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ABSTRACT

The origin of stylized facts, being empirical features found in a
wide range of financial markets, remains largely unknown. This
thesis investigates four of them, regarding price log-returns: fat-
tailed distributions, aggregational Gaussianity, absence of auto-
correlation and volatility clustering.

First, the presence of these stylized facts is looked for in prices
of a wide range of goods in the real world. Secondly, these mar-
kets are compared to those of the video game EVE Online. Fi-
nally, an agent-based model (ABM) is constructed based on the
dynamics of EVE’s economy, and its price behavior is examined.

Stylized facts are found in the prices of many real goods, but
remain absent in others. The same conclusion holds for the vir-
tual world of EVE. The ABM also shows signs of the stylized
facts, under the condition that a degree of randomness is added
to its implementation.
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ABSTRACT (NEDERLANDS)

In financiéle markten zijn een aantal empirische vaststellingen in
zulke mate prevalent dat ze als “gestyleerde feiten” beschouwd
worden. De redenen voor hun aanwezigheid zijn nog groten-
deels onbekend. Deze thesis onderzoekt vier van deze feiten die
betrekking hebben tot prijsverschillen: het relatief vaker voorkomen
van extreme waarden, aggregationele Gaussianiteit, afwezigheid
van autocorrelaties, en geclusterde volatiliteit.

Als eerste wordt de prevalentie van deze gestyleerde feiten
onderzocht in de prijzen van een diverse groep goederen in de
echte wereld. Vervolgens worden deze vergeleken met de mark-
ten van de video game EVE Online. Tenslotte word een agent-
based model (ABM) geconstrueerd, en de markten ervan wor-
den op dezelfde manier verkend.

De gestyleerde feiten blijken aanwezig in de prijzen van veel
van de goederen in de echte wereld, maar blijven afwezig in een
beperkt aantal. Hetzelfde resultaat werd gevonden voor de goed-
eren van de virtuele wereld. Het ABM toont ook tekens van de
gestyleerde feiten, maar enkel indien er voldoende willekeurigheid
aan het ABM werd toegevoegd.
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PREFACE

What exactly is physics? If the reader’s view is that it only re-
lates to the study of matter, energy and force, then it will be
difficult for it to encompass the subject of this thesis. However,
placed in the larger framework of science, physics can be seen
as the way of thought that provides us with methods to explain
how the universe behaves. Patterns arising in various aspects of
our lives are examined: early thermodynamics studied the be-
havior of gases in an attempt to increase the efficiency of steam
engines, geophysics investigates the dynamics of plate tectonics,
and modern chemical physicists look into the quantum mechan-
ical behavior of chemical reactions. Yet, why should we limit the
study of these patterns to the realm of the inanimate? Is a cell,
the smallest building block of all known life, not subject to the
same basic laws of physics that govern a rock? If the answer is
yes, then could physics not stand to learn from the complex be-
havior that arises in it? Biophysics does precisely this: it seeks
to find the physical underpinnings of biomolecular phenomena.
It does this on all scales: from cells to large lifeforms and popu-
lations. Which brings us to the interdisciplinary subject at hand:
econophysics. Groups of humans interact which each other, not
unlike particles in a fluid, to form a complex system in which
regularities can be found. From the interconnectedness between
individual agents, collective behavior emerges. Econophysics ap-
proaches these economic systems from a physicist’s viewpoint,
and investigates its underlying mechanisms with a bottom-up
approach.

The interdisciplinary aspect of this thesis is part of its appeal,
but also presents additional challenges. An understanding of
all relevant fields is required, and agent-based modeling in eco-
nomics is itself so broad that it will be impossible to present
a full summary of available research. I will thus have to limit
myself to what I believe is essential for giving my model and
the subsequent results a proper context. The exclusion of any
specific subject by no means signifies that its impact on econo-
physics was less pronounced- only that I thought it not manda-
tory for building a minimal framework of understanding.

In chapter 1, I attempt to familiarize the reader with concepts
and terms used in economics, and give a brief review of its his-
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tory of modeling. In chapters 2 and 3, so-called stylized facts are
investigated in real-world markets, and the market of an online
video game: EVE Online. In chapter 4, I present an agent-based
model inspired by EVE Online, and examine to what extent it
replicates these stylized facts.
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INTRODUCTION

1.1 AN OVERVIEW OF ECONOMICS

In a world with limited supplies, the management of goods is a
fundamental aspect of life. Humans are subject to this as much
as ants that collect leaves to use as manure for underground
fungi farms, or chimpanzees that trade sex for food. An econ-
omy, in its broadest sense, encompasses all practices, discourses,
and material expressions associated with the production, use
and management of resources.

For humans, these economies are contextualized by a larger
framework of culture, education, history, social organization, po-
litical structure, legal systems, and so on. Many forms of eco-
nomic systems appeared throughout human history; some ex-
amples of this are the inter-band bartering of nomadic hunter-
gatherer groups, the need for management of food supplies in
emerging agricultural-based settlements, and nation-focused mer-
cantilism during the Renaissance.

As societies advanced, goods like salt and cattle proved to be
less cumbersome methods of exchange than those in general bar-
tering. From this, the concept of money evolved: anything gen-
erally accepted as either a medium of exchange, a measure of
value, or a means of payment.

Nowadays, the most common form of economy that moves
both money and physical goods around is the market economy. In
such a system, decisions regarding investment, production and
distribution are, under varying degrees of regulation by local
governments, based on the interplay between supply and demand.
The theory of supply and demand assumes people want to allo-
cate their resources in the most efficient way possible. It states
that if the price of a good goes up, the demand for that good
will go down as less people can/want to afford it, yet its supply
will go up as potential profits increase. In markets where the
participants are free to compete against each other, the price of
goods and services will then settle at a point where the quantity
demanded (at the current price) will equal the quantity supplied
(at the current price).
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The crucial part of this theory lies in the assumed competition
of self-interested market participants. As described by Adam
Smith in The Wealth Of Nations (1776), a baker bakes bread out of
self-interest, to earn enough money to feed his family and pur-
chase the goods he wants as effectively as possible. The baker is
still halted in raising the price of bread by the following loss of
consumers to competing bakers on the market, and so a price
equilibrium will be reached. In this way, as if by some invisible
hand of the market, competing individuals in a market economy
will, through self-interested behavior, take part in serving the
needs of society as a whole.

In modern capitalist societies, trade is not limited to physical
assets (e.g. bread), but includes financial assets. An example of
such a financial asset is a stock. Stocks represents a financial in-
vestment in a company, and gives the owner of it (the shareholder)
part ownership of that company. These stocks are traded on mar-
ket types known as financial markets for prices that, like physical
assets, are assumed to reflect the law of supply and demand.

All these parts form the foundation of current economies. Eco-
nomics, then, is the field of science that deals with their theories,
and with the behavior and interaction of agents in them. An in-
teresting modern discussion regarding economic theory lies in
the random vs. non-random nature of prices. Traced back as far
as Regnault (1863) and more recently Kendall [KH53], it was
noted that stock prices appeared to follow a random walk (Fig.
1). A random walk is one in which future steps or directions can-
not be predicted on the basis of past actions. Applied to the stock
market, it would mean that short-run changes in stock prices
cannot be predicted. I will introduce the discussion through two
books: A Random Walk Down Wall Street and a A Non-Random
Walk Down Wall Street.

1. Burton Malkiel’s A Random Walk Down Wall Street (1973)

In 1965, Samuelson [Sam65] postulated that in a market
that is informationally efficient-i.e. one where prices incor-
porate all available information— prices change randomly.
This paradoxically-sounding statement assumes that indi-
vidual agents seek to increase their profit at all times by ex-
ploiting patterns in prices. If the price of a good is higher
than average, the agents will sell. If it is lower, they will
buy. In doing so, they change the price patterns: selling
lowers the price, and buying increases the price. In other
words, the market equalizes, and the information about
the patterns that agents possess becomes reflected in the
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Figure 1: A comparison of the price of of the Nikkei stock market in-
dex on the Tokyo Stock Exchange (top) and a random walk
(bottom).

market prices. If this incorporation of information happens
instantly, then prices can be assumed to reflect all avail-
able information at all times. What causes price changes
then? Only external factors remain, and as these are unpre-
dictable and numerous, they are best modeled as random
processes. As a result, the faster the market absorbs infor-
mation through agent actions, the more efficient the market,
and the more random its prices will appear. Fama [Fam+69;
Fam7o] worked in a similar direction as Samuelson and
postulated the Efficient-Market Hypothesis (EMH).

Malkiel’s 1973 book A Random Walk Down Wall Street [Mal73]
gives a summary of this side of the discussion. According
to the EMH or similar theories, the stock market adjusts so
quickly and perfectly to new information that any person
buying at current prices can do just as well as professionals.
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If random walk theory were “taken to its logical extreme,
it means that a blindfolded monkey throwing darts at a
newspaper’s financial pages could select a portfolio that
would do just as well as one carefully selected by experts”
[Mal73]. Malkiel didn’t deny that price charts seemed to
display some non-random patterns, but argued that after
correcting for long-term inflation stock charts would be in-
distinguishable from a random walk.

. Andrew Lo & Craig MacKinlay’s A Non-Random Walk Down

Wall Street (1999)

The implied unpredictability of the market by the EMH
sparked much debate. Countering Malkiel, Lo & MacKin-
lay published a collection of research papers arguing for
a degree of predictability to financial markets as A Non-
Random Walk Down Wall Street in 1999 [LMgg]. Evidence
against the EMH was found in so-called anomalies— empiri-
cal results that are inconsistent with maintained theories of
asset-pricing behavior. Some of these anomalies, as listed
by William Schzert [Schoz], are

a) The size effect [Banyo; alis], a tendency of smaller
companies to outperform larger ones. A possible ex-
planation lies in different growth opportunities.

b) The weekend effect [Fre8o], a tendency of stock re-
turns on Mondays to often be significantly lower than
those of the previous working day. A possible expla-
nation is that companies are more likely to release bad
news on Fridays.

c) The value effect [Bas77], a tendency of companies with
high earnings-to-price ratios (E/P, relating share per
earnings to share price) to have positive abnormal re-
turns over the long term. A possible explanation is a
general over-appreciation of growth stocks (low E/P
ratio) over value stocks (high E/P ratio).

Schzert mentioned that many of the well-known anomalies
in the financial literature do not hold up in different sam-
ple periods [Schoz]. The size effect and the value effect, and
to a lesser extent the weekend effect, seem to have some-
what disappeared after the papers that highlighted them
were published. This could suggest that these anomalies
were only statistical fluctuations, or that traders exploiting
the anomalies caused them to disappear. These explana-



1.2 EARLY EXAMPLES OF ECONOMIC MODELING

tions are in favor of the EMH; a further discussion can be
found in [Malo3s].

There is no current consensus on the validity of the EMH. How-
ever, much of the opposition does not attack the randomness of
markets, but merely the explanation the EMH gives for it. Voit
[Voio1] called a random walk property of prices “the standard
model of finance”, and prices are assumed to follow a geomet-
ric Brownian motion in the central tool for pricing options: the
Black-Scholes-Merton (BSM) model [BS73; Mer73].

With the EMH I conclude the overview of modern economics.
In the next sections, I will introduce the research on economic
systems, followed by a description of modeling in econophysics.
Finally, the value of research on video games is discussed.

1.2 EARLY EXAMPLES OF ECONOMIC MOD-
ELING

1.2.1 Lorenz, Gini, and representations of inequality

Throughout history, inequality has been present in the manage-
ment and allocation of goods, and distributions of income and
wealth have been studied. In 1905, Lorenz [Loros] criticized some
of the methods to represent changing income distributions. These
methods would only take either changes in income or changes
in population into account. He proposed a graphical representa-
tion where the cumulative percent of the population from richest
to poorest is plotted against the total income held by these per-
centages. Lorenz’ original image can be seen in Fig 2. On such a
Lorenz curve, a perfectly equal society will show up as a straight
line, as each increment in population fraction gives an equally
large increment in income. Increasing inequality will present it-
self as a Lorenz curve that deviates from this line. For wealth
distributions, similar curves can be constructed.

Although Lorenz curves allow one to visually represent in-
come distributions, they give no direct metric to discriminate be-
tween them. Working on numerical representations of inequality,
Gini proposed several measures between 1908 and 1914. A sum-
mary of his efforts can be found in [CV12]. They culminated in
the measure that is named after him: the Gini coéfficient, or sim-
ply the Gini. If A is the area between the line of equality and a

5
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Figure 2: Lorenz’ original depiction of a Lorenz curve, taken from
[Loros]. Modern Lorenz curves commonly their axes re-
versed.

Lorenz curve (see Fig. 3), and A + B is the total area under the
line of equality, then the Gini coéfficient is defined as:

A
A+B

Gini coéfficients lie between zero (perfect equality) and one
(all income gained by one person). As with Lorenz curves, the

Gini is often calculated from wealth distributions and used to
represent wealth inequality.

