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Abstract
Electrical machines are mostly fed using a voltage source inverter. In order to achieve a given
torque demand, a controller is needed to select an optimal sequence of switch states for this
inverter. A large variety of control algorithms exists for this purpose, among them the relatively
new family of predictive controllers. As the name states, these types of controllers have in
common that they use a model of the machine and the inverter to predict the future system
behavior. The aim of this master’s dissertation is to control the torque on the rotor of an
axial flux permanent magnet synchronous machine (AFPMSM) using predictive control. In
Chapter 2 a short introduction is given on this novel machine topology. The operation principles
of the two main categories of predictive controllers that will be discussed in this text, more
specifically Finite-Set Model Based Predictive Control (FS-MBPC) and deadbeat (DB) control,
are elucidated in Chapter 3. Since the quality of the system model is of extreme importance to
enable predictive control, Chapter 4 is entirely devoted to this topic. In Chapter 5, the system
model is used to directly regulate the torque and flux of the AFPMSM by means of FS-MBPC.
Since these two control parameters are not independent, Chapter 6 examines how the torque
can be controlled by means of two orthogonal stator current components, the so-called Field
Oriented Control (FOC). This strategy is implemented not only by means of both FS-MBPC
and DB control, but also by means of a hybrid form of these two types of controllers. Simulation
results for the various control strategies are subjected to an extensive comparison in Chapter
7. Finally, the controllers are implemented on a Field Programmable Gate Array (FPGA) and
applied on a real test set-up. The concluding results are presented in Chapter 8.

Keywords
Finite-Set Model Based Predictive Control, Deadbeat Control, Axial Flux Permanent Magnet
Synchronous Machine, FPGA
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 

Abstract—This article presents a comparative study of three 

Predictive Current Control (PCC) schemes for an Axial Flux 

Permanent Magnet Synchronous Machine (AFPMSM). The first 

control scheme predicts the future behavior for each of the eight 

possible switch states of the two-level voltage source inverter (2L-

VSI), and selects the most optimal one based on the evaluation of 

a cost function. This switch state is then applied during the entire 

next update period. The second control scheme uses the system 

model to calculate which input voltage is required to bring the 

AFPMSM to the requested state. This reference value for the 

voltage is synthesized afterwards by means of a separate pulse 

width modulation (PWM) algorithm. Since PWM enables to vary 

the duty cycle of each inverter leg separately, both the magnitude 

and the direction of the on average applied voltage vector can be 

varied continuously. The third control scheme combines the 

features of the previous schemes: for each of the six active voltage 

vectors of the 2L-VSI, the optimal duty cycle is determined. A 

cost function is used to select the most optimal pair of voltage 

vector and duty cycle. Simulation results are used to compare the 

performance of the three controllers.  Implementation of the 

algorithms on a Field Programmable Gate Array (FPGA) enables 

an experimental verification of the conclusions on a test set-up. 

Keywords— Finite-Set Model Based Predictive Control, 

Deadbeat Control, Axial Flux Permanent Magnet Synchronous 

Machines, FPGA 

I. INTRODUCTION 

The emergence of new and faster control hardware 

platforms like FPGAs made predictive control a feasible 

candidate for control of electric drives with time constants in 

the millisecond range [1]. Hence, predictive control can be 

employed to control the torque on the rotor of an AFPMSM. 

This torque control can be accomplished by direct regulation 

of both torque and stator flux, the so-called Predictive Torque 

Control (PTC). However, the direct link between torque and 

flux makes this control strategy relatively complicated and 

yields quite high Joule losses. Field oriented control (FOC), 

also known as vector control, offers a full-fledged alternative 

to regulate the torque by means of PCC. To apply FOC, the 

AFPMSM is described in the 𝑞𝑑-reference frame, rotating in 

synchronism with the rotor flux provided by the permanent 

magnets (PMs). The stator current is split into two orthogonal, 

separately controlled components: 𝑖𝑞 is responsible for the 

torque control, while 𝑖𝑑 defines the flux. In FOC for PMSMs, 

the rotor flux can be chosen to be completely defined by the 

PMs, hence 𝑖𝑑 is controlled to be zero, resulting in a decline in 

the Joule losses compared to PTC.  

A predictive control strategy that is frequently mentioned in 

the context of inverter fed AC machines - and is the first 
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predictive control scheme that will be implemented in this 

article - is Finite-Set Model Based Predictive Control (FS-

MBPC) [1,2,3]. This technique is very well-suited to control 

systems with inherently discrete control signals. One of its 

major drawbacks, however, is the large current ripple resulting 

from the fact that only the voltage vectors directly available at 

the output of the inverter can be applied to the machine during 

one update period 𝑇u of the controller. A second type of 

predictive controller, called deadbeat control, solves this issue 

by making use of PWM, hence enabling a continuous variation 

of both magnitude and direction of the on average applied 

voltage vector during 𝑇u, and thus reducing the current ripple 

[3,4]. The third and last control algorithm that will be 

discussed and compared in this article is a hybrid version of 

the two previous controllers, enabling a continuous variation 

of the amplitude of the voltage vectors [3,5]. 

II. MACHINE MODEL DESCRIPTION 

In order to obtain a proper predictive controller, an adequate 

system model must be available, describing the behavior of 

both the AFPMSM and the inverter.  

A. AFPMSM Model 

Since an AFPMSM possesses no rotor windings, the 

dynamic electrical equations only need to describe the 

dynamic operation of the stator windings. The state-space 

model of the machine in the synchronous 𝑞𝑑-reference frame 

is expressed as: 
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(1) 

The involved machine parameters are tabulated in Table 1. 

𝑇u represents the update period of the controller and 𝜔𝑘  the 

electrical speed at discrete time instant 𝑘. 𝑖mag is a constant 

equivalent current in the 𝑑-axis, representing the PMs and 

resulting in the same flux level as generated by the PMs. The 

current components 𝑖𝑞, 𝑖𝑑 are considered as the state variables, 

and the voltage components 𝑣𝑞, 𝑣𝑑 as the inputs.  

The mechanical dynamics are described by the equation of 

motion: 

Ω𝑘+1 = Ω𝑘 +
𝑇u
𝐽
(𝑇em

𝑘 − 𝑇l
𝑘) (2) 

 



 

 

where Ω represents the mechanical speed and 𝑇l the load 

torque. The developed electromagnetic torque 𝑇em is directly 

related to 𝑖𝑞: 

Tem
𝑘 = −

3

2
𝑁𝑝𝐿𝑑𝑖mag𝑖𝑞

𝑘 (3) 

Table 1: Machine parameters 

Parameter Symbol Value 

Number of pole pairs 𝑁𝑝 8 

Rated power [kW] 𝑃𝑛 4 

Rated speed [rpm] 𝑁𝑛 2500 

Rated torque [Nm] 𝑇𝑛 15 

Rated voltage [V] 𝑉𝑛 152 

Stator inductance [mH] 𝐿𝑞 = 𝐿𝑑 2.54 

Stator resistance [mΩ] 𝑅s 325 

Mechanical inertia [kg·m²] 𝐽 0.0024  

Equivalent PM current [A] 𝑖mag -43.2 

B. Inverter Model 

The AFPMSM is fed by a 2L-VSI, shown in Figure 1. The 

inverter model can be used to express the phase voltages in 

function of the inverter’s switch state  [𝑆𝑎 , 𝑆𝑏, 𝑆𝑐]: 

𝑣𝑥n = (𝑆𝑥 −
1

2
)𝑉dc (4) 

 

where 𝑉dc represents the DC bus voltage and 𝑥 the phase: 

𝑥 ∈ {𝑎, 𝑏, 𝑐}. The voltage over the load is thus: 
 

𝑣𝑥o = 𝑣𝑥n − 𝑣on (5) 
 

In case of a symmetrical load, the voltage of the star point o 

of the load with respect to the center tap n of the DC bus 

equals the average of the phase voltages: 
 

𝑣on = 
𝑣𝑎n + 𝑣𝑏n + 𝑣𝑐n

3
 (6) 

 

The voltage components 𝑣𝑞, 𝑣𝑑 can then be retrieved by 

applying the Parke transformation. 

 

Figure 1: Topology of a 2L-VSI [2] 

III.  CONTROL SCHEMES 

A. Finite-Set Model Based Predictive Control 

Model based predictive control (MBPC) is a collective term 

to denote all control strategies making use of a process model 

to forecast the output of a system given a certain input. To 

determine the optimal control action, minimization of a cost 

function is required. MBPC control allows fast and accurate 

control of multiple controlled variables, taking into account 

various constraints in a natural way by means of the adaptable 

cost function. 

MBPC is very well-suited to control systems with inherently 

discrete control signals. For the 2L-VSI for instance, the 

number of switch states is limited to a finite set of eight. As a 

result, each possible state can be evaluated, and minimization 

of the cost function simplifies to selecting the state yielding 

the minimum cost. In this way, complicated and time-

consuming minimization algorithms can be avoided. To refer 

to this kind of MBPC, the term finite-set MBPC (FS-MBPC) 

is used. 

