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Abstract

’Development of a Brain Computer Interface for robotic hand in
the context of neuroscientific research about agency and body own-
ership’, Gil Lauwers, Electro-mechanical Engineering, Option Mechatronics-
Construction, 2016-2017

A Brain Computer Interface allows to use signals recorded from the brain to
directly control an external device. This recent technology opens up new oppor-
tunities for numerous fields. In particular, a Brain Computer Interface controlling
a robotic hand would help designing advanced paradigms to study the factors
influencing the perception of autonomy of patients receiving a neuroprosthesis.
Hence, the present work attempts to implement such a Brain Computer Interface
for neuroscientific research. The input signal is the electroencephalographic ac-
tivity recorded using a BioSemi ActiveTwo system. This signal is then processed
using BCILAB, a Matlab toolbox. The Filter Bank Common Spatial Pattern al-
gorithm was selected as feature extraction method. Feature vectors are classified
using Linear Discriminant Analysis. The implemented BCI was tested in 3 steps.
First, it was designed using publicly available data. Secondly, it was tested on
a small sample of 6 participants. Finally, a pilot experiment was conducted in
collaboration with Dr. Caspar from the Consciousness, Cognition & Computa-
tion Group from the Université Libre de Bruxelles. Obtained results were very
promising and already allowed to validate 2 hypothesis that will be useful for the
future neuroscientific experiments.

Keywords: Brain Computer Interface, Event-Related Desynchronization,
Common Spatial Pattern, Linear Discriminant Analysis, BCILAB, Sense of agency
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Chapter 1

Introduction

This chapter introduces the context in the field of Brain Computer Interface.
First, the motivation behind the present work is detailed. Secondly, a short
historical background is given.

1.1 Motivation
The goal of this thesis is to provide a Brain Computer Interface (BCI) to the
Consciousness, Cognition & Computation Group (Co3) from the Université Libre
de Bruxelles. One of the research topics of this research center is the study of
free will, voluntary action and sense of agency (Caspar, Cleeremans, & Haggard,
2015; Caspar, Christensen, Cleeremans, & Haggard, 2016). The present work,
promoted by the Robotics & MultiBody Mechanics Research Group (RMM) from
the Vrije Universiteit van Brussel, mostly concerns the latter.

The sense of agency relates to the fact that we, as human, recognize that
we are the authors of our voluntary actions, and of their consequences (Caspar
et al., 2015). There are numerous studies on the various factors influencing this
phenomenon. The context in which the Brain Computer Interface is implemented
concerns the study of how agency is involved in the control of an external device.

A well-known paradigm in this research field is the Rubber Hand Illusion, in
which the participant feels like a fake hand becomes his own (Botvinick, Cohen,
et al., 1998). This feeling of body ownership happens when the same stimulation
is applied to both the visible rubber hand and the hidden real hand of the subject.
In a previous study, (Caspar et al., 2014) introduced a robotic hand controlled by
a glove with sensors, which allowed to develop active paradigms for the Rubber
Hand Illusion. The present work aims at designing and implementing a Brain
Computer Interface in order to control the artificial hand directly with one’s
brain. This would allow to develop new paradigms and answer new questions
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regarding the mechanisms involved in the sense of agency.
These mechanisms underlying the integration of an external object into one’s

body scheme are of high interest in the neuroscientific community but are also
essential in the field of prosthesis. Indeed, having a better understanding of these
phenomenon could help engineers design better adapted prosthesis and improve
the quality of life of their users.

1.2 History
Brain Computer Interface is a rather new research field. The idea of using
brain signals as an input command for communication and control is born with
the discovery of the electroencephalographic (EEG) activity by Hans Berger in
1929 (Berger, 1929). However, very few researches were conducted on BCI’s
until the end of the 20th century. At that moment, the number of active BCI
research groups grew from 6 in 1995 to more than 20 in 1999. This led to
the organization of the first international meeting, which took place in 1999
and brought together 24 different research groups from United States, Canada,
Great Britain, Germany, Austria, and Italy (Wolpaw et al., 2000). Since then, 5
other international meetings were held, with each time an increasing number of
participants (see figure 1.1).
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Figure 1.1: The number of participants has increased a lot since the first BCI International
Meeting, as it can be seen from the data coming from the website of BCI society, which
is organising these meetings.

In parallel with these meetings, 4 BCI competitions were organised in order
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to compare the algorithms developed by the attending research groups. During
these competitions, research labs provide data sets with the details about the
acquisition procedure and an objective to reach. Results obtained by the par-
ticipants can then be compared and provide interesting information about the
efficiency of different methods.

Both these international meetings and competitions give a valuable overview
of the evolution of the most important issues encountered in this recent but fast
evolving field. Concerning the use of BCI’s in the context of neuroscientific re-
search, very few studies incorporate this new technology in their research about
the sense of agency.

This chapter summarized first the motivation behind this master thesis (see
section 1.1). The focus on the neurosciences is very important since it will dic-
tate the design choices that will be made in chapter 3. The historical context
given in section 1.2 described the BCI meetings and competitions that have been
organized for almost 20 years. The meetings allow to see the evolution of most
challenges in the field of BCI. Hence, it will be often referred to them in the
State of the Art (see chapter 2). The data of the BCI competitions are publicly
available. Hence, the BCI that will be implemented will be applied first on these
data to compare its performance with the BCI’s of the competititors (see chapter
4).
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Chapter 2

State of the Art

This chapter summarizes the State of the Art in the field of Brain Computer
Interface (BCI). First, the definition of a BCI is given and its general working
principle is explained. After that, the different parts constituting a BCI are
detailed. Finally, existing hardware and software tools are described.

2.1 Definition and working principle
A definition of a Brain Computer Interface was given in (Wolpaw et al., 2000):"A
brain-computer interface is a communication system that does not depend on the
brain’s normal output pathways of peripheral nerves and muscles". Consequently,
electrical potentials arising from eye movements or jaw clenching are considered
as artifacts and must be avoided. The general working principle was defined as
follows: "Like any communication and control system, a BCI has an input, an
output, and a translation algorithm that converts the former to the latter".

In more recent work, the working principle of BCI’s is more often divided as
follows (see figure 2.1):

1. Acquisition

2. Preprocessing or processing

3. Feature extraction

4. Translation or classification

5. Output and feedback

The input as defined in the citation from (Wolpaw et al., 2000) groups to-
gether the acquisition, the processing and the feature extraction. The translation
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between input and output is performed through the classifier. In real application,
the output of the BCI often serves as a feedback. In neuroscientific research,
various types of visual or auditory feedback are used.

Acquisition
Feature 

extraction
Processing Classifier

Feedback

Output

Figure 2.1: The acquisition consists in acquiring continuous signals from the brain and
digitizing them. Those signals are then filtered both temporally and spatially during the
processing phase. Artifacts are also removed during this step. After that, particular
features of the signals are extracted in order to provide an input vector to the classifier.
The output depends on the application and can be returned to the user under various
form of feedback.

2.2 Building a Brain Computer Interface

2.2.1 Acquisition
The acquisition is the first building block of a Brain Computer Interface. The
brain state and activity is reflected in a wide variety of measurable signals. These
potential input signals are reviewed in the part of this section. As it will be
demonstrated, the electroencephalography (EEG) is the most adapted method
for this thesis. Consequently, the second part of this section is focused on this
category of signal only and details two different types of electrodes that can be
used to record it.

Potential input signals

The brain signals that are the most commonly used are the electrical currents
that result from the firing of neurons. These electrical signals can be measured
directly or indirectly. The direct or invasive method consists of electrodes measur-
ing individual cortical neurons, therefore implanted in the brain. The indirect or
noninvasive method consist of scalp electrodes measuring the electroencephalo-
graphic (EEG) activity . Although, the first BCI’s were using both invasive or
noninvasive method (Wolpaw et al., 2000), the surgery needed for invasive meth-
ods makes them clearly unsuitable for this thesis.

Among the noninvasive methods, some are based on nonelectrical signals.
Magnetic fields can be recorded using magnetoencephalographic (MEG) activ-
ity. Changes in blood pressure and in metabolism can be measured through
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functional magnetic resonance imaging (fMRI), positron emission tomography
(PET) or infrared imaging. However, the costs and physical dimensions of these
acquisition methods are prohibitive and clearly make them unsuitable for the
present work (Vaughan et al., 2003). Moreover, metabolic changes involve long
time-constants, which is a non negligible drawback for real time BCI’s (Cincotti
et al., 2006).

Consequently, most BCI’s are based on EEG and so is the one developed in
this thesis.

Wet versus dry electrodes

Most EEG recording devices are using wet electrodes requiring the application of
an electrolyte gel under each electrode in order to increase electrical conduction,
what leads to a non negligible preparation time and can be inconvenient for the
subject under test, which has to be patient before the recording and has to wash
his hair after to remove the sticky gel. The use of dry electrodes can considerably
reduce the setup time and improve the trial conditions for the subject (Vaughan
& Wolpaw, 2011). In (Grozea, Voinescu, & Fazli, 2011), the use of self developed
dry electrodes gave results similar to the classic gel-based electrodes. However,
as stated in (Lopez-Gordo, Sanchez-Morillo, & Valle, 2014), which reviewed a
wide variety of dry electrodes, there is a need for homogenization of the methods
used for characterization and evaluation of performance of the different types of
electrodes to be able to conveniently compare them and draw conclusion about
their efficiency.

2.2.2 Processing
The second building block of a Brain Computer Interface is the processing. The
goal of this processing step is to maximize the signal-to-noise ratio (Wolpaw et
al., 2000). It is then essential to first describe the signal and the possible sources
of noise. This is done in the first part of this section. After that, various types
of filtering methods aiming at enhancing the former with respect to the latter
are detailed.

Signal and sources of noise

Signal A typical EEG signal, measured from the scalp, has an amplitude of
about 10µV to 100µV and a frequency in the range of 1Hz to about 100Hz
(Subha, Joseph, Acharya, & Lim, 2010). In general, the EEG frequencies that
are studied are below 50Hz. This spectrum is divided in several frequency bands
that are related to certain mental states and brain activities. The limits between
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these frequency bands vary from one paper to the other. In (Buzsaki, 2006),
they are defined as follows:

• δ band: 0.5 − 4Hz

• θ band: 4 − 8Hz

• α band: 8 − 12Hz

• β band: 12 − 30Hz

• γ band: > 30Hz

Next to this temporal division, the spatial distribution also plays a fundamen-
tal role. The areas of the brain involved in the process of moving one’s hand
are the motor cortex and the somatosensory cortex (see figure 2.2a). In the
10-20 system used for the placement of the electrodes, these areas correspond
to electrodes C3, Cz and C4 (see figure 2.2b).

(a) Areas of the brain involved in the
process of moving one’s hand.

Cz T4C4C3T3

Pz

Fz

T6

O2

T5

F7 F8

O1

Fp1 Fp2

F4F3

P3 P4

A1 A2

INION

NASION

(b) 10-20 system used for the place-
ment of the electrodes.

Figure 2.2: The area of the brain involved in the process of moving one’s hand are the
motor cortex and the somatosensory cortex. The EEG activity of these areas is measured
by electrodes C3, Cz and C4.

