y € Y such that (z,y) € E,..
In other words, X is a subset of Y when taking the equalities in F,_ into

CHAPTER 4. OPTIMAL BROADCASTING STRATEGIES 31

account. For example, let 7 be an atomic type with (z,y) € E, . We then

have {z,y,2} - {y,z}.
We can now define what a broadcast dependency set actually is.

Definition 4.9. A broadcast dependency set (BDS) for a conjunctive query
Q is a set S of key-value pairs (7,7T), where 7 € PTypes(Q) is a key, and
T € 2PTures(Q) ig o dependency set, such that:

1. (7’, T) € S and (7—’ T’) cS implies T = T’;
2. 7,7 € Keys(S) implies Types(t) N Types(t') = 0;
3. (1,T) € S implies Vars(t') C,» Vars(t) for every 7/ € T.

The elements of S are called dependencies.

The conditions in this definition require that every key can have at most
one value in S; every complete atomic types implies at most one of the keys in
S; and the set of variables of atom(7’) is a subset of the variables of atom(r)
when taking the equalities into account, for each 7/ € T.

Next, we explain how a BDS S represents an OBF. We identify three
cases:

e type(f) is undefined:
In this case, we keep f static because f can never participate in a
satisfying valuation, so there’s no point in broadcasting it.

o type(f) =7 and 7 ¢ Keys(S):
In this case, we always broadcast f.

o type(f) =7 and 7 € Keys(S):
Notice that the pair (7,7) € S is unique because of conditions (1) and
(2) in the definition above. Also recall that there is a valuation V¢ such
that V(atom(7)) = f. By condition (3) of the definition of a BDS, we
can also use this valuation for every atom(7’) for each 7/ € T. Indeed,
for each y € Vars(t'") \ Vars(t), we have a variable x € Vars(r) with
(z,y) € E;». So we can define the following extended valuation:

{Vf(y) if y € Vars(r)

Vf,T’(y) = .

Ve(z) ify ¢ Vars(r) and (x,y) € B

Now, we broadcast f when the local instance does not contain all facts
Vi (atom(7")) for each 77 € T and 7 ~g 7'. We call this set of
facts the dependency fact set, which we formally define as Dep(f,T) =
{Vr(atom(7")) | 7 € T and 7 ~g 7'}. Notice that if Dep(f,T) = 0,
the fact f is kept static. For convenience we will also define Dep(f,.S)
as Dep(f,T) if there is a (7,71) € S for which type(f) = 7. If not, we
consider Dep(f,S) as undefined.

32 CHAPTER 4. OPTIMAL BROADCASTING STRATEGIES

We can summarize this as follows.

Definition 4.10. For a conjunctive query @ and a BDS S for 9, S induces
an OBF fs that maps every instance J to the set fs(J) of facts f € J for
which type(f) € Types(Q) and, Dep(f,S) is is undefined or Dep(f,S) < J.

Example 4.11. Consider the query Q(z,vy, z) < A(z,y, z), B(z,y,2),C(z, 2)
and the following partial atomic types:

8 = (B, true

)7
Tfl y_(Ax_y)7
,ZZXZ_(y_Z)7

Th = (Az£2Ay#2),

)-

T;Z(B TFEZNYF 2

Using these partial types, one possible BDS for Q is S = {(7p, {7} *,74 }),

(r7 1 {TB})} We consider the following database instance to illustrate how
the induced OBF fs works:

I ={A(1,2,3), B(1,2,3), A(1,1,2), B(1,1,2),
A(1,2,2), B(1,2,2), C(3,4), C(3,3)}.

We can see that fs = {A(1,1,2), A(1,2,2), C(3,3)}. Indeed, these facts do
not match a key in § but their type is defined, so they are broadcast. The fact
C(3,4) is kept static as its type is undefined. The other four facts do match a
key in &, but their dependency fact set is contained in I. For example, the fact

f = B(1,1,2) matches 75 but Dep(f,{ry /.74 }) ={A(1,1,2)} CI. +

It is important to notice that not every valid BDS for a query Q induces
an OBF that is correct for Q. The following lemma gives syntactic conditions
for an OBF fs to be correct for a query.

Lemma 4.12. Let Q be a conjunctive query and let S be a BDS for Q. Then
fs is correct for Q if and only if there are no complete atomic types wy,ws,
and pairs (11,T1), (12, T2) € S, with w1 ~g wa, wi F 71, wa F T2 such that
w1 & Types(Ty) and wy ¢ Types(T1).

We refer to [14] for a complete and formal proof.
Similarly, we can give syntactic conditions for an OBF fs to be locally
optimal for a query.

Lemma 4.13. Let Q be a conjunctive query and let S be a BDS for Q. Then
fs is correct for Q if and only if S satisfies the following conditions:

1. for (1,T) € S and w € Types(T), w ~g T implies w E 7' for some
7' € Keys(S);

CHAPTER 4. OPTIMAL BROADCASTING STRATEGIES 33

2. for every w € Types(Q) \ Types(Keys(S)), there is a partial atomic
type 71 € Keys(S) and an wy € Types(ti) such that w ~g wi and
Vars(wy) €, Vars(w); and

3. for (m1,Th), (12, T2) € S, where w1 € Types(11), wa € Types(r2), and
w1 ~o wa, we require that wi € Types(Ty) implies wo ¢ Types(Th).

Intuitively this means the following. Condition (1) requires that every
atomic type implying a partial type in a dependency set in & must also
imply a key in S. Indeed, when an atomic type does not imply a key, every
local fact of this type is always broadcast. The atomic type can thus be
removed from every dependency set it appears in. When condition (2) is
not satisfied for an atomic type w, we can modify S to broadcast less while
preserving correctness by adding (w,{7 | 7 ~g w,T € Types(Keys(S))}).
Finally, condition (3) is the syntactic equivalent of the characterization of
local optimality for OBFs that we mentioned earlier in Section 4.1. Again,
we refer to [14] for a complete and formal proof.

4.3 Algorithm for Constructing a BDS

In this section, we provide an algorithm that was presented in [14], which can
be used to construct a BDS that induces an OBF for a conjunctive query.

The algorithm BDS-BUILD takes a conjunctive query Q and a sequence of
partial atomic types R as input. The reason a sequence is used here instead
of a set is to keep te algorithm deterministic. The algorithm proceeds as
follows. It loops over the sequence R and considers each type 7 € R as a key
for S. It then finds the set T of all keys that are already in S, and compatible
with 7. If for any of these 7/ € T, Vars(r') C,» Vars(t) doesn’t hold, then 7
won’t be added to §. However if it does hold for all of them, then we add
the key-value pair (7,7) to S.

The detailed algorithm is depicted in Algorithm 1.

Example 4.14. We demonstrate a run of the BDS-BuiLD-algorithm on
the query Q(z,y,z,w) < A(z,y,2), B(z,y,2),C(z,w). Consider the partial
atomic types (7a,true), (1, true) and (7¢,true), and let R = (74,75, 70).
Then, BDS-BUILD starts with S = () and adds (74, 0) in the first iteration.
In the second iteration, it adds (7p,{74}). Nothing is added in the last
iteration though, because Vars(ta) €,, Vars(tc). +

Correctness and local optimality The OBF induces by the BDS cre-
ated with BDS-BUILD is always correct for the given query, but only locally
optimal when the sequence R contains either exactly:

e all complete types for the query; or

34 CHAPTER 4. OPTIMAL BROADCASTING STRATEGIES

Algorithm 1 BDS-BuiLb

Input: A conjunctive query Q and a sequence of partial types R
Output: A BDS that induces an OBF for Q

1. S = @

2: for each 7 € R do

3: addPair = true

4: values = ()

5: for each 7’ € Keys(S) with 7/ ~g 7 do
6: values = values U{7'}

7 if Vars(t') €, Vars(t) then
8: addPair = false

9: end if

10: end for

11: if addPair then

12: S =S U{(r,values)}

13: end if
14: end for
15: return S

e all open types for the query. An atomic type is considered open when
is poses no restrictions. In other words, when the formula associated
with its equality type always evaluates to true.

Notice that in Example 4.14 the considered partial atomic types are ex-
actly all open types for). The BDS constructed in that example in thus
locally optimal. For other arbitrary sequences of types, the OBF is not nec-
essarily locally optimal.

Example 4.15. We give an example of a run of BDS-BUILD that creates
a BDS that is not locally optimal. Recall query @ and the partial atomic
types from Example 4.14. Now let R = (74,7¢). Then, BDS-BuILD will
create the BDS & = {(74,0)}. This is BDS is not locally optimal, as it will
always broadcast all B-facts. This is not necessary when the local instance
already contains the compatible A-facts. In contrast, the BDS created in
Example 4.14 will only broadcast a fact B(z,y, z) if the local instance does
not already contain A(z,y, z). +

Complexity The algorithm runs in exponential time in the size of Q when
using a sequence of complete types, and in polynomial time in the size of Q
when using strictly open types. This is easy to see. The outer loop iterates
over all keys in R and therefore runs |R| times. The inner loop iterates over
the number of keys already in S, which can be atmost |R| as well. Also,
each iteration of the inner loop which checks the variable containment takes

CHAPTER 4. OPTIMAL BROADCASTING STRATEGIES 35

polynomial time, since an atomic type has a size that is polynomial in the
size of Q. The algorithm thus always runs in polynomial time in the size of
R. However the number of complete atomic types is exponential in the size
of Q, resulting in an exponential running time in the size of @ when using
complete types.

Chapter 5

HyperCube

In this chapter, we take a look at some alternative ways to compute conjunc-
tive queries. We first introduce a more synchronous setting than the one used
in the previous chapters, that models computation as a sequence of rounds.
We then look at the single-round HyperCube algorithm [7, 9], which is op-
timal on skew-free inputs. Lastly, we study a multi-round algorithm based
on HyperCube which is worst-case optimal, even for skewed data [15]. As in
the previous chapter, we limit ourselves to full conjunctive queries without
self-joins.