(1)

Gini =

1.2.2 Pareto and Pareto distributions

In 1897, Pareto [Parg6] noted some recurring features in the dis-
tributions of income. For many populations, plotting the loga-
rithm of the number of incomes above a level, or P(x), against
the logarithm of that income level x produce a straight line. Such
a distribution P(x) is known as a complimentary cumulative distri-
bution function (CCDF):

P(x) = /xoo p(x')dx’. (2)
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Figure 3: Graphical calculation of the Gini, with the red line indicating
a sample Lorenz curve. The Gini is then calculated according
to Eq. 1.

CCDFs are closely related to Lorenz curves L. If the cumulative
distribution function F(x) = 1 — P(x) with F~! its inverse, then
the Lorenz curve L(x) can be written as

_ Jo FH(u)du
fol F-1(u)du

A distribution that shows up as a straight line on log-log scales
is known as a power-law (or in specific cases Pareto distribution)
with coefficient a, and can be written as In p(x) = -alnx + ¢, or

p(x) = Cx™" 4)

with C = e and x > o.

Pareto noticed power-law behavior not in income distribu-
tions, but in their CCDFE. An interesting property of power-laws
can however be highlighted here: for a power-law distribution,
the CCDF is a power-law with coefficient o« — 1:

L(x) (3)

P(x) _ C/xoo ¥ ~4dy! = w_ijlx(txl). (5)



INTRODUCTION

Pareto’s observations suggested a power-law with & =2.5, over
its entire range (a strong Pareto distribution). He argued that the
income distribution curve “varies very little in space and time;
different peoples and different eras yield very similar curves.
There is a remarkable stability in the form of this curve” [Paro6].
Later findings (such as those by Gibrat, see next section) sug-
gested that the power-law did not apply to the entire income
distribution, but only the tail (a weak Pareto distribution).

The discovery of power-law behavior had lasting impact on
other fields, including physics. Power-laws are e.g. closely re-
lated to scale invariance, a concept important in phase transi-
tions: scaling the argument x in Eq. 4 only causes a proportion-
ate scaling of Eq. 4

flax) = C(ax)™* o f(x). (6)
An excellent discussion of the many interesting mathematical

properties of power laws can be found in a review by Newman
[Newos].

1.2.3 Gibrat’s log-normal distribution

In 1931, Gibrat [Gib31] suggested that Pareto’s power-law in-
come distributions only holds for the richer tail. He reached this
conclusion by modeling income I(t) at time f as an accumulation
of random multiplicative changes (1 + €;) (the law of proportion-
ate effect):

I(t) =1(0)(14+e€1)(1+ €2)...(1 + &), (7)

recognizable as a Markov chain model. If the time period is
small, €; can be assumed small, and approximating In(1 +¢) ~ ¢
for small t, Eq. 7 can be rewritten as
I(t)

In—=~e+e+...+ern 8

n i (0) 1t +..+¢€ ( )
For increments ¢; that are independent and normally distributed
with mean y and variance 02, the Central Limit Theorem states

I(t
that In % will approximate a normal (Gaussian) distribution
with mean ut and variance ¢?t. Then, I(t) will follow a log-
normal distribution [Sutgy]
(Int — Intg)?

e 202 : 9)

p(t) ~ N
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On a log-log scale, the upper end of a log-normally distributed
variable will appear as a straight line, similar to a power-law-
distributed variable. To see this, we take the logarithm of Eq. 9

_ 2
In p(t) ~ —Int — Inv27m0 — w.

(10)
If o is sufficiently large, the last term of Eq. 10 will be small for
a large range of t values, giving a linear appearance for those
ranges on a log-log scale. Thus, according to Gibrat, power-laws
only correctly model the tail of income distributions, and the
actual distribution more closely follows a log-normal.

However, Champernowne [Chas53] and Wold & Whittle [WW57]
again found power laws. Is income power-law distributed, or
does it follow a log-normal? What does this mean about the un-
derlying generating process? Is there a different process going
on in the tail of the distributions? Regardless of the answers, the
power-law behavior of the tail of income distributions indicates
that extreme cases, or outliers, are more frequently present than
what could be explained by a Gaussian distribution. The power-
law exponent a then gives an estimate of the probabilities of
these extreme events.

In economics, the influence of power laws reaches beyond in-
come distributions. For example, the size of firms appears to
follow a power-law [Axto1], and an increased probability of out-
liers is also seen in the subject of the next section: changes in
price.

1.3 THE LEGACY OF THE POWER LAW, AND
STYLIZED FACTS

Mandelbrot [Man63] showed in 1963 that the distribution of dif-
ferences in prices at high frequencies (daily data) for various
assets was not Gaussian, but fat-tailed. As can be seen in Fig.
4, which shows the probability density function for daily price
differences of cotton, a Gaussian fit describes the bulk of the
data properly but underestimates the probability of outliers. If
financial risk is to be properly estimated, these outliers cannot
be ignored.

This fat-tailed nature of price differences is now known as
a stylized fact, a term introduced by Nicholas Kaldor in 1957.
Kaldor worked on modeling the process of growth in capitalist
economies, and noted that such a model “must account for the



10

INTRODUCTION

Cotton Daily Price Difference

xxx Cotton
— Gaussian fit

10" -

10° -

Empirical PDF

-0.10 -0.05 0.00 0.05 0.10
Logarithmic price difference

Figure 4: Empirical PDF of cotton daily futures price differences on the
Chicago Mercantile Exchange. Data between 1972-11-16 and
2017-05-15, retrieved from [Qua17b].

remarkable historical constancies revealed by recent empirical
investigations”. These empirical constancies should, according
to Kaldor, be the relevant starting point for economic modeling:

“(...) Since facts, as recorded by statisticians, are al-
ways subject to numerous snags and qualifications,
(...) the theorist, in my view, should be free to start
off with a ‘stylized” view of the facts — i.e. concen-
trate on broad tendencies, ignoring individual detail
(...) and construct a hypothesis that could account for
these ‘stylized” facts” [Hagb61].

In other words, stylized facts are robust empirical features that
are seen throughout different markets and asset classes. Since
Mandelbrot and Kaldor, many more of these stylized facts have
been uncovered. The ones discussed by Chakraborti [Ani11] are
as follows:

1. Fat-tailed empirical distribution of returns

Economists often work with price differentials rather than
prices. Defining the (simple) return of an asset with price p
over a time period T as

_plt+T) = p() .
Relt) = P, (11)
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and the log-return as

re(t) = In(p(t + 7)) —In(p(t)), (12)

it is clear that these are both dimensionless quantities ap-
propriate to quantify relative price changes. For small chan-
ges, the simple and log-return are approximately equal.
Log-returns tend to be the preferred quantity for technical
analysis.

Mandelbrot [Man63] was among the first to note that the
empirical distribution of financial returns was fat-tailed.
Since then, many empirical studies (e.g. [Gop+98]) confirmed
this.

2. Aggregational Gaussianity

The fat tails of the first stylized fact appear when log-returns
are calculated over short time periods, e.g. T =1 day. How-
ever, it has been observed that as one increases T, this

feature becomes less pronounced, and the distribution ap-
proaches a Gaussian [KSY06]: so-called aggregational Gaus-
sianity.

3. Absence of auto-correlation of returns

The EMH assumes that price changes behave as a random
walk. This would indicate that the autocorrelation of the
log-returns, defined as p(T) ~ (r(t + T)r.(t)) for a lag T,
should be zero. For many markets, this appears to be the
case [Pagg6; Cono1]: a positive change in price does not
indicate that next change is more likely to be positive.

4. Volatility clustering

The final stylized fact states that if one looks at absolute
(or squared) returns, the auto-correlation function is sig-
nificantly larger than zero and decays slowly. This means,
in Mandelbrot’s words, that “large changes tend to be fol-
lowed by large changes of either sign, and small changes
tend to be followed by small changes”. Volatility, or the de-
gree of variation of these price changes, is then clustered
in time.

Whereas the third stylized fact can be explained with a random
walk, the others don’t fit the geometric Brownian motion that
the BSM model is based on. It involves normally distributed re-
turns, conflicting with the empirical evidence showing e.g. fat

11
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tails. As the stylized facts appear across a wide variety of mar-
kets, they could perhaps be caused by universal underlying prin-
ciples. This is where econophysics enters the stage— after all,
physicists are in the business of laws and invariances [Rico8].

1.4 THE EMERGENCE OF ECONOPHYSICS

As stated by Huber & Sornettte [HHS16], there have been various
collisions between economics and physics throughout their evo-
lution. Starting with Adam Smith’s market dynamics, driven by
forces inspired by Newtonian mechanics, a notion of economic
laws paralleling physical laws became entrenched in economics.

In particular, thermodynamics proved especially attractive, and
the concept of an equilibrium state of economic activity was in-
troduced by Marshall and Edgeworth through various works in
the late 19th century. Similar to how Maxwell and Boltzmann ab-
stracted the heterogeneity of particles and their microstates into
a thermodynamic description, economic equilibrium theory re-
duced the heterogeneity of economic agents to a single represen-
tative agent. Boltzmann himself, in his arguments for using ra-
tios and averages in kinetic gas theory, drew analogies between
statistical physics and social statistics such as economics [Por86].

Over time, economics and physics became more rigid in their
specializations, and a mainstream movement of the application
of statistical physics to economics did not re-appear until the
last few decades.

Driven by attempts to properly describe the stylized fact ‘anoma-
lies’, the field of econophysics emerged in the 1990s— a synthe-
sis of economics and physics, coined by Eugene Stanley. Sim-
ilar to fields such as biophysics, which studies living organ-
isms through their underlying obedience to the laws of physics,
econophysics seeks to explain economic phenomena by apply-
ing tools and concepts from statistical and theoretical physics
to them. From another direction, it provides the insight that
dynamics of financial systems are perhaps best understood as
emergent properties of a complex adaptive system.

The following sections will deal with two distinct types of
models in econophysics. First statistical modeling will be dis-
cussed, which subdues individual characteristics of economic
agents. Afterwards, agent-based modeling is introduced, aiming
to integrate the learning and adaptive features of market partic-
ipants.
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1.5 DIRECT APPLICATIONS OF STATISTICAL
MECHANICS

Statistical physics is, in a broad sense, a framework that allows
systems consisting of many interdependent, interacting parts
to be rigorously analyzed. According to econophysics, finan-
cial markets are a part of this class of systems. Their internal
microscopic structure consists of ‘economic particles’: investors,
traders, consumers, and so on. In the systems traditional statis-
tical physics deals with, properties can be found that are invari-
ant with respect to transformation of scale: scaling laws. These
laws are viewed as emergent properties generated by the in-
teractions of the microscopic subunits— via collective behavior.
Perhaps, then, a similar reasoning could be applied to financial
markets, and the previously mentioned stylized facts could be
explained through it.

We have already seen an example of scale invariance earlier in
this introduction: the power-law income distributions. Models
such as those by Gibrat and Champernowne used a stochas-
tic process to describe individual income or wealth, and can
be seen as a one-body approach— income and wealth fluctua-
tions are considered independently for each agent. One of the
first truly novel directions of econophysics was the addition of
two-body interactions, inspired by collisions in gas theory. After
a short review on relevant aspects of statistical mechanics (see
[YRo9]), this will be introduced with a model by Dragulescu &
Yakovenko [DYoo].

1.5.1 Review of the Boltzmann-Gibbs distribution

The Boltzmann-Gibbs distribution remains a pillar of modern
statistical mechanics. Its derivation is as follows: consider N par-
ticles with total energy E. The energy axis can be divided into
small intervals of size Ae, with Nj the number of particles with
energy between €, and € + Ae. The ratio Ni/N then gives the
probability of a particle to have energy €y, which is noted as F.

The multiplicity W, or the number of ways in which a a certain
system state can be produced, is given by

N!
T N{IN,IN;!L

W (13)

The natural logarithm of the multiplicity is called the entropy
S = kInW, where k is the Boltzmann constant. Using Stirling’s

13
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approximation in the limit of large numbers, this can be approx-
imated as

Nkl

~—Ly

It is then possible to find the highest multiplicity state, being
the state with the highest entropy, using the method of Lagrange
multipliers with the constraint that the total energy of the system
E = Y i Niex is constant. The result of this is the exponential
Boltzman-Gibbs distribution, stating that the probability P(e) of
finding a physical (sub)system in a state with energy € is given
by

( ) = — Zpk lnPk. (14)
k

P(e) = c e ¢/FT (15)

with ¢ a normalizing constant and T the temperature. The expec-
tation value of any physical variable x can then be obtained as

—€k/kT

_ Lk Xxe
(x) = e /FT (16)
where the sum is taken over all states of the system. Temperature
is related to the average energy per particle: T ~ (e).