When located at these motor area, the α band is called Rolandic α, central
α, somatosensory α, or more frequently: the µ band. This µ rhythm is a motor-
relaxation-associated rhythm whose amplitude is directly impacted by voluntary
movement (Buzsaki, 2006). These changes in the amplitude of a particular
frequency band are called Event-Related Desynchronization and Synchronization
(ERD/ERS). ERD/ERS are decreases or increases of power in given frequency
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bands, resulting from a decrease or an increase of the synchrony of the underlying
neurons (Pfurtscheller & Da Silva, 1999).

ERD/ERS can be observed in several frequency bands and reflect the activity
in the concerned frequency band. The µ band being a motor-associated rhythm,
Event-Related Desynchronization and Synchronization in this band reflect the
motor activity. It has been shown that ERD in the µ band are observed not only
when movements occur but also when movement are imagined or are observed
(see figure 2.3). Neurons involved in this process are called mirror neurons
(Pineda, Allison, & Vankov, 2000).

Figure 2.3: The power are obtained for 120s of recordings for each of the four classes. The
decrease of power in the µ band (8−12Hz) resulting from the Event-Related Desynchro-
nization (ERD) is observable when the movements occur, are observed or are imagined.
The difference between these 3 classes are reflected in the amplitude of the decrease of
power (Pineda et al., 2000).

Sources of noise Noise in BCI applications can have both neuronal and non-
neuronal sources. Indeed, any brain feature different from the one that is chosen
as control signal is considered as noise and must thus be minimized. Nonneuronal
sources of noise can be nonphysiological, such as the 50Hz from the grid, or
physiological, such as electrical signals caused by muscular activity. Nonneuronal
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sources of noise are often called artifacts. Similarly to neuronal source of noise,
they can not interfere with the signal controlling the Brain Computer Interface.
The most important sources of artifacts are the eye movements and the muscular
activity (Fatourechi, Bashashati, Ward, & Birch, 2007).

Eye artifacts, measured by electrooculography (EOG), have a high amplitude
and a frequency content mostly below 4Hz. They are maximum over the ante-
rior head regions. Figures 2.4a and 2.4b show examples of data recorded with
and without eye artifacts. Figures 2.4c and 2.4d show the frequency content
associated to these two conditions. The data used for these figures come from
the data set IIa of the BCI competition IV (Tangermann et al., 2012).
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(a) EEG signal recorded eyes open.
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(c) Spectrum of EEG recorded eyes
open at electrodes.
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(d) Spectrum of EEG recorded during
eye movements.

Figure 2.4: These signals are recorded from electrodes Fz, Cz and Pz. The electrode Cz is
central, electrode Fz is positioned more upfront while electrode Pz is more backfront (see
figure 2.2b for the exact position). Slow signals of high amplitudes are observable during
eye movements. The amplitude of these signals is bigger at the most frontal electrode Fz.
The power in the low frequencies is considerably increased in presence of eye artifacts.

Muscular artifacts, measured by electromyography (EMG), have also a high
amplitude. However, they are maximum at higher frequencies, typically above
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30Hz. Typical muscular artifacts were extracted from the data of data set IIa of
the BCI competition IV and are shown in figure 2.5.
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Figure 2.5: Muscular artifacts are reflected in high frequency signals of high amplitude.

Next to these physiological artifacts, non-physiological artifacts must also be
dealt with. These are most of the time easier to eliminate as their frequency
range is more limited. For example, the 50Hz line noise can be filtered out using
a notch filter or using a battery supplied acquisition device.

Processing method

As explained before, the processing step aims at improving the signal-to-noise
ratio. Now that the signal and the sources of noise have been described, adapted
methods must be implemented to reduce the noise without altering the signal.
First, different methods of handling artifacts will be presented. Second, classical
signal processing tools such as rereferencing, resampling and filtering will be
reviewed.

Artifacts There are different ways of handling artifacts. In (Fatourechi et al.,
2007), these are grouped in the 3 following classes:

1. Artifact avoidance(Fatourechi et al., 2007): Artifact avoidance consists
in asking the participants to avoid eye movements and muscle contractions.
This method is the easiest to implement as it only requires the experimenter
to give proper instructions to the participants. However, it is most often
only possible to limit artifacts to some extend and not completely avoid
them as many are involuntary.
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2. Artifact rejection(Fatourechi et al., 2007): Artifact rejection consists in
rejecting the trials in which artifacts have occurred. For offline analysis of
the data, the affected trials can be identified by visual inspection. This re-
quires human labor but allows to avoid additional computational resources.
However, as soon as the Brain Computer Interface is tested online, auto-
matic rejection methods have to be used because manual rejection cannot
be performed in real time. Automatic rejection can be implemented by
discarding the signal whenever a particular characteristics of the signal ex-
ceeds a certain threshold. Artifact rejection is not very computationally
demanding but has the disadvantage to lead to a loss of a non negligible
portion of the signal. For real-time application, this means that the system
is not controllable during these periods.

3. Artifact removal (Fatourechi et al., 2007): Artifact removal consists in
removing the artifacts from the signal without altering its neurological con-
tent. Artifact removal methods are more computationally demanding but
allow to control the BCI without interruption. When the frequency range
of the artifacts do not overlap the frequency range of the useful signal, lin-
ear filtering is the easiest and most suitable method. For BCI driven by the
desynchronization of the µ and β bands (ranging approximately from 8Hz
to 30Hz), the low frequency eye artifacts can be highpass filtered while
the high frequency EMG artifacts can be lowpass filtered. This method can
not be used with BCI’s based on the slow potentials since their frequency
content is superimposed to the one of the eye artifacts.
Linear combination and regression allows to solve this problem. This
method requires the use of external electrodes. It is therefore most suitable
for eye artifacts where EOG electrodes can be placed around the eyes then
for EMG artifacts that can come from any facial muscles. The principle of
linear combination and regression is to remove a fraction of the EOG signal
from the contaminated EEG signal to obtained an EEG signal free from
eyes artifacts. One limitation of that method is that the EOG electrodes
are also contaminated with the EEG signal so that a part of the signal is
lost when the EOG signal is subtracted.
Finally, statistical methods such as Independent Components Analysis (ICA)
or Principal Components Analysis (PCA) try to mathematically decompose
the signal into a set of components, some of them being related to phys-
ical phenomena. These methods do not require any additionnal external
electrodes but often require visual inspection to identify the components
related to artifacts. Similar to the previous method, ICA and PCA have
mostly been used for identifying eye artifacts rather than muscular artifacts.
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A complete review of the literature concerning artifacts in BCI systems can
be found in (Fatourechi et al., 2007). In their review, they observed that:

1. many papers do not report about handling artifacts

2. manual rejection is the most used method

3. only few studies perform automatic rejection or removal of artifacts.

In the last BCI competition (Tangermann et al., 2012), datasets IIa and
IIb were dealing with motor imagery contaminated with eye artifacts. Three
EOG electrodes were provided in both datasets. For both datasets, the winning
algorithm used linear filtering to handle the artifacts.

Signal processing tools This section reviews the principal methods used in
signal processing in the BCI field.

• Rerefencing:
EEG acquisition devices record the signals with respect to a given reference.
(Hagemann, Naumann, & Thayer, 2001) stated that the use of different
referencing methods impacts the results of the study. The quality of a
measured signal is function of the activity of the electrode of interest and
of the reference. The electrical signal at the electrode of interest is the
signal while the activity at the reference electrode is the noise. There are
three main referencing methods (Al-ani & Trad, 2010).

1. Common reference: this method uses one common reference for
all electrodes. The position of this reference should be situated at a
large distance from all electrodes. Using one of the EEG electrode as
reference, such as the central Cz electrode as in the Common Vertex
Reference, is discouraged as this reference also contains part of the
signal. A very common method is to use as reference the average
between two electrodes situated on the earlobes or on the mastoids.
This position is situated at a larger distance from the electrodes and
contains thus less signal. The use of two electrodes as a symmetrical
reference avoids biasing recordings toward activity in one hemisphere.

2. Average Reference: this method consists in using the average of
all electrodes as reference. This requires a high number of electrodes
and would ideally require recordings from all around the head.

3. Current Source Density: the method of Current Source Density is
based on the idea that currents are reference-free. The method con-
sists in estimating these currents from the measured voltages. Once
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these reference-free currents are computed, associated source voltages
are derived from them, independently of any reference (Hjorth, 1975).
This method, although based on an interesting physical principle, suf-
fers from practical limitations such as for example the electrodes that
must be situated in a plane at equal distances from each others.

Note that the signal do not especially have to be recorded with respect to
the chosen reference. It can be recorded with respect to another reference
and be rereferenced during the processing.

• Temporal filtering:
Aside from the continuous filtering done in hardware by the acquisition
device, the signal is mostly processed in software using digital filtering
techniques. There are two main types of digital filters used in the field of
BCI and more generally in the biomedical sector (Tompkins, 1993).

1. Finite Impulse Response (FIR) Filter: FIR filters are not recur-
sive, which means that their output only depends on the present and
past inputs without any feedback. The main advantage of this non
recursive filters is that they have no other poles than the ones in zero
and are thus inherently stable. An other important feature of FIR
filter is that it is easy to implement with a phase response propor-
tional to the frequency. This kind of filters are called linear phase
filter and are of high interest in the biomedical fields as they allow
to keep the distortion of the data very low, which is very important
when dealing with pattern recognition. The main disadvantage with
respect to the Infinite Impulse Response is that the attenuation out-
side de band-pass is smaller. To counteract this drawback, FIR are
often of much higher order, and are therefore more computationally
demanding (Tompkins, 1993).

2. Infinite Impulse Response (IIR) Filter: The output of an Infinite
Impulse Response filter depends on the present and past inputs but
also on the past outputs. In this case, problems of stability can
occur. Moreover, IIR filters do not have a linear phase response.
Their main advantage is that the rolloff can be sharper than for FIR
filters (Tompkins, 1993).

• Spatial filtering: Next to the temporal behavior of the signal, its spatial
distribution may also require filtering techniques in order to enhance the
signal of interest. The simplest spatial filtering consists in selecting the
electrodes based on a prior knowledge of the signal. In certain application,
it is possible to select the electrodes based on the signal itself through
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the Common Spatial Pattern method (Müller-Gerking, Pfurtscheller,
& Flyvbjerg, 1999). Altough Common Spatial Pattern can be used as a
spatial filter only, its use is most of the time coupled with the generation
of the input vector of the classifier. Therefore, Common Spatial Pattern
will be described extensively in the section 2.2.3 about feature extraction.
Apart from the selection of the electrodes, their also exist methods that
aim at minimizing the volume conduction effect that has as consequence
that electrodes do not only record the underlying neurons but also the elec-
tric activity around neighbor electrodes. This is the case of the Surface
Laplacian. Decreasing the volume conduction effect improves the spatial
resolution of the signal. The local Surface Laplacian consists in substract-
ing from each electrode the signal of the adjacent electrodes. This acts as
a high-pass spatial filter (Al-ani & Trad, 2010).

2.2.3 Feature extraction
The third building block of a BCI is the feature extraction. This step aims at
providing a vector of features to the classifier. Various feature extractions meth-
ods can be used. However, when dealing with brain rhythms, one method has
emerged and proved its efficiency: Common Spatial Pattern (CSP). Conse-
quently, this chapter describes in detail this feature extraction method.