5.1 The MPC Parallel Model

The algorithms that will be discussed in this chapter can all be modelled using
the Massively Parallel Computation model [9]. In this setting, computation
takes place on a cluster of p machines using a shared-nothing architecture.
The computation itself proceeds in rounds, each of which consists of two
distinct phases:

¢ Communication-phase: Each server sends data to and receives data
from other servers in the network.

e Computation-phase: Each server performs computations locally, on
the data that is currently present at the server.

This model makes synchronization explicit, since at the end of each round
the servers have to wait for all machines to finish their local computations
before moving on to the next round.

Initially, the input data is partitioned evenly across all p servers. That is,
if the input data consists of m tuples, each server stores m/p input tuples.
At the end of the execution, the output consists of the union of the local
outputs of the p servers.

37

38 CHAPTER 5. HYPERCUBE

An important measure of performance in this model is the maximum
load at each server. This is defined as the maximum amount of data that a
server can receive during any round. An ideal algorithm uses a single round
and distributes data evenly without replication achieving a maximum load
of m/p. Since this is rarely possible, query evaluation algorithms often need
to use more round, have an increased maximum load, or even both.

5.2 The HyperCube Algorithm

Consider the triangle query Q(z,y,z) < R(x,y),S(y, 2),T(z,x). A tradi-
tional way of computing this join would be using two rounds. The first
round would compute the join U(z,y,z) « R(z,y),S(y, z) using a parallel
hashjoin. The second round would join this intermediate relation U (z,y, 2)
with T'(z, z), again using a parallel hashjoin. The problem with this strategy
however, is that the intermediate relation U may be much larger than the
input, resulting in a very costly shuffle in between the rounds.

The single-round HyperCube algorithm [7, 9] solves this problem. We
will first demonstrate the algorithm by means of an example. Then we will
provide a generalization.

Example 5.1. Recall the triangle query Q(z, vy, z) + R(x,y),S(y,), T(z,).
The algorithm first organises the p available servers in a 3-dimensional cube
(one dimension per variable). Let’s denote the sizes of these dimensions as
Dz, Py and p.. We call these the shares. Each server now has an address de-
fined as a distinct point in P = [p,] X [py] X [pz]. Since we only have p servers
in total, we require that p, - py - p. < p. A possible choice could therefore be
Dz =Py = P2 = p/3. Next, we also define three independent hash-functions
ha, hy and h, which map values from the domain dom to [p,], [py], and [p]
respectively. During the communication phase, we subsequently send each
tuple R(a,b) to all servers that match the address (hs(a), hy(b), o) for every
a € [1,p.]. Notice that each tuple is replicated p, times. Similarly, each tuple
S(b,c) is sent to all servers that match («, hy(b), h.(c)) for every o € [1, p,]
and each tuple T'(a,c) is sent to all servers that match (hy(a), o, h;(c)) for
every a € [1,p,]. During the computation phase, each server will perform
a local computation of) on the data it has received. The correctness of
this algorithm follows from the fact that any output tuple Q(a, b, c) will be
computed on the server with address (hy(a), hy(), h-(c)), since all necessary
input facts will be sent to that server. +

We can generalize the HyperCube algorithm as follows for any full con-
junctive query:

Q(z1, ..., m) = S1(Z1), - .., Si(T).

CHAPTER 5. HYPERCUBE 39

In the remainder of this chapter we will denote by m; the number of tuples
in relation S;. The algorithm assigns to each variable x; a share p; such that
Hle p; = p. Each server is now represented by a distinct point y € P, with
P = [p1] X -+ x [pg]. In other words, the servers are mapped to points in a
k-dimensional hypercube. The algorithm makes use of k£ independent hash-
functions h; : dom — [p;] to send each tuple t of relation S;(z;,,...,z;,) to
all servers in the set:

D(t) = {y epP ’ Vj € [n] : hij(t[ij}) = Yij}'

In this expression, we use t[i;] to denote the projection of tuple ¢ onto the
variable z;;. Lastly during the computation phase, each server computes
query @ locally on the received facts.

We already mentioned in the introduction of this chapter that the Hy-
perCube algorithm is optimal over skew-free input. We can now formalize
that notion in the following sense.

Definition 5.2. Let p = (p1,...,pr) be a vector of shares. If for every
relation S; and every tuple ¢ over A C z; the frequency of ¢ in S} is at most
mj/ [1,4 Pi, we say that the input is skew-free w.r.t. p.

Consequently, Beame et al. [10] formalized the maximum load over skew-
free instances:

Proposition 5.3 ([10]). Let p = (p1,...,px) be a vector of shares for the
HyperCube algorithm. If the input is skew-free w.r.t. p, then with high prob-
ability the mazximum load per server is

~ mi;
(@] < max 7]) .
J Hi:ziESj pz

5.3 Determining HyperCube Dimensions

Notice that a different choice of shares p1,...,p;r gives a different parame-
terization of the HyperCube algorithm, which can have a big impact on the
maximum load. It is therefore crucial to choose the best shares in order to
achieve an optimal load. In particular, the load is optimal when the expected
maximum load per server is as small as possible. In this section, we will look
at two ways of choosing the shares for the HyperCube algorithm.

5.3.1 Exact Fractional Shares

The first method is to calculate the exact shares that minimize the maximal
load by means of linear programming. We can use the analysis from Proposi-
tion 5.3 to do this. The idea is to construct an optimization problem that min-
imizes the maximum load L under the constraints that L > m;/[[;.,.c s, Di
for every input relation S;. Additionally we require that [[, p; < p.

40 CHAPTER 5. HYPERCUBE

We can transform this problem into a linear program by taking the log-
arithm with base p on both sides of the constraints. Let A\ = log,L and
ei = logpp; for all i € [k]. We call e; the share exponent since p; = p®. The
linear program then takes the following form:

minimize)\

subject to Z e; <1

i€[k]
Viell: Z ei + A > logp(m;) (5.1)
:EZ'ESJ'
Vj e [k] 1e; >0
A>0
Now let e = (ey,...,ex) be the optimal solution to Equation 5.1 and

let p = (p1,...,px) with p; = p®. The HyperCube algorithm achieves an
optimal maximum load with shares p, assuming the input is skew-free w.r.t.
p-

While the shares that we calculate through this method are optimal, it
also has one big disadvantage. These optimal shares are in general fractional.
In practice however, we can only use integral shares. We could simply round
down the fractional shares to integral shares, but this approach could be
highly suboptimal as it may leave many servers unused.

Example 5.4. Again consider the triangle query Q(z,y, z) + R(z,y), S(y, 2),
T(z,z). Let mrp = mg = mp and p = 48. The lineair program in Equa-
tion 5.1 will find the shares p, = p, = p. = 3.634. Rounding this down gives
Pz = Py = P> = 3. This means that only p, - p, - p. = 27 servers will be used
by the HyperCube algorithm, leaving 21 servers unused. +

5.3.2 Estimating Optimal Integral Shares

We also investigate another approach that was first mentioned by Chu et
al [11]. This approach involves enumerating all possible integral share con-
figurations with the number of used servers less than the total number of
available servers. For each of these possible share configurations, we calcu-
late the expected maximum load (again, using Proposition 5.3). The algo-
rithm then chooses the share configuration with the lowest maximum load.
If two share configurations yield the same maximal load, we prefer the one
with more equal dimension sizes to reduce possible skew during shuffle. For
example, assume both x and y are join attributes in a relation R(x,y). We
would then prefer (p, = 2,p, = 2) over (p, = 1,py = 4). In both cases the
relation would be partitioned into 4 partitions, but in the former case this
partitioning would be based on both the values for x and y, while in the latter

CHAPTER 5. HYPERCUBE 41

case it would only be based on the value of y. The details of this algorithm
are shown in Algorithm 2.

Algorithm 2 Cost-based estimation of optimal integral shares [11]

Input: The total number of available servers p
Output: An optimal integral share configuration p
1: optimalWL = oo
2: p = null
3: for each integral share configuration p’ do

4: if workload(p’) < optimalWL then

5: optimal WL = workload(p’)

6: p=rp

7 else if workload(p’) = optimal WL and max(p’) < max(p) then
8: optimal WL = workload(p’)

9: p=rp

10: end if

11: end for

12: return p

5.4 Multi-Round Algorithm Based on HyperCube

Aside from the single-round HyperCube algorithm, we also study a multi-
round algorithm based on HyperCube, which is worst-case optimal [15]. This
means that the algorithm achieves the minimal expected maximum load while
placing no restrictions on the input, which thus may have skew. In this
text, we only focus on the algorithm for a specific subclass of conjunctive
queries. The concepts needed to identify this subclass are introduced in
Sections 5.4.1 and 5.4.2. We then describe some building blocks for the
algorithm in Sections 5.4.3 and 5.4.4. The algorithm itself is discussed in
Section 5.4.5.

5.4.1 Simple Connected Queries

We focus on a subset of conjunctive queries called simple and connected
queries. We first define what it means for a query to be simple.

Definition 5.5. A conjunctive query Q is called simple if:
(i) Q has only binary atoms; and

(ii) there are no distinct atoms R,S € atoms(Q) for which Vars(R) C
Vars(S).

42 CHAPTER 5. HYPERCUBE

Notice that these are exactly the conjunctive queries whose query graph
is a simple graph (hence the name). Next, we define connectedness for con-
junctive queries.