1.5.2 Statistical mechanics of money

The above derivation is general, and its main constraint is the
presence of a conserved property. It is not unreasonable that the
Boltzmann-Gibbs distribution would apply to other statistical
systems, such as an economy consisting of many interacting par-
ticipants, as long as a conserved property is present. Dragulescu
& Yakovenko [DYoo] suggested that for economies, this con-
served quantity is money m. Economic participants are by law
not permitted to create or destroy money, and the total amount
remains the same after every transaction between participants i
and j:

mi = m; — Am,
m; = mj+ Am. (17)

This local conservation of money allowed them to make an anal-
ogy with the energy transfer between molecular collisions in gas,
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Figure 5: Probability distribution of money P(m) obtained in simula-
tions by Dragulescu & Yakovenko, adapted from [DYoo0]. Red
curves are Boltzmann-Gibbs distributions. The vertical line
indicates the initial distribution of money.

where energy is conserved. Central banks or governments can in-
ject money into an economy, but this is analogous to an influx of
energy from external sources such as the Earth receiving energy
from the Sun. As long as the rate of money influx is slow com-
pared to relaxation processes in the economy, the system can be
considered in a quasi-stationary statistical equilibrium.
Dragulescu & Yakovenko go on to argue that the stationary
distribution of money P(m) should then be of the form of Eq.

15:
P(m) = c e~ ™/ KTu (18)

with T}, the ‘money temperature’, defined as the average amount
of money per participant: T = (m). To verify this, they per-
formed simulations starting from uniform distributions of money
with varying rules for the size of money transfer Am, and found
the Boltzmann-Gibbs distribution in all of them. An example re-
sult is seen in Fig 5.
When multiplicative money exchanges are considered rather
than additive, the probability distribution deviates from the Boltzmann-
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Gibbs distribution for lower values, and appears closer (but not
exactly equal) to a Gamma distribution:

P(m) = cmPe=™/T, (19)

differing from Eq. 15 by the power-law prefactor mP. Examples
of this can be found in [IKRg8; CCoo]. Chatterjee [CKMo4] added
a randomly distributed saving factor, and found power-law tails
originating from the participants who hoard money and do not
give it back.

For direct comparison with empirical data, the distribution of
money in the real world would need to be known. This could be
approximated from balances on bank accounts— no such studies
appear to be available at the time. As some interplay between
theory and empirical data is desired, I will shift to more verifi-
able regions: distributions of wealth and income.

1.5.3 Statistical mechanics of wealth and income

Data on the distribution of wealth is rather limited. In the real
world, income is routinely reported by individuals to the gov-
ernment due to their relation to taxation methods, but wealth
rarely is. The available data on wealth tends to come from coun-
tries where all assets must be reported in the event of a death
for the purpose of inheritance tax. This gives us a wealth dis-
tribution of dead people, which through adjustment procedures
based on age, gender, and so on, can be used to infer a wealth
distribution of the entire population.

In statistical physics, it is known that identical molecules in
a gas can spontaneously develop a widely unequal distribution
of energies as a result of random energy transfers in molecular
collisions. By analogy, very unequal wealth distributions might
spontaneously develop in an economic system as a result of ran-
dom interactions between economic participants, which could
explain economic inequality [Yak12].

Wealth w has various definitions, but can be seen as the sum
of a person’s money and the monetary value of all his assets. An
approximation of these monetary values are the prices p. The
wealth of a participant is then

wi =m;+Y_ pr (20)
k

where the sum is taken over all assets. Total wealth W = }_w is
generally not conserved as prices py vary over time— an impor-
tant difference from the money transfers in the previous section.



1.6 AGENT-BASED MODELING (ABM)

Wealth of a participant can change without any transactions, and
a transaction does not change the wealth of a participant as he
gains as much in value as he loses in money. Thus, the redis-
tribution of wealth in these models is directly related to price
fluctuations.

Silver, Slud & Takamoto [SSToz2] implemented a version of
such a model and found, analytically and through simulations,
that the stationary distribution of wealth P(w) was best described
by a Gamma distribution. Chatterjee & Chakrabarti [CCo6] found
a similar Gamma distribution shape for fixed saving propensi-
ties. Several authors have proposed models where wealth evolves
over time (e.g. [BMoo]), giving rise to power-law tails. This could
suggest that the presence of a power-law is a nonequilibrium ef-
fect that requires constant growth or inflation of the economy,
and disappears for a closed system with conservation laws.

Regarding income, data is more easily available. Silva and
Yakovenko [SYo5] examined U.S. income data between 1983-2001,
finding two distinct regions as seen in Fig. 6. The majority of the
population could be described by the Boltzmann-Gibbs distri-
bution, whereas the top few percent follow a power-law. They
go on to describe this two-part structure as ‘thermal” and ‘su-
perthermal’, and relate it to thermal equilibrium in statistical
systems. A discussion of further modeling of these income dis-
tributions can be found in [YRog].

In summary, approaching economics from a statistical mechan-
ics viewpoint has provided valuable insights. The stylized facts
however seem to be harder to reproduce using generalized par-
ticle behavior. The next section will introduce a different ap-
proach, taking the heterogeneity of market participants into ac-
count.

1.6 AGENT-BASED MODELING (ABM)

In 1953, Champernowne [Cha53] said that

“The forces determining the distribution of incomes
in any community are so varied and complex, and
interact and fluctuate so continuously, that any theo-
retical model must either be unrealistically simplified
or hopelessly complicated.”

As income (and wealth) distributions arise from the actions and
interactions of individual people, any perfect description of such
a distribution would need to take these interactions into account.

17
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Figure 6: CCDF of annual personal U.S. income, taken from [SYos5].
Two regions are visible: one following a Boltzmann-Gibbs
distribution, the other following a Pareto distribution (power-
law).

This is not easily done using theoretical stochastic models, and
Agent-Based Modeling (ABM) attempts to address some of these
limitations.

1.6.1  Complexity and complex systems

ABM is often mentioned with complex(ity): a term that proves
to be somewhat hard to describe. Whatever complexity may be,
complex systems are supposed to have it, so the question can be
redirected to what a complex system is. According to Simon
[Simos],

“(...) in such systems the whole is more than the sum
of the parts in the weak but important pragmatic
sense that, given the properties of the parts and the
laws of their interaction, it is no trivial matter to infer
the properties as a whole.”

Dean Rickles [Rico8] extracts a triplet of characteristics for a com-
plex system:

1. The system is made up of many subunits.
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2. These subunits are, at least some of the time, interdepen-
dent.

3. The interaction between these subunits is, at least some of
the time, nonlinear.

with additionally

4. (adaptive complex system) The subunits modify their prop-
erties and behavior with respect to a changing environ-
ment, generating new systemic properties that reflect the
changed environment.

5. (self-organizing adaptive complex system) The subunits mod-
ify their properties and behavior with respect to those of of
the system they form- a ‘downward causation” exists from
the systemic properties to the subunits” properties.

At first glance, economic systems are eligible to be categorized
as a complex system: multiple agents of different types (traders,
producers, firms, etc.) compete (interact) with each other and
in doing so generate properties that cannot be explained by the
parts themselves (stylized facts). These properties, arising in the
system but not possessed by the individual members, are emer-
gent properties. Explaining the economic stylized facts by labeling
them as emergent properties in a complex system is, under the
Rickles’s characteristics, reasonable.

However, some doubt still exists on whether economic sys-
tems are truly complex. Durlauf [Duros] argues that there is not
enough evidence to reject alternative approaches, and says that
the scaling law research is consistent with complex system mod-
els but the evidence is far from decisive and is amenable to al-
ternative interpretations. Pisarenko & Sornette [PSo6] show that
a power-law model of prices at best provides an approximation,
and no complexity can directly be inferred from it. Financial mar-
kets could still be complex systems, but such claims should be
treated with scrutiny. An agent-based modeling approach could
provide a way to investigate this conjectured complexity.

1.6.2  Agent-based models

How, then, does ABM differ from more classical approaches?
Unlike particle systems like idealized gases, economic systems
consist of participants that are extremely heterogeneous. These
participants can differ in behavioral rules, view of the external
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world, decision-making, extent of memory, and so on. An agent
tries to capture this diversity, and an agent-based model refers
to a model in which the dynamic processes of agent interaction
are simulated over time.

Similar to ‘complexity’, the term ‘agent’ tends to be hard to
define. According to Macal [MNog], the definition of an agent
can include the following;:

An agent is an identifiable, discrete, or modular, individ-
ual with a set of characteristics and rules governing its
behaviors and decision-making capability. Agents are self-
contained. The discreteness requirement implies that an
agent has a boundary and one can easily determine whether
something is part of an agent, is not part of an agent, or is
a shared characteristic.

An agent is autonomous and self-directed. An agent can
function independently in its environment and in its inter-
actions with other agents for the limited range of situations
that are of interest.

An agent is social, interacting with other agents. Agents
have protocols for interaction with others, e.g. for commu-
nication. Agents have the ability to recognize and distin-
guish the traits of other agents.

An agent is situated, living in an external environment
wherein the agent interacts with other agents.

An agent is goal-directed, having goals to achieve (not nec-
essarily objectives to maximize) with respect to its behav-
iors. This allows an agent to compare the outcome of its
behavior to the goals it is trying to achieve.

An agent is flexible, having the ability to learn and adapt
its behaviors based on experience. This requires some form
of memory. An agent may have rules that modify its behav-
ior.

These properties may not all be present, depending on the spe-
cific purpose of the agent-based model. He labels those agents
proto-agents: “agents who miss one or more of the characteristics
noted above but to which the characteristics can easily be added

without modification to the structure of the model”.
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1.6.3 Challenges with ABM

Adding complicated behavioral rules may lead to a better pre-
diction of the stylized facts. However, it is important for agent-
based models to not just replicate features of real markets, but
also to show which aspects of the model may have caused them.
Overly complicated models may make it difficult to determine
which underlying mechanisms cause the stylized facts to appear.
In addition, many ABMs only replicate the stylized facts in a
very specific and limited region of the model’s parameters— e.g.
the number of agents [CPZo1]. Are these limitations of the mod-
els, or do real market dynamics also evolve to the specific region
which generates the stylized facts?

General issues regarding ABM were summarized by Windrum,
Fagiolo & Alessio Moneta [WFMoy]. They listed four key prob-
lems:

1. The neoclassical community has developed a core set of
theoretical models and applied these to a range of research
areas; the ABM community has not.

2. ABMs have different theoretical content and seek to ex-
plain widely varying phenomena, with little in-depth re-
search being done to compare and evaluate their relative
explanatory performance.

3. No standard techniques for constructing and analyzing ABMs

exist.

4. The validation of ABMs involves strong assumptions re-
garding unknown processes that generate empirical data.

Amilon [Amio8] provided an example of these problems. Using
maximum likelihood techniques, he found that the presence of
the stylized facts in some ABMs was highly dependent on how
noise was implemented in agent behavior. This indicates that cer-
tain model assumptions could have significant impact on their
ability to reproduce empirical data. Windrum, Fagiolo & Moneta
conclude with a call for generalized protocols regarding analysis
and parameter calibration in order to address these issues. How-
ever, despite the possible flaws, the complex system approach of
ABM in econophysics can still provide valuable insights.

This concludes the introduction on economics and econophysics.

Much of this thesis will deal with the examination of stylized
facts in various markets, and the creation of an ABM. Some of

21
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the markets examined will come from virtual rather than real
worlds, and for this reason, a final introductory discussion re-
garding video games is presented in the next section.

1.7 VIDEO GAMES AS A RESEARCH LABORA-
TORY

Games played on electronic devices, or video games, are an impor-
tant segment of the modern entertainment industry. For exam-
ple, in 2016, League of Legends logged more than 100 million play-
ers per month [Kol13], and the total revenue of MMOGs (mas-
sively multiplayer online game) exceeded US$20 billion [Sup17].
A subtype of the MMOG is the MMORPG, or massive multi-
player online role-playing game. These are internet-based games
which are played by a large number of players at the same
time, all accessing the same virtual world. Players engage in nu-
merous activities such as moving around, communicating, pur-
chasing /producing/consuming goods, and fighting one another.
These virtual worlds can be extremely complex, with some of
them having more inhabitants than small countries [Casoz]. Play-
ers are often permitted to trade goods, and economies emerge.
How similar are these virtual economies compared to real ones?

In the real world, a person might have no direct use for a dia-
mond. That person could still be willing to pay a large sum for it,
because the value of the diamond was determined by the market
as whole, based on more than its direct impact on that person’s
life. The same can be said for a virtual object in an MMOG. The
assessment of economic value is made through willingness to
pay— with currency, time, or effort. In video games, the scarcity
of certain virtual goods makes them valuable, with players in-
vesting hours of time to obtain them. This investment can be felt
as very real. Despite being intrinsically worthless, virtual goods
have value to those who trade them, and in this way differ little
from e.g. the stock market. However, a few considerations have
to be made.

1.7.1 How games differ from the real world

People play video games because they get some form of satis-
faction from it. Besides possible addictive tendencies, nothing is
forcing them to play the game, and they can start or stop playing
whenever they want. In this way, player participation might not
be driven by the same motivations as economic participation in
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the real world. This could have an impact on the emerging mar-
ket structures.

Additionally, video games have a distinct encoded nature. In
contrast to the physical universe, a virtual world can be manipu-
lated by the owners of the game, usually without cost. Goods can
be added or removed, game mechanics such as the ease of pro-
duction can be adjusted, and so on. For example, this allows the
creators of the game to control prices, something which real gov-
ernments tend to avoid. Coding errors can also be present. When
discovered and abused, these can severely impact the game’s
economy, as seen by the 20% inflation in a single day after a du-
plication error was found in the MMORPG Everquest II [Alp15].

