

MULTI-PROJECT SCHEDULING
THE APPLICATION OF A DECOUPLED SCHEDULE GENERATION

SCHEME AND A GAME MECHANIC

Aantal woorden/ Word count: 18.656

Rob Van Eynde
Stamnummer/ Student number : 01205632

Promotor/ Supervisor: Prof. dr. Mario Vanhoucke

Masterproef voorgedragen tot het bekomen van de graad van:

Master’s Dissertation submitted to obtain the degree of:

Master of Science in Business Engineering

Academiejaar/ Academic year: 2016 - 2017

MULTI-PROJECT SCHEDULING
THE APPLICATION OF A DECOUPLED SCHEDULE GENERATION

SCHEME AND A GAME MECHANIC

Aantal woorden/ Word count: 18.656

Rob Van Eynde
Stamnummer/ Student number : 01205632

Promotor/ Supervisor: Prof. dr. Mario Vanhoucke

Masterproef voorgedragen tot het bekomen van de graad van:

Master’s Dissertation submitted to obtain the degree of:

Master of Science in Business Engineering

Academiejaar/ Academic year: 2016 - 2017

Foreword

Different people have contributed to this dissertation, they deserve

a word of thanks. Pieter Leyman provided useful feedback and

insights during the first year of writing and experimenting. I am

particularly grateful towards Jeroen Burgelman, who was a valuable

guide during the second year. He introduced interesting literature,

he helped focussing the research and was a frequent sounding board.

Last, Bram Bossuyt tested out the basics of the game mechanic with

me, which provided initial insights to start with.

Thank you.

vii

Contents

Foreword vii

List of Figures xi

List of Tables xii

List of algorithms xiii

Definitions and abbreviations xiv

I Introduction 1

1 Introduction 2

2 Literature review 4

II Methodology 10

3 New approaches to multi-project scheduling 11

3.1 MPSGS, a decoupled SGS . 12

3.2 A game mechanic . 16

3.2.1 Resource allocation (Line 3) . 17

3.2.2 Activity selection (Line 4-7) . 18

3.2.3 Order selection and scheduling (Line 8-11) 19

3.3 Extensions to the basic game . 20

3.3.1 Tightness evaluation . 20

3.3.2 Negotiation mechanism . 21

3.3.3 Load Based Quarry Updating (LBQU) 23

3.3.4 Performance Based Quarry Updating (PBQU) 24

4 Dataset generation 26

4.1 Parameters . 26

4.2 Generation procedure . 29

4.2.1 Single-project generation . 31

ix

Contents

4.2.2 Combination and resource tuning . 31

4.3 Concluding remarks . 36

III Results and conclusion 40

5 Benchmark methods 41

5.1 PR-based heuristics . 41

5.2 Random benchmark . 42

5.3 Genetic algorithm . 42

6 Computational results 46

6.1 MPSGS . 46

6.2 Schedule game . 49

6.2.1 Resource allocation . 49

6.2.2 Random sampling . 50

6.3 Extensions . 53

6.4 Comparison with benchmark methods . 54

7 Conclusion 60

IV Annexes 62

A Quality of resource tuning procedures 63

Bibliography 67

x

List of Figures

3.1 An example multi-project instance . 12

4.1 Differences in NARLF calculation . 37

4.2 Number of appearances of single-project networks 38

5.1 Operation of the two-point crossover . 45

6.1 Impact of APR’s and PPR’s on performance MPSGS 47

6.2 Comparison of resource allocation mechanisms 49

6.3 Convergence pattern No RS versus RS . 52

6.4 The impact of problem parameters on the performance of scheduling algorithms 58

A.1 The count of LBA’s per project parameter . 64

A.2 Detailed analysis generated problem set . 65

xi

List of Tables

3.1 Activity and project priority rules . 15

4.1 Comparison between Cj and OS . 30

4.2 Amount of required single-projects . 31

6.1 Comparison of performance . 48

6.2 Comparison between coupled and decoupled selection 48

6.3 Optimal resource allocation parameters . 50

6.4 Evaluation Random Sampling . 51

6.5 RS: Percentage ranked best . 51

6.6 Impact RS after 10 iterations . 52

6.7 Impact of number of iterations . 53

6.8 Parameter setting extensions . 53

6.9 APD of extensions . 54

6.10 Comparison with benchmark methods . 55

6.11 Computational efficiency . 56

xii

List of Algorithms

1 MPSGS . 13

2 Basic game . 17

3 Tightness evaluation . 21

4 generateMultiProjects(NARLF, MAUF, σ2MAUF , n) 32

5 tuneNARLF(NARLFdes, m) . 34

6 tuneMAUF(MAUFdes, σ
2
MAUF,des,m) . 35

7 generateMAUF(MAUFdes, σ
2
MAUF,des) . 36

8 Structure genetic algorithm . 43

xiii

Definitions and abbreviations

General definitions

J number of projects in a multi-project instance

j project index: j ∈ [1, J]

pj project j

Nj number of activities in pj

i activity index: i ∈ [1, Nj]

aij activity i of project j

K number of renewable resources

k renewable resource index: k ∈ [1,K]

Rk maximum available units of resource type k per time unit

R′kt remaining available units of resource type k at time t

t time unit index

dij duration of aij

rijk demand for resource type k by aij per time unit

wijk total demand for resource type k by aij

Kij number of resource types for which the demand by aij is nonzero

CPj resource unconstrained critical path duration of pj

CPmax max
j∈J

(CPj)

ESij earliest start time for aij according to the critical path of pj

LSij latest start time for aij according to the critical path of pj

Eij earliest precedence and resource feasible start time of aij according to the current

partial schedule

xiv

Chapter 0. Definitions and abbreviations

Definitions chapter 3

APD average percent delay, the objective function

S number of intervals over which the project duration is split

s interval index: s ∈ [1,S]

ds duration of interval s

L number of schedule agents

l schedule agent index: l ∈ [1, L]

SAl, SAw schedule agent l, the winning schedule agent

CA coordinating agent

ps partial schedule

Pl the set of projects assigned to SAl

Cl completed set of SAl

Dl decision set of SAl

Il ineligible set of SAl

El eligible set of SAl

Sl schedulable set of SAl

slk the current amount of resource type k on the stack of SAl

ql, q
′
ls, q

′′
l probabilities of SAl to receive resources during a game round

LBq lower bound on ql, q
′
ls, q

′′
l

fk the maximum amount of resource k allocated to an agent during a game round

Wl total resource demand of SAl

Wls total resource demand of SAl during interval s

TWKj total resource demand of the scheduled activities of pj

Tij resource tightness of aij in the current partial schedule

Cij amount of competing activities of aij in the current partial schedule

Pij priority value of aij

Ml performance of SAl

ol, ow schedule order sent by SAl, winning order selected by CA

v(ol) value of ol

col compensating order sent by by SAl

δl minimal deterioration of makespan for SAl if ow would be scheduled

η parameter for selective pressure of random sampling

τ, κ selection parameters tightness evaluation

ω probability parameter PBQU

ν trigger probability negotiation mechanism

xv

Chapter 0. Definitions and abbreviations

Definitions chapter 4

Cj complexity measure of pj , defined by Browning and Yassine (2010a)

OSj order strength of pj

NARLF indicator for the resource loading of a multi-project

MAUF, σ2MAUF indicators for the resource utilization of a multi-project

n amount of generated multi-project instances per combination of project

parameter values

H, M, L indices for order strength, referring to High, Medium and Low order

strength respectively

Wk total demand for resource type k by the multi-project instance

Definitions chapter 5

C,D, I completed, decision and ineligible set of the SSGS, respectively

(x, y, z) elitism, crossover and mutation percentages for the genetic algorithm

xvi

Chapter 0. Definitions and abbreviations

Abbreviations

APD Average percent delay

APR Activity priority rule

ARLF Average resource loading factor

AUF Average utilization factor

GA Genetic algorithm

LBA Lower bound activity

LBQU Load based quarry updating

MAS Multi-agent system

MAUF Modified average utilization factor

MAXTWK Maximum total work content

MPSGS Multi-project schedule generation scheme

NARLF Normalized average resource loading factor

OS Order Strength

PBQU Performance based quarry updating

PPR Project priority rule

PR Priority rule

PSGS Parallel schedule generation scheme

RCMPSP Resource-constrained multi-project scheduling problem

RCPSP Resource-constrained project scheduling problem

RS Random sampling

SASP Shortest activity of the shortest project

SGS Schedule generation scheme

SSGS Serial schedule generation scheme

xvii

Part I

Introduction

1

Chapter 1

Introduction

An ever increasing amount of companies organize their work in project structures. A project

can be described as a set of activities that have to be executed, each having a duration and a

renewable and/or non-renewable resource demand (e.g. amount of workers required or mon-

etary cost, respectively). Furthermore, precedence relations between some of these activities

exist, i.e. an activity can only be started when all its predecessors are completed. As compa-

nies have a limited amount of resources, some activities will have to be delayed. In general,

the scheduling problem is subject to two kinds of constraints: the resource constraints due

to limited capacity and the precedence constraints as formulated above. The problem of

finding a solution that minimizes or maximizes an objective function (e.g. the makespan of

the project) taking into account the formulated constraints is called the resource-constrained

project scheduling problem (RCPSP). However, a lot of companies have a portfolio of projects

that are simultaneously active (e.g. construction companies having multiple building sites).

This has led to a new branch of research, regarding the resource-constrained multi-project

scheduling problem (RCMPSP). This problem is similar to the RCPSP, but considers mul-

tiple projects that have to be scheduled in concurrence. Precedence relations exist between

activities of a project, but there are none between projects. One or more resource types are

shared among projects (e.g. workers can be assigned to different construction sites). Multiple

extensions to the basic RCMPSP exist, two of them will be discussed more in detail in chapter

2. However, this research will address the basic RCMPSP, i.e. all projects are available at

the first time instance, no preemption or task splitting is allowed, there are no setup times for

activities, there are only renewable resources, every activity has a single mode of execution

2

Chapter 1. Introduction

and a constant resource demand over time.

This dissertation will provide three main contributions to the existing research. First, a

schedule generation scheme is designed specifically for the multi-project context. Second, a

game mechanic is implemented in the scheduling process, resulting in an efficient solution

method with a strong performance relative to benchmark methods. Third, a multi-project

generator and data set are proposed and the existing multi-project parameters are critically

evaluated.

3

Chapter 2

Literature review

The RCMPSP can be approached as a single-project or as a multi-project. The former adds

a dummy start and end activity, resulting into one overarching project network. The latter

addresses each project as a seperate instance with its own characteristics. The two approaches

may result in different schedules (Kurtulus and Davis, 1982). Objective functions can be clas-

sified accordingly: those who evaluate the performance of the portfolio as a whole and those

who take into account the performance of the constituting projects. This master dissertation

will focus on makespan minimization. In this field, Lova and Tormos (2001) formulate two

objective functions: mean project delay (MPD) and multi-duration increase (MDI). Browning

and Yassine (2010b) propose the measures average percent delay (APD) and percentage delay

(PD). MPD and APD are multi-project measures, while MDI and PD are more relevant in

the single-project approach. As the RCMPSP will be addressed as a multi-project here, APD

will be used as objective function. The remainder of this chapter is structured as follows:

first, different solution methods for the RCMPSP are discussed. These include the schedule

generation schemes with complementing priority rules, meta-heuristics (focusing on genetic

algorithms) and multi-agent systems (MAS). Second, the dynamic extension of the RCMPSP

is reviewed. The last paragraph provides an overview of multi-project generation attempts

and data sets.

Priority rule-based heuristics consist of two parts: a schedule generations scheme (SGS) and a

priority rule (PR). In general, the SGS selects an eligible activity (i.e. whose predecessors have

been scheduled) and schedules it at the first time instance where no resource or precedence

constraints are violated. When multiple activities are eligible, a certain PR is used to select the

4

Chapter 2. Literature review

activity to be scheduled first (Kolisch, 1996b). The author analyzes the differences between

the Serial Schedule Generation Scheme (SSGS) and the Parallel Schedule Generation Scheme

(PSGS). He states that “The parallel scheduling scheme searches in a smaller solution space

than the serial scheduling scheme, but with the severe drawback that, when considering a

regular performance measure, the solution space might not contain the optimal solution.”

(Kolisch, 1996b). Following this reasoning, the SSGS will be used as base for the genetic

algorithm. Kolisch and Meyer (2006) implement a hybrid SGS. By setting the parameter θ

the size of the search space can be determined. If θ = 0, the scheme will function as a PSGS,

if θ = 1 it will behave as a SSGS. The parameter can take all intermediate values, a higher θ

will result in a larger part of the search space being evaluated.

Priority rules can be classified along different dimensions, e.g. the information they use, the

number of passes that are executed, the amount of information processed and its dynamic or

static nature (Browning and Yassine, 2010b; Kolisch, 1996a). Browning and Yassine (2010b)

compare the performance 20 PR’s of that have been used in research on different objective

functions. They note that PR’s considering the information of the separate projects in one

multi-project instance perform better on minimizing the average delay of all projects. Ac-

cording to their study, the priority rules MINWCS and TWK-LST perform well in general.

Several articles identify MAXTWK and SASP as the PR’s giving the best results for mini-

mization of average project delay (Kurtulus and Davis, 1982; Kurtulus, 1985; Lova et al., 2000;

Lova and Tormos, 2001). Lawrence and Morton (1993) propose an R & M scheduling pol-

icy that takes into account information about resource demand, slack and network structure

to minimize weighted tardiness. This PR outperforms other rules that have performed well

in previous research and proved to be robust regarding different project parameters (among

others: AUF, OS, RF, etc.). The existing PR-based heuristics have a flaw: they are not

really adapted to a multi-project context. Although some PR’s incorporate project specific

information (e.g. SASP, cfr. infra), they combine activity and project information in one

measure. This may cloud the activity selection process. This dissertation will formulate an

answer to the postulated problem by introducing a SGS that decouples project and activity

information.