Definition 5.6. A conjunctive query is called connected when its query
graph is connected, meaning that for every pair of variables =,y € Vars(Q)
there is a sequence of atoms Si, ..., S, such that x € Vars(Sy), y € Vars(S,)
and for every i € [1,n — 1] : Vars(S;) N Vars(Siy1) # 0.

To conclude this section, we also introduce the concept of residual queries.
Let Q be a conjunctive query. For a set of variables X C Vars(Q), we define
the residual query Q[X] as the query obtained by removing the variables in
X from Q and adjusting the arities of the relations accordingly.

Example 5.7. Consider the following queries:

Qi(z,y,z,w) < R(z,y),S(y, 2),T(z,w),U(y,w)
Q2(z,y,z,w) < R(x,y),S(y,2),T(z,w),U(z,2).

Notice that @7 is both simple and connected. On the other hand, ()5 is not
simple because of the atom U(z,z). However, it is connected. The query
graph is depicted in Figure 5.1 for reference. Now let X = {y,z}. The
residual query Q1[X] takes the form:

Q1(z,w) + R(z),S(), T(w),U(w).

+
U
x z x z
S S
R T R T
U
Y w Y w
(a) The query graph of Q1. (b) The query graph of Qs.

Figure 5.1: The query graphs from Example 5.7.

5.4.2 Tight Fractional Edge Packings

Next, we introduce the notion of fractional edge packings.

CHAPTER 5. HYPERCUBE 43

Definition 5.8. Let Q be a conjunctive query and f : atoms(Q) — R* be
a mapping from the atoms of Q to non-negative weights. We say that f is a
fractional edge packing if

Z f(a) <1, for every z € Vars(Q) (5.2)

a:x€ Vars(a)
where a is over atoms(Q).

Moreover, we call f tight if the inequality in Equation 5.2 is an equality.
For the multi-round algorithm we only consider queries that have a tight
fractional edge packing.

Example 5.9. Reconsider query @) from Example 5.7. There exists a
tight fractional edge packing for this query, namely f = {R — 1,5 —
0,7 = 1,U — 0}. It is easy to see that } .. cyynq f(a) = 1 for every
z € {x,y, z,w}. +

5.4.3 Semi-join Decompositions

In the context of distributed query evaluation, it is often possible to reduce
relations using semi-joins. Doing so can dramatically decrease the amount of
data that needs to be shuffled over the network. For this purpose, we take a
look at semi-join decompositions.

Definition 5.10. Let Q be a query. A semi-join decomposition for Q is
a minimal subset of atoms V C atoms(Q) such that every atom a ¢ V is
contained in some atom b € V, more precisely Vars(a) C Vars(b).

Given a semi-join decomposition V for a query Q, the reduced query Q,,
is defined as the query consisting of all atoms in V. If S is an atom in V, we
will denote its corresponding occurence in Q,, by SV. A semi-join reduction
then consists of a set of |V| queries of the form

Sv(z) « S(&), Ri(71),. - ., Ri(a%)

where S is an atom in V and R; are all atoms with z; C Z.
Using this concept, we can easily compute a query Q in two steps:

1. Compute the semi-join reduction to obtain the reduced relations SV.

2. Compute the reduced query Q,, on these reduced relations.

This may seem pointless, especially since the reduced query of a simple query
Q is always Q itself. However, this method will come in handy later when
computing residual queries, which are not necessarily simple.

An easy way of obtaining a semi-join decomposition is by iteratively re-
moving body atoms from Q whose variables are contained in other atoms.
The remaining atoms form a semi-join decomposition for Q. This semi-join
decomposition is not necessarily unique, but one always exists.

44 CHAPTER 5. HYPERCUBE

Example 5.11. Consider the query Q(z,y,z) < R(z,y),S(y,2),T(y). A
semi-join decomposition V for @ is the set {R(z,y),S(y,2)}. The semi-join
reduction then consists of the following queries:

RY(z,y) < R(z,y),T(y)
S¥(y,2) < S(y,2), T(y).

The reduced query @,, takes the form:

Qy(z,y,2) < RY(z,9), 5 (y,2).

5.4.4 Heavy-Hitter Configurations

The last building block we need for the algorithm is the notion of heavy-hitter
configurations. Heavy hitters are values whose frequency in a relation is much
higher than other values. Heavy-hitter configurations give us a mechanism to
partition relations based on these heavy hitters. Before we continue though,
we introduce some notation to talk about the value frequencies.

Consider a query Q, a value ¢ € dom and a variable z € Vars(Q). We
denote by freqg(c,z) the frequency of the value ¢ in the column of rela-
tion S that corresponds with the position of variable x in the atom a with
pred(a) = S. Furthermore, by freq(c, x) we denote the maximal frequency
over all relations where z is incident to in Q. More specifically, this means
that freq(c, z) = maxg{freqr(c, z)}, where R is over all relations incident to
variable x in Q.

We can now turn our attention to the heavy-hitter configurations itself.

Definition 5.12. A heavy-hitter configuration ¥ for a query Q is pair (H,)
where H is a subset of the variables in Q and ¢ € [0, 1] a threshold value
separating heavy from light values.

Given a heavy-hitter configuration ¥ = (H,¢) and an instance I, a value
c is called light for variable x if freq(c,) < m/p°, where m is the number of
tuples in the largest relation in I. Otherwise, we call ¢ heavy. This definition
is relation independent, so a variable x that occurs in k£ distinct atoms may
have up to k - p® heavy hitters.

Further, we denote by I|y the subset of I containing all facts that are com-
patible with W. For an atom S(z1,...,z) in Q, we call a fact S(cy,...,cx)
compatible with W if for all variables x; and their corresponding values ¢;:
freq(cs, z;) > m/p® if x; € H and freq(c;, z;) < m/p’ if x; ¢ H.

Example 5.13. Let p = 4, and consider the query Q(z, vy, 2) + R(x,y),S(y, z)
over instance

I ={R(a,d),R(b,d), R(c,e),S(d,a), S(e,b),S(c,d)}.

CHAPTER 5. HYPERCUBE 45

Let § = 1/2 be our threshold value. We know that m = 3, so we have m/p? =
3/2. We can thus distinguish the following heavy-hitter configurations:

I({y}vé) = {R<a7 d)? R(b7 d)a S(da a)}v
1(0,5) = {R(C7 6), S(ea b)7 5(67 d)}

For all other H C Vars(Q) we have I(f 5 = (). +

Lastly, we introduce notation to specify subinstances where certain val-
ues are fixed. Let Q be a query, I an instance and X C Vars(Q). Also
let t = (c1,...,¢n) be a sequence of values from dom where each value
corresponds to one variable in X = {z1,...,2,}. We denote by I|¢ x the
subinstance of I consisting of tuples that are compatible with the values in t
for their corresponding variables in X. More specifically, I|¢ x consists of all
relations R!ltX defined as follows: if R(y1,...,ys) is an atom in the query,
then RIeX = {R(dy,...,dy) € I |Vay,y; :yi = x; = di = ¢;}.

Example 5.14. Recall the instance I from Example 5.13. We can express
the subinstance of I with value ¢ on the position of variable x as follows:

I|co ={R(c,e),S(d,a),S(e,b),S(c,d)}.

5.4.5 Multi-Round Algorithm

We can now finally discuss the algorithm itself [15]. As said before, this
algorithm only works on a subset of the conjunctive queries. We quickly
recap the conditions that we place on a query in order for this algorithm to
work correctly. Let Q be a query. We require that:

(i) Q is simple and connected;
(ii) Q has a tight fractional edge packing; and
(iii) heavy-hitter configurations do no generate isolated variables.

For conditions (i) and (ii) we refer to Sections 5.4.1 and 5.4.2. Condition
(iii) implies that for every heavy-hitter configuration ¥ = (H, d), the reduced
query Q,, of the semi-join decomposition of Q[H] is also simple.

For simplicity, we further assume that all heavy hitters are known by all
servers. If this is not the case, they can be computed and broadcast to all
servers in one additional round.

The main idea of the algorithm is as follows. We consider all heavy-
hitter configurations W = (H,d) where H ranges over all subsets of the
heavy variables in our query while using 6 = 1/|Vars(Q)|. We then com-
pute Q in parallel over all the U-compatible subinstances using a specialized

46 CHAPTER 5. HYPERCUBE

algorithm depending on H. The output of our query on an instance I is
then exactly the union of the computations on these subinstances: Q(I) =
Urcvarso) QU |(m1,6))- For convenience, we denote L = Vars(Q) \ H =
| Vars(Q[H i)] We identify the following four cases:

All variables are light:

In this case H = (). The subinstance I|y then consists of all light tuples. The
algorithm simply computes Q on I|y using the regular HyperCube algorithm
using a dimension size of p/Ves(Ql for every variable.

All variables are heavy:

In this case H = Vars(Q). The subinstance [|y is very small since there are
only a limited number of heavy values. More specifically, |I|¢| < O(p). The
algorithm can therefore send all those facts to a single server and compute
Q locally on I|y there.

Exactly one variable is light:

In this case |L| = 1. Let’s denote this single light variable by x. We split
the subinstance I|y in I|y, and I|y, where ¥; = (H,2/| Vars(Q)|) and ¥y =
(H U {x},2/|Vars(Q)|). Notice that I|y = I|g, U I|w,, because all heavy
hitters remain heavy under the new threshold. We now compute Q(I|y,)
and Q(I|y,) in parallel over all servers. For Q(I|y,), we use the HyperCube
algorithm with dimension size p for variable x, and 1 for all other variables.
For Q(I|y,), we just proceed as in the previous case since all values are heavy.