The use of Common Spatial Pattern (CSP) in BCI context was suggested for
the first time in (Müller-Gerking et al., 1999). The advance of CSP on other
processing methods can be demonstrated by looking at its performances in the
BCI competitions starting from the third one where in all but one case where
oscillatory features were available, the winning method used CSP or variants of
CSP (Blankertz et al., 2006).

Common Spatial Pattern computes weighting coefficients for each electrodes
in a way that maximizes the difference between two classes (Müller-Gerking et
al., 1999). These coefficients are directly derived from the data without any
prior knowledge of neurological phenomena. However, it has been shown that the
computed coefficients reflect the known Event-Related Desynchronization (ERD)
described in section 2.2.2 . A spatial pattern, as described in (Müller-Gerking et
al., 1999), is a sample containing the amplitudes of the signal at each electrode at
a particular time. A set of patterns contains thus the amplitudes of the signal at
each electrodes for several samples. Two different sets of patterns are obtained by
concatenating the epochs corresponding to the two classes. The CSP algorithm
takes as input these two sets of patterns and computes the directions in the
pattern space that discriminate the best the two classes.
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Common Spatial Pattern is illustrated in figure 2.6. The signal is recorded
from the two electrodes X1 and X2. A pattern contains thus the amplitude
of the signal at these two electrodes at a particular time and can be plotted
as a single point in the 2D pattern space. Plotting several patterns leads thus
to the point cloud on the left-hand side of figure 2.6. Red crosses correspond
to the set of patterns associated to one class while blue circles corresponds to
the set of patterns associated to the other class. The directions computed by
the algorithm are shown in dashed lines. The coordinates of each pattern along
the red direction will be really close to zero for the blue class and more widely
spread for the red class. This coordinate is the coordinate S2 on the right-hand
side of figure 2.6. Coordinate S1 corresponds to the coordinates of the patterns
along the blue direction. The directions, being in the pattern space, can be
expressed as linear combinations of the unit vectors of the space. As these unit
vectors are given by each electrode, the directions are linear combination of the
electrodes and the coefficients constitute the weighting coefficients applied on
each electrode. In the example of figure 2.6, the red direction will have a bigger
weighting coefficient for electrode X1 than for electrode X2 and inversely for the
blue direction.

The mathematical development can be found in (Müller-Gerking et al., 1999).
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Figure 2.6: The left-hand side figure shows raw samples of data measured at two electrodes
X1 and X2 for two different classes. The CSP algorithm computes the directions (shown
in dashed lines) that minimize the variance of one class while maximizing the variance
of the other class. The right-hand side figure shows the point cloud obtained after CSP
filtering. S1 and S2 are the coordinates of the points taken along the blue direction
and the red one respectively. The directions computed in this pattern space are linear
combinations of the electrodes, which gives the weighting coefficients applied to each
electrodes. In this example, the red direction will have a bigger weighting coefficient for
electrode X1 than for electrode X2 and inversely for the blue direction (Blankertz et al.,
2008).
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After projection onto S1 and S2, the variance along the first dimension is
maximal for one class and minimal for the other and reversely along the second
direction. These variances along the computed directions are chosen as the fea-
tures to be extracted. Doing so, recordings from a possibly very high number of
electrodes are reduced to a low dimensional vector containing variances of the
signal along the pairs of directions. The number of pairs of directions can theo-
retically be chosen equal to maximum half the number of electrodes. However,
only a few pairs are typically sufficient for the discriminative task (Müller-Gerking
et al., 1999). The dimensionality of the signal is thus considerably reduced.

As it was already mentioned, the CSP method reflect the changes in brain
rhythms. This is illustrated in figure 2.7. This figure shows the first and second
most discriminating patterns for the distinction of left finger movement from
right finger movement obtained after bandpass filtering of the signal between
8 and 30Hz. The most discriminating pattern for the movement of left finger
shows higher amplitudes around electrode C3 than around electrode C4, which
is in agreement with the desynchronization happening in the opposite part of the
motor cortex. For right finger movement, the reverse phenomenon is observed.

Figure 2.7: The patterns computed by the CSP feature extraction method reflect the
changes in µ rhythm that happen during motor imagery (Müller-Gerking et al., 1999).

One advantage of CSP is that the weighting of the electrodes is done based on
the signal itself. Consequently, if the position of the electrodes is not exactly the
theoretical one, the algorithm will compute the weighting coefficients accordingly
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without any loss of performance. Moreover, as the coefficients are computed
based on the variance of the signal, they can theoretically enhance any possible
neurological phenomena causing any variance in the signal. The consequent
drawback is that artifacts can also be amplified if they are not properly filtered.

Once the coefficients are computed, they are applied to incoming data by
simple scalar products. Hence, the method is not computationally demanding
and is well suited for online data processing (Müller-Gerking et al., 1999).

The success of CSP-based methods had a promoting effect such that numer-
ous variants of CSP analysis were developed as the Spectrally weighted Common
Spatial Pattern (SpecCSP) (Tomioka et al., 2006) or the Filter Bank Common
Spatial Pattern (FBCSP) (Ang, Chin, Zhang, & Guan, 2008) that add frequency
features to the algorithm.

2.2.4 Classifier
After the feature extraction, generated vectors of features must be classified.
This section summarizes the State of the Art of classifiers used in the BCI field.

There exist numerous types of classification algorithms. (Lotte, Congedo,
Lécuyer, & Lamarche, 2007) provides an overview of the different classifiers
used in EEG-based BCI research and describes their main properties.They can
be grouped in five classes of algorithms which are described in the first part of
this section. In the second part, it will be demonstrated that a simple linear
classifier such as Linear Discriminant Analysis is particularly well suited for the
classification of the vector generated by the Common Spatial Pattern method.

Classes of classifiers

Linear classifiers Linear classifiers are the most popular algorithms in the field
of BCI. Their low complexity makes them less sensitive to small variations of
the training set, which makes them more stable. They are only able to classify
single feature vector, which means that they can not handle temporal infor-
mation. Classifiers without temporal information are called static classifier. The
most known linear classifiers are Linear Discriminant Analysis (LDA) and Support
Vector Machine (SVM) (Lotte et al., 2007).

Neural Networks (NN) Neural Networks are the second most used classifiers
in BCI applications. The main difference with the previous type of classifiers
is that their structure allows them to perform nonlinear classification. Their
higher complexity makes them unstable, which means that small changes in the
training set can results in non negligible losses of performance. This complexity

17



also allows some NN to handle sequences of feature vectors rather than only one,
which allows to add temporal information to the classification. These classifiers
are said to be dynamic. The most widely used Neural Network in the BCI field
is the MultiLayer Perceptron (MLP) (Lotte et al., 2007).

Nonlinear Bayesian classifiers Nonlinear Bayesian classifiers also perform
nonlinear classification. The main difference with the previous classes of clas-
sifiers is that they are generative. Generative classifiers classify feature vec-
tors by computing the likelyhood of each class and selecting the class with the
highest probability. Previous classifiers, which are dicriminative classifiers, learn
the way of discriminating classes and classify feature vectors directly. Genera-
tive classifiers allow to reject uncertain data in a more efficient way. The most
known Bayesian classifiers are the Bayes quadratic and the Hidden Markov Model
(HMM) (Lotte et al., 2007).

Linear Discriminant Analysis

The feature extraction method associated with the CSP algorithm produces low
dimension normal distributed vectors of features that can be classified using
simple linear classifier. Linear Discriminant Analysis (LDA), also called Fisher’s
LDA, is used to separate different classes, assuming normal distribution of the
data and equal covariance matrix for both classes, which is obtained by taking
the logarithmic value of the feature vectors (Müller-Gerking et al., 1999). For
a two-class problem, only one hyperplane is needed, and the translation of the
feature vector is given by the side of the hyperplane on which this vector is
(figure 2.8). This separating hyperplane is obtained by seeking the projection
that maximizes the distance between the two classes means and minimizes the
interclasse variance.
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Figure 2.8: LDA consists in finding a hyperplane that maximizes the distance between the
classes means and minimizes the interclasse variance. (Blankertz et al., 2011)
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LDA has low computational costs, is simple to use, very robust and provides
good results in most of the cases (Lotte et al., 2007). It gives bad results with
nonlinear data.

Evaluation method

There are numerous methods that can be used to evaluate the performance of
a classifier. (Schlogl, Kronegg, Huggins, & Mason, 2007) reviewed 19 different
criteria. The most common one is the accuracy which is equal to the ratio of
correct predictions divided by the total number of predictions. For a two-class
problem, one defines true positives, true negatives, false positives and false neg-
atives according to the correct or incorrect occurrence or absence of an action.
When controlling a robotic hand, the incorrect occurrence of movement, or false
positive, is very critical and must be avoided as much as possible.

Classifiers are most of the time evaluated by cross-validation. This consists
in dividing the data set in several segments, train the classifier based on some
of the segments and test in on the remaining segments. This is repeated several
times using different segments for the training and the testing. The average
accuracy is then computed. Because the training and the evaluation are done
on the same data set, accuracy obtained by cross-validation is sometimes called
offline accuracy. Classifiers should always be tested on a different data set to be
validated. This is called online accuracy.

2.2.5 Feedback
BCI training have evolved from operant conditioning, where the subject had to
learn producing the right brain patterns to control a predefined classifier, to ma-
chine learning where the classifier learns from the subject. Consequently, recent
studies in the field of BCI mostly focus on improving the signal processing meth-
ods, the feature extraction and the classification, neglecting the importance of
human learning mechanisms (Lotte, 2012).

Current approaches mostly provide a simple visual feedback under the form
of a moving bar. There are many concerns about this kind of feedback, the most
important being that it indicates if the user is performing well or not but do
not give him any explanation on how he could improve. Alternative approaches
exist and are partially reviewed in (Lotte & Jeunet, 2015). For example, Showing
the user a real-time topographic image of his brain activation could help him in
activating the right cortical zone in motor imagery-based BCI for example. Other
approaches investigate the influence of biased feedback such as only providing a
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feedback when the subject is doing well, or artificially increase the performance
of the BCI to make the subject believe he is improving.

For BCI used in motor applications, having a feedback related to the motor
task performed may have a promoting effect. In (Braun, Emkes, Thorne, &
Debener, 2016), it was shown that the use of a feedback signal that closely
resembles the mental task performed may help to embody the feedback signal
into the one’s body scheme and improve neurofeedback task-performance.

2.3 Existing tools

2.3.1 Hardware
There are numerous equipment available on the market for measuring the EEG
activity. Some are used for medical purposes, others for research. More recently,
open source headsets have been developed for personal use. This thesis being
done in collaboration with the Consciousness, Cognition & Computation Group
(Co3) from the Université Libre de Bruxelles, a BioSemi ActiveTwo was made
available for the present work. The specifications of this device can be found in
appendix A. Two other general purpose headsets were available too: the Emotiv
EPOC and the OpenBCI (Durka et al., 2012). Figure 2.9 shows the three different
devices.