The working principle of FS-MBPC is illustrated in Figure 

2. Three important steps can be defined. 

1) Estimation 

Based on measurements of the stator current and the rotor 

position at update instant 𝑘, and knowledge of the optimal 

control action 𝑆𝑘  (determined during the previous time 

interval 𝑘 − 1 → 𝑘), the stator current components 𝑖𝑞
𝑘+1 and 

𝑖𝑑
𝑘+1 at time instant 𝑘 + 1 can be estimated by means of the 

machine and inverter model provided in Section II. 

2) Prediction 

For each of the eight possible switch states 𝑆𝑘+1, the 

controlled variables 𝑖𝑞
𝑘+2 and 𝑖𝑑

𝑘+2 at time instant 𝑘 + 2 are 

predicted by means of the system model, starting from the 

estimates at instant 𝑘 + 1. 

3) Optimization 

Based on the evaluation of a cost function, the most 

appropriate switch state is selected, bringing the system state 

closest to its desired value [𝑖𝑞
∗ , 𝑖𝑑

∗]. This optimal switch state 

𝑆𝑘+1 is applied to the system during the entire update 

period 𝑇u, after which the algorithm is restarted. This is the 

so-called receding horizon principle. It is noteworthy that 

only the eight voltage vectors according to the eight 

different switch states of the 2L-VSI can be applied to the 

AFPMSM during 𝑇u, yielding a high current ripple. 

 

 

Figure 2: Working principle of FS-MBPC 

The estimation step is included, since knowledge of the state 

variables at instant 𝑘 + 1 is required to find the optimal input 

at instant 𝑘 + 1. Measuring this state is not an option, as this 

would mean that the controller should be able to calculate 

𝑆𝑘+1 in an infinitely small period of time. 

The cost function can be defined in various ways. A 

common choice is to express it as the sum of the squares of the 

deviations of the controlled variables from their set-points: 
 

𝐽𝑘+1 = (𝑖̂𝑞
𝑘+2 − 𝑖𝑞

∗)
2
+𝑊𝐼(𝑖̂𝑑

𝑘+2 − 𝑖𝑑
∗)
2
 (7) 

 

where 𝑊𝐼  is a dimensionless weighting factor representing the 

relative strictness of the control of the current components. 



 

 

This factor needs to be fine-tuned. Secondary control goals, 

such as reduction of the switching losses, can be easily 

expressed by adding extra cost terms. 

B. Deadbeat Control 

According to [2], deadbeat (DB) control is one of the most 

uncomplicated predictive controllers. The basic principle 

comprises the calculation of the required input voltage 𝑉𝑘+1
∗  of 

the AFPMSM to reduce the error on the controlled variables to 

zero in a finite amount of steps (generally one). Although DB 

control makes use of a system model, it is not a model based 

predictive control, since no cost function is used. In contrast to 

FS-MBPC, DB control needs a separate PWM process, since 

the control algorithm does not directly determine the switch 

state 𝑆𝑘+1 of the inverter. Its output is a reference value for the 

required input voltage 𝑉𝑘+1
∗  of the AFPMSM, which can take 

on any real value. The working principle of DB control is 

illustrated in Figure 3. Contrary to FS-MBPC, DB control 

comprises only two major steps. 

1) Estimation 

The input voltage 𝑉𝑘 , applied to the machine at instant 𝑘, 

together with the measured 𝑖𝑞
𝑘, 𝑖𝑑

𝑘 and 𝜔𝑘  are used to 

calculate the system state at 𝑘 + 1 by means of the system 

model provided in Section II. 

2) Deadbeat 

To obtain the voltage 𝑉𝑘+1
∗  required to bring 𝑖̂𝑞

𝑘+2 and 𝑖̂𝑑
𝑘+2 to 

their respective reference values 𝑖𝑞
∗  and 𝑖𝑑

∗  in one time step 

𝑇u, it is assumed that the stator current equals its set-point at 

instant 𝑘 + 2: 𝑖̂𝑞
𝑘+2 = 𝑖𝑞

∗  and 𝑖̂𝑑
𝑘+2 = 𝑖𝑑

∗ . A model inverse 

solution is then used to compute the voltage components to 

be applied at 𝑘 + 1: 
 

𝑣𝑞
𝑘+1 = 𝑅s𝑖̂𝑞

𝑘+1 +
𝐿𝑞
𝑇u
(𝑖𝑞
∗ − 𝑖̂𝑞

𝑘+1) − 𝜔𝑘𝐿𝑑(𝑖̂𝑑
𝑘+1 + 𝑖mag) 

𝑣𝑑
𝑘+1 = 𝑅s𝑖̂𝑑

𝑘+1 +
𝐿𝑑
𝑇u
(𝑖𝑑
∗ − 𝑖̂𝑑

𝑘+1) + 𝜔𝑘𝐿𝑞𝑖̂𝑞
𝑘+1 

(8) 

 

The reference voltages 𝑣𝑥o (𝑥 ∈ {𝑎, 𝑏, 𝑐}) are obtained by 

applying the inverse Parke transformation. Eventually, a PWM 

algorithm determines the sequence of switch states that needs 

to be applied during the update period 𝑇u. Since the PWM 

enables to vary the duty cycle of each inverter leg separately, 

both the magnitude as well as the direction of the on average 

applied voltage vector become variable. 

The DB control algorithm does not involve a cost function. 

The tedious activity of tuning this cost function is hence 

avoided. The other side of the coin is that the option to impose 

secondary control goals disappears as well. 

C. FS-MBPC with Duty Cycle Calculation 

Although the DB controller enables to change the magnitude 

and the direction of the on average applied voltage vector 

during 𝑇u, it also disables the opportunity to impose secondary 

control goals by means of a cost function. Therefore, a 

controller combining these two features is proposed here. The 

structure of the algorithm is similar to that of FS-MBPC, with 

the only difference that an optimal duty cycle (DC) for the six 

feasible active voltage vectors is determined as well. In [3], 

this technique is called Two-Configuration Predictive Control. 

A similar algorithm is applied in [5] to control the torque of an 

induction motor drive. 

 

 

Figure 3: Working principle of DB control 

Similar to FS-MBPC, three important steps can be defined 

in the working principle. 

1) Estimation 

This step is identical to the estimation step of FS-MBPC. 

2) Prediction 

Contrary to FS-MBPC, only the six active voltage vectors 

are evaluated separately. Just a fraction of the control period 

is allocated to this active voltage vector, the rest of the time 

a null voltage is applied. Therefore, two slopes must be 

calculated in each of the six steps: the current slope 𝑠𝑖 (𝑖 =
1…6) if the active vector is applied, and the current slope 

𝑠0 if a zero vector is applied. Those slopes can be calculated 

by means of the dynamical equations (1).  
 

{
 
 

 
 𝑠𝑞,0

𝑘+1 =
1

𝐿𝑞
[−𝑅s𝑖̂𝑞

𝑘+1 +𝜔𝑘𝐿𝑑(𝑖̂𝑑
𝑘+1 + 𝑖mag)]           

𝑠𝑞,𝑖
𝑘+1 =

1

𝐿𝑞
[𝑣𝑞,𝑖
𝑘+1 − 𝑅s𝑖̂𝑞

𝑘+1 + 𝜔𝑘𝐿𝑑(𝑖̂𝑑
𝑘+1 + 𝑖mag)]

 (9) 

{
 

 𝑠𝑑,0
𝑘+1 =

1

𝐿𝑑
[−𝑅s𝑖̂𝑑

𝑘+1 −𝜔𝑘𝐿𝑞𝑖̂𝑞
𝑘+1]           

𝑠𝑑,𝑖
𝑘+1 =

1

𝐿𝑑
[𝑣𝑑,𝑖
𝑘+1 − 𝑅s𝑖̂𝑑

𝑘+1 −𝜔𝑘𝐿𝑞𝑖̂𝑞
𝑘+1]

 (10) 

 

The optimal duration 𝑡opt,𝑖
𝑘+1  for the active voltage vector 

under consideration is determined according to the deadbeat 

principle: 
 

𝑖𝑞
∗ = 𝑖̂𝑞

𝑘+2 = 𝑖̂𝑞
𝑘+1 + 𝑠𝑞,0

𝑘+1(𝑇u − 𝑡opt,𝑖
∗ ) + 𝑠𝑞,𝑖

𝑘+1𝑡opt,𝑖
∗  (11) 

 

and consequently: 
 

𝑡opt,𝑖
∗ =

𝑖𝑞
∗ − 𝑖̂𝑞

𝑘+1 − 𝑠𝑞,0
𝑘+1𝑇u

𝑠𝑞,𝑖
𝑘+1 − 𝑠𝑞,0

𝑘+1  (12) 

 

 

{

𝑡opt,𝑖
𝑘+1 = 0,      

𝑡opt,𝑖
𝑘+1 = 𝑡opt,𝑖

∗ ,

𝑡opt,𝑖
𝑘+1 = 𝑇u,     

if 𝑡opt,𝑖
∗ < 0          

if 0 ≤ 𝑡opt,𝑖
∗ ≤ 𝑇u

if 𝑇u < 𝑡opt,𝑖
∗          

 (13) 

 

Eventually, the current components at instant 𝑘 + 2 can be 

predicted based on  𝑠0
𝑘+1, 𝑠𝑖

𝑘+1 and 𝑡opt,𝑖
𝑘+1 . 