At least two variables are light:

In this case |L| > 2. For convenience, denote J = I|y. The idea behind this
case is as follows. The number of values for the heavy-hitter variables are
by definition limited. This means that for each of these heavy-hitter tuples
h, we can compute Q on the h-compatible subinstances in parallel using a
fraction of the available p servers. More specifically,

Q(J) = U Q(J|n,m)
h

where h ranges over all heavy hitter tuples. We can allocate p’ = c¢ -
plE/1Vars(Q)l servers to each heavy hitter tuple h, where ¢ = 1/d(Q)/¥!. By
d(Q) we denote the degree of the query graph.

It remains to show how to compute Q(J|n,) using these p’ servers for
any heavy hitter tuple h. Consider an atom R(z,y) in Q. When x and y are
both heavy, we can view R(z,y) as a boolean value which we can broadcast
to all servers. If just z is heavy, R becomes a unary relation R(y). Similarly,
if y is heavy, R becomes the unary relation R(z). To compute Q(J|n x)

CHAPTER 5. HYPERCUBE 47

it now suffices to compute the residual query Q[H]|, which can be done as
follows:

1. Let V be a semi-join decomposition for Q[H]. Compute the semi-join
reductions for V. This can be done in two rounds because each atom
in Q[H] has arity at most two.

2. Compute the reduced query Q, of Q[H] on the semi-join reductions
computed in the previous step using the HyperCube algorithm. Since
all values in the semi-join reductions are light, we can use a dimension
size of p!/IVars(QUHDI for every variable.

Chapter 6

Implementation

In this chapter, we discuss our implementation of the algorithms described
in Chapter 5. We first introduce Apache Spark, on top of which our im-
plementation was made. We then discuss the implementation details more
thoroughly.

6.1 Apache Spark

As a basis for the implementation of our system, we chose to use Apache
Spark [2]. There are several reasons for this choice. Its flexibility makes it
easy to build new platforms on top of it. Furthermore, it has the ability to
cache intermediate data in memory for later use, which is specifically useful
for multi-round algorithms. These arguments also attracted a great deal of
interest from the community. Over the past few years, Spark’s popularity
grew immensely while it emerged as the next generation big data processing
engine. It improves over the traditional Hadoop system in several areas.
First of all, it is much faster because of its extensive support for in-memory
computing. Moreover, it is very easy to use due to its powerful APIs that
are available in different programming languages. Lastly, it can be used for a
variety of workloads including machine learning, data stream processing and
graph processing. In this section, we discuss some of the core concepts of
Spark that are needed to understand how it can be used as a basis for the
implemented algorithms.

6.1.1 Architecture

At a high level, Spark uses a master/slave architecture with one central co-
ordinating node and many distributed workers nodes. This coordinator is
called the driver. It communicates with the so-called ezecutors that are run-
ning on the worker nodes. The driver and executors together form the Spark
application. A Spark application can be launched on a cluster of compute

49

50 CHAPTER 6. IMPLEMENTATION

nodes using a cluster manager. Spark is packaged with a built-in standalone
cluster manager. However, it also supports the use of Hadoop’s YARN cluster
manager as well as Apache Mesos. A schematic overview of the architecture
of a Spark cluster is shown in Figure 6.1.

Worker Node

Executor | cache

3
Driver Program /—-; Task Task
SparkContext » Cluster Manager
—‘é \ Worker Node
\\ Executor | Cache
Task Task

Figure 6.1: A schematic overview of the Spark cluster architecture. [2]

Driver Program

The driver program contains and runs the user’s main function. It is also
responsible for creating a SparkContext object that provides access to Spark.
Furthermore, it defines distributed datasets on the cluster and initializes
parallel operations on these datasets. Once the driver program terminates,
the application is finished.

During its runtime, the driver program has two main duties. The first one
is to convert the user program in to separate tasks. It accomplishes this as
follows. Fach Spark application has a common high-level structure: it con-
structs distributed datasets from some input and then performs operations
on these datasets to derive new datasets or collect and save data. These
operations implicitly form a directed acyclic graph (DAG). The driver con-
verts this logical graph into a physical execution plan. This allows Spark to
perform some optimizations, such as pipelining several map operations and
combining them into one. The physical execution plan ultimately consists of
a set of stages, which in turn consist of multiple tasks. These tasks can be
packaged and are sent to the executors.

The second duty of the driver is to schedule these tasks on executors.
When an executor is started, it registers itself with the driver. The driver
thus has a complete view of the application’s executors at all times. Given a
physical execution plan it will look at the current situation of the executors
and try to schedule each task in an appropriate location based on the data

CHAPTER 6. IMPLEMENTATION 51

on which the task operates. A task also has the possibility to cache data for
later use, so the driver also keeps an overview of the cached data which it
uses to schedule future tasks that access the same data.

Executors

Spark executors are the processes responsible for running the individual tasks
in a Spark application. They are launched at the start of the application and
typically last for its entire duration. However, it is also possible that they fail
during execution. In that case, the Spark application will just continue to
run and the driver will reschedule the tasks of the failed executor if necessary.

Their responsibility is twofold. As mentioned already, they run the tasks
that make up an application and can return results to the driver program.
Secondly, they provide in-memory storage for the distributed datasets that
are cached by the user. The fact that this data is cached directly in the
executors is particularly convenient because this means that tasks can run
right alongside the data that they use.

Cluster Manager

Now that we have discussed the driver program and the executors, you may
be wondering how they are initially launched and managed during the ap-
plication lifetime. This is the responsibility of the cluster manager. Spark
ships with a built-in standalone cluster manager that makes it very easy
to setup a Spark environment on a set of machines, without the need of a
dedicated cluster manager. The cluster manager is however a pluggable com-
ponent of Spark, which allows it to run on different external managers such
as YARN and Mesos. This is particularly useful when you want to make
use of other components from the Hadoop ecosystem, like the distributed
filesystem HDF'S.

6.1.2 Resilient Distributed Datasets

We already vaguely mentioned the use of distributed datasets. In this section,
we will clarify how Spark handles these. The core data abstraction in Spark
are the resilient distributed datasets (RDDs) [18]. An RDD in Spark is
simply an immutable distributed collection of objects. Each RDD is split
into a number of partitions, which may be computed on different nodes of
the cluster.

Spark provides two ways to create RDDs. The first way is to load an
external dataset from file, using the textFile () method of the SparkContext
object:

JavaRDD<String> lines = sc.textFile("path/to/my/file.txt");

52 CHAPTER 6. IMPLEMENTATION

This is obviously the most common way to create RDDs for processing
massive datasets. However, it is also possible to create an RDD from an
already existing collection of objects in the driver program. For this you can
make use of the parallelize() method of the SparkContext object:
JavaRDD<String> lines = parallelize(Arrays.asList(

"hello", "world"));

Once an RDD has been created, it supports two kinds of operations:
transformations and actions. Transformations are operations that transform
an RDD into a new RDD (recall that RDDs are immutable). Examples of
transformations are map and filter operations. Actions on the other hand
are operations that return a result to the driver program or write it to storage.
An example of an action is the count operation.

It is important to understand which type of operation you are performing,
because Spark treats transformations and actions very differently. Transfor-
mations are computed lazily only when the resulting RDD is used in an
action. This means that when we call a transformation on an RDD (for
example, a map operation) it is not executed immediately. Instead, Spark
records that this operation has been requested in the DAG structure that we
already mentioned in the previous section. Spark uses this lazy evaluation
mechanism to reduce the number of passes that need to be made over the
data by grouping operations together.

It is also worth mentioning that RDDs have explicit support for key/value
pairs, which are a common data type required for many operations in Spark.

For completeness, we provide a list of the most common operations that
are used on RDDs. Table 6.1 shows the most common transformations for
regular RDDs, while Table 6.2 shows those specifically for use with key/value
RDDs. Similarly, Table 6.3 shows the most common actions for regular
RDDs, while Table 6.4 shows the most common actions for key /value RDDs.

6.2 Implementation Details

The goal of our implementation is to experimentally verify the performance
of the algorithms from Chapter 5. We therefore implemented the HyperCube
algorithm as well as the multi-round algorithm in Apache Spark. Addition-
ally, we implemented a naive approach as a baseline to compare the other
algorithms to. In this naive approach, we evaluate the joins in a traditional
way, using one round per join.

In addition to these different shuffle algorithms, we also implemented two
different local join algorithms to study their impact on performance when
combined with the various shuffle algorithms.

CHAPTER 6.

IMPLEMENTATION 53

Transformation Name

Description

map (func)

Apply a function the each element in the RDD
and return an RDD of the result.

flatMap (func) Apply a function the each element in the RDD
and return an RDD of the contents of the it-
erators returned. Often used to convert lines
into a set of words.

filter (func) Return an RDD consisting of only elements
that pass a certain condition.

distinct() Remove duplicates from an RDD.

union() Return an RDD containing elements from two
other RDDs.

intersection() Return an RDD containing only elements
found in two other RDDs.

subtract () Remove the contents of one RDD from an-

other.

Table 6.1: A list of common transformations on regular RDDs.

Transformation Name | Description

reduceByKey (func) Combine values with the same key using a
given reduce function.

groupyKey () Group values with the same key

mapValues (func) Apply a function to each value of a pair with-
out changing the key

keys () Return an RDD consisting of just the keys.

values() Return an RDD consisting of just the values.

Table 6.2: A list of common transformations on key/value RDDs.

Action Name Description

collect() Return all elements in the RDD to the driver program.

count () Return the number of elements in the RDD.

countByValue() | Return the number of times each element occurs in the
RDD.

foreach (func) Apply a given function for each element in the RDD.

Table 6.3: A list of common actions on regular RDDs.

Action Name

Description

countByKey ()

Count the number of element for each key.

collectAsMap ()

Collect the result to the driver program as a map for
easy lookup.

Table 6.4: A list of common actions on key/value RDDs.