A second approach to solving the RCMPSP involves meta-heuristics. Shtub et al. (1996) con-

sider an environment where projects are executed in a repetitive manner (e.g. the construction

5

Chapter 2. Literature review

of naval patrol boats). The authors apply three different methods: simulated annealing, a

genetic algorithm and a pair-wise swap algorithm. However, the focus of the article is on

learning effects and the work schedules of different crews. Kumanan et al. (2006) propose a

genetic algorithm for the RCMPSP. The problem is represented by a permutation encoding,

a single point crossover and a swap mutation are used. However, the heuristic that is used to

create a schedule from the representation string is not a SGS in the strict sense. It is similar

to the PSGS, but among others no priority rule is explicitly chosen. Gonçalves et al. (2008)

develop a genetic algorithm for the dynamic RCMPSP. The representation of the problem

incorporates priority values and delay times for every activity; and release dates for every

project. The reproduction step is a combination of an elitist strategy and a crossover oper-

ator. The mutation operator replaces the worst performing individuals by newly generated

ones. This representation and decoding are not applicable to the static RCMPSP, but the

general concepts of the evolutionary strategy will be implemented in the genetic algorithm of

this paper.

The third solution method that will be discussed are the multi-agent systems. MAS’s intro-

duce a different approach to the RCMPSP. They are often used to address the Decentralized

RCMPSP, where it is assumed that not all information is centrally available. This results

in complex interactions between individual project managers, which can be modelled using

agents. MAS’s are “more robust, flexible and fault tolerant than traditional systems ... are

easier to program ... [and] can often solve problems faster (by exploiting parallelism)” (Knotts

et al., 2000). The authors categorize agents according to their sophistication on a spectrum

from purely reactive to purely deliberative. They model a system where every activity is repre-

sented by an agent and apply it to the MultiMode, Resource-Constrained Project Scheduling

Problem (MMRCPSP). There is a central ’Blackboard’ that stores relevant information (e.g.

resource and precedence constraints, available resources) that is accessible by every agent.

Basic agents select a certain mode and request the required resources, which they are granted

according to their respective priority values. Advanced agents evaluate multiple modes fol-

lowing a more complex logic. Confessore et al. (2007) allocate one agent (project manager) to

every project and institute one coordinator agent, who distributes resource time slots among

the managers. The coordination process is modeled as a combinatorial auction. All managers

formulate a bid for certain slots with an according price. These bids are processed by the

6

Chapter 2. Literature review

coordinating agent, who allocates the slots to highest bidders. The agents that did not receive

any slots reformulate their bidding, adapted to the new situation. This process is iterated

until all agents have the necessary slots to schedule their activities. Homberger (2007) com-

bines a Restart Evolutionary Strategy (RES) with a MAS. Every project has one Schedule

Agent, who negotiates with a coordinating Mediator. The Mediator allocates resources to

the Schedule Agents, the latter use these to create a schedule for their project (using the

RES). Excess resources are sent back to the Mediator who communicates the global excess.

All Schedule Agents reschedule their network assuming they have all excess resources and

evaluate the improvement of the schedule. Based on this information, the Mediator allocates

(parts of) the excess to the Schedule Agents, who reschedule their network using the extra

capacity. This process is iterated until the average makespan cannot be reduced further. Lee

et al. (2003) apply a MAS guided by a market-based control mechanism to the Distributed

Multiple Projects (DMP) environment. The focus is on project control. Local markets are

established to solve conflicts that arise from disruptions in the initial schedule. Agents bid

for resource time slots in which they can schedule their activity. The authors propose a

new mechanism to solve the market-based discrete resource allocation problem. Instead of

adapting prices for resource time slots based on their demand, the prices are adjusted accord-

ing to the precedence conflicts that occur from that demand. Homberger and Fink (2017)

devise two generic negotiation mechanisms for the decentralized RCMPSP and apply it to

a scheduling problem with two agents. Each agent is responsible for a set of activities and

wants to maximize the discounted cash flow of his own activities, resulting from the schedule

of the multi-project. By using money transfers, an agent can convince others to accept cer-

tain changes in the schedule. The effectiveness of these mechanisms is evaluated in a context

where agents do not always behave truthfully. When information is decentralized, this can be

a realistic situation. With mechanism NM-SP-2, the dominant strategy for both agents is to

behave truthfully. This property is valuable in situations where players are able to lie in order

to increase their own gain. Most of the research cited above develops systems that work in a

deterministic way, i.e. a given starting situation will always result in the same outcome. The

mechanism introduced in this dissertation tries to model the decision process of agents alike

that of players in a (board)game. The agents will evaluate different possible options and make

a decision, which will be based on a combination of randomness and available information.

7

Chapter 2. Literature review

The schedules resulting from multiple executions may thus be different.

The static RCMPSP can be extended to the dynamic RCMPSP. According to Dumond and

Mabert (1988) the dynamic context is valid if new projects join the portfolio over time and

there is uncertainty about future resource demands. The authors identify two types of deci-

sions, i.e. planning and control decisions. The former involve the communication of a due date

for the project to external parties. The latter incorporate the scheduling, where resources are

assigned to activities in order to meet the proposed due date. Multiple alternatives for the

two stages are evaluated. They identify the combination of the FIFS scheduling heuristic and

the SFT due date setting rule as a strong performer on due date related performance mea-

sures. Dumond (1992) proposes a finite scheduling algorithm that is able to schedule projects

in a dynamic environment. He evaluates the impact of resource availability levels on differ-

ent time related performance measures. The research concludes that resource availability at

levels above 160% provides no additional reduction in makespan or lateness. When resources

become more constrained, the choice of a scheduling heuristic will have a significant impact

on the performance. Bock and Patterson (1990) elaborate on resource preemption policies for

newly arriving (mainly maintenance) projects and their impact on the long term development

projects, which may incur rework loops. When a new high priority project arrives, resources

of lower priority work in process are preempted and assigned to the former. They find that

FIFS/SFT dominates other combinations in general. However, when limited resource pre-

emption is allowed, the performance of MINSLK[DD] and MINLFT[DD] is not significantly

different from FIFS. Tsubakitani and Deckro (1990) develop a scheduling and control model

for the housing industry. The authors evaluate the Average Utilization Factor (AUF) and

Average Resource Loading Factor (ARLF) of the multi-project to select the appropriate PR

(SASP), which is used in combination with a scheduling algorithm similar to the PSGS. Two

control features are introduced: the first one calculates the free slack of each activity, the

second one receives input of actual information and provides an updated perspective on the

current situation. Both routines assist the manager in controlling the projects. Not all re-

search that incorporates extensions like due dates or release dates explicitly addresses the

dynamic RCMPSP. Gonçalves et al. (2008) introduce a genetic algorithm that incorporates

project release dates and activity delay times. The algorithm is not completely applicable

to the dynamic context as the earliest release dates of every project are known in advance.

8

Chapter 2. Literature review

Lawrence and Morton (1993) compare activity costing and resource pricing heuristics with an

iterative schedule updating procedure to minimize weighted project tardiness. This disserta-

tion will address the static RCMPSP, but derived insights and concepts could be extended

and applied to the dynamic RCMPSP.

Different authors have generated multi-project instances to test their proposed solution strate-

gies. Some (Gonçalves et al., 2008; Homberger, 2007) combine single-project instances from

benchmark sets like J120 from Kolisch et al. (1998). However, no analysis is made about

the underlying problem parameters. Kurtulus and Davis (1982) propose two summary mea-

sures to categorize multi-projects: the ARLF and the AUF. The authors generate 77 problem

instances along these two dimensions, but no further detail is given about the generation

procedure. Browning and Yassine (2010a) present the first random network generator for

RCMPSP instances. The input parameters for the generator are Normalized Average Re-

source Load Factor (NARLF), Modified Average Utilization Factor (MAUF), Variance of

MAUF, Variance of NARLF, and a complexity measure Cj . However, some aspects of the

generator show room for improvement, as will be shown in chapter 4. The network generator

in this dissertation will build on RanGen1, a generator for RCPSP instances (Demeulemeester

et al., 2003) and combine it with procedures from (Browning and Yassine, 2010a). RanGen1

was augmented to RanGen2 by Vanhoucke et al. (2008). This generator can create instances

from a broader range of topological network indicators than its predecessor. (N)ARLF and

(M)AUF are the most prevalent multi-project parameters in research. However, this research

will show that they are not flawless.

9

Part II

Methodology

10

Chapter 3

New approaches to multi-project

scheduling

This chapter will introduce two new scheduling methods for the RCMPSP. Before discussing

these approaches, the objective function on which they will be evaluated is defined. As stated

in chapter 2, Browning and Yassine (2010b) base their analyses on two measures: Average

percent delay (APD) and Percentage delay (PD), described by the following equations:

Average percent delay =
(a/A) + (b/B) + (c/C)

3
(3.1)

Percentage delay =
Max(A+ a,B + b, C + c)−Max(A,B,C)

Max(A,B,C)
(3.2)

A, B, C are the resource unconstrained CP durations of the three projects while a, b, c are

the delays due to resource constraints, as shown in figure 3.1. APD evaluates the delay of

every project in the portfolio and aggregates them into one measure. PD makes abstraction

of the underlying projects and only looks at the delay of the portfolio. If one project has

large delays this will inflate PD, even though all other projects may have small delays. As

APD treats the multi-project more as a combination of projects, it will be used as objective

function in this dissertation.

The contributions derived in this chapter are twofold. First, a Multi-Project Schedule Gener-

ation Scheme (MPSGS) is proposed. It is an extension of the SSGS, with decoupled project

and activity selection decisions. Second, the application of a game mechanic on the MPSGS

is discussed. Additionally, the behaviour of players in this game is augmented. The remain-

11

Chapter 3. New approaches to multi-project scheduling

Figure 3.1: An example multi-project instance

Source: Browning and Yassine (2010b)

der of this chapter is structured as follows: Section 3.1 discusses the MPSGS, section 3.2

elaborates on the structure of the basic game mechanic. Subsections 3.3.1 and 3.3.2 discuss

augmentations of the decision process of schedule agents in order to model player-like be-

haviour. Subsections 3.3.3 and 3.3.4 propose adaptations of the resource allocation by the

coordinating agent.

3.1 MPSGS, a decoupled SGS

This section will propose a multi-project schedule generation scheme (MPSGS) that allows the

decoupling of activity and project selection decisions. To the best of the author’s knowledge,

no other SGS explicitly does this. Existing SGS’s evaluate the activities in the eligible set

(i.e. the activities for which all predecessors are scheduled) of all projects and select the one

with the best priority value Pij . Some of the PR’s incorporate project information, but a

multi-project instance is still treated as one aggregated network and not as seperate networks.

Apart from new priority rules, there is no difference between the SGS for the RCPSP and for

the RCMPSP. Take the priority rule Shortest Activity of the Shortest Project (SASP) as an

example, which selects the activity with minimal

Pij = dij + CPj . (3.3)

It incorporates activity (dij) and project (CPj) specific information, but the two types are not

evaluated separately. As a consequence, it does not select the shortest activity of the shortest

12

Chapter 3. New approaches to multi-project scheduling

project. Take two projects p1, p2 with CP1 = 20, CP2 = 22. Let ai1(di1 = 5) and ai2(di2 = 2)

be the activities with the shortest duration in the eligible set of p1 and p2 respectively. The

resulting priority values are Pi1 = 25 and Pi2 = 24. If one would select the shortest activity

of the shortest project, one would choose ai1, as CP1 < CP2. However, if one would use the

SASP priority rule, one would choose ai2 as Pi1 > Pi2. The latter selection mechanism is

present in the traditional SGS’s, while the former (decoupled selection) is incorporated in the

MPSGS. First, for every project, the activity with the best priority value is selected. Second,

the project with the best priority value is chosen, the according activity is scheduled.

A decoupled selection may not only change the meaning of existing priority rules, it also

enables the creation of new ones. For instance, Longest Activity of the Shortest Project

(LASP) cannot be implemented in a regular SGS. In equation 3.3, the first term should

be maximized while the second term should be minimized. As a consequence, it is unclear

whether Pij should be minimized or maximized. As long as the objectives for both activity and

project information point in the same direction (e.g. SASP) there is no problem. However,

this limits the possibilities of creating priority rules. The MPSGS allows setting different

selection rules for activities and projects. Above, the structure of the MPSGS is given in

Algorithm 1: MPSGS

1 ps = ∅
2 while not all activities scheduled do

3 for l in L do

4 SAl selects aij with highest priority in Dl
5 SAl sends schedule order ol for aij

6 if any orders sent then

7 CA selects order with highest v(ol), i.e. the winning order ow

8 CA schedules activity aij of ow at time Eij in ps

9 All agents update information based on the new partial schedule

10 return ps

pseudocode. Note that it is very similar to the structure of the schedule game in section 3.2.

Let ps be the partial schedule, i.e. a schedule in which not all activities are added yet. Before

the first iteration ps is empty, after the last iteration it contains all activities of all projects.

Every project is assigned a Schedule Agent (SAl), he is responsible for selecting an activity

13

Chapter 3. New approaches to multi-project scheduling

of his project. Each SAl has three disjoint sets containing activities. The Completed set (Cl)

contains all activities that are already added to the partial schedule. The Decision set (Dl)

contains the activities for which all predecessors are in Cl, which means they can be scheduled.

