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Abstract 

The scrotal circumference of yearling bulls and its relation to productive and reproductive traits has 

been previously studied in major commercial beef breeds. This study evaluates the heritability of 

yearling scrotal circumference and its relation to weight traits in Black Hereford cattle.  

 
Records for yearling scrotal circumference (YSC; n = 894), birth weight (BW; n = 2350), weaning weight 

(WW; n = 2077) and yearling weight (YW; n = 1434) were obtained in Black Hereford cattle. Genetic 

parameters were estimated using an animal model. The final model for YSC included the age at 

measurement as covariate and fixed effects of birth year, the observer and the age of dam. The final 

models for BW, WW and YW included the age at measurement (if available) as covariate and fixed 

effects of birth year, age of dam, sex and embryo transfer. Random effects in the four models were 

additive genetic effects. The four-trait animal model was fitted by best linear unbiased prediction with 

restricted maximum likelihood (co)variance estimates. A univariate model for yearling scrotal 

circumference was also estimated by a Markov chain Monte Carlo algorithm. 

 

Heritabilities were estimated at 0.49, 0.43, 0.47 and 0.45 for YSC, BW, WW and YW, respectively. These 

estimates are moderate to high and indicate that selection for these traits is possible in Black 

Herefords. Genetic correlations of 0.22, 0.54 and 0.59 were found between YSC and BW, WW and YW, 

respectively. The genetic correlation between WW and YW was estimated at 0.89. The relation of YSC 

to the age at first calving in the bulls daughters could not be studied due to less consistent data of the 

age at first calving. An increase of YSC and weight traits was found in bulls of older dams. Expected 

progeny differences for YSC, BW, WW and YW were proposed for 4099 Black Herefords. These 

expected progeny differences can be included in a breeding program. 
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Samenvatting 

De scrotumomtrek bij jaarling stieren en de relatie hiervan met productie- en reproductiekenmerken 

is reeds vaak bestudeerd in verschillende commercieel belangrijke vleesveerassen. Deze studie 

evalueert de erfelijkheidsgraad van de jaarling scrotumomtrek en de relatie tussen de jaarling 

scrotumomtrek en gewichtskenmerken in het Black Hereford runderras. 

 

Jaarling scrotumomtrek (n = 894), geboortegewicht (n = 2350), speengewicht (n = 2077) en 

jaarlinggewicht (n = 1434) observaties werden verkregen voor 2532 Black Hereford runderen. Er 

werden genetische parameters geschat voor deze vier kenmerken door middel van een diermodel. In 

dit diermodel werden geboortejaar, leeftijd van de moeder, geslacht, waarnemer en embryo transfer 

als vaste effecten opgenomen, de leeftijd op moment van meting als covariabele en een additief 

genetisch effect als random effect. Het diermodel werd gefit door middel van best linear unbiased 

prediction met restricted maximum likelihood (co)variantie schattingen. Daarnaast werd het 

univariaat model voor jaarling scrotumomtrek ook geschat door middel van een Markov chain Monte 

Carlo algoritme. 

 

De erfelijkheidsgraden voor jaarling scrotumomtrek, geboorte-, speen- en jaarling gewicht werden 

geschat op respectievelijk 0.49, 0.43, 0.47 en 0.45. Er werden genetische correlaties tussen jaarling 

scrotumomtrek en geboorte-, speen- en jaarling gewicht geschat van respectievelijk 0.22, 0.54 en 0.59. 

De genetische correlatie tussen speen- en jaarling gewicht werd geschat op 0.89. Er werd een toename 

vastgesteld voor jaarling scrotumomtrek naarmate de moederdieren ouder zijn. De relatie tussen 

jaarling scrotumomtrek en de leeftijd van eerste kalving in vaarzen kon niet worden onderzocht door 

moeilijkheden bij de berekening van deze leeftijd. Bovendien werden er fokwaarden voor jaarling 

scrotumomtrek, geboorte-, speen- en jaarling gewicht berekend voor 4099 Black Hereford runderen. 

Deze fokwaarden kunnen gebruikt worden in het fokprogramma voor het ras. 
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The following list is the list of used symbols in the literature, material and methods and results sections, 

in order of appearance. 

 

𝑝 The measured phenotype 

𝑔 The genetic aptitude 

𝐸 The environmental effect 

𝑎 The additive genetic effect (equal to the true breeding value of the animal) 

𝑑 The dominance effect 

𝑖 The genetic interaction effect 

𝜎𝑝
2 The phenotypic variance 

𝜎𝑎
2 The additive genetic variance 

𝜎𝑑
2 The variance due to dominance effects 

𝜎𝑖
2 The variance due to interaction effects 

𝜎𝐸
2 The variance due to environmental effects 
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2 The (total) genetic variance 
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𝑛 The number of observations 

𝒀 The vector of dependent variables 
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𝒁 The random effects design matrix 
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𝑾 The common environmental design matrix 
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1 Introduction and research objective 

The Black Hereford is a recent beef breed and increases in popularity. It arose from crossings between 

Angus and Hereford cattle and combines the black coat from Angus with the feed efficiency of 

Hereford. After focusing on meat quality and production traits, breeders want to improve the 

reproductive traits of the Black Hereford.  

 

One of these points of improvement is the age at first calving of heifers. In optimal commercial 

conditions, the age at first calving is 24 months. In other beef breeds, this age at first calving is found 

to be a lowly heritable trait and thus direct selection for this trait would be slow. Nevertheless, the age 

at first calving is in other breeds found to be genetically correlated to the yearling scrotal 

circumference of the heifers father.  

 

The general objective of this study is to examine the relation between yearling scrotal circumference 

and weight- and reproductive traits. More in detail, the study will include: 

• The estimation of the heritability for yearling scrotal circumference in the Black Hereford 

breed, based on the available data. 

• The estimation of the heritabilities for birth -, weaning - and yearling weight. 

• The calculation of genetic correlations between yearling scrotal circumference, age at first 

calving, birth -, weaning - and yearling weight. 

• A proposal for breeding values for yearling scrotal circumference. These expected progeny 

differences can be used in a breeding program in order to decrease the age at calving in 

heifers. 

• A proposal for breeding values for birth -, weaning - and yearling weight. 

 

The literature review begins with an introduction to quantitative genetics and animal models. Next, 

the Black Hereford breed is discussed, followed by a section about the reproduction of cattle. Then, 

the scrotal circumference trait and its relevance to other production and reproduction traits is 

discussed, followed by a description of weight traits in beef cattle.  

 



 

 

Literature 
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2 Quantitative genetics 

2.1 Introduction to quantitative genetics 

The genotype of an animal is defined as the total of hereditary information present in the genome of 

the animal (Nicholas, 2010). This information is present in the form of genes. The phenotype is defined 

as the total of the actual observed characteristics and traits of the animal. Depending on the trait, the 

phenotype is caused by a single or by multiple genes. The traits influenced by only one gene are called 

monogenic. An example of a monogenic trait in cattle is the presence of horns (Nicholas, 2010). Traits 

which are influenced by a lot of separate genes are called polygenic or quantitative traits. Most of the 

observed phenotypes in cattle, such as growth, fertility, longevity and height, are polygenic. For these 

traits, dozens or even hundreds of genes work together to form the phenotype. The effects of these 

genes are often additive and cause a continuous variation in the observed phenotype (Lynch & Walsh, 

1998; Nicholas, 2010).  

 

For almost every polygenic trait, the observed phenotype is influenced by environmental factors. 

These environmental factor are typically feed, weather conditions and different management 

decisions. This results in the fact that the observed phenotype of an animal does not directly reflect its 

genetic value. The genetic value of an animal has to be estimated from the measured phenotypic 

values. Therefore, observed phenotypes can be described by the following additive model (Acquaah, 

2012; Nicholas, 2010) 

𝑝 =  𝑔 +  𝐸 + 𝑔 ∗ 𝐸 (2.1) 

where 𝑝 is the measured phenotype, 𝑔 the genetic aptitude, 𝐸 the total of environmental factors and 

𝑔 ∗ 𝐸  the interaction between genetic and environmental factors. In most models, the term 𝑔 ∗ 𝐸  is 

neglected to make computations more feasible. It should be noted that in some cases this term is not 

neglectable (e.g. when animals are genetically adapted to a certain environment). The genetic aptitude 

can be subdivided into (Nicholas, 2010): 

 𝑔 = 𝑎 + 𝑑 + 𝑖 (2.2) 

with 𝑎 the additive genetic component, 𝑑 the component due to dominance effects and 𝑖 the factor 

due to interactions between multiple genes, called epistatic effects (Lynch & Walsh, 1998; Nicholas, 

2010).  
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The phenotypic variance (𝜎𝑝
2) is the extent to which animals differ in their phenotypic values. Given 

(2.1 and 2.2), this phenotypic variance can be subdivided in (Acquaah, 2012; Nicholas, 2010): 

𝜎𝑝
2 =  𝜎𝑎

2 + 𝜎𝑑
2 + 𝜎𝑖

2 + 𝜎𝐸
2 (2.3) 

where 𝜎𝑎
2 is the additive genetic variance, which is equal to the variance in breeding values, 𝜎𝑑

2 is the 

variance due to dominance effects, 𝜎𝑖
2 is the variance in effects due to epistatic interactions and 𝜎𝐸

2 is 

the variance in non-genetic (environmental) effects. The term 𝜎𝑑
2 + 𝜎𝑖

2 is called the non-additive 

genetic variance. The sum of the additive- and non-additive genetic variances is called the (total) 

genetic variance (𝜎𝑔
2) (Acquaah, 2012; Nicholas, 2010)(Nicholas, 2010).  

 

2.2 The heritability of a trait 

For a polygenic trait, the ratio of the additive genetic variance to the phenotypic variance is called the 

(additive) heritability (h²) of the trait. It can be calculated as (Acquaah, 2012; Nicholas, 2010): 

ℎ2 =  
𝜎𝑎

2

𝜎𝑝
2 =  

𝜎𝑎
2

𝜎𝑎
2 + 𝜎𝑑

2 + 𝜎𝑖
2 + 𝜎𝐸

2  (2.4) 

Since the heritability is a ratio, it always varies between zero and one. Notice that a heritability of zero 

does not necessarily mean the trait is not genetically determined, it only indicates that there is no 

observed genetic variance.  

 

The heritability of a trait is population dependent and can change over time. It can also change by 

selection: when selection decreases the observed genetic additive variance, the heritability will 

decrease. Also changes and evolutions in management conditions, feeding or measuring techniques 

can influence the estimation of the heritability of a trait (Acquaah, 2012; Nicholas, 2010). 

 

Some traits can have a high heritability (typically > 0.55), which means a large part of the observed 

variance can be attributed to the genetic variance. These traits are typically performance- and 

production traits. A high heritability indicates that the offspring tends to perform similar to their 

parents. Traits with a lower heritability (typically < 0.20) indicate a high influence of environmental 

variance in comparison to the genetic variance. Traits with low heritability are typically survival- and 

reproductive traits, like calving ease in cattle (Bullock, 2009; Nicholas, 2010; Simm, 1998).  
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2.3 Breeding values and expected progeny differences 

2.3.1 Estimated breeding values 

The fact that for many traits the genotype cannot be determined directly makes it nearly impossible 

to identify an animal as a good parent ‘by eye’. In order to know what the animal will pass to its progeny 

by genetics, it is necessary to determine the true breeding value of the animal. Since it is not possible 

to see the true breeding value based on the phenotype, it needs to be estimated from phenotypic 

traits. This estimate is called the estimated breeding value (EBV) (Nicholas, 2010).  

 

2.3.2 Expected progeny differences 

Another form of expressing EBVs for an animal, is by using expected progeny differences (EPDs). This 

EPD shows the estimated genetic value that the animal will pass to its offspring. As each parent 

contributes 50 % of its genes to its progeny, an EPD is half the value of the EBV. The EBV of the progeny 

is the sum of the EPDs of both parents. It is important to note that EPDs predict the expected difference 

in performance in comparison to a reference population, not the actual performance of an animal 

(Greiner, 2009).  

 

In the USA, most beef breed associations will advertise their cows and bulls by using EPDs instead of 

using EBVs. Most cattle herdbooks report EPDs for birth weight, weaning weight, yearling weight and 

calving ease. Some larger herdbooks estimate EPDs for 22 traits (American Angus Association, 2016c). 

 

One essential component of a consistent breeding program is the breeding goal. This breeding goal 

defines what the breeders want to achieve with their herd or breed. The breeders will decide which 

traits will be important for their cattle and which traits will arm their breed for future challenges. EBVs 

or EPDs for these traits will help the breeders to make optimal choices in their breeding program. 

 

EPDs (and EBVs) are always compared to a given genetic base reference. The genetic base can be 

chosen freely (e.g. a historic level). Therefore, EPDs are always expressed as the difference (+ or -) 

between an individual animal and the chosen baseline. For different breeds, the genetic bases might 

differ. Because of that, it is not useful to compare EPDs of animals from a different breed. To do so, 

there is a need for breed EPD adjustment factors (Nicholas, 2010).  
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The differences in EPDs between two animals predict differences in performance between their future 

offspring when each of these two animals is mated to animals of similar average genetic merit. The 

use of EPDs is illustrated in the following example. The EPDs for two different hypothetical bulls are 

given in the following table (2.1).  

 

Table 2.1 Two hypothetical bulls and their expected progeny differences (EPD) for birth weight (BW), weaning weight (WW) 
and calving ease (CE)  

 BW EPD (kg) WW EPD (kg) CE EPD (% of unassisted births) 

Bull A +2.3 +8 +1 

Bull B +1 +4 +4 

 

Assume that each bull will be mated to a similar set of cows. The difference in birth weight EPDs 

between bull A and bull B is 1.3 kg. Thus, it is expected that calves from bull A would be on average 1.3 

kg heavier at birth than calves sired by bull B. The same applies to the weaning weight EPDs: calves 

from bull A are expected to weigh 4 kg more at weaning than calves sired by bull B. For calving ease, it 

is expected that calves from bull B would experience 3% more unassisted births than bull A. So it is 

expected that heifers have less calving problems when mated to bull B. The given example is illustrated 

in the following figure (2.1), where both bulls are mated to a cow with +1 kg, +3 kg and +2 % as birth 

weight, weaning weight and calving ease EPDs, respectively. 

 

 

 

Figure 2.1 An example of the use of expected progeny differences. On the left side the hypothetical bull A, on the right bull B 
with EPDs for birth weight (BW) (in kg), weaning weight (WW) (in kg) and calving ease (CE) (in % of unassisted births) 
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2.3.3 The animal model and best linear unbiased prediction 

EBVs, and thus EPDs as well, are currently often calculated by an animal model. This model uses the 

information of the measurements on the animal itself, its relatives and other herd mates. This animal 

model requires pedigree information and phenotypic data of the animals. The pedigree information 

gives the genetic relationship of each animal in the dataset to the other animals in the dataset. This 

way, performances from ancestors and descendants can be used to calculate the EBVs (Nicholas, 

2010).  

 

The animal model is a mixed model, composed of random and fixed effects (Mrode, 1996). Random 

effects usually follow a Normal distribution around the mean value with a certain variance. Typical 

random effects in the animal breeding context are breeding values. For a fixed effect, the levels will be 

estimated as deviation from the mean value. These estimates are called the best linear unbiased 

estimates (BLUE). Common fixed effects are sex, nutrition levels and the age of the mother (also called 

dam). Each EBV calculation involves solving a set of equations. The more data and pedigree 

information available, the better the EBV will approach the true breeding value of the animal. The 

animal model can correct for assortative mating (this happens when the breeder uses his best bull to 

sire his best cows), selection and inbreeding, if this information is included in the model (Bullock, 2009; 

Beef Improvement Federation, 2010; Nicholas, 2010). 

 

The animal model relies on work of Henderson (1949) who developed a methodology called best linear 

unbiased prediction (BLUP) (Mrode, 1996). His theory on mixed models found usage in genetic 

evaluation of livestock animals because of its desirable statistical properties. At first, BLUP was used in 

sire models but the availability of more computing power has made it possible to estimate more 

advanced models, like the animal model. By using BLUP, it is possible to predict breeding values and 

estimate fixed effects simultaneously. The name ‘BLUP’ points out some key features of the method 

(Mrode, 1996): 

• Best: the correlation between the true (𝒂) and predicted breeding value (𝒂̂) is maximized. In 

other words, the prediction error variance (𝑃𝐸𝑉 = 𝑣𝑎𝑟(𝒂 − 𝒂̂)) is minimized. This PEV can 

be interpreted as the fraction of additive genetic variance that is not accounted for by the 

prediction. 

• Linear: the predictors are linear functions of observations. 

• Unbiased: the estimations of random variables, such as animal breeding values, and of 

estimable functions of fixed effects are unbiased (𝐸(𝒂|𝒂̂) = 𝒂̂). 

• Prediction: the method involves prediction of true breeding values.  
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Mixed linear models have the following general (matrix) form (Schaeffer, 2000; Mrode, 2005): 

 

𝒀 = 𝑿𝜷 + 𝒁𝒂 + 𝒆 (2.5) 

where:  

• 𝒀 is a n x 1 vector of observations with n the number of observations of the measured trait(s) 

• 𝜷 is a p x 1 vector of fixed effects with p the number of levels of the fixed effects 

• 𝒂 is a q x 1 vector of random additive genetic effects with q the number of levels of random effects 

• 𝒆 is a n x 1 vector of random residual effects, attributed to every observation 

• 𝑿 is a design matrix of order n x p, which relates observations to their fixed effects  

• 𝒁 is a design matrix of order n x q, which relates observations to their random effects 

 

Then consider: 

𝑣𝑎𝑟(𝒆) = 𝑰𝜎𝑒
2 = 𝑹 (2.6) 

𝑣𝑎𝑟(𝒂) = 𝑨𝜎𝑎
2 = 𝑮 (2.7) 

where I is a n x n identity matrix, 𝜎𝑒
2 is the residual error variance, 𝜎𝑎

2 is the additive genetic variance 

and 𝑨 is the relationship matrix. This relationship matrix  captures the genetic relationships among the 

individuals in the pedigree. This matrix is symmetric and the diagonal element for animal i (aii) is equal 

to 1+Fi, with Fi the inbreeding coefficient of animal i. The off-diagonal element, aij, equals the 

coefficient of relationship between animals i and j (Mrode, 1996). 

 

Y, X and Z are observed, while 𝜷, 𝒂, R and G are generally unknown. Solving mixed models involves 

solving two complementary estimation problems. First, the covariance matrices G and R need to be 

estimated. Two methods are widely used: Restricted Maximum Likelihood (REML) and Markov chain 

Monte Carlo (MCMC). Both methods will be addressed in the following chapters. Second, the vectors 

of fixed and random effects, 𝜷 and 𝒂, need to be estimated and will be called the BLUE and BLUP, 

respectively (Lynch & Welsh, 1998; Schaeffer, 2000; Mrode, 2005). 

 

The BLUP of 𝒂 can be calculated as: 

𝒂̂ = 𝑮𝒁′𝑽−𝟏(𝒀 − 𝑿𝜷̂) (2.8) 

and the BLUE of 𝜷 equals to:  

𝜷̂ = (𝑿′𝑽−1𝑿)−𝟏𝑿′𝑽−1𝒀 (2.9) 

where 𝑽 = 𝒁𝑮𝒁′ + 𝑹. 
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The computation of the inverse of 𝑽 can be challenging. In 1950, Henderson proposed a different form 

of equations, called the mixed-model equations (MME), to be able to calculate the previous equations 

more easily (Schaeffer, 2000; Mrode, 2005):  

[
𝑿′𝑿 𝑿′𝒁
𝒁′𝑿 𝒁′𝒁 + 𝑨−𝟏𝛼

] [𝜷̂
𝐚̂

] = [𝑿′ 𝑹−1 𝒀
𝒁′𝑹−1 𝒀

] (2.10) 

With 𝛼 = 𝜎𝑒
2 𝜎𝑎

2⁄  or (1 − ℎ2)/ℎ². 

The solutions to the MME gives the BLUE of 𝜷 and the BLUP of 𝒂. The full derivation of the BLUP and 

BLUE estimates can be found in appendix 2A. 

 

In some cases environmental effects can be added as a random factor to the general mixed linear 

model (equation 2.5). This way the model can account for common environmental effects, such as 

animals who were reared in the same conditions or born in the same year. In this case the 

environmental variance (𝜎𝐸
2) can be subdivided in the between-group component (𝜎𝑐

2) and the within-

group or residual variance (𝜎𝑒
2). 

 

This addition of environmental effects to equation 2.5 leads to an extended mixed linear model 

(Mrode, 1996): 

𝒀 = 𝑿𝜷 + 𝒁𝒂 + 𝑾𝒄 + 𝒆 (2.11) 

where 𝒄 is the vector of q common environmental effects and 𝑾 the design matrix of order n x q, 

which relates record to their common environmental effects.  

 

It is assumed that 𝑣𝑎𝑟(𝒄) = 𝑰𝜎𝑐
2, 𝑣𝑎𝑟(𝒆) = 𝑰𝜎𝑒

2 and 𝑣𝑎𝑟(𝒂) = 𝑨𝜎𝑎
2 = 𝑮.  

 

The MME for the BLUP of 𝒂 and 𝒄 and the BLUE of estimable functions of 𝜷 are calculated in the same 

way as for the simple animal model, leading to the following MME (Mrode, 1996): 

[
𝜷̂
𝒂̂
𝒄̂

] [
𝑿′𝑿 𝑿′𝒁 𝑿′𝑾
𝒁′𝑿 𝒁′𝒁 + 𝑨−1𝛼1 𝒁′𝑾

𝑾′𝒁 𝑾′𝒁 𝑾′𝑾 + 𝑰𝛼2

] = [
𝑿′𝒀
𝒁′𝒀
𝑾′𝒀

] (2.12) 

where 𝛼1  = 𝜎𝑒
2 𝜎𝑎

2⁄ and 𝛼2  = 𝜎𝑒
2 𝜎𝑐

2⁄  
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2.3.4 The accuracy value of an EPD 

An important characteristic of an EPD calculation is the accuracy of the calculation (Mrode, 1996). 

These accuracy values are expressed as a percentage and indicate the quantity of used information. 

The more information used, the higher the accuracy value. For example, animals without offspring (or 

offspring without measurement records), will have a lower accuracy value than animals that have 

offspring with measurements. The value can be interpreted as the correlation between the true and 

predicted breeding values and indicates the likelihood that an animals EPDs will change over time 

when more information becomes available. Animals with a high accuracy for a certain EPD will have a 

true breeding value close to the estimate. Animals with a lower accuracy for a certain EPD can have a 

true breeding value lower or higher than the estimate (Beef Improvement Federation, 2010; Buchanan 

& Hanna, 2014; Breedplan, 2015). 

 

The accuracy (r) of the predictions is given by the following formula:  

𝑟𝑖 = √1 −
𝑑𝑖𝜎𝑒

2

𝜎𝑎
2  (2.13) 

where 𝑟𝑖 is the accuracy value for animal i, 𝑑𝑖  is the ith diagonal element of the inverse of 𝒁′𝒁 + 𝑨−𝟏𝛼 

and 𝑑𝑖𝜎𝑒
2 is also called the PEV. The full derivation of equation 2.13 can be found in appendix 2B.  