54 CHAPTER 6. IMPLEMENTATION

6.2.1 I/0O

Our implementation takes a file as input. The first thing that is specified
in this file are the input relations. The user lists the relation names, the
relation arities and the locations on the file system where the associated data
is stored. Each of these relations take up one line in the input file. A double
line break separates these relation definitions from the actual queries that
should be computed. A user can specify multiple queries separated by line
breaks. Each query consists of a head atom and a comma-separated list of
body atoms. The head and body are separated by :-. Listing 6.1 shows an
example of an input file for the program.

R, 2, input/R.txt
S, 2, input/S.txt
T, 2, input/T.txt

Q(x,y,z) :- R(x,y), S(y,z), T(z,x)

Listing 6.1: Example of an input file for the program.

6.2.2 Shuffle Algorithms

The main shuffle logic is contained in the QueryEngine. This is an abstract
class with three concrete implementations: NaiveEngine, HyperCubeEngine
and MultiRoundEngine. Each of these have an execute () method that takes
a Query object representing the query it should evaluate. This way of working
makes it possible to easily extend the system with other shuffle algorithms if
needed.

Naive

The NaiveEngine starts by loading the relation corresponding to the first
two body atoms of the query into an RDD. These are the two relations that
will be joined first. Next, it performs a map operation on this RDD to trans-
form it in a key/value RDD. For each tuple, we take the value of the join
attribute as the key, and the complete tuple as the value. This key/value
RDD subsequently gets repartitioned so that all pairs with the same key end
up at the same server. Ultimately, the values will be extracted from this
key/value RDD and a local join algorithm will be applied on the data re-
ceived at each server, yielding an RDD of intermediate results. Which local
algorithm is used depends on the configuration. We refer to Section 6.2.3 for
more information regarding the available algorithms. For each of the remain-
ing body atoms in the query, the NaiveEngine will load in the corresponding
relation and merge it with the intermediate RDD and repeat the process of
mapping, repartitioning and performing the local join. Once all body atoms

CHAPTER 6. IMPLEMENTATION 95

have been processed the intermediate result is also the final query result,
which is written to file again.

This approach is very naive in the sense that it only considers the left-
deep join tree. It is very well possible that using another order to process
the join yields far better performance. In practice, query engines often use
some sort of cost model to estimate the most efficient join order.

HyperCube

The HyperCubeEngine first calculates the HyperCube dimensions that will
be used according to one of the algorithms described in Section 5.3. It then
loads all input data in one large RDD, which once again gets transformed into
a key /value RDD by using a map operation. In contrast to the naive approach
however, every tuple can now be mapped to more than one key /value pair. As
a key we now choose every point in the hypercube representing the address of
the server where a tuple should be sent to. We still use the complete tuple as
the value. The independent hash-functions that we use to determine the keys
are instances of the Murmur3 hashfunction from the Google Guava library!,
each with a different seed value. After the map operation, the key/value RDD
gets repartitioned based on the keys, so that all tuples with the same key end
up at the same server. Once that’s done, the tuples will be extracted from
the key/value RDD and the local join algorithm will be applied to compute
the query. The result of this computation is already the final query result,
since the HyperCube algorithm arranges the tuples in such a way that all
tuples that can participate in a satisfying valuation together will be placed
at the same server.

Multi-round

Since the multi-round algorithm assumes that all heavy hitters are knows to
all servers beforehand, the MultiRoundEngine starts by loading all input re-
lations in RDDs and determining the heavy hitters. This is done by mapping
each tuple to its individual values and then performing a countByValue ()
action. Each of these counts is subsequently compared to the threshold.
All values that exceed the threshold are retained and broadcasted across all
servers.

Once this preprocessing phase is finished, a list of all possible heavy-hitter
configurations is generated and each of these configurations are processed sep-
arately. For the heavy-hitter configurations that are processed using a special
case of the HyperCube algorithm (i.e. those with no light variables and at
most one light variable), the algorithm is executed in a similar way as in the
HyperCubeEngine. The case with at least two light hitters requires a little
more attention. First, the number of servers that should be allocated to
each heavy-hitter tuple is determined. Subsequently, all heavy-hitter tuples

"https://github. com/google/guava

https://github.com/google/guava

56 CHAPTER 6. IMPLEMENTATION

are processed in parallel. For each heavy-hitter tuple the compatible subin-
stances are created using filter () operations. The semi-join reduction of
the residual query is then executed on these subinstances. Lastly, the Hy-
perCube algorithm is applied to compute the residual query result. We then
compute the cross product with the heavy-hitters that satisfy the query to
obtain the actual output for the original query. This output is then written
to disk.

6.2.3 Local Join Algorithms

The shuffle algorithms above only deliver the data to the right servers. After
that, the servers still need to compute the query locally on the fragment
of data that is available to them. To do this, we implemented two local
join algorithms: the classic binary hash-join [12] and the multiway leapfrog
trie-join [17].

Hash-join

The first local join algorithm that we implemented is a binary hash-join which
proceeds as follows. First, it creates a hash-table of the smaller input relation,
where the keys of the hash-table are the values of the join attribute. Once
this hash-table is built, we scan the larger relation. For each tuple we look
up the value of the join attribute in the hash-table to find possible matching
tuples from the smaller relation. Each matching tuple is then joined and the
resulting tuple is placed in the output.

Leapfrog Trie-join

The second local join algorithm is the leapfrog trie-join which is a multiway
join algorithm. This means that it can be used to join more than two relations
at once. In the case of conjunctive queries, it essentially enumerates all
satisfying assignment for the body atoms.

The main building block of the leapfrog trie-join is a variant of sort-merge
join called the leapfrog join, which is capable of simultaneously joining mul-
tiple unary relations. For the purpose of this discussion, we assume that
these relations consist of only natural numbers. However in practice, these
relations can be over any ordered domain. These unary relations are repre-
sented in sorted order by lineair iterators (one for each relation) exposing the
following interface:

CHAPTER 6. IMPLEMENTATION o7

int key() Returns the key at the current iterator position.

next () Move iterator to the next key.

seek(int seekKey) Positions the iterator at a least upper bound for
seekKey. That is, the least key > seekKey. If
no such key exists, the iterator should be moved
to the end.

bool atEnd() Returns true when the iterator is at the end of
the relation.

To achieve optimal complexity, the key() and atEnd() methods are re-
quired to take O(1) time, and the next () and seek() met hods are required
to take O(log N) time where N is the size of the relation.

The leapfrog join is itself implemented as an instance of the linear iterator
interface. The algorithm uses an array of pointers to iterators, one for each
relation. The join tracks the smallest and largest keys at which iterators
are positioned, and repeatedly moves the iterator at the smallest key to a
least upper bound for the largest key, until all iterators are positioned at the
same key. This is called leapfrogging, hence the name of the join. Figure 6.2
illustrates this process. We refer to [17] for a more detailed description of the
algorithm, including pseudo-code.

seek(2) seek(8) seek(10)
A 0 1 3 4 5 6 7 8 9 11
seek(3) seek(8) H seek(11)
B 0 2 6 7 8 9 +o00o
seck(6) H
T et

C 2 4 5 8 10

AnNnBNC 8

Figure 6.2: An example of a leapfrog join of three relations A, B and C'. Initially,
the iterators are positioned at the smallest key in the relation. The iterator for A
performs seek(2) because of the key of the iterator for C, landing it at 3. The
iterator for B then performs seek(3), landing at 6. This process continues until all
iterators are at the same key, namely 8, which belongs to the output of the join. [17]

To accommodate for relations of arity > 1, we need to extend the linear it-
erator interface. We can do this by presenting relations such as R(x1,...,zk)
as tries with each tuple (aj,...,a;) € R corresponding to a unique path in
the trie from the root to a leaf. An example of this can be seen in Figure 6.3.
We do not need to store the relation as a trie though. It suffices to store
the relation in a tree-like search structure and presenting the data itself via a
trie iterator interface. This interface provides the same methods as the linear
iterator interface presented above, as well as the following two new methods:

58 CHAPTER 6. IMPLEMENTATION

open() Proceed to the first key at the next depth.
up O Return to the parent key at the previous depth.

Both these methods are required to take O(log N) time. For our imple-
mentation, we used the TreeSet data structure that is built into Java (which
is based on red-black trees internally) to store our relations and provide the
trie iterator methods within the required complexity bounds.

Rz, y) R

3 5

4 6 3 4

1 s NI\
A) 4 5 6 8 9

Figure 6.3: An example of a binary relation R(z,y) represented as a trie.

It now remains to be shown how the leapfrog trie-join algorithm can be
implemented based on the unary leapfrog join and the trie iterator interface.
At initialization, the leapfrog trie-join is provided with a trie iterator for each
relation of the join. It constructs an array of leapfrog join instances, one for
each variable. The leapfrog join for a variable x is then given an array of
pointers to trie iterators, one for each atom in which = appears. For example,
in the join of relations R(z,y), S(y,z) and T'(z,), the leapfrog join for y is
given pointers to the trie iterators for R and S. Notice that there is only one
instance of the trie iterator for R, which is shared by the leapfrog joins for x
and y.

The leapfrog joins use the linear iterator portion of the trie iterator in-
terfaces, while the open() and up() trie navigation methods are used only
by the trie-join algorithm itself. The algorithm also uses a variable depth
to track the current variable for which an assignment is being sought. This
variable is initially set to —1 to indicate the trie-join is positioned at the root
the trie.

The trie-join itself is implemented as an instance of the trie-iterator inter-
face. The linear iterator portions of the trie iterator interface (namely key (),
atEnd (), next (), and seek()) are delegated to the leapfrog join for the cur-
rent variable. The implementation of the open() method increases the depth
variable and calls the open() method of all trie iterators in the leapfrog join
at the current depth. It also calls the initialization method of the leapfrog
join at the current depth. The implementation of the up() method simply
calls the up() method of all trie iterators in the leapfrog join at the current
depth and then decreases the depth variable again. Again, we refer to [17]

CHAPTER 6. IMPLEMENTATION 99

for pseudo-code.