(a) BioSemi (b) Emotiv EPOC (c) OpenBCI

Figure 2.9: Existing hardware

Table 2.1 shows a comparison of the specifications of each acquisition system.
The Emotiv EPOC and the OpenBCI have the advantage of being wireless and
have a reduced setup time due to their lower number of electrodes. The OpenBCI
presents the lowest setup time thanks to its dry electrodes. The absence of
electrodes around the motor cortex area is a critical drawbacks for the Emotiv
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EPOC. Although the OpenBCI allows having electrodes around the motor cortex
area, it was demonstrated in (Suryotrisongko & Samopa, 2015) that it did not
offer an optimum placement for motor imagery tasks. The BioSemi presents a
longer setup time but its 64 electrodes offer a much higher spatial resolution.
The higher sampling rate and the higher resolution are also much better than
the one of the two other headsets. The higher capability of the BioSemi with
respect to the Emotiv EPOC is demonstrated in (Nijboer, van de Laar, Gerritsen,
Nijholt, & Poel, 2015).

BioSemi ActiveTwo Emotiv EPOC OpenBCI
Number of electrodes 64 + 8 14 8
Electrodes on motor cortex yes no yes
Type of electrodes wet electrodes wet electrodes dry electrodes
Sampling rate up to 16, 384Hz up to 256Hz 250Hz

Resolution 24 bits
LSB = 31.95nV

14 bits
LSB = 0.51µV 24 bits

Supply battery battery battery
Connectivity USB2 wireless wireless
Cost > 30000e 799$ ∼ 850$

Table 2.1: The BioSemi ActiveTwo available thanks to the Consciousness, Cognition &
Computation Group (Co3) from the Université Libre de Bruxelles has far better perfor-
mances.

Figure 2.10: 5 servo-motors allow to bend the 3D-printed fingers independently in a very
fast way (De Beir et al., 2014)

Next to the acquisition device providing the input of the BCI, the hardware
to which the output is sent is also important. As explained in section 2.2.5, most
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research are sending the output to a visual display. Regarding the neuroscientific
context behind this thesis, it was important to have an output that could be
identified as part of the subject’s body. In (Alimardani, Nishio, & Ishiguro,
2016), this is achieved by reconstructing the hand of the subject in a virtual
environment. For the present work, the robotic hand designed in (De Beir et
al., 2014) was used. This artificial hand was designed specifically for the Rubber
Hand Illusion (see section 1.1). 5 servo-motors allow to bend the 3D-printed
fingers independently in a very fast way. The hand is controlled by an arduino
that can receive commands through a serial communication. This robotic hand
is shown in figure 2.10

2.3.2 Software
The number of available software for BCI research is huge. Here are a non
exhaustive list containing the most important ones:

• EEGLAB and BCILAB(Delorme & Makeig, 2004; Kothe & Makeig, 2013)

• FieldTrip (Oostenveld, Fries, Maris, & Schoffelen, 2011)

• OpenVibe (Renard et al., 2010)

• BioSig (Schlögl & Brunner, 2008)

OpenVibe is a very interesting software for newcomers in the field of BCI
as it offers the possibility to design BCI’s by dragging and dropping blocks in a
visual scenario designer. It also has the advantage of working independently of
any costly software. However, the number of implemented blocks is limited and
implementing one’s own blocks requires more programming skills.

EEGLAB is a matlab toolbox designed for offline analysis of EEG signals.
BCILAB is an extension of EEGLAB allowing to design BCI’s and run online
applications. FieldTrip and BioSig are matlab toolboxes too. All these toolboxes
share some of their functions, which makes it not to complicated to exchange
data from one to another. EEGLAB and its extension BCILAB are targeting a
wider audience. They propose a graphical interface in order to get started with
the structure of the toolbox, while calling functions from the command line or
from a script is possible too. Numerous approaches are implemented including
more recent variants of Common Spatial Pattern.

For these reasons, EEGLAB and BCILAB were chosen as environment to
develop the Brain Computer Interface. These toolboxes use an external protocol
called Lab Streaming Layer (LSL) in order to receive signals from the EEG or
from other devices, and to send data such as markers for the training of the
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classifier. LSL is a layer in charge of the synchronization of the streams that are
sent on it. Various applications can then connect to the layer in order to add a
new stream or to connect to an existing one and start copy it to disk, display it
on screen, or process it for class prediction.

2.4 Summary and research objectives
This chapter reviewed the State of the Art in the field of Brain Computer Inter-
face. First, the working principle of a BCI was described in section 2.1. After
that, section 2.2 reviewed every aspects constituting this technology. Finally,
section 2.3 gave an overview of the different hardware and software tools avail-
able.

Every aspects detailed in the present chapter are grouped together in chap-
ter 3 in order to implement the Brain Computer Interface needed by the Con-
sciousness, Cognition & Computation Group (Co3). Being implemented in this
particular neuroscientific context, the BCI has to fullfill specific requirements.

The task studied by the Co3 research group is a binary task where partic-
ipants must be able to control the opening and closing of the robotic hand.
Inducing the Rubber Hand Illusion requires particular specifications. First of all,
the response of the Brain Computer Interface must be as fast as possible since
an oversized delay kills the illusion (Shimada, Fukuda, & Hiraki, 2009). Second,
the prediction of the Brain Computer Interface must be as accurate as possible.
In particular, the false positive have to be avoided as much as possible. Next
to that, the time needed in order to get in control of the BCI is also critical.
Indeed, the experiments foreseen by the Co3 research group do not plan months
of training to be able to modulate one’s brain waves. Moreover, training sessions
are expected to be exhausting for the participants. Hence, the implemented BCI
should be trained in a very limited amount of time. Additionally, the BCI should
work for as many users as possible to avoid waste of time and of money. Finally,
functionality is a crucial point for the neuroscientific researchers to be able to
use it and modify it in the future.

The Brain Computer Interface will attempt to meet these requirements while
making use of the available tools: the BioSemi ActiveTwo as input, and the
previously designed robotic hand as output (see section 2.3.1). The translation
from the former to the latter will be implemented in Matlab using BCILAB (see
section 2.3.2).
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Chapter 3

Implementation of the Brain
Computer Interface

This chapter describes the selection of the method and the way it is implemented.
First, requirements of section 2.4 are restated in terms of technical requirements.
Three methods are then proposed based on the State of the Art and on these
requirements. After that, these methods are tested on data sets available from
the previous BCI competitions. Results are compared to those obtained by the
research centers participating to this competition and a final method is selected.
Once this method is selected, the complete setup that will be used for the neu-
roscientific experiments is described, as well as the architecture of the algorithm.

3.1 Technical requirements
To be able to implement the BCI in an optimal way, it is important to determine
in advance the context in which it will be used. General requirements were already
mentioned in section 2.4. After discussion with the Consciousness, Cognition &
Computation Group (Co3) from the Université Libre de Bruxelles, the following
elements were decided:

• Number of classes:
The BCI must be able to discriminate 2 different classes: right hand versus
rest.

• Accuracy of the classifier:
In (Evans, Gale, Schurger, & Blanke, 2015), only the participants with an
accuracy above 75% were allowed to perform the neuroscientific experi-
ment. It was decided to keep the same threshold.
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• Time response of the BCI:
The delay induced by the BCI must be smaller than 1s to avoid killing the
illusion of control.

• Total training time:
It was decided to limit the total training time to 30min since it is only a
calibration before the real experiment.

• Number of participants:
The objective was to get at least half the participant in control of the BCI
and be able to perform the neuroscientific experiment.

3.2 Method selection
As explained in section 2.2.3, Common Spatial Pattern (CSP) has become the
reference in Brain Computer Interface based on the activity in the µ band. Several
variants of CSP were developed through years. In the present work, the results
obtained using three CSP variants are compared. BCILAB was chosen as toolbox
for implementing the BCI (see section 2.3.2).

3.2.1 Preselection of methods
The three variants of CSP that were preselected are the following:

1. Common Spatial Pattern (CSP)

2. Spectrally weighted Common Spatial Pattern (SpecCSP)

3. Filter-bank Common Spatial Pattern (FBCSP)

The following parameters were selected:

• Processing

– Electrodes:
The choice of the electrodes depend on the set of available electrodes.
In order to minimize to influence of artifacts, the electrodes positioned
on the motor cortex are chosen.

– Rereferencing:
When reference electrodes are available, the signal is rereferenced to
these reference electrodes.
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– Temporal filtering:
The temporal filtering is done in a different way for each of the meth-
ods:
∗ CSP: As classical CSP is known to work well on a broad fre-

quency range (Müller-Gerking et al., 1999), the signal is band-
pass filtered between 7 and 30Hz. A Finite Impulse Response
filter was chosen because of its inherent stability (see section
2.2.2).

∗ SpecCSP: altough Spectrally weighted CSP automically weigths
frequency bands relevant for the discrimination of the classes, it
also requires a wide bandpass prefiltering (Tomioka et al., 2006).
The signal is also bandpass filtered between 7 and 30Hz using a
Finite Impulse Response filter.

∗ FBCSP: In the Filter Bank CSP method, the signal is filtered in
different frequency bands before CSP is applied to each of this
band. Two bands were chosen: 8−12Hz corresponding to the µ
band and 13 − 30Hz corresponding to the β band. The method
then automatically weights the results in these two bands for the
discrimination of the classes.

It was important here to apply the different methods to the same
broad frequency range in order to be able to conveniently compare
the results afterwards.

– Spatial filtering:
As it was detailed in the section 2.2.3, Common Spatial Pattern is
used as a spatial filtering technique. The principle is the same for
the two variants. The only parameter here is the number of pairs of
directions on which the spatial projection is performed. As only a few
pairs of directions are necessary, a single pair of directions was chosen
in order to minimize the computation time.

• Feature extraction:
The feature vectors are obtained by the projection of the signal onto the
directions computed by the CSP, the SpecCSP or the FBCSP method.
A very important parameter here is the length of the window from which
the feature vector is extracted. A very short window allows to have faster
transition of the output of the BCI because the signal of interest is not
averaged over time. However, short windows also increases the risk of
mis-classification and wrong output because the variance of the signal is
computed based on less data. In order to study the influence of this pa-
rameter, three window lengths were studied: 1s, 2s and 3s.
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• Classifier:
The classifier used in each method is Linear Discriminant Analysis (see
section 2.2.4).
During the training sessions, most of the time the participants are asked
to perform the tasks during a longer period than the length of the window
used for feature extraction. In order to train the classifier, the algorithm
developed in this thesis uses a sliding window in order to find the window
producing the best results. The idea of this moving window came from
the fact that some subjects may have different reaction time when being
presented visual stimuli. Hence, the part of the signal with the most in-
teresting content may shift from one subject to the other. Three different
steps were used to slide the window in order to study the influence of this
parameter: 0.1s, 0.2s and 0.5s. The smaller the step, the better the re-
sults as the position of the window can be tuned more precisely. However,
this is done at the cost of a longer computation time as the classifier is
trained for each position before selecting the best one.
The last parameters that was studied is the handling of several training
sessions. On one hand, the participant is supposed to improve its control
over the BCI. Hence the classifier trained on the last training session should
perform best. On the other hand, the accuracy of a classifier increases when
it is trained with a bigger amount of data. In that case, concatenating the
data from all training sessions should give better results.

3.2.2 Test on data sets from BCI competitions
The three methods presented in section 3.2.1 were applied to publicly available
data set 2b from the BCI competition IV: Session-to-Session Transfer of a Motor
Imagery BCI under Presence of Eye Artifacts. Using these data allowed to com-
pare the results obtained with the methods presented here with those obtained
by the competitors. Indeed, methods can properly be compared only if they are
applied to the same data.