 

 

𝑖̂𝑞
𝑘+2 = 𝑖̂𝑞

𝑘+1 + 𝑠𝑞,0
𝑘+1(𝑇u − 𝑡opt,𝑖

𝑘+1 ) + 𝑠𝑞,𝑖
𝑘+1𝑡opt,𝑖

𝑘+1  
 

𝑖̂𝑑
𝑘+2 = 𝑖̂𝑑

𝑘+1 + 𝑠𝑑,0
𝑘+1(𝑇u − 𝑡opt,𝑖

𝑘+1 ) + 𝑠𝑑,𝑖
𝑘+1𝑡opt,𝑖

𝑘+1  
(14) 

  



 

 

3) Optimization 

This step is identical to the optimization step of FS-MBPC. 

The selected null vector ([0 0 0] or [1 1 1]) is the one that 

requires the lowest number of switches to change their state. 

Contrary to DB control followed by PWM, the optimization 

of the duty cycle only allows to change the magnitude of the 

applied voltage vector, and not its direction.  

The difference in switching between the three proposed 

control strategies is illustrated in Figure 4 for further 

clarification. 
 

 
 (a) (b) 

 
(c) 

Figure 4: Difference in switching between (a) FS-MBPC,  

(b) DB control, (c) FS-MBPC with DC calculation 

IV. SIMULATION RESULTS 

To compare the performance of the predictive controllers, 

they are simulated in a MATLAB®&Simulink® environment. 

A DC bus voltage 𝑉dc of 250V is applied, and the mechanical 

speed of the machine is maintained at 𝑁 = 1000 rpm. The 

chosen update frequency 𝑓u amounts to 10 kHz. 

The simulation results in Figure 5 show that all controllers 

are able to track their references well. The difference in 

current ripple - and thus torque ripple - strikes immediately. 

The finite set of applicable voltage vectors for FS-MBPC 

clearly causes a higher current ripple than the large variety of 

voltage vectors that can be selected as input for DB control. 

Adding the calculation of 𝑡opt to the FS-MBPC algorithm 

significantly improves the ripple. Due to its high current 

ripple, the Joule losses for standard FS-MBPC are slightly 

higher than for the other two controllers. The high control 

quality obtained by DB control results in low harmonic 

distortion of the stator currents. It should be noted, however, 

that the DB controller displays a small systematic error – 

called bias – between its reference and simulated current, 

especially for 𝑖𝑑. 

Standard FS-MBPC excels when it comes to switching 

losses. Since standard FS-MBPC does not allow the switch 

state to be changed during the entire update period, while this 

is possible for the other two algorithms, the switching 

frequency of FS-MBPC will be relatively low. However, the 

switch state changes that do take place are very likely to 

violate the pulse polarity consistency rule (PPCR), hence 

heavily burdening the machine isolation. The higher switching 

frequency when DC calculation is added, and especially when 

DB control is applied, causes the PPCR to be fulfilled more 

often. 

As to dynamic behavior, only the DB controller shows 

distinct overshoot peaks in 𝑖𝑞 when a step is applied in its 

reference value.  The rise time required to bring 𝑖𝑞 to its 

reference value is smallest for the standard FS-MBPC. 

To get an idea of the parameter sensitivity of the control 

algorithms, their performance is tested when inaccurate 

parameters are passed on to the controllers. It appears that the 

DB controller is most prone to instability in case the system 

model is not accurate, since the exact motor parameters are 

required to compute the optimal voltage vector. FS-MBPC on 

the contrary only makes use of the eight input vectors directly 

available at the output of the 2L-VSI, rendering this control 

strategy more robust. After all, a small deviation in the 

predicted state due to parameter mismatch will only 

occasionally result in the selection of a different voltage 

vector. Since FS-MBPC with DC calculation combines the 

FS-MBPC and DB strategies, its stability features lie 

somewhere in between these two strategies. 

An overview of the relative ratings of the different control 

algorithms based on their simulation results is given in Table 

2. 

Table 2: Strengths and weaknesses of the controllers,  

based on simulations 

 
FS-MBPC DB 

FS-MBPC 

with DC 

ripple - + 0 

bias 0 - + 

Joule losses - 0 + 

switching losses + - 0 

PPCR - + 0 

THD - + 0 

overshoot + - + 

rise time + 0 - 

robustness + - 0 

V. EXPERIMENTAL VERIFICATION 

To validate the real-life performance of the controllers, the 

same tests as in Section IV are performed on a real AFPMSM, 

of which the specifications are given in Table 1. The control 

algorithms are implemented on a Xilinx® Kintex®-7 

XC7K325T FPGA embedded in a dSPACE MicroLabBox. 

The FPGA is programmed using the Xilinx System Generator 

blockset in a MATLAB®&Simulink® environment. The 

AFPMSM is connected to an induction machine, ensuring the 

constant speed of the AFPMSM.  

The experimental results are shown in Figure 6. All 

controllers are able to follow the 𝑖𝑞 reference. 𝑖𝑑 however, 

deviates from zero. A possible explanation might be that the 

parameter 𝐿𝑞 is slightly underestimated. The combination of a 

large 𝜔 and 𝑖𝑞 in the term representing the back EMF of the 

machine in the electrical equations (1) renders 𝑖𝑑 indeed 

negative in this case. 

Although the current ripple has generally increased due to 

measurement noise, the difference between FS-MBPC and DB 

control still catches the eye immediately. However, the results 

of FS-MBPC with DC calculation are slightly disappointing: 

the current ripple did reduce on average, but the maximal 

ripple is still high. Furthermore, 𝑖𝑞 shows more bias due to the 

optimization of the duty cycle. The bias of the DB controller is 

also more pronounced in the experimental result than in 



 

 

simulation. This decline in control quality compared to the 

quality in simulation translates into a higher harmonic 

distortion of the stator currents as well. 

The conclusions concerning the switching losses and 

violations of the PPCR drawn from the simulation results are 

endorsed by the experimental results.  

A study of the transient performance, however, leads to the 

conclusion that the DB controller shows less overshoot than in 

simulation, but it requires the longest rise time. FS-MBPC 

with DC calculation appears to be the fastest controller in real-

life. However, the differences in rise time are rather small.  

A very surprising result is that the DB control exhibits the 

highest level of robustness against parameter mismatch in 

reality. FS-MBPC with DC calculation appears to be the most 

parameter sensitive. 

The relative rating of the controllers based on the 

measurements is summarized in Table 3. In general, the 

features showing up in the simulations are observed in the 

experiments as well. The ratings that did change, however, 

compared to Table 2, received a green color when they were 

upgraded and a red color when they were downgraded. 

VI. CONCLUSION 

Three different predictive current controllers for an 

AFPMSM were presented and compared in this paper. The 

first one, FS-MBPC, resulted in large torque ripple, due to its 

finite set of feasible voltage vectors that can be applied during 

the update period of the controller. The second type, the 

deadbeat controller, solved this issue by synthesizing the 

optimal required voltage vector by means of PWM, but at the 

expense of higher switching losses and less flexibility in the 

expression of control goals. The third controller, FS-MBPC 

with DC calculation, combined the advantages of the previous 

control algorithms. The performance of the three controllers 

was validated by means of simulation in 

MATLAB®&Simulink® and verification on a test set-up by 

implementing the control algorithms on an FPGA. 

 

 

 

 

 

 

 

 

 

Table 3: Strengths and weaknesses of the controllers,  
based on measurements 

 
FS-MBPC DB 

FS-MBPC 

with DC 

ripple - + 0 

bias + - 0 

Joule losses - + + 

switching losses + - 0 

PPCR - + 0 

THD 0 + - 

overshoot + - + 

rise time 0 - + 

robustness 0 + - 
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Figure 5: Simulation results for the stator current components for  

(a) FS-MBPC, (b) DB control, (c) FS-MBPC with DC 
calculation (red: simulation, blue: reference) 
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Figure 6: Experimental results for the stator current components for  

(a) FS-MBPC, (b) DB control, (c) FS-MBPC with DC 

calculation (blue: measurement, red: reference) 

REFERENCES 

[1] T. J. Vyncke, S. Thielemans, and J. A. Melkebeek, “Finite-set model-

based predictive control for flying-capacitor converters: Cost function 

design and efficient FPGA implementation,” IEEE Transactions on 

Industrial Informatics, vol. 9, pp. 1113-1121, May 2013. 

[2] T. Vyncke, Voorspellende regelaars voor directe koppelcontrole van 

draaiveldmachines. PhD thesis, Ghent University, 2012. 

[3] F. Morel, X. Lin-Shi, J.-M. Rétif, B. Allard, and C. Buttay, “A 

comparative study of predictive current control schemes for a 

permanent -magnet synchronous machine drive,” IEEE Transactions on 

Industrial Electronics, vol. 56, no. 7, pp. 2715-2728, 2009. 