The trie-join algorithm is parameterized by the order in which a satisfy-
ing assignment is being sought for the variables. Choosing a good variable
ordering is crucial for performance in practice. However, implementing an
optimizer to choose a variable ordering is out of the scope of this thesis.
Therefore we have choosen to always use the order in which the variables
appear in the query.

6.3 Usage

The easiest way to launch the program is by using the spark-submit utility
included with your Spark installation:

./spark-submit --master $master_url \
--class hyperspark.Main hyperspark.jar \
--input input/query.txt \
--output output \
--servers 54

Aside from specifying the URL of the master node in your Spark cluster
and the main class of our implementation, it is also required to provide an
input file, an output directory and the level of parallelism. This is done by
using the —-input, --output and --servers flags.

There are also a number of other flags to run the program with the de-
sired configuration settings. A complete overview of all possible flag is shown
below.

--help, -h Show usage information.

--engine, -e Specifies the query engine to be used: naive, hypercube
(default) or multiround.

--join, -j Specifies the join algorithm that will be used locally:
hashjoin or triejoin (default).

--shares, -s Specifies the algorithm used to compute the HyperCube
shares when the HyperCube engine is used: rounddown
or optimal (default).

—--input, -i File containing the query and input files.

--output, -o Path where the output will be stored.

--servers, -p Number of servers used for execution.

Chapter 7

Experiments

In this chapter, we discuss the experimental validation of our implementation.
Part of these experiments are based on the experiments conducted by Chu et
al. [11]. We first list the objectives of our experiments. Then we describe our
experimental setup. Lastly, we discuss the results of the different experiments
in more detail.

7.1 Objectives

Before proceeding with the actual experiments, it is important to list the
insights we wish to obtain. We will try to find an answer to the following
questions.

1. Does using a cost model (see Section 5.3.2) to estimate the maximum
load to find the ideal dimensions for the HyperCube algorithm lead to
better performance than when rounding down the optimal fractional
shares?

2. How does the HyperCube algorithm compare to a naive pairwise eval-
uation of the joins?

3. What impact does the use of a leapfrog trie-join have as a local join
algorithm during HyperCube as opposed to a standard hash join?

4. How does the multi-round worst-case optimal algorithm (see Section 5.4.5)

compare to the standard HyperCube algorithm when applied on in-
stances with different levels of skew?

In addition to these objectives, we will also compare our findings with
those formulated by Chu et al. [11] where approriate.

61

62 CHAPTER 7. EXPERIMENTS

7.2 Setup

The experiments were conducted on the infrastructure of the Flemish Su-
percomputer Center (VSC). We have used the compute nodes featuring two
10-core “Ivy Bridge” Xeon E5-2680v2 CPUs (2.8 GHz, 25 MB level 3 cache)
with 64 GB of RAM. The nodes are linked to a QDR Infiniband network.
All nodes have a small local disk (mostly for swapping and the OS image)
and are connected to shared filesystem for main storage.

Because of Spark’s architecture and ability to perform one task per CPU
core, we identify each core as a server in the context of the algorithms de-
scribed in Chapter 5. For example, when using 3 20-core compute nodes, we
will say that p = 60, even though there are only 3 physical machines.

We used Spark 2.0.2 in standalone mode. The specific Spark configuration
settings used for the experiments can be found in Table 7.1.

Setting Name Value
spark.executor.cores 6
spark.executor.extraJavaOptions -XX:4+UseG1GC
spark.local.dir $TMPDIR
spark.files.fetchTimeout 1800
spark.network.timeout 1800
spark.worker.timeout 30000
spark.rpc.retry.wait 30000
spark.storage.blockManagerHeartBeatMs | 30000

Table 7.1: Spark configuration settings used for the experiments.

7.3 Experiment 1: Determining HyperCube Shares

The goal of this first experiment is to determine how the methods for ob-
taining HyperCube dimensions that we described in Section 5.3 behave and
compare to each other.

Queries & Input
For this experiment, we used the following queries and input relations.

e TRIANGLE-QUERY:

Q(x,y,2) « R(x,y),5(y, 2), T(z, x)

The first query is the well-known triangle query. For the input relations
R, S and T we use three different instances of a Twitter dataset [5]
representing a follower-followee relationship. Each of these relations
contain 5,940,253 tuples.

CHAPTER 7. EXPERIMENTS 63

e CLIQUE-QUERY:
Qz,y,z,w) < R(z,y),S(y,2), T(z,w),U(w,z),V(z,2), W(y,w)

The second query is similar the TRIANGLE-QUERY, but searches for 4-
cliques instead of triangles. This requires significantly more joins. For
the input relations, we use six instances of the same Twitter relation
used for the TRIANGLE-QUERY.

e GUARDED-QUERY:
Q(title, user, score) < R(title, user, score), P(user), A(title)

The third query is a guarded query. The guard relation R contains
12,940,720 tuples about movie ratings. The guarded relations are much
smaller, leading to a fairly small output. Relation P contains 99,333
tuples representing premium users, while relation A contains 2,997 tu-
ples representing action movies. The query thus computes all tuples of
premium users rating an action movie. The data used for this query is
based on the MovieLens dataset [3].

The TRIANGLE-QUERY and CLIQUE-QUERY were also used by Chu et al. [11].
However, we used a slightly different dataset that is 5 times larger.

Results

We computed the queries above using both methods to obtain HyperCube
shares on 50, 60 and 70 servers. The leapfrog trie-join was used as local
join algorithm for all tests. The wallclock times of these computations can
be found in Figure 7.1a, 7.1b and 7.1c respectively. These timings include
evaluating the query and writing the result to discuss. They do not include
the initial data distribution. Initially, the data is distributed randomly but
evenly across the available servers.

For the TRIANGLE-QUERY, we can observe an increase in performance
upto 26.2% for cluster sizes 50 and 60 using the cost-based approach. This
can be attributed to the fact that the round-down approach uses only 27 of
the available servers, whereas the other approach uses nearly double. For a
cluster size of 70, both approaches derive the same HyperCube shares leading
to similar performance.

For the CLIQUE-QUERY, we see a similar performance of the round-down
approach across all three cluster sizes that were tested. This is because the
HyperCube shares get rounded down to the same numbers. When looking
at the cost-based approach, we see that its performance increases as the
cluster size grows showing a better usage of available resources. For all cluster
sizes, we can see improvements of 13.6%, 14.1% and 20.6% respectively in
comparison with the round-down approach.

CHAPTER 7. EXPERIMENTS

400
[Round Down
350¢ Cost-Based
300} 1
0
g 250} 234 i
= 201
£ 200} 1
9]
S
= 150} .
©
=
100} .
59
sof o 4 1
17 16
TRIANGLE CLIQUE GUARDED
(a) p=50
400
[Round Down
3501 Cost-Based
300} .
0
g 250r 220 l
E
< 200} 190 |
3
= 150} .
©
=
100} .
61
50F [45 |
18 16
0
TRIANGLE CLIQUE GUARDED
(b) p=60
400
[Round Down
3501 Cost-Based
300} .
0
o 250} 228 .
£
'_
~ 200} 181 ,
18]
S
= 150} .
(©
=
100} .
50| 43 43 4
15 14
.
TRIANGLE CLIQUE GUARDED
(c) p=10

Figure 7.1: Visual representation of the results of Experiment 1.

CHAPTER 7. EXPERIMENTS 65

For the GUARDED-QUERY, we observe that both approaches reach a very
similar performance. That is because they both assign all servers to a single
variable, meaning that all servers are used in both cases. That single variable
is different for both approaches though. The round-down approach assigns
all servers to the variable score, meaning that relations P and A are both
broadcasted. The cost-based approach on the other hand assigns all servers
to the variable user, meaning that only the relation A is broadcasted. This
leads to a small increase of performance over the round-down approach.

Table 7.2 shows a summary of the percentual increases in performance
when using the cost-based approach rather than the round-down approach.

Lastly, it is worth discussing the efficiency of calculating the shares using
the cost-based approach. For all tests that we performed, the algorithm
was able to compute the best integral shares in less than a couple hundred
milliseconds. This makes the algorithm also very practical.

Conclusion

We can conclude that the performance of the cost-based approach is better
than that of the round-down approach in most cases, with an average perfor-
mance gain of 13.2% over all our experiments. The exact gain in performance
is of course dependent of the number of available servers and the number of
variables in the query.

p=50|p=60 | p=70

TRIANGLE-QUERY | 20.3% | 26.2% 0%
CLIQUE-QUERY 14.1% | 13.6% | 20.6%

GUARDED-QUERY 5.8% 11.1% 6.6%

Table 7.2: Summary of percentual increases in performance when using the cost-
based approach rather than the round-down approach.

7.4 Experiment 2: Skew-free Data

With this second experiment, we compare the HyperCube algorithm with
the naive pairwise evaluation of the joins. We also analyse what impact on
performance the leapfrog trie-join has as a local join algorithm instead of a
standard hash-join.

Queries & Input
For this experiment, we used the same queries and input relations as for the
previous experiment in Section 7.3.

Results
For this experiment, we ran all queries using 54 servers. For the runs of

66 CHAPTER 7. EXPERIMENTS

the HyperCube algorithm, we used the cost-based approach to determine the
HyperCube dimensions. Additionally, all the input relations that were used
are skew-free.