For the activities in the Ineligible set (Il), not all predecessors are scheduled yet, they cannot

be added to the schedule at the current time. Cl ∪ Dl ∪ Il contains all activities of the

projects assigned to SAl. Note that Cl corresponds to the scheduled set and Dl to the decision

set from Kolisch et al. (1995). As long as not all activities are scheduled, iterations of the

mechanism are executed. In every iteration, every agent selects aij with the highest activity

priority value from his project and sends a schedule order ol for that activity. This ol contains

information about the activity, the requesting agent and its earliest precedence and resource

feasible start time (Eij) according to ps. The order also has a value v(ol), which refers to

the priority value of the project1. A Coordinating Agent (CA) collects the ol of all schedule

agents and selects the one with the best v(ol). This is the winning order ow, the according

SAl is called the winning agent. The activity of this order is added to the partial schedule at

Eij . Then, two kinds of information are updated. First, Cl, Dl and Il of the winning agent

are updated. Second, the Eij are updated for all aij ∈ Dl, ∀l. As the availability of resources

have changed during certain time slots, the Eij of some activities may be delayed. In every

iteration of the MPSGS, one activity is added to the partial schedule. The orders of the losing

agents are discarded, in the next iteration every SAl sends a new order. Multiple activity

and project priority rules (APR and PPR respectively) were implemented and tested, the

different rules are listed in table 3.1.

Note that the use of the words project and agent (and their indices j and l) are equivalent

here as every agent is responsible for exactly one project (Pl contains one project, ∀l). The

total work content of a project (TWKj) is defined as follows:

TWKj =
∑
i∈Cl

K∑
k=1

wijk, (3.4)

i.e. the resource demand of all activities that are in the completed set. The performance of

an agent is given by the equation below:

Ml =
|Cl|∑
j∈Pl

Nj
. (3.5)

1If v(ol) would be equal to the priority value of the activity, the MPSGS would reduce to the SSGS.

14

Chapter 3. New approaches to multi-project scheduling

Table 3.1: Activity and project priority rules

Code Name Definition

Activity Priority Rules

LA Longest Activity Max(dij)

SA Shortest Activity Min(dij)

MAXWK Maximum Work Content Max(
∑K

k=1wijk)

MINWK Minimum Work Content Min(
∑K

k=1wijk)

MAXSLK Maximum Slack Max(Max(LSij − Eij , 0))

MINSLK Minimum Slack Min(Max(LSij − Eij , 0))

Project Priority Rules

LP Longest Project Max(CPj)

SP Shortest Project Min(CPj)

MAXTWK Maximum Total Work Content Max(TWKj)

MINTWK Minimum Total Work Content Min(TWKj)

MAXCPL Maximum Complexity Max(OSj)

MINCPL Minimum Complexity Min(OSj)

BA Best Performing Agent Max(Ml)

WA Worst Performing Agent Min(Ml)

Ml = 0 when none of the activities of SAl are scheduled yet, Ml = 1 in the opposite case.

Note that the rules related to slack, total work content and agent performance are dynamic,

i.e. Pij of activities may change when the partial schedule changes. The other priority rules

are invariant with regard to the partial schedule.

When referring to a priority rule in the MPSGS, it will be expressed in the format A-B where

A is the APR and B the PPR. For instance, SA-SP refers to the selection of the shortest

activity of the shortest project and SASP refers to the priority rule used in previous research,

defined by equation 3.3. In order to evaluate interaction effects between the APR and PPR,

the performance of each combination is evaluated in section 6.1. Preliminary tests have shown

that MINSLK-SP outperformed the other combinations. As the scheduling methods in the

remainder of this chapter bear multiple similarities to the MPSGS, they will also use this PR

when necessary.

15

Chapter 3. New approaches to multi-project scheduling

3.2 A game mechanic

The mechanism of a schedule game is inspired by the dynamics of (board) games. In some

of these (e.g. Settlers of Catan or Power Grid), players have to build an empire by gathering

resources and negotiating with each other. On an abstract level, these games are played in

multiple rounds, each consisting of two main phases: (1) a resource gathering phase, and

(2) a decision phase. In the first phase, players receive resources based on their strategy

and earlier decisions. Some games also allow negotiating about and trading of resources

during this step. In the second phase, the players make decisions about how to invest their

resources. This process can be based on a multitude of factors (e.g. their resource position

and that of their competitors, their overall strategy, etc.). Not only the individual decisions

are important, the interaction between the strategies of the different players has an impact

on their respective performances too. A distinction can be made between games with and

without fairness mechanisms. The former type has explicit rules or implicit dynamics that

give additional opportunities to players who perform badly during a certain stage, making

it still possible for them to win. Games of the latter type do not have this property, which

allows for larger performance gaps between the best and worst performing players. As a

result, losing players may get stuck in a vicious circle. In this case, their bad current position

negatively affects the possibility to perform well in future rounds. Even games with fairness

mechanisms cannot guarantee that this situation will never happen, but the probability of

occurrence is lower.

The general concepts of games discussed above will be incorporated in a scheduling scheme

(called a scheduling game or game mechanic). The structure of the basic game is shown in

pseudo code below, the elaboration will follow its outline. It bears similarities to the MPSGS,

but additional mechanisms are added. An iteration refers to a full execution of the game,

resulting in a schedule for the multi-project. A round of the game refers to one iteration of the

while-loop in algorithm 2. During one game iteration, multiple rounds will be executed. For

every problem instance, multiple iterations of the game will be executed. The first iteration is

a simplified variant, its resulting schedule is used to estimate initial values for (among others)

the makespan of individual projects. Subsequent iterations will use this information. As a

degree of randomness is present in the mechanism, the result of any two iterations may be

different, so it is advisable to execute multiple iterations.

16

Chapter 3. New approaches to multi-project scheduling

Algorithm 2: Basic game

1 ps = ∅
2 while not all activities scheduled do

3 CA allocates resources to a schedule agent

4 for l in L do

5 SAl selects aij with highest priority in El ∪ Sl
6 if aij ∈ Sl then

7 SAl sends schedule order for aij

8 if any orders sent then

9 CA selects ol with highest v(ol), i.e. the winning order ow

10 CA schedules activity aij of ow at time Eij in ps

11 All agents update information based on the new partial schedule

12 return ps

3.2.1 Resource allocation (Line 3)

Every SAl is again responsible for one project and has a resource stack slk per resource type

k. This stack stores the resources that he receives during the game. When the game starts,

slk = 0, ∀l, k. At the beginning of each round, a resource assignment procedure is executed.

The allocation of resources to the agents is based on the vector {q1, ..., qL}, called the quarry.

It is established as follows: first, the total resource demand of each agent is calculated:

Wl =
∑
j∈Pl

Nj∑
i=1

wijk. (3.6)

Then, the probabilities ql are computed:

ql =
Wl∑L
l=1Wl

(3.7)

A lower bound is set on ql in order to avoid negative or very small values for some agents.

In this case it is set to LBq = 1
4 ·L . The assigned resources are not linked to a specific time

window, but should be seen as a currency. Once an agent has enough resources, he can trade

them with the coordinating agent (CA) for a timeslot to schedule an activity (cfr. infra).

Three allocation mechanisms were tested. In approach (1), one agent is randomly selected

using the selection probabilities {q1, ..., qL}. When an agent is selected, he receives an amount

of resources fk per resource type, his stack increases to slk+fk, ∀k. For each allocation mech-

anism, fk is set equal for every resource type: fk = f, ∀k. Approach (2) allocates resources

17

Chapter 3. New approaches to multi-project scheduling

to every agent per round. The amount of resources that Al receives, is a random amount in

the interval [0, f · ql]. On average, agents with higher ql will receive more resources, but this is

not necessarily true in every round. In approach (3), a vector of size V is constructed. Every

spot in the vector stores a tuple of agents. Each agent is randomly added to V · ql · 2 different

tuples of the vector (ql · 2 has an upper bound of 0.8), so on average 2 agents are present per

tuple. Each game round, all agents in a randomly selected tuple receive f units per resource

type.

3.2.2 Activity selection (Line 4-7)

An activity will always be present in exactly one of four disjoint sets. The Completed (Cl) and

Ineligible (Il) have the same definition as in section 3.1. However, the decision set from section

3.1 is split in two: the Schedulable (Sl) and Eligible (El) set. Sl consists of the activities for

which all predecessors are in Cl and slk ≥ wijk, ∀k. For the activities in the eligible set El,

the former condition also holds, but slk < wijk for at least one k. Separate instances of these

four sets are assigned to every agent. After the allocation of resources, every agent evaluates

whether slk ≥ wijk, ∀k holds for any aij ∈ El. If so, these activities are migrated from El
to Sl. Then SAl searches aij with the highest priority value in El ∪ Sl. If this aij ∈ Sl, he

sends a schedule order ol to the coordinating agent for that activity. This order has the same

structure as in section 3.1. If aij ∈ El, the agent needs more resources to send the order and

will take no action at the current time.

As stated in section 3.1, MINSLK-SP performed the best during preliminary tests, so it will

be used in the scheduling game. This means that schedule agents give priority to activities

with the least slack and that v(ol) is equal to the CP duration of the corresponding project.

The coordinating agent will select the order with the lowest v(ol).

Next to the deterministic variant, an adaptation of MINSLK-SP is proposed, based on random

sampling. This is implemented to better approach the behavior of players in a game, where

decisions often are not based on one deterministic rule. The approach formulated in Kolisch

et al. (1995) is followed. Let ρij denote the regret value of aij , defined by:

ρij =


Pij − Pmin if Pij is maximized,

Pmax − Pij if Pij is minimized,

(3.8)

18

Chapter 3. New approaches to multi-project scheduling

where Pmin, Pmax are respectively the minimal and maximal priority value of all activities in

El ∪ Sl of the agent that is responsible for aij . The selection probability of aij is calculated

using

ψij =
(1 + ρij)

η∑
aij∈El∪Sl(1 + ρij)η

, (3.9)

η is a parameter defining the pressure on the selection. The higher η, the higher the probability

that activities with a high regret value will be selected. Every time SAl has scheduled an

activity, he first updates El ∪ Sl. Afterwards, he randomly selects the new activity that will

receive priority, using ψij . Activities with a good Pij still have a high probability of being

selected, but there is no guarantee that the best will always be selected.

3.2.3 Order selection and scheduling (Line 8-11)

All schedule agents reevaluate their eligible and schedulable sets in parallel. As a consequence,

multiple schedule orders can be sent in one round. If this is the case, the coordinating agent

ranks the orders according to their value v(ol). Then he selects the best ranked one and adds

the according aij to the partial schedule at time Eij . Subsequently he subtracts {wij1, ..., wijk}

from the resource stack of the winning agent SAw.

After an activity is scheduled, the agents update their available information. First, SAw

moves the scheduled activity aij from Sl to Cl. Second, he places activities from Il in El or

Sl if all predecessors are scheduled in the new partial schedule. Third, he migrates activities

from Sl to El for which slk ≥ wijk, ∀k is no longer valid. This is possible as the available

resources in his stack have decreased in the scheduling step. At last, all agents update the

Eij , ∀ aij ∈ El ∪ Sl. As a new activity has been scheduled, the availability of resources (R′kt)

in the scheduled time slots will have decreased. There may not be enough resources left for

other activities having Eij in that time window. For these activities, the schedule agent has

to find the new Eij .

19

Chapter 3. New approaches to multi-project scheduling

3.3 Extensions to the basic game

In section 3.2, the agents can be classified as reactive. They wait for the allocation of resources

and send a schedule order for the activity with the highest priority value (i.e. they follow

a single rule). To move agents into the direction of more deliberative action, their decision

process is augmented. Four extensions are implemented to make the strategy of agents less

unidirectional. Subsections 3.3.1 and 3.3.2 are addressed at the level of the schedule agents,

subsections 3.3.3 and 3.3.4 are addressed at the level of the coordinating agent.

3.3.1 Tightness evaluation

In this section a trade off mechanism between long term and short term improvements is

implemented. On the long term side, an agent will always wait until he has the resources to

schedule the activity with the highest priority in El ∪ Sl. On the short term side, an agent

will also evaluate all activities in Sl, i.e. those that can be immediately scheduled with the

current resource stack. The evaluation is performed on the first time window in which the

activity can be scheduled, i.e. [Eij , Eij + dij [. To make this evaluation, two factors are taken

into account: (1) the resource tightness of the window and (2) the competition from other

activities.

The resource tightness for aij is calculated as follows:

Tij =
1

K

K∑
k=1

Eij+dij−1∑
t=Eij

rijk
R′kt

. (3.10)

R′kt is the amount of resource type k that is still available at time point t. When Tij → 1, the

resources in the time window become more constrained for aij . In the extreme case where

Tij = 0, there will always be enough resources available for aij . We can conclude that the

higher Tij , the higher the probability that aij will be delayed if another activity is scheduled

in its time window.

The second factor is the measure of competition from other activities. The count of competing

activities for any aij is defined as follows

Cij =

J∑
g=1

Ng∑
h=1

(agh : Egh ∈ [Eij , Eij + dij [∧ (g 6= i ∨ h 6= j)), (3.11)

i.e. an activity agh counts as competing when its Egh lies in the earliest precedence and

resource feasible time window of aij . If agh would be scheduled first, it is possible that Eij

20

Chapter 3. New approaches to multi-project scheduling

has to be delayed. The total tightness of an activity is Tij · Cij . The tightness based selection

mechanism of agent SAl follows this outline:

Algorithm 3: Tightness evaluation

1 T = ∅; initialize τ, κ

2 atop = activity with the best priority value in El ∪ Sl
3 for all aij in Sl do

4 if
Tij · Cij
Ttop · Ctop ≥ τ then

5 T = T ∪ aij
6 φ = exp

(−|T |/|Sl|
κ

)
7 if rand(0,1) ≤ φ then

8 if atop ∈ Sl then

9 Select atop

10 else

11 Select aij ∈ T \ {atop} with the highest Pij · Tij · Cij

τ is a threshold for the tightness values, a higher value will result in less activities being added

to T . If τ = 1, only activities experiencing at least as much competition as atop are added

to T . In line 6 the probability φ of selecting atop is determined (which means that SAl does

not change his strategy). This probability is influenced by the count of activities in T and

by κ. If a lot of activities experience high competition (i.e. a high |T |), the probability of

selecting an alternative activity becomes higher. If κ increases, φ will increase. Note that line

11 only applies when the PR is a maximization rule. In the opposite case, the activity with

the lowest
Pij

Tij · Cij should be selected. Both the priority and tightness value are incorporated

in the selection of an alternative activity. In this mechanism, two parameters are available

for tuning: τ and κ.