 

For an EPD, calculated based on the parents’ EPDs, the accuracy value is equal to 
1

2
√(𝑟𝑠

2 + 𝑟𝑑
2), where 

𝑟𝑠 and 𝑟𝑑 are the respective accuracy values for the EPDs of sire and dam (Mrode, 1996).  
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2.3.5 Restricted maximum likelihood 

REML can be used to estimate (co)variances and can therefore be used to estimate the G and R 

matrices. Patterson and Thompson developed this method in 1971 and it is based on the maximum 

likelihood estimation as proposed by Fisher in 1922 (Schaeffer, 2010). These maximum likelihood 

estimators are the combination of the means (µ) and the variances (σ²) for every parameter, which fits 

the observations most likely. The procedure requires 𝒀 to have a multivariate Normal distribution. 

Fishers likelihood function (L) is given by (Schaeffer, 2010): 

𝐿(𝒀) =  
exp(−0.5(𝐘 − 𝐗𝛃)′𝑽−1 (𝒀 − 𝑿𝜷))

(2𝜋)
𝑛
2  √|𝑽|

, (2.14) 

where n is the number of observations. The next step is to maximize the likelihood function by taking 

the derivative of equation 2.14. This leads to the maximum likelihood function: 

ln(𝐿(𝒀)) = −
𝑛

2
ln(2𝜋) −

𝑙𝑛|𝑉|

2
− 0.5(𝐘 − 𝐗𝛃)′𝑽−1 (𝒀 − 𝑿𝜷) (2.15) 

REML uses this maximum likelihood function and will correct for the fixed effects in the model by using 

their estimates, obtained by the least squares procedure. One of the REML algorithms is called 

expectation maximization REML (EM-REML) and works iteratively. It will use the previous variance 

estimates, recalculate the 𝑽 matrix, recalculate the MME and then obtain the new estimates of the 

variances. This will be repeated until the change in new versus previous estimates is smaller than a 

pre-specified number (Schaeffer, 2010). Another algorithm is called average information REML (AI-

REML). It averages the observed and expected information matrices. This way, inversion of these 

matrices is much easier. AI-REML has been found to have less problems with correlated components, 

converges faster than EM-REML, often locates higher maxima of the likelihood function and performs 

well in animal breeding context (Gilmour et al., 1995). 
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2.3.6 The Markov chain Monte Carlo method 

The MCMC method is based on Bayesian statistics. Bayesian statistics uses probabilities to derive a 

joint posterior distribution from the given data. This joint posterior distribution is a probability 

distribution associating each value of a parameter to a probability. Bayesian statistics is based on the 

Bayes’ theorem (Olshausen, 2004): 

𝑝(𝜽|𝒀) =
𝑝(𝒀|𝜽) 𝑝(𝜽)

𝑝(𝒀)
 (2.16) 

where 𝜽 is a vector of parameter variables and 𝒀 is the given data vector. The term 𝑝(𝒀|𝜽) is the 

probability of the observed data 𝒀, given the parameters 𝜽, called the likelihood function. The term 

𝑝(𝜽) is called the prior probability and reflects the prior knowledge. The specification of the prior is 

often the most subjective aspect of Bayesian statistics. The term 𝑝(𝒀) is obtained by integrating 

𝑝(𝒀|𝜽) 𝑝(𝜽) over 𝜽 and plays the role of a normalizing constant. Finally, the term 𝑝(𝜽|𝒀) is known as 

the posterior probability and reflects the probability of the vector of random variables after 

consideration of the data (Kass et al., 1997; Olshausen, 2004; de Villemereuil, 2012;). 

 

The MCMC method works by constructing a Markov chain. A Markov chain is a stochastic process 

which samples random values independent from the history of the chain. This sampling technique is 

called Monte Carlo. These two principles together form the MCMC method. MCMC will not 

systematically go through every possible combination of parameter values, but moves stochastically 

through the parameter space to calculate probabilities for every parameter, such as the means, the 

variances and correlations. The result of the MCMC method will be a joint posterior distribution (Kass 

et al., 1997; de Villemereuil, 2012; Hadfield, 2016). This distribution can be characterized by the highest 

posterior density interval. This highest posterior density interval is the narrowest credible interval that 

indicates the sample space that covers a given probability (Plummer et al., 2006). In unimodal posterior 

distributions, the mean or mode can be used as estimator (Hadfield, 2016).  

 

MCMC can be used to construct the posterior distribution in animal models for the R and G matrices 

and also for all levels of the fixed and random effects. 

 

A detailed derivation of the posterior distributions for the parameters in the animal model is given in 

appendix 3. 
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2.3.6.1 Sampling algorithms 

One of the most used sampling algorithms is called Gibbs sampling (Hadfield, 2016). This algorithm 

obtains observations of a sequence that will approximate the posterior probability distribution by 

picking for every parameter in the distribution random coordinates from a multivariate Normal 

distribution. These values are added to the list of previous coordinates. The algorithm will use an 

accept-reject step to decide whether it will move to these next values. If the posterior probability for 

this new set of parameter values is greater than the posterior probability of the current set of 

parameters, the algorithm will ‘move' to these new values. If this is not the case, the chain will move 

there only occasionally, depending on the relative difference between the old and new posterior 

probabilities. 

 

2.3.6.2 The chain length 

When running a sampling algorithm, the model iterates a pre-defined number of runs. The length of 

the Markov chain will depend on the chosen computational power and time. In general, the longer the 

chain, the better, since it will increase the effective sample size. This effective sample size is defined 

as the number of uncorrelated, independent samples in the Markov chain. de Villemereuil (2012) 

recommends an effective sample size of at least 1000 samples.  

 

A tool to check the behavior of the chain is plotting the trace of the values. This is a visualization of the 

evolution of the sampled values along the iterations. This way the convergence of the trace can be 

checked and it should be verified that the chain does not get ‘stuck’ on a certain value. Apart from the 

trace plot, it is useful to plot the posterior density function for each parameter.  

 

2.3.6.3 The burn in period  

Depending on the starting values, the initial values of the Markov chain will often not be representative 

to the values further in the chain. It may take a number of samples before the chain reaches an 

‘equilibrium’ state. It is important that the values from this phase of converging are not mixed up with 

the values that follow. The period from start to the point that convergence has happened is called the 

burn-in period. In figure 2.2, an example of a trace is plotted where the burn-in period is clearly visible. 

Unfortunately, it is not possible to predict the burn-in period in advance, so post hoc checks are 

necessary (Kass et al., 1997; de Villemereuil, 2012; Hadfield, 2016).  
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Figure 2.2 An example trace from Hadfield (2016) where the burn-in period is indicated.  

After the burn-in period, the Markov chain converges to a value of ± 7.5.  

2.3.6.4 The autocorrelation of the chain and the thinning interval 

Because of the sampling procedure, successive iterations will be correlated to each other. This is 

caused by the fact that the previous value of the other parameters determines whether or not the new 

value will be accepted. This tendency is called autocorrelation and reduces the effective sample size 

of the chain. A way of dealing with this autocorrelation is by using a thinning interval. This thinning 

interval will only keep one in every n iterations. It will reduce autocorrelation and saves memory space 

(Schaeffer, 2000; de Villemereuil, 2012; Hadfield, 2016). 

 

2.3.6.5 Prior distributions 

In order to determine the posterior distribution of Y, there is need for a prior probability distribution 

for the parameters. Most of the time, a weak non-informative prior is used. This means that the 

influence of the prior on the estimated posterior distribution will be minimal (de Villemereuil, 2012). 

When the effective sample size is sufficiently long, the influence of the prior becomes negligible 

(Schaeffer, 2000; de Villemereuil, 2012).  

 

A frequently used prior for fixed effects is a uniform distribution or a wide Normal distribution (de 

Villemereuil, 2012; Hadfield, 2016). One of the priors commonly used for the residual and random 

effect variances is the inverse-Wishart distribution. This distribution has two parameters: V and nu and 

tends to a point mass on V and is right skewed when nu is small. The inverse-gamma function is the 

univariate derivate of this inverse-Wishart function (Hadfield, 2016). The probability density function 

of an inverse-gamma function with a variance limit of 1 (V=1) and a varying degree of belief parameter 

(nu) can be found in figure 2.3. The inverse-gamma function is in its turn a special case of the scaled 

inverse chi-squared distribution. 
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Figure 2.3 The probability density function of an inverse-gamma function with V=1 and nu varying from 0.002 to 1 

(figure from Hadfield, 2016) 

2.3.7 The differences between MCMC and REML 

de Villemereuil et al. (2013) studied the differences between REML and MCMC in an animal model. 

They found that the animal model using the REML algorithm had a slight advantage in estimating traits 

that were normally distributed and the MCMC method had slightly better estimates for categorical 

traits. The heritability estimate was more accurate when estimated by REML. They concluded that the 

main advantages of the MCMC method are based on the possibility of fitting a great variety of non-

Normal distributed data. Hadfield (2016) concluded that REML is faster and more easy to use, while 

MCMC can be slow and more difficult. The definition of the prior distribution can be challenging (de 

Villemereuil et al., 2013; Hadfield, 2016). The accuracy of the approximation of MCMC increases the 

longer the analysis is run and can be more exact than the REML method (de Villemereuil et al., 2013; 

Hadfield, 2016).  

 

As an alternative for MCMC, another Bayesian method is being developed: the integrated nested 

Laplace approximation. This method looks promising and less computation intensive but still needs 

further development (de Villemereuil et al., 2013; Maniatis et al., 2015).  
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2.4 The phenotypic and genetic correlation of traits  

When analyzing different traits on the same individual, some traits can show a phenotypic correlation. 

Such phenotypic correlation can have two causes. The first is called the environmental correlation. This 

correlation is caused by animals sharing the same environment (e.g. the same rearing conditions or 

the same dam). The second type is called the genetic correlation and is most of the time caused by 

genes influencing multiple traits at the same time, a phenomenon known as pleiotropy (Lynch & Walsh, 

1998; Nicholas, 2010; Acquaah, 2012). 

 

Correlations are either positive or negative and always range from -1 to +1. A correlation of zero means 

that traits are not (linearly) related. A positive correlation means that selection for one trait leads to 

an increase in the other trait, for example weaning weight and yearling weight in cattle (Bourdon & 

Brinks, 1986). A negative correlation indicates that selection for one trait leads to a decrease in the 

other trait (e.g. the negative correlation between birth weight and calving ease) (Nicholas, 2010). 

Positive and negative is not equal to favorable or unfavorable as this depends on the measurement 

scale of the variables. 

 

Genetic correlations create the possibility of indirect selection. Therefore, it is possible to select for 

one trait and at the same time influencing the other trait in a desired direction. This indirect selection 

can become very useful when breeders want to improve traits which are harder or more expensive to 

measure. Breeders can improve the desired trait, while only measuring the genetically correlated trait 

(Nicholas, 2010).  

 

The correlated response (CR) can be calculated as following (Acquaah, 2012):  

𝐶𝑅 =  𝛥𝐺2(1) = 𝐼 ∗ ℎ1 ∗ 𝑟𝑔12
∗ 𝜎𝑎2 (2.17) 

where trait 1 is the measured trait, trait 2 the trait to improve, Δ𝐺2(1) the genetic progress of trait 2 

by selection for trait 1, I the selection intensity, ℎ1 the reliability of the heritability estimate of trait 1 

(which is equal to √ℎ1
2), 𝑟𝑔12

 the genetic correlation between trait 1 and trait 2 and 𝜎𝑎2 the genetic 

standard deviation of trait 2. The efficiency of indirect selection is calculated as (Acquaah, 2012): 

Δ𝐺2(1)

Δ𝐺2
=  |𝑟𝑔12

ℎ1

ℎ2
| (2.18) 

where Δ𝐺2 is the genetic progress in case of direct selection for trait 2 and ℎ2 the reliability of the 

heritability estimate of trait 2 (which is equal to √ℎ2
2). 



Quantitative genetics - 16 
 

2.5 Crossbreeding 

Crossbreeding is defined as the mating of individuals from two different populations or breeds. In the 

USA, it is a common practice in the beef industry. Animals resulting from a crossing are called 

crossbreds. Crossbreeding is, together with selection, an important tool to change the genetic 

composition of a herd or breed. The crossing of two different cattle breeds leads to a genetic 

enrichment of the offspring.  

 

There are two main advantages of crossbreeding (Nicholas, 2010). First, a crossbred individual often 

shows a higher performance than expected based on the means of the two parent populations. This 

higher performance is called heterosis or hybrid vigor. Heterosis is defined as the observed difference 

between the performance of the offspring and the mean performance of the two parent populations. 

It is caused by dominant and epistatic gene effects and the difference in allele frequencies between 

the two populations. The higher the genetic diversity between the two breeds, the higher the heterosis 

of the crossbred. Heterosis is mostly observed in traits with a low heritability, thus the traits that 

improve slow by selection. Traits with a high heritability are less affected by heterosis (Nicholas, 2010). 

 

A second benefit of crossbreeding is using the complementarity of two breeds. Breed complementarity 

is the combination of the strengths of both breeds in the cross. These strengths of the breed are not 

only performance traits but can also concern environmental adaptation or coat color (Nicholas, 2010).   
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3 The Black Hereford breed and its origin 

The predominant beef cattle breed in the USA is Angus. In 2016 the American Angus Association 

registered more than 334000 animals (American Angus Association, 2016a, 2016b). Estimations say 

that over 60 % of all cattle raised in the USA have Angus blood (American Angus Association, 2016b). 

The second largest cattle breed in the USA is the Hereford, with 79082 registries in 2016 at the 

American Hereford Association (American Hereford Association, 2016). The top five breed list is 

completed by Gelbvieh, Charolais and Simmental (American Angus Association, 2016b). These beef 

cattle breeds are Bos taurus cattle (Felius, 2016). Bos indicus cattle breeds are a minority in the USA 

(Felius, 2016).  

 

3.1 The Angus breed 

 

 

Figure 3.1 An Angus bull (Watercolor image by Marleen Felius (1995)) 

The Angus breed was founded in Aberdeen, Scotland and brought to the USA in 1873 (Felius, 2016). 

The cattle is black coated and known for producing well-marbled meat of prime quality (American 

Angus Association, 2016b). They are naturally polled, calve easily, have a low birth weight and are fast 

growing (Felius, 1995). Mature cows weigh typically 650 kg and bulls weigh up to 1000 kg (Felius, 1995). 

Some disadvantages of Angus cattle are their higher feed conversion in comparison to other beef 

breeds and the fact that Angus bulls can be aggressive and dangerous to handle (American Angus 

Association, 2016b). Although most Angus are black, there is a recessive red allele present in the 

population (Ekarius, 2008; Phillips, 2010). The red Angus population is considered as a different breed 

and is registered at the Red Angus Association. Blacks are registered at the American Angus Association 

(American Angus Association, 2016b). 
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In order to promote the Angus breed, the American Angus Association created in 1978 the Certified 

Angus Beef® program (American Angus Association, 2016b). The program markets premium Angus 

beef to restaurants and retailers. The Certified Angus Beef® label is recognized in 53 countries and 

marketed over 460 million kg of beef in 2016 (American Angus Association, 2016b). This premium beef 

label increased the demand for Angus cattle (American Angus Association, 2016b; Hoagland, 2016). 

Before a carcass can be sold as Certified Angus Beef®, it is screened for the right specifications. To 

receive the label, cattle must be at least 51% black-coated and meet ten different criteria concerning 

beef quality (e.g. marbling, fat thickness and rib area size) (American Angus Association, 2016b).  

 

The demand for black coated cattle increased dramatically due to the requirements for this label. Black 

calves are worth more than red ones, as much as 50 to 100 $ per calf (American Angus Association, 

2016b). This stimulated some breeds to develop a black strain, for instance the Black Limousin, Black 

Chianina, Black Simmental and the Black Hereford (Felius, 2016; Hoagland, 2016).  

 

3.2 The Hereford breed 

 

Figure 3.2 A Hereford bull (Watercolor image by Marleen Felius, (1995)) 

The Hereford breed originates from Herefordshire County in Western England. In the beginning, the 

breed was used for milk, meat and draught purposes, and switched later to a beef breed (Felius, 1995). 

It is easily recognizable because of its red body and white face, belly, feet and tail switch. The typical 

white face phenotype is called ‘baldie’ and is a dominant trait (Franke, Burns, & Koger, 1975; Grosz & 

MacNeil, 1999; Schmutz, 2016). The baldie face in crossbreds makes clear there is a Hereford involved 

in the cross. Herefords have a good fertility, fatten easily and are relative docile (Felius, 1995). They 

can withstand both fairly low and high outside temperatures. The breed performs good in grass-based 

production as well as in the feedlot. Mature cows weigh 600-800 kg and bulls weigh 1000-1200 kg 

(Felius, 1995). Herefords are naturally horned but in the 1890s breeders developed a polled strain, 
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called the Polled Hereford. The Hereford was the first British cattle breed imported in the USA in 1839 

(Ekarius, 2008; Phillips, 2010; Felius, 2016). Since the 1980s, the Hereford has come under competition 

from the other beef breeds and went from 253832 new registered calves in 1970 to 97424 in 1990 

(Felius, 1995).  

 

3.3 Commercial cattle crossbreeding 

Commercial cow-calf producers often use breed complementarity to produce their calves. In many 

commercial herds, the main proportion of the herd is Angus-based, black cattle (American Angus 

Association, 2016b; Hoagland, 2016). These black cows are crossed with well-performing beef bulls. In 

many cases a Hereford bull is used. This way, the efficiency in the above mentioned traits of the 

Hereford is combined with the marbling and meat quality of Angus (Felius, 1995; Hoagland, 2016; 

American Angus Association, 2016b). Long (2009) found in his study that the use of Hereford bulls as 

sires on an Angus cow herd led to better performing offspring in comparison to Angus-sired calves. 

Hereford-sired cattle were more cost efficient in comparison to the Angus-sired offspring. In the end, 

the Hereford-sired calves brought more money, although they had a lower acceptance rate for the 

Certified Angus Beef® program (20 % instead of 30 % for the Angus-sired cattle) (Long, 2009). Other 

studies indicated that Hereford x Angus crossbred calves had economic advantages over purebred 

Angus calves (Denton, 2009a, 2009b; Gugelmeyer, 2009) 

 

One major disadvantage of the common Angus x Hereford cross is the risk of producing red coated 

calves. These calves will not be allowed to register for the Certified Angus Beef® program.  
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3.4 The Black Hereford breed 

 

Figure 3.3 A Black Hereford bull (own picture) 

One way to reduce the risk of producing a red coated calf in a commercial crossbreeding system is by 

crossing the Angus herd to a black bull. This led to the development of the Black Hereford breed. The 

Black Hereford arose from a population of Herefords by crossing these with Angus cows. The Black 

Hereford still looks fairly the same as the regular Hereford and has the same major characteristics 

except for its black coat. The main purpose of the Black Hereford breed is to deliver sires that can be 

used to be bred to a black-coated cow. By using this cross, cow-calf producers are able to use Hereford 

genetics and thus breed complementarity, while at the same time reducing the risk of a red 

(discounted) calf (Hoagland, 2016). 

 

The Black Hereford breed is a docile breed with good meat quality and a good feed efficiency 

(Hoagland, 2016). Most of the cattle is naturally polled and cows have good mothering abilities. Mature 

males weigh between 900 and 1000 kg, while mature females weigh on average 600 kg (Hoagland, 

2016).  

 

The initial crossings to create the Black Hereford breed date back to the mid-1990s (Hoagland, 2016). 

Selected Hereford bulls were mated to Angus cows. The offspring of this cross (called F1) are almost all 

black baldie calves. These calves are 50% Hereford and 50% Angus. The F1-females were bred back to 

a set of Hereford bulls to increase the percentage of Hereford (Hoagland, 2016). This type of cross is 

often called a grading up cross. It took a few generations before a real breed was established. In the 

following figure (3.4), the crossing scheme is illustrated. The first registered Black Hereford bull, JN 

Balder 7504, was born in 1997. Since 2004 is the Black Hereford breed one of the fastest growing cattle 

breeds in the USA. Now (2017), there are approximately 150 active Black Hereford breeders spread 

over 30 states in the USA (Hoagland, 2016).  
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Figure 3.4 The crossing scheme that has been used to create the Black Hereford breed 

The breeding goal of the Black Hereford population over the last few years was to consolidate the 

Hereford genetics in the breed. The main focus at the reproduction side lies on increasing the ease of 

calving, producing low birthweight calves and having heifers calf for the first time at an age of two 

years old (Hoagland, 2016). The focus at the production side lies on better marbling of the meat and 

increasing the ribeye area, while maintaining the good feed efficiency. Besides these focusses, 

attention is given to the eradication of the last horned alleles present in the population (Hoagland, 

2016). 
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To register an animal as a Black Hereford at the American Black Hereford Association (ABHA), it has to 

have at least 62,5 % (5/8th) of its genetics from Hereford, the other 37,5 % or less being Angus genetics 

(Hoagland, 2016). A purebred Black Hereford needs to be at least 93 % Hereford based. All registered 

Black Herefords must have a black coat but they do not have to be homozygous black. Most of them 

have the typical white face, abdomen and feet of a Hereford (Hoagland, 2016).  

 

The Black Hereford breed must not be confused with the European Black Hereford crossbred between 

Hereford bulls and Holstein-Friesian dairy cows. This cross has the purpose of producing calves suitable 

for beef production and starting a new lactation cycle for the dairy cow. Neither should the Black 

Hereford be confused with the Australian term ‘Black Baldie’ which is a collection of black baldie cattle. 

 

The first EPDs for the Black Hereford breed were calculated in 2005 by Dr. Dan Moser. In 2017, there 

are EPD calculations available for five traits which are calculated yearly: birth weight, weaning weight, 

yearling weight, maternal milk production and total maternal traits (Hoagland, 2016). Some breeders 

also report EPDs for other traits like the maternal milk and growth EPD.  

 

3.5 The black coat color 

The coat color of cattle is determined by several genes but the most important locus is the Extension 

(E) locus with three possible alleles: ED, dominant black, E+, the wild-type allele responsible for most 

combinations of red or reddish brown and black, and e, recessive red (Olson, 1999; Schmutz, 2016). 

Black Angus cattle has at least one ED allele, and Herefords are homozygous e. Angus cattle can carry 

an E+ or e allele (Nicholas, 2010; Olson, 1999; Schmutz, 2016). When Hereford and Angus are crossed, 

calves can be black or red coated. A heterozygous black Angus cow has 50 % chance of producing a red 

calf, when sired to a regular Hereford bull. When that same Angus cow gets sired by a heterozygous 

Black Hereford bull, this chance reduces to 25 %. If the Angus cow is sired to a homozygous Black 

Hereford bull, the calf will always be black. A homozygous black Angus cow will always produce a black 

calf, sired either by a regular Hereford or Black Hereford bull. The main problem of heterozygous black 

cows is that they are not distinguishable from homozygous black cows by eye. This can only be done 

by performing a DNA-test. In commercial conditions, this DNA-test is too expensive to perform on large 

scale on the whole herd (Hoagland, 2016).  
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4 The reproduction of cattle 

4.1 The puberty of cattle  

In mammals, puberty is induced by changes in hormone levels of luteinizing hormone (LH) and follicle 

stimulating hormone (FSH) (Bouron & Boulpaep, 2003). LH and FSH are both secreted by the anterior 

pituitary gland in the brain. They stimulate the gonads to increase activity. In males, LH increases the 

testosterone production (Bouron & Boulpaep, 2003). Testosterone will increase sperm production, 

stimulate accessory sex gland growth, increase sexual behavior and produce male secondary sex 

characteristics. FSH secretion will stimulate Sertoli cell function in the testes (Bouron & Boulpaep, 

2003). In females, FSH and LH allow follicles to develop and produce estrogen (Bouron & Boulpaep, 

2003). Estrogen will cause a positive feedback effect leading to a LH surge. This LH surge causes 

ovulation (Bouron & Boulpaep, 2003). The start of these hormonal expressions indicate in both males 

and females the onset of puberty.  