Unlike the real world, players in virtual economies generally
cannot misrepresent assets. Forged goods can’t exist unless specif-
ically encoded. Other forms of fraud can however be present,
and little deters players from this ‘criminal” behavior. An exam-
ple is charging ten times as much for a specific good, and count-
ing on the buyer not noticing the difference due to the visual
representation of in-game currency. Real world policies regard-
ing anti-trust rules are also absent, allowing players to corner
the market of certain goods, creating artificial prices that would
not form in the real world.

Many more differences between real and virtual economies
exist, depending on the specific game in question. There is then
no reason to a priori assume that they should behave similarly.
Virtual economies should still be investigated however, as any
similarities/ differences could tell us more about the underlying
dynamics that give rise to the emergent complex behavior.

1.7.2 Insights from virtual worlds

Complex video games are a relatively new phenomena, and the
research on virtual worlds has remained limited. Lofgren & Fef-
ferman [LFo7] compared the unintended spread of a virtual dis-
ease in the MMORPG World of Warcraft to real world infections,
arguing for the use of video games as a testing ground for epi-
demic control measures. Kim, Keegan, Park, & Oh [Kim+15] in-
vestigated player behavior in the video game League of Legends
and found that individual player proficiency increased team per-
formance more than team congruency, having implications on
team building in the real world. Fuchs & Thurner [FT14] stud-
ied the MMORPG PARDUS, and found a correlation between
political status and wealth, in addition to finding wealth distri-
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butions that were comparable to those in the real world, as seen
in Fig. 7. Szell et. al. [Sze+12] also used PARDUS data, and found
that the in-game motion of players was strongly shaped by the
presence of socio-economic areas. Castronova et. al. [Cas+09], as
a last example, looked at the MMORPG Everquest II and found

that the aggregate economical behavior was comparable to that
of the real world.
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Figure 7: Wealth distribution and Lorenz curve comparing the UK,
Sweden and the game PARDUS, taken from [FT14]. The left
image shows a comparable distribution of wealth in the real
and virtual world.

Most of the available literature appears to focus on behavioral
aspects, rather than economic analysis. One of the goals of this
thesis is to compare the general behavior of MMORPG EVE On-
line’s economy with that of the real world. This will be done
through first exploring the stylized facts in the real world, and
then using the same methods to look for them in EVE Online.
Afterwards, an agent-based model will be introduced based on
the dynamics of EVE Online, and I will investigate its emerging
economy in a similar manner.



STYLIZED FEATURES OF

REAL-WORLD FINANCIAL
MARKETS

In this chapter, a framework is built for comparing stylized facts
in real and virtual markets. The methodology to visualize a se-
lection of stylized facts is first explained, illustrated with daily
frequency data of the NASDAQ stock price. Afterwards, it is
applied to a wide range of markets.

2.1 METHODOLOGY

The focus on this chapter is on the distribution of price log-
returns, defined by Eq. 12 in the introduction:

re(t) = In(p(t+ 1)) —In(p(t)).

If the price p(t) at some point in time is zero, the logarithm is
not defined, and the (log-)return can’t be calculated. A similar
problem arises when no price was recorded at all- e.g. finan-
cial stock markets record no prices during the weekends. There
are several possibilities to handle missing data, each with their
own disadvantages. The majority of data I used was of daily
frequency, with weekend gaps in real world data. Log-returns
across weekends were of a similar size as those calculated across
weekdays. For this reason, I ignored the gaps and calculated the
log-returns as if the data after them immediately followed the
last logged value.

2.1.1 Fat-tailed empirical distribution of log-returns

The first stylized fact states that the log-returns of prices are fat-
tailed: the probability of finding extreme events is higher than
what could be expected if they were to follow a Gaussian distri-
bution. To visualize this, I calculated and binned the log-returns
to form a probability density function (PDF). I then fitted a Gaus-
sian distribution to the data using the method of least squares.
For daily frequency NASDAQ data, the result can be seen in Fig.
8. Fat-tailed behavior is clearly visible.
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Figure 8: Empirical PDF of NASDAQ log-returns. Log-returns were
calculated using daily frequency data between 1971-02-05
and 2017-04-05, retrieved from YAHOO finance.

To quantify the fat tails, the kurtosis k (the fourth standardized
moment) is often used in literature. For a sample x1,xp,..., x5,
this can be estimated by

(i —x)*
(X (i — f)z)z

The kurtosis of a normal distribution is 3. A distribution is de-
fined as leptokurtic, or heavy tailed, if its kurtosis is larger than

3

k=(n—-1)

(21)

As mentioned in the introduction, the heavy tails of log-return
distributions are sometimes approximated as power-laws. For
a power-law p(x) = Cx~* starting at x,,;,, however, the fourth
moment is [Newos]

(x*) = / xtp(x)dx = C x0Ty
xgin Xmin (22)
_ 4 o0

5l

which becomes infinite if « < 4. This implies that, while the
kurtosis for a particular sample may be relatively small, it occa-
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sionally takes on a huge value, causing the kurtosis on average
to diverge. This tells us that the kurtosis is not a well defined
quantity for power-laws with a < 4.

In the markets I investigated for this thesis, fat tails occasion-
ally exhibited power-law exponents exceeding 4. However, as I
was more interested in the presence of fat tails rather than their
precise behavior, no rigorous comparison between possible dis-
tributions was done to determine if the a power-law was indeed
the best fit. I then cautiously followed the literature in using kur-
tosis as a marker for non-Gaussianity.

2.1.2 Aggregational normality

The second stylized fact states that whereas the log-returns show
fat tails, this feature decreases as the time period T over which
the log-returns are calculated increases. To visualize this, I first
determined the log-return empirical PDFs as described in the
previous subsection for different 7. I then placed the individual
PDFs side by side, as seen in Fig. 9 for daily frequency NAS-
DAQ data. Fat tails are seen for short 7, and as T increases the
distribution becomes more Gaussian.

After this, I standardized the log-returns by using the param-
eters (u;, 0;) of the Gaussian distribution fitted to them

re(t) — p
— =

v;

re(t) — (23)

I then plotted the CCDFs on a single image, on which changes
in fat-tailed behavior become more clear. For daily frequency
NASDAQ data, this is shown in Fig. 10.

Finally, I quantified the fat-tailedness by calculating the kur-
tosis for each of the PDFs and plotting the excess kurtosis k —
3 in function of T. For comparison purposes, a measure whose
change in value is less susceptible to extreme outliers than kur-
tosis was also calculated: the Hogg coefficient [KWo4]

Uy — Ly
HOgg - u’B . L‘B’ (24)
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Figure 9: Empirical PDF of NASDAQ log-returns, for several T indi-
cated by bold numbers. Log-returns were calculated using
daily frequency data between 1971-02-05 and 2017-04-05, re-
trieved from YAHOO finance.

where U, (Ly) is the average of the upper (lower) a quantiles
defined as

1
U, = 1/ CDFY(y)dy

X J1—a
l/aCDFl( )d
< y)dy,

for o < a < 1. The Hogg coefficient for a Gaussian distribution
is 2.59; like kurtosis, the excess Hogg coefficient Hogg — 2.59 will
be used to look for leptokurtic behavior.

Nothing a priori dictates that the PDFs of price log-returns
should exhibit only one peak. Multimodal distributions could
cause a misinterpretation of the value of the kurtosis. For this
reason, I calculated Sarle’s bimodality coefficient [Pfi+13]:

1
b= (P +1) <k3+ (n?’(’;)_(nl)23)> (26)

(25)
Ly =

where n is the sample size, g is the sample skewness, and k is
the sample kurtosis. The value of this coefficient lies between
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NASDAQ (Daily Prices) Aggregational Normality

10° -

101 -

Empirical CCDF

102 | — Standard Gaussian
|e®e 7=1day

! e®e 7=>5days

|e®e =10 days

T =15 days

7= 20 days

-4 -3 -2 -1 0 1 2 3 a
Standardized Log-Return

Figure 10: Empirical CCDF of NASDAQ log-returns, for several 7. Log-
returns were calculated using daily frequency data between
1971-02-05 and 2017-04-05 retrieved, from YAHOO finance.

o and 1, and increases as the multimodality of the distribution
increase.

Excess kurtosis, Hogg coefficient and Sarle’s bimodality coef-
ficient are then plotted against 7. For daily frequency NASDAQ
data, this is shown in Fig. 11.

2.1.3 Absence of autocorrelation of log-returns

The third stylized fact states that there is no evidence of autocor-
relation between log-returns. The Pearson correlation coefficient
for two datasets with n values {x1...x,}, {y1...yn} is defined
as

n

0= im1 (i — %) (vi — )
VI (i = 222 (v — 9)?

(27)
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Figure 11: Sarle’s bimodiality coefficient, kurtosis and Hogg coefficient
of NASDAQ log-returns, plotted against 7. Log-returns
were calculated using daily frequency data between 1971-
02-05 and 2017-04-05, retrieved from YAHOO finance.

where ¥, 7 are the sample means. For two datasets from the same
time series, shifted over a time T, the cross-correlation at lag T
is defined as
Z?;1T(xi — X)(xip7 =)
p(T) = = - (28)
VI (6 = X020 /2T (i — V)2

where X and Y are means of datasets X = {xq...x,_7}and Y =
{x147...x4}. To investigate the third stylized fact, I constructed
correlograms, plotting the sample autocorrelation p(T) against
the time lag T over which the autocorrelation is calculated.

In order to reject the null hypothesis that p(T) is zero, confi-
dence intervals were created using Bartlett’s formula [Pec]

1 k
Cl=tz 4 N(l +2) 17 (29)
i=1

where z;_¢ indicates the quantile function of the normal distri-
bution.
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The resulting correlogram for daily frequency NASDAQ data
can be seen in Fig. 12. The values of p(T) quickly become indis-
tinguishable from zero.

NASDAQ (Daily Prices) Autocorrelation of Log-Returns

1.0
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0.0 -

Autocorrelation

— Autocorrelation
99% Confidence

-1.0 -
0 20 40 60

Lag (days)

Figure 12: Correlogram of NASDAQ log-returns. Shaded area indi-
cates a 99% confidence interval, calculated using Bartlett’s
formula. Log-returns were calculated using daily frequency
data between 1971-02-05 and 2017-04-05, retrieved from YA-
HOO finance.

2.1.4 Volatility clustering

The fourth stylized fact states that even though the log-returns
are not autocorrelated, absolute log-returns do exhibit an auto-
correlation function that is significantly larger than zero and de-
cays slowly. To show this, correlograms were constructed using
the method described in the previous segment. The resulting
correlogram for daily frequency NASDAQ data can be seen in
Fig. 13: volatility clustering is clearly present.

2.2 RESULTS

The above methods provide a visual way to look for the pres-
ence of stylized facts. For a variety of markets, composite im-
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NASDAQ (Daily Prices) Autocorrelation of Absolute Log-Returns
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Figure 13: Correlogram of NASDAQ absolute log-returns. Shaded
area indicates a 99% confidence interval, calculated us-
ing Bartlett’s formula. Log-returns were calculated using
daily frequency data between 1971-02-05 and 2017-04-05, re-
trieved from YAHOO finance.

ages were created, and a selection will be discussed here. The
remaining ones can be found in the Appendix. On such a figure,
subfigure A) shows the price over the entire range of available
data. Subfigures B) and C) list the correlograms, where the styl-
ized facts suggest that B) should be zero and C) should show a
slowly decaying autocorrelation to indicate volatility clustering.
Subfigures D-F) show the PDFs and aggregational normality in-
dicators. Fat tails should be visible in the upper section of D),
and E-F) should show a decrease of the fat-tailed behavior over
T.

As mentioned in the introduction, the assumption that price
changes are to some extent random is one of the foundations of
the BSM model of price returns. This model assumes geometri-
cal Brownian motion (GBM), which can be modeled as [Sig13]

p(tisr) = p(ti)ea\/tHl—tiN(O,1)+y(t1+1—ti)’ >0 (30)

where y is the percentage drift, o is the percentage volatility, and
N(o,1) is a random number from a standard Gaussian distribu-
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tion. For comparison, similar composite images were created for
GBM processes.

Crude oil (Fig. 14): daily WTI crude oil prices. The absolute
log-returns show a significant autocorrelation, whereas the
raw log-returns do not. Fat tails are clearly present in the
tirst row of subfigure D). The positive log-returns quickly
approach a Gaussian distribution, whereas the negative
ones exhibit fat tails for a longer period. This can be ex-
plained by the presence of a sudden large drop in price,
i.e. the 2008 and 2014 crashes, visible in A). Log-returns
calculated using data across this period will be large and
negative.

Aluminum (Fig. 15): daily aluminum prices on the Lon-
don Metal Exchange. These prices exhibit much less of the
stylized facts: the raw log-returns show no autocorrelation,
but neither do the absolute ones. The PDFs also show no
fat tails, as can be seen in D), E), and low values of the
excess kurtosis in F).