3.3.2 Negotiation mechanism

The second approach to augmenting the behavior of the schedule agents will introduce a

negotiation mechanism. The SA’s communicate with each other through the CA. The latter

makes the final decision regarding the negotiations. The procedure will activate after line 9

in algorithm 2. The general structure is inspired by the mechanism proposed in Agnetis et al.

(2015).

21

Chapter 3. New approaches to multi-project scheduling

Step 1: When CA has selected the winning order (ow), he communicates this to all schedule

agents.

Step 2: All schedule agents that did not send the order (losing agents) will create two local

schedules, building on the current partial schedule. In the first one, they schedule all their

remaining activities under the assumption that no other agents can add any activity. In the

second, they schedule the activity of ow first and afterwards again create their own local

schedule, neglecting the actions of other agents. The increase in makespan of the latter in

comparison to the former is denoted as δl. This is the deterioration of the minimal makespan

for SAl if the activity from ow would be added to the partial schedule. Then, all losing agents

construct a compensating order col for the activity in El ∪ Sl with the highest priority and

send this to CA.

Step 3: CA evaluates these orders based on their value v(col), which is given by the following

formula (assume that aij is the activity linked to col)
2:

v(col) =
δl∑K

k=1 max(πk(wijk − slk), 1)
. (3.12)

CA selects co∗l , the order with the highest v(col). Orders with a high possible makespan

reduction (δl) will have a higher probability to be selected. However, if an agent still needs a

lot of resources to schedule aijk, v(col) decreases. The resources are weighed with their cost

πk, as defined in Lawrence and Morton (1993):

πk =
1

Rk
·

J∑
j=1

Nj∑
i=1

wijk , ∀k. (3.13)

CA sends co∗l to the winning schedule agent.

Step 4: The winning agent creates two local schedules to evaluate the impact on his min-

imal makespan if co∗l would receive priority over ow, (this is similar to step 2). He then

communicates the deterioration δw to CA.

Step 5: If δw < δl, CA will give priority to co∗l . This means that the corresponding activity

is scheduled before the one of ow. The agent that sent co∗l may need additional resources

before it can be scheduled, as he could select an activity from El. CA allocates the required

resources, but all other agents receive the same amount to retain a fair treatment. If δw ≥ δl,

only the activity from the original ow is scheduled.

2Note that v(col) is different from v(ol) defined in section 3.2

22

Chapter 3. New approaches to multi-project scheduling

This negotiation mechanism introduces some kind of fairness. When the scheduling of an

activity would have a serious detrimental impact on the makespan of an agent, he still has

the opportunity to propose a compensating order. However, this compensating order will not

always be given priority, this would disrupt the normal scheduling process too much. In order

to reduce computational intensity, this negotiation mechanism is not triggered every time an

order is sent. The probability that it is activated is denoted by ν, the only parameter that

can be tuned.

3.3.3 Load Based Quarry Updating (LBQU)

In the basic game, CA allocates resources to SA’s using the probabilities ql. These calculations

are based on the resource demand over the whole portfolio duration (equation 3.7). However,

the resource demand of an agent may vary over the course of the schedule. Dynamically

adapting ql to this situation may improve the general performance of the game mechanism.

Therefore, CPmax is split into S equal time intervals and the total resource demand over the

critical path duration per agent per interval s ∈ S is calculated:

Wls =
b∑
t=a

∑
j∈Pl

Nj∑
i=1

K∑
k=1

rijkXijt. (3.14)

Assume that interval s spans t ∈ [a, b]. Xijt = 1 if aij is active at t according to the resource-

unconstrained critical path schedule, Xijt = 0 otherwise (cfr. equation 4.3 for more detail).

This equation is similar to 4.7, but here it is aggregated over all resource types and split per

agent. The adapted probability q̂ls of agent l during interval s is given by

q̂ls =
Wls ·S
Wl

ql. (3.15)

The resource load during an interval is compared to the average resource load over the whole

portfolio length. SAl will have a higher q̂ls during intervals where his resource demand is

relatively high and vice versa. However,

L∑
l=1

q̂ls = 1, ∀s ∈ S (3.16)

will not necessarily hold as there is no guarantee that in any s the decrease in resource demand

of some agents exactly levels out the increase of others. Therefore, q̂ls has to be rescaled such

23

Chapter 3. New approaches to multi-project scheduling

that 3.16 is valid again:

q′ls =
q̂ls∑
l∈L q̂ls

, ∀l ∈ L, s ∈ S. (3.17)

Once the probabilities are obtained, the intervals s have to be rescaled. The initial interval

lengths ds are based on CPmax. However, due to resource constraints the makespan may be

longer than the critical path duration. In the initial iteration of the schedule game, ql are used

instead of q′ls. The resulting schedule is used to calculate the inflation of the makespan (in

comparison to CPmax), the ds are increased with this same factor. In subsequent iterations

of the game, {q′1s, ..., q′Ls} are used with the rescaled interval lengths. During the course of

one iteration, the probabilities are adapted dynamically. Let s be the current interval that is

used for q′ls. If at any time, more than half of the activities in El ∪ Sl of all agents have Eij

in s+ 1 or later, the probabilities will be adapted to q′l,s+1.

The main parameter that can be set for this mechanism is the amount of intervals S. More

intervals will provide more granularity in the resource load information and should increase

the performance. However, it is expected that the performance will improve in a digressive

manner. For instance, increasing S from 1 to 2 should provide more useful information than

increasing S from 9 to 10.

3.3.4 Performance Based Quarry Updating (PBQU)

A second way of adapting ql is by dynamically evaluating the current performance of the SA’s.

{q′′1 , ..., q′′L} denotes the quarry after the performance based adaptations. The performance

Ml of agent l is defined by equation 3.5. It takes the ratio of all activities in the completed

set and the total number of activities that SAl is responsible for. Every time an activity is

scheduled, {q′′1 , ..., q′′L} is revised. All agents are ranked in descending order according to Ml.

Let rl be the respective rank of an agent. The adapted probabilities are calculated as follows:

q′′l = max(ql −∆max + (rl − 1) ∗∆, LBq) (3.18)

with

∆max =
1

L ·ω
(3.19)

and

∆ =
2 · ∆max

L− 1
. (3.20)

24

Chapter 3. New approaches to multi-project scheduling

∆max is the maximum deviation from ql for any agent. q′′l = ql − ∆max if rl = 1 and

q′′l = ql+∆max if rl = L. For all other SA, the deviation will lie in the interval]−∆max,∆max[.

Note that the only parameter available for tuning is ω. By setting it, one determines ∆max

and ∆. The smaller ω, the more the q′′l will be influenced by Ml. 3.18 does not allow setting a

q′′l below the lower bound LBq. This restriction is imposed in order to avoid that probabilities

become very small or even negative. This PBQU introduces a different fairness mechanism as:

agents that currently are not performing well get a higher probability of receiving resources

and vice versa.

25

Chapter 4

Dataset generation

Multiple generators for RCPSP instances exist (Demeulemeester et al., 1993; Kolisch et al.,

1995; Demeulemeester et al., 2003). Research regarding the generation of RCMPSP instances

is less prevalent. Multiple authors have created datasets without taking into account resource

usage or network complexity measures (cfr. supra). Browning and Yassine (2010a) create a

generator for RCMPSP problems. They discuss four important input parameters: the com-

plexity Cj
1, the Normalized Average Resource Loading Factor (NARLF) and the Modified

Utilization Factor (MAUF) and its variance σ2MAUF . First these four parameters and an al-

ternative for the complexity (Order Strength) will be discussed, then a generation procedure

will be proposed.

4.1 Parameters

To understand the first parameter (Cj), the concept of tiers is introduced. In a network with

N activities, they define a tier “...as a subset of the N activities (a) with no arcs between them,

and (b) that depend only on activities from lower tiers.” (Browning and Yassine, 2010a). The

authors use this concept to analyze the degree of serialism: more tiers mean a more serial

network and vice versa. Note that it bears similarities to the indicator Progressive Level

(PL), defined by Elmaghraby (1977). The resulting complexity of a project j is expressed as

Cj =
A′ −A′min

A′max −A′min
(4.1)

1The authors use the notation Cl as they indicate a project with index l. It is adapted here to j for

consistency reasons.

26

Chapter 4. Dataset generation

where A′ is the number of non-redundant arcs, A′min and A′max respectively the lower and

upper bound on A′ in a network with Nj nodes and T tiers. An arc 〈h, j〉 connecting activities

h and j in a network is redundant if a series of arcs 〈i0, i1〉, ..., 〈is−1, is〉 exist with i0 = h, is = j

and s ≥ 2 (Kolisch et al., 1995).

The generation procedure using Cj has multiple drawbacks, which will be discussed in sec-

tion 4.2. The parameter Order Strength (OS) will be used as alternative measure for network

complexity. Mastor (1970) defines it as the number of transitive and non-transitive arcs (not

including those connected to the dummy start or end node) divided by the theoretical maxi-

mum number of arcs in a network. E.g. in a network with three nodes (X,Y,Z) and two arcs

〈X,Y 〉, 〈Y, Z〉, these two arcs are non-transitive arcs. The precedence relationship 〈X,Z〉 is

implied by the former two arcs and is called transitive. The latter is not explicitly incorpo-

rated in the network, but is taken into account for the calculation of OS. RanGen 1, proposed

in Demeulemeester et al. (2003), is capable of generating networks without redundant arcs

based on a given OS without reducing the space of feasible networks that it evaluates.

The second parameter is NARLF. Kurtulus and Davis (1982) define the ARLF to indicate

whether the total resource requirements of a project mainly occurs in its first or second

half. To compute it, the resource-unconstrained critical path is constructed first. Then the

following equations are used:

Zijt =


−1 t ≤ CPj/2,

1 t > CPj/2

(4.2)

Xijt =


1 if activity i of project j is active at time t,

0 otherwise

(4.3)

ARLFj =
1

CPj

CPj∑
t

Kij∑
k=1

Nj∑
i=1

ZijtXijt

(
rijk
Kij

)
(4.4)

ARLF =
1

J

J∑
j=1

ARLFj (4.5)

Browning and Yassine (2010a) propose an adapted Normalized ARLF (NARLF):

NARLF =
1

J ∗ CPmax

J∑
j=1

CPj∑
t=1

Kij∑
k=1

Ni∑
i=1

ZijtXijt

(
rijk
Kij

)
. (4.6)

27

Chapter 4. Dataset generation

Equation (4.4) calculates the ARLF of every individual project relative to its own CP duration.

If the durations of the projects differ significantly, this measure provides misleading results

(Browning and Yassine, 2010b). (4.6) partially solves this issue, as the resource distribution of

every project is normalized over the duration of the whole portfolio. However, this adaptation

is not sufficient (cfr. section 4.3).

The third parameter is MAUF. Kurtulus and Davis (1982) propose the AUF to indicate the

resource demand of the portfolio relative to the available resources. Once again, the resource-

unconstrained schedule is created. CPmax is divided in S intervals. Then, the required

amount of resource k over an interval s ∈ S : t ∈ [a, b] is computed by

Wsk =
b∑
t=a

J∑
j=1

Ni∑
i=1

rijkXijt. (4.7)

The AUF is calculated as follows:

AUFk =
1

S

S∑
s=1

Wsk

Rkds
(4.8)

where ds is the duration of interval s. If AUFk > 1, the demand for resource k is –on average–

higher than the available amount. The AUF of a problem with K resource types is

AUF = Max(AUF1, ..., AUFK). (4.9)

Kurtulus and Davis (1982) use intervals that can have different lengths, which may obscure

the situation (Browning and Yassine, 2010b). To counter this, Browning and Yassine (2010a)

average the resource utilization over equal intervals and call their measure the Modified AUF

(MAUF). Equations 4.7 - 4.9 still hold, only S is determined differently.

Using only (M)AUF may cause biases, as it neglects information about less constrained re-

source types. To get a view on the contention of all resources, Browning and Yassine (2010a)

introduce the variance of the utilization:

σ2MAUF =

∑K
k=1(MAUF −MAUFk)

2

K
(4.10)

This is an atypical variance, as it measures the variance from the maximum. A higher σ2MAUF

will occur if the resource contention of other resource types deviates further from the most

constrained one. Ceteris paribus, a higher σ2MAUF should result in less delays (Browning and

Yassine, 2010b).

28

Chapter 4. Dataset generation

4.2 Generation procedure

Multiple objections can be made about the generation procedure of Browning and Yassine

(2010a). First, postulating a required amount of tiers inhibits the claim of generating strongly

random networks. A generator is strongly random when it generates networks “...at random

from the space of all feasible networks with a specified number of nodes and arcs” (Demeule-

meester et al., 2003). By specifying an amount of tiers, the space from which networks are

drawn may be smaller than the full feasible space. Second, the generator starts with spec-

ifying for each activity in which tier it should be present. However, the resulting project

network does not guarantee that the actual tier of an activity is the same as its specified

tier. When reviewing some of the generated networks, it often occurred that activities with

a specified tier > 1 had an actual tier = 1 as they had no predecessors. The concept of

tiers is introduced as a measure of serialism of a network. However, intances appear to be a

lot more parallel than they should based on the specified amount of tiers. This leads to the

conclusion that the generator cannot guarantee the postulated serialism of a network2. Third,

the complexity measure defined by the authors is no good predictor of network complexity.

The authors generate networks with Cj = 0.14 and Cj = 0.69. For 84 generated networks

of each complexity level, the OS was calculated. As shown in table 4.1, the resulting OS

for the two complexity levels is not that different, the more complex networks still have a

very low Order Strength. The variations at a certain level can be explained by a different

amount of tiers, networks with OS = 0.11 have more tiers than networks with OS = 0.07.