This data set comes from (Tangermann et al., 2012). It contains the record-
ings of 5 sessions from 9 subjects. The 3 first sessions are provided with the
labels in order to train the classifier, while the 2 last sessions are used in order
to evaluate the classifiers. Each session contains 120 trials divided in 2 classes:
motor imagery of left hand and motor imagery of right hand. Each trial starts
with a fixation cross. After 3s, a visual clue presenting an arrow pointing to the
left or to the right is presented during 1.25s. The visual clue is followed by 4s
during which motor imagery of the corresponding class is performed. The trial
ends with a break of between 1.5 and 2.5s. The complete timing scheme of the
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paradigm is illustrated in figure 3.1.

Figure 3.1: Cued paradigm used in the data set IIb of the BCI Competition IV (Leeb et
al., 2008)

The EEG signal is recording using 3 electrodes over the motor cortex at C3,
Cz and C4, with a sampling rate of 250Hz. The reference of the signal is the
electrode Fz and is not provided. The evaluation criteria is the kappa value. The
kappa coefficient is 0 if there is no correlation between the predicted classes and
the real ones, and 1 in case of perfect classification (Schlogl et al., 2007). A
more complete description of the data set can be found in (Leeb et al., 2008).

The first important results concern the session-to-session transfer challenge.
The offline accuracy of the classifiers, obtained by cross-validation, reaches its
maximum for the session 3 (see figure 3.2). This is expected since the partic-
ipants are improving. The offline accuracy obtained for the model computed
based on all sessions concatenated seems to correspond to an average of the of-
fline accuracy computed for each session separately. Note that these results are
obtained by averaging the results across subjects and across methods, for every
possible combination of parameters. Therefore, the standard deviation is high
and this first observation may not be respected for every single combination of
parameters and subjects. Interestingly, the model that performs the best on the
test data sets is the model computed from all concatenated training sessions. A
possible explanation is that this model being computed from a bigger amount of
data, it is more robust and performs thus better on new data. Therefore, it was
chosen to always use every data sets available as source data for the training of
the classifier and not only the data from the last training session. When eval-
uated at each time point, the accuracy of the classifier decreases significantly.
However, the cumulative model still performs better than the other models. Lots
of studies only consider the first evaluation method, which consists in giving one
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prediction for each trial, at the marker indicating the beginning of the imagery
period. However, in online application, the second prediction method is much
more realistic.
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Figure 3.2: The session from which the model is computed influences a lot the performance
of the classifier. The offline accuracy obtained by cross-validation is far better for the
model trained on session 3. However, being computed from a bigger amount of data,
the cumulative model is more robust and performs better online on a new data set. The
difference is more visible when the accuracy of the model is evaluated at each time point
and not only at the markers.

The next parameter that was studied was the length of the window. Figure
3.3a shows the results averaged across participants and across methods for the
cumulative models only. Results obtained with one prediction by trial are better
for the window of 2s. When considering continuous predictions, the difference
with the window of 1s is much smaller, which could be explained by the fact that
for the latter, the loss in term of accuracy is compensated by the faster response.
As the difference is very small, the faster response given by the 1s window was
chosen.

The influence of the sliding step was studied next. As mentionned in section
3.2.1, the lower this parameter the thinner the tuning of the classifier but the
larger the computation cost. Results obtained when averaging across participants
and across methods for the cumulative models using the selected window of 1s,
are shown in figure 3.3b. In continuous evaluation, the sliding step of 0.1s results
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(b) Influence of the sliding step

Figure 3.3: The size of the window is a trade-off between the accuracy of the classifier
and its responsiveness. Results being very similar in continuous evaluation, the shortest
window of 1s was chosen. Concerning the size of the sliding step, the lower the size the
thinner the tuning of the classifier but the larger the computation cost. The sliding step
of 0.2s was chosen.

in an accuracy of 64.98% ± 8.93%, the sliding step of 0.2s in an accuracy of
64.98%±8.96%, and the sliding step of 0.5s in an accuracy of 64.91%±9.12%.
The results using the step of 0.2s were as good as those using the step of 0.1s,
and slightly better than those using the step of 0.5s. Therefore, the length of
this sliding window was fixed to 0.2s. However, the difference being very small,
if the time needed in order to train the classifier is judged to be too long by the
future experimenter, the length of this sliding window could be decreased with a
negligible loss of performance.

Finally, the 3 variants of CSP are compared. Models were computed based
on the cumulated sessions, with a window of 1s and the sliding step of 0.2s as
just determined. Figure 3.4 shows the results obtained when averaged across
subjects. In continuous evalution, CSP reached an accuracy of 64.76% ± 8.99%,
SpecCSP an accuracy of 65.59%±9.48% and FBCSP and accuracy of 64.58%±
8.89%. FBCSP has a smaller average accuracy but also a smallest standard
deviation which can be interesting to meet the requirements regarding the ratio
of participants able to control the robotic hand. However, the difference between
the different feature extraction methods are too small to be able to really conclude
that one method is better than another. The choice of the method was then
based on the literature. The winning team for the studied data set of the BCI
competition IV used FBCSP. Moreover, they also performed best on a data set
assessing a 4 classes motor imagery BCI (Tangermann et al., 2012; Ang, Chin,
Wang, Guan, & Zhang, 2012), which could be interesting for future studies.
Hence, the Filter Bank Common Spatial Pattern was chosen as feature extraction
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Figure 3.4: The accuracy obtained using SpecCSP as feature extraction method is slightly
better. However, the difference between the results being very small, it was decided to
select FBCSP because of its success in the litterature (Tangermann et al., 2012; Ang et
al., 2012)

3.2.3 Summary and comparison
The final method used to train the model uses Filter Bank Common Spatial
Pattern with 2 frequency bands: 8 − 12Hz and 13 − 30Hz. The feature vectors
are generated from windows of 1s. The data from all training sessions are used
as train data. During the training of the classifier, the algorithm uses a moving
window with a sliding step of 0.2s to search for the best offline accuracy. Figure
3.5 shows the results obtained for each of the 9 subjects. Results are highly
dependents on the subjects. When evaluated at each time point, the accuracy
varies from 53.04% for subject 2 to 78.36% for subject 4. On the contrary,
subjects perform similarly during the 2 test sessions.

Figure 3.6 details the results obtained for the best subject on his best test
session. Figure 3.6a shows the patterns computed by the Filter Bank Common
Spatial Pattern feature extraction method. The first row corresponds to the
frequency band 8 − 12Hz and the second row to the frequency band 13 −
30Hz. For each frequency band, a pair of patterns is computed. As described
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Figure 3.5: The accuracy varies a lot from one subject to the other. For subject 2 and
3, it barely exceeds chance level which is 50% for a 2 classes BCI. Only subjects 4 and 8
do exceed the level of 75% in continuous evaluation. Average accuracy is 71.35% for the
evaluation at markers and 64.58% in continuous evaluation.

in section 2.2.3, each pattern defines a direction that maximize the variance of
one class while minimizing the variance of the other class. As the Event-Related
Desynchronization happens in the reversed part of the brain (see section 2.2.2),
a movement of the right hand results in a reduced amplitude of the signal on the
left electrode. Hence the amplitude and the variance of the signal from the right
electrode are comparatively bigger and this electrode will be emphasized by the
FBCSP method, which corresponds to the right upper pattern. The left upper
one is the pattern which corresponds to the left hand movement. The pattern
are scaled according to their importance in the discriminating task.

Figure 3.6b shows a section of the time course of the BCI output. This
section was chosen because it matched well the expected value, but it is not the
case for the complete signal. It has also to be remembered that these results are
obtained for the best subject on his best session. Continuous BCI’s, more often
called asynchronous BCI’s, remain a challenge (Tangermann et al., 2012).

The results obtained by the research centers participating to the BCI compe-
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(a) Patterns computed by the Filter Bank
Common Spatial Pattern during the train-
ing of the classifier. The first row corre-
sponds to the frequency band 8 − 12Hz
and the second row to the frequency band
13 − 30Hz. The pattern are scaled ac-
cording to their importance in the dis-
criminating task
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(b) Time course of the BCI output.
Classes left hand movement and right
hand movement are respectively repre-
sented by -1 and 1.

Figure 3.6: Results obtained for the subject 4 during his first test session.

tition are indicated in table 3.1. As already mentioned, the evaluation criteria is
the kappa value, which is 1 for perfect classification and 0 if there is no corre-
lation between the output of the BCI and the cue that is followed. The method
implemented in the present work would have ranked 6th in the competition.

Part. ID Mean Subjects
1 2 3 4 5 6 7 8 9

ID-1 0.60 0.40 0.21 0.22 0.95 0.86 0.61 0.56 0.85 0.74
ID-2 0.58 0.43 0.21 0.14 0.94 0.71 0.62 0.61 0.84 0.78
ID-3 0.46 0.19 0.12 0.12 0.77 0.57 0.49 0.38 0.85 0.61
ID-4 0.43 0.23 0.41 0.07 0.91 0.24 0.43 0.41 0.74 0.53
ID-5 0.37 0.20 0.16 0.16 0.73 0.21 0.21 0.39 0.86 0.44
Thesis 0.29 0.20 0.06 0.06 0.57 0.31 0.30 0.22 0.51 0.38
ID-6 0.25 0.02 0.09 0.07 0.43 0.25 0.00 0.14 0.76 0.47

Table 3.1: Results shown in this table are the kappa values which are equal to 1 for perfect
classification and 0 if there is not correlation between the predictions of the BCI and the
expected state (Tangermann et al., 2012).

The data set of the BCI competition was assessing a BCI discriminating
left hand versus right hand movement. However, it was interesting to see how

33



the selected method would perform on a right hand movement versus rest BCI.
This was possible thanks to the markers present in the data set. Indeed, one
marker indicated the beginning of each trial. Hence, from this marker to the
one indicating the beginning of the cue, there were 3s of data during which the
subject was not performing motor imagery.

The obtained results are shown in figure 3.7. Interestingly, the average across
subjects and across sessions was slightly better than for the initial left hand versus
right hand condition (64.67% against 64.58%). Moreover, the standard deviation
also improved for the rest versus right hand condition (5.98% against 8.89%).
However, these results require a deeper study since participants were not given
proper instructions regarding what to do when the fixation cross is displayed and
some of them were maybe already preparing the upcoming movement.
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Figure 3.7: The accuracy varies a lot from one subject to the other. For subject 2 and
3, it barely exceeds chance level which is 50% for a 2 classes BCI. Only subjects 4 and 8
do exceed the level of 75% in continuous evaluation. Average accuracy is 71.35% for the
evaluation at markers and 64.58% in continuous evaluation.
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3.3 Description of the setup and of the architec-
ture of the algorithm

The setup is shown in figure 3.8. The subject is sitting in front of a screen, with
a keyboard and the robotic hand. His EEG activity is recorded at a sampling
rate of 512Hz using a BioSemi ActiveTwo with 64 electrodes and 2 reference
electrodes placed on the mastoids. The screen is used to display visual cues
similar to those in figure 3.1. During the neuroscientific experiment, the subject
has to use the keyboard to answer to some questions (see section 4.2). During
this experiment, the robotic hand is placed on the keyboard such that it clicks on
a key when activated. The experimenter controls everything from its computer.
The EEG signals and the BCI predictions are displayed on his screen.