Lumber (Fig. 16): daily lumber futures prices on the Chicago
Mercantile Exchange. Futures are contracts where the price

is determined in the present, for delivery of the goods in

the future. Long-term price histories can be constructed by

chaining together individual short-term futures contracts,

providing an estimate for the daily price. For lumber fu-
tures, all stylized facts appear to be present.

Cattle (Fig. 17): daily live cattle futures prices on the Chicago
Mercantile Exchange. Although the fat tails in D) appear to
be limited, all stylized facts are arguably present.

Rubber (Fig. 18): daily natural rubber futures prices on the
Shanghai Futures Exchange. Subfigure C) shows no clear
volatility clustering. In addition, whereas E) and F) would
suggest aggregational gaussianity, the PDFs in D) exhibit
multimodal behavior that starts as early as T = 2 days.
This could indicate an additional underlying process, and
makes it hard to determine if fat-tailed behavior is ever
present.

GBM (Fig. 19): GBM process with y = 0.0001 and ¢ = 0.01.
The price pattern in A) is very similar to real price patterns
and no autocorrelation of the log-returns is visible in B),
but C-F) show no sign of the other stylized facts.
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2.3 CONCLUSION

A few general observations can be made. First, the stylized facts
are present in many markets that were investigated, but not all
of them. How robust are these features then? Do certain markets
lack the required underlying mechanisms for them to emerge, or
do they suppress them in some way?

Second, the general behavior of the excess kurtosis in F) is
similar to that of the excess Hogg coefficient, and seems to be a
good proxy for the behavior of fat tails. However, some caution
should be exercised, as seen in the results for natural rubber in
Fig. 18. The bimodality coefficient appears to move inversely to
the kurtosis, and a decrease in kurtosis may indicate multimodal
behavior rather than a decrease of fat tails.

Finally, GBM processes as described by Eq. 30 don’t reproduce
stylized facts. The BSM can account for this by e.g. assuming
the values of y and ¢ as varying over time, but the base ran-
dom process is not sufficient to fully replicate market behavior.
The question arises if whether this is a sufficiently strong argu-
ment against the validity of the random walk theories such as
the EMH.

This concludes the examination of some markets in the real
world. In the next chapter, I move on to the economy of a virtual
one: EVE Online.
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Figure 14: West Texas Intermediate (WTI) daily crude oil price be-
tween 1986-01-02 and 2017-04-03, retrieved from [Dat17].
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Figure 15: Daily aluminum price on the London Metal Exchange be-
tween 2012-01-03 and 2017-04-13, retrieved from [Qua17b].
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Figure 16: Daily lumber futures price
change between 1972-11-16

[Qua1yb].

on the Chicago Mercantile Ex-
and 2017-05-15, retrieved from
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Figure 17: Daily live cattle futures price on the Chicago Mercantile Ex-
change between 2005-01-03 and 2014-12-31, retrieved from

[Qua1yb].
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Figure 18: Daily natural rubber futures price on the Shanghai Futures
Exchange between 2013-10-16 and 2017-05-15, retrieved

from [Qua17yb].
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STYLIZED FEATURES OF REAL-WORLD FINANCIAL MARKETS

m
= -
E 20-
(0]
o2 15- =
C©
a5
= 1.0
E
c VlO 0 1000 2000 3000 4000 5000
o '
B o5 -
[
E2 00 -
o5 : )
= O 99% confidence
I -l0 - : .
cw 10 0 20 Lag 40 60
=]
88 -
= 00 -
88 ~05 - Autocorrelation
.gf 99% confidence
o -1.0 - . .
< 0 20 Lag 40 60
. f f”"-s g g _E e g
i AR A T A N R Y
o _: Pl L _: f \ _: .,.' LY _: / Y _: ) LY
10° - 3 < Py < » T d Y = 4 5
E \ El b S 1 e[ b E) \
E s E \ R 3 £ . 3
10" =T @ Ik E] ] = 4 @ = " @ = ] @ .
-0.04 0.00 0.040.05 0.00 0.05-0.1 0.0 0.1-0.1 0.0 0.1-0.1 0.0 0.1-0.1 0.0 0.1
10t - e, - - - - - -
E* i R i W £ £ st E E
10° - £ k i e —‘!ﬁ\e i ."‘ h\"-. 1 -‘m"- A ‘m‘-
HY 4 W = . \ H & % E & H \
Iy X s A\ I F X A
0t I - > 1/ A\ 3 b
w : g 5 | 7 X
S 107 - . 23] . 7 |
E -0.1 0.0 0.0 0.1-0.2 0.0 0.2-0.2 0.0 0.2-0.2 0.0 0.2-0.2 0.0 0.2 @
s
0l A ~ E 'm E ain g Seran, D P, Y s
a Y . H \ = U N Tz # T %
H R ) E ~|E H - N B a
c E'3 \ E * HyA \ ¥ 5 IR N E| >
Wt X A \ AL g c o1 E
) E ;.
-0.3 0.0 0.3-0.4 0.0 0.4-0.3 0.0 0.3-0.3 0.0 0.3-0.4 0.0 0.4-0.4 0.0 0.4
g " g g g E g
H y 3 S 1 L 3 ", 1 P i 0
pro = T
10° - I . o R I S T S e - 5 "‘_h
I O E A/ ENERY | . 2 b g k) L3
10t 4 ] Bl | I - | - -
i T W SR FE 7 R I .
-0.5 0.0 0.5-0.5 0.0 0.5-0.6 0.0 0.6-0.6 0.0 0.6-0.7 0.0 0.7-0.8 0.0 0.8
Log-return (bold numbers indicate different 7 (time steps))
10° 1.0 - - 3.0 3.0
= Bimodality Coefficient
= Excess kurtosis H 2.5 —425
0.8 - = Excess Hogg coefficient )
£ H420 {20 &
[T -1 2 %] =)
o 107 - L 3 e
] £ 06 115 of15 o
S o 0.6 — + o
=~ o 5 O
5 [v] 410 {10 O
2 > 0 o
g_ === Standard Gaussian % 0.4 — ~ 05 $ 05 jO:
c 102 - @099 7= 1time step e . ><u . w0
L ‘|@®® =3 time steps g Ll $
‘|@®e =6 time steps o - 0.0 40.0 L>é
[ 7= 10 time steps 0.2 - w
i 7= 15 time steps -0.5 -0.5
7= 30 time steps
10-3 g T T T I 1 | 0.0 2 I | I 1 1 | I 4-1.0 -1.0
-4 -3 -2 -1 0 1 2 3 4 0 50 100 150 200 250 300 350 400

Standardized log-return 7 (time steps)

Figure 19: Geometric Brownian motion as described by Eq. 30, for 5000

steps with ¢ = 0.0001 and ¢ = 0.01.



STYLIZED FACTS IN THE
VIRTUAL WORLD OF EVE

Having explored some stylized facts in real markets, I will now
look at the virtual world of the MMORPG EVE Online (or simply
EVE). In EVE, players act as pilots in a futuristic world. They fly
ships across space, completing various objectives. Some example
objectives are fighting others, transporting goods, creating ships,
and mining ores. In-game goods are traded on a virtual market
in search of profit, measured in the in-game currency ISK (In-
terStellar Kredit). The entire production chain of goods is in the
hands of the players, who analyse EVE’s markets with as much
scrutiny as investors in the real world. In this chapter, I investi-
gate whether the prices in this virtual world behave similarly to
those of the real one with respect to the stylized facts. I conclude
with a short discussion on the wealth distribution of EVE.

3.1 STYLIZED FACTS

As discussed in the introduction, the price behavior of goods in
video games may depend on factors specific to the game. For
EVE, prices are set by the players, and the developers generally
do not interfere. However, these prices may be indirectly affected
by modifications of the game known as expansions. These expan-
sions include new game areas and objects, changes in material
requirements for existing goods, and so on. An analogy in the
real world would be the discovery of a new technology such as
fracking, which drastically alters the supply of a good. In the
composite images for EVE markets, these expansions are shown
by numbered lines in subfigures A).

The virtual goods I examined were four basic ships and the
ores required to make them. Market data was provided by EVE’s
developer CCP Games [Gam17]. As with the real world markets
I will discuss a selection of them, and the remaining results can
be found in the Appendix. For ship data, an initial cleaning
phase removed single-day price spikes that more than doubled
the average price. These can be attributed to wrongly matched
buy/sell orders, and don’t reflect the general market prices.
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¢ Tritanium (Fig. 20): daily tritanium ore price. Subfigure A)

shows a general price behavior not unlike aluminum in
the previous chapter. Some inflation is present, which can
be seen in D) for T = 1554 days, giving a PDF centered
around a positive value. All four stylized facts appear to
be present.

Pyerite (Fig. 21): daily pyerite ore price. If one only looks
at B-C) and F), all stylized facts appear present. However,
A) shows that pyerite was much more impacted by the re-
lease of expansions. For example, A.6) marks the release
date of Revelations I, which reduced the supply of pyerite,
increasing its price. Log-returns calculated using data be-
fore and inside this plateau are large and positive, giving
the appearance of a positive shoulder in D) with 7 = 24
days. The following drop in price at A.7) happens more
slowly, and so negative shoulders in the log-returns only
appear at larger 7.

Additionally, in 2012 at A.16-18), a series of game changes
were implemented which resulted in large increases of ore
and ship prices. This splits A) up in two regions. The higher
average price in the second region results in a larger num-
ber of positive log-returns. This gives D) a multimodal ap-
pearance for high 7. For example, at T = 1122 days, an
expected peak centered at zero is accompanied by a posi-
tive peak for log-returns calculated using data across the
two regions.

Condor (Fig. 22): daily Condor ship price. As all ship prices
examined showed large increases during 2012, data was
limited to either before or after this period. For Condor
prices before 2012, all four stylized facts are visible. Subfig-
ure A) shows flattened regions, where the price appears to
stay constant. This is reflected in D) with T = 1 day, where
the probability of finding log-returns equal to zero is in-
creased. These give much weight to the Gaussian fit, which
can be seen in the kink of the standardized CCDF in E).

Slasher (Fig. 23): daily Slasher ship price starting 2013. The
stylized facts in subfigures B) and C) are present, but fat-
tailed behavior of the PDFs is much less clear. In addition,
E) and F) seem to indicate that the fat tails increase for
higher t.
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Figure 20: Tritanium ore daily price in EVE between 2003-10-01 and

2016-04-23, courtesy of [Gam17].
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Figure 21: Pyerite ore daily price in EVE between 2003-10-01 and 2016-

04-23, courtesy of [Gam17].
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Figure 22: Atron ship daily price in EVE between 2013-01-01 and 2016-
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Figure 23: Slasher ship daily price in EVE between 2003-10-01 and

2012-01-01, courtesy of [Gam17].



3.2 WEALTH DISTRIBUTION

3.2 WEALTH DISTRIBUTION

In addition to examining price behavior in EVE, a rough esti-
mate of its wealth distribution was created. Plans exist to add
direct wealth tracers to the database provided by [Gam17], but
at the time of writing, these are not available. Wealth must then
be estimated through a proxy. As players invest much of their
ISK in ships and other goods, a proper proxy should include all
of these. The database did not allow the tracking of inventories,
and only player ISK could be obtained, giving a rough estimate
of wealth. More rigorous investigation of the wealth distribution
will have to wait until better data can be obtained.

The Lorenz curve of the ISK distribution of active players on
2016-04-27 can be seen in Fig 24. For comparison, Fig. 25 shows
real world Ginis of the year 2000. EVE exhibits a highly unequal
distribution of wealth with a Gini of 0.90, exceeding that of any
country in the real world. Namibia comes closest, with a Gini of
0.847. A common factor between these two is the absence of a
welfare structure, where wealth is spread out through progres-
sive taxation and social services.

As a remark, the Gini of the world being higher than that
of its individual countries is not a mistake. If the inhabitants
of two countries possess the same amount of money as their
countrymen, but the first ones own $10 and the second ones
$1000, the inequality of the individual countries will be low but
their combined inequality will be high.

The CCDF of the ISK distribution can be seen in Fig. 26. An
exponential and log-normal were fitted to the bulk of the dis-
tribution (90%) and a power-law to the tail (10%), shifted for
clarity. A log-normal seems to be a superior fit, but no rigorous
analysis was done to investigate this as better data is expected
to become available in the near future. This small discussion on
EVE’s wealth distribution was only included to argue that the
virtual economy may be comparable to real ones in more than
its price behavior.
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Figure 24: Lorenz curve of ISK distribution in EVE on 2016-04-27. Data
courtesy of [Gam17].

3.3 CONCLUSION

To conclude, despite being a free market with minimum ‘gov-
ernment’ regulation, the prices of goods in EVE behave similar
to those in the real world. Stylized facts are often present, but
not always. These results strengthen the claim that real and vir-
tual economies are comparable, and that perhaps results from
research in one could extend to the other. As virtual worlds offer
opportunities for experimentation which would be impossible in
the real world, this field deserves continued exploration.
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Figure 25: Wealth Ginis of a selection of countries of the year 2000.
World* is calculated using purchasing parity power dollars,
rather than conventional US$ exchange rates. Data from

[Dav+o9].
ISK Distribution (EVE)
10° =
lﬂ'l A
@
=
o
]
.E' 107 -
5]
'
o 1
2 '
n 1
g 107 - 1
2 1
= \
E 1
S 1
o 1
107% - 1
1
1
i 1
| @ allAgents 1
10” | =+ powerlaw "'
| =+ log-normal 1
1= exponential (]
O T 1

10° 10° 101 101 101

ISK

Figure 26: CCDF of EVE’s wealth distribution. A log-normal and expo-

nential were fitted to the bulk 90%, and a power-law with
« = 1.92 to the bottom 10%.