[4] A. D. Alexandrou, N. K. Adamopoulos, and A. G. Kladas, 

“Development of a constant switching frequency deadbeat predictive 

control technique for field-oriented synchronous permanent-magnet 

motor drive,”  IEEE Transactions on Industrial Electronics, vol. 63, pp. 

5167-5175, Aug. 2016. 

[5] Y. Zhang and H. Yang, “Model predictive torque control of induction 

motor drives with optimal duty cycle control,” IEEE Transactions on 

Power Electronics, vol. 29, no. 12, pp. 6593-6603, 2014. 



Contents

Permission of Usage

Preface

Abstract

List of Figures

List of Tables

List of Abbreviations & Symbols

1 Introduction 1

2 Axial Flux Permanent Magnet Synchronous Machines 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Yokeless And Segmented Armature Topology . . . . . . . . . . . . . . . . . . . . 4
2.4 Mounting of the Permanent Magnets . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Main Advantages of AFPMSMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Predictive Control 7
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Model Based Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Deadbeat Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.1 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Modeling 13
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.2 Derivation of the Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.3 Discrete Time Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.4 Machine Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Inverter Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.2 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



5 Predictive Torque Control 21

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.4 Objective Quantification of Quality by Means of Key Performance Indicators . . 30

5.4.1 Control Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4.2 Average Switching Frequency and Voltage Quality . . . . . . . . . . . . . 30

5.5 Cost Function Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Field Oriented Control 37

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3 PI Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.4 Finite-Set Model Based Predictive Control . . . . . . . . . . . . . . . . . . . . . . 42

6.4.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.4.2 Effect of a Larger Prediction Horizon . . . . . . . . . . . . . . . . . . . . . 46

6.4.3 Effect of the Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4.4 Torque and Current Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.5 Deadbeat Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.5.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.6 Model Based Predictive Control with Duty Cycle Calculation . . . . . . . . . . . 54

6.6.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Comparison of the Controllers 61

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.2 Key Performance Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.2.1 Control Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2.2 Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2.3 Transient Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.4 Discussion of the Simulated KPIs . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.4.1 Control Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.4.2 Voltage Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.4.3 Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.4.4 Transient Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.4.5 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.4.6 PI Controller versus Predictive Controllers . . . . . . . . . . . . . . . . . 74

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8 Experimental Verification 77

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.2 Test Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.3 Field Programmable Gate Array . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.4 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.5 Discussion of the Measured KPIs . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



8.5.1 Control Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.5.2 Voltage Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.5.3 Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.5.4 Transient Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.5.5 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.5.6 Measurements versus Simulations . . . . . . . . . . . . . . . . . . . . . . . 85

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9 Conclusion and Future Work 87
9.1 General Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Bibliography 89

A Simulation Results 93
A.1 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.2 Detailed KPIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B Experimental Results 105
B.1 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.2 Detailed KPIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108





List of Figures

2.1 The YASA topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The NS torus machine topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Mounting of the permanent magnets . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Working principle of FS-MBPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Timing of the basic steps in MBPC . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Working principle of DB control . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Difference in switchings between FS-MBPC and DB control . . . . . . . . . . . . 12

4.1 Transformation to the qd-reference frame . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Equivalent scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Vector diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 Topology of a 2L-VSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.5 Phase voltage vectors of a 2L-VSI . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.6 Working principle of PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.7 Working principle of SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 Principle of PTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 PTC with quadratic cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Stator currents for PTC with quadratic cost function . . . . . . . . . . . . . . . . 26

5.4 Cost function with tolerance bands . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.5 PTC with cost function with tolerance bands . . . . . . . . . . . . . . . . . . . . 28

5.6 Detail views showing the effect of tolerance bands on the electromagnetic torque 29

5.7 Detail views showing the effect of tolerance bands on the stator flux . . . . . . . 29

5.8 Pulse Polarity Consistency Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.9 MSE for varying weighting factor WΨ in a quadratic cost function . . . . . . . . 32

5.10 Effect of the tolerance band and weighting factor on the MSE . . . . . . . . . . . 33

5.11 Effect of the tolerance band for the flux on the average switching frequency . . . 34

5.12 Effect of the tolerance band for the flux on the percentage of switchings violating
the PPCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.13 Effect of the tolerance band for the flux on the average Joule loss . . . . . . . . . 35

5.14 PTC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1 qd-reference frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Principle of FOC with PI controller and PWM . . . . . . . . . . . . . . . . . . . 39

6.3 Decoupled current control loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.4 Control requirements for a second order transfer function . . . . . . . . . . . . . 40

6.5 PI torque controller using the FOC principle and PWM . . . . . . . . . . . . . . 41

6.6 Stability of the current control loop in function of fs . . . . . . . . . . . . . . . . 42

6.7 Principle of PCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.8 MSE for varying weighting factor WI in a quadratic cost function . . . . . . . . . 44



6.9 PCC with quadratic cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.10 Effect of tolerance band and weighting factor on MSE . . . . . . . . . . . . . . . 46
6.11 PCC with cost function with tolerance bands . . . . . . . . . . . . . . . . . . . . 47
6.12 General MBPC principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.13 Effect of the discretization method . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.14 Principle of FOC with DB and PWM . . . . . . . . . . . . . . . . . . . . . . . . 52
6.15 DB torque controller using the FOC principle and PWM . . . . . . . . . . . . . . 54
6.17 Difference in modulation between DB control and PCC with DC calculation . . . 56
6.18 PCC with duty cycle calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.19 DB algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.20 FS-MBPC with DC calculation algorithm . . . . . . . . . . . . . . . . . . . . . . 60

7.1 Overview of the most prominent predictive controllers . . . . . . . . . . . . . . . 61
7.2 Definition of the dynamic behavior KPIs . . . . . . . . . . . . . . . . . . . . . . . 63
7.3 Paramater sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.4 Detail views clarifying the control principle of PCCDC (blue: reference; red: sim-

ulation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.5 Simulation results for the control of iq . . . . . . . . . . . . . . . . . . . . . . . . 68
7.6 Simulation results for the control of id . . . . . . . . . . . . . . . . . . . . . . . . 69
7.7 Overview of the KPIs of the simulations . . . . . . . . . . . . . . . . . . . . . . . 71

8.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.2 Experimental validation of the control of iq . . . . . . . . . . . . . . . . . . . . . 80
8.3 Experimental validation of the control of id . . . . . . . . . . . . . . . . . . . . . 81
8.4 Overview of the KPIs of the measurements . . . . . . . . . . . . . . . . . . . . . 83
8.5 Paramater sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.6 Difference in torque ripple for Vdc = 100V and N = 300 rpm . . . . . . . . . . . . 86

A.1 Parameter sensitivity PTCquadr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.2 Parameter sensitivity PTCtol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.3 Parameter sensitivity PCCtol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.4 Parameter sensitivity PCC2f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.5 Parameter sensitivity PCCDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B.1 Parameter sensitivity PTCquadr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.2 Parameter sensitivity PCCquadr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.3 Parameter sensitivity PCCtol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.4 Parameter sensitivity PCC2f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.5 Parameter sensitivity PCCDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



List of Tables

4.1 Machine parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1 Standard simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Comparison in KPIs of a quadratic cost function and a cost function with toler-
ance bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1 KPIs of the PI controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Comparison in KPIs of a quadratic cost function and a cost function with toler-
ance bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Effect of the prediction horizon on the KPIs . . . . . . . . . . . . . . . . . . . . . 49

6.4 Effect of the prediction horizon on the KPIs, with extra cost term . . . . . . . . 49

6.5 Effect of the linearization method on the control quality . . . . . . . . . . . . . . 50

6.6 KPIs of the DB controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.7 KPIs of the PCC with duty cycle calculation . . . . . . . . . . . . . . . . . . . . 57

7.1 Robustness of PCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 Robustness of DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.3 Reference values to transform the cost terms into p.u. values . . . . . . . . . . . 66

7.4 Strengths and weaknesses of the controllers, based on simulations . . . . . . . . . 75

8.1 Strengths and weaknesses of the controllers, based on experiments . . . . . . . . 86

A.1 MAR(iq) [A] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.2 bias(iq) [A] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.3 PTCquadr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.4 PTCtol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.5 PCCquadr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.6 PCCtol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.7 PCC2f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.8 PCCDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.9 PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.10 DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.1 MAR(iq) [A] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B.2 bias(iq) [A] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B.3 PTCquadr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

B.4 PTCtol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.5 PCCquadr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B.6 PCCtol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B.7 PCC2f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.8 PCCDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

B.9 PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



B.10 DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



List of Abbreviations & Symbols

Abbreviations

2L-VSI two-level voltage source inverter

(AF)PMSM (axial flux) permanent magnet synchronous machine

DB deadbeat

DC 1. direct current; 2. duty cycle

DTC direct torque control

EMF electromotive force

FOC field oriented control

FS-MBPC finite-set model based predictive control

IPMSM interior permanent magnet synchronous machine

KPI key performance indicator

MAE mean absolute error

MAR mean absolute ripple

MIMO multiple-input multiple-output

MSE mean square error

MSR mean square ripple

PCC predictive current control

PM permanent magnet

PPCR pulse polarity consistency rule

PTC predictive torque control

SPMSM surface permanent magnet synchronous machine

SVM space vector modulation

(SV)PWM (space vector) pulse width modulation

THD total harmonic distortion

YASA yokeless and segmented armature

Only the abbreviations that are used repeatedly are included in this list.