 

Land (1973) was the first to discover a link between the development of male and female reproductive 

traits in sheep and mice. He found that hormonal expression (e.g. LH and FSH) and sexual development 

was equal in both sexes. The same relationship can be found in cattle (Toelle & Robison, 1985; Moser 

et al., 1996).  

 

The age at puberty (AP) of a heifer is defined as the age at which the first ovulatory estrus is detected 

and thus indicates the onset of puberty (Martinez-Velázquez et al., 2003; Wathes et al., 2014). AP is 

used as a measure of heifer fertility and is an important reproduction trait in both dairy and beef cattle 

production systems. Although puberty is detectable in research settings, it is hard to observe in field 

populations, since it needs blood sampling and subsequent laboratory analyses (Wathes et al., 2014). 

The AP of heifers depends on environmental conditions and feed. Inadequate nutrition will delay 

puberty (Cammack et al.,2009).  

 

In commercial breeding conditions heifers need to cycle a couple of times before being exposed to 

breeding (Wathes et al., 2014). This way, they will be physiologically more ready for conception and 

gestation. The length of the bovine estrus cycle is 21 days and thus, puberty should occur at least 6 

weeks before the target breeding date (Perry, 2004; Wathes et al., 2014).  
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The AP of heifers is breed-dependent. Laster et al. (1972) found that purebred Hereford heifers have 

an average AP at 389.5 ± 12.9 days, while purebred Angus heifers had an AP around 372.2 ± 10.0 days. 

The AP in Black Hereford has never been studied. Patterson et al. (1992) found that AP is related to 

both a certain age and a certain weight. They also indicated the importance of preweaning and 

postweaning nutrition levels. It is hard to conclude whether age or body weight is most determinant 

for AP (Nelsen, Long, & Cartwright, 1982; Patterson et al., 1992).  

 

4.2 The gestation and the optimal age of calving 

The gestation period of cattle is on average 283 days (Casas et al., 2012; Hoagland, 2016). Heifers or 

smaller cows may calve a few days earlier. Gestation in Angus cows can be up to four days shorter than 

in Hereford cows. The main cause of this gestation difference is that Angus has been intensively 

selected for lower birth weight, which coincided with calving a few days earlier (Casas et al., 2012; 

American Angus Association, 2016b; Hoagland, 2016).  

 

In the USA, most breeders want to have their beef heifers calving for the first time at an age of 2 years. 

From then on they will calve with a one-year interval until an age of 6 to 10+ years. This means they 

have to be bred when they are about 15 months old. 15 months is widely accepted as the minimum 

age at which beef heifers are sufficiently grown to be exposed to breeding (Wathes et al., 2014). A 

calving age of 2 years is necessary to maintain the seasonality of the production cycle and calving 

pattern. It reduces the non-productive period of the heifer without compromising the health and 

longevity (Wathes et al., 2014). Herefords reach puberty on average at an age of 14 to 15 months old, 

Angus between 13 and 14 months old (Morris, Baker, & Cullen, 1992; Smith, Brinks, & Richardson, 

1989a).  

 

Day and Nogueira (2013) found that heifers, that calve for the first time at an age of 2 years, produce 

on average 0.7 more calves than heifers, calving first at 3 years of age, by the time the cows were 6.5 

years of age. An economic analysis indicated that the difference in profit was 500 $/cow for a cow with 

an age at first calving (AFC) of 2 years instead of 3 years at the end of 4 productive years. Although the 

first calves from 2 year old heifers were lighter at weaning, no differences were found in the following 

calves. Nunez-Dominquez et al. (1985) found an AFC of 2 years had no adverse consequences on 

subsequent reproduction and maternal performance. Cows with an AFC of 2 years had a larger chance 

of producing an extra calf in their lifetime over cows with an AFC of 3 years. They also produced on 

average 138 kg more of weaned calf weight and their economic efficiency was 6 % to 8 % higher than 

cows bred to have their first calf at an age of 3 years. They also found that cows with an AFC of 2 years 
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and a cumulative lifetime production up to 12 years of age made about 2000$ more income than cows 

with an AFC of 3 years.  

 

Even within the group of heifers that calve at approximately 2 years of age there is a difference in 

lifetime production between the heifers who calve early and late in the calving season (Hoagland, 

2016). An earlier calving results in more and better lactation, mostly because of a more optimal forage 

availability during the lactation peak. They also have more days postpartum at the start of the next 

breeding season and cows will have more time to recover. They will be more likely to have resumed 

normal estrous cycles and fertility by then. Heifers that calve early in the calving season will generally 

stay one year longer in the herd, resulting in one more calving during their lifespan (Patterson et al., 

1992; Hoagland, 2016).  
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5 Scrotal circumference 

5.1 Scrotal circumference 

The scrotal circumference (SC) of a bull is defined as the distance around both testes and is expressed 

in centimeters (cm). The SC measurement is carried out with a circular ‘scrotal’ tape and is part of the 

breeding soundness evaluation performed on breeding bulls (see figure 5.1). The SC is taken at the 

largest diameter of the scrotum (Beef Improvement Federation, 2010). The measurement is relatively 

simple and inexpensive to perform. (Lunstra et al., 1988; Martinez-Velázquez et al., 2003; Hoagland, 

2016). When the SC measurement is performed at yearling age, it is called the yearling scrotal 

circumference (YSC). 

 

Figure 5.1 Left: A scrotal tape, used for the scrotal circumference measurement. (own picture) 

Right: The use of a scrotal tape in practice on a yearling Black Hereford bull (picture: Joe Hoagland)  

In practice, it is almost impossible to measure every bull when he is exactly one year old. Instead, the 

whole herd is measured at the same moment and an individual adjustment for age is made (Bourdon 

& Brinks, 1986; Lunstra et al., 1988). An adjustment by age is found to be more accurate than an 

adjustment by body weight at measurement (Bourdon & Brinks, 1986; Lunstra et al., 1988; Beef 

Improvement Federation, 2010). The age adjustment factor is breed specific. Lunstra et al. (1988) and 

the Beef Improvement Federation (2010) both suggest that, besides age adjustment, adjustment for 

the age of the dam is also applicable. In table 5.1 and 5.2 some adjustment factors for age and age of 

dam can be found for Angus and Hereford cattle. There are currently no adjustment factors estimated 

for the Black Hereford breed. The adjustment formula that can be used is (Lunstra et al., 1988; Beef 

Improvement Federation, 2010):  

𝐴𝑑𝑗365𝑑 𝑌𝑆𝐶 = 𝑌𝑆𝐶 + 𝑓 ∗ (365 − 𝑎𝑔𝑒) + 𝐴𝐷  (5.1) 

where 𝑓 is the age adjustment factor and AD the age of dam adjustment factor. 
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Table 5.1 Age adjustment factors (f) for YSC in yearling bulls between 300 and 400 days of age by different authors for 
Hereford and Angus cattle  

Author Year SC adjustment factor (cm/day) 

  Angus Hereford Polled Hereford 

Bourdon and Brinks 1986  + 0.0260  

Lunstra et al. 1988 + 0.0340 + 0.0360  

Geske et al. 1995 + 0.0374 + 0.0425 + 0.0305 

 

Table 5.2 Scrotal circumference (SC) adjustment factors for age of dam (Lunstra et al., 1988) 

Age of dam (years) Adjustment factor for YSC (cm) 

2 0 

3 - 0.4 

4 - 0.8 

> 4 - 1.3 

 
The YSC adjustment factors for age of dam in table 5.2 adjust the observed values to a dam of 2 years 

old. In other words, the YSC of bulls from 3 year old dams is on average 0.4 cm larger, those of 4 year 

old dams 0.8 cm and those of dams older than 4 years 1.3 cm in comparison to a bull of a one-year old 

dam. 

 

5.2 Yearling scrotal circumference measurements and heritability estimates 

A list of averages of YSC measurements from previous studies can be found in table 5.3. This table also 

contains heritability estimates for YSC and/or age-adjusted YSCs. In all but one studies, YSC has been 

found to be a moderate to highly (>0.35) heritable trait. These heritabilities suggest that selection for 

YSC is possible.  

 



 

Table 5.3 Overview of yearling scrotal circumference (YSC) measurements in different studies on different beef breeds. The mean YSC (in cm) and the standard deviation of YSC (in cm) are given 
together with the heritability (h²) estimate for YSC or age-adjusted YSC (Adj-YSC) (adjusted to an age of 365 days) 

Author Year No. of bulls Breed Method used YSC Mean (cm) YSC SD (cm) h² YSC h² Adj-YSC 

Neely et al. 1982 401 Hereford PHS 31.1 2.5 0.44 ± 0.24 0.44 ± 0.24 

Knights et al. 1984 717 Angus REML 35.7 2.1 0.36 ± 0.06 - 

Toelle and Robison 1985 528 Hereford PHS 31.3 2.6 - - 

Bourdon and Brinks 1986 4233 Hereford PHS 34.4 2.1 0.53 ± 0.06 0.49 ± 0.06 

Lunstra et al. 1988 3090 Total of 12 breeds PHS 32.3 - - 0.41 ± 0.06a 

Kriese et al 1990 10511 Hereford SGM 34.3 2.7 - 0.53 

Moser et al. 1996 407 Limousin REML 32.7 1.3 - - 

Evans et al 1999 1220 Hereford REML 31.1 - - 0.71 

Arthur et al. 2001 7260 Angus REML 35.2 2.9 0.43 ± 0.06 - 

Martinez-Velázquez et al. 2003 7580 Total of 12 breeds REML 32.6 3.0 0.41 ± 0.04 - 

Kealey et al. 2006 626 Hereford REML 35.0 2.1 0.57 ± 0.09 - 

McAllister et al. 2011 43487 Red Angus REML 35.2 2.7 0.32 ± 0.09 - 

 
With PHS = paternal half-sib analysis, REML = restricted maximum likelihood, SGM = sire-maternal grandsire model 
Values indicated by a (-) were not reported or included in the study 
a Adjusted to an age of 354 days  
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5.3 Scrotal circumference and production traits 

Bourdon and Brinks (1986) found in Hereford bulls that age-adjusted YSC was positively genetic 

correlated with adjusted birth weight, weaning weight and yearling weight (0.18, 0.29 and 0.44, 

respectively). Adjusted YSC was also positively genetic correlated with postweaning average daily gain 

(0.35). Neely et al. (1982) found genetic correlations of 0.86, 0.52 and 0.22 between adjusted YSC 

respectively with adjusted weaning weight, yearling weight and postweaning gain for a set of 401 

Hereford bulls. Knights et al. (1984) found a genetic correlation of 0.68 between YSC and yearling 

weight in Angus bulls. These findings were in line with the results of Kriese et al. (1991), who found a 

moderate positive additive genetic correlation between adjusted YSC and adjusted postweaning gain 

These studies indicate that there is a favorable genetic relationship between YSC, growth and growth 

rate in bulls.  

 

Part of this relationship can be explained by the fact that bulls that grow faster, have also grown a 

larger scrotum at yearling age (Bourdon & Brinks, 1986). Because of the favorable genetic relationship, 

selection for YSC will not negatively affect these economically important growth traits (Kriese et al., 

1991).  

 

Smith et al. (1989b) found that for each additional centimeter of YSC of the sire, the weaning weight, 

yearling weight and average daily gain increased in the offspring. 

 

McAllister et al. (2011) found genetic correlation estimates near zero between YSC and intramuscular 

fat percentage (0.05) and between YSC and marbling score (0.01). Selection for YSC will not influence 

meat quality traits (McAllister et al., 2012). 

 

5.4 Scrotal circumference and male reproduction traits 

Previous research from Hahn et al. (1969) found a highly positive correlation (0.81) between YSC and 

total sperm production per ejaculate in dairy bulls. Brinks et al. (1978) found a positive correlation 

between YSC and semen quality in Bos taurus cattle herds (Brinks et al., 1978 cited by Burns (2011)). 

They also found that by an increase of YSC, there was an increase in sperm motility, percent normal 

sperm, sperm volume and sperm concentration and a decrease in sperm abnormalities. Similar results 

were found by Kealey et al. (2006). So in general, genetic correlations indicate a positive association 

between a bulls YSC and his own fertility (Beef Improvement Federation, 2010).  
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5.5 Scrotal circumference and female reproduction traits 

5.5.1 The age at puberty 

The age at puberty of heifers is dependent on the breed and management conditions (e.g. feed level)  

(Wathes et al., 2014). Heritability estimates for age at puberty (AP) can be found in table 5.4. Of all 

fertility traits in heifers, AP often has the highest heritability (Wathes et al., 2014). 

 

Research has shown a moderate to high negative genetic correlation between a sires YSC and AP in his 

daughters (Smith et al., 1989b; Morris et al., 1992; Beef Improvement Federation, 2010). Smith et al. 

(1989b) found a regression coefficient of -0.796 days/cm. This means that for every increase of 1 cm 

of a sires SC, his daughters reach puberty 0.796 days earlier. Ludwig (2012) reported a regression 

coefficient of -4 days/cm. Moser et al. (1996) found that selection for bulls with a larger YSC led to 

daughters reaching puberty at significantly earlier ages. In table 5.4, several genetic correlation 

estimates between YSC and AP can be found. 

 

Table 5.4 Several heritability estimates (h²) for age at puberty (AP) and genetic correlations between a sires yearling scrotal 
circumference (YSC) and AP in daughters in different beef breeds 

Author Year 
Number of 

heifers 

Method 

used 
AP h² 

Genetic correlation 

between YSC and AP 

Brinks et al.a 1978 - PHS - -0.71 

Lunstra b 1982 - PHS - -0.98 

Smith et al. (b) 1989 779 PHS 0.10 - 

Morris et al. 1992 1302 REML 0.33 -0.41c 

Splan et al. 1998 2864 REML 0.47 - 

Martinez -Velázquez 

et al. 
2003 5292 REML 0.16 -0.15 

Gargantini et al. 2005 1184 REML 0.52 -0.57 

a cited by Toelle and Robison, 1985 and Burns, 2011 
b cited by Martin et al., 1992 
b YSC adjusted for an age of 334 days 
With PHS = paternal half-sib analysis, REML = restricted maximum likelihood.  
Values indicated by a (-) were not reported or included in the study.  
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5.5.2 The age at first calving 

The age at first calving (AFC) is another important trait of heifer fertility. AFC can be calculated from 

the birth dates of mother and calf. AFC is highly determined by management conditions (e.g. the 

moment of breeding) and nutrition. Some heritability estimates for AFC can be found in table 5.5. 

 

Table 5.5 Several heritability estimates (h²) for age at first calving (AFC) and genetic correlations between a sires yearling 
scrotal circumference (YSC) and AFC in daughters in different beef breeds 

Author Year 
Number of 

heifers 

Method 

used 
AFC h² 

Genetic correlation 

between YSC and AFC 

Toelle and Robison  1985 645 PHS 0.23 -0.38 

Smith et al. (a)  1989  779 PHS 0.01 - 

Gutiérrez et al.  2002 2533 REML 0.24 - 

Martinez -

Velázquez et al. 
2003 4835 REML 0.08 - 

Berry and Evans 2014 64380 REML 0.31 - 

Berry et al. 2014 - REML 0.14 - 

With PHS = paternal half-sib analysis, REML = restricted maximum likelihood.  
Values indicated by a (-) were not reported or included in the study.  

 

AFC is highly correlated with age at subsequent calvings and the interval between subsequent calvings 

(Gutiérrez et al., 2002). Smith et al. (1989a) concluded that earlier ages at puberty were associated 

with earlier ages and dates of calving. Smith et al. (1989b) found a regression coefficient for AFC 

of -0.667 days for every centimeter increase in a sires SC. 

 

These favorable correlations between YSC, AP and AFC indicate that selection for a larger YSC can 

reduce AP and makes it possible to breed heifers earlier and thus calve earlier.  
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5.6 Scrotal circumference EPDs and selection 

Given its moderate to high heritability, the ease of measurement and the correlations with heifer AP 

and AFC, YSC is a trait of interest in beef cattle selection (Moser et al., 1996). Not only the genetic 

correlation of YSC with AP and AFC is important, also its correlation with bull fertility traits. Several 

large American herdbooks, like the American Angus Association, the American Hereford Association 

and the North American Limousin Association, have already calculated EPDs for YSC (American Angus 

Association, 2016b; Hoagland, 2016). These EPDs are expressed in centimeters (cm) and predict the 

difference in YSC that will be passed to the bulls son. Bulls with a large YSC EPD are expected to give 

daughters who reach puberty earlier (Beef Improvement Federation, 2010; Breedplan, 2015).  

 

Considering the moderate to high heritability estimates found for AP in heifers, it would be possible to 

select for AP directly, instead of using indirect selection by selecting for YSC (Moser et al., 1996). But 

one of the main disadvantages of AP is that it is hard to measure (Martinez-Velázquez et al., 2003). It 

requires, as mentioned above, several blood samples and laboratory analyses to identify the moment 

of puberty, which makes it in ranching conditions nearly impossible to measure. Another advantage of 

selection based on a sires YSC EPD, is that by using males it is possible to achieve a higher section 

intensity (Gargantini et al., 2005). Given the positive genetic correlations of YSC with production traits 

(chapter 5.3), selection for a large YSC will not compromise production traits. 

 

Right now (2017), breeders argue that the Black Hereford breed could benefit from decreasing the age 

at first calving (Hoagland, 2016). An EPD for YSC could help to achieve this goal. YSC EPDs have already 

proven their value in some breeds and studies. Moser et al. (1996) have set up an experiment to 

compare selection for YSC in a Limousin herd by phenotypic selection or by the use of EPDs. They found 

that selecting by using YSC EPDs is more effective than using phenotypic YSC measurements. By using 

YSC EPDs they were able to reduce the AP of heifers significantly. 

 

The key of selection for a decrease in AFC and AP, is that there is an intermediate optimum. A late AP 

will result in heifers that calve late (> 2 years) and will lead to an economic loss. A premature AP will 

result in heifers that start cycling too young. They might come in heat before weaning, before they are 

separated from the bull calves. Moreover, it would break the yearly cycles that commercial cattlemen 

use in ranging conditions, where calving starts in late winter and ends in the spring (see appendix 1 for 

more information on the ranching conditions at J&N Ranch). Calves would get born in winter condition, 

when it is harder to feed the cows for a sufficient milk production (Hoagland, 2016).  
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One way of dealing with this intermediate optimum in selection is by implementing YSC in a selection 

index. A selection indexes is used to combine multiple traits into one single parameter to evaluate. 

Martin‐Collado et al. (2016) studied the efficiency of different types of selection indexes for non-linear 

traits. They concluded that the use of a linear selection index, whose weighing factors are regularly 

updated, can be very efficient in reaching the optimal level of a trait. They also suggested another type 

of selection index which uses a non-linear quadratic function as weighing factor for its traits. This non-

linear selection index has been found to have an equal efficiency as the linear updated index. Both 

types of selection indexes can be used for implementing YSC as a trait with an intermediate optimum 

in a breeding program. 
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6 Weight traits in beef cattle 

6.1 Birth weight, weaning weight and yearling weight 

Three important growth parameters in cattle breeding are the birth weight (BW), weaning weight 

(WW) and yearling weight (YW) measurements.  

 

BW is defined as the weight measurement at birth (Beef Improvement Federation, 2010). The BW is 

important in calving ease (e.g. the relationship of BW with the weight of the dam) (Casas et al., 2012). 

BW can be influenced by the sex of the calf, the season of birth and the age of the dam (Beef 

Improvement Federation, 2010).  

 

WW is defined as the weight measurement at the moment of weaning. This measurement is often 

standardized to an age of 205 days, although it can be recorded between 150 and 250 days of age 

(Beef Improvement Federation, 2010). WWs are used to evaluate the differences in growth potential 

of the calves (Beef Improvement Federation, 2010) but it is also an indication for the milking ability of 

the dam. It can be influenced by the period of birth, the age of dam and the sex of the animal (Beef 

Improvement Federation, 2010). The average WW of beef cattle lies between 180 kg and 275 kg 

(Meyer (1997); Arthur et al. (2001); Torres-Vàquez et al. (2016)). Anderson (1977) found a significant 

effect of the age of dam on WW. 

 

The YW is by definition the measured weight at 365 days of age. In commercial conditions this 

measurement has to be taken between 300 days and 550 days of age and has to be adjusted to an age 

of 365 days (Beef Improvement Federation, 2010). The YW is an important trait because of the genetic 

association with carcass weight and the efficiency of weight gain (Beef Improvement Federation, 2010; 

Torres-Vázquez & Spangler, 2016). YW can be influenced by the age of dam, the sex of the animal and 

the level of nutrition (e.g. grass-fed or a high energy diet) (Beef Improvement Federation, 2010). The 

average YW lies between 360 kg and 450 kg in beef cattle (Arthur et al. (2001); Torres-Vàquez et al. 

(2016)).  

 

For these weight traits, it is important that the age at measurement is recorded. This makes an 

adjustment by age possible. If not, calves that are born late in the calving season can be given an unfair 

disadvantage over the older calves. 
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6.2 The heritability of weight traits 

Most of the time, heritabilities for weight traits are found to be moderate to high (> 0.35). The 

following table (6.1) gives an overview of some of the heritability estimates found in the Black Hereford 

breed and in other beef breeds.  

 

Table 6.1 A list of heritability estimates (h²) for birth weight (BW), weaning weight (WW) and yearling weight (YW) in Angus, 
Hereford  and Black Hereford cattle herds 

Author Year Breed h² BW h² WW h² YW 

Smith et al. (a) 1989  - 0.27 0.14 0.29 
Kriese et al. 1991 Hereford 0.45 0.33 0.50 

Bennett and Gregory a 1996 Hereford 0.54 0.23 0.27 
  Angus 0.26 0.25 0.42 

Arthur et al. a 2001 Angus - 0.17 0.28 
Riley et al.a 2013 Black Hereford 0.28 0.35 0.23 

Torres-Vàzquez a 2016 Hereford - 0.35 0.36 
a Some of the used animal models include a maternal genetic effect 
Values indicated by a (-) were not reported or included in the study.  
 

6.3 The genetic correlations between weight traits 

The following table (6.2) gives an overview of some genetic correlations found in literature between 

BW, WW and YW.  

 

Table 6.2 A list of genetic correlations found in literature between for birth weight (BW), weaning weight (WW) and yearling 
weight (YW) in Angus and Hereford cattle 

Author Year Breed BW - WW BW - YW WW - YW 

Bourdon and Brinks 1986 Hereford 0.05 0.19 0.70 
Smith et al. (a) 1989 - 0.25 0.41 0.84 

Kriese et al. 1991 Hereford 0.32 - - 
Arthur et al. 2001 Angus - - 0.88 

Torres-Vázquez 2016 Hereford - - 0.47 
Values indicated by a (-) were not reported or included in the study.  
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7 Material and methods 

7.1 Material 

7.1.1 Observation records 

In total, there are 2538 animals for which observations are available on one or more traits. Not every 

measurement is performed on every animal. The following table (table 7.1) summarizes measured 

traits and gives the number of measured animals for each trait. The measurements are performed at 

J&N Ranch (Leavenworth, Kansas, USA), except for 25 scrotal measurements, performed at another 

ranch. Although J&N ranch is the largest Black Hereford breeder, these records do not include the 

whole Black Hereford population.  