Subject’s Screen

Subject

Experimenter’s
Screen

BioSemi

Keyboard

Robotic
hand

Experimenter

(a) Schematic setup

(b) Real setup

Figure 3.8: The subject is sitting in front of a screen, with a keyboard and the robotic
hand. His EEG activity is recorded using a BioSemi ActiveTwo device. The subject’s
screen is used to display visual cues and instructions. The EEG signals and the BCI
predictions are displayed on the experimenter’s screen.
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The objective of the neuroscientific research behind this work is to study the
difference in terms of agency between an action performed using one’s own hand
or using an artificial hand controlled by the Brain Computer Interface (see section
4.2). Therefore, the experiment starts with a task BCI_0_IB_Basic.m per-
formed without the BCI, and ends with the same task BCI_4_IB.m performed
with the BCI (see figure 3.9).

no yes

no

yes

no

yes

Apply model in
training session

model?

qBCI_1_training_session.m

qBCI_0_IB_Basic.m

qBCI_2b_online_accuracy.mqBCI_2_train_model.m

Accurate?

BCI_3_feedback_session.m

Control?

BCI_4_IB.m

Figure 3.9: The training of the classifier is done iteratively starting from
BCI_1_training_session.m to BCI_3_feedback_session.m. Models are computed
based on data recorded from the training sessions and are then tested online in a new
session. When a sufficiently accurate model is obtained, the subject is given the possibility
to it on the robotic hand in a free session. BCI_0_IB_Basic.m and BCI_0_IB.m
are linked to the neuroscientific experiment.

In between these two tasks, the subject and the classifier are trained in an
iterative way. First, the subject has to follow a cued paradigm similar to the one
presented in figure 3.1. BCI_1_training_session.m is in charge of loading
the dependencies and run the paradigm on a separate screen for the subject.
This visual paradigm is implemented using Psychtoolbox, a well-known matlab
toolbox that is used a lot in neuroscientific research in order to present any kind
of stimuli. The implemented cue is shown in figure 3.10. Each trial starts with
a fixation cross displayed during 3 seconds. A red arrow pointing to the right is
then superimposed to the cross during 2s. After that, the cross and the arrow are
removed from the screen during 2s. Hence, each trial lasts 7s. Training sessions
consist in 20 consecutive trials. Markers are placed when the cross appears and
when the arrow appears.
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Figure 3.10: Each trial last 8s and is divided as illustrated. Markers ’rest’ and ’right’ are
added to the recordings in order to train the classifier afterwards

The raw EEG signals are displayed on the experimenter’s screen to allow him
to monitor the experiment and give instructions to the subject if the task is
not performed well. For example, in the figure 3.11 captured during the first
training session, slow oscillations can be observed. This kind of oscillations are
very typical of sweat artifact. Having this display allows the experimenter to be
aware of this problem and react accordingly to reduce the temperature in the
room.

Figure 3.11: The real-time raw EEG signals of the subject are displayed on the experi-
menter’s screen. Although brain features are most of the time not visible without signal
processing, most artifacts are. Hence, the display allows the experimenter to identify them
and react accordingly. For example, the present picture shows slow shifts due to sweat.

After the training session, a first classifier is then trained based on the markers
indicating the period of imagination and of rest. The training of this model is
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performed in the script BCI_2_train_model.m. The accuracy obtained by
cross-validation is displayed to the experimenter in the command line, as well as
the patterns computed by Filter Bank Common Spatial Pattern that are plotted
in a separate window. Figure 3.12 give an example of these patterns. The
interpretation of those patterns is slightly more complicated than those of figure
3.6a since the class rest is not as well defined as the class left hand regarding
the brain mechanism involved. However, the electrodes on the left motor area of
the brain are expected to play a role in the discrimination since the right hand is
still involved.

Figure 3.12: The patterns computed by the Filter Bank Common Spatial Pattern method
are displayed on the experimenter screen to give him feedback about the participant’s
performance. In the example here, expected patterns are obtained.

After that, a second training session has to be done, during which the trained
model is applied to the incoming data. This online prediction of the classifier is
shown to the experimenter in real-time, allowing him to have a first idea of the
accuracy of the classifier. Figure 3.13 captured during such a session illustrated
this. Sweat artifact are still present but do not disturb the prediction of the BCI
which was at high level at the moment of the capture, what corresponded to
the expected state. The real-time prediction of the BCI is done every 10ms and
oscillates between 1 and 2, 1 being the class 1 corresponding to rest and 2 being
the class 2 correspond to the imagination of right hand movement.

Figure 3.13: Trained models are tested in new training session. In that case, an additional
window showing the BCI prediction is displayed on the experimenter’s screen. High levels
correspond to a high probabilities of right hand imagination.
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Once this second training session is finished, BCI_2b_online_accuracy.m
computes the accuracy of the current classifier by comparing for each time
point the prediction of the model with the target classes indicated by the cued
paradigm. If the accuracy is not satisfying, a new model is trained based on
the recordings of all training sessions performed so far and is then applied in a
third session. When a sufficiently accurate model is obtained, the robotic hand is
enabled and the subject is given the possibility to try to control it. This is done
using BCI_3_feedback_session.m. This session is not recorded and really
aims at allowing the subject to get familiar with the time response of the BCI
and feel the limits of the system. If the subject does not report feeling in control
of the robotic hand, additional training sessions are performed. When the subject
feels sufficiently in control of the artificial hand, the training is finished and the
task BCI_4_IB.m is performed.

The subject is wearing the BioSemi headset during the whole experiment. The
signal coming from the electrodes is sent to the Lab Streaming Layer (LSL). As
explained in section 2.3.2, LSL is a low level technology that allows synchronized
exchanges of time series data between programs and computers. Several streams
have to be exchanged between the hardware and the software. This exchange
is mainly performed through LSL using a matlab library liblsl or with external
executable files, except for the robotic hand for which the communication is done
through a serial communication (see figure 3.14). The BCI reads the incoming
EEG signal from the Lab Streaming Layer, processes it according to the approach
described in section 3.2.3, and writes its predictions on a serial port to control
the robotic hand, and to the Lab Streaming Layer for visualization and recording.

Lab
Streaming 

Layer

liblsl

BioSemi.exe

LabRecorder.exe

liblsl

liblsl

liblsl

EEG signal

Markers

BCI 
predictions

Streams

Serial

BioSemi

Robotic
Hand

Stream 
visualisation

Stream
recording

Figure 3.14: The different pieces of hardware and software are communicating with each
other through the Lab Streaming Layer described in section 2.3.2
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This chapter detailed the implementation of the Brain Computer Interface.
First, section 3.1 restated the requirements in terms of technical requirements.
Secondly, section 3.2.1 detailed 3 preselected methods. These methods were
tested on the data set IIb from the BCI competition IV in section 3.2.2. The
implemented BCI would have ranked 6th among the competitors (see section
3.2.3). Finally, section 3.3 described the experimental setup that was designed,
as well as the architecture of the implemented algorithm.
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Chapter 4

Validation

The Brain Computer Interface described in chapter 3 was designed based on
publicly available data. Real tests on voluntary subjects were then needed in
order to validate or adapt the algorithm (see section 4.1) before starting the
neuroscientific experiment described in section 4.2.

4.1 Calibration and pre-test
These pre-tests also allowed to receive a feedback from the subjects under test
and from the neuroscientific researcher in charge of the final experiment. Here
are the modifications made to the BCI:

• Acquisition:
In section 3.2.2, the number of electrodes was limited. Using the BioSemi
ActiveTwo with 64 electrodes, the number of electrodes becomes an impor-
tant parameter to tune. As explained in 3.2.1, only the electrodes around
the motor cortex were selected in order to minimize the influence of eye
artifacts. The 15 selected eletrodes are shown in figure 4.1. Additionnaly,
two electrodes were placed at the mastoids to rereference the signal.

15 of 15 electrode locations shown

Click on electrodes to toggle name/number

A10 A11

A12A13

A18 A19 A32

B13B14B15

B16 B17 B18

B23B24

Channel locations

Figure 4.1: The 15 chosen electrodes are indicated using the BioSemi nomenclature (see
appendix A for the correspondence with the classical 10-20 system).
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• Cued paradigm:
During the cued paradigm, the cross was at first removed in between each
trial, right after the imagery period. However, some subjects reported
being disturbed when the cross appeared. For one subject, this problem
even reflected in the signal, for which the changes in the µ rhythm directly
started when the cross appeared. Consequently, it was decided to keep the
cross displayed during the whole run. Other modifications concerning the
cued paradigm concern the duration of the different periods. These were
reduced in order to decrease the length of the training sessions, and the
computation time. Indeed, as the algorithm searches for the best time win-
dow within the period of imagery, decreasing the latter reduces the amount
of windows computed, hence the computational cost. In conclusion, the
cued paradigm now starts with 3s with a blank cross displayed on a grey
screen. After these 3 seconds, a red arrow pointing to the right is super-
imposed on the cross during 3s. After that, the arrow is removed but the
cross is kept during 2s. The markers used for classification are added at
the beginning of the 3 first seconds of cross display, and when the arrow
appears on the screen. This is shown in figure 4.2. Each training session
is composed of 20 trials and lasts then 160s.

Fixation cross Imagery Pause

0 1 2 3 4 5 6 7 8

Time (s)

Cued paradigm

Display

‘rest’ trigger ‘right’ trigger

Figure 4.2: In the final cued paradigm, it was decided to keep the fixation cross displayed
during the pause to avoid disturbing the participants with too much visual changes on the
screen.

• Feedback:
The script BCI_1_training_session.m actually allows to superimposed
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a feeback bar on the display, similarly to what is done in many studies
(see section 2.2.5). However, participants reported to be distracted by this
moving bar. Consequently, it was decided to remove it from the display
and have an separated feedback session where the participants are free to
test their control on the robotic hand without any imposed cue.

• Robotic Hand:
The finger of the robotic hand can be activated individually. However,
when activated, they bent during a certain delay an then went back to
initial open position. For the final experiment, the robotic hand must press
a key the same way one would do with his real hand. Consequently, the
delay was tuned in order to have a movement as realistic as possible. For
this experiment, the index finger is bent during 100ms. On the other
hand, during the continuous feedback session, the robotic hand has to stay
in activated position until the subject goes back to resting state, which
required some modification of the script controlling the hand.
Additionally, an hysteresis was added in order to avoid parasitic movements
of the robotic hand during switching between states during the continuous
feedback session. This was implemented using tunable thresholds. The
command sent to the robotic hand is based on the probability of movement
computed by the classifier. This probability varies between 0 and 1. Three
thresholds are introduced:

1. Lower threshold: this is the value under which the probability has to
fall in order to switch from activated state to resting state.

2. Upper threshold: this is the value above which the probability has to
climb in order to switch from resting state to activated state

3. Middle threshold: this threshold is used for the final experiment. In-
deed, for this experiment, the robotic hand only needs to be activated
a single time to press the key. When this threshold is exceeded, the
robotic hand press the key using the chosen delay and is then deac-
tivated until the next trial.