It seems that the amount of tiers has a (minor) impact on network complexity, its impact

would be higher if the generator would respect the postulated amount of tiers. As a difference

of 0.55 in Cj corresponds only with a maximum change in OS of 0.08, it is dubious that it

spans the same range of complexity as OS. Fourth, both the amount of tiers and the network

complexity measure have an impact on the network complexity. They have to be evaluated

simultaneously which may complicate the resulting analyses. It is easier to have one measure

that indicates the complexity. Fifth, specifying a number of tiers can reduce the probability

of successful generation attempts. Let Tmax be the maximum possible amount of tiers for a

2This objection is of a qualitative nature. To retain the focus of this dissertation, no profound quantitative

analysis of the generated networks was executed to back up the objection. This is an opportunity for further

research.

29

Chapter 4. Dataset generation

Table 4.1: Comparison between Cj and OS

Cj Range of OS

0.14 [0.03, 0.06]

0.69 [0.07, 0.11]

given Cj . Browning and Yassine (2010a) conclude that when the amount of tiers T → Tmax,

the probability of generating a network with a certain complexity Cj declines rapidly. As

a consequence, generating these networks is computationally expensive and may take a long

time. A last objection is of a more practical nature: the proposed generator is implemented in

an Excel format for 3 projects with 20 activities. The configuration is not flexible in adapting

these parameters, which reduces the applicability in other research efforts. The generator

itself is coded in VBA in Excel, which is not computationally efficient.

To deal with the previously discussed issues, a new multi-project generator is proposed. The

generated multi-project instances have the following parameters: J = 5, Nj = 25, ∀j ∈ J ,

K = 4. The general structure of the generated dataset follows Browning and Yassine (2010a).

NARLF ∈ [−3,−2, ..., 2, 3], MAUF ∈ [0.6, 0.8, ..., 1.4, 1.6]. Although values outside these

boundaries are possible, most instances will not exceed these intervals or they become hard

to generate (Browning and Yassine, 2010a). σ2MAUF can assume two levels: 0 or [0.15, 0.20].

Using the first level, MAUFk will be exactly the same for all resource types. For the second

level, MAUFk of less-constrained resource types will be lower than MAUF . For low values of

MAUF , it may be hard to find a combination that meets exactly σ2MAUF = 0.2. Therefore,

it is allowed to be inside the interval of [0.15, 0.20]. The complexity of the instance is repre-

sented by a vector of complexity values per single-project. Three complexity levels are used:

H (OS = 0.75), M (OS = 0.5), L (OS = 0.25). The vector HHHML means that 3 projects

with High, 1 with Medium and 1 with Low complexity constitute the multi-project. Instances

are generated over 7 complexity vectors: HHHHH, MMMMM, LLLLL, HHHML, HMMML,

HMLLL, HHMLL. For every parameter combination, n = 25 instances are generated to re-

duce the impact of random factors. This results in a dataset size of 7 · 6 · 2 · 7 · 25 = 14700

(NARLF · MAUF · σ2MAUF · OS · n) multi-project networks.

The adapted generation procedure consists of two steps: (1) generate single-project networks

with specified levels of OS using RanGen 1, (2) combine these networks to RCMPSP-instances

30

Chapter 4. Dataset generation

and adapt the resource usage to meet specified levels for the resource related parameters. The

resource tuning procedures are based on Browning and Yassine (2010a) but some improve-

ments were added.

4.2.1 Single-project generation

RanGen 1 is used to generate single-project instances with the specified values for OS. The

input values for resource measures are neglected, as they will be tuned in 4.2.2. For one

instance with a specified complexity vector, multiple single-project instances are required (see

Table 4.2). Per complexity vector 2100 (7 · 6 · 2 · 25) instances need to be generated. Based

on Table 4.2, this would require 25200, 23100 and 25200 single-project instances with OS =

0.75, 0.5 and 0.25 respectively. To reduce memory requirements, respectively 2940, 2694 and

2940 networks where generated. These where added to a pool from which the procedure in

4.2.2 randomly draws networks to combine. This means that on average, each single-project

instance will be selected 8.57 times. With a total multi-project dataset size of 14700, the

impact of a specific network should not have a significant bias on the resulting analysis.

Table 4.2: Amount of required single-projects

Complexity vector
Single-project count

H M L

HHHHH 5 0 0

MMMMM 0 5 0

LLLLL 0 0 5

HHHML 3 1 1

HMMML 1 3 1

HMLLL 1 1 3

HHMLL 2 1 2

Total 12 11 12

4.2.2 Combination and resource tuning

Let PH , PM , PL be the complete sets with single-project networks of their respective complex-

ity. SH , SM , SL are the pools from which the networks will be drawn by the generator. V is

31

Chapter 4. Dataset generation

the vector containing the complexity values (e.g. HHHHH), Vj the complexity of project j in

the multi-project. spn is a single-project network, m the multi-project instance, G the set of

successfully generated instances. X is a temporary variable that can store a complexity value

from {H,M,L}. The sample size is n (25 per parameter combination). Algorithm 4 describes

the generation of all instances for a given complexity vector V, NARLF, MAUF and σ2MAUF .

In the current design, the algorithm will stop after successfully generating 25 instances and

return the set G of all generated multi-projects.

Algorithm 4: generateMultiProjects(NARLF, MAUF, σ2MAUF , n)

1 SH = PH ;SM = PM ;SL = PL;G = ∅
2 initialize spn, m

3 successCount = 0

4 while successCount < n do

5 reset m

6 forall j in J do

7 X = Vj
8 spn = random network from SX

9 add spn to m

10 SX = SX \ {spn}
11 if SX = ∅ then

12 SX = PX

13 if tuneNARLF(NARLF , m) = success then

14 if tuneMAUF(MAUF, σ2MAUF , m) = success then

15 successCount ++

16 G = G ∪m
17 return G

Note that every time a network is selected from SX , it is removed from that set (line 10). This

imposes equal selection probabilities on each network. When the set is empty, all networks are

added again (line 12). However, this is not a guarantee that they will be equally present in the

resulting multi-project instances. Generation attempts can fail further down the algorithm,

resulting in networks not being added to the set G. After the construction of m, the resource

demand of its activities is tuned to meet the specified NARLF , MAUF and σ2MAUF values

(lines 13 and 14). These steps are elaborated in Algorithm 5 and Algorithm 6.

32

Chapter 4. Dataset generation

This paragraph discusses the procedure tuneNARLF (algorithm 5). Let NARLFm be the

current NARLF -value of network m. α is a specified deviation parameter. When the de-

viation from the desired value NARLFdes becomes smaller than α, the algorithm stops.

This to avoid excess iterations for small improvements. For this design, α = 0.01. If, after

maxIterations (=2500 in this case) iterations, NARLFm has not converged to its target and

the tuning attempt is considered a failure (line 5). This results in the termination of the

respective iteration in algorithm 4. In every iteration, rijk is adapted for a random i, j and

k. If NARLFm < NARLFdes, the resource load has to be shifted to the second half of the

multi-project (and vice versa). This is done by incrementing rijk if aij falls mainly in the

back half of the CP duration, and decrementing it otherwise. The condition in lines 10 and

18 avoid creating activities with Kij = 0 or rijk < 0. If NARLFm reaches its target before

the iteration limit is reached, tuneNARLF will return success.

If tuneNARLF was executed successfully, tuneMAUF (algorithm 6) will be started. First of

all, generateMAUF (algorithm 7, cfr. infra) creates MAUF-values for all resource types to

meet the specified MAUFdes and σ2MAUF,des, which are stored in the set MV . MVk refers to

the desired MAUF-value for resource type k. Then the amount of available resources Rk is

set to the value for which MAUFk approaches MVk most closely (Line 3). Using the formula

Rk =
Wk

CPmax ·MVk
, (4.11)

with Wk being the total resource demand for type k by the whole portfolio, Rk can be

calculated3. Using the new availability, the actual MAUFk is calculated (line 7). In the

whole procedure, two errors can occur. First, the resource demand of an any activity could

exceed this available amount (line 4). As there would never be enough of resource k available

to meet its demand, it would never be eligible to be scheduled by for instance a SGS. Second,

MAUFk could deviate too far from the postulated MVk due to rounding in line 3. This

deviation should not exceed β (=0.025). If one of these two errors occurs, the generation

attempt is considered a failure and the respective iteration in algorithm 4 is terminated.

Otherwise, the method returns success, which results in the multi-project m being added to

G.

Now, generateMAUF will be discussed (algorithm 7). This procedure determines MV . If

σ2MAUF,des = 0, the problem reduces to MVk = MAUFdes, ∀k. When σ2MAUF,des > 0,

3Equation 4.11 is equivalent to equation 4.8 with one interval of length CPmax

33

Chapter 4. Dataset generation

Algorithm 5: tuneNARLF(NARLFdes, m)

1 iteration = 0

2 Calculate CPm

3 while |NARLFm −NARLFdes| > α do

4 if iteration ≥ maxIterations then

5 return failure

6 else

7 i, j, k = select random non-dummy activity, project and resource type from m

8 if NARLFm < NARLFdes then

9 if ESij + ddij/2e < dCPmax/2e then

10 if (rijk > 1 or Kij > 1) and rijk > 0 then

11 rijk −−
12 else

13 rijk ++

14 else

15 if ESij + ddij/2e < dCPmax/2e then

16 rijk ++

17 else

18 if (rijk > 1 or Kij > 1) and rijk > 0 then

19 rijk −−
20 iteration ++

21 return success

Browning and Yassine (2010a) propose setting MV1 = MAUFdes and MVk = MAUFdes −√
σ2MAUF,des, ∀k > 1. This results in resource type 1 being the most constrained and all others

less but equally constrained. However, the validity of this composition can be questioned as

the utilization of these resources is exactly the same. In realistic problem instances it is highly

improbable that all but one resources have exactly the same utilization. Therefore, a new

approach is proposed. Resource type k = 1 is again the most constrained but MVk, ∀k > 1

can assume values within a range. First, the lower bound for MVk is calculated (line 6). Take

the extreme case where MVk = MAUFdes ∀k ∈ K \ {x}. Using equation 4.10, only MVx

contributes to σ2MAUF as MAUFdes −MVk = 0 ∀k 6= x. Isolating MVx results in:

MVx = MAUFdes ±
√
σ2MAUF,des ·K. (4.12)

34

Chapter 4. Dataset generation

Algorithm 6: tuneMAUF(MAUFdes, σ
2
MAUF,des,m)

1 MV = generateMAUF(MAUFdes, σ
2
MAUF,des)

2 for k in K do

3 Rk = round(Wk
CPmax ·MVk

)

4 if Rk < max
i,j

(rijk) then

5 return failure

6 else

7 MAUFk = Wk
CPmax ·Rk

8 if |MAUFk −MVk| > β then

9 return failure

10 return success

σ2MAUF is a variance from the maximum, so MVk ≤ MAUFdes ∀k. As a consequence,

equation 4.12 reduces to

MVx = MAUFdes −
√
σ2MAUF,des ·K. (4.13)

This value is a lower bound (LBσ). If MVk would decrease further, σ2MAUF would exceed the

σ2MAUF,des resulting in an undesired outcome. If the extreme case is relaxed (MVk ∀k > 1 can

deviate from MAUFdes), each resource type can contribute to a further increase in σ2MAUF .

We can conclude that if any MVk < LBσ, this will guarantee σ2MAUF > σ2MAUF,des. However,

using equation 4.13 allows that MVx < 0, resulting in a negative resource utilization. To avoid

this, line 6 imposes LBσ ≥ 0.1. MVk, ∀k > 1 are assigned random values in [LBσ,MAUFdes].

Then, the current σ2MAUF is calculated and compared to its target. If the deviation is larger

than γ (=0.01), a random MVk with k > 1 is incremented or decremented to converge to the

target. This is iterated until the deviation from σ2MAUF,des is smaller than γ. The conditions

in lines 15 and 18 ensure that MVk ∈ [LBσ,MAUFdes].

35

Chapter 4. Dataset generation

Algorithm 7: generateMAUF(MAUFdes, σ
2
MAUF,des)

1 MV = ∅, LBvar = 0

2 if σ2MAUF,des = 0 then

3 for k in K do

4 MVk = MAUFdes

5 else

6 LBσ = max(MAUFdes −
√
σ2MAUF,des ·K, 0.1)

7 for k in K do

8 if k = 1 then

9 MVk = MAUFdes

10 else

11 MVk = LBσ + (MAUFdes − LBσ) · rand(0, 1)

12 while |σMAUF − σ2MAUF,des| > γ do

13 Select random MVk from MV with k > 1

14 if V ar(MV) > σ2MAUF,des then

15 if MVk ≤MAUFdes − .05 then

16 MVk = MVk + .05

17 else

18 if MVk ≥ LBσ + .05 then

19 MVk = MVk − .05

20 return MV

4.3 Concluding remarks

The multi-project generator introduced here copes with some of the limitations of the gen-

erator from Browning and Yassine (2010a). First, the networks are generated with RanGen

1, which has a better claim on generating strongly random networks because it “does not

incorporate superfluous parameters [e.g. the number of tiers] ... [and] because the use of

these superfluous parameters dramatically restricts the domain from which they are gener-

ated” (Demeulemeester et al., 2003). For two rather distinct levels of Cj , the corresponding

difference in OS was very small (cfr. supra). This is another indication that the incumbent

multi-project generator is incapable of generating networks from the complete domain of net-

works. Second, the resource utilization levels used to calculate σ2MAUF are obtained in a more

36

Chapter 4. Dataset generation

realistic manner. Third, the new generator is also more flexible in the generated format of

multi-project instances and is faster as it is implemented in C++.