 

Table 7.1 List of variables in the performance file of the Black Hereford cattle 

Variable Description Sample size 

Animal registration number ABHA registration number of the animal 2538 

Birth weight (BW) Weight measured at birth (in kg)  2353 

Wean Weight (WW) Weight at the moment of weaning (in kg) 2079 

Weaning date  Date when WW is measured 2070 

Yearling weight (YW) Weight at yearling age (in kg) 1448 

Yearling date Date when the YW and YSC are measured 1442 

Yearling scrotal circumference (YSC) Scrotal circumference at yearling age (in cm) 907 

 

7.1.2 Pedigree records 

The pedigree information is obtained from the American Black Hereford Association (ABHA) and the 

register from J&N Ranch. It contains 15152 records of animals born from 1980 till 2016. The records 

include the following information (table 7.2). 

 

Table 7.2 List of variables in the pedigree file of the Black Hereford cattle 

Variable Description 

Animal registration number Registration number of the animal at the ABHA 

Animal name The official name of the animal, registered at the ABHA 

Sire registration number Registration number of the father of the animal at the ABHA 

Dam registration number Registration number of the mother of the animal at the ABHA 

Birth date Birth date of the animal 

Sex The sex of the animal 
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7.2 Methods 

7.2.1 Data management and statistical analysis 

The programming language R (version 3.3.2) and software environment Rstudio (version 1.0.136) are 

used as data management tool and to calculate several new variables. The general linear models are 

fitted by the lm function in R. The ‘pedigree’ package is used to manage and complete the pedigree 

file (Coster, 2013).  

 

7.2.2 BLUP and REML estimation 

The BLUPf90 family of programs is used for BLUP mixed model calculation and (co)variance estimation 

(Misztal et al., 2015). This set of programs includes renumf90, blupf90, remlf90 and airemlf90 which 

are written in fortran90 (F90).  

 

F90-programs are driven by a parameter file in which the model characteristics are specified. The 

renumf90 program reads the data- and pedigree file and creates from these files the appropriate input 

files for the other programs. Appendix 4 shows an example of a parameter file for renumf90. The 

airemlf90 program computes the BLUP of the animal model and meanwhile uses average information 

(AI)-REML to estimate the (co)variances. The first 5 computational rounds are computed by EM-REML 

and after these 5 rounds the program switches automatically to AI-REML, using the last estimate from 

EM-REML as a starting value for AI-REML. The AI-REML algorithm converges much faster than the EM-

REML algorithm (e.g. 20 rounds in comparison to 1660).  

 

Renumf90 selects a minimal pedigree from the whole pedigree file, constructed of the animals with 

records and their parentage. This pedigree consists of 4099 animals, of which 1567 are parents without 

records, and goes back as far as 6 generations. The solutions for the animal model include BLUP 

estimates for these 4099 animals. 

 

7.2.3 The MCMC algorithm 

The results of the animal model, fitted by BLUP, are compared to the results found by a MCMC 

algorithm. The used algorithm is the R function MCMCglmm from the R package ‘MCMCglmm’ 

(Hadfield, 2010). The animal model that is estimated, is the model that was found to be the most 

appropriate in the REML analysis. The calculation is only performed on the YSC trait, in order to save 

computation time.  
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7.2.4 Computer usage 

The data editing, statistical analyses and AI-REML computations are performed on a personal 

computer. The more intense computations (the MCMCglmm function) are performed on the Linux high 

performance computer (Flemish Supercomputer Centre (VSC)). 

 

7.2.5 Formulas used in validation and computation 

7.2.5.1 Coefficient of determination 

The coefficient of determination (R²) is defined as the proportion of the residual variance in the model 

of interest, in comparison to the residual variance of the null-model (a model that only includes the 

intercept). This residual variance of the null-model is equal to the variance of the dependent variable 

(Y). The higher the R², the better the model explains the proportion of total variance. The R² is given 

by: (Xu, 2003; Nakagawa & Schielzeth, 2013). 

𝑅2 = 1 −
𝑣𝑎𝑟(𝑦𝑖 − 𝑦̂𝑖)

𝑣𝑎𝑟(𝑦𝑖)
 (7.1) 

with 𝑦𝑖  the dependent variable of observation i and 𝑦̂𝑖  the expected value for the dependent variable 

of observation i. The value (𝑦𝑖 − 𝑦̂𝑖) is called the residual value of the estimate. 

 

7.2.5.2 Mean bias and mean squared bias 

The mean bias (MB) of a model contains information about the accuracy or bias of the model. A MB 

larger than zero indicates a general overestimation of the values, a MB smaller than zero indicates an 

underestimation. The MB is given by the following formula (Kutner et al., 2005; Tedeschi, 2006):  

𝑀𝐵 =
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

𝑛
=

∑(𝑦𝑖 − 𝑦𝑖̂)

𝑛
 (7.2) 

where n is the number of observations, 𝑦𝑖  is the i-th observation of trait 𝑦 and 𝑦𝑖̂ is the expected value 

for the i-the observation, given the model. 

 

The mean squared bias (MSB) is an indicator for the precision of the estimates. A large MSB indicates 

a low precision and vice versa. The MSB is given by the following formula (Kutner et al., 2005; Tedeschi, 

2006):  

𝑀𝑆𝐵 =
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠2

𝑛
=

∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑛
 (7.3) 
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7.2.5.3 Genetic correlation 

The genetic correlation between two traits is calculated in the same way as the Pearson correlation 

and is based on the additive genetic (co)variances (Kutner et al., 2005): 

𝑟 𝑔 (𝑚𝑛) =  
𝜎𝑎 (𝑚𝑛)

2

√𝜎𝑎 (𝑚)
2  𝜎𝑎 (𝑛)

2

 (7.4)
 

where 𝑟𝑔 (𝑚𝑛) is the genetic correlation coefficient between traits m and n, 𝜎𝑎 (𝑚𝑛)
2  the additive genetic 

covariance between traits m and n and 𝜎𝑎 (𝑚)
2  and 𝜎𝑎 (𝑛)

2  the respective additive genetic variances for 

traits m and n. 

 

When selecting for a trait m, with a highly positive genetic correlation for trait n, trait n will also 

improve due to this selection. The reverse applies to traits with a negative genetic correlation. 

 

7.2.5.4 AIC 

The Akaike Information Criterion (AIC) is used in regression model choice (Akaike, 1974). It displays the 

amount of information that gets lost when a certain model is used. This way, it is a value for the 

accuracy of the model. It is possible to evaluate, based on the AIC value, multiple models and select 

the most suitable model. The most suitable model is the one with the lowest AIC value. The absolute 

value of the AIC has little interpretation. The AIC values is calculated by the following formula (Akaike, 

1974):  

𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝐿) (7.5) 

where 𝑘 is the number of parameters to be estimated, and L is the maximized value of the likelihood 

function of the model.   
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7.2.5.5 The EBV, EPD and accuracy value 

In the animal model, estimates are obtained for the effect of each individual in the dataset. These 

estimates of the additive genetic effect of the animals are also called the EBVs. The average EBV is zero 

and refers to the base population. EBVs are usually transformed into relative EBVs with the additive 

genetic value of the animals expressed relative to a chosen reference group of animals. A natural 

choice is to choose the active breeding animals as the reference group. In this analysis, the reference 

population consists of the 942 animals born from 2012 till 2016.  

 

EPDs are calculated as the half of the obtained EBV.  

 
As given in chapter 2.3.4, the accuracy value (𝑟𝑖) of an EBV or EPD is equal to:  

𝑟𝑖 = √1 −
𝑃𝐸𝑉

𝜎𝑎
2  (7.6) 

where 𝜎𝑎
2 is the additive genetic variance and the PEV (prediction error variance) is equal to the 

squared residual error of the EPD.  



 

Results and  
Discussion
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8 Results  

8.1 Data management and descriptive statistics 

The obtained data were checked for errors and corrected if possible. The variables sex and birth date 

from the pedigree file were added to the data file. The birth year of the animal was derived from the 

birth date of the animal. The age of the dam at the moment of calving was calculated from the birth 

date of the mother and the birth date of the calf. Dams older than 7 years at the moment of calving 

were merged with the group of 7-year old dams. The age at measurement of YW and YSC was 

calculated based on the birth day of the animal and the moment of the measurements. This trait was 

called yearling age (YA). The same was done for weaning age (WA). The variable ‘ET’ was added to the 

data for the animals born by embryo transfer. The YSC measurements were performed by three 

different observers. A separate variable ‘observer’ was added to the data. This resulted in a set of 2538 

observations with the following variables (table 8.1): 

 

Table 8.1 List of the variables available for analysis 

Variable 

Animal registration number 

Yearling scrotal circumference (YSC) 

Birth weight (BW) 

Weaning weight (WW) 

Weaning age (WA) 

Yearling weight (YW) 

Yearling age (YA) 

Age of dam 

ET 

Sex 

Birth year 

Observer of YSC 

 

Next, the data were screened for possible outliers. 1 outlier was found for BW (261 kg) and was 

deleted. 12 animals had a high YW (>550 kg) without a recorded YA. These animals were born in the 

same year (2001) and were probably weighted at an age older than 1 year. These 12 YW records were 

removed from the analysis. 2 animals had a YSC of 47 cm and 45 cm, respectively, without a record of 

the YA as covariate. These YSC measurement were removed. This resulted in observations on 2532 

animals. 
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The following table (8.2) gives the number of measurements that are available for each level of the 

variables for the four traits. In total, there are 707 observations on YSC, 2239 on BW, 2053 on WW and 

1411 on YW that are complete for every variable.  

 

Table 8.2 List of the number of observations for every level of the variables for yearling scrotal circumference (YSC),  
birth weight (BW), weaning weight (WW) and yearling weight (YW) 

Trait Level YSC BW WW YW 

Age of dam       

(years) 2 161 540 466 293 
 3 175 440 411 278 
 4 144 337 313 228 
 5 114 268 254 178 
 6 97 216 204 133 
 7 and older 195 438 412 311 
ET      

 Yes 30 60 62 48 
 No 864 2290 2017 1386 
Sex      

 F 0 1222 1032 604 
 M 894 1124 1043 830 
Birth Year      

 1992 0 1 0 0 
 1993 0 1 0 0 
 1997 0 2 2 1 
 1998 0 1 0 0 
 1999 0 34 1 0 
 2000 0 44 9 0 
 2001 1 61 51 0 
 2002 10 75 34 15 
 2003 22 90 85 26 
 2004 11 145 100 88 
 2005 29 110 96 40 
 2006 43 121 118 43 
 2007 41 170 154 55 
 2008 48 162 130 124 
 2009 90 156 149 134 
 2010 66 158 151 128 
 2011 102 167 160 134 
 2012 155 168 164 147 
 2013 56 150 147 145 
 2014 60 159 158 122 
 2015 78 176 175 148 
 2016 82 198 193 84 
Observer      
 1 649 0 0 0 
 2 220 0 0 0 
 3 25 0 0 0 
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Table 8.3 gives the descriptive statistics of the four traits and table 8.4 gives the Pearson correlations 

between these traits (Kutner et al., 2005). Figure 8.1 visualizes the measurements in a scatterplot 

matrix. 

 
Table 8.3 The descriptive statistics for yearling scrotal circumference (YSC) (in cm), birth weight (BW) (in kg), weaning weight 

(WW) (in kg), yearling weight (YW) (in kg), weaning age (WA) (in days) and yearling age (YA) (in days) measured in Black 
Hereford cattle from 1997 to 2016 

 
Sample 

size 
Mean Variance 

Standard 

deviation 
Min Median Max 

YSC 894 33.2 7.9 2.8 26.5 36.3 44.6 

BW 2350 37.5 16.4 4.0 22.8 38.2 51.0 

WW 2077 245.6 1191.5 34.5 123.1 245.6 355.9 

YW 1434 380.3 3578.2 59.8 205.8 384.3 588.4 

WA 2068 201.3 473.4 21.8 106 201 283 

YA 1426 336.3 858.7 29.3 249 331 435 

 

 

Table 8.4 The Pearson correlations between yearling scrotal circumference (YSC), birth weight (BW), weaning weight (WW) 
and yearling weight (YW), weaning age (WA) and yearling age (YA) measured in Black Hereford cattle from 1997 to 2016 

 BW WW YW WA YA 

YSC 0.167 0.456 0.482 0.122 0.198 

BW  0.253 0.261 -0.223 -0.054 

WW   0.662 0.286 0.270 

YW    0.166 0.548 

WA     0.586 

 
 
 
The average daily gain between the moment of weaning and yearling age is equal to 0.958 kg/day.  
 
 



 

 
Figure 8.1 Scatterplot matrix for yearling scrotal circumference (YSC) in cm, birth weight (BW) in kg, weaning weight (WW) in kg and yearling weight (YW) in kg, weaning age (WA) in days and 

yearling age (YA) in days, measured in Black Hereford cattle from 1997 to 2016 
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8.2 The age at first calving  

The age at first calving (AFC) is calculated from the pedigree data. This is done by first calculating the 

age of the dam for every calf. Then, the data of the calves from heifers are combined. This results in 

AFC data on 2683 animals. The mean AFC is equal to 955 days and the median 769 days, with a standard 

deviation of 336 days. Figure 8.2 shows the AFC frequency histogram for the dams with an AFC below 

2000 days (5.5 years). Figure 8.3 gives more information about the AFC trait on each year of birth. For 

some cows, the AFC was calculated to be higher than 2000 days (excluded from figure 8.2 and 8.3). 

 

 

Figure 8.2 Frequency histogram of the age at first calving (in days) of cows in the Black Hereford registry from 1992 to 2016. 
Each bar has a width of 5 days.  

  
 

 
Figure 8.3 Plot of the age of dam at first calving (in days) by birth year in the Black Hereford registry from 1992 to 2016 
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8.3 Dams and sires versus birth year 

One other thing that is evaluated, is whether sires and dams have progeny in more than one year. If 

not, the additive genetic effect of the sire or dam could be confounded with the birth year. If animals 

have progeny over more than one year, the entanglement of birth year effects and additive genetic 

effects decreases.  

 

The 2532 recorded animals descend from 146 sires. On average, every sire has 17 descendants (with a 

standard deviation of 28) and has progeny in 2 different years (with a standard deviation of 1.4 years, 

ranging from 1 to 9 years). 91 sires only have descendants born in one single year.  

 

From the 2532 recorded animals, there are 900 dams which averaged giving birth to 2.8 calves each 

(with a standard deviation of 2.5 calves). They are on average active in 2.8 years (with a standard 

deviation of 2.4 years, ranging from 1 to 12 years). 426 cows have only been active for one single year. 

 

8.4 Linear regression results 

Least squares regression is used to determine the significant independent variables for the four traits. 

In four univariate models, the YSC, BW, WW and YW traits are used as dependent variables and the 

variables found in table 8.1 are tested for their significance by a F-test (Kutner et al., 2005). In these 

models the variable ‘sire’ is included to approximate the additive genetic effect. The sire-effect will be 

replaced by an additive genetic effect in the animal model. Table 8.5 gives a summary of the significant 

independent variables found in this analysis, given a significance level of 0.05. The complete table of 

results of the least squares regression can be found in appendix 5. 

 
Table 8.5 Summary of the significant effects in univariate least squares regression models with yearling scrotal 
circumference (YSC), birth weight (BW), weaning weight (WW) and yearling weight (YW) as dependent variable 

Dependent variable 
YSC BW WW YW 

Sire 
Birth year 

Age of dam 
 
 

Yearling age 

Sire 
Birth year 

Age of dam 
Sex 
ET 

Sire 
Birth year 

Age of dam 
Sex 
ET 

Weaning age 

Sire 
Birth year 

Age of dam 
Sex 

 
Yearling age 
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8.5 The animal model results from airemlf90 

8.5.1 Description of the models 

Table 8.6 on the next page describes the animal models that are fitted by BLUP in this analysis. 

 

Model 1 uses an adjustment formula for YSC, WW and YW. This adjustment formula corrects for the 

age at which the trait is measured. The formula for the dependent variable 𝑌 and animal i is:  

𝑌𝑎𝑑𝑗,𝑖 = 𝑌𝑜𝑏𝑠,𝑖 − 𝑓(𝐴𝑔𝑒𝑖 − 𝐴𝑔𝑒̅̅ ̅̅ ̅) (8.1) 

with 𝑌𝑎𝑑𝑗,𝑖 the adjusted value for animal i, 𝑌𝑜𝑏𝑠,𝑖 the observed value for animal i, 𝑓 the age adjustment 

factor, 𝐴𝑔𝑒𝑖 the age at measurement of the animal and 𝐴𝑔𝑒̅̅ ̅̅ ̅ the mean age at measurement for variable 

𝑌. The adjustment factors for YSC, WW and YW are equal to 0.0420, 0.908 and 0.934, respectively. 

These adjustment factors were obtained by least squares regression (chapter 8.4).  

 

In model 3, 4 and 5 the age variables (YA and WA) are centered to a mean of zero and scaled to a 

standard deviation of one: 

𝑌𝐴𝑖 𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑌𝐴𝑖 − 336 𝑑𝑎𝑦𝑠

29 𝑑𝑎𝑦𝑠
 (8.2) 

𝑊𝐴𝑖 𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑊𝐴𝑖 − 201 𝑑𝑎𝑦𝑠

22 𝑑𝑎𝑦𝑠
(8.3) 

Every unit of scaled YA is equal to 29 days, and every unit of scaled WA is equal to 22 days. The birth 

weight measurements cannot be adjusted by age since the exact date of measurement, if different 

from the date of birth, is not given. 

 

In model 4, birth year is treated as a random effect and a fixed observer effect is included. This way it 

is possible to estimate the effects of birth year as a part of all possible birth year effects. There will be 

a variance estimated for the birth year effects.  

 
Model 5 includes the observer effect and birth year as a fixed effect.  



 

Table 8.6 Overview of the composition of the five animal models used in this analysis 

 Trait Age at measurement Additive genetic effect Birth year Age of dam ET Sex Observer 
   (random) (fixed) (random) (fixed) (fixed) (fixed) (fixed) 

Model 1 YSC Pre-adjusted to YA x x  x    

 BW - x x  x x x  

 WW Pre-adjusted to WA x x  x x x  

 YW Pre-adjusted to YA x x  x  x  

Model 2 YSC as covariate x x  x    

 BW - x x  x x x  

 WW as covariate x x  x x x  

 YW as covariate x x  x  x  

Model 3 YSC scaled, as covariate x x  x    

 BW - x x  x x x  

 WW scaled, as covariate x x  x x x  

 YW scaled, as covariate x x  x  x  

Model 4 YSC scaled, as covariate x  x x   x 
 BW - x  x x x x  

 WW scaled, as covariate x  x x x x  

 YW scaled, as covariate x  x x  x  

Model 5 YSC scaled, as covariate x x  x   x 
 BW - x x  x x x  

 WW scaled, as covariate x x  x x x  

 YW scaled, as covariate x x  x  x  

 
YSC = yearling scrotal circumference, BW = birth weight, WW = weaning weight, YW = yearling weight, WA = weaning age, YA = yearling age, ET = embryo transfer
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8.5.2 Model validation 

The following table (8.7) gives for the five models the AIC value and the coefficients of determination 

(R²) for the four traits in the five models. 

 

Table 8.7 AIC values and the R² values for yearling scrotal circumference (YSC), birth weight (BW), weaning weight (WW) 
and yearling weight (YW) for the five models 

 AIC R² YSC R² BW R² WW R² YW 

Model 1 42643 0.687 0.668 0.777 0.309 
Model 2 41870 0.684 0.666 0.752 0.788 
Model 3 41380 0.739 0.666 0.773 0.839 
Model 4 41744 0.729 0.668 0.769 0.837 
Model 5 41373 0.732 0.666 0.773 0.840 

 
 
Table (8.8) gives an overview of the mean bias (MB) and the mean squared bias (MSB) for the traits 

in the five models. 

 

Table 8.8 Mean bias (MB) and mean squared bias (MSB) of the five models for yearling scrotal circumference (YSC),  
birth weight (BW), weaning weight (WW) and yearling weight (YW) 

 MBYSC MBBW MBWW MBYW MSBYSC MSBBW MSBWW MSBYW 

Model 1 0.101 0.0001 0.109 0.237 2.544 5.440 301.199 2587.483 
Model 2 0.126 -0.0005 0.061 1.036 2.576 5.473 334.547 793.563 
Model 3 0.118 0.0046 0.239 2.040 2.129 5.470 305.541 605.587 
Model 4 0.120 0.0043 0.216 1.310 2.212 5.450 311.155 610.678 
Model 5 0.119 0.0045 0.236 2.032 2.173 5.478 305.408 604.893 
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Next, the Spearman correlations of the EPDs for the five models are calculated (Kutner et al., 2005). 

These correlations give more information whether the models rank the animals in the same way or 

not. Pairs of models with a high correlation indicate that the EPDs of the animals are ranked in the 

same way. The following table (8.9) contains the Spearman correlations for the models of the EPDs for 

the whole population and the active sire population (every sire born from 2012 till 2016). This 

population of active sires consists of 312 animals. 

 

Table 8.9 The Spearman correlations of the expected progeny differences between the five models for yearling scrotal 
circumference (YSC), birth weight (BW), weaning weight (WW) and yearling weight (YW). The upper diagonal matrix gives 
the correlations for the whole population and the lower diagonal matrix those for the active sire population. Values larger 

than 0.950 are highlighted in grey 

YSC  Model 1 Model 2 Model 3 Model 4 Model 5 

 Model 1  0.783 0.638 0.639 0.650 
 Model 2 0.903  0.805 0.809 0.816 
 Model 3 0.922 0.952  0.997 0.998 
 Model 4 0.922 0.951 0.999  0.999 
 Model 5 0.923 0.952 0.999 0.999  

BW  Model 1 Model 2 Model 3 Model 4 Model 5 

 Model 1  0.972 0.940 0.922 0.941 
 Model 2 0.981  0.980 0.965 0.981 
 Model 3 0.966 0.993  0.993 0.999 
 Model 4 0.962 0.991 0.999  0.993 
 Model 5 0.966 0.993 0.999 0.999  

WW  Model 1 Model 2 Model 3 Model 4 Model 5 

 Model 1  0.862 0.951 0.846 0.859 
 Model 2 0.919  0.901 0.894 0.905 
 Model 3 0.967 0.933  0.994 0.996 
 Model 4 0.968 0.929 0.999  0.997 
 Model 5 0.967 0.933 0.999 0.999  

YW  Model 1 Model 2 Model 3 Model 4 Model5 

 Model 1  0.210 0.181 0.191 0.180 
 Model 2 -0.063  0.893 0.881 0.898 
 Model 3 -0.133 0.933  0.995 0.998 
 Model 4 -0.125 0.928 0.999  0.996 
 Model 5 -0.132 0.933 0.999 0.999  
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The following table (8.10) gives the Pearson correlations (Kutner et al., 2005) between the observed 

and the estimated observations, and the correlations between the estimated observations mutually 

for the five models.  