49






REPLICATING EVE MARKET
STRUCTURE THROUGH ABM

In the introduction, some examples of ABMs were given that
aim to replicate economies. These ABMs generally use multiple
agent types representing traders with different behavior. In the
final part of this thesis, I present an ABM with an alternative
approach, based on the game dynamics of EVE.

4.1 DESIGN PHILOSOPHY OF THE MODEL

A classical breakdown of economic activity distinguishes three
sectors:

* primary: the retrieval and production of raw materials, e.g.
corn or iron,

e secondary: the transformation of raw or intermediate mate-
rials into goods, e.g. steel into cars or textiles into clothing,

¢ and tertiary: the supplying of services, e.g. baby-sitting or
banking.

A raw good such as iron flows through the three sectors by being
mined and refined into steel (primary sector), being transformed
into a car (secondary sector), which is then sold to and used by
a laborer (tertiary sector).

In EVE, a similar distinction can be made. All EVE’s players
need a ship to travel around the fictional universe, and the pro-
duction of these ships from raw minerals (ore) plays a big part
in its economy. Though far from the only option a player in EVE
has to make money, a reasonable classification of player jobs is

* miners: extracting ore from the game,
¢ industrialists: converting ores into ships,

* consumers: engaging in missions the game provides or
in Player-Versus-Player (PVP) activities, destroying ships in
the process.

51



52

REPLICATING EVE MARKET STRUCTURE THROUGH ABM

I built an ABM based on this classification, with agents shift-
ing between the three sectors. Rather than focusing on e.g. ‘fun-
damental” price and historical price based agents [CPZo1], this
model focuses on the creation and consumption of goods, and
the market that emerges from agents trying to maximize their
profit. The model is then driven by the law of supply and de-
mand on one side, with agents having the desire to possess a
ship, and profit maximization on the other. Some potential ben-
efits of this approach include:

¢ The life cycle of a good is similar to one in the real world,
where goods are created from raw materials and later con-
sumed. This cycle may be of importance in the emergence
of stylized facts in certain markets.

o If stylized facts emerge, they are shown not to be limited to
ABMs which limit themselves to different types of financial
traders.

¢ In addition to following market prices, this approach al-
lows us to later on use the model to investigate the impact
of several parameters on the wealth distributions between
different agent jobs. This could then be compared to the
wealth distributions of the real world.

The initial goal of the model is to create a stable market by mim-
icking EVE player behavior. If an equilibrium is reached, the
price behavior can be studied where stylized facts may or may
not be present.

In the following sections, the implementation of the model is
explained in greater detail and its robustness is tested. Subse-
quently, the ABM’s market is investigated in in the same way as
those of real and virtual markets in the previous chapters..

4.2 IMPLEMENTATION OF THE MODEL

Job Activity Market Activity Adjust Prices Change Job

Figure 27: Flowchart depicting general agent activity.

Consider a set of N agents who wish to maximize their profit.
At any time, an agent has one specific job, providing the agent
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with either ores (miner), tools of production (industrialist), or a
source of cash income (consumer). The ores are used in the pro-
duction of ships, which occasionally get destroyed. The source
of cash income for consumers mimics tasks that players in EVE
can complete in order to gain money.

At every timestep t = 1,2,..., an agent undergoes the follow-
ing steps:

1. The agent practices his job,
2. The agent attempts to sell (buy) goods on the market,
3. The agent adjusts his prices to sell (buy) goods,

4. The agent potentially changes jobs if he expects higher
profits elsewhere.

Fig. 27 shows a flowchart of this general behavior. In the follow-
ing subsections, I explain the four steps in detail.

4.2.1 Job activity

S M —————— e —————

|—> Miner »| Gain ores
Agent Industrialist

> Convert ores to ships

L Consumer »{ Gain cash »| Interact with other agents

Figure 28: Flowchart depicting agent job activity.

Fig. 28 depicts basic job activity in the model. As a miner, an

agent receives a set amount of ores AllC every time step. As an

. . . inc . .
industrialist, an agent converts up to A% p Ores n ships per turn,

with a 1-1 ratio. As a consumer, an agent receives A", money.
In addition, consumers are allowed to interact with other agents.
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They do so with a probability of {77/"® per time step, consuming

theirs or their target’s ship in the process.

Ores(t+1) = Ores(t) — min(Ores(t), Aé?zfp)

Job = | Ships(t+1) = Ships(t) + min(Ores(t), A<

{Cash(t—i—l) = Cash(t) + Al
\

(31)

4.2.2 Market activity

Agent

Sell Buy
ores Ore Market ores

Miner

Consumer Industrialist

Buy . Sell
ships Ship Market ships

Figure 29: Flowchart depicting market activity of agents.

Agents participate in the market by placing orders that last
for 7,4, time steps. Orders can take two forms: buy orders, a
request to buy a certain amount of goods for a certain price,
and sell orders, a request to sell a certain amount of goods for a
certain price. An agent seeking to sell a good will first look at
all available buy orders on the market for that same good. If buy

orders are present with a higher price than his sell price p*¢(t),

(Ores(t +1) = Ores(t) + A"¢ if miner,

if industrialist,

cash if consumer.
Agent interaction with probability </

int



4.2 IMPLEMENTATION OF THE MODEL

the agent will fulfill the most expensive one. If no such order is
available, the agent will place a sell order for p*°’'(t). A similar

reasoning holds for placing buy orders at price p?*¥(t), fulfilling
the cheapest available sell orders first if their price is lower than
pP(t). Agents will only place an order after attempting to fulfill
available complimentary orders. This implementation of market
activity replicates the one of EVE.

In the model, two types of goods are traded: ores and ships.
Ores are traded in a continuous manner, whereas ships are dis-
crete. Miners sell all ores in their possession, and buy ships if
they have none. Consumers, potentially having ores left if they
were a miner in the previous time steps, do the same. Industrial-
ists buy ores, and sell the ships they create. This market activity
is shown in Fig. 29.

4.2.3 Price adjustment

------------- | T o
—>»! Market Activity : Adjust Prices I Change Job i
L 1 L [

55

Decrease price

—>»| Buy Price

Increase price

Agent [

Approach
market price

Decrease price

L>»| Sell Price

Increase price

Figure 30: Flowchart depicting agent buy and sell price modification.

An agent keeps four prices piiil’sbhbll.;yj (t) in his memory, at which

he will place sell (buy) orders for ores (ships). Every time step,
these prices are multiplied or divided by a factor p > 1, in such
a way that the agent maximizes his profit.
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For sell prices of a good,

e If the agent sold a good in the previous time step, he will
increase his p*°/(t) in an attempt to increase his profit.

¢ If the agent sold nothing but has outstanding sell orders,
pse” (t) is too high and he will decrease it.

¢ If none of the above are true, the agent approaches the
cheapest sell order remaining on the market. If no sell or-
ders remain, the agent will approach the most expensive
buy order remaining on the market. If no such orders are
available either, the agent will decrease his sell price.

For buy prices, a similar reasoning holds,

e If the agent bought a good, he will decrease p”*¥(t) in an
attempt to lower his expenses.

e If the agent bought nothing but has outstanding buy or-
ders, p?(t) is too low and he will increase it.

¢ If none of the above are true, the agent approaches the
most expensive buy order remaining on the market. If no
buy orders remain, the agent will approach the cheapest
sell order remaining on the market. If no such orders are
available either, the agent will increase his buy price.

This is represented by Fig. 30. Only local information is used
in the adjustment of an agent’s prices: his own price sales history,
and the price extrema of the openly accessible market.

4.2.4 Job change

After having practiced a job for 7j,, time steps, the agent will
start to potentially change jobs. He does so by comparing his
current profit with the expected profit of other jobs every time
step.

The agent’s current profit Pi(t) takes all gains and losses of
cash into account, and is calculated as a moving average over a
time interval t — Tjobs s b — 1,t.
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_______________________________________

Change Job

> Miner —
Calculate Change to
Agent I expected »| Industrialist » higher profit
profits job
»| Consumer |—

Figure 31: Flowchart depicting agent job change.

The expected profit P; ., (t + 1) is calculated using the agent’s
current prices and his expected income of goods:

pecl (1) - Alne for j = miner,
b . . . 1
Pexp (t+1) = (pgzlllp( ) — Pore (t )) A;’Zlfp for j = for industrialist,
Aé’;gh for j = for consumer.
(32)

These expected profits are then multiplied by a factor ;. The
value of yu; is built up when the agent practices job j, and ac-
counts for all potential differences between the expected profit
calculation and actual job profit. In the base model, these differ-
ences come from mismatched supply and demand.

PP(t+1) — g PP (E+1)
. P; (33)
th u; = e S
with p; <P].EXP(t +1) >j

where (-); indicates the moving average over time steps where
an agent practiced job j. To limit the amount of parameters of
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the model, the time over which this moving average is taken is
set to Tjgp.

After calculating the expected profits for other jobs Pf;i(t +
1), the agent compares them to his current profit P(t). Should
Pf;i(t +1) > Pi(t), the agent will potentially change from job
k to I. The probability of this change grows exponentially to a
maximum value of §cjgpge , Shown in Eq. 34.

gchange .eA~(Pf;i(t+1)*Pk(t)) if Pexp(t +1) —D(t) < B

Prk —1)=< eAB -1 1k
Cchange otherwise,

(34)

where A determines the strength of the exponential increase,
and B determines at which profit difference the maximum value
Gchange 18 reached. In the model, both were set to 2.

4.2.5 Additional details

Consumers receive cash every time step, which could cause con-
stant inflation of prices. To prevent this, a cash sink may be re-
quired. Inspired by video games, this was implemented here in
the form of agents ‘quitting’. At every time step, an agent has
a probability ¢, to quit, replacing him with a new agent one.
The starting job of the new agent is randomly chosen, and its
starting prices lie anywhere between the current orders on the
market.

The agents as described above fulfill the requirements men-
tioned in section 1.6.2. In the next section, the equilibrium state
of the model and its resulting price behavior are examined.
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4.2.6  Summary of symbols and parameters

* N: number of agents in the simulation

¢ T: total time steps of the simulation

e f: current time step

e 7: time difference, or lag

* j:an agent’s job (miner, industrialist or consumer)

o nj(t) = N'—(t)’ j =m,i,c : fraction of miners, industrialists

]
and consumers at time step ¢

Zilelsl:?;(t) an agent’s individual sell (buy) price for ores
(ships) at time step ¢

® Poreship(t): the market’s average price of all sold ores (ships)
at time step ¢

* Pi(t),j =m,i,c: actual profit of an agent at time step ¢ with

job j
. P;XP (t), j = m,i,c: expected profit of an agent at time step ¢
for job j

Non-arbitrary parameters
inc. ; ’ ; :
* Al aminer’s ore income per time step

inc . ’ ; ;
e Al aconsumer’s cash income per time step

J Aé’;lfp: an industrialist’s ship production per time step

e (77" a consumer’s random interaction chance per time

step
* p:an agent’s multiplicative price change per time step

* Tj,: amount of time steps over which actual profit is aver-
aged, and after which an agent can change jobs

® T,der: duration of a market order in time steps

* Cquit: an agent’s agent quit chance per time step
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4.3 BASE MODEL RESULTS

In this discussion, the base model will refer to the implementation
described above, with the following parameters:

1 forj=m
hd Vl]'(t = O) = J
o otherwise,

* 0 =1.003,
inc _ AINC _ AINC _ xCONS _
* Ngre = Acash - Aship = 6int = L
® Tjop = 50,
® Torder = 5/

¢ gchange = 0.1,
® Cguit = 0.001.

The results of such a run can be seen in Fig. 32 for N = 10000
and T = 20000. On these images, subfigure A) shows the num-
ber of agents with a specific job, and B) and C) show the aver-
age prices of completed sell orders for ores and ships per time
step. After an initial thermalizing phase, the system reaches a
dynamic equilibrium at approximately 3000 time steps.

The ore and ship prices in B) and C) are not comparable to
those of EVE or the real world. A high degree of periodicity is
present and the system switches between states with different
agent job fractions. The model behaves according to changes
in supply and demand, caused by the interplay between the
agent job distribution and prices. If the demand for e.g. ships
is too high, industrialists will increase their sell price. As prices
go up, expected profit of industrialists will go up and agents
start to change to that job. At a certain point, supply exceeds de-
mand, and prices will start decreasing. This cycle repeats itself
and leads to periodic price behavior.