Symbols

prefix:

∆ dimensionless deviation from the reference value

quantities:

fs [kHz] sampling frequency

fswitch [kHz] switching frequency of the inverter

fu [kHz] update frequency of the controller

S [-] switch state of the inverter

V ∗ [V] reference value for the input voltage of the AFPMSM

subscripts:

k discrete time index

l boundary of the lower tolerance band

q, d quadrature and direct axis components

ref value used to transform cost terms and KPIs into p.u. values

s stator

u boundary of the upper tolerance band

superscripts:

∗ reference value for a controlled variable

k discrete time index

Matrices and vectors are indicated by boldface symbols. If the space vector characteristic of a
quantity needs to be emphasized, the concerning symbol is underlined. Estimates are indicated
by a hat above their symbol. Only the symbols that are used repeatedly and may cause confusion
when misinterpreted are included in this list, others are all declared in the text.



Chapter 1

Introduction

Our society consumes too much energy. If our present consumption rate is maintained, running
out of fossil fuel sources is just a matter of time. On top of that, burning of fossil fuels causes CO2

emissions to go through the roof. Increasing evidence of the link between emissions and climate
change has stimulated the search for alternative energy sources. Renewable energy sources (such
as wind, solar and hydraulic energy) are gaining increasing attention nowadays. Electricity is
often employed as energy carrier in this context. Just think of sustainable energy applications,
like windmills and electric cars, requiring highly reliable electrical machines.

As part of the same mindset, the current development in rotating electrical machine technol-
ogy is dedicated to the three E´s: ecodesign, energy and economy [1]. As to ecodesign, the
development of new electric motors and generators has a significant role to play, tackling the
new requirements imposed by their new applications. The axial flux permanent magnet syn-
chronous machine (AFPMSM) is a typical example. Its high power density and efficiency makes
this technology very suitable for integration in electrical drive trains for industrial applications,
transport applications and sustainable energy conversion.

The second E, energy efficiency, requires efficient exploitation of electrical machines. This is the
point where new types of controllers come into play. Predictive control for instance - making use
of a system model to predict the future system behavior - is one of these relatively new techniques
to control electrical machines. It has the advantage of very fast dynamics, while simultaneously
taking multiple constraints into account, such as the reduction of Joule and switching losses.

Whereas ecodesign and energy efficiency tend to make electrical machines and their drives more
expensive, an acceptable economic cost is still indispensable. The commercialization of new
and faster control hardware platforms, for instance, enabled the deployment of computationally
demanding control schemes for electrical drives with time constants in the millisecond range.
Hence, predictive control became a realistic candidate for application to an AFPMSM, for in-
stance. A Field Programmable Gate Array (FPGA) - a very powerful micro-controller able to
process a large amount of data in a small time span - is an example of such a new hardware
platform.

The main objective of this master’s dissertation is to examine the possibilities that predictive
control offers to the rotor torque regulation of an AFPMSM fed by a two-level voltage source
inverter. This converter consists of a series of switches (transistors) that can connect the stator
phases of the AFPMSM to the positive or negative voltage of a DC bus. The current through
the windings, and thus the torque on the rotor, is determined by the sequence in which the
transistors are switched. The main objective of the controller is to select an optimal switching
sequence in order to achieve a given torque demand. The faster the machine can produce the
required torque, the better. However, the controller must take into account limitations such as
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maximum voltage or current, and the feasible inverter states as well.

In a first step, the examined control algorithms will be tested and fine-tuned in simulation in a
MATLABr&Simulinkr environment. Finally they will be implemented on-line by means of an
FPGA. Hence the performance of the control strategies can be compared by applying them on
the test set-up already present in the lab.
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Chapter 2

Axial Flux Permanent Magnet
Synchronous Machines

2.1 Introduction

Climate change continues to become a driving force on different aspects of social living. Re-
ducing greenhouse gas emissions is one of the main objectives to create a more sustainable
society. Since the transport and energy sector are major emitters of CO2, research towards
the development and integration of electric motors in vehicles and renewable energy conversion
has bloomed. The development of new electric motors and generators plays an important role
in this focus on ecology. Studies have shown that new adapted machine topologies are better
qualified to fulfill the present-day requirements than the classical ones. An example of such a
new machine topology is the axial flux permanent magnet synchronous machine (AFPMSM),
which is particularly suitable for electric vehicles and small to medium power range wind energy
systems.

AFPMSMs exist in different topologies. In this master’s dissertation an AFPMSM with a yoke-
less and segmented armature (YASA) topology is used, with surface mounted permanent mag-
nets. Therefore this chapter will focus on this particular topology. More exhaustive information
about the design and the different topologies of AFPMSMs can be found in [1].

2.2 Working Principle

The operation principle of an AFPMSM is similar to that of a radial flux permanent magnet
machine, except that the magnets are now magnetized in the axial instead of the radial direction,
leading to an axial flux instead of a radial one.

In generation mode, an external force rotates the rotor disc with respect to the stator. In this
way, a time varying magnetic flux is generated in the stator teeth, inducing a voltage - the back
electromotive force (EMF) - in the stator windings. Power is transferred from the external force
imposing the rotation to electric power dissipated in the load connected to the stator windings.

In motor working, however, an externally imposed stator current results in a magnetic field
that interacts with the magnetic field originating from the permanent magnets. The result is a
rotation of the rotor disc. Electric power is thus transferred into mechanical power, available at
the shaft of the machine.

3
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2.3 Yokeless And Segmented Armature Topology

The AFPMSM used throughout this master’s dissertation has a yokeless and segmented armature
(YASA) topology, which is illustrated in Figure 2.1.

Figure 2.1: The YASA topology: (1) stator consisting of multiple stator core elements;
(2) rotor; (3) permanent magnet; (4) tooth coil winding [1]

The machine consists of one stator and two rotors. The permanent magnets on both rotors are
magnetized in equal direction, in the same way as for a so-called north south (NS) topology.
Figure 2.2 gives a planar representation of this topology, showing the axial antisymmetry in the
machine. Some magnetic flux paths are indicated as well. Since the magnetic symmetry in the
machine does not require a closing path for the magnetic flux through the stator yoke, this yoke
is removed entirely in the YASA axial flux machine, resulting in the existence of individually
segmented armature elements.

Figure 2.2: Planar version of the NS torus machine topology, with indicated magnetic flux paths [1]

Around each individually segmented armature element a double layer concentrated fractional

4



Chapter 2. Axial Flux Permanent Magnet Synchronous Machines

pitch winding is wound, which is very often called a tooth coil winding. Compared to the original
NS torus topology with a short stator yoke, the winding arrangement complexity is significantly
reduced.

The absence of a stator yoke has an advantageous influence on stator core loss and power density
as well. The easy winding arrangement enables short end windings and a good filling factor of
the conductor in the slots when using wires with a rectangular cross section. Hence the YASA
topology exhibits a superior power density and an excellent energy efficiency compared to other
axial flux machine topologies.

2.4 Mounting of the Permanent Magnets

There are two typical possibilities to mount the magnets to the rotor. The first possibility is to
attach them to the surface of the rotor. This type of PMSM (permanent magnet synchronous
machine) is usually denoted as SPMSM (surface permanent magnet synchronous machine) and
is shown in Figure 2.3a. Another possibility is to sink the magnets into the rotor, resulting in
an IPMSM (interior permanent magnet synchronous machine) illustrated in Figure 2.3b. Since
the magnetic permeance of NdFeB magnets is comparable to the one of air, a SPMSM has a
smooth air gap from magnetic point of view, without a variance in inductance. An IPMSM
on the contrary exhibits a significant variance in inductance, resulting in a reluctance torque.
Throughout this master’s dissertation, a SPMSM is used.

(a) SPMSM (b) IPMSM

Figure 2.3: Mounting of the permanent magnets

2.5 Main Advantages of AFPMSMs

One of the most important advantages of PMSMs in general is the fact that they have a good
energy efficiency. Usually permanent magnets with a high energy density, such as neodymium
(NdFeB) magnets, are used to generate the magnetic field. As a result, no field excitation current
is necessary and the corresponding copper losses are absent. Large torque-ampere ratio’s are
obtained.

Besides, PM motor drives are relatively easy to control compared to, for instance, induction
motor drives. Therefore, PMSMs are often used when fast torque response and high-performance
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operation are required.

A major advantage of AFPMSMs is their compactness. Their axial length is small in comparison
with that of a radial machine. Due to their light weight, AFPMSMs have a relatively high power
and torque density. Especially in electric vehicle applications, compactness and high power
density are crucial properties.