However, some critical remarks remain. First, the NARLF-measure (4.6) is still biased. It

evaluates the resource distribution relative to the project’s duration instead of to the portfolio’s

duration. In certain cases, this can still lead to erroneous conclusions, as shown below. To

resolve this issue, equation 4.2 is adapted as follows:

Z̄ijt =


−1 t ≤ CPmax/2,

1 t > CPmax/2

(4.14)

When the NARLF is computed with Z̄ijt instead of Zijt, no biases due to differences in CP

durations will occur. Take a multi-project consisting of projects p1 and p2. CP1 = 6, CP2 = 8,

as a consequence CPmax = 8. The resource profiles for both projects are shown in the left

side of figure 4.3. The load is defined as the resource demand that falls in the first half of the

project minus the resource demand that falls in the second half. When using Zijt,
CP1
2 is used

as the middle of project 1 (the red line). The resulting load for p1 is -6. For p2,
CP2
2 is used,

resulting in a load = 0. The resulting NARLF is equal to Load1+Load2
J ·CPmax

= −0.375. When using

Z̄ijt, for both projects CPmax
2 is considered the point separating the first and second half (i.e.

the green line). For p1 this changes the load to -8, nothing changes for p2 as CP2 = CPmax.

The adapted NARLF is equal to -0.5. When one would aggregate the resource profiles into

one, making abstraction of the underlying projects (the right half of figure 4.3, the load is

also equal to -8, giving a NARLF of -0.5. Thus, Z̄ijt does not bias the NARLF calculations

and should be used instead of Zijt.

Figure 4.1: Differences in NARLF calculation

37

Chapter 4. Dataset generation

NARLF-values will tend to be more frequently negative as the resource load of shorter projects

will fall mainly in the first half of the duration of the portfolio. If projects have different release

dates, this could balance out as the resource demand of certain projects will be shifted to later

periods. The data set used in this dissertation still uses the NARLF measure with Zijt instead

of Z̄ijt. The insights regarding equation 4.14 were obtained when the dataset was already

generated and multiple analyses were performed on it. It would be too time consuming to

re-execute all analyses, so I continued with the imperfect data set. In future research, this

flaw should be addressed.

Second, as every single-project network is incorporated multiple times in the multi-project

data set, it is possible that this causes a bias. As shown in the figure below, 82.74% of the

single-project networks is used between 7 and 10 times. However, some instances appear up

to 14 times and others only 3 times. To improve the quality and the strong randomness, every

single-project instance should be included only once in the data set.

Figure 4.2: Number of appearances of single-project networks

Third, the resource tuning procedures are not flawless either, resulting in unequal (and un-

realistic) resource distributions over activities. This results in a partly unrealistic data set

(for both NARLF > 0 and low complexity networks). As a consequence, it is not possible to

make unilateral conclusions regarding the effect of resource loading or complexity. I believe

38

Chapter 4. Dataset generation

that the cause for this is an erroneous understanding of NARLF. For more detail, I refer to

Appendix A.

Last, Vanhoucke et al. (2008) create an updated version RanGen2 and show that it can gen-

erate networks in a wider range for multiple network topology indicators than its predecessor.

In order to create a qualitative multi-project generator, the current generation procedure

should be adapted such that it uses RanGen2 as network generator. However, as multiple ad-

ditional network topology indicators are introduced, further research should first be addressed

at devising extensions of these measures for the multi-project context.

39

Part III

Results and conclusion

40

Chapter 5

Benchmark methods

No standard benchmark data set for the RCMPSP exists. To evaluate the performance of

the scheduling algorithms in this dissertation, different solution methods were implemented

and applied on the data set proposed in chapter 4. This chapter will discuss two PR-based

heuristics, a random benchmark and a genetic algorithm.

5.1 PR-based heuristics

A SSGS is implemented with two different priority rules: Shortest Activity of Shortest Project

(SASP) and Maximum Total Work Content (MAXTWK). According to literature, these PR’s

provide good results (Browning and Yassine, 2010b). The former calculates the priority value

of aij as follows:

Pij = dij + CPj . (5.1)

The activity with minimal Pij is selected. Thus, the SSGS will give priority to short activities

from short projects. The latter rule calculates the priority value using formula

Pij = TWKj +
K∑
k=1

wijk. (5.2)

For the definition of TWKj , see equation 3.4. The sum of the resource demand (work content)

of all activities of pj that are already scheduled and the work content of aij is maximized.

Resource intensive activities of resource intensive projects receive priority. Note that once

some activities of pj are scheduled, its remaining activities will have a higher probability of

being selected, because the first term of 5.2 will be higher relative to other projects.

41

Chapter 5. Benchmark methods

The PR-based heuristics works in two steps: (1) activity list creation and (2) scheduling. First,

an activity list is constructed using one of the PR’s mentioned above. Let C (Completed) be

the set of activities that are already added to the list, D (Decision) the set that contains the

activities of which all predecessors are in C, and I (Ineligible) the set containing all activities

for which the last condition does not hold. From D, the activity with the best priority value

Pij is added to the list and transferred to C. Now some activities from I may be transferred

to D as the completed set is changed. This procedure is repeated until all activities are in C.

The resulting list contains all activities in a certain order. This order respects the precedence

constraints. Second, this activity list is used by the SSGS, which starts with an empty partial

schedule (i.e. no activities are added yet). Then, it selects the first activity in the list and

searches the first time point in the partial schedule where no precedence or resource constraints

of that activity are violated. It is added to the partial schedule at that time point and the

resource availabilities are updated. Then, the SSGS selects the next activity on the list and

repeats the process. This is iterated until all activities of the list are added to the partial

schedule. Note that SASP and MAXTWK were implemented with a PSGS in Browning and

Yassine (2010b). As an SSGS is used here, the results will not be exactly the same, but they

should be similar to those in that paper.

5.2 Random benchmark

The random benchmark works similar to the method in 5.1. First an activity list is con-

structed, which is then scheduled by the SSGS. However, no priority rule is used to create

the list. A list is randomly constructed, taking into account the precedence relations. The

method creates and schedules 5000 random lists and returns the best performing list. It uses

the strength of large numbers but incorporates no intelligence or heuristic knowledge.

5.3 Genetic algorithm

The last benchmark method is a genetic algorithm (GA), a meta heuristic that combines

the strength of large numbers with a smart way of searching the solution space. The GA

represents schedules by an activity list, which is also called a chromosome or an individual. It

searches for well performing individuals and combines information from them to create better

42

Chapter 5. Benchmark methods

ones. The general structure of the GA is elaborated in algorithm 8, each step is elaborated

afterwards.

Algorithm 8: Structure genetic algorithm

1 Initialization

2 while generation < γ do

3 Evaluation

4 Elitism

5 Selection

6 Crossover

7 Mutation

The evolutionary strategy is inspired by Gonçalves et al. (2008), the concepts of the elitism and

mutation step are used. However, as the authors address an extension of the RCMPSP with

due dates and release dates, the solution representation has to be adapted. In this dissertation

the activity list consists only of activities, no additional information is incorporated. Also, a

different crossover function is implemented.

Initialization: An initial set (population) of 200 individuals is created. The activity lists are

generated randomly, respecting precedence relations. After the initialization step, γ iterations

(generations) of the algorithm are executed. The calculation of γ is explained at the end of

this section.

Evaluation: In the evaluation step, every individual in the population is decoded into a

schedule. This is done by executing the SSGS from section 5.1 with the activity list as input.

The performance of the resulting schedules is evaluated with an objective function, which is

APD in this case. The individuals in the population are sorted according to their performance.

Elistism: In the elitism step, the best x% chromosomes of a generation are copied to the pop-

ulation of the next generation. This strategy ensures that information about well performing

individuals is preserved over generations.

Selection: In the crossover step, two parents will be combined to create offspring. The

selection step selects the parents that will be used in the crossover step. The first parent

is randomly selected from the x% best performing individuals. The second parent is ran-

domly selected from the whole population. This approach ensures that information of strong

individuals is present in the offspring, but at the same time it allows worse performing indi-

43

Chapter 5. Benchmark methods

viduals to take part in the crossover process. This may postpone premature convergence (cfr.

Mutation).

Crossover: In this step, individuals (children or offspring) for the next generation are created

using individuals from the current generation (parents). Two parents are selected and the

information residing in their respective activity lists is partly exchanged. This results in two

new activity lists, i.e. the offspring. A two-point crossover is used as operator, its functionality

is detailed in figure 5.1. The activity lists in step 1 represent the parents. In subsequent steps,

two children are constructed. First, the operator randomly selects two cut off points in the

parent activity lists (the bold lines in Step 1). In step 2, all activities before the first cut off

point of one parent are placed in one child (grey fields). The information from parent 1 and

2 is copied to child 1 and 2 respectively. Then, all activities that are present in one but not

both children are added to the one where it is not present yet (the red fields). In step 3, the

activities between the cut off points of parent 1 not yet present in child 2 are added to that

child (grey fields). The same is done for parent 2 and child 1. Once again, activities present

in only one child are added to the back of the list of the other child (red fields). In step 4,

the activities after the last cut off point of parent 1 not yet present in child 1 are added to it,

the same happens for parent 2 and child 2. y% of the new population will be constructed by

applying the crossover operator to parents.

Mutation: By selecting well performing individuals and combining these, one risks that after

a few generations all offspring will resemble each other (i.e. premature convergence). In order

to avoid this, mutation is introduced. This operator adds new information to a population,

extending the search space in which the GA operates. In this dissertation, it is implemented

as follows: the last z% (= 100− x− y) of a population is filled with newly generated random

activity lists.

The percentages (x, y, z) are set to (20, 50, 30). In the initialization step 200 schedules are

generated. In every subsequent iteration, (y + z) · 200 = 160 new schedules are generated.

With a limit of 5000 schedules generated, this results in γ = 4800
160 = 30 generations to be

executed.

44

Chapter 5. Benchmark methods

Figure 5.1: Operation of the two-point crossover

45

Chapter 6

Computational results

This chapter will discuss the computational results of both the MPSGS and the schedule

game mechanic. The details on the data set on which the analyses are performed is discussed

in section 4.2. The full set contains 14700 multi-project instances. Preliminary tests (e.g.

parameter testing) are executed on a subset of 588 instances for two reasons. It reduces the

computational intensity of the tests and avoids overfitting of the algorithms on the data set.

The subset consists of one multi-project for every combination of the parameter levels OS,

NARLF, MAUF and σ2MAUF . The full set contains 25 instances per parameter combination.

First the MPSGS will be discussed. Second, the configuration of the schedule game is ana-

lyzed. Finally, the performance of the MPSGS and the schedule game are compared with the

benchmark methods from chapter 5.

6.1 MPSGS

The activity priority rules (APR) and project priority rules (PPR) from section 3.1 are tested

on the set of 588 instances. The graph below reports the mean APD of the decoupled priority

rules over the instances of small set. The choice of a PPR has the biggest impact on the

performance of the MPSGS. SP gives the best results, followed by MINCPL. In most cases,

there is no interaction effect between the APR and PPR. For instance, indifferent from the

choice of an APR, SP outperforms MINCPL. For any PPR, the same pattern occurs for the

APR’s. MINSLK performs best, followed by MAXWK and LA. Obviously, the other three

are their opposites and perform worse. Although the pattern is similar, the magnitude of the

46

Chapter 6. Computational results

variations may differ (e.g. the performance spread of MINTWK is bigger than that of LP).

The combination MAXWK-MAXCPL is an exception in the observations, it shows worse

results than expected. According to the figure, BA and MAXTWK are equivalent. This

makes sense as MAXTWK selects the agent with the highest work content of activities that

are already scheduled and BA selects the agent with the most activities that are already

scheduled. The only difference between them is the resource weight of the activities, but

apparently this has no big impact.

Figure 6.1: Impact of APR’s and PPR’s on performance MPSGS

LA-SP, MAXWK-SP and MINSLK-SP were studied in more detail. As the rules are tested

on the same problems, the results are paired. The difference between any two rules is not

normally distributed, which means that the paired samples t-test cannot be used. When

the differences are approximately symmetrically distributed (MINSLK-SP versus MAXWK-

SP and LA-SP versus MAXWK-SP), the Wilcoxon Signed Rank Test is used, otherwise

(MINSLK-SP versus LA-SP) the Sign Test is used. As shown in the table below, MINSLK-

SP shows the best performance and its difference from MAXWK-SP and LA-SP is significant

on the 5% confidence level.

For every problem instance, the solutions of the three rules were ranked from best to worst

performer. MINSLK-SP, LA-SP and MAXWK-SP ranked first for 63.1%, 45.9% and 37.9%

of the problems respectively. These percentages do not add up to 100% as sometimes two or

47

Chapter 6. Computational results

Table 6.1: Comparison of performance

Selection rule APD Difference in APD
p-value

(Wilcoxon)

p-value

(Sign)

MINSLK-SP 0.3292 MINSLK-SP LA-SP <0.001 <0.001

LA-SP 0.3329 MINSLK-SP MAXWK-SP <0.001 <0.001

MAXWK-SP 0.3387 MAXWK-SP MINSLK-SP <0.001 <0.001

For every difference, the results of both the Wilcoxon and the Sign test are shown to

indicate that they give the same outcome. The statistically correct p-value is reported

in bold.

three rules are tied for the first place. Based on these results, MINSLK-SP will be used as

priority rule in the schedule game.

To conclude this section, a comparison is made between the SSGS using SASP and MAXTWK

and the MPSGS using SA-SP and MAXWK-MAXTWK. Decoupling the selection mechanism

has a benificial impact in the case of SASP, but has an averse effect in the case of MAXTWK.

This is mainly due to the fact that the PPR SP shows good results and MAXTWK does

not (cfr. figure 6.1). The decoupled approach is not a guarantee for better performance, one

has to choose the PPR and APR with care. Further research should be executed to discover

additional good PPR’s and APR’s.

Table 6.2: Comparison between coupled and decoupled selection

Priority rule APD

SASP 0.3850

SA-SP 0.3681

MAXTWK 0.4166

MAXWK-MAXTWK 0.5182

48

Chapter 6. Computational results

6.2 Schedule game

In this section, the impact of the resource allocation and random sampling will be evaluated.

In the next section, the performance of the extensions to the basic game are discussed. Unless

stated otherwise, the tests were executed on the set of 588 instances, .