This periodicity is reflected in the markers for stylized facts
seen in Fig. 33. Subfigures B) and C) show autocorrelations of
both normal and absolute log-returns that are much larger than
zero. The cause of this can be seen in Fig. 34, where the log-
returns show periodic behavior. This is a direct result of the
regular increasing and decreasing of prices. Upward slopes of
the general price motif generate positive log-returns, whereas
downward slopes generate negative ones.
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4.4 ROBUSTNESS OF THE MODEL

Simulation (N = 10000, T = 20000)
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Figure 32: Results of the base model as described by 4.3. Subfigure A)
shows the distribution of agent jobs; B) and C) show the
average prices of completed sell orders for ores and ships.

The PDFs in D) exhibit bimodal behavior, as seen in the bi-
modality coefficient in F). Like the autocorrelations, this results
from the periodic nature of the prices. Prices move up (down) in
consistent patterns and the probability of finding positive (nega-
tive) log-returns increases.

In the next section, the model is tested for robustness with
regards to a variety of parameters. Afterwards, the ABM is mod-
ified as to better approximate real markets.

4.4 ROBUSTNESS OF THE MODEL

Ideally, the equilibrium state of the ABM should not be highly
dependent on the arbitrary choices made in the base implemen-
tation. As long as the values of these parameters are within rea-
son, their impact should remain limited and predictable. The
following lists a number of simulations that tested the general
behavior of the model.

4.4.1 Number of agents

As mentioned in section 1.6.2, some ABMs only operate properly
within a certain range of agents. The equilibrium arising in the



62 REPLICATING EVE MARKET STRUCTURE THROUGH ABM

SIMULATION
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Figure 33: Stylized facts of the base model as described by 4.3.



4.4 ROBUSTNESS OF THE MODEL

Simulation Ship Log-Returns (r = 1 Time Step)
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Figure 34: Log-returns of base model as described by 4.3.

ABM of this thesis should be unaffected by the agent count. A
higher number of agents will increase demand for goods, but
also their supply. Only when the amount of agents drop below
a reasonable number will the market break down as a stable
supply of goods can no longer be guaranteed.

Fig. 35 shows simulation results for N = 100 (1), 1000 (2) and
10000 (3) agents. Their equilibrium states are comparable. As ex-
pected, the fluctuations are larger for a smaller system size. The
decreasing trend in subfigure 1C) is a statistical fluctuation, and
does not indicate a significant difference from the base model
results.

4.4.2 Starting distribution of agent jobs

The starting distribution of agent jobs may prevent the model
from reaching a stable equilibrium. Fig. 35 shows a comparison
between three extreme starting situations: all miners (1), all in-
dustrialists (2) and all consumers (3). The lower prices at the start
of 2C) are seen in other simulations as well (e.g. Fig. 35 1C) and
do not indicate any significant difference from the base model
results. The ABM reaches the same equilibrium in all cases.
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£
- 12000 14000 16000 18000 20000 12000 14000 16000 18000 20000 . 12000 14000 16000 18000 20000
Time step Time step Time step
Figure 35: Comparison of base model implementations with varying
number of agents. Subfigure 1-3) show simulations with re-
spectively N = 100, 1000 and 10000.
£

12000 14000 16000 18000 20000 12000 14000 16000 18000 20000 12000 14000 16000 18000 20000
Time step Time step Time step

Figure 36: Comparison of base model implementations with changed
starting agent distributions. Subfigure 1-3) respectively start
with all miners, all industrialists and all consumers.
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Figure 37: Comparison of base model implementations with changes
to the arbitrarily chosen parameter values of Eq. 34. Subfig-
ure 1) shows the base model, 2) increases the strength of the
exponential increase A to 3, 3) lowers the profit difference B
at which &¢jang, is reached to 1, and 4) lowers the maximum
change probability ¢ pange to 0.01.

4.4.3 Job change parameters

The probability to change jobs was implemented with an expo-
nential function described in Eq. 34. Fig. 37 shows some varia-
tions of its parameters: the maximum probability to change per
turn Gepange and the scaling factors A and B. A higher exponen-
tial increase A in 2) has no significant impact on price behavior
when compared to the base model 1). In 3), agents change at
lower profits, which decreases the magnitude of price fluctua-
tions as the changes in supply and demand happen more rapidly.
In 4) agents are slower to move between jobs, causing the op-
posite effect: price fluctuations are larger, and their periodicity
decreases. In summary, the general behavior of the model is not
altered by changing these parameters.

4.4.4 Price change

In Fig. 38, a comparison can be seen between different values of
price change p. The base model implemented p = 1.003 whereas
for subfigures 1-4), this value is respectively 1.03, 1.005, 1.001
and 1.0003. The effect is as expected. For large p, changes in sup-
ply and demand quickly inflate the prices, and agents frequently
switch jobs. When p is small, agents are given more time to adapt
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Figure 38: Comparison of base model implementations with changed
values of p. The base model uses a p = 1.003; subfigures 1-4)
use respectively 1.03, 1.005, 1.001 and 1.0003.

to small profit increases. This results in a more stable agent job
distribution, and a slower market.

4.4.5 Order duration

As market order cannot be updated, the duration of orders may
affect the general behavior of the model. Once a sell or buy order
is placed, it will either be fulfilled at its initial price, or expire
after 7,,4., time steps.

Placing a sell order at a high price removes the goods from
an agent’s inventory. If 7,4, is small, the agent will quickly
recover these goods and re-place them for his adjusted price.
Upon reaching a suitable sell price, he can sell these accumu-
lated goods all at once. In contrast, for large 7,,4.,, expired or-
ders are returned and re-placed incrementally later on. These
may lead to different volumes being sold at different time steps,
affecting the average price.

Ongoing buy orders on the other hand will prevent agents
from placing additional buy orders at higher prices, as they have
no desire risk the purchase of excess goods. A small 7,4, will re-
sult in the buy orders reflecting the agent’s buy price at all times—
similarly to sell orders. For large 7,4, however, the agent will
continuously decrease his price: no goods are being purchased,
but he cannot change his buy order. When the order eventually
expires, a new buy order will be placed for a substantially lower
price.
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4.5 FINE-TUNING THE MODEL
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Figure 39: Comparison of base model implementations with changed
values of T,,4.,. Subfigure 1) lowers 7,4, to 2 timesteps, 2)
shows the base model with 7,4, = 5, 3-4) increase T,,4., to
respectively 10 and 25.

The combination of these effects make the impact of changes
in Ty, difficult to quantify. Fig. 39 shows simulation results
for 7,,4., of respectively 2, 5, 10 and 25. Higher values of 7,4,
appear to decrease the price fluctuations and stabilize the agent
job distribution. This could indicate that when agents change
to jobs with a higher profit, initial price values prevent them
from immediately impacting the market. When they return to
the market after their order expires, heavily adjusted prices may
then cause a mean-reversing effect.

4.5 FINE-TUNING THE MODEL

The base model seems to be robust to changes in its parameters.
However, the resulting price behavior is too periodic to be com-
parable to that of real markets. Several methods to introduce
randomness to the system were investigated, and in this section
I argue how their implementation might lead to a better approx-
imation of real markets.

4.5.1 Uncertainty of target price

In the base model, agents not participating in a type of market
activity will approach the price extrema of orders still on the
market. A realistic agent might not be interested in keeping track
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of such a market, which introduces uncertainty to this target
price.

A price uncertainty of x on price p causes an agent to see that
price at any value between p - x and p/x. For sell prices, the
probability is skewed to the increasing side: agents prefer to sell
for more (potentially increasing their profit) rather than less. The
opposite holds for buy prices.

Fig. 40 shows the results for various degrees of uncertainty
of the target price. Prices are confined within a smaller region
and the agent job distribution is constant. A possible explana-
tion of this is the following. When prices are increasing due to a
change in supply and demand, agents that change their job with
perfect information will have a price close to that of their new
competitors, and they will contribute to the general behavior of
the price. With imperfect information, some agents will arrive
at the new job with higher prices, and others with lower ones.
Those with optimistic prices (e.g. high sell prices) will have no
impact on the market as their orders will not be fulfilled. Those
with pessimistic prices will steal customers from the old com-
petitors. This counteracts the change in price that led them to
change jobs in the first place, resulting in a mean-reversing ef-
fect that stabilizes the market. As prices fluctuate less, so does
the expected profit of agents, and their job distribution remains
more constant.

In summary, the base model can be said to exhibit a form
of herding behavior, where all agents aim for the same price.
Adding uncertainty limits this, reducing the regularity and size
of price changes.

4.5.2 Random price changes

The agents in the base model are perfectly rational, increasing
or decreasing their price based on sales made at every time step.
Real agents may be more fickle in their behavior, adjusting prices
randomly rather than based on their history. This was imple-
mented by changing an agent’s prices at random with probabil-
ity ¢, every time step, besides the normal history-based change.

Fig. 41 shows the different model equilibriums for several val-
ues of . The effect of random price adjustment is similar to
that of price uncertainty in the previous section. Both implemen-
tations result in agents occasionally acting against their best in-
terest, which slows down changes in average prices. The agents
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Figure 40: Comparison of base model implementations with added tar-
get price uncertainty. Subfigure 1) shows the base model,
2-4) add price uncertainties of respectively 1.1, 1.5 and 2.

are given more time to adapt to changes in supply and demand,
and less extreme prices are seen.

4.5.3 Successive shocks

Finally, I apply shocks to the system, defined as an abrupt change
in a parameter that slowly decays over time. These replicate ex-
ternal events that impact the market in some way. In the real
world, an example could be a temporary conflict affecting the
supply of a good. To mimic this, A was modified at random
time steps by a randomly chosen amount, lasting for a randomly
chosen duration. These random values were drawn from a dis-

tribution of the form

A-(—Inx+1)*F (35)

with A and B scaling parameters and x indicating uniform num-
bers between zero and one. The resulting shocks have a magni-
tudes that are generally confined between o.5 and 2, for dura-
tions between 75 and 250 time steps.

Results of a simulation applying these shocks with a probabil-
ity of 0.004 per time step are shown in Fig. 42. The shocks do
not appear to affect the general price motif, but they increase
the volatility during certain intervals. As they alter the supply
of ores which becomes reflected in the prices, this is an expected
result.
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Figure 41: Comparison of base model implementations with added
random price changes. Subfigure 1) shows the base model,
2-4) add random change probabilities of respectively 0.1, 0.5
and o.75 per time step.
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Figure 42: Results of the base model with added ore income shocks
with a probability of 0.004 per time step, indicated by the
vertical lines.



4.6 DISCUSSION AND FUTURE PROSPECTS

4.5.4 Impact on stylized facts

The previously discussed addition to the model may improve its
ability to generate stylized facts. Price uncertainty and random
price changes reduced the large patterns of price fluctuations,
which affects the autocorrelation of the log-returns. Successive
shocks give rise to larger fluctuations in the prices, and could
generate fat-tailed behavior.

Fig. 43 shows the stylized facts for ores of a simulation that
combined a price uncertainty of 2 and a ¢, = 0.25 with ran-

dom A}}; shocks. The autocorrelation in subfigure B) is slightly
negative for shorter lags for reasons that are not directly clear,
but it quickly becomes indistinguishable from zero. The autocor-
relation of the absolute log-returns in C) remains significantly
larger than zero: clustered increases in volatility are introduced
by the A¢ shocks. In D-F), fat-tailed behavior is present which
decreases as T increases. Fig. 44 shows that for log-returns of
ship prices the stylized facts are less clear, but still visible to
some degree.

46 DISCUSSION AND FUTURE PROSPECTS

In summary, the base model gives rise to a dynamic equilibrium
with prices reflecting supply and demand of goods. The model
appears robust to changes in many of the chosen parameters,
whose impact on general price behavior is as expected.

Periodic changes in the ABM’s supply and demand result in
price patterns that appear different from those of real markets.
High autocorrelations are present in the log-returns, indicating
alternating periods of increasing and decreasing prices. This is
also visible in the PDFs of the log-returns, showing bimodal
rather than (fat-tailed) Gaussian behavior.

To better approximate real markets, imperfect information, ir-
rationality and random external influences were added to the
model. These were implemented in the form of uncertainty with
regards to market prices, random price change behavior and
shocks. Their addition caused the emergence of stylized facts
in both ore and ship prices.

Random GBM as seen in section 2.2 does not exhibit styl-
ized facts, but some degree of randomness appears necessary
to generate them in this model. These results cautiously suggest
that real markets may operate under a certain balance between
randomness and the law of supply and demand. A highly ran-
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Figure 43: Stylized facts of ore prices in the base model with added
price uncertainty of 2, {, = 0.25 and random ore income
shocks. The strength and duration of each shock was chosen
randomly.
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Figure 44: Stylized facts of ship prices in the base model with added
price uncertainty of 2, {, = 0.25 and random ore income
shocks. The strength and duration of each shock was chosen
randomly.
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dom market may be too unstable, whereas too little random-
ness would allow participants to abuse patterns to increase their
profit. Perhaps markets self-organize to a region where the inter-
play of both effects gives rise to stylized facts.