 

Table 8.10 Pearson correlations between the observed and the estimated observations and the estimated observations 
mutually between yearling scrotal circumference (YSC), birth weight (BW), weaning weight (WW) and yearling weight (YW) 

for the five models. Values larger than 0.950 are highlighted in grey 

YSC  Model 1 Model 2 Model 3 Model 4 Model 5 

 Observed YSC 0.751 0.861 0.896 0.895 0.893 
 Model 1  0.885 0.826 0.822 0.826 
 Model 2   0.975 0.973 0.975 
 Model 3    0.999 0.999 
 Model 4     0.999 

BW  Model 1 Model 2 Model 3 Model 4 Model 5 

 Observed BW 0.850 0.847 0.848 0.850 0.848 
 Model 1  0.998 0.997 0.995 0.997 
 Model 2   0.999 0.998 0.999 
 Model 3    0.999 0.999 
 Model 4     0.999 

WW  Model 1 Model 2 Model 3 Model 4 Model 5 

 Observed WW 0.708 0.898 0.894 0.894 0.895 
 Model 1  0.782 0.725 0.722 0.725 
 Model 2   0.988 0.988 0.988 
 Model 3    0.999 0.999 
 Model 4     0.999 

YW  Model 1 Model 2 Model 3 Model 4 Model 5 

 Observed YW 0.649 0.894 0.920 0.920 0.920 
 Model 1  0.813 0.774 0.772 0.774 
 Model 2   0.976 0.975 0.976 
 Model 3    0.999 0.999 
 Model 4     0.999 
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8.5.3 Estimates of variances, covariances, genetic correlations and heritabilities 

The following table (8.11) contains the additive genetic and residual (co)variance estimates and their 

standard error, for the four dependent variables estimated by model 3. The (co)variance estimates of 

the four other models can be found in appendix 6.  

 

Table 8.11 Variance and covariance estimates for yearling scrotal circumference (YSC), birth weight (BW), weaning 
weight (WW) and yearling weight (YW) estimated by model 3. The first diagonal matrix gives the additive genetic 

(co)variances, the second diagonal matrix gives the residual (co)variances. The value between parantheses gives the 
standard error of the estimate 

 YSC BW WW YW 

YSC 3.41 (0.66) 0.99 (0.56) 20.10    (4.89) 30.42     (7.24) 
BW  5.80 (0.77) 17.11    (4.74) 33.38     (7.26) 
WW   405.12  (52.81) 501.65   (69.93) 
YW    784.12 (118.41) 

     
YSC 3.60 (0.48) 0.69 (0.41) 16.76     (3.48) 29.47     (5.15) 
BW  7.86 (0.49) 14.73     (3.03) 15.49     (4.75) 
WW   464.58   (32.98) 413.50   (44.22) 
YW    941.67   (79.15) 

 
 

The genetic and residual correlations, as estimated by model 3, are given in table 8.12. The 

heritabilities (equation 2.4, chapter 2.2) are given on the diagonal of this table. The correlations and 

heritabilities, obtained by the other models can be found in appendix 6. 

 

Table 8.12 Genetic correlations (upper diagonal matrix), heritabilities (on the diagonal, highlighted in grey) and the residual 
variances (lower diagonal matrix) for yearling scrotal circumference (YSC), birth weight (BW), weaning weight (WW) and 

yearling weight (YW) estimated by model 3 

 YSC BW WW YW 

YSC 0.49 0.22 0.54 0.59 

BW 0.13 0.43 0.35 0.49 

WW 0.41 0.24 0.47 0.89 

YW 0.51 0.18 0.63 0.45 
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8.5.4 Parameter estimates 

The BLUEs of the effects for YSC and the weight traits, obtained in model 3, can be summarized as 

following:  

• Figure 8.4 shows the additive effect of the age of dam on the four traits. The visualized effects 

are relative to two-year old dams. 

• Figure 8.5 shows the additive effect of birth year from 2002 to 2016 on the four traits. The 

visualized effects are relative to the year 2002. 

• The estimate for scaled YA as a covariate for YSC is equal to 0.82 cm for every 29 days.  

• For BW, there is a slight difference (0.75 kg) between ET calves and non-ET calves. The birth 

weight of male calves is 1 kg higher in comparison to female calves.  

• The WW of ET calves is about 25 kg lower in comparison to non-ET calves. Male calves weigh 

on average 19 kg more than female calves at weaning. The scaled WA estimate as a covariate 

for WW is equal to 18.57 kg for every 22 days. 

• Male animals weighted about 70 kg more than female animals at yearling age. The scaled YA 

covariate is estimated at 27.23 kg for every 29 days. 

 

The airemlf90 program does not formally test whether these estimates are significantly different from 

zero. 

 

In appendix 7, an overview is given for the estimated effects in the five models.  
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Figure 8.4 The additive effect of the age of dam on yearling scrotal circumference (YSC), birth weight (BW), weaning 

weight (WW) and yearling weight (YW) as estimated by model 3 

 
 
 
 

 
Figure 8.5 The additive effect of the year of birth on yearling scrotal circumference (YSC), birth weight (BW), weaning 

weight (WW) and yearling weight (YW) as estimated by model 3  
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8.5.5 EPDs 

The BLUP estimates of model 3 are used to calculate the (relative) EPDs of the 4099 animals and their 

corresponding accuracy values. Table 8.13 gives an excerpt of the list of 4099 animals as an example. 

The number of first-degree offspring is given in the column ‘Offspring’. The animal registration 

numbers are changed to a coded number for privacy reasons. Table 8.14 gives an overview of the 

means, variances and standard deviations of the EPDs for the four traits. The Spearman correlations 

(Kutner et al., 2005) between the EPDs of the four traits are given in table 8.15. Figure 8.6 gives the 

frequency histogram of the EPDs for the four traits.  

 

Table 8.13 An excerpt of the EPD list, giving the EPDs for yearling scrotal circumference (YSC) (in cm), birth weight (BW)  
(in kg), weaning weight (WW) (in kg) and yearling weight (YW) (in kg), the respective accuracy values and the number of 

offspring for eight Black Hereford animals, based on the estimates of model 3 

Animal EPD.YSC ACC.YSC EPD.BW ACC.BW EPD.WW ACC.WW EPD.YW ACC.YW Offspring 

1 0.421 0.742 0.859 0.736 8.411 0.754 11.229 0.753 0 

2 0.855 0.780 -1.169 0.837 13.835 0.850 17.109 0.830 12 

3 0.182 0.825 -1.586 0.844 0.478 0.854 -3.641 0.845 11 

4 -1.115 0.809 -0.497 0.844 -5.735 0.855 -5.774 0.841 13 

5 0.249 0.844 0.284 0.868 9.656 0.877 14.344 0.866 22 

6 0.385 0.774 0.133 0.802 1.774 0.809 7.421 0.802 5 

7 -0.557 0.762 0.878 0.759 -2.370 0.775 -3.546 0.775 0 

8 0.683 0.746 0.712 0.747 4.735 0.763 7.474 0.763 0 

 
 
 

Table 8.14 Overview of the mean, variance, standard deviation and range of the EPDs for yearling scrotal 
circumference (YSC) (in cm), birth weight (BW) (in kg), weaning weight (WW) (in kg) and yearling weight (YW) (in kg), 

estimated by model 3 

 Mean Variance Standard deviation Min Max 

EPD YSC -0.369 0.247 0.497 -1.731 2.069 
EPD BW -0.119 0.300 0.548 -2.146 2.513 
EPD WW -1.997 24.865 4.986 -26.403 20.196 
EPD YW -3.860 52.188 7.224 -39.993 28.046 

 
 
 

Table 8.15 The Spearman correlations between the EPDs for yearling scrotal circumference (YSC), birth weight (BW), 
weaning weight (WW) and yearling weight (YW), as estimated by model 3 

 EPD BW EPD WW EPD YW 

EPD YSC 0.337 0.605 0.677 
EPD BW  0.455 0.554 
EPD WW   0.924 
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Figure 8.6 Frequency historgrams of the yearling scrotal circumference (YSC), birth weight (BW), weaning weight (WW) and 

yearling weight (YW) EPDs estimated by BLUP. On each plot, a Normal distribution with the same mean and variance is 
plotted for comparison 
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8.6 The MCMC algorithm 

A model with YSC as dependent variable, birth year, age of dam and scaled YA as fixed effects and the 

additive genetic effect as random effect (the analogue of model 3) is obtained by a MCMC algorithm. 

The 707 observations of YSC and the minimal pedigree of 4099 animals are used. The total computation 

time is 1 hour and 45 minutes. The Markov chain consists of 1 000 000 iterations, with a burn in period 

of 3000 and a thinning of 500 iterations. The MCMCglmm function uses for the fixed effects a wide 

Normal prior distribution (de Villemereuil, 2012). For the random and residual effect an inverse-

Gamma distribution is chosen with V = 1 and nu = 0.002. The probability density function plot of this 

distribution can be found in chapter 2.3.6.5.  

 

The behavior of the Markov chain is an important characteristic in the validation of the obtained 

results. This includes the behavior of the trace of the chain samples, the autocorrelation, the effective 

sizes and estimated posterior density function for each component of the model. The traces of the 

chain samples and the approximated posterior distributions for the estimated effects are given in 

appendix 8 (figure A8.1). 

 

The model converges fast, which is typical for the MCMCglmm function (de Villemereuil, 2012). All 

approximated posterior distributions are symmetric and the traces show no clear trend. The 

autocorrelation between consecutive samplings of the additive genetic effects is 0.07. The effective 

sample size of the random additive genetic effects is 1708, for the residuals 1717. The effective sample 

sizes for the fixed effects can be found in table A8.1 in appendix 8. 

 

The genetic variance of YSC is estimated at 2.21 cm², the residual variance at 3.66 cm² and the 

heritability of YSC amounts to 0.37.  

 

The means of the approximated posterior distributions and the lower and upper values of the 95% 

highest posterior density intervals of the effects are given in appendix 8. The posterior means of the 

age of dam effects are given in figure 8.7. The 95% highest posterior density interval of the effect of 

the 6-year old dam includes zero. The highest posterior density intervals for the other levels of the age 

of dam do not include zero. So, the effect of age of dam is, except for 6-year old dams, significantly 

different from zero. 

 

The posterior mean of the additive genetic effect of each animal is used to calculate a (relative) EPD 

for the animal.  
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The mean of the EPD estimates is equal to -0.044 cm, the variance 0.098 cm² and the standard 

deviation is 0.312 cm. Figure 8.8 gives the frequency histogram of the EPDs for YSC obtained with the 

MCMC algorithm.  

 

The obtained EPDs are compared with the EPDs estimated by BLUP. The Spearman correlation 

between the two EPD estimations of the whole population is equal to 0.646 and the Pearson 

correlation is 0.725 (Kutner et al., 2005). The Spearman correlation between the two EPD estimations 

for the 312 active bulls born from 2012 till 2016 is equal to 0.887 and the Pearson correlation is 0.877. 

 

Figure 8.7 The mean of the posterior distribution of the age of dam on yearling scrotal circumference, relative to 2-year old 
dams, as estimated by the MCMC algorithm 

 

Figure 8.8 Frequency histogram of the yearling scrotal circumference, estimated by MCMC.  
A Normal distribution with the same mean and variance is plotted for comparison  
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9 Discussion 

9.1 Data management and statistics 

In total there are 894 observations for YSC. Only 707 of these are complete for every variable. 179 

observations of the 894 do not have a YA record, 8 of the 894 do not include a record of the age of 

dam. When these measurements are missing, the observations cannot be taken into account by BLUP 

or the MCMC algorithm. Completeness of the pedigree file and data files is crucial for a good data 

analysis.  

 

The average YSC of 35.99 cm is higher than most observations reported in literature (chapter 5.2). The 

standard deviation of 2.85 cm is conform the literature. The average BW, WW and YW is also in 

accordance with the averages found in literature (chapter 6.1). Note that the WA and YA is not 

recorded for every animal with a WW or YW measurement (9 and 18, respectively, missing).  

  

The Pearson correlation found between YSC and WW, and YSC and YW is equal to 0.456 and 0.482, 

respectively. These are positive and indicate that the YSC increases for a higher WW or YW. Animals 

with a high YW will probably have a larger scrotum. This indicates that the growth of the scrotum of 

the animal is partly linked to overall growth of the animal. This association is previously found in other 

breeds (Bourdon & Brinks, 1986; Smith et al., 1989b). The correlation between YSC and WA, and YSC 

and YA is lower. The correlation between BW and WW, and BW and YW is low. The correlation between 

WW and YW is positive (0.662), which indicates that animals with a high WW will probably have a high 

YW and vice versa.  

 

9.2 Age at first calving 

The mean AFC is higher than expected in commercial conditions. In these conditions, it often occurs 

that heifers that do not calve before 3 years of age are culled. Many cows appear to have their first 

calf at an age of over 1100 days (± 3 years). The standard deviation (336 days) is high, indicating that 

the AFC is highly variable. This is also visible in the frequency histogram (figure 8.2). 

 

The large AFCs are probably caused due to the way of calculating the AFC. There are no direct records 

of the AFC available, thus it has to be calculated as the difference between the birth dates of the cow 

and the first registered calf of the cow. One problem with this way of calculating is the fact that the 

first calf of a cow is not always registered. This is especially the case for the Angus and Hereford cattle 

that have been used in the initial crossings and for import of genetics. These animals are only registered 
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at the moment they are used in the Black Hereford crossings, and there is no information about 

previous calvings transferred to the pedigree files of the Black Hereford breed. The last 3 years (2014 

– 2016), the AFCs are more consistent (figure 8.3). During this period the Black Hereford breeding 

program temporarily stopped importing Hereford genetics into the breed (Hoagland, 2016).  

 

In addition, AFC is highly influenced by management conditions. For example, J&N Ranch always 

synchronizes their heifers to be able to inseminate them at the same time (see appendix 1). This 

treatment blurs the genetic variance that might be present in the heifer population. Another 

management condition that influences the AFC is the moment of exposing the heifers to breeding. 

 

Another thing that can be noted in figure 8.2 is that some animals have an age of dam below 600 days. 

These values are resulting from some inconsistencies in the birth dates of the animals.  

 

For the above reasons, it was not worthwhile to include AFC in the further analysis.  

 

9.3 Dam and sires vs birth year 

Genetic links between the different birth years are observed coming from both paternal as maternal 

side. Sires appear on average in 2 years and dams in 2.8 years.  

 

9.4 Linear regression results  

The linear regression model shows the significant variables (α = 0.05) that could be included in the 

animal model (table 8.5). The following independent variables are found to be significant: 

• For YSC, the significant variables are: sire, birth year, age of dam and YA. The observer is not 

found significant, although this variable can be included in further analyses when more 

observers are involved.  

• For BW, the significant variables are: sire, birth year, age of dam, sex and ET. For BW, there is 

no age adjustment possible, since the exact date at measurement, if different from the actual 

birth date, is not recorded. 

• For WW, the significant variables are: sire, birth year, age of dam, sex, ET and the WA.  

• For YW, the significant variables are: sire, birth year, age of dam and the YA. The ET effect has 

not been found significant. 

  



Discussion - 61 
 

9.5 Animal model results 

9.5.1 Model description  

Table 8.6 gives an overview of the used animal models. The results of the linear regression are used to 

decide which effects can be taken into account when constructing the models.  

 

In model 1 YSC, WW and YW are pre-adjusted to the respective age at measurement. The adjustment 

factor for YSC is almost equal to the ones previously described in table 5.1. Those for WW and YW are 

close to the average daily gain from weaning to YA (chapter 8.1) and to the average daily gains reported 

for the Black Hereford breed in chapter 3.4. Model 2 estimates the animal model with unscaled ages 

at measurement. Model 3 estimates the same model, but with scaled ages. Model 4 estimates the 

birth year as a random effect. In order to do this properly, the observer effect is added to the model, 

although it is not found significant in the least squares regression. Without the observer effect, the 

birth year variance on YSC is estimated at 1471.5 cm². Adding the observer effect decreases the birth 

year variance of YSC to a more plausible 3.93 cm². This variance inflation is probably caused by the 

specific structure of the available data. Models 4 and 5 include the same effects but in model 5, the 

birth year effect is estimated as fixed. 

 

In these five models the birth year effect can be interpreted as a contemporary group effect. It could 

be possible to use a birth year – period combination as a contemporary group, with period as a variable 

for the moment of birth in the year (e.g. the fall). This results in a large number of contemporary groups 

and many of these groups have only a few measurements. The accuracies of the estimates of the 

groups with only a few observations would be very low. Because of this, the birth year is chosen to be 

the contemporary group variable in the models. 

 

9.5.2 Validation and selection of the different models 

In table 8.7, not all AIC values can be compared with each other. Models 1 (with pre-adjusted 

measurements) and 2 (with unscaled ages) are estimated on different datasets than models 3, 4 and 

5 (with scaled ages). Models 3, 4 and 5 are different mixed models, fitted on the same data. Their AIC 

values can be compared. Of these three models, the AIC values of 3 and 5 are lower than the value of 

model 4. The AIC value of model 5 is a little lower than the one from model 3. This is probably caused 

by the extra independent variable that is present in model 5. Because this model has an extra factor, 

it loses less information and therefore its AIC value is lower. 

 

The R² values for the BW and WW traits are in the five models fairly alike (table 8.7). The main 

differences in R² between the five models can be found in the YSC and YW traits. For YSC, models 3, 4 
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and 5 explain more of the total variance in comparison to models 1 and 2. For YW, model 1 only 

explains 30.9% of the total variance, while model 2 explains 78.8% and models 3, 4 and 5 explain ± 84%.  

 

The MBs in the five models for YSC are about equal, but all larger than zero. This indicates that, in 

general, the YSC trait is overestimated. The MB for BW is almost equal to zero in the five models. For 

WW, the MB is the highest (± 0.220) in models 3, 4 and 5 and is the lowest in model 2. For YW, the MB 

is the highest (± 2) in models 3 and 5, being equal to ± 1 in models 2 and 4 and equal to 0.237 in 

model 1.  

 

The MSB for YSC is the lowest in models 3 and 5. A low MSB indicates that the estimates are more 

precise. The MSB for BW is equal in the five models. For WW, the MSB is the lowest in models 1, 3 and 

5. For YW, the lowest MSBs are found in models 3, 4 and 5 (± 605) and model 1 has a MSB equal to 

2587. This indicates that model 1 has a low precision for YW. 

 

In general, the Spearman correlations of the EPDs (table 8.9) for the whole population are lower than 

these for the active sire population. The ranking of the EPDs of the animals in the active sire population 

is very similar in the five models. This indicates that the models value the active sire population more 

in the same way as they value the whole population. Model 1 stands out since it has lower correlations 

with the other models for YSC, WW and especially for YW. It values the active population for YW 

completely different in comparison to the other models. Model 3, 4 and 5 have for the four traits 

correlations almost equal to one, both for the whole as the active sire population. The ranking of the 

EPDs of the animals is almost equal, indicating that these three models value the breeding values of 

the animals in the same way. 

 

The Pearson correlations (table 8.10) between the observed traits and the estimated observations give 

an indication which model is better capable to estimate the observed values. For YSC, WW and YW, 

the models 3, 4 and 5 do this equally good, with correlations of about 90%. Apart from this, table 8.10 

gives also information about the Pearson correlations between the estimated observations for the five 

models mutually. Model 2, 3, 4 and 5 have almost equal estimated observations. Model 1 has lower 

correlations for YSC, WW and YW, indicating that the estimated values are different from the other 

models. 

 

The validation parameters indicate that models 3, 4 and 5 estimate the EPDs in the same way. They 

have equal estimated observations, R² values that are almost equal and have MBs and MSBs that only 

vary a little. Model 1 estimates the EPDs and observations often different from the other models and 
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has, especially for YW, a low R² and a high MSB. The R² values for model 2 are for YSC and YW lower 

than the ones estimated for models 3,4 and 5. Model 2 has also a higher MSB for YW. The five models 

estimate the BW trait almost equally. 

 

Model 3 is chosen as the most appropriate model for the available data. Model 4 and 5 have a lower 

AIC value but they include the non-significant observer effect. The parameter and EPD estimates are 

almost equal for these three model, so either of these three models obtain the same results.  

 

9.5.3 Estimates of variances, covariances, genetic correlations and heritabilities 

The additive genetic variance and covariance estimates for model 3, 4 and 5 are almost equal. Same 

counts for their residual (co)variance estimates. Model 1 obtains lower estimates for both the additive 

genetic and residual (co)variances. The additive genetic variance for YW is ten times smaller than in 

other models. The estimates of model 2 are in between these of model 1 and model 3, 4 and 5. 

 
The heritability estimates for model 3 are for the four traits moderate to high (> 0.35). The estimate 

for YSC is equal to 0.49 and is conform the estimates found in literature (chapter 5.2). The heritabilities 

of the weight traits in the Black Hereford breed are previously estimated by Dr. Riley et al. (0.28, 0.35 

and 0.23 for BW, WW and YW, respectively). The heritabilities obtained in this analysis are somewhat 

higher (0.43, 0.47 and 0.45 for BW, WW and YW, respectively). This can be explained by the fact that 

the models in this analysis included other factors (e.g. another contemporary grouping structure). 

Moreover, Riley et al. included data from multiple herds and estimated a maternal genetic effect. 

When only one herd is measured, the managemental and environmental variability is limited. The 

observed differences are more likely to be caused by genetic differences. Including a maternal genetic 

effect decreases the additive genetic variance and thus decreases the (additive) heritability.  

 

Both the heritability estimates for BW (0.43) and YW (0.45) are in accordance with values found in 

Angus and Hereford breeds as reported in chapter 6.2. The estimate for WW (0.47) is somewhat higher 

than those found in other Hereford and Angus herds (0.14 to 0.35, chapter 6.2). 

 

The heritability estimate for YW in model 1 is clearly off. This is caused by a low additive genetic 

variance estimated when using the pre-adjusted YW measurements.  

  



Discussion - 64 
 

The heritability estimates for model 3 and 5 are almost equal, but those of model 4 differ. This is caused 

by the design of model 4 with the birth year effect as random effect. This creates an extra variance 

term in the model and thus in the heritability calculation, making the denominator larger and the 

heritability estimate lower.  

 
The genetic correlations between YSC and BW, WW and YW are positive and, respectively, low (0.22), 

and moderate (0.54 and 0.59, respectively). These positive correlations are in accordance with the 

literature given in chapter 5.3. It indicates that the genetic relationship between YSC and growth traits 

found in other breeds, is also present in the Black Hereford breed. So, when selecting for a higher YSC, 

the WW and YW will also increase. The high genetic correlation (0.89) between WW and YW is conform 

the literature previously reported in chapter 6.3. Thus, when a breeder selects for a higher WW, the 

YW will also be positively influenced.  

 

9.5.4 Parameter estimates 

Models 2, 3, 4 and 5 have about the same estimates for the effects for the four traits. The estimates 

of model 1, except for BW, differ more from the other four models. The estimates for BW are in the 

five models almost equal. 

 

9.5.4.1 Age of dam 

As described in chapter 5.1, previous studies indicate that the age of dam is of influence for the YSC of 

their sons. The older the dam, the larger the bulls scrotum at yearling age. For the Black Hereford 

breed, the same trend is found. The linear regression in chapter 8.4 indicates that, for YSC, the age of 

dam is significant and the BLUEs in figure 8.4 show the increase in YSC in sons of older dams. For 

example, a son of a cow of 5 years old has on average a 0.87 cm larger YSC in comparison to a son from 

a heifer. The estimate for 6 year old dams is lower than those for 5- and 7 year old dams. There is no 

clear explanation for this decrease.  