The values of these thresholds allow to slightly adapt the difficulty of con-
trolling the robotic hand. As most participants found it much easier to
activate the hand than to relax, the thresholds were tuned as follows:

– Lower threshold:0.5
– Upper threshold: 1
– Middle threshold: 1
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Six participants were tested, among which 5 males and 1 female. Subject
5 was left-handed, while all other participants were right-handed. The results
expressed in terms of accuracy (see section 2.2.4) are shown in table 4.1.

1st model 2nd model 3rd model 4th model
offline online offline online offline online offline online

S1 75% 56.7% 80% 68.1% 87.5% 61%
S2 62.5% 48.6% 61.2% 56.5% 58.3% 63.8% 61.2% 58.35%
S3 92.5% 69.9% 88.7% 66.8%
S4 62.5% 63% 67.5% 52.6% 71.7% 58.5% 71.9% 55.2%
S5 80% 70.9% 81.2% 63%
S6 85% 58.6% 78.7% 66.1%

Table 4.1: 6 participants performed the iterative training procedure. Subjects S1, S3, S5
and S6 reached a sufficiently high accuracy during the training sessions and were allowed
to perform the feedback session. Each of them reported having a certain control on the
robotic hand. Results of subjects S2 and S4 were not satisfying, even after 5 sessions.

(a) Subject 1: patterns computed for
the 2nd model.

(b) Subject 3: patterns computed for
the 1st model.

(c) Subject 5: patterns computed for
the 1st model.

(d) Subject 6: patterns computed for
the 2nd model.

Figure 4.3: For each subject, the first row shows the pair of patterns computed for the first
frequency band: 8 − 12Hz. The second row shows the patterns in the bands 13 − 30Hz.
The nose is pointing upwards. The patterns are weighted according to their importance
in the discrimination task.

The spatial patterns computed by FBCSP for participants S1, S3, S5 and S6
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are shown in figure 4.3. Subjects s1 and subject s6 showed expected patterns
enhancing the left motor area of the brain, at electrode C3. Patterns of subject S3
enhance the central electrode Cz. Unexpectedly, patterns of subject s5 enhance
the right motor area at electrode C4. Whether this is linked to the fact that
participant s5 was left-handed remains to be studied. The fact that different
patterns are computed according to the subject is one of the strength of the
Common Spatial Pattern method.

Models computed for subjects S1, S2, S3 and S5 converged in the iterative
training process and were very similar from one session to another. On the con-
trary, patterns of subjects S2 and S4 constantly changed at each session, meaning
that the algorithm did not find any consistent feature to enhance. Consequently,
Subject S2 and S4 performed up to 5 training sessions, resulting in 4 different
models, but did not reach a satisfying accuracy. Subject S2 still performed the
feedback session but did not report feeling in control of the robotic hand. Sub-
ject S4 did not performed the feedback session. The fact that these participants
did not succeed in controlling the robotic hand could be explained by the fact
that they were changing their strategies at each session, or that they were using
strategies that involve other frequency bands or other brain areas than the one
expected. In the latter case, using more electrodes and more frequency bands
could solve the problem but would increase the risk of contamination by artifacts.

These pre-tests showed results similar to those obtained with the data set
from the BCI competition. The level of control achieved for 4 out of the 6
participants was judged satisfying. Moreover, the training time was below the
30min specified in the requirements. Given these results, the BCI was validated
and the neuroscientific experiment was planned.

4.2 Neuroscientific experiment
This section describes the neuroscientific experiment that was mentioned through-
out the previous chapters. It was written in collaboration with Dr. Caspar from
the Consciousness, Cognition & Computation Group. First, the context, the im-
plications and the objectives of this study are recalled and detailed. Second, the
methodology is described. Finally, the obtained results are discussed.

The study of the control of a robotic hand through a Brain Computer In-
terface has several major implications in psychology. First, it might help to
understand better the factors that increase the feeling of control over the robotic
hand, which may be useful in order to increase the perception of autonomy of pa-
tients receiving a neuroprosthesis. Second, it might help to understand whether
or not sensorimotor information that we receive for instance in our fingers when
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we perform an action is a necessary condition for experiencing a sense of control
over our voluntary actions. A BCI coupled with a robotic hand indeed allows
to perform intentional movements with the robotic hand without receiving the
sensorimotor information associated with the action. This will give important re-
sults considering the ahead growth of neuroprostheses coupled with sensorimotor
captors and on their importance to increase the degree of control, and thus, the
autonomy of patients.

In psychology, the experience of being in control of our actions refers to the
feeling of agency, that is, the feeling that you are the author of your own actions
and their consequences (Gallagher, 2000). There are two main methods to assess
the sense of agency. The first one is based on explicit questions asked to par-
ticipants after an action (e.g. ’Were you the author of that action?’) and refers
to what is called explicit judgments of agency. However, these measurements
are known to be biased by different factors, such as social desirability (Bandura,
2006) and thus appear to be less reliable. Another method based on a method-
ological innovation proposes to use time perception as an implicit marker of
agency, a method called the ’intentional binding’ (Haggard, Clark, & Kalogeras,
2002) . In a classical intentional binding paradigm, participants have to estimate
the delay between their action (i.e. a keypress) and an outcome (i.e. a tone).
If the movement is voluntary, the perceived time is shorter than in a condition
in which the movement is involuntary (for instance, triggered by a Transcranial
Magnetic Stimulation (TMS) pulse over the motor cortex), suggesting that sense
of being the author of an action modifies time perception, by reducing it. This
method has been validated in an important amount of scientific papers so far (see
(Moore, 2016) for a review) and is now used to infer about the agentic state of
participants in a given task. In addition, the sense of agency has been intimately
linked to the phenomenon of sensory attenuation. Sensory attenuation refers to
the observation that self-generated stimuli appear to be attenuated in terms of
their cortical response compared to the same stimuli when they are generated
by an external source, for instance, by someone else. Consequently, it has been
assumed that sensory attenuation might help individuals to determine whether
a sensory event was caused by themselves or not, which also provide important
information about their perception of being the author of that action (i.e. sense
of agency).

In this context, the Consciousness, Cognition & Computation Group wanted
to realise a pilot experiment in order to determine: 1) the ratio of participants who
are able to successfully control the robotic hand through a BCI after a few training
sessions, 2) whether or not the cognitive fatigue associated with controlling a
BCI would interfere with their implicit measure of the sense of agency (i.e. the
method based on time perception) and 3) whether some correlations between
the degree of control that participants feel about the BCI would influence the
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implicit measures of agency and the sensory attenuation process, as measured
by the amplitude of the auditory N1, an evoked potential associated with the
tone. These preliminary results would give them important elements in order to
consider the final experiment.

Method Twenty-three participants were invited to participate in the present
study. All participants provided written informed consent prior to the experiment.
The study was approved by the local ethical committee of the Université libre de
Bruxelles (054/2015).

Participants were equipped with an electroencephalogram at the beginning of
the experiment. Then, they performed an intentional binding paradigm without
the robotic hand. In this task, the participant was instructed to press a key on the
keyboard at a time he chose after the start of the trial. A tone occurred after the
key press. The delay between the key press and tone varied randomly at 100, 500,
and 900ms. The participants’ task was to estimate the delay between the key
press and the tone (=intentional binding procedure). They were informed that
the delay would vary randomly on a trial-by-trial basis, between 1 and 1, 000ms
(they were reminded that 1, 000ms equals 1s). Participants were also told: 1)
to make use of all possible numbers between 1 and 1, 000, as appropriate, 2)
to avoid restricting their answer space (i.e., not to keep using numbers falling
between 100 and 200), and 3) to avoid rounding. They had to write down their
answer with their left hand. They performed this task during 60 trials.

After this task, participants started the learning sessions as described in sec-
tion 3.3. Participants were told that they should perform the training session
minimum twice and maximum 6 times. The value of accuracy used as threshold
was lowered to 55% in order to have variability in the results, with participants
having a low degree of control and participants having a high degree of control.

If the model was sufficiently accurate after the training, participants per-
formed once again the intentional binding paradigm but this time with the robotic
hand pressing on the key to produce the tone instead of their real hand. Par-
ticipants were invited to keep their right hand relaxed on their legs and to use
their left hand to provide their answers. Two electrodes were placed at the mus-
cular junction controlling the finger movements on their right arm in order to
control their muscular activity, to ensure that they did not trigger the movement
of the robotic hand by actually producing a real movement with their own right
hand. After that participants had provided their numerical answer to estimate
the action-tone delay, they were invited to answer, on a scale from 0 to 10, how
much they felt that the movement of the robotic hand was caused by their own
will. This question aimed at removing false positives.

Brain activity was recorded using a 64-channels electrode cap with the Ac-
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tiveTwo system (BioSemi) and data were analysed using Fieldtrip (Oostenveld
et al., 2011). The activities from left and right mastoids were also recorded.
Amplified voltages were sample at 512Hz. Data were referenced to the average
signal of the mastoids and filtered (low-pass at 50Hz and high-pass at 0.01Hz).

Results On 23 participants, 17 were able to control the BCI (mean accuracy=
63.22%, SD=5.5). Those participants reported in average that they controlled
the robotic hand with a precision of 70.80% (SD=16). We performed a Pearson
correlation and observed that the theoretical level of accuracy was positively
correlated with participants’ own perception of control over the robotic hand
(r=.490, p=.046). This indicates that the accuracy provided by the model was
a good predictor of the participants’ perception of controlling the hand.

In order to check whether or not the cognitive fatigue associated with the use
of the robotic hand would affect the intentional paradigm, we identified partici-
pants whom the action-tone intervals did not gradually increase with action-tone
intervals, we performed linear trend analysis with contrast coefficients -1, 0, 1 for
the three delays. We performed the same analysis on the action-tone intervals
provided in the first intentional binding paradigm (i.e., without the robotic hand).
If their answers did progress with the real action-tone intervals in the first inten-
tional binding task (without the robotic hand) but not in the second intentional
binding task (with the robotic hand), it would suggest that BCI involves a too
important cognitive fatigue. On the 17 participants, 2 showed a non-significant
trend in the second intentional binding task while their trend was significant in
the first intentional binding task. It thus suggests that we can expect to keep
65% of our sample with the current version of the BCI.

Additional correlations were performed between the reported degree of con-
trol of participants, the amplitude of the auditory N1 and the intentional binding.
None of those correlations were significant (all ps > .3). However, the sample
of participants was not sufficiently high to expect reliable significant results. For
correlational analyses, the requested sample is generally about 30.

In this chapter, the implemented BCI was tested first on a small sample of 6
participants (see section 4.1). This pre-test allowed to calibrate and adapt the
algorithm implemented in chapter 3. The obtained results being satisfying, a
pivot experiment was conducted on a sample of 23 participants (see section 4.2).
This pivot experiment allowed to test 2 hypothesis and showed promising results
for future experiments.
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Chapter 5

Discussion

This chapter discusses the results obtained in chapter 3 and 4.

The Brain Computer Interface implemented in the present work was designed
based on the publicly available data set IIb from the BCI competition IV. As de-
tailed in section 3.2.3, it would have ranked 6th among the competitors. Consid-
ering that these competitors were research groups composed of 2 to 6 researchers
(Tangermann et al., 2012), the results obtained in the present master thesis are
very satisfying. However, one should not forget that the true labels for the test
data sets were only made available at the end of the competition. Hence, initial
competitors could not use them to tune their algorithms. Moreover, the Matlab
toolbox used in this work was developed after this competition and was clearly
influenced by it. Indeed, most of the methods used by the competitors were
added to the toolbox, including Filter Bank Common Spatial Pattern.