Figure 7.2 shows the results for the TRIANGLE-QUERY. The first obser-
vation we can make is that using the HyperCube algorithm leads to a huge
increase in performance, taking less than half the wallclock time of the naive
shuffle algorithm. The main reason for this is that it avoids the costly shuffle
of the huge intermediate result of joining R with S. This can be seen in
Figure 7.2b. The HyperCube implementation shuffles a total of around 71
million tuples, while the naive implementation shuffles nearly four times as
many tuples, at 274 million. We can also make an interesting observation
regarding the local join algorithms. When using the HyperCube algorithm,
the leapfrog trie-join is more performant than the hash-join. On the other
hand, the hash-join is more efficient when using the naive shuffle algorithm.
Both join algorithms have their disadvantages. The leapfrog trie-join needs
to sort the input data, while the hash-join algorithm still generates a signifi-
cant amount of intermediate results locally. The amount of data that needs
to be sorted is rather high when using the naive shuffle algorithm for the
TRIANGLE-QUERY. It seems that the cost of this sorting phase outweighs the
amount of intermediate tuples that are generated locally by the hash-join,
leading to a better performance for the hash-join algorithm. In the case of
the HyperCube algorithm however, the amount of data that requires sorting
is much smaller resulting in a better performance of the leapfrog trie-join.

2001} Hash-join _ 400} [0 Hash-join]
Leapfrog trie-join 350 Leapfrog trie-join
- _
c
@ 150 140 2 300F 274 274 .
v 128 = ,
~ 250 .
- g
E, 100} § 200}]
= °
© 2 150 1
= 59 E
50} 46 & 100} N .
50 ' .
0 - 0 -
Naive HyperCube Naive HyperCube
(a) Wallclock Time (b) Number of shuffled tuples

Figure 7.2: Visual representation of the results of Experiment 2 on the TRIANGLE-
QUERY.

The results for the CLIQUE-QUERY, shown in Figure 7.3, seem to con-
firm our conclusions from the TRIANGLE-QUERY. It is an exaggerated case of
the TRIANGLE-QUERY in the sense that it generates even more intermediate

CHAPTER 7. EXPERIMENTS 67

results. In fact it generates so many intermediate tuples that both runs of
our naive implementation ran out of memory. So did the run of HyperCube
with the hash-join algorithm. However, this is because our hash-join imple-
mentation materializes all intermediate results. It is worth mentioning that
an alternative implementation of the hash-join that pipelines multiple joins
would not suffer from these memory issues. This experiment underlines the
strength of the HyperCube algorithm for queries that have large intermediate
join results.

Hash-join 400+ Hash-join 1
250} T .
Leapfrog trie-join 3501 Leapfrog trie-join | |
m
5 200 S 300
o £
E ~ 250 1
150} K
3 § 200}]
= °
T 100} 2 150 1
= 5
& 1001 1
50 F
50 E
0 FAIL _FAIL FAIL 0 FAIL _FAIL FAIL
Naive HyperCube Naive HyperCube
(a) Wallclock Time (b) Number of shuffled tuples

Figure 7.3: Visual representation of the results of Experiment 2 on the CLIQUE-
QUERY.

The GUARDED-QUERY, whose results can be found in Figure 7.4, is very
different from the TRIANGLE-QUERY and CLIQUE-QUERY because it does not
generate a lot of intermediate results. In fact, every join reduces the amount
of data in the pipeline. This is due to the fact that the GUARDED-QUERY is
guarded. The number of tuples in an intermediate join result can therefore
never exceed the size of the guard relation. A consequence of this can be seen
in Figure 7.4b. The number of tuples that have to be shuffled with the naive
implementation is still slightly more than with the HyperCube implemen-
tation, but the difference isn’t so significant as with the other two queries.
This also translates to very similar timings for the two implementations, as
seen in Figure 7.4a. We can conclude that there is no real advantage in not
having to compute the intermediate results explicitly, as long as these results
are fairly small. We can also see that for both the naive and HyperCube
implementations the hash-join algorithm outperforms the leapfrog trie-join.
The reason for this is most likely also the lack of large intermediate results.
Subsequently there’s not much advantage in using a multiway join algorithm
instead of a tree of binary hash-joins. Moreover, the leapfrog trie-join still

68 CHAPTER 7. EXPERIMENTS

has the overhead of sorting.

60 F
771 Hash-join 71 Hash-join
50} Leapfrog trie-join |4 sol Leapfrog trie-join | |
m
s
w40t | 2
Y Z 40f
£ -
|_
x 30 b %_ 30}
o [23 23
% 20} 19 18 — E 20
= 15 5
12 s 13 13
10 1 10
0 , 0 .
Naive HyperCube Naive HyperCube
(a) Wallclock Time (b) Number of shuffled tuples

Figure 7.4: Visual representation of the results of Experiment 2 on the GUARDED-
QUERY.

Conclusion

We can conclude that the HyperCube implementation clearly outperforms
the naive implementation for queries with large intermediate join results.
However, there’s no real gain in performance in case the size of the inter-
mediate results is the same order of magnitude as the size of the input. A
multiway join algorithm like the leapfrog trie-join helps to enhance the per-
formance of the HyperCube algorithm in the former case, but should not be
used in the latter case where it will only impact performance in a negative
way.

These conclusions are similar to those formulated by Chu et al. [11], who
also observed the advantage of using the HyperCube algorithm to shuffle
data for queries that generate large intermediate results. Furthermore, they
also observed faster runtimes when using a traditional shufle algorithm for
queries that have smaller intermediate results.

7.5 Experiment 3: Skewed Data

In this last experiment, we concentrate on skewed input data. More specif-
ically, we compare the performance of HyperCube algorithm and the multi-
round algorithm when applied on skewed instances.

CHAPTER 7. EXPERIMENTS 69

Queries & Input
All relations in this experiment are based on the Twitter dataset [5] that we
also used in the previous experiments. However, we modified this dataset to
introduce skew. To do this, we looped over the original, skew-free dataset and
replaced each value with a heavy-hitter value with a predefined probability p.
Doing so, we could control the number of heavy-hitters that were introduced,
as well as the percentage of tuples in the dataset that actually contain these
heavy-hitter values. We used this process to introduce different levels of skew,
which are described below.

As for the actual query that we used, we reconsider the TRIANGLE-QUERY
that was also used in the other experiments:

Q(x,y,2) « R(x,y),5(y, 2), T(z, x)

However, we ran this query using six different levels of skew.

Level | Description

S1 Only skew in relation R. We introduced 1 heavy-hitter
for the first attribute that occurs in 50% of the tuples,
resulting in 1 heavy-hitter in total.

S2 Skew in all relations. We introduced 1 heavy-hitter for
the first attribute of each relation where the heavy-hitter
occurs in 50% of the tuples, resulting in 3 heavy-hitters
in total.

S3 Skew in all relations. We introduced 1 heavy-hitter for
the first attribute of each relation where the heavy-hitter
occurs in 70% of the tuples, resulting in 3 heavy-hitters
in total.

sS4 Skew in all relations. We introduced 1 heavy-hitter for
the first attribute of each relation, where the heavy-hitter
occurs in 90% of the tuples, resulting in 3 heavy-hitters
in total.

S5 Skew in all relations. We introduced 1 heavy-hitter for
each of the attributes of each relation, where each heavy-
hitter occurs in 50% of the tuples, resulting in 6 heavy-
hitters in total.

S6 Skew in all relations. We introduced 2 heavy-hitters for
the first attribute of each relation, where each heavy-hitter
occurs in 40% of the tuples, resulting in 6 heavy-hitters
in total.

Results
Before we dive into the actual results, it is important to make a remark

70 CHAPTER 7. EXPERIMENTS

regarding the multi-round implementation. The algorithm assumes that all
servers know the heavy-hitters beforehand. Since this is not the case in our
experiments, our implementation determines the heavy-hitters in an extra
preprocessing round. This preprocessing step is not included in the timings
for this experiment. Furthermore, we used 54 servers for all queries in this
experiment.

The result for the TRIANGLE-QUERY are shown in Figure 7.5. When look-
ing at the results for skew level S1, we see a small increase in performance for
the multi-round implementation in comparison with the standard HyperCube
implementation when using the hash-join algorithm locally. However, when
using the leapfrog trie-join this increase is non-existent. Moreover, when look-
ing at the naive implementation we see that the leapfrog trie-join performs
much better than the hash-join. Therefore, it seems that the leapfrog trie-
join is the preferred choice as local join algorithm when working with skewed
instances. The results for the other skew levels confirm this conclusion. The
use of the multi-round algorithm on the other hand does not really provide
an advantage over the HyperCube algorithm. Next, we look at the results for
skew levels S2, S3 and S4. For skew level S2, we see that the multi-round im-
plementation performs slightly worse than the HyperCube implementation.
However, we do see a clear increase in performance when using the multi-
round implementation as opposed to the the HyperCube implementation for
skew levels S3 and S4, which have more skew. This seems to indicate that
there needs to be a significant amount of skew in order for the multi-round
algorithm to have a positive effect. Lastly, we consider the results for skew
levels S5 and S6, which have more heavy-hitter values than the other skew
levels. We see that the multi-round implementation performs significantly
worse than the standard HyperCube implementation. Upon further investi-
gation, it was clear that the case that handles the heavy-hitter configurations
with at least two light-hitters forms the bottleneck here. The reason for this
is that this step heavily relies on the computation of subinstances. This
requires multiple applications of Spark’s filter () transformation, which in
turn requires multiple passes over the same data. The time taken by handling
this case exploded when increasing the number of heavy-hitter values from 3
to 6. Another thing that stood out was that there was a lot more variation
in the timing between multiple runs of the multi-round implementation. A
possible explanation for this is the higher number of tasks that are generated
by Spark, and the final running running time is of course dependent on how
the cluster manager schedules all these tasks.