6.2.1 Resource allocation

The three mechanisms were discussed in subsection 3.2.1, they will be referred to with their

respective numbers (approach (1), (2) and (3)) as stated there. Figure 6.2 shows the results for

the three mechanisms for different values of f . It is clear that the mechanism is particularly

Figure 6.2: Comparison of resource allocation mechanisms

sensitive to a small f (i.e. allocating few resources per round). This can be explained as

follows: the well performing project selection mechanism of the MPSGS will be disturbed too

much when using small f . An agent has to wait until he has received enough resources before

he can send a schedule order. When few resources are allocated per round, few schedule orders

will be sent in parallel as agents will be waiting for resources during most of the rounds. As a

consequence, the CA will not have to prioritize between projects, this prioritization is mostly

done implicitly by the allocation of resources. When f is increased, the detrimental impact

of resource allocation reduces. At higher levels of f , agents will be able send orders more

frequently and will have fewer rounds during which they have to wait for resources. This

49

Chapter 6. Computational results

results in more schedule orders arriving at CA per round and the project selection rule being

applied more frequently. At a certain level, the incremental improvement of allocating more

resources approaches zero. One can assume that the disturbing impact of resource allocation

has almost fully disappeared at that point.

Table 6.3: Optimal resource allocation parameters

Resource

allocation
f∗ APD

(1) 150 0.3026

(2) 250 0.3144

(3) 100 0.3061

Each mechanism has a different optimal f∗, at the optimal level (1) performs the best, al-

though the difference with (3) is not big (yet significant according to the Wilcoxon Signed

Rank Test at the 5% confidence level). (2) lies further away, this can be explained as follows:

the mechanism does not guarantee a minimal amount of resources received per round. The

higher f , the higher the expected amount of received resources, but it is still probable that

agents receive few or even 0 resources during certain rounds. Apparently this disturbs the

prioritization effect more than (1) or (3). The differences between the allocation mechanisms

become less pronounced at high f and their performance converges to approximately the same

level. Together with the insights from the previous paragraph this indicates that the resource

allocation step is not a main contributor to the performance of the mechanism. One has to

ensure that agents receive enough resources per round to avoid disturbing the activity and

project selection process. The specific manner in which they are assigned is less relevant.

6.2.2 Random sampling

Next, the impact of random sampling (see subsection 3.2.2) is evaluated. The parameter for

selection pressure η is varied over the values [1, 2, 3, 4, 5]. The table below shows the mean

APD over all problem instances.

The table shows that random sampling can slightly improve the performance of the schedule

game. As RS with η = 4 shows the best results, this will be analyzed further. For the

remainder of this subsection, when referring to RS, η = 4 is implicitly assumed. The difference

50

Chapter 6. Computational results

Table 6.4: Evaluation Random Sampling

No RS RS

η - 1 2 3 4 5

APD 0.3027 0.3031 0.3019 0.3012 0.3009 0.3016

between No RS and RS is analyzed with the Wilcoxon Signed Rank test (the differences are

not normally distributed but are symmetrical). The resulting test statistic is -3.255 (p-value

= 0.001), which leads to the conclusion that the difference between the two is significant on

the 5% confidence level, albeit that the magnitude of the difference is hardly relevant. Next

to this RS performs at least as good as No RS in 73.98% of the cases.

Table 6.5: RS: Percentage ranked best

Best performer Count Relative

No RS 153 26.02%

Tied 189 32.14%

RS 246 41.84%

Total 588 100%

Based on the previous two analyses, it seems favorable to use random sampling, even though

the incremental improvement is not that large. As every game is executed multiple times,

the best solution can be found in any of these iterations. The resulting pattern is shown in

the figure below. The horizontal axis shows the iteration in which the best solution is found

for a certain problem. The vertical axis represents the cumulative percentage of all problems

that reached their best solution after that iteration.

When the game is executed without RS, for almost 50% of the problems the best solution is

already found after the first iteration; with RS, this is only 27%. This makes sense as the

latter enables agents to select activities that have a worse priority value, which may result

in worse schedules. When enough iterations are executed the solution quality will improve.

After 25 iterations, RS outperforms its deterministic variant as it has enough opportunities to

explore its search space. However, if one would allow fewer iterations (e.g. 10), it is probable

that RS would perform worse. For only 64% of all problems it would have found its current

51

Chapter 6. Computational results

Figure 6.3: Convergence pattern No RS versus RS

best solution, where not using RS would have already found the best solution in 73% of the

cases. This hypothesis was tested on the complete data set of 14700 instances: the results

after 10 iterations without RS and with RS (η = 4) are reported in the table below. It appears

to be not true, even with fewer iterations, random sampling is still better. The magnitude of

the difference is approximately the same at 10 or 25 iterations.

Table 6.6: Impact RS after 10 iterations

Random

sampling
APD

No 0.2901

Yes 0.2886

A last study was executed to evaluate the impact of additional iterations on the performance

of the game mechanism. The results for 10 and 25 iterations are already available, two

additional levels were tested: 100 schedules and 200 schedules (the latter gives the algorithm

roughly the same computation time as the genetic algorithm, cfr. section 6.4). The results are

reported in table 6.7, these tests were executed on the data set of 14700 instances. Granting

the algorithm more computation time increases its performance. When the mechanism is

given the same computation time as the genetic algorithm (200 schedules), it approaches the

52

Chapter 6. Computational results

GA closely: its average APD is 0.0055 higher. The main reason for this is that it is not a

metaheuristic and does not apply any diversification. Increasing the computation time will

increase the number of evaluated solutions in the same neighborhood. As a consequence it

may find incremental improvements to its incumbent solution, but it will not explore parts

of the search space that are further from the current solution.

Table 6.7: Impact of number of iterations

Iterations 10 25 100 200

APD 0.2886 0.2815 0.2732 0.2702

6.3 Extensions

All extensions were tested on the smaller data set of 588 instances. Each extension was

activated separately first, in order to establish the main effects. The extensions have different

parameters that can be changed. For every parameter, multiple levels were evaluated, but

these analyses will not be discussed here. The reason for this is that none of the parameters

has a substantial impact on the performance. The table below shows the range over which

the parameters were tested and the level giving the best results.

Table 6.8: Parameter setting extensions

Extension Parameters Tested levels Best level

Tightness τ [0.5, 0.7,..., 1.5] 1.1

κ [0.5, 1.0,..., 3.0] 3.0

Negotiation ν [5%, 10%,..., 25%] 10%

LBQU S [2, 4,..., 10] 8

PBQU ω [2, 4,..., 10] 2

The average APD over all problems of the extensions is compared with that of the base game

in table 6.9.

Tightness and Load Based Quarry Updating (LBQU) outperform the base game although

the differences are small. As the differences (Base game - Tightness and Base game - LBQU)

are not normally distributed, nor symmetrical, only a Sign Test can be used to evaluate the

53

Chapter 6. Computational results

Table 6.9: APD of extensions

Extension APD

Base game 0.3009

Tightness 0.3001

Negotiation 0.3018

LBQU 0.3002

PBQU 0.3017

significance of the differences. Neither difference proved to be significant on the 5% confidence

level. A possible explanation for the small size of the effect is that the performance of the base

game is already quite good in comparison with other benchmarks (cfr. infra). This makes it

harder for the extensions to further improve the results. In previous tests with other priority

rules (which are not relevant to discuss), some of the extensions had a larger improvement

potential. However, in these cases the APD of the base game was almost twice as high as now,

giving the extensions more room to enhance the solutions. When splitting the results over

the parameters MAUF, NARLF and OS, there are small variations over the extensions, but

the impact is never noteworthy. As the main effects are not significant, it is improbable that

interaction effects would be, so I decided not to test all possible combinations of extensions.

It would lead this dissertation too far from its main focus.

6.4 Comparison with benchmark methods

This section compares the MPSGS and game mechanic from the previous sections with the

benchmark methods proposed in chapter 5. Before going further in detail about the results, it

is important to classify the methods. Both SSGS’s and the MPSGS are local search method as

they evaluate a single point in the search space. The game mechanic is a multi-pass heuristic

(multiple iterations are executed), but should still be categorized as a local search method.

It evaluates multiple points in the search space, but its search is clearly focused in a certain

direction. The method does not include a diversification part. The random benchmark is

a passive heuristic as it evaluates many points in the search space but does not use any

information to guide its search, it exists only of a diversification part. On the contrary, the

54

Chapter 6. Computational results

genetic algorithm is a metaheuristic that includes both diversification and intensification. It

evaluates a broad spectrum of the search space and its search is guided by promising areas.

All methods were executed on the full data set of 14700 instances. The resulting APD’s and

standard deviations are reported in the table below.

Table 6.10: Comparison with benchmark methods

Method APD σAPD

Genetic algorithm 0.2647 0.3689

Game mechanic 0.2815 0.3521

MPSGS 0.3098 0.3657

Random benchmark 0.3414 0.4883

SSGS (SASP) 0.3625 0.4242

SSGS (MAXTWK) 0.3926 0.4215

The genetic algorithm performs best, followed by the game mechanic and the MPSGS. The

difference between any two methods is significant on the 5% confidence level according to the

Sign Test. The game mechanic has a smaller standard deviation, i.e. its solutions lie in a

smaller interval around the mean than for other methods. Both the MPSGS and the game

mechanic outperform SASP and MAXTWK, two local search methods that are known in

literature to be strong performers (cfr. supra). Next to the performance, the computational

efficiency of the methods is important too. Table 6.11 compares the computational efficiency

of the three best algorithms. The tests were executed on a HP Pavilion g7, with an Intel(R)

Core i7 processor (clock rate 2.10 GHz). It shows how much schedules every approach creates,

how long it takes to find a solution for one problem instance and the incremental improvement

in APD it reaches in comparison to the MPSGS. The genetic algorithm constructs 5000 times

as much schedules to reach an incremental improvement of 0.0451 in APD compared to the

MPSGS. The former is also 28 times as slow as the latter. The game mechanic finds an

improvement of 0.0283 but only creates 25 times as much schedules and is only 3 times as

slow. While the genetic algorithm is better than the game mechanic, it needs a lot more

computational effort. Along the two dimensions of performance and computational efficiency,

none of these methods is dominated by an other one. When the game receives the same

computation time as the GA, they are almost equivalent in performance (cfr. supra). The

55

Chapter 6. Computational results

MPSGS is slower that the SSGS, which needs on average 0.0122 seconds per problem instance.

However, this difference is mainly attributable to programming efficiency. When the code of

the MPSGS would be cleaned up (removing redundancies etc.), its execution time should

approach that of the SSGS.

Table 6.11: Computational efficiency

Method Schedules Seconds
Incremental

improvement

Genetic algorithm 5000 0.5714 0.0451 (14.56%)

Game mechanic 25 0.0612 0.0283 (9.13%)

MPSGS 1 0.0204 -

The numbers between parentheses in the last column are the relative improvement.

All results reported above are the averages over 14700 problem instances. The data set was

generated with varying values for the parameters OS, NARLF, MAUF and σ2MAUF . The

performance of the best four methods is plotted over these parameters in figure 6.4. The

SSGS based PR’s are not reviewed as they are dominated by the MPSGS for all parameter

values. The trends over the parameters are comparable to those found in Browning and

Yassine (2010b), with one difference. The authors found that problems with a higher network

complexity result in lower APD inflation, which is opposite to the results presented here (cfr.

infra). The most probable cause for this is that their measure of complexity Cj is no good

predictor of complexity (cfr. section 4.2).

When reviewing network complexity, it is clear that more projects with a high or medium

OS result in a harder problem and a higher inflation of APD. It appears that the addition

of even only one network with high complexity has a big impact on the complexity of the

multi-project instance. The average OS (ŌS) can predict the network complexity of a multi-

project to a certain extent. However, it is not a sufficient measure, as for problems with

ŌS = 0.5 (i.e. HHMLL, HMMML, MMMMM), there are still big differences in performance

it cannot explain. A vector summing up all levels of complexity is not a good measure either.

It may be a better predictor for network complexity, but it lacks potential for generalization

or aggregation and is hard to interpret, certainly for larger multi-project instances. Further

research should be addressed at devising a better network complexity measure for multi-

56

Chapter 6. Computational results

projects. It should allow aggregation while not making full abstraction of the underlying

networks. The genetic algorithm performs the best for any complexity vector, but the game

comes very close for HMLLL. For the least complex vector (LLLLL), the random benchmark

reaches the same performance as the game.

The next parameter is NARLF. Multi-projects that are more front loaded show an increased

APD. This trend was discovered in Browning and Yassine (2010b), the authors give the

following explanation: “...the former [i.e. negative NARLF values] implies front-loading of the

resource constraints, which has implications for all downstream activities in the network...”.

For front-loaded problems (NARLF < 0), the performance of the game and the genetic

algorithm lie close together. When NARLF increases, the difference between the two methods

becomes larger. When NARLF > 0, the random benchmark approaches the game mechanic.

A higher MAUF results in a larger APD. This makes sense as resources become more con-

strained, causing more activities to be delayed beyond their earliest start time. The pattern

observed in figures 6.4a and 6.4b reoccurs: for the hardest problems (high MAUF), the per-

formance of the game approaches that of the genetic algorithm. For the easiest problems (low

MAUF), the random benchmark lies close to the game.

The analysis of the last parameter, σ2MAUF does not deliver additional insights. A higher

σ2MAUF results in less constrained resources and thus fewer delays. One could argue that the

combination of MAUF and σ2MAUF is not an appropriate indicator for resource contention

of a multi-project. As σ2MAUF is the variance from the maximum utilization, a higher value

always results in a lower average utilization (ceteris paribus). Hence, σ2MAUF is actually a

proxy for average utilization, which may confound conclusions based on it. An alternative

could be to define MAUF as the average utilization and σ2MAUF as the variance from the

mean. With this combination, a higher variance does not result in a lower average utilization.