 

The influence of the age of dam on the YSC can be caused by the correlation between YSC and weight 

traits. Older cows, which are selected every year again in the breeding program, most probably have 

favorable growth characteristics. It is possible that the observed increase of YSC in older dams is caused 

by the selection of the dams for their superior weight traits. These cows will have offspring with higher 

WW and YW. Their sons can have a higher YSC, given the genetic correlation between YSC and WW, 

and YSC and YW. 
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The BLUEs for the age of dam effects on BW, WW and YW increase for older dams (figure 8.5). This can 

partly be attributed to the previously discussed selection effect or by the fact that the mothering ability 

of a cow increases in older cows (Smith et al., 1989a). 

 

9.5.4.2 Birth year 

For YSC, the mean effect of birth year, excluding 2004, is equal to 1.7 cm. For 2004 there is a large 

effect estimated (8.53 cm). This is probably caused by the fact that in 2005 (for animals born in 2004) 

some animals were recorded with a much larger YSC (e.g. animals older than one year but with an 

incorrect YA). Indeed, of the 11 measurements of YSC on animals born in 2004, 8 have a YSC larger 

than 40 cm. Their YAs are around average. It is possible that these records are actually taken on older 

animals, without recording their real age at measurement. 

 

For the weight traits, especially for WW and YW, the birth year effect is more variable. This can be 

caused by differences in annual forage availability in the pastures or by weather conditions. Note that 

model 4 estimates for every year an effect on WW and YW, although some of these years (e.g. 1992 

and 1993) have no measurements for WW or YW. This is possible since birth year is estimated as a 

random effect. 

 

9.5.4.3 Age at measurement  

The age at measurement estimates are for the four traits, in the five models, larger than zero. This 

indicates that older animals will have a higher YSC, WW or YW. The age adjustment factor for YSC in 

model 3 is equal to 0.82 cm for every 29 days, given the used scaling in chapter 8.5.1. This results in an 

increase of 0.0283 cm for every day the bull is older than 336 days at the moment of measurement. 

This is more or less conform the values found in literature for other beef breeds (see chapter 5.1) and 

approximates the adjustment factor used in model 1 (0.0420 cm/day). 

 

9.5.4.4 Observer 

The effects of the observer for YSC in models 4 and 5 show only small differences between the three 

observers. This is expected, since the observer effect is not found to be significant (chapter 8.4). 

 

9.5.4.5 ET 

Animals born by ET have a lower BW and WW estimate in comparison to non-ET calves. This is 

somewhat unexpected because the used donor cows are expected to be the better cows in the herd. 

It is possible that the recipient cows provide not these optimal rearing conditions (in utero and during 

rearing).  
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9.5.4.6 Sex 

For BW, WW and YW, female animals have a lower weight in comparison to the male animals. 

 

9.5.5 EPDs 

In this analysis, EPDs are estimated for 4099 animals. The means of the estimated EPDs are somewhat 

below zero (table 8.12). This is also visible in figure 8.6, where the histograms show for YSC and YW 

right - skewed distributions. It is clear that a lot of the EPDs are estimated somewhat below zero. One 

reason for the high number of EPDs below zero could be the large number of animals with only a 

limited amount of information. These animals have an EPD close to zero and a low accuracy. Because 

of the transformation of the EPDs to the reference group (as given in chapter 7.2.5.5), this group of 

animals might have received a negative EPD.  

 

Table 8.13 gives the calculated EPDs and accuracies of eight animals as an excerpt of the whole EPD 

list. For example, animal 1 has an EPD for YSC of 0.421 cm. This indicates that the male progeny of this 

animal, if mated to an animal with an EPD for YSC of 0 cm, is expected to have an YSC of 0.421 cm 

larger than the population average. A calf of animals 1 and 2 from table 8.13, if both animals are of 

different sexes, is estimated to have a birth weight 0.31 kg lower than the population average, its WW 

is expected to be 22.2 kg higher than the population average and its YW 28.3 kg higher. 

 

The accuracies of these eight animals in table 8.13 are fairly high. For these eight animals, it is clear 

that animals with offspring have an higher accuracy in comparison to animals without offspring. When 

evaluating the whole table of EPDs and accuracies (not given), most animals with a high accuracy value 

are either animals with a large number of offspring or animals with observations of their own. Animals 

with only a few relatives and no observations of their own have a low accuracy (0.10 – 0.30). 

 

The Spearman correlations between YSC and WW, and YSC and YW are moderate (0.605 and 0.677, 

respectively) (table 8.15). This indicates that the ranking of the animals by YSC EPDs is for 60.5 % equal 

to the ranking of the WW EPDs, and 67.7 % equal to the ranking of the YW EPDs. When selecting for 

an animal with a high YSC EPD, it is likely that this animal also has a high WW and YW EPD. The 

Spearman correlations between WW and YW is almost equal to one (0.924). This implies that the EPDs 

of the animals for both traits are ranked in the same order. Animals with a high WW EPD will probably 

also have a high YW EPD and vice versa. 

  



Discussion - 67 
 

9.5.6 A remark on model 1 

It seems that pre-adjusting the dependent variables for their age at measurement, as done in model 

1, is not optimal. This adjustment is highly dependent on the used adjustment factor. Model 1 uses 

linear adjustment factors, obtained by least squares regression. For YSC, the estimated effects and 

(co)variances are quite equal to the ones for the other models. But in YW there is a large difference in 

the obtained estimates in comparison to the other models.  

 

Other linear adjustment factors have been tried but did not improve the results (results not given). 

These other adjustment factors were obtained from the covariate estimates in model 2: 0.0043, 0.46 

and 0.21 for YSC, WW and YW, respectively. 

 

It is possible that a linear adjustment factor is not sufficient. An alternative adjustment factor could be 

a calculation based on the average growth of the animal between the moment of weaning and yearling 

age. This makes the adjustment more robust against individual variation in growth rates.  
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9.6 The MCMC algorithm 

The MCMC computation time of the animal model is higher than the computation time of the airemlf90 

program. The BLUP computations finishes in minutes, where the MCMC algorithm needs over an hour 

to get results. For this reason, only a single trait model is estimated, instead of the four-trait model 

fitted by BLUP. The main drawbacks of the MCMC algorithm in comparison to the BLUP computations 

are the high computation time and the fact that MCMC is less user-friendly (e.g. setting the prior 

distributions, checking the convergence and high autocorrelation). Same drawbacks are found by de 

Villemereuil et al., (2013). 

 

For the MCMC calculation, the biggest problem is the large autocorrelation between consequent runs. 

This large autocorrelation is caused by the low number of observations (707) in comparison to the 

number of animals to estimate (4099). This results in a large thinning interval. In order to obtain an 

acceptable effective sample size, the total number of iterations is increased. This large number of 

iteration lengthens the computation time. 

 

The behavior of the algorithm is checked before looking at the results of the computation (see 

appendix 8 for the trace plots and the approximated posterior distributions of the effects). The traces 

of the chains do not show a trend and the estimated posterior density functions look symmetric. 

Convergence has occurred and the chains do not get “stuck” on a specific value.  

 

An autocorrelation of 0.07 is acceptable (de Villemereuil, 2012). It points out that the correlation 

between consecutive samples is estimated to be 7 percent. The obtained effective sample size for the 

additive genetic effect (1708) is moderate. Sizes above 1000 are acceptable (de Villemereuil, 2012). 

The effective sample sizes of the fixed effects are larger than those of the residuals and the additive 

genetic effect. A high autocorrelation reduces the effective sample size and a high effective sample 

size is necessary to obtain a high number of independent variables to estimate the posterior 

distributions.  

 

The genetic variance of YSC is estimated at 2.21 cm². This is lower than the estimate from model 3 in 

the BLUP computation (3.41 cm²). The heritability estimate (0.37) is lower than the ones estimated by 

BLUP but is still in accordance with the estimates previously reported in chapter 5.2.  
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The Spearman correlations between the EPDs estimated by BLUP and those obtained by the MCMC 

algorithm are moderate for the whole population (0.646) and high for the active sire population 

(0.887). This indicates that both computations result for the active sire population in roughly the same 

ranking of the animal. The Pearson correlation between the EPDs obtained by BLUP and by MCMC 

indicate that the EPD values in both computations are fairly alike (0.725 and 0.877, respectively for the 

whole population and the active sire population). 

 

The effect of the age of dam on YSC (figure 8.7) is the same as the one observed in the BLUP 

computation. The 95% highest posterior density intervals of the effects of age of dam, except for 6-

year old dams, do not include zero. For sons of 6-year old dams, the same decrease in YSC can be 

observed as found in the BLUP estimation. The estimated birth year effects are comparable to the ones 

found in the BLUP computations. The posterior mean of the YA effect is estimated at 1.17 cm for 29 

days. This value is equal to +0.0403 cm per day and is in accordance with the values previously 

described in chapter 5. 
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10 Conclusion 

The preferred model in this analysis is model 3 and includes: 

• For YSC: birth year and age of dam as fixed effect, the scaled YA as covariate and an additive 

genetic effect as random effect. 

• For BW: birth year, age of dam, ET and sex as fixed effects and an additive genetic as random 

effect. 

• For WW: birth year, age of dam, ET and sex as fixed effect, the scaled WA as covariate and an 

additive genetic effect as random effect. 

• For YW: birth year, age of dam and sex as fixed effect, the scaled YA as covariate and an 

additive genetic effect as random effect.  

 

Birth year can also be included as a random effect (see model 4). When the number of observers 

increases in future analyses, an observer effect can be added to the animal model (see model 5). 

 

This four-trait model is fitted by BLUP with REML (co)variance estimation. Also, a MCMC algorithm is 

used to evaluate the YSC separately. Both methods can be used in animal breeding but MCMC has 

some drawbacks over BLUP (e.g. a high computation time for complex multi-trait models).  

 

The heritabilities of YSC, BW, WW and YW in Black Hereford cattle are moderate to high (0.49, 0.43, 

0.47 and 0.45, respectively). This indicates that selection for YSC and weight traits is possible. This is 

the first time that the heritability for YSC is estimated in the Black Hereford breed.  

 

EPDs for YSC, BW, WW and YW weight are estimated for 4099 Black Herefords. EPDs for weight traits 

were previously reported for the Black Hereford breed but this is the first time EPDs are estimated for 

YSC. 

 

Due to management conditions and data inconsistencies, a possible link between YSC and AFC in the 

Black Hereford breed could not be studied. In order to be able to study this, certain criteria on keeping 

records for the AFC of animals will have to be imposed in agreement with the breeders. To measure 

the AFC directly, breeders have to change their management conditions (e.g. no longer estrus 

synchronizing the heifers and exposing heifers to natural breeding). In that case, the birth date of the 

calf is a representation of the AFC of the mother.  
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To improve the accuracy of the heritability, genetic correlations and the EPD calculations, it is 

important that measurements are continued. The measurements can be extended to other herds. 

When these measurements are performed in other herds, it is important that all possible variables 

(e.g. breeding groups, observers, management conditions) are recorded.  

  



 

References 



References - 72 
 

11 References 

 
Acquaah, G. (2012). Principles of Plant Genetics and Breeding. Journal of Chemical Information and Modeling 

(Second edi, Vol. 53). Bowie State University, Maryland, USA: Wiley-Blackwell.  

Akaike, H. (1974). A new look at the statistical model identification. Transactions on Automatic Control, 19(6), 

716–723.  

American Angus Association. (2016a). 2016 Annual Report. Saint Joseph MO, USA: American Angus Association. 

American Angus Association. (2016b). Personal Interview. Saint Joseph MO, USA: (personal communication). 

American Angus Association. (2016c). Sire evaluation report, fall 2016. Saint Joseph MO, USA. 

American Hereford Association. (2016). 2016 American Hereford Association Annual Report. Kansas City MO, 

USA: American Hereford Association. 

Anderson, J. H. (1977). Factors affecting weaning weights of beef cattle. Iowa State University. 

Arthur, P. F., Archer, J. A., Johnston, D. J., Herd, R. M., Richardson, E. C., & Parnell, P. F. (2001). Genetic and 

phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning 

traits in Angus cattle. Journal of Animal Science, 79, 2805–2811. 

Beef Improvement Federation. (2010). Guidelines For Uniform Beef Improvement Programs. Raleigh NC, USA: Joe 

Cassady, North Carolina State University. 

Berry, D. P., & Evans, R. D. (2014). Genetics of reproductive performance in seasonal calving beef cows and its 

association with performance traits. Journal of Animal Science, 92, 1412–1422.  

Berry, D. P., Wall, E., & Pryce, J. E. (2014). Genetics and genomics of reproductive performance in dairy and beef 

cattle. Journal of Animal Science, 8(1), 105–121.  

Bourdon, R. M., & Brinks, J. S. (1986). Scrotal circumference in yearling Hereford bulls: adjustment factors, 

heritabilities and genetic, environmental and phenotypic relationships with growth traits. Journal of Animal 

Science, 62, 958–967. 

Bouron, W. F., & Boulpaep, E. L. (2003). Medical Physiology (1st ed.). Philadelphia PA, USA: Saunders. 

Breedplan. (2015). A basic guide to breedplan EBVs. Armidale NSW, Australia: Breedplan C/- ABRI University of 

New England. 

Brinks, J. S., McInerney, M. J., & Chenoweth, P. J. (1978). Relationship of age at puberty in heifers to reproductive 

traits in young bulls. In Proc. West. Sect. Am. SOC. Anim. Sci. 29:28. 

Buchanan, D., & Hanna, L. (2014). Understanding EPDs. Black Hereford Journal, 3(1), 7–10. 

Bullock, D. (2009). Fundamentals of Expected Progeny Differences, (June), 1–4. 

Burns, B. M., Gazzola, C., Holroyd, R. G., & Crisp, J. (2011). Review Article Male Reproductive Traits and Their 

Relationship to Reproductive Traits in Their Female Progeny : A Systematic Review. Reproduction in 

Domestic Animals, 46, 534–553.  

Cammack, K. M., Thomas, M. G., & Enns, R. M. (2009). REVIEW : Reproductive Traits and Their Heritabilities in 

Beef Cattle. The Professional Animal Scientist, 25, 517–528. 

 



References - 73 
 

Casas, E., Thallman, R. M., Cundiff, L. V, Casas, E., Thallman, R. M., & Cundiff, L. V. (2012). Birth and weaning traits 

in crossbred cattle from Hereford, Angus, Brahman, Boran, Tuli and Belgian Blue sires. Journal of Animal 

Science, 89, 979–987.  

Coster, A. (2013). Pedigree: Pedigree functions. Retrieved from https://cran.r-project.org/package=pedigree. 

Day, M. L., & Nogueira, G. P. (2013). Management of age at puberty in beef heifers to optimize efficiency of beef 

production. Animal Frontiers, 3(4), 6–11. 

de Villemereuil, P. (2012). Tutorial Estimation of a biological trait heritability using the animal model How to use 

the MCMCglmm R package. 

de Villemereuil, P., Gimenez, O., & Doligez, B. (2013). Comparing parent – offspring regression with frequentist 

and Bayesian animal models to estimate heritability in wild populations: a simulation study for Gaussian 

and binary traits, 260–275.  

Denton, A. S. (2009a). Believing in Heterosis. The Whiteface: Journal of the American Hereford Association. 

Denton, A. S. (2009b). Building the baldie. The Whiteface: Journal of the American Hereford Association. 

Ekarius, C. (2008). Storey’s illustrated breed guide for sheep goats cattle and pigs. Storey. 

Evans, J. L., Golden, B. L., Bourdon, R. M., & Long, K. L. (1999). Additive Genetic Relationships Between Heifer 

Pregnancy and Scrotal Circumference in Hereford Cattle. Journal of Animal Science, 77, 2621–2628. 

Felius, M. (1995). Cattle breeds an encyclopedia. Doetinchem, NL: Misset Uitgeverij. 

Felius, M. (2016). On the breeds of cattle: Their history, classification and conservation. University of Utrecht. 

Franke, D. E., Burns, W. C., & Koger, M. (1975). Variation in Coat-Color Pattern of Hereford cattle. Journal of 

Heredity, 66(3), 147–150. 

Gargantini, G., Cundiff, L. V, Lunstra, D. D., & Van Vleck, L. D. (2005). Genetic Relationships Between Male and 

Female Reproductive Traits in Beef Cattle Genetic Relationships Between Male and Female Reproductive 

Traits in Beef Cattle. The Professional Animal Scientist, 21, 195–199. 

Gilmour, A. R., Thompson, R., & Cullis, B. R. (1995). Average Information REML: An efficient algorithm for variance 

parameter estimation in Linear mixed models. Biometrics, 51, 1440–1450. 

Greiner, S. P. (2009). Understanding Expected Progeny Differences (EPDs). 

Grosz, & MacNeil. (1999). The “spotted” locus maps to bovine chromosome 6 in a Hereford-Cross population. 

Journal of Heredity, 90(1), 233–236. 

Gugelmeyer, S. (2009). Pennsylvania producers add value with feeder calf pool. The Whiteface: Journal of the 

American Hereford Association. 

Gutiérrez, J. P., Álvarez, I., Fernández, I., Royo, L. J., Díez, J., & Goyache, F. (2002). Genetic relationships between 

calving date, calving interval, age at first calving and type traits in beef cattle. Livestock Production Science, 

78, 215–222. 

Hadfield, J. (2010). MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R 

Package. Journal of Statistical Software, 33(2), 1–22. 

Hadfield, J. (2016). MCMCglmm Course Notes. 

Hahn, J., Foor, H., & Seidel, G. E. (1969). Testicular growth and related sperm output in dairy bulls. Journal of 

Animal Science, 29, 41–47. 



References - 74 
 

Henderson, C. R. (1984). Prediction of Random Variables. In L. R. Schaeffer (Ed.), Applications of Linear Models in 

Animal Breeding (3rd ed.). Guelph, ON: University of Guelph. 

Hoagland, J. N. and D. (2016). Personal Interview. Leavenworth KS, USA: (personal communication). 

Kass, M. R. E., Carlin, P. B. P., Gelman, A., & Neal, R. M. (1997). Markov Chain Monte Carlo in Practice : A 

Roundtable Discussion, 1–26. 

Kealey, C. G., Macneil, M. D., Tess, M. W., Geary, T. W., & Bellows, R. A. (2006). Genetic parameter estimates for 

scrotal circumference and semen characteristics of Line 1 Hereford bulls. Journal of Animal Science, 84, 

283–290. 

Knights, S. A., Baker, R. L., Gianola, D., & Gibb, J. B. (1984). Estimates of heritabilities and of genetic and 

phenotypic correlations among growth and reproductive traits in yearling Angus bulls. Journal of Animal 

Science, 58(4), 887–893. 

Kriese, L. A., Bertrand, J. K., & Benyshek, L. L. (1991). Age adjustment factors, heritabilities and genetic 

correlations for scrotal circumference and related growth traits in Hereford and Brangus bulls. Journal of 

Animal Science, 69(2), 478–489. 

Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied Linear Statistical Models. (R. T. Hercher, Ed.) 

(5th ed.). New York, NY: McGraw-Hill - Irwin. 

Land, R. B. (1973). The expression of female sex-limited characters in the male. Nature, 241, 208–209. 

Laster, D. B., Glimp, H. A., & Gregory, K. E. (1972). Age and weight at puberty and conception in different breed 

and breed crosses of beef heifers. Journal of Animal Science, 34, 1031. 

Long, P. (2009). Cashing in on the black market. The Whiteface: Journal of the American Hereford Association. 

Ludwig, C. (2012). The value of Black Hereford registration. Black Hereford Journal, 1(1), 10–13. 

Lunstra, D. D. (1982). Testicular development and onset of puberty in beef bulls. Clay Center NE, USA. 

Lunstra, D. D., Gregory, K. E., & Cundiff, L. V. (1988). Heritability estimates and adjustment factors for the effects 

of bull age and age of dam on yearling testicular size in breeds of bulls. Theriogenology, 30(1), 127–136. 

Lynch, M., & Walsh, B. (1998). Genetics and Analysis of Quantitative Traits. Sunderland MA, USA: Sinauer 

Associates, Inc. 

Maniatis, G., Demiris, N., Kranis, A., Banos, G., & Kominakis, A. (2015). Comparison of inference methods of 

genetic parameters with an application to body weight in broilers. Archiv Tierzucht, 58(2), 277–286.  

Martin-Collado, D., Byrne, T. J., Visser, B., & Amer, P. R. (2016). An evaluation of alternative selection indexes for 

a non-linear profit trait approaching its economic optimum. Journal of Animal Breeding and Genetics, 133, 

476–484. 

Martinez-Velázquez, G., Gregory, K. E., Bennet, G. L., & Van Vleck, L. D. (2003). Genetic relationships between 

scrotal circumference and female reproductive traits. Journal of Animal Science, 81, 395–401. 

McAllister, C. M., Speidel, S. E., Crews Jr, D. H., & Enns, R. M. (2011). Genetic parameters for intramuscular fat 

percentage, marbling score, scrotal circumference, and heifer pregnancy in Red Angus cattle. Journal of 

Animal Science, 89, 2068–2072.  

Misztal, I., Tsuruta, S., Lourenco, D., Aguilar, I., Legarra, A., & Vitezica, Z. (2015). Manual for BLUPF90 family of 

programs, 125. Retrieved from http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all2.pdf. 



References - 75 
 

Morris, C. A., Baker, R. L., & Cullen, N. G. (1992). Genetic correlations between pubertal traits in bulls and heifers, 

31, 221–234. 

Moser, D. W., Bertrand, J. K., Benyshek, L. L., McCann, M. A., & Kiser, T. E. (1996). Effects of Selection for Scrotal 

Circumference in Limousin Bulls on Reproductive and Growth Traits of Progeny. Journal of Animal Science, 

74, 2052–2057. 

Mrode, R. A. (1996). Linear models for the prediction of animal breeding values (1st ed.). Cambridge MA, USA: 

CABI Publishing. 

Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear 

mixed-effects models. Methods in Ecology and Evolution, 4(2), 133–142.  

Neely, J. D., Johnson, B. H., Dillard, E. U., & Robison, O. W. (1982). Genetic Parameters for testes size and sperm 

number in Hereford bulls. Journal of Animal Science, 55(5), 1033–1040. 

Nelsen, T. C., Long, C. R., & Cartwright, T. C. (1982). Postinflection Growth in Straightbred and Crossbred Cattle. 

II. Relationships among Weight, Height and Pubertal Characters. Journal of Animal Science, 55(2), 293–304.  

Nicholas, F. (2010). Introduction to veterinary genetics (3rd ed.). Ames IA, USA: Blackwell Publishing Ltd. 

Nunez-dominquez, R., Cundiff, L. V, Dickerson, G. E., Gregory, K. E., & Koch, R. M. (1985). Effects of Managing 

Heifers to Calve First at Two vs Three Years of Age on Longevity and Lifetime Production of Beef Cows. U.S. 

Meat Animal Research Center, (42), 33–35. 

Olshausen, B. A. (2004). Bayesian probability theory. (Berkeley Redwood center, Ed.). 

Olson, T. A. (1999). Genetics of Colour Variation. In Fries & Ruvinsky (Eds.), The genetics of cattle (pp. 33–54). 

Wallingford Oxfordshire, UK: CABI International. 

Patterson, D. J., Perry, R. C., Kiracofe, G. H., Bellows, R. A., Staigmiller, R. B., & Corah, L. R. (1992). Management 

considerations in heifer development and puberty. Journal of Animal Science, 70(12), 4018–4035. 

Perry, G. (2004). The bovine estrous cycle. South Dakota State University. 