2.6 Conclusion

The electric machine used throughout this master’s dissertation is an AFPMSM with a YASA
topology and surface mounted permanent magnets. A YASA machine consists of two rotors
with permanent magnets and one stator composed of multiple stator core elements, wound with
tooth coil windings. Compared to other topologies, YASA machines exhibit an overall better
performance: they have the advantage of a good energy efficiency, compactness, and a relatively
high power and torque density.
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Chapter 3

Predictive Control

3.1 Introduction

The emergence and continuous evolution of digital signal processing in the last half-century
offered immense potential for converter control techniques. Besides the already existing analog
controllers - such as linear controllers with modulation schemes and non-linear controllers based
on hysteresis comparators - new, more advanced control techniques could be developed, in order
to improve the transient performance and efficiency of electric drives. Examples are fuzzy,
adaptive, sliding mode and predictive controls. The rise of the latter could not have been made
possible without the availability of high processing power. After all, predictive controllers make
use of a system model to predict the system behavior, involving a large computational burden.

After decades of research, the domain of predictive control comprises a large variety of algo-
rithms. They appear to be very appropriate to handle constraints and non-linear processes.
In this chapter, the basic concepts of two of them will be elucidated: model based predictive
control and deadbeat control.

3.2 Model Based Predictive Control

Model based predictive control (MBPC) is a collective term to denote all control strategies
making use of a process model to forecast the output of a system given a certain input. To
determine the optimal control action, minimization of a cost function is required. MBPC allows
fast and accurate control of multiple controlled variables.

The MBPC-principle is summarized as follows in [3]:

1. Use the process model to predict the evolution of the process output as a function of the
intended control actions.

2. Minimize a specific cost function over these control actions. The cost function represents
the requirements for a good control and includes the difference between the desired and
predicted process outputs. The control action resulting in the lowest cost will be applied
to the actual system.

The various algorithms differ mainly in the type of model used to represent the process and its
disturbances (e.g. linear or non-linear), and the cost function to be minimized (e.g. with or
without the required control effort included). This flexibility of the model and the cost function
is a great advantage, since it enables to include multiple variables, system constraints, additional
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control objectives, and basically every characteristic that can be measured and mathematically
modeled. In [4], the difference between using a classical, parametric machine model and a back
propagation artificial neural network is studied. A comparison between different types of cost
functions is made as well.

MBPC is very well-suited to control systems with inherently discrete control signals. For power
electronic converters for instance, the number of switch states is limited to a finite set. As a
result, each possible state can be evaluated and minimization of the cost function simplifies to
selecting the state leading to the minimum cost. In this way complicated and time-consuming
minimization algorithms can be avoided, and the algorithm design is very intuitive. To refer to
this kind of MBPC the term finite-set MBPC (FS-MBPC) is used. The authors of [5] use the
name hybrid torque control, since the electric machine constitutes a continuous process, while
the state variables of the converter are discrete. In [6] the algorithm is denoted as finite alphabet
model predictive control (FAMPC).

3.2.1 Working Principle

The working principle of FS-MBPC is illustrated in Figure 3.1. As only one measurement will
be taken during an update period Tu of the controller, the sampling period Ts is equal to Tu.

Figure 3.1: Working principle of FS-MBPC, visualizing the basic steps:
measurement (M), estimation (E), prediction (P) and optimization (O)

(Adapted from [7])

Three steps can be defined: estimation, prediction and optimization.

Estimation

At update instant k, the optimal control action Sk (determined during the previous time interval
k − 1 → k) is applied, and the state xk is measured, providing feedback to the controller. Sk
will be kept constant throughout the period k → k + 1, giving the controller one update period

8
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Tu to find the new optimal control action at time instant k + 1. In order to do so, it requires
knowledge of the state xk+1 as well. Measuring the state xk+1 at time k + 1 is not an option,
as this would mean that the controller should be able to calculate Sk+1 in an infinitely small
period of time. Therefore xk+1 is estimated using the system model, starting from xk and Sk.
In [8] this step is called initial state position, while in [9] the term two-step-ahead prediction is
used for an estimation step followed by a single prediction step.

Prediction

For every possible control action Sk+1, the future state x̂k+2 is calculated starting from the
estimated state x̂k+1. Since there is only a finite set of possible switch states, each of them
can be evaluated. The computational burden and control quality will directly depend on the
complexity and the accuracy of the model.

Optimization

Based on the evaluation of a cost function, the most appropriate control action is selected,
bringing the system state closest to its desired value x∗. As Tu is sufficiently small compared
with the dynamical behavior of the system, x∗k+2 can be assumed to be equal to x∗k. Since there
is only a finite set of control actions, no complex and time-consuming minimization algorithm
is needed: calculating the cost for every single switch state and picking the one leading to the
smallest cost suffices. This optimal control action Sk+1 will then be applied to the system, and
the algorithm is restarted. This is the so-called receding horizon principle. It is noteworthy
that this algorithm directly selects one - and only one - switch state of the inverter per update
period, and this switch state is maintained during the entire update period. In other words: the
inverter does not switch during Tu.

An important drawback of FS-MBPC is that the switching frequency may vary - as the switch
state will not change at every update instant - making it harder to design a proper electromag-
netic interference filter. Moreover, a variable switching frequency can lead to acoustic noise.

The specific application of FS-MBPC for torque and current control will be discussed more
extensively in Chapters 5 and 6.

3.2.2 Timing

In Figure 3.1 the measurement of xk is taken immediately after the control action Sk is applied.
In reality, this is not good practice. When a new control action is applied, this introduces
transient behavior in the system. Measuring the state during these transients gives useless
information to the controller, deteriorating the control quality.

A solution is presented in Figure 3.2. When the control action Sk is applied at instant k, the
state xk+1/2 is measured half an update period Tu/2 later. This means that the controller needs
to execute the control algorithm during the remaining half of the update period. Its computation
time is halved and in fact only half its capacity is used, which is not very efficient. On the other
hand, postponing the state measurement decreases the time step used for the linearization in
the estimation step, leading to a more accurate linearized model. This will be commented in
greater detail in Section 4.2.3 of the next chapter.
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Figure 3.2: Timing of the basic steps in MBPC:
measurement (M), estimation (E), prediction (P) and optimization (O)

Specifically for this master’s dissertation, the proposed timing schedule will only have advan-
tages, since it is not the controller but the inverter that imposes limitations on the update
frequency. The controller is powerful enough to execute the computations in half an update
period, leading to representative measurements and a more accurate linearized model in the
estimation step.

3.3 Deadbeat Control

Deadbeat (DB) control is one of the most uncomplicated predictive controllers, according to [2].
The basic principle comprises the calculation of the required control signals to reduce the error
on the controlled variables to zero in a finite amount of steps (generally one). Although deadbeat
control makes use of a system model, it is not a model based predictive control, since no cost
function is used. In contrast to FS-MBPC, DB control needs a separate pulse modulation
process, since the control algorithm does not directly determine the switch state Sk+1 of the
inverter. Its output is a reference value for the required input voltage V ∗k+1 of the machine,
which can take on any real value.

3.3.1 Working Principle

The general working principle of a DB controller is illustrated in Figure 3.3. Just like FS-
MBPC, a DB controller comprises a measurement and an estimation. But instead of evaluating
all possible inputs in a prediction step and selecting the most optimal one in an optimization
step, the deadbeat controller computes which input is required to reach the reference in a finite
amount of update periods (one period in Figure 3.3). Therefore, DB is less computationally
complex than FS-MBPC. The timing explained in Section 3.2.2 also applies to the DB controller
and is already taken into account in Figure 3.3.
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Figure 3.3: Working principle of DB control, visualizing the basic steps:
measurement (M), estimation (E) and deadbeat (DB)

Estimation

The first step in the computation of the input voltage V ∗k+1 required to bring the output to its
reference value is very similar to the estimation step in FS-MBPC. The input voltage Vk applied
to the machine at instant k and the system outputs measured half an update period later at
k + 1/2 are used to calculate the output at k + 1 by means of the system model.

Deadbeat

The second step in the DB algorithm, however, distinguishes DB control from FS-MBPC. To
obtain the required input at k + 1, one assumes that the output xk+2 equals the set-point x∗.
The system model can then be used to compute the required input at k + 1. Contrary to FS-
MBPC, the DB controller does not determine the optimal switch state of the inverter directly.
It determines the reference signal V ∗k+1 for the input that is required to bring the output to
its set-point instead. Because the inverter supply of the PMSM is restricted to only a limited
set of switch states, the control action imposed by the deadbeat controller can only very rarely
be applied to the PMSM immediately. Therefore a modulator is used in combination with the
controller, for instance a classical space vector pulse width modulator (SVPWM), which will be
explained in Section 4.3.2. Consequently, the switch state of the inverter will not be constant
throughout an update period Tu: the modulator divides Tu in smaller pieces in which the switch
state can change. Consequently, for the same Tu, the switching frequency fswitch will be much
higher for DB control than it will be for FS-MBPC: for DB control fswitch ≈ 2 · fu for each phase,
while for FS-MBPC fswitch ≤ fu, as is illustrated in Figure 3.4.
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Figure 3.4: Difference in switchings between FS-MBPC and DB control

Using the DB principle, no cost function is needed to decide which control action needs to be
applied. The fact that the burdensome process of the tuning of the shape and the parameters
of the cost function is avoided in this way, can be seen as an advantage. However, the freedom
to include extra requirements on the control actions (for instance to reduce switching losses) is
lost as well.