Another option is to evaluate both the average and the maximum utilization. However, as

the variance includes information about the variation of utilization for all resources, it would

receive my preference. Another objection about the current measures is that they look at the

utilization per resource type, but not at the utilization per project. Taking this into account

may also lead to better measures for resource utilization in a multi-project context. Further

research could identify new measures for resource contention.

A critical remark from section 4.3 is repeated here. Regarding the impact of NARLF or the

57

Chapter 6. Computational results

(a) Impact of OS (b) Impact of NARLF

(c) Impact of MAUF (d) Impact of σ2
MAUF

Figure 6.4: The impact of problem parameters on the performance of scheduling algorithms

OS vector on the APD, the results in this section should be interpreted with care. Instances

from this data set with high NARLF values or multiple low complexity networks contain

lots of activities with a very low resource demand. This significantly reduces the hardness

of the scheduling problem, as these activities will be delayed less frequently due to their low

resource demand. However, this property is not causally related to a low complexity or a

high NARLF. Instead, it is caused by the generation procedure that encounters difficulties

to generate instances with a high NARLF because this parameter is not symmetrical. The

effect of the parameters is confounded with the intricacies of the generation procedure. As the

tuning procedures are based upon Browning and Yassine (2010a), I argue that the generated

58

Chapter 6. Computational results

instances in that paper and its conclusions are subject to the same effect. For more detail on

this matter, I refer to the appendix A. This again indicates that a thorough evaluation of the

existing multi-project parameters is necessary.

59

Chapter 7

Conclusion

Most previous research regarding PR-based heuristics for the RCMPSP uses the SSGS or

PSGS for the RCPSP combined with PR’s that sometimes include some project specific in-

formation. In this dissertation, an extension to the SSGS (called the MPSGS) was designed

specifically for the RCMPSP. It involves two decision points: one for the project and one

for the activity. This MPSGS combined with the decoupled priority rule MINSLK-SP out-

performed the SSGS with some of the best performing PR’s currently known, although its

implementation or computational efficiency are not that different from the SSGS. As SGS’s

are often used as building blocks for more complex solution methods, the MPSGS is a valuable

addition to the scheduling schemes for research in the multi-project context. It may improve

the effectiveness of algorithms that use it as base heuristic. Further research could be ad-

dressed towards developing a multi-project variant of the PSGS and towards the discovery of

new project and activity priority rules.

Agent based systems in multi-project scheduling literature often work in a deterministic way.

The multi-agent system introduced here models game mechanics into the negotiation pro-

cess, involving some degree of randomness. One could classify the resulting algorithm as

a multi-pass extension of the MPSGS. The game mechanism approaches the performance

of a genetic algorithm while being approximately 9 times as efficient in computation time.

When both methods get the same computation time, the APD of their solutions is almost

equivalent. Augmenting the decision making process of agents by adding extensions has not

shown a significant improvement. However, the basic game on its own already has a strong

performance. Further research could investigate the opportunity of applying game theory to

60

Chapter 7. Conclusion

further improve the decision making of agents.

The absence of a standard set of problem instances for the RCMPSP is a flaw in the current

multi-project literature. It makes it nearly impossible to compare the performance of different

solution methods as the underlying test sets are different. One multi-project generator exists,

but it has several shortcomings. To cover these weaknesses, a new multi-project generator

was introduced in this dissertation, building on existing concepts and generators. It was used

to generate a problem set with varying values over four problem parameters. The current

generation procedure and data set are not perfect yet. The network generation shows room

for improvement and the quality of the resource tuning algorithms should be investigated

further. However, future research should first be addressed at defining meaningful, unbiased

problem parameters for multi-projects. Next to NARLF and MAUF, it may be interesting

to investigate other possible resource related parameters that take into account the relations

between projects. Current network related parameters for multi-projects do not go beyond

the aggregation of the underlying projects. The impact of interaction between their network

complexities on the portfolio’s complexity may provide valuable insights.

61

Part IV

Annexes

62

Appendix A

Quality of resource tuning

procedures

The resource tuning procedures from Browning and Yassine (2010a) were implemented in

the multi-project generator of this dissertation. The authors do not provide any analysis

about the quality of these algorithms. This appendix will elaborate on the results of the

tuneNARLF-procedure (algorithm 5 in chapter 4), as this has the highest impact on the

resource demand of the activities in a problem instance. It can increase or decrease the rijk

of any non-dummy activity aijk in order to meet its NARLF target. However, if an activity

has only demand for one resource (Kij = 1) and the demand for this resource is equal to 1,

it cannot be decreased further. This avoids creating activities with no work content. These

activities will be called Lower Bound Activities (LBA), as their resource demand has reached

a lower bound. For every one of the 14700 multi-projects, the number of LBA’s were counted.

Figure A.1 shows the average count of LBA’s per instance (called oneCount) over the different

project parameters. The number of LBA’s increases for higher NARLF-values and for multi-

projects with more projects with a low complexity. The most extreme cases on average have

up to 50 LBA’s, which is 40% of the total activities of a multi-project (one instance consists

of 125 non-dummy activities). These instances can hardly be called realistic and should not

be part of a standard problem set.

The explanation for this pattern is as follows. NARLF is calculated based on CPmax, most

of the projects in the multi-project will have a CPj < CPmax. As all projects start at the

same time, most of them will be finished when the time approaches CPmax. This results in

63

Appendix A. Quality of resource tuning procedures

multi-projects being more front loaded, i.e. relatively more activities are active in the first

half of CPmax than in the second half (according to their critical path). Due to this property,

it is more probable that a multi-project (before any resource tuning) has a negative NARLF.

If all projects would have the same CP duration, the NARLF value would be closer to 0. In

general, the NARLF will also be more negative for projects with a lower complexity. As more

activities can be executed in parallel, their earliest start times will be earlier and the resource

unconstrained critical path schedule will be more front loaded than for projects with a high

complexity. This leads to the conclusion that multi-project instances in general and those

with low complexity in particular tend to have negative NARLF-values.

(a) (b)

(c) (d)

Figure A.1: The count of LBA’s per project parameter

64

Appendix A. Quality of resource tuning procedures

When a generator has to create instances with highly positive NARLF, the resource demand

of a lot of activities in the front half will have to be reduced to their lower bound. This is

exactly the pattern that occurs in figure A.1b. Figure A.1a shows that the count of LBA’s

is very high for multi-projects with lower complexities, indicating that it becomes harder to

generate instances successfully. However, this second observation is mainly true when both

OS is low and NARLF is high. This can be seen in figure A.2a. In general a multi-project of

a lower complexity has more LBA’s, but the effect becomes much stronger for NARLF > 0.

There is no big variance in the count of LBA’s over varying MAUF or σ2MAUF , indicating

that the generator encounters fewer difficulties in creating instances over these values.

(a) (b)

Figure A.2: Detailed analysis generated problem set

Next to creating a lot of LBA’s, the resource demand of activities in the second half will be

inflated out of proportion. These combined effects result in unequally distributed demand

profiles for activities. This is shown in figure A.2b: all activities per multi-project were ranked

in ascending order of resource demand and grouped in percentiles of 20%. The vertical axis

shows the percentage of the total work content of a multi-project that is occupied by a certain

percentile. For instance, at NARLF = −3, the resource demand of the 20% most resource

heavy activities (i.e. the 100-percentile) is around 40% of the TWK or the multi-project. As

NARLF increases, it is clear that the TWK is more and more attributable to the resource

intensive activities. At NARLF = 3, 60% of the activities only account for around 10% of

the total work content.

65

Appendix A. Quality of resource tuning procedures

It is clear that the generation procedure incurs major flaws for high NARLF values, resulting

in unrealistic problem instances. The question remains whether the cause for this is the pro-

cedure itself or the underlying parameter. I would argue the problem lies with the parameter

NARLF. In literature it is treated as a symmetrical parameter that can assume negative and

positive values without difficulty. Both Browning and Yassine (2010b) and Kurtulus and

Davis (1982) generate projects with (N)ARLF values in the range [-3,3]. However, I have

argued that it is more probable that multi-project instances have a negative than a positive

NARLF. The problems that tuneNARLF encounters for highly positive NARLF values are

a symptom of this property. Conclusions based on this parameter are thus also biased. Sec-

tion 6.4 states that problem instances with a higher NARLF or low complexity have a lower

increase in APD. It is now clear that this is due to the fact that a high amount of activities

with a very low resource demand are present in these problem instances, making the schedul-

ing process easier. The real effects of a back-loaded or a low complexity multi-project are

confounded by this effect and no conclusions can be made about it. Two options exist: (1)

NARLF remains used in research, but the effect of its asymmetrical distribution is taken into

account; or (2) a new resource loading parameter is designed that is more symmetrical.

66

Bibliography

Agnetis, A., Briand, C., Billaut, J.-C., and Šcha, P. (2015). Nash equilibria for the multi-

agent project scheduling problem with controllable processing times. Journal of Scheduling,

18(1):15–27.

Bock, D. B. and Patterson, J. H. (1990). A comparison of due date setting, resource as-

signment, and job preemption heuristics for the multiproject scheduling problem. Decision

Sciences, 21(2):387–402.

Browning, T. R. and Yassine, A. A. (2010a). A random generator of resource-constrained

multi-project network problems. Journal of scheduling, 13(2):143–161.

Browning, T. R. and Yassine, A. A. (2010b). Resource-constrained multi-project schedul-

ing: Priority rule performance revisited. International Journal of Production Economics,

126(2):212–228.

Confessore, G., Giordani, S., and Rismondo, S. (2007). A market-based multi-agent sys-

tem model for decentralized multi-project scheduling. Annals of Operations Research,

150(1):115–135.

Demeulemeester, E., Dodin, B., and Herroelen, W. (1993). A random activity network gen-

erator. Operations Research, 41(5):972–980.

Demeulemeester, E., Vanhoucke, M., and Herroelen, W. (2003). Rangen: A random network

generator for activity-on-the-node networks. Journal of scheduling, 6(1):17–38.

Dumond, J. (1992). In a multi-resource environment, how much is enough? THE INTER-

NATIONAL JOURNAL OF PRODUCTION RESEARCH, 30(2):395–410.

67

Bibliography

Dumond, J. and Mabert, V. A. (1988). Evaluating project scheduling and due date assignment

procedures: an experimental analysis. Management Science, 34(1):101–118.

Elmaghraby, S. E. (1977). Activity networks: Project planning and control by network models.

Wiley New York.

Gonçalves, J. F., Mendes, J. J., and Resende, M. G. (2008). A genetic algorithm for the

resource constrained multi-project scheduling problem. European Journal of Operational

Research, 189(3):1171–1190.

Homberger, J. (2007). A multi-agent system for the decentralized resource-constrained multi-

project scheduling problem. International Transactions in Operational Research, 14(6):565–

589.

Homberger, J. and Fink, A. (2017). Generic negotiation mechanisms with side payments–

design, analysis and application for decentralized resource-constrained multi-project

scheduling problems. European Journal of Operational Research.

Knotts, G., Dror, M., and Hartman, B. C. (2000). Agent-based project scheduling. Iie

Transactions, 32(5):387–401.

Kolisch, R. (1996a). Efficient priority rules for the resource-constrained project scheduling

problem. Journal of Operations Management, 14(3):179–192.

Kolisch, R. (1996b). Serial and parallel resource-constrained project scheduling methods

revisited: Theory and computation. European Journal of Operational Research, 90(2):320–

333.

Kolisch, R. and Meyer, K. (2006). Selection and scheduling of pharmaceutical research

projects. In Perspectives in Modern Project Scheduling, pages 321–344. Springer.

Kolisch, R., Schwindt, C., and Sprecher, A. (1998). Benchmark instances for project schedul-

ing problems, 197–212.

Kolisch, R., Sprecher, A., and Drexl, A. (1995). Characterization and generation of a

general class of resource-constrained project scheduling problems. Management science,

41(10):1693–1703.

68

Bibliography

Kumanan, S., Jose, G. J., and Raja, K. (2006). Multi-project scheduling using an heuristic

and a genetic algorithm. The International Journal of Advanced Manufacturing Technology,

31(3-4):360–366.

Kurtulus, I. (1985). Multiproject scheduling: Analysis of scheduling strategies under unequal

delay penalties. Journal of Operations Management, 5(3):291–307.

Kurtulus, I. and Davis, E. (1982). Multi-project scheduling: Categorization of heuristic rules

performance. Management Science, 28(2):161–172.

Lawrence, S. R. and Morton, T. E. (1993). Resource-constrained multi-project scheduling

with tardy costs: Comparing myopic, bottleneck, and resource pricing heuristics. European

Journal of Operational Research, 64(2):168–187.

Lee, Y.-H., Kumara, S. R., and Chatterjee, K. (2003). Multiagent based dynamic resource

scheduling for distributed multiple projects using a market mechanism. Journal of Intelli-

gent Manufacturing, 14(5):471–484.

Lova, A., Maroto, C., and Tormos, P. (2000). A multicriteria heuristic method to improve

resource allocation in multiproject scheduling. European Journal of Operational Research,

127(2):408–424.

Lova, A. and Tormos, P. (2001). Analysis of scheduling schemes and heuristic rules per-

formance in resource-constrained multiproject scheduling. Annals of Operations Research,

102(1-4):263–286.

Mastor, A. A. (1970). An experimental investigation and comparative evaluation of produc-

tion line balancing techniques. Management Science, 16(11):728–746.

Shtub, A., LeBlanc, L. J., and Cai, Z. (1996). Scheduling programs with repetitive projects:

a comparison of a simulated annealing, a genetic and a pair-wise swap algorithm. European

Journal of Operational Research, 88(1):124–138.

Tsubakitani, S. and Deckro, R. F. (1990). A heuristic for multi-project scheduling with limited

resources in the housing industry. European Journal of Operational Research, 49(1):80–91.

69

Bibliography

Vanhoucke, M., Coelho, J., Debels, D., Maenhout, B., and Tavares, L. V. (2008). An evalua-

tion of the adequacy of project network generators with systematically sampled networks.

European Journal of Operational Research, 187(2):511–524.

70