Phillips, C. J. C. (2010). Principles of cattle production. Wallingford Oxfordshire, UK: CABI International. 

Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence Diagnosis and Output Analysis for 

MCMC. R News, 6, 7–11. 

Salverson, R., & Perry, G. (2005). Understanding estrus sychronization of cattle. 

Schaeffer, L. (2000). Restricted Maximum Likelihood and Bayesian Estimation. University of Guelph, Animal 

Biosciences. 

Schaeffer, L. (2010). Linear Models and Animal Breeding. Course. Guelph, ON: Centre for Genetic Improvement 

of Livestock Department of Animal and Poultry Science University of Guelph Guelph. 

Schmutz, S. (2016). Genetics of Coat Color Patterns in Cattle. Saskatoon, Canada: University of Saskatchewan. 

Simm, G. (1998). Genetic improvement of cattle and sheep. Ipswich, UK: Farming Press. 

Smith, B. A., Brinks, J. S., & Richardson, G. V. (1989a). Estimation of genetic parameters among reproductive and 

growth traits in yearling heifers. Journal of Animal Science, 67, 2886–2891. 

Smith, B. A., Brinks, J. S., & Richardson, G. V. (1989b). Relationships of sire scrotal circumference to offspring 

reproduction and growth. Journal of Animal Science, 67, 2881–2885. 

 



References - 76 
 

Splan, R. K., Cundiff, L. V, & Van Vleck, L. D. (1998). Genetic Parameters for Sex-Specific Traits in Beef Cattle. 

Journal of Animal Science, 76, 2272–2278. 

Tedeschi, L. O. (2006). Assessment of the adequacy of mathematical models. Agricultural Systems, 89(2–3), 225–

247.  

Toelle, V. D., & Robison, O. W. (1985). Estimates of genetic correlations between testicular measurements and 

female reproductive traits in cattle. Journal of Animal Science, 60(1), 89–100. 

Torres-Vázquez, J. A., & Spangler, M. L. (2016). Genetic parameters for docility, weaning weight, yearling weight, 

and intramuscular fat percentage in Hereford cattle. Journal of Animal Science, 94(1), 21–27.  

Wathes, D. C., Pollott, G. E., Johnson, K. F., Richardson, H., & Cooke, J. S. (2014). Heifer fertility and carry over 

consequences for life time production in dairy and beef cattle. Animal, 8(1), 91–104.  

Xu, R. (2003). Measuring explained variation in linear mixed effects models. Statistics in Medicine, 22(22), 3527–

3541.  

 

Contours used to create figure 2.1 on page 5 originate from: www.pinterest.com/pin/174021973072877966/ 
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Vulgarizing summary - 77 
 

Vulgarizing summary 

The Black Hereford breed is a beef breed created in the 1990s in the USA. During the first years of the 

breeding program, emphasis has been on the improvement of production and beef quality traits. The 

last years, breeders want to extend their focus to reproductive traits. One of these traits is the moment 

at first calving in heifers. In ideal commercial conditions, a heifer calves at an age of two years old. 

However, in many herds the average age is higher.  

 

One way of reducing the age at first calving, is by selecting for a correlated trait. One of these 

correlated traits is the yearling scrotal circumference in bulls. In previous breeds, it is shown that 

selection for a larger yearling scrotal circumference in bulls decreased the age of the onset of puberty 

in daughters. This made it possible for the age at first calving to decrease. 

 

Measurements on 2532 Black Herefords are included in this study: 894 on yearling scrotal, 2350 on 

birth weight, 2077 on weaning weight and 1434 on yearling weight. The genetic parameters are 

estimated using an animal model. This animal model takes both the observations on the animals and, 

if available, the observations on their relatives (e.g. progeny and parents) into account.  

 

The heritability for yearling scrotal circumference, birth-, weaning- and yearling weight are estimated 

as moderate to high (0.49, 0.43, 0.47 and 0.45, respectively). The heritability is an estimate to what 

extent the observed variances can be explained by genetics. A moderate to high heritability (> 0.35) 

indicates that selection for this trait is possible. Next, a low genetic correlation between yearling scrotal 

circumference and birth weight is observed (0.22) and a moderate genetic correlation between 

yearling scrotal circumference and weaning weight (0.54), and between yearling scrotal circumference 

and yearling weight (0.54). The genetic correlation between weaning- and yearling weight is estimated 

as high (0.89). A high genetic correlation indicates that when breeders select for the first trait, they 

automatically will influence the second trait as well. The data of age at first calving were less consistent 

than the above mentioned weight measurements. This results in the inability to correctly estimate the 

genetic correlation between yearling scrotal circumference and age at first calving. Breeding values for 

yearling scrotal circumference, birth-, weaning- and yearling weight are estimated. 

 

This study concludes that the results, previously found in other beef breeds,  concerning the heritability 

of yearling scrotal circumference and the genetic correlations between yearling scrotal circumference 

and weight traits are also present in the Black Hereford breed.  
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Appendix 1 – The J&N Ranch management 

The weight- and YSC data for this research originate from the J&N Ranch, run by Joe and Norma 

Hoagland. This ranch, located near Leavenworth, Kansas, is the birthplace of the Black Hereford breed. 

J&N Ranch owns the F. Morgan feedyard, the Decker Farm and the Gunbarrel Ranch in Eskridge, 

Kansas. 

 

During the grazing season, from the end of April until October, the cattle grazes at the Gunbarrel ranch, 

which is located in the North of the Flint Hills, Eskridge, Kansas. During the winter period, from October 

until April, the cattle is fed at the F. Morgan feedyard. At the feedyard, the diet consists of chopped 

hay, corn, corn silage, distillers grains and additive cow minerals. The postweaning average daily gain 

during grazing in summer reaches ± 1.1 kg/day. At the feedlot, average daily gain can reach ±1.6 kg/day 

(Hoagland, 2016). 

 

The breeding season starts every year on May 10th and lasts until July 10th (± 60 days). At the onset 

of the breeding season all heifers are estrous synchronized. By using hormones, like prostaglandins, 

progestins and gonadotropins, the heifers will start their next estrus cycle together (Salverson & Perry, 

2005). The heifers are artificially inseminated, using semen of one of their own breeding bulls. The 

insemination is performed at the beginning of the breeding season and afterwards the heifers are 

brought to the breeding pastures and exposed to a cleanup bull. The cleanup bull will mate with open 

heifers. Older cows are bred naturally by a chosen breeding bull and are put in single- or multi-sire 

pastures. When born, the calves are tested for paternity by a DNA-test (Hoagland, 2016).  

 

After a gestation period of ± 283 days, the calving season starts at February 15th and will last until April 

15th. Almost 70% of the calves are born in the first 31 days. 97 % of all cows and heifers calve without 

any assistance. Weaning starts at September 1st and is usually completed by September 15th. By then, 

the calves are on average 200 days old (Hoagland, 2016).  

 

At the J&N Ranch, every year over 200 cows get bred and over 50 of them are heifers. They own a 

dozen older bulls. Annually over 150 breeding bulls of various ages are sold to other ranches. They also 

own a few hundred commercial, non-registered, cattle. In total, the J&N Ranch, with its feedyard and 

the pasture ranch in Eskridge, has a capacity of over 1500 animals (Hoagland, 2016).  
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Appendix 2A – BLUP and the MME 

As given in chapter 2.3.3, mixed linear models have the following general form (see equation 2.5): 

𝒀 = 𝑿𝜷 + 𝒁𝒂 + 𝒆 

Consider the expectations (E) of the component vectors of the mixed model (Mrode, 1996): 

𝑬(𝒀) = 𝑿𝜷, 𝑬(𝒂) = 𝟎 and 𝑬(𝒆) = 𝟎 

The variances are given as following: 

𝒗𝒂𝒓(𝒆) = 𝑰𝝈𝒆
𝟐 = 𝑹, 𝒗𝒂𝒓(𝒂) = 𝑨𝝈𝒂

𝟐 = 𝑮 and 𝒄𝒐𝒗(𝒂, 𝒆) = 𝒄𝒐𝒗(𝒆, 𝒂) = 𝟎 

where I is a n x n identity matrix, 𝜎𝑒
2 is the residual error variance, 𝜎𝑎

2 is the additive genetic variance 

and A is the relationship matrix.  

 

Furthermore, it can be calculated that (Mrode, 1996): 

𝑐𝑜𝑣(𝒀, 𝒂)  = 𝑐𝑜𝑣(𝒁𝒂 + 𝒆, 𝒂) 

     = 𝑐𝑜𝑣(𝒁𝒂, 𝒂) + 𝑐𝑜𝑣(𝒆, 𝒂) 

      = 𝒁 𝑐𝑜𝑣(𝒂, 𝒂) 

          = 𝒁 𝑣𝑎𝑟(𝒂) 

          = 𝒁𝑮 

𝑐𝑜𝑣(𝒀, 𝒆) = 𝑐𝑜𝑣(𝒁𝒂 + 𝒆, 𝒆) 

          = 𝑐𝑜𝑣(𝒁𝒂, 𝒆) + 𝑐𝑜𝑣(𝒆, 𝒆) 

          = 𝒁 𝑐𝑜𝑣(𝒂, 𝒆) + 𝑐𝑜𝑣(𝒆, 𝒆) 

          = 𝑐𝑜𝑣(𝒆, 𝒆) 

          = 𝑣𝑎𝑟(𝒆, 𝒆) 

          = 𝑹 

𝑣𝑎𝑟(𝒀) = 𝑽 

= 𝑣𝑎𝑟(𝒁𝒂 + 𝒆) 

        = 𝒁 𝑣𝑎𝑟(𝒂) 𝒁′ + 𝑣𝑎𝑟(𝒆) + 𝑐𝑜𝑣(𝒁𝒂, 𝒆) +  𝑐𝑜𝑣(𝒆, 𝒁𝒂) 

        = 𝒁𝑮𝒁′ + 𝑹 + 𝒁 𝑐𝑜𝑣(𝒂, 𝒆) + 𝑐𝑜𝑣(𝒆, 𝒂)𝒁′ 

Since 𝑐𝑜𝑣(𝒂, 𝒆) = 𝑐𝑜𝑣(𝒆, 𝒂) = 0. 

Then: 

𝑽 = 𝒁𝑮𝒁′ + 𝑹 
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This expression indicates that the observed variance can be attributed to two separate terms. The first 

term accounts for the contribution from random genetic effects, while the second accounts for the 

variance due to residual effects.  

 

Next, 𝒂 will be predicted and 𝜷 will be estimated (this calculation is derived from Mrode, 1996).  

 

Call 𝒌′𝜷 + 𝒂 the predictant. Suppose that 𝒌′𝜷 + 𝒂 is a linear function of 𝜷 and 𝒂. 𝒌′𝜷 + 𝒂 is 

predictable using a linear function of 𝒀, say 𝑳′𝒀, and 𝒌′𝜷 is estimable. The predictor 𝑳′𝒀 can be chosen 

such that 𝐸(𝑳′𝒀) = 𝐸(𝒌′𝛃 + 𝒂) is unbiased (i.e. its expected value is equal to the expected value of 

the predictant) and the PEV is minimized (Mrode, 1996). The PEV can be calculated as (Mrode, 1996): 

𝑃𝐸𝑉 = 𝑣𝑎𝑟(𝒂 − 𝒂̂) 

     = 𝑣𝑎𝑟(𝑳′𝒀 − 𝒌′𝜷 + 𝒂) 

     = 𝑣𝑎𝑟(𝑳′𝒀 − 𝒂) 

     = 𝑳′ 𝑣𝑎𝑟(𝒀) 𝑳 + 𝑣𝑎𝑟(𝒂) − 𝑳′𝑐𝑜𝑣(𝒀, 𝒂) − 𝑐𝑜𝑣(𝒂, 𝒀)𝑳 

     = 𝑳′𝑽𝑳 + 𝑮 − 𝑳′𝑽𝑮 − 𝒁𝑮′𝑳 

Minimizing PEV subject to 𝐸(𝑳′𝒀) = 𝐸(𝒌′𝜷 + 𝒂) and solving gives (Henderson, 1984): 

𝑳′𝒀 = 𝒌′(𝑿′𝑽−𝟏𝑿)−𝟏𝑿′𝑽−1𝒀 − 𝑮𝒁′𝑽−1(𝒀 − 𝑿(𝑿′𝑽−𝟏𝑿)
−1

𝑿′𝑽−1𝒀) 

The BLUP of a equals to 𝒂̂ = 𝑮𝒁′𝑽−𝟏(𝒀 − 𝑿𝜷̂). The BLUE (best linear unbiased estimator) of β equals 

𝜷̂ = (𝑿′𝑽−𝟏𝑿)−𝟏𝑿′𝑽−𝟏𝒀. BLUE is an estimator of the estimable functions of fixed effects that has 

minimum sampling variance, is unbiased and is based on a linear function of the data. This way, the 

predictor can be written as (Mrode, 1996): 

𝑳′𝒀 = 𝒌′𝜷̂ + 𝑮𝒁′𝑽−1(𝒀 − 𝑿𝜷̂)  

Which is the BLUP of k’ β + a. 

 

The solutions for a and β require the computation of V-1. This V-1 matrix is often so large that its inverse 

is almost impossible to calculate. To solve this problem, Henderson calculated in 1950 a set of 

equations which estimate β and predict a simultaneously, without the need for computing V-1. These 

equations are called the mixed-model equations (MME).  
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The MME of the general equation are, assuming non-singularity of R and G (Mrode, 1996): 

[𝑿′𝑹−1𝑿 𝑿′𝒁
𝒁′𝑹−1𝑿 𝒁′𝑹−1𝒁 + 𝑮−𝟏] [𝜷̂

𝒂̂
] = [𝑿′𝑹−1𝒀

𝒁′𝑹−1𝒀
]  

The advantage of using the MME over the general form is that neither V nor its inverse is required. 

Although R has the same dimensionality as V, calculating the inverse is more easy since it is an identity 

matrix. Furthermore, G is often diagonal and thus is G-1 trivial to obtain. Z’R-1Z + G-1 is either a diagonal 

matrix or has a large diagonal submatrix. R-1, being an identity matrix, can be factorized from both 

sides of the MME to give (Mrode, 1996): 

[
𝑿′𝑿 𝑿′𝒁
𝒁′𝑿 𝒁′𝒁 + 𝑨−𝟏𝛼

] [𝜷̂

𝒂̂
] = [𝑿′𝑹−1𝒀

𝒁′𝑹−1𝒀
] 

where 𝛼 = 𝜎𝑒
2 𝜎𝑎

2⁄  or (1 − ℎ2)/ℎ². 

The solutions to the MME give the BLUE of k’ β and the BLUP of a. 
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Appendix 2B – BLUP and accuracy values 

The calculation of the accuracy value (𝑟) requires the diagonal elements of the inverse of the MME. 

For simplification, the coefficient matrix of the MME can be represented as (Mrode, 1996): 

[
𝑿′𝑿 𝑿′𝒁
𝒁′𝑿 𝒁′𝒁 + 𝑨−𝟏𝛼

] = [
𝑪𝟏𝟏 𝑪𝟏𝟐

𝑪𝟐𝟏 𝑪𝟐𝟐
] 

The left hand side of this equation can be inverted as: 

[
𝑪𝟏𝟏 𝑪𝟏𝟐

𝑪𝟐𝟏 𝑪𝟐𝟐
]

−𝟏

= [𝑪𝟏𝟏 𝑪𝟏𝟐

𝑪𝟐𝟏 𝑪𝟐𝟐] 

Then (Mrode, 1996): 

𝑃𝐸𝑉 = 𝑣𝑎𝑟(𝑎 − â) 

     = 𝑪22𝜎𝑒
2 

     = (1 − 𝑟2)𝜎𝑎
2 

where r² is the squared correlation between the true and estimated breeding values, called the 

reliability.  

 

For animal i (Mrode, 1996): 

𝑑𝑖𝜎𝑒
2 = (1 − 𝑟𝑖

2)𝜎𝑎
2 

where 𝑑𝑖  is the i-th diagonal element of 𝑪𝟐𝟐 and 𝑟𝑖 the accuracy value of the prediction for animal i. 𝑟𝑖 

can be calculated as: 

𝑑𝑖𝜎𝑒
2

𝜎𝑎
2 = 1 − 𝑟𝑖

2 

and thus: 

𝑟𝑖 = √1 −
𝑑𝑖𝜎𝑒

2

𝜎𝑎
2  
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Appendix 3 – Bayesian statistics: Gibbs sampling 

This section is for the largest part an excerpt from the course notes ‘Linear models and animal 

breeding’ by Larry Schaeffer, University of Guelph (course given: June 2010 in Norway) (Schaeffer, 

2010). 

 

The description of Bayesian statistics is based on the vector of random variables 𝜽, the data vector, 𝒀, 

and the mixed linear animal model: 

𝒀 = 𝑿𝛃 + 𝒁𝒂 + 𝒆 

As given in chapter 2.3.6, Bayesian statistics is based on the Bayes’ theorem, where 𝑝(𝜽|𝒀) is the 

posterior probability function of 𝜽: 

𝑝(𝜽|𝒀) =
𝑝(𝒀|𝜽) 𝑝(𝜽)

𝑝(𝒀)
 

where 𝑝(𝒀|𝜽) is the probability of the observed data 𝒀, called the likelihood function, 𝑝(𝜽) is called 

the prior probability and 𝑝(𝒀) is obtained by integrating 𝑝(𝒀|𝜽) 𝑝(𝜽) over all 𝜽. 

In terms of the animal model, 𝜽 includes all unknown parameters (𝛃, 𝒂, 𝜎𝑎
2 and 𝜎𝑒

2).  

 

The conditional distribution of 𝒀, given 𝜽, is equal to:  

𝒀 | 𝛃, 𝒂, 𝜎𝑎
2, 𝜎𝑒

2  ~ 𝑁(𝑿ß + 𝒁𝒂, 𝑰𝜎𝒆
𝟐) and 

𝑝(𝒀 | 𝛃, 𝒂, 𝜎𝑎
2, 𝜎𝑒

2)  ∝  (𝜎𝑒
2)(−

𝑛
2

)
 𝑒𝑥𝑝 [−(𝒀 − 𝑿𝛃 − 𝒁𝒂)′

(𝒀 − 𝑿𝛃 − 𝒁𝒂)

2𝜎𝑒
2 ] 

where n is equal to the number of observations.  

 

To start, prior distributions need to be assigned to 𝜽. To do so, every individual term of 𝜽 has to receive 

a prior distribution. Then all these priors are multiplied to each other and to the conditional 

distribution of 𝒀. 
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These prior distributions are given as following: 

• For the fixed effects vector, 𝛃, there is little prior knowledge about the values that elements 

in that vector might have. This is represented by assuming that 

𝑝(𝛃) ∝ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

• For 𝒂, the vector of additive genetic values, quantitative genetics theory suggests that it 

follows a Normal distribution: 

𝒂 | 𝑨, 𝜎𝑎
2 ~ 𝑁(𝟎, 𝑨𝜎𝑎

2) and 

𝑝(𝒂)  ∝  (𝜎𝑎
2)(−

𝑞
2

)
exp [−𝒂′𝑨−1

𝒂

2𝜎𝑎
2], 

where q is the length of 𝒂. A natural estimator of 𝜎𝑎
2 is 

𝒂’𝑨−𝟏𝒂

𝒒
.  

Call this expression 𝑆𝑎
2. It follows a scaled chi-square distribution: 

𝑆𝑎 
2 ~

𝜒𝑞
2𝜎𝑎

2

𝑞
. 

Multiplying both sides by q and dividing by 𝜒𝑞
2 gives: 

𝜎𝑎
2~

𝑞𝑆𝑎
2

𝜒𝑞
2 , 

which is a scaled inverted Chi-square distribution and can be written as: 

𝑝(𝜎𝑎
2|𝑣𝑎, 𝑆𝑎

2) ∝ (𝜎𝑎
2)−(

𝑣𝑎
2

+1)𝑒𝑥𝑝 (−
𝑣𝑎

2

𝑆𝑎
2

𝜎𝑎
2), 

where 𝑣𝑎 and 𝑆𝑎
2 are parameters of the prior distribution, with 𝑆𝑎

2 being a prior guess about 

the value of 𝜎𝑎
2 and 𝑣𝑎 being the degrees of belief in that prior value. Usually q is much larger 

than 𝑣𝑎 and therefore, the data provide nearly all of the information about 𝜎𝑎
2.  

• Similarly, for the residual variance (𝜎𝑒
2), the following expression can be given: 

𝑝(𝜎𝑒
2|𝑣𝑒 , 𝑆𝑒

2) ∝ (𝜎𝑒
2)−(

𝑣𝑒
2

+1)
𝑒𝑥𝑝 (−

𝑣𝑒

2

𝑆𝑒
2

𝜎𝑒
2). 
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The joint posterior distribution can then be written as:  

𝑝(𝜷, 𝒂, 𝜎𝑎
2, 𝜎𝑒

2|𝑌) ∝ 𝑝(𝜷) 𝑝(𝒂|𝜎𝑎
2) 𝑝(𝜎𝑎

2) 𝑝(𝜎𝑒
2) 𝑝(𝒀|𝜷, 𝒂, 𝜎𝑎

2, 𝜎𝑒
2) 

or: 

𝑝(𝛃, 𝒂, 𝜎𝑎
2, 𝜎𝑒

2|𝒀)

∝  (𝜎𝑒
2)−(

𝑛+𝑣𝑒
2

+1)
exp [−

1

2𝜎𝑒
2

((𝒀 − 𝑿𝛃 − 𝒁𝒂)′(𝒀 − 𝑿𝛃 − 𝒁𝒂)

+  𝑣𝑒𝑆𝑒
2)] (𝜎𝑎

2)−(
𝑞+𝑣𝑎

2
+1)

exp [−
1

2𝜎𝑎
2 (𝒂′𝑨−1𝒂 + 𝑣𝑎𝑆𝑎

2)]. 

In order to implement Gibbs sampling, all of the fully conditional posterior distributions (one for each 

component of 𝜽) need to be derived from the above joint posterior distribution.  

Say that:  

𝑾 = (𝑿 𝒁) 

𝜸′ = (𝛃′𝒂′) 

Σ =  [
𝟎 𝟎
𝟎 𝑨−1𝑘

] 

𝑪 = 𝑾′𝑾 +  Σ 

𝑪𝛄̂ = 𝑾′𝒚 

This last statement, is equal to the MME.  

Now we adopt a new notation, let:  

𝛾′ = (𝛾𝑖  𝛾−𝑖
′ ) 

where 𝛾𝑖  is a scalar representing just one element of the vector γ (gamma), and 𝛾−𝑖 is a vector 

representing all of the other vector elements except 𝛾𝑖. Similarly, 𝑪 and 𝑾 can be partitioned in the 

same way as: 

𝑾′ = (𝑾𝑖  𝑾−𝑖)′ 

𝑪 =  [
𝑪𝑖,𝑖 𝑪𝑖,−𝑖

𝑪−𝑖,𝑖 𝑪−𝑖,−𝒊
]. 
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In general terms, the conditional posterior distribution of 𝛾 is equal to: 

𝛾𝑖|𝛾−𝑖, 𝜎𝑎
2, 𝜎𝑒

2, 𝒚 ~ 𝑁(𝛾𝑖̂, 𝐶𝑖,𝑖
−1𝜎𝑒

2) 

where 

𝐶𝑖,𝑖𝛾𝑖 = (𝑾𝑖
′𝒚 − 𝑪𝑖,−𝑖𝛾−𝒊). 