In Chapter 6 the application of the deadbeat algorithm for current control will be elaborated.

Another topic that needs to be studied is the fact that deadbeat controllers are very sensitive
to the model accuracy, which makes them susceptible to stability issues. Section 7.2.4 will delve
deeper into this subject.

3.4 Conclusion

This chapter introduced the basic working principles of two predictive controllers: FS-MBPC
and DB control.

The three basic steps of FS-MBPC were explained: estimation, prediction and optimization.
The output of the algorithm is the required switch state of the inverter.

Contrary to FS-MBPC, a DB controller executes two steps: estimation and deadbeat. The
algorithm outputs a reference value for the input voltage of the machine, which is translated by
a modulator into the necessary switch states for the inverter.

Some attention was devoted to the timing aspect as well. To avoid measuring transients and to
obtain a more accurate linearized model, the state will be measured half an update period after
a new control action is applied. A disadvantage of this timing is that only half the capacity of
the controller is used.
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Modeling

4.1 Introduction

Predictive torque controllers make use of a system model to forecast the output of a system given
a certain input. The accuracy of the used model is not only tightly connected to the performance
of the controller, but also to its computational burden. The key is to derive an adequate model,
trading off both conflicting requirements. This chapter is devoted to the modeling of the machine
and the inverter.

4.2 Machine Model

4.2.1 Assumptions

To obtain a practicable model of an AFPMSM, a number of assumptions is made in [2, 10] to
simplify the machine equations considerably:

� The machine is three phase symmetrical.

� The stator windings are sinusoidally distributed in space for the fundamental component.

� There are no skin-effects.

� There is no saturation.

� There are no stator slot-effects, nor stator saliency.

On the contrary, the rotor may contain saliency effects. However, since in this master’s disser-
tation a SPMSM is considered, from magnetic point of view the air gap is smooth, showing no
variation in inductance. This is due to the fact that the magnetic permeance of NdFeB magnets
is similar to the one of air.

An additional assumption concerns the modeling of these permanent magnets:

� The permanent magnets are replaced by an equivalent two phase rotor winding in the
qd-reference frame, attached to the rotor, with an excitation in the d-axis resulting in the
same magnetization as caused by the PMs.

It has to be emphasized that none of the assumptions requires a symmetrical sinusoidal three-
phase supply. Consequently, the model will be valid for inverter supply as well.
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4.2.2 Derivation of the Dynamic Model

In [10] is explained in detail how the dynamic model of the machine is derived. Since there are
no rotor windings, the derivation starts from the dynamical electrical equations at time instant
i for the three stator phases only:

Vi = RiIi +
dLi(θ)Ii

dt
(4.1)

The vector Vi contains the instantaneous values of the three stator voltages, while the vector Ii

describes the phase currents:

Vi =
[
vsa vsb vsc

]T
(4.2)

Ii =
[
isa isb isc

]T
(4.3)

Ri represents the instantaneous resistance matrix and Li(θ) the instantaneous inductance ma-
trix, depending on the relative angle θ between stator and rotor.

However, in most cases it is not necessary to consider all three stator equations, since there
cannot be any zero-sequence power. Indeed: for a delta connected machine the zero-sequence
voltages are inherently zero, while for a wye connected machine the neutral is almost never con-
nected, meaning that zero-sequence currents cannot flow. Therefore the zero-sequence equations
will be omitted. For this purpose, the non power-invariant Clarke transformation is used 1:

Tc
−1 =

2

3

[
1 −1/2 −1/2

0
√

3/2 −
√

3/2

]
(4.4)

[
vα
vβ

]
= Tc

−1

vsa

vsb

vsc

 (4.5)

where vα and vβ are the voltages expressed in the equivalent two-phase stator reference frame.
In this way, the number of electrical equations reduces to two, simplifying the model of the
machine. However, the equations in the stator reference frame are time dependent, as the angle
θ between rotor and stator changes in time. The cause is that the stator reference frame is at
standstill, while the rotor is rotating with rotor speed. Transforming the equations to a common
reference frame with electrical rotor speed ω = dθ/dt using the transformation

Tr
−1 =

[
cos θ sin θ
− sin θ cos θ

]
(4.6)

will transform the αβ-stator variables to qd-variables fixed to the rotor, and thus make the equa-
tions stationary. Since a PMSM is considered, the magnetic flux originatig from the permanent
magnets rotates at the same speed as the rotor.

Eventually, two non-linear, stationary electrical equations are obtained in the rotor reference
frame:

1The non power-invariant Clarke transformation preserves the amplitude of currents and voltages, but not the

power. The power-invariant Clarke transformation, however, (with coefficient
√

2
3

instead of 2
3
) preserves the

power, but not the amplitude of currents and voltages.
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Figure 4.1: Transformation to the qd-reference frame

[
vq
vd

]
= Tr

−1Tc
−1

vsa

vsb

vsc

 (4.7)

=

[
Rsiq + Lq

diq
dt − ωLd(id + imag)

Rsid + Ld
did
dt + ωLqiq

]
(4.8)

where

� Rs is the stator resistance

� Lq and Ld are the q- and d-axis inductances respectively

� iq and id are the currents in the qd-reference frame

� imag is a constant equivalent current in the d-axis, representing the permanent magnets
and resulting in the same flux level as caused by the permanent magnets

Figure 4.1 visualizes the transformation to the qd-reference frame.

The machine parameters Rs, Lq and Ld are assumed constant, meaning that the effect of satu-
ration is not included in this model. Lq and Ld are equal since a SPMSM is considered.

The last equation that needs to be included in the dynamic machine model is the equation of
motion:

J
dΩ

dt
= Tem − Tl (4.9)

where

� J is the total inertia of machine and load

� Ω is the mechanical speed, defined as ω/Np: the electrical speed divided by the number of
pole pairs

� Tem is the electromagnetic torque

� Tl is the load torque

The electromagnetic torque Tem is calculated as:

Tem =
3

2
Np=(Ψ∗s · Is) (4.10)

= −3

2
NpLdimagiq (4.11)
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where Ψs and Is are the stator flux and current vector respectively. An equivalent scheme and
a vector diagram of the AFPMSM are presented in Figures 4.2 and 4.3 respectively.
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Figure 4.2: Equivalent scheme
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Figure 4.3: Vector diagram

After solving the set of electrical equations (Eq. (4.8)) and the equation of motion (Eq. (4.9)),
the qd-variables can be transformed back to the phase variables by applying the inverse trans-
formation:

Tc =

 1 0

−1/2
√

3/2

−1/2 −
√

3/2

 (4.12)

Tr =

[
cos θ − sin θ
sin θ cos θ

]
(4.13)

vsa

vsb

vsc

 = TcTr

[
vq
vd

]
(4.14)

4.2.3 Discrete Time Model

Since nowadays most controllers are digitally implemented, the machine equations need to be
rewritten in a discrete time representation. The time step ∆t is chosen to be equal to (half of)
the update period Tu of the controllers in this master’s dissertation. A smaller Tu will result in a
more accurate linearization, but less computation time for the controller. Since the optimization
of the speed of the controller is outside the scope of this thesis, fu will be chosen close to the half
of the maximum switching frequency of the inverter, giving the controller sufficient computation
time without overloading the inverter when using DB control.

The model will be linearized using the first order Euler approximation for the derivatives:

f(xi, ui, i) =
xi+1 − xi

∆t
(4.15)

where xi = x(t), xi+1 = x(t + ∆t) and f(xi, ui, i) represents the derivative of the quantity x
evaluated at time t (or discrete time instant i) using the input ui and state xi at that same time
instant. The required f(xi, ui, i) are calculated by means of the electrical model given by Eq.
(4.8). In this way, the value of x at an instant ∆t later than the considered moment can be
obtained, which is useful in the control algorithms introduced in Chapter 3:

xi+1 = xi + ∆t · f(xi, ui, i) (4.16)
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Hence, the discrete time version of the dynamic electrical equations is:

vkq = Rsi
k
q +

Lq
Tu

(
ik+1
q − ikq

)
− ωkLd(ikd + imag) (4.17)

vkd = Rsi
k
d +

Ld
Tu

(
ik+1
d − ikd

)
+ ωkLqi

k
q (4.18)

In [11] can be found that the local truncation error (the error made when going from xi to
xi+1 due to the used methodology) when solving this differential equation will be of the order
O(∆t2).

In Section 6.4.3, the effect of switching to the modified Euler approximation will be studied.

4.2.4 Machine Parameters

The machine used throughout this master’s dissertation is a sixteen-pole machine (Np = 8). The
system has a total inertia of J = 0.0024 kgm2. The machine parameters represented in Table
4.1 are deduced from a finite element model for a flux level leading to a flux density of 1.6T in
the stator teeth. For this flux level, a good balance is reached between converting an acceptable
amount of power given the size of the machine, and avoiding too much losses. Moreover, in this
way the machine is not saturated and the linearity assumption will hold.