Compared to the winning algorithm described in (Ang et al., 2012), the
present BCI has a time response 2 times faster. Indeed, they used a window of
2s for the feature extraction, meaning that the ouput of the BCI is delayed of
2s too. In the present work, this window length was limited to 1s to meet the
requirements. The further decreasing of this parameter is limited by the physical
time constant involved in the underlying neural mechanism. The µ band ranging
from 8 to 12Hz, one period lasts around 10ms. In order to properly measure the
decrease of amplitude due to the Event-Related Desynchronization (see 2.2.2),
the time window should contain more than one single period. Decreasing the
length of the time window means decreasing the number of periods used for the
computation. Consequently, either the algorithm must be improved to be able to
deal with this limited amount of data, or the user has to learn producing better
signals. The latter solution could be achieved by using most advance learning
and feedback methods (see 2.2.5).
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The accuracy obtained on this data set stays below the 75% specified in the
technical requirements. Looking at the individual performance of the subjects, 2
participants out of 9 reached results above the 75% threshold for the left versus
right hand movement condition. This corresponds to 22.22% of participants for
which the BCI worked, which is below the 50% specified in the requirements.
When considering the rest versus right hand movement condition, no subject
exceeded the 75% threshold. However, as explained in section 3.2.3, the experi-
ment was not initially designed for this second condition.

Those results needed to be confirmed on an adapted experimental setup. This
was done in section 4.1. 6 participants were tested. The accuracy obtained was
slightly better: 66.83 ± 3.03% against 64.67 ± 5.98%. No participant did exceed
the 75% threshold. However, 4 out of the 6 participants reported having control
on the robotic hand. This was the main objective and regarding this the BCI suc-
cessfully achieved its task for 66.66% of the participants during these pre-tests.
This percentage is well above the 50% expressed in the requirements. Regarding
these results, the accuracy value used as threshold was reconsidered. Indeed,
the work from which it was taken, studied a left versus right hand movement
condition (Evans et al., 2015). The resting condition being more challenging
(Tangermann et al., 2012), a lower accuracy is expected. Moreover, it is impor-
tant to remember that the data set IIb from the BCI competition contains much
more trials than the paradigm implemented in the present study. The participant
followed 5 sessions containing each 60 trials of each class (see section 3.2.2). In
comparison, the implemented paradigm contains 20 trials of each class for each
session. The accuracy obtained is then of the same order of magnitude with a
classifier trained on 3 times less data. This reduction of the number of trials
was needed to meet the requirements about the allowable training time. With
the current implemented cued paradigm, each training session lasts 2min40 (see
section 4.1). Taking into account the time needed to launch the script, for the
participant to get ready, and for the computation of the model, the total duration
of a training session is about 5min. 30min are then enough to do 5 to 6 sessions.

The BCI being validated through these pre-tests, a pilot experiment was con-
ducted by Dr. Caspar from the Consciousness, Cognition & Computation Group
(see 4.2). This experiment allowed to validate several aspects of the implemented
BCI. First of all, 65% of the sample was kept, which confirmed the results ob-
tained during the pre-tests. Secondly, the training time stayed below 30min.
Concerning this point, it was also shown in 4.2 that the training sessions were
not cognitively too demanding. Hence, the BCI training procedure is compatible
with an additional cognitive task (i.e. intentional parardigm), which is essential
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for the present work. Thirdly, the average accuracy of 63.22% was similar to the
one obtained during the pre-tests. This result, as already said, is very satisfying
given the limited training time. Finally, the interface was used without any prob-
lem by the experimenter.

As conclusion, the implemented BCI has already proven that it is fully oper-
ational. The pivot experiment already allowed to test 2 hypothesis that will be
helpful for the future experiments. Theses results are very promising and open
new possibilities in the research about the sense of agency.

Limitations The implemented BCI was validated for a 2 classes problem. Even
if the BCILAB toolbox does not restrict the number of classes, a complete vali-
dation is needed to test the feasibility of such a BCI.

The resting class still remains a challenge. Indeed, most participants re-
ported having more difficulties with this class than the other class. They had to
concentrate about something else rather than really being resting.

The accuracy computed during the training session barely exceeds 70%. One
participant reached an impressive accuracy of 77.3%. Solution should be found
to improve this accuracy in case of more advanced experiments involving more
complex tasks.

Future work In the context of neuroscientific research, future work could eval-
uate more advanced training methods involving more adapted learning mecha-
nisms. This would be a very interesting topic to try to improve the accuracy of
the classifier without increasing the training time. Outside of the neuroscientific
research, there would be a need for increasing the number of classes. 4 classes
motor imagery BCI’s have been realized (see data set IIa from BCI competition
IV (Tangermann et al., 2012)) but mostly involved very different tasks such as
left hand movement, right hand movement, foot movement and tongue move-
ment. Being able to discriminate different movements of one single hand would
be a tremendous step ahead. This would require improvements in the acquisition
device. Also related to the acquisition, dry electrodes are a must for the use of
BCI’s outside lab environment.
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Chapter 6

Conclusion

The goal of this work was to implement a Brain Computer Interface to help
neuroscientists develop new experiments to explore mechanisms related to the
sense of agency.

As an extension of the previous study about the sense of agency involved
when controlling a robotic hand (Caspar et al., 2014), the neuroscientific exper-
iment required the subject to be able to activate a robotic hand at will, directly
through his mind.

After a review of the State of the Art, it was decided to implement the BCI
on Matlab using the BCILAB toolbox. The BCI takes as input the EEG activity
recorded using a BioSemi ActiveTwo. Then, Filter Bank Common Spatial Pattern
and Linear Discriminant Analysis are used to discriminate an imagined movement
from a resting state. If a movement is predicted, a command is sent to a robotic
hand that was designed specifically for this kind of experiment (De Beir et al.,
2014).

The BCI was implemented and tested first on publicly available data sets
from the BCI competition IV. Secondly, it was tested on a small sample of 6
participants. Finally, a pilot experiment was conducted on a sample of 23 par-
ticipants, giving very promising results for future experiments.
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Appendix A

BioSemi

Sample-rate options
(sample rate is adjustable by user) 2048 Hz 4096 Hz 8192 Hz 16,384 Hz

Max. number of channels
@ selected sample rate 280 280 280 152

Bandwidth (-3dB) DC - 400 Hz DC - 800 Hz DC - 1600 Hz DC - 3200 Hz
Low-pass response 5th order sinc digital filter
High-pass respons fully DC coupled

Digitalization 24 bit, 4th order Delta-Sigma modulator
with 64x oversampling, one converter per channel

Sampling skew <10 ps
Absolute sample rate accuracy
(over temp range 0-70 C) 0.1 Hz 0.2 Hz 0.4 Hz 0.8 Hz

Relative sample rate accuracy (jitter) <200 ps
Quantization-resolution LSB = 31.25 nV, guaranteed no missing codes
Gain accuracy 0,3 %
Anti aliasing filter fixed first order analog filter, -3dB at 3.6 kHz
Total input noise (Ze <10 kOhm),
full bandwidth

0.8 uVRMS
(5 uVpk-pk)

1.0 uVRMS
(6 uVpk-pk)

1.4 uVRMS
(8 uVpk-pk)

2.0 uVRMS
(12 uVpk-pk)

1/f noise (Ze <1 MOhm) 1 uVpk-pk @ 0.1..10Hz
Amplifier current noise <30 fArms
Input bias current <100 pA per channel
Input impedance Active Electrode 300 MOhm @ 50 Hz (1012 Ohm // 11 pF)
DC offset <0.5 mV
DC drift <0.5 uV per degree Celsius
Input range +262 mV to -262 mV
Distortion <0.1 %
Channel separation >100 dB
Common Mode Rejection Ratio >90 dB @ 50 Hz
Isolation Mode Rejection Ratio >160 dB @ 50 Hz

Power Consumption 4 Watt @ 280channels
inversely proportional with the number of installed channels

Battery capacity, standard battery 25 Watt-hour, 3 cell sealed lead-acid
(double capacity battery is available as an option)

Battery life on standard battery >5 hours @ 280channels
inversely proportional with the number of installed channels

Battery charge time
(with external fast charger) <3.5 hours for a 100% charge

Leakage current, normal operation <1 uA rms.
Leakage current, single fault <50 uArms

Trigger inputs 16 inputs on optical receiver
(isolated from subject section) , TTL level

Trigger outputs 15 outputs on optical receiver
(isolated from subject section) , TTL level

PC interface USB2.0
Size of front-end,
including battery-box (H x W x D) 120 x 150 x 190 mm

Weight of front-end,
including battery-box 1.1 kg

Warranty 3 years

Table A.1: Detailed specifications of the BioSemi ActiveTwo
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Figure A.1: Electrode placement of the BioSemi ActiveTwo
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Appendix B

Results of the pilot experiment

IDt Age Gender Model
used Accuracy IB

100
IB
500

IB
900

Mean
reported
control

IB
BCI
100

IB
BCI
500

IB
BCI
900

IB
Real
Hand

IB
Robot
Hand

N1
TOTAL

1 21 F 2 62,63 13,1 24,15 47,2 72,93 40,66 47,55 48,88 28,15 45,70
3 22 M 3 64 385 569,5 709,95 52,33 390,05 539,57 487,78 554,82 472,47 -8,949
5 19 F 4 65,65 52,25 118,2 374,05 71,66 421 325,57 491,15 181,50 412,57 -3,76
6 20 F 1 63,4 294,52 486,66 812,8 53,89 365,57 615,75 857,27 531,33 612,86
7 25 F 5 63,65 186,89 461,35 766,42 55,83 196,23 275,94 502,85 471,55 325,01 -11,89
8 20 F 3 68,71 181,21 378,89 697,31 85 307,68 461,25 679,1 419,14 482,68
9 20 F 3 61,7 323,47 632,15 908,36 64,4 559,15 759,63 704,15 621,33 674,31 1,011
10 24 M 4 59,4 294,35 342,27 624,05 51,16 555,1 616,45 759,57 420,22 643,71 -11,7
11 21 F 3 63,6 390,73 492,68 787,1 51,66 428,21 569,94 705,95 556,84 568,03 -4,358
12 19 F 2 63,6 310,52 303,72 570,3 93 389,9 602,3 679,15 394,85 557,12 -7,846
14 18 F 5 59,4 126,52 312 498,75 80,66 200,61 229,78 316,7 312,42 249,03 -1,396
15 22 F 1 59,8 226,55 663,84 797,47 59,33 304,84 382 582,95 562,62 423,26
16 19 F 2 70,5 366,6 520 769,45 99,66 506,45 618,84 701,52 552,02 608,94
18 18 F 3 77,3 304,65 392 437,73 92,33 548,31 705,05 603,89 378,13 619,08 -7,04
19 18 M 1 62,2 261,9 442,89 586,9 81,5 410 448,89 479,57 430,56 446,15 -2,129
20 24 M 2 55,8 201,05 522,4 881,94 76,5 337,21 648 908,89 535,13 631,37 -6,737
22 22 M 4 53,4 280,05 486,75 839,44 61,83 632,05 763,94 850,3 535,41 748,76 -3,896

Table B.1: Results of the pilot experiment
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