Then 

𝛽𝑖|𝛽−𝑖, 𝒂, 𝜎𝑎
2, 𝜎𝑒

2, 𝒚 ~ 𝑁(𝛽𝑖̂, 𝐶𝑖,𝑖
−1𝜎𝑒

2) 

for 

𝐶𝑖,𝑖 =  𝒙𝑖
′𝒙𝑖 . 

 

Also,  

𝑎𝑖|𝜷, 𝒂−𝑖, 𝜎𝑎
2, 𝜎𝑒

2, 𝒚 ~ 𝑁(𝑎𝑖̂, 𝐶𝑖,𝑖
−1𝜎𝑒

2) 

where  

𝐶𝑖,𝑖 = (𝒛𝑖
′𝒛𝑖 + 𝐴𝑖,𝑖𝑘) 

for 𝑘 =
𝜎𝑎

2

𝜎𝑒
2. The conditional posterior distributions for the variances are  

𝜎𝑎
2|𝜷, 𝒂, 𝜎𝑒

2, 𝒚 ~ 𝑣̃𝑎𝑆̃𝑎
2𝜒𝑣̃𝑎

−2 

for 𝑣̃𝑎 = 𝑞 + 𝑣𝑎, and 𝑆̃𝑎
2 =

𝒂′𝑨−1𝒂+𝑣𝑎𝑆𝑎
2

𝑣̃𝑎
, and 

𝜎𝑒
2|𝜷, 𝒂, 𝜎𝑎

2, 𝒚 ~ 𝑣̃𝑒𝑆̃𝑒
2𝜒𝑣̃𝑒

−2 

for 𝑣̃𝑒 = 𝑁 + 𝑣𝑒, and 𝑆̃𝑒
2 =

𝒆′𝒆+𝑣𝑒𝑆𝑒
2

𝑣̃𝑒
, and 𝒆 = 𝒚 − 𝑿𝜷 − 𝒁𝒂. 
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Appendix 4 – Parameter file for renumf90 

This is an example of a parameter file, used as input file for the renumf90 program. This file was used 

to estimate model 3.  

 
 

# Black Hereford - Roel Meyermans - Model 3 

# Parameter file for program renf90; it is translated to parameter  

# file for BLUPF90 family programs. 

# 

DATAFILE 

data.txt 

TRAITS 

2 3 4 6          #YSC BW WW YW         

FIELDS_PASSED 

 

WEIGHT(S) 

 

RESIDUAL_VARIANCE 

10 1 1 1 

1 100 1 1 

1 1 10000 1 

1 1 1 10000 

EFFECT 

1 1 1 1 cross alpha  #additive genetic effect 

RANDOM 

animal 

FILE 

pedigree.txt 

FILE_POS 

1 2 3 0 4 

PED_DEPTH 

12 

EFFECT 

12 12 12 12 cross alpha #birth year 

EFFECT 

0 10 10 0 cross alpha  #ET 

EFFECT 

0 11 11 11 cross alpha #Sex 

EFFECT 

8 8 8 8 cross alpha  #Age of dam 

EFFECT 

0 0 5 0 cov   #WA 

EFFECT 

7 0 0 7 cov   #YA 

OPTION sol se 

OPTION residual 

OPTION EM-REML 5 
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Appendix 5 – Results of the linear regression of the four traits 

Chapter 8.4 presents the linear regression results of the four traits. This appendix shows the ANOVA 

results of these four models (table A5.1) (Kutner et al., 2005). Table A5.2 shows a statistic summary of 

these models. In these models, the age at measurement was scaled as given in chapter 8.5.1. 

 

Table A5.1 Overview of the linear regression results for yearling scrotal circumference (YSC), birth weight (BW),  
weaning weight (WW) and yearling weight (YW) 

YSC       

  Df Sum of squares Mean squares F-value Pr (>F) 
 Year.Age 1 231.4 231.4 42.5 < 0.001 
 Age of Dam 5 190.8 38.2 7.0 < 0.001 
 Birth year 14 1367.9 97.7 17.9 < 0.001 
 Sire 58 413.5 7.1 1.3 0.068 
 Residuals 628 3418.8 5.4   

BW       

  Df Sum of squares Mean squares F-value Pr (>F) 
 Age of Dam 5 3113.8 622.8 52.5 < 0.001 
 Birth year 19 2936.7 154.0 13.0 < 0.001 
 Sex 1 2869.8 2869.8 241.9 < 0.001 
 ET 1 113.0 113.0 9.5 0.002 
 Sire 79 3578.4 45.3 3.8 < 0.001 
 Residuals 2130 25274.0 11.9   

WW       

  Df Sum of squares Mean squares F-value Pr (>F) 
 Wean.Age 1 354630 354630 489.0 < 0.001 
 Age of Dam 5 394068 78814 108.7 < 0.001 
 Birth year 17 236570 13916 19.2 < 0.001 
 Sex 1 195078 195078 269.0 < 0.001 
 ET 1 43572 43572 60.1 < 0.001 
 Sire 68 180627 2656 3.7 < 0.001 
 Residuals 1957 1419241 725   

YW       

  Df Sum of squares Mean squares F-value Pr (>F) 
 Year.Age 1 571580 571580 416.2 < 0.001 
 Age of Dam 5 331680 66336 48.3 < 0.001 
 Birth year 15 1253643 83576 60.9 < 0.001 
 Sex 1 1076765 1076765 784.0 < 0.001 
 Sire 62 256396 4135 3.0 < 0.001 
 Residuals 1326 1821127 1373   
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Table A5.2 Summary of the number of observations, adjusted R² (Kutner et al., 2005) and root mean squared error (RMSE) 
(Kutner et al., 2005) for the univariate linear regression models of yearling scrotal circumference (YSC), birth weight (BW), 

weaning weight (WW) and yearling weight (YW) 

 YSC BW WW YW 

Number of observations 707 2236 2053 1411 

Adjusted R² 0.316 0.300 0.474 0.635 

RMSE 2.334 3.445 26.930 37.060 
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Appendix 6 – (Co)variance components obtained using REML 

The following table (A6.1) contains the REML (co)variance estimates of the additive genetic and the 

residual effect of the five models. The additive genetic (co)variances be found in the first diagonal 

matrix. The second diagonal matrix contains the (co)variances of the residual effect. The standard 

errors for every estimate is given between parentheses. 

 
 

Table A6.1 Variance and covariance estimates for yearling scrotal circumference (YSC), birth weight (BW), weaning 
weight (WW) and yearling weight (YW) estimated by the five models. The first diagonal matrix gives the additive genetic 

(co)variances for each model, the second diagonal matrix gives the residual (co)variances for the model.  
The value between parantheses gives the standard error 

Model 1  
    

 
 

YSC BW WW YW  

 YSC 2.24 (0.60) 0.75 (0.52) 14.87   (4.65) -2.72     (4.89) 

 BW  5.77 (0.77)  16.71   (4.76) 4.08     (6.70) 

 WW   403.13 (52.76) 8.27   (56.42) 

 YW    76.78   (69.19)  

      

 YSC 3.71 (0.46) 0.88 (0.40) 17.19   (3.44) 7.40     (5.41) 

 BW  7.86 (0.50) 14.92   (3.05) 1.35     (6.70) 

 WW   461.0 (33.18) 102.11   (56.43) 

 YW    2692.60   (69.19) 

Model 2      

  YSC BW WW YW 

 YSC 2.93 (0.63)  0.64 (0.54) 20.89   (4.97) 27.91     (7.26) 

 BW  5.76 (0.77)  15.82   (4.90) 29.31     (7.40) 

 WW   444.48 (57.11)   535.33   (75.33) 

 YW    799.54 (125.99)  

      

 YSC 4.00 (0.48) 0.65 (0.41) 19.07   (3.60) 38.31     (5.45) 

 BW  7.87 (0.77) 13.30  (6314) 12.92     (5.00) 

 WW   509.53 (57.11) 474.88   (48.86) 

 YW    1161.50   (88.67) 

Model 3      

  YSC BW WW YW 

 YSC 3.41 (0.66) 0.99 (0.56) 20.10   (4.89) 30.42     (7.24) 

 BW  5.80 (0.77) 17.11   (4.74) 33.38     (7.26) 

 WW   405.12 (52.81) 501.65   (69.93) 

 YW    784.12 (118.41) 

      

 YSC 3.60 (0.48) 0.69 (0.41) 16.76   (3.48) 29.47     (5.15) 

 BW  7.86 (0.49) 14.73   (3.03) 15.49     (4.75) 

 WW   464.58 (32.98) 413.50   (44.22) 

 YW    941.67   (79.15) 
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Model 4      

  YSC BW WW YW 

 YSC 3.29 (0.65)  1.01 (0.56) 19.26   (4.84) 29.46     (7.15) 

 BW  5.85 (0.77)   18.15   (4.74) 34.99     (7.27) 

 WW   401.91 (52.27)  495.58   (69.40) 

 YW    780.08 (117.54)  

      

 YSC 3.67 (0.48) 0.67 (0.41) 17.46   (3.47) 30.04     (5.14) 

 BW  7.82 (0.49) 13.92   (3.02) 14.29     (4.74) 

 WW   469.44 (32.97) 421.57   (44.12) 

 YW    948.57   (78.89) 

Model 5      

  YSC BW WW YW 

 YSC 3.36 (0.66)  0.98 (0.56) 20.05   (4.87) 30.33     (7.21) 

 BW  5.80 (0.77)   17.10   (4.74) 33.39     (7.26) 

 WW   405.34 (52.46)   502.16   (69.91) 

 YW    785.12 (118.39)  

      

 YSC 3.64 (0.48) 0.69 (0.41) 16.88   (3.47) 29.65     (5.15) 

 BW  7.86 (0.49) 14.74   (3.03) 15.49     (4.75) 

 WW   464.51 (32.97) 413.33   (44.20) 

 YW    941.28   (79.11) 

 

The variances for the birth year effect, as estimated in model 4, are equal to 3.94, 1.56, 192.21 and 

237.06 for YSC, BW, WW and YW, respectively. 
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Table A6.2 gives the genetic correlations in the upper diagonal matrix, and the residual correlations in 

the lower diagonal matrix for the five models. The heritability estimates are given on the diagonal and 

highlighted in grey. 

 

Table A6.2 The estimated genetic correlations (upper diagonal matrix), residual correlations (lower diagonal matrix) and 
heritabilities (on the diagonal, highlighted in grey) for yearling scrotal circumference (YSC), birth weight (BW),  

weaning weight (WW) and yearling weight (YW) in the five models 

Model 1  
    

  YSC BW WW YW 

 YSC 0.38 0.21 0.49 -0.21 

 BW 0.16 0.42 0.34 0.19 

 WW 0.41 0.25 0.47 0.05 

 YW 0.07 0.09 0.09 0.03 

Model 2      

  YSC BW WW YW 

 YSC 0.42 0.16 0.57 0.58 

 BW 0.12 0.42 0.31 0.43 

 WW 0.42 0.21 0.47 0.90 

 YW 0.56 0.14 0.62 0.45 

Model 3      

  YSC BW WW YW 

 YSC 0.49 0.22 0.54 0.59 

 BW 0.13 0.43 0.35 0.49 

 WW 0.41 0.24 0.47 0.89 

 YW 0.51 0.18 0.63 0.45 

Model 4      

  YSC BW WW YW 

 YSC 0.30 0.23 0.53 0.58 

 BW 0.12 0.38 0.37 0.52 

 WW 0.42 0.23 0.38 0.88 

 YW 0.51 0.17 0.62 0.40 

Model 5      

  YSC BW WW YW 

 YSC 0.48 0.22 0.54 0.59 

 BW 0.13 0.42 0.35 0.49 

 WW 0.41 0.24 0.47 0.89 

 YW 0.51 0.18 0.63 0.45 
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Appendix 7 – Parameter estimates  

The next four tables (A7.1, A7.2, A7.3 and A7.4) give the parameter estimates (BLUEs) for the five 

models estimated by BLUP for YSC, BW, WW and YW, respectively. 

 

Yearling scrotal circumference 
 

Table A7.1 Overview of the parameter estimates (in cm) of the five models for yearling scrotal circumference 

  
Model 1 Model 2 Model 3 Model 4 Model 5 

Mean additive genetic effect 0.09 0.21 0.63 0.61 0.60 

Birth year effect       
 

2001 - 33.07 33.40 34.66 33.44  
2002 35.19 32.43 33.79 33.66 33.90  
2003 34.53 32.86 33.59 33.65 33.71  
2004 43.71 41.09 42.32 41.83 42.58  
2005 38.37 36.18 37.00 36.82 37.12  
2006 36.63 34.30 35.19 35.04 35.30  
2007 36.74 35.28 35.99 35.85 36.05  
2008 37.18 34.10 35.11 35.13 35.25  
2009 37.85 35.10 35.73 35.67 35.86  
2010 38.76 36.30 36.59 36.48 36.73  
2011 38.45 35.72 36.08 36.00 36.22  
2012 36.70 35.13 34.99 34.97 35.19  
2013 37.30 36.48 36.01 35.94 36.15  
2014 35.62 34.88 34.44 35.77 36.15  
2015 35.21 32.98 36.61 35.00 35.31  
2016 37.84 35.64 36.26 37.50 37.97 

Observer      
 

1 - - - 0.00 0.00  
2 - - - 1.40 1.57  
3 - - - 0.67 0.68 

Age of dam      
 

2 -1.92 -1.39 -1.11 -0.99 -1.20  
3 -1.32 -0.97 -0.65 -0.51 -0.72  
4 -1.06 -0.80 -0.41 -0.28 -0.49  
5 -0.91 -0.64 -0.24 0.09 -0.32  
6 -1.65 -1.16 -0.74 -0.60 -0.81  
7 -0.72 -0.58 -0.16 -0.02 -0.24 

Yearling age as covariate - 0.0043 0.82 0.82 0.83 

 
Missing values, indicated by a “-“, are not estimated by the model (e.g. caused by a lack of 
measurements for that effect).  
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Birth weight 
 

Table A7.2 Overview of the parameter estimates (in kg) of the five models for birth weight 

  
Model 1 Model 2 Model 3 Model 4 Model 5 

Mean additive genetic effect -0.02 -0.02 0.12 0.14 0.11 

Birth year effect      
 

1992 -5.33 -5.56 -5.47 -0.46 -5.47  
1993 0.51 0.51 0.53 0.29 0.53  
1997 0.94 0.98 0.92 0.77 0.92  
1998 -2.75 -2.76 -2.76 -0.13 -2.76  
1999 -1.20 -1.26 -1.24 0.73 -1.24  
2000 -0.82 -0.88 -0.89 0.81 -0.89  
2001 -2.37 -2.43 -2.43 -0.47 -2.43  
2002 -5.95 -5.98 -5.97 -3.65 -5.97  
2003 -2.75 -2.79 -2.80 -0.77 -2.80  
2004 -1.01 -1.08 -1.09 0.89 -1.09  
2005 -1.09 -1.15 -1.16 0.76 -1.16  
2006 -3.76 -3.84 -3.87 -1.82 -3.86  
2007 -1.87 -1.93 -1.94 -0.03 -1.94  
2008 -0.28 -0.33 -0.39 1.42 -0.39  
2009 -2.44 -2.51 -2.60 -0.68 -2.60  
2010 -1.25 -1.32 -1.43 0.39 -1.43  
2011 -1.58 -1.68 -1.84 -0.03 -1.84  
2012 -0.74 -0.83 -0.99 0.72 -0.98  
2013 -0.70 -0.81 -0.96 0.77 -0.95  
2014 -0.72 -0.86 -1.01 0.72 -1.00  
2015 -1.93 -2.07 -2.18 -0.37 -2.17  
2016 -1.72 -1.86 -1.92 -0.12 -1.92 

ET   
  

 
 

Yes 38.13 38.11 38.54 36.66 38.54  
No 39.37 39.37 39.30 37.40 39.31 

Sex   
    

Female -0.58 -0.57 -0.60 -0.59 -0.60  
Male 1.66 1.67 1.62 1.62 1.62 

Age of dam  
   

 
 

2 -2.27 -2.23 -2.24 -2.27 -2.24  
3 -0.75 -0.73 -0.76 -0.81 -0.76  
4 -0.37 -0.36 -0.38 -0.38 -0.38  
5 0.11 0.13 0.11 0.11 0.11  
6 0.05 0.07 0.07 0.06 0.07  
7 0.24 0.25 0.22 0.23 0.22 
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Weaning weight 
 

Table A7.3 Overview of the parameter estimates (in kg) of the five models for weaning weight 

  
Model 1 Model 2 Model 3 Model 4 Model 5 

Mean additive genetic effect -2.79 -1.71 -0.10 0.16 -0.19 

Birth year effect      
 

1992 - - - 226.63 -  
1993 - - - 230.58 -  
1997 235.69 215.74 243.46 232.92 243.60  
1998 - - - 228.37 -  
1999 - 367.00 351.68 256.12 351.85  
2000 199.28 123.06 196.00 208.59 196.13  
2001 219.71 155.75 219.51 218.24 219.66  
2002 209.44 130.37 207.69 205.50 207.86  
2003 237.68 160.68 235.64 233.48 235.82  
2004 242.19 157.95 239.04 237.68 239.21  
2005 255.14 169.76 251.80 249.03 251.96  
2006 219.16 136.19 215.82 214.61 216.00  
2007 228.18 139.85 224.57 223.19 224.71  
2008 239.41 146.77 234.39 233.08 234.59  
2009 249.71 157.15 244.00 241.96 244.20  
2010 233.27 140.48 226.88 225.07 227.10  
2011 237.88 145.31 230.57 228.81 230.79  
2012 223.66 133.11 216.88 215.32 217.25  
2013 241.98 158.45 236.15 234.01 236.42  
2014 245.82 153.49 239.00 236.87 239.28  
2015 233.66 142.29 227.86 226.64 228.11  
2016 238.46 147.32 233.02 230.91 233.28 

ET 
 

 
  

  
 

Yes -35.27 -25.48 -25.02 -24.96 -25.02  
No 0.00 0.00 0.00 0.00 0.00 

Sex   
     

Female 12.13 17.48 13.43 13.44 13.43  
Male 31.96 35.40 32.70 32.86 32.70 

Age of dam   
  

 
 

2 -27.39 -37.25 -27.99 -26.77 -28.02  
3 -16.20 -28.19 -17.61 -16.38 -17.65  
4 -5.49 -17.56 -7.00 -5.75 -7.03  
5 -1.93 -13.20 -3.12 -1.75 -3.16  
6 8.81 -3.15 7.97 8.75 7.94  
7 8.83 -2.40 7.23 8.70 7.18 

Weaning age as covariate - 0.46 18.57 18.61 18.58 

 
Missing values, indicated by a “-“, are not estimated by the model (e.g. caused by a lack of 
measurements for that effect).  
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Yearling weight 
 

Table A7.4 Overview of the parameter estimates (in kg) of the five models for yearling weight 

  
Model 1 Model 2 Model 3 Model 4 Model 5 

Mean additive genetic effect -0.21 -1.06 2.07 2.44 1.93 

Birth year effect      
 

1992 - - - 420.53 -  
1993 - - - 421.63 -  
1997 321.85 455.77 426.62 420.02 426.85  
1998 - - - 421.01 -  
1999 - - - 426.00 -  
2000 - - - 418.42 -  
2001 - - - 420.28 -  
2002 368.25 337.65 411.78 410.63 412.08  
2003 382.83 370.51 426.48 425.19 426.80  
2004 344.41 310.80 395.08 394.85 395.39  
2005 415.75 376.67 441.44 437.81 441.72  
2006 397.96 360.38 426.60 424.81 426.93  
2007 393.69 356.61 417.32 415.94 417.54  
2008 368.94 328.56 403.97 403.63 404.33  
2009 376.26 348.92 417.99 416.36 418.34  
2010 397.21 380.94 436.97 434.66 437.35  
2011 396.32 357.15 425.47 423.57 425.84  
2012 396.18 381.08 432.61 430.40 433.25  
2013 404.92 396.45 435.71 432.71 436.18  
2014 401.50 399.51 435.36 432.29 435.84  
2015 377.33 328.26 395.40 394.73 395.83  
2016 412.01 378.98 444.08 440.56 444.50 

Sex   
   

 
 

Female -29.60 -52.41 -69.52 -70.14 -69.54  
Male 0.00 0.00 0.00 0.00 0.00 

Age of dam  
   

 
 

2 -6.86 -48.01 -38.63 -37.34 -38.71  
3 4.57 -42.57 -30.16 -28.79 -30.25  
4 6.70 -29.72 -17.63 -16.18 -17.69  
5 8.57 -28.43 -17.57 -15.88 -17.65  
6 18.43 -19.52 -7.13 -5.73 -7.20  
7 0.30 -18.79 -8.21 -6.38 -8.32 

Yearling age as covariate - 0.21 27.23 27.23 27.23 

 

Missing values, indicated by a “-“, are not estimated by the model (e.g. caused by a lack of 

measurements for that effect). 
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Appendix 8 – Output of the MCMC algorithm 

Table A8.1 gives an overview of the means of the approximated posterior distributions, the 95% the 

highest posterior density intervals and the effective sample sizes for the effects of the intercept, age 

of dam, birth year, yearling age and the residuals. The following figure (A8.1) gives an overview of the 

chain traces (on the left side for each effect) and the approximated posterior distribution (on the right 

side) for each effect. 

 

Table A8.1 Overview of the posterior means of the approximated posterior density functions (in cm), the 95% posterior 
density intervals (HPD) and the effective sample sizes for the effects included in the animal model with yearling scrotal 

circumference as dependent variable 

 
Missing values, indicated by a “-“, are not estimated by the model. 

 
The lower and upper ranges of the 95% highest posterior density interval for the heritability are equal 
to 0.19 and 0.57, respectively.  

Effect  
Posterior 

mean 
Lower – 95% 

HPD 
Upper – 95% 

HPD 
Effective 

sample size 

Additive genetic   2.12 0.95 3.45 1708 

Intercept  36.29 35.34 37.18 1825 

Age of dam      

 3 0.79 0.16 1.35 1994 

 4 0.86 0.26 1.51 1817 

 5 1.18 0.47 1.80 1796 

 6 0.24 -0.46 0.92 1743 

 7 1.11 0.49 1.75 1777 

Birth year      

 2002 -3.20 -4.78 -1.60 1776 

 2003 -3.81 -5.08 -2.5 2203 

 2004 5.08 3.37 6.70 1994 

 2005 0.08 -1.06 1.26 1848 

 2006 -1.14 -2.05 -0.10 1994 

 2007 -0.64 -1.71 0.40 1994 

 2008 -0.37 -1.35 0.67 1871 

 2009 -0.06 -0.94 0.81 1994 

 2010 1.3 0.39 2.26 1994 

 2011 0.68 -0.15 1.57 1994 

 2012 -1.22 -2.03 -0.43 1994 

 2013 -0.26 -1.33 0.66 1994 

 2014 -2.03 -2.98 -1.03 1844 

 2015 -2.71 -3.55 -2.00 1994 

 2016 - - - - 

Yearling age as covariate 1.17 0.86 1.48 1776 

Residuals  3.66 2.59 4.62 1717 
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Figure A8.1 Chain trace plots (on the left) and approximated posterior density functions (on the right), obtained by the MCMC 
algorithm, for the intercept, age of dam, birth year, additive genetic (animal) and residual (units) in the animal model with 

yearling scrotal circumference as dependent variable 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