Table 4.1: Machine parameters

Parameter Symbol Value

Number of pole pairs Np 8
Rated power [kW] Pn 4
Rated speed [rpm] Nn 2500
Rated torque [Nm] Tn 15
Rated voltage [V] Vn 152
Stator inductance [mH] Lq = Ld 2.54
Stator resistance [mΩ] Rs 325
Mechanical inertia [kg ·m2] J 0.0024
Equivalent PM current [A] imag -43.2

4.3 Inverter Model

4.3.1 Topology

To supply voltage to the stator windings, a two-level voltage source inverter (2L-VSI) is used.
The topology of this type of inverter is presented in Figure 4.4. A simplified model is used,
considering perfect switches and no dead time.

In [12] the working principle of a 2L-VSI is explained. The inverter consists of six power electronic
switches, which are steered two by two in a complementary way. Each pair of complementary
switches constitutes one phase leg, determining whether the load in that phase is connected to
the positive or the negative DC bus. When, for instance, in phase a Sa = 1, this means that
switch Sa conducts current and hence phase a of the load is connected to the positive DC bus.
Due to complementarity, Sa = 0 in this case, so switch Sa is not conducting. However, when
Sa = 0, switch Sa is not conducting, while Sa is, resulting in the connection of the load in
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Figure 4.4: Topology of a 2L-VSI [7]

phase a to the negative DC bus. In a similar way, the other two phases have two switching
possibilities as well, resulting in 23 = 8 possible output states for the three phase voltage at the
output of the inverter. These switching possibilities can be expressed by a vector [Sa, Sb, Sc]. In
reality, some dead time is included between the switching of complementary switches, to assure
that the previously conducting switch is extinguished before its complementary switch is fired.
Without this precautionary measure, both switches would be conducting concurrently, resulting
in a short-circuit of the DC bus. This so-called shoot-through would lead to unacceptably high
currents, and may result in damage to the voltage source and the switches of the inverter.

For a known switch state vector, the phase voltages can be calculated as:

vxn =

(
Sx −

1

2

)
Vdc (4.19)

where x represents the phase: x ∈ {a, b, c}. The eight possible phase voltages are represented
in the αβ-reference frame in Figure 4.5. As can be seen, two of these voltages coincide with the
origin, as a result of connecting all phases to the positive or the negative DC bus. These vectors
are called null vectors, while the remaining six vectors are called active vectors.

Figure 4.5: Phase voltage vectors of a 2L-VSI [7]
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For the load, the voltage vxo (where o represents the star point of the load) is of more importance
than the phase voltage vxn (where n refers to the center tap of the DC bus). The voltage over
the load can be calculated as follows:

vxo = vxn − von (4.20)

where the voltage of the star point o of the load with respect to the center tap n of the DC bus
equals the average of the phase voltages if the load is symmetrical:

von =
van + vbn + vcn

3
(4.21)

4.3.2 Modulation

When an inverter is used to convert a DC voltage to an AC voltage, the switch states must be
alternated in a suitable way. Determining the sequence of the switch states defines the essence
of inverter modulation. Three possible techniques will be presented: pulse width modulation
(PWM), space vector modulation (SVM) and direct control, which are discussed in detail in [2]
and [13].

Pulse Width Modulation

Pulse width modulation offers a technique to adjust both the frequency and the amplitude of
the output voltage to a certain extent. The working principle is sketched in Figure 4.6. By
using the intersections of an (in most cases) triangular carrier wave and a reference wave with
the desired amplitude and frequency, the required pulse widths are obtained.

Figure 4.6: Working principle of PWM

Space Vector Modulation

The principle of space vector modulation can be explained based on the space vector represen-
tation of the output voltage. Therefore the αβ-plane needs to be subdivided in six sectors, as
shown in Figure 4.7. An arbitrary voltage vector vs is approximated by an appropriate sequence
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of two null vectors and the two active vectors confining the sector where vs is situated, in par-
ticular V 1 and V 2 in Figure 4.7. To obtain a voltage vector which equals on average the desired
voltage vector vs over a period Tc, V 1 is applied over a period t1 and V 2 over a period t2. During
the rest of the period Tc - more specifically the period t0 - a null vector will be applied, such
that:

Tcvs = t1V 1 + t2V 2 (4.22)

Tc = t0 + t1 + t2 (4.23)

In this way, the on- and off-times of the switches can be computed. By the choice of the switching
pattern and the division of t0 over the two null vectors, the modulation is fully defined. According
to [2] for each type of SVM an equivalent PWM scheme can be found.

Figure 4.7: Working principle of SVM [2]

Direct Control

From the previous discussion about PWM and SVM it is clear that these modulation techniques
are used to follow a voltage reference with a certain frequency in open-loop control: they make
use of an a priori mapped out switching scheme. For MBPC, however, which was introduced
in Section 3.2, this is not the case. In MBPC the feedback of one or more physical signals is
processed by a controller, and based on the instantaneous state the optimal switching possibility
is selected on-line.

4.4 Conclusion

In this chapter, the dynamical model of the AFPMSM was introduced. In order to obtain time-
invariant stator equations the equivalent two-phase symmetrical model and the rotation to the
qd-reference frame were discussed.

The model of the 2L-VSI was presented as well, together with three possible modulation tech-
niques: PWM, SVM and direct control using MBPC. It was concluded that PWM and SVM
make use of an a priori defined switching scheme, while MBPC uses feedback for on-line selection
of the optimal voltage vector.
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Predictive Torque Control

5.1 Introduction

Predictive torque controllers (PTC) are part of the family of direct torque controllers (DTC),
which regulate the torque and stator flux of electric machines in a direct way. The DTC family
comprises various control strategies, going from the classical DTC schemes - introduced by Taka-
hashi in the mid-1980’s using look-up tables and hysteresis comparators - to control strategies
making use of MBPC. In this master’s dissertation only the PTC strategy based on FS-MBPC
will be elaborated. In [2, 14,15] a more complete overview of the DTC family is given.

This chapter will illustrate the three basic steps of FS-MBPC for PTC, i.e. estimation, prediction
and optimization. The performance of the controller will be evaluated by simulations. An
experimental verification can be found in Chapter 8.

5.2 Working Principle

𝑇em
∗ 

Ψs
∗  

𝑖𝑞 

𝑖𝑑 

𝑆𝑎 

𝑆𝑏 

𝑆𝑐 

FS-MBPC 

𝑑𝑞 
𝛼𝛽 

2L-VSI PMSM 

𝑖𝑎 
𝛼𝛽 

𝑎𝑏𝑐 𝑖𝑏 

𝑖𝛼 

𝑖𝛽 

𝜃 

Figure 5.1: Principle of PTC

A predictive torque controller directly regulates both the electromagnetic torque and the mod-
ulus of the stator flux. The general structure is visualized in Figure 5.1. The algorithm uses
as inputs the measured stator current and motor position, and the set-points for the controlled
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variables, more specifically the electromagnetic torque Tem and the modulus of the stator flux
|Ψs|. Those inputs are processed to determine the optimal switch state for the inverter by means
of FS-MBPC. The following sections will delve deeper into the three basic steps of FS-MBPC,
which were introduced in Section 3.2.

5.2.1 Estimation

At update instant k a new switch state Sk is applied to the inverter, resulting in a change in
the stator voltage and thus the stator current of the AFPMSM. The new value of the current
is measured half an update period after the control action - thus at k + 1/2 - in order to avoid
measuring a transient. Of course the currents keep on evolving during the remaining part of the
update period as well. Because a finite time is required to compute the optimal Sk+1, and the
predictions in the following step are based on the currents and voltages at time instant k + 1,
these values need to be estimated. This is done by means of the current switch state Sk of the
inverter, the measured currents and the discrete time system model.

Stator voltage

In a first step, the phase voltages vkxo over the AFPMSM (x ∈ {a, b, c}) are computed by means
of the inverter model discussed in Section 4.3.1. The Clarke transformation is applied, followed
by a rotation to bring the stator voltages to the synchronous qd-reference frame, as explained
in Section 4.2.2. Since the switch state Sk is only changed again at instant k + 1, the voltages
are constant during the interval k → k + 1.

Stator current

In a second step, the stator current components at time instant k + 1 are estimated using the
current measurement at instant k + 1/2 and the previously computed stator phase voltages.
The current measurements are first transformed to the qd-reference frame, and then the discrete
time version of the electrical equations derived in Section 4.2.2 is used to estimate the current
components at instant k + 1:

îk+1
q = ik+1/2

q +
Tu

2Lq

(
vkq −Rsi

k+1/2
q + ωk+1/2Ld(i

k+1/2
d + imag)

)
(5.1)

îk+1
d = i

k+1/2
d +

Tu

2Ld

(
vkd −Rsi

k+1/2
d − ωk+1/2Lqi

k+1/2
q

)
(5.2)

The electrical speed ωk+1/2 equals the measured mechanical speed Ωk+