Conclusion

In conclusion, we can say that the multi-round implementation performs bet-
ter than the standard HyperCube implementation on skewed instances only
when a few conditions are satisfied. Firstly, the skew should be significant

CHAPTER 7. EXPERIMENTS

71

200 [0 Hash-join J
Leapfrog trie-join
w150 136 |
[
£
'_
X~
g 100} E
= 75
©
= 61 60
5ol 48 I 48 |
0 - -
Naive HyperCube Multi-Round
(a) Results for skew level S1.
2001 [Hash-join -
Leapfrog trie-join
— 147
w150+ i
Q
£
'_
X~
8 100} 1
=
©
= 62 64
o 52
sor 36 35
0 - -
Naive HyperCube Multi-Round
(c) Results for skew level 83.
350
77 Hash-join
300} Leapfrog trie-join |1
_. 2501 |
L
o 196 201
€ 200} .
'_
g 154
2150} |
]
o
= 100} 1
69 68
1 li _
0 - -
Naive HyperCube Multi-Round

(e) Results for skew level S5.

200 [Hash-join .
Leapfrog trie-join
=150} ,
2 129
1]
£
'_
E 100} 1
o
g
55 57 54 53
I I 48 I |
0 - -
Naive HyperCube Multi-Round
(b) Results for skew level 82.
[0 Hash-join
250 N
Leapfrog trie-join
- 200t :
> 168
£
F 150} :
Y4
1%
o
o
r_;n 100 |- i
64 68
54
50 41 39
0 - -
Naive HyperCube Multi-Round
(d) Results for skew level 34.
400} [0 Hash-join]
Leapfrog trie-join
350| prrog]
@ 3001 278 ,
1]
£ 250} :
'_
4
£ 200} 192 |
2 141
S 150} ,
=
100 - E
60 53
sol 51 |
Naive HyperCube Multi-Round

(f) Results for skew level S6.

Figure 7.5: Visual representation of the results of Experiment 3 on the TRIANGLE-

QUERY.

72 CHAPTER 7. EXPERIMENTS

enough. If not, the increase in performance does not outweigh the over-
head of the multi-round algorithm. Secondly, there should not be too many
heavy-hitter values. Furthermore, we can conclude that the leapfrog trie-join
algorithm works very well in combination with skewed input instances.

Bear in mind that these results should only be viewed in the context
of our Spark implementation. It is very well possible that an alternative
implementation would yield better results, even in cases with a higher number
of heavy-hitters. For example, consider the repeated application of the filter
operator to split an instance into several subinstances. This kind of splitting
behaviour could be implemented in its own operator that does not rely on
other high-level operators in the framework. This way the operator could be
optimized to only loop over the data once, instead of once for every created
subinstance. Something similar has been done in the Myria [4] system, which
has a built-in operator for the HyperCube shuffle.

Chapter 8

Conclusion

In this thesis, we studied the theoretical concept of coordination-freeness
and took a closer look at efficient ways to evaluate conjunctive queries in
a parallel fashion. More specifically, we focussed on the CALM-conjecture
and a formalization thereof based on the computational model of relational
transducer networks. We subsequently proposed an alternative definition of
coordination-freeness and showed that it is equivalent to the definition origi-
nally proposed by Ameloot et al [8]. To conclude our study of coordination-
freeness, we also proposed a possible variation of the transducer networks
model in which the order of sent messages is preserved.

However, because the computation strategies used in this theoretical
study mostly rely on broadcasting all data, we turned our attention to more
economical computation strategies. On one hand we considered more opti-
mal broadcasting strategies, expressed using OBF's that satisfy a semantical
optimality property, which broadcast no more data than strictly necessary in
order to correctly compute the query. To construct these OBFs, we studied
the concept of broadcast dependency sets which are a syntactical alternative
to OBFs. This allowed for the introduction of a simple algorithm that can be
used to construct an optimal broadcasting strategy for a given query. On the
other hand, we studied the single-round HyperCube algorithm which is op-
timal for skew-free input instances, as well as a multi-round algorithm based
on HyperCube which is worst-case optimal even for skewed input instances.
We made an implementation of these algorithms on top of Apache Spark to
experimentally verify them. Additionally, we implemented a naive algorithm
for conjunctive query evaluation to use as a baseline throughout the exper-
iments, as well as two join algorithms that are used locally by each server
during the computation. More specifically, we wanted to find out the best
way to calculate which dimensions to use in the HyperCube algorithm and
how the performance of the algorithms compare to each other in practice. We
also wanted to find out how the local join algorithms that were used affected
this performance. Our experiments showed that the HyperCube algorithms

73

74 CHAPTER 8. CONCLUSION

performs really well on skew-free instances for queries with large intermediate
join results. Furthermore, the multi-round algorithm outperforms the Hyper-
Cube algorithm on skewed instances on condition that the skew is significant
enough and that there are not too many heavy-hitter values. However, the
bad performance of queries with more heavy-hitter values seems to be caused
by how we used Spark’s API to split the data in different subinstances.

This inefficiency gives rise to some possible future research. For instance,
it would be very interesting to see the performance of an implementation
that does not rely on the higher level abstractions provided by the Spark
API. This would allow for a more fine-tuned implementation of the different
steps in the multi-round algorithm, possibly leading to better performance
regardless of the number of heavy-hitter values. Furthermore, it might be
interesting to extend the implementation of the multi-round algorithm to
also include queries with non-tight edge packings as described in the original
paper [15].

Bibliography

[1] Apache Hadoop. http://hadoop.apache.org. Accessed: 2017-05-15.
[2] Apache Spark. http://spark.apache.org. Accessed: 2017-04-04.

[3] Movielens Data Set. https://grouplens.org/datasets/movielens/.
Accessed: 2017-03-24.

[4] Myria. http://myria.cs.washington.edu. Accessed: 2017-05-10.

[6] Twitter Data Set. https://an.kaist.ac.kr/traces/WWW2010.html.
Accessed: 2017-01-22.

[6] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[7] Foto N. Afrati and Jeffrey D. Ullman. Optimizing multiway joins in a
map-reduce environment. [EEE Trans. Knowl. Data Eng., 23(9):1282—
1298, 2011.

[8] Tom J. Ameloot, Frank Neven, and Jan Van den Bussche. Relational
transducers for declarative networking. J. ACM, 60(2):15:1-15:38, 2013.

[9] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication
steps for parallel query processing. In Proceedings of the 32nd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS 2013, New York, NY, USA - June 22 - 27, 2013, pages
273-284, 2013.

[10] Paul Beame, Paraschos Koutris, and Dan Suciu. Skew in parallel query
processing. CoRR, abs/1401.1872, 2014.

[11] Shumo Chu, Magdalena Balazinska, and Dan Suciu. From theory to
practice: Efficient join query evaluation in a parallel database system.
In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, Melbourne, Victoria, Australia, May 31 - June 4,
2015, pages 63-78, 2015.

75

http://hadoop.apache.org
http://spark.apache.org
https://grouplens.org/datasets/movielens/
http://myria.cs.washington.edu
https://an.kaist.ac.kr/traces/WWW2010.html

76

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom.
Database systems - the complete book (international edition). Pearson
Education, 2002.

Joseph M. Hellerstein. The declarative imperative: experiences and
conjectures in distributed logic. SIGMOD Record, 39(1):5-19, 2010.

Bas Ketsman and Frank Neven. Optimal broadcasting strategies for
conjunctive queries over distributed data. In 18th International Con-
ference on Database Theory, ICDT 2015, March 23-27, 2015, Brussels,
Belgium, pages 291-307, 2015.

Bas Ketsman and Dan Suciu. A worst-case optimal multi-round al-
gorithm for parallel computation of conjunctive queries. Accepted for
publication at PODS, 2017.

Douglas Laney. The importance of ‘big data’: A defini-
tion. https://www.gartner.com/doc/2057415 /importance-big-data-
definition, 2012. Accessed: 2017-05-15.

Todd L. Veldhuizen. Leapfrog triejoin: a worst-case optimal join algo-
rithm. CoRR, abs/1210.0481, 2012.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and
Ton Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Implementation, NSDI
2012, San Jose, CA, USA, April 25-27, 2012, pages 1528, 2012.

	Abstract
	Acknowledgements
	Dutch Summary
	Contents
	List of Figures
	List of Tables
	Introduction
	Big Data and Its Challenges
	Goals and Contributions
	Thesis Outline

	Preliminaries
	Relational Database Model
	Conjunctive Queries
	Datalog

	Coordination-Freeness
	Relational Transducers
	Relational Transducer Networks
	Operational Semantics
	Fairness

	Computing Queries
	Input & Output
	Consistency
	Network-Independence
	Expressiveness

	The CALM-conjecture
	Coordination-freeness: Alternative Definition
	In-order Message Delivery
	In-order Semantics and Obliviousness

	Optimal Broadcasting Strategies
	Oblivious Broadcasting Functions
	Broadcast Dependency Set
	Algorithm for Constructing a BDS

	HyperCube
	The MPC Parallel Model
	The HyperCube Algorithm
	Determining HyperCube Dimensions
	Exact Fractional Shares
	Estimating Optimal Integral Shares

	Multi-Round Algorithm Based on HyperCube
	Simple Connected Queries
	Tight Fractional Edge Packings
	Semi-join Decompositions
	Heavy-Hitter Configurations
	Multi-Round Algorithm

	Implementation
	Apache Spark
	Architecture
	Resilient Distributed Datasets

	Implementation Details
	I/O
	Shuffle Algorithms
	Local Join Algorithms

	Usage

	Experiments
	Objectives
	Setup
	Experiment 1: Determining HyperCube Shares
	Experiment 2: Skew-free Data
	Experiment 3: Skewed Data

	Conclusion
	Bibliography