However, the EMH mentioned in the introduction states that if
the market participants possess more accurate information, the
price behavior will appear more random. This is not seen in the
ABM that was presented in this thesis. The base model exhibited
less random behavior with better information when compared
to section 4.5.1. As the model is built using basic assumptions
of profit maximization and the law of supply and demand, it
remains an open question why its results are contrary to what
the EMH suggests.

The ABM created for this thesis was designed to be easily
adaptable, and could play a role in further research. Possible
additional modifications include:

¢ Adjusting the price changing behavior of agents as to bet-
ter approximate that of real market participants.

¢ Increasing the learning behavior of agents, allowing them
to adopt different strategies in order to maximize their
profit.

¢ Implementing additional job change functions in addition
to the profit-driven one.

* Making the income of agents dependent on proficiency or
time spent at a certain job.

¢ Expanding the trading mechanisms to allow for direct ex-
change of goods in addition to through the market.

¢ Adding more job types, such as traders that attempt to buy
low and sell high.

¢ Increasing the social aspect of agents by allowing them to
set up supply chains, form firms, or form loyal bonds with
others.

¢ Adding movement to the model with resource gain de-
pending on the location.

These may or may not be required to create the empirical fea-
tures seen in real markets. However, as ABMs become more
complex, specifying the underlying mechanics that give rise to
the emergent features becomes more difficult. If the origin of the



4.6 DISCUSSION AND FUTURE PROSPECTS

stylized facts is to be determined, the simplest approaches ought
to be exhausted first. It is my hope that the model presented in
this thesis, mimicking the market structure of EVE using the law
of supply and demand, added to the discussion in a meaningful
way.
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CONCLUSION

The first goal of this thesis was to investigate the prevalence of
economic stylized facts. In specific, the fat-tailed behavior, ag-
gregational Gaussianity, volatility clustering and absence of au-
tocorrelation of log-returns were studied. Time series of daily
frequency prices were obtained for goods ranging from stocks
to raw metals and food. Most of these markets exhibited the styl-
ized facts to some degree— but not all. This may indicate that the
underlying mechanisms that generate the facts are not present
in some markets, or that additional factors prevent them from
appearing.

I then turned to the virtual world of EVE Online. EVE’s eco-
nomic structure is unlike that of most real countries and its mar-
kets could behave differently. However, similarly to real markets,
stylized facts appear with varying consistency. This supports the
claim that economies in real and virtual worlds are compara-
ble. Perhaps in the future, video games could serve as a testing
ground for economic concepts with social impacts that are diffi-
cult to predict, such as basic income.

Finally, an Agent-Based Model inspired by the dynamics of
EVE was constructed. The base implementation resulted in a dy-
namic equilibrium with periodic price behavior. The ABM was
then tested for robustness under change of its parameters. This
had no unexpected impact on the model dynamics. Several im-
plementations were then added to increase randomness in the
system. These did not impede the model’s ability to reach an
equilibrium, but resulted in price behavior that more closely re-
sembled that of real markets.

The base implementation of the model showed no sign of the
stylized facts introduced in chapter 1, and observed in real and
virtual markets as discussed in chapters 2 and 3. Under addi-
tional randomness, implemented in the form of imperfect infor-
mation, irrational behavior and shocks, they seemed to appear
in the ABM. This could mean that a certain degree of noise plays
an important role in the emergence of stylized facts.
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APPENDIX

This appendix includes the results for real and virtual markets
that were investigated but not discussed in the thesis. All use
daily frequency data, whose source will be mentioned in the
figure caption. Data gaps (weekends in the real world) were
ignored— Friday and Monday were considered successive days.
Unless specified in the figure caption, no data cleaning took
place.
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Figure 45: Daily NASDAQ opening price between 1971-02-05 and
2017-02-02, retrieved from [Qua17a].
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Figure 46: Daily S&P opening price between and 1950-01-03 and 2017-

04-13, retrieved from [Qua17ya].

81



82 APPENDIX

REAL WORLD

Nikkei Log-Returns (Daily Prices)

40000 -
30000
U< 25000
ju % 20000
&= 15000
10000
5000 - : . . .
c 10 01/01/1986  01/01/1990 01/01/1994 01/01/1998  01/01/2002 01/01/2006 01/01/2010 01/01/2014
B o5 -
[]
EZ 00
8: ~05 - === Autocorrelation
-8 o 99% confidence
I -l0 - : .
cw 10 9 20 Lag (days) 40 60
oc '
Eg 0.5 -
[9]
S 00 -
88 ~05 - Autocorrelation
.g ‘f 99% confidence
o -1.0 - . .
< 0 20 Lag (days) 60
0 o I3 i 2 ~
10° % J . ] ,:‘ % ". .‘. i / “-
1 e - I '. E i\
107 v oo LA e T T
107 4 ° - @ o @ e e - @
N -0.1 0.0 0.0 0.2-0.2 0.0 0.2-0.2 0.2-0.3 0.0 0.3
100 - ", = - “:
H & L H H H
w0 5 f % J1__ i SN
0t 5 . 1 B
E | k! . : H g » ey
w 10?7 - P t
a : [ = =
E -0.3 0.0 0.0 0.5-0.5 0.6-0.6 0.0 0.6 @
© H g g g
o g F, 3 E g
£ 10° ‘.-“'\‘ = .m- - A
ey g P kY E £ LY g H & %
£ 10" 4 F CINENT 8 He Yo 2 f = -
w E oo o 7o | i *
107 - - . il . E *
1 (i =l i | Bl i
-0.6 0.0 0.6-0.7 0.0 0.7-0.6 0.0 0.6-0.7 . 0.8-0.9 0.0 0.9
10° e A -~ i A e A - A o~
I i T S T R i S R Ve ot SR )
100 - Gl 2 S _iba v YAy N/ N\ oA ~
107 -
i | : I EONNEE Y R i .
-0.9 0.0 0.9-0.9 0.0 09 -1 0 1-1.2 0.0 1.2-1.3 0.0 1.3-1.2 0.0 1.2
Log-return (bold numbers indicate different 7 (days))
10° 1.0 - 430 30
= Bimodality Coefficient
= Excess kurtosis H 2.5 —425
L 08- = Excess Hogg coefficient -Ea
c 420 o
W . @ n ©
10" Y 5 =
5 £ 2lis G
© 8 = S
© © <
[S] > 1.0 g
.: e 0 o
3 === Standard Gaussian % $ T
£ 2 _|e®e® 7=1day o ><uO.S -
5 107 - B o [ o
J|e®e =3 days IS 1]
J|e®e = 6days ] - 0.0 ;é
| 7= 10 days V8]
| 7= 15 days -4 -05
7= 30days
10-3 4 T T T ! ! | 0.0 - | | ! ! | I I 410 d4-10
-4 -3 -2 -1 0 1 2 3 4 0 50 100 150 200 250 300 350 400
Standardized log-return 7 (days)

Figure 47: Daily Nikkei

225 opening price between 1984-01-04 and

2017-04-12, retrieved from [Qua17al.
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Figure 48: Daily DAX opening price between 1990-11-26 and 2017-04-

12, retrieved from [Qua17al].
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Figure 49: Daily Mont Belvieu propane price between 1992-07-09 and
2017-04-10, retrieved from [Dat17].
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Figure 50: Daily zinc price on the London Metal Exchange between
2012-01-03 and 2017-04-13, retrieved from [Qua17b].
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Figure 51: Daily tin price on the London Metal Exchange between 2012-
01-03 and 2017-04-13, retrieved from [Qua17b].
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Figure 52: Daily 10:30 A.M. (London time) gold fixing price on the
London Bullion Market between 1999-01-04 and 2017-04-05,
retrieved from [Dat17]. No post-processing.
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Figure 53: Daily copper price on the London Metal Exchange between
2012-01-03 and 2017-04-13, retrieved from [Qua17b].



REAL WORLD

APPENDIX

Canola Oil Log-Returns (Daily Prices)

800 —
—~ 600 —
Q
L& s00 -
a 2 400 -
300 -
c 10 01/01/1998 01/01/2002 01/01/2006 01/01/2010 01/01/2014
B o5 -
9]
E2 00 -
o' : ]
= O 99% confidence
I -l0 - | Lo (d |
cw 10 0 20 ag (days) 40 60
oS¢
=
25 L
E= 00 -
88 ~05 - Autocorrelation
Swm 99% confid
4:.; “ 1o o confldence
5 -1.0 - | !
< 0 20 Lag (days) 40 60
g o E g g E g
10! - i £\ E 4 E A = £ E Pt
oe & L E L K 0 K R
o f S o f ‘-..- -, f .‘: -_“ f L ":‘ j A "-.’- f . ¢
L0 .0 0.1-0.2 0.0 0.2-0.2 0.0 0.2-02 0.0 0.2-0.2 0.0 0.2
10t ~ -~ -~ -
. : Rt N Y
10° - -~ # X o S N =t 3 %
i >l ra by S - H o %
10-1 _§ o _§ . nl‘ I '.‘ _§ ",_ \.“.
w 2 g
A 107 - 1 = n =
o -o0. . . 0.2-0.3 0.0 0.3-0.3
o : h h
o g e E g g
€100 4 & 0™ - ."m\ﬂ - § -
= H & 1Y % I e
€ 101 L & . i v | el i
o o £ e E ] Bl 3 £
: {1, o il i
-05 0.0 05-0.6 0.0 0.6-0.6 . 0.
0 - I i . o _’ v i oy 1 S
S 2 N e N e N P RN L N T
10t o M N\ wF W\ 4 18 N\ . .
L/ : = H E H 2
10?2 f "\ - + +
= (79 (%0 i [e08) i [(1122) | : ([1338) | : (1554
-11 0.0 11-09 0.0 0.9-0.8 0.0 0.8-0.8 0.0 0.8-09 0.0 0.9 -1 0 1
Log-return (bold numbers indicate different 7 (days))
10° 1.0 - 430 30
= Bimodality Coefficient
= Excess kurtosis H 2.5 —42.5
L 08- = Excess Hogg coefficient -Ea
s 20 420 ©
4 o
5 10t o 2 &
Q b= 1.5 of15 @
() ﬂJ £ o
= o 5 ]
[ v 1.0 310 ©
= > n o))
= - = 0 o
3 === Standard Gaussian ° ) T
I 102 - @%9 7 =1day \ -8 0.5 ><LrO.S "
w g* 7= 3days N N £ w 4
:... 7 =6 days ] 0.0 - 0.0 ;é
| 7= 10 days V8]
7= 15 days -05 H-05
7= 30days
10-3 4 T T T ! ! | 0.0 - | | ! ! | I I 410 d4-10
-4 -3 -2 -1 0 1 2 4 0 50 100 150 200 250 300 350 400

Standardized log-return

7 (days)

Figure 54: Daily canola oil futures price on the Chicago Mercantile Ex-
change between 1995-09-28 and 2017-05-15, retrieved from

[Qua1yb].
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Figure 55: Daily corn futures price on the Chicago Mercantile Ex-
change between 2005-01-03 and 2014-12-31, retrieved from

[Qua1yb].
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Figure 56: Daily pork belly oil futures price on the Chicago Mercan-
tile Exchange between 2001-02-28 and 2002-02-25, retrieved
from [Qua17yb].
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Figure 57: Daily soybean futures price on the Chicago Mercantile Ex-
change between 2005-01-03 and 2014-12-31, retrieved from

[Qua1yb].
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Figure 58: Daily cotton futures price on the Chicago Mercantile Ex-

change between 2005-01-03 and 2014-12-31, retrieved from
[Qua1yb].
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Figure 59: Daily ethanol futures price on the Chicago Mercantile Ex-
change between 2011-10-03 and 2017-05-15, retrieved from

[Qua1yb].
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Figure 60: Daily steel rebar futures price on the Shanghai Futures Ex-

change between 2013-10-16 and 2017-05-15, retrieved from
[Qua1yb].
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Figure 61: Nocxium ore daily price in EVE between 2003-10-01 and
2016-04-23, courtesy of [Gam17].
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Figure 62: Mexallon ore daily price in EVE between 2003-10-01 and
2016-04-23, courtesy of [Gam17].
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Figure 63: Megacyte ore daily price in EVE between 2003-10-01 and
2016-04-23, courtesy of [Gam17].
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Figure 64: Isogen ore daily price in EVE between 2003-10-01 and 2016-

04-23, courtesy of [Gam17].
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Figure 65: Atron ship daily price in EVE between 2003-10-01 and 2016-

04-23, courtesy of [Gam17]. Peaks removed.
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Figure 66: Condor ship daily price in EVE between 2003-10-01 and
2016-04-23, courtesy of [Gam17]. Peaks removed.
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Figure 67: Executioner ship daily price in EVE between 2003-10-01 and
2016-04-23, courtesy of [Gam17]. Peaks removed.
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Figure 68: Slasher ship daily price in

Standardized log-return
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Figure 69: Average ore (tritanium, pyerite, noxcium, mexallon, mega-
cyte, isogen) daily price in EVE between 2003-10-01 and
2016-04-23, courtesy of [Gam17].
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Figure 70: Average ship (atron, slasher, executioner and condor) daily
price in EVE between 2003-10-01 and 2016-04-23, courtesy
of [Gam17]. Peaks removed.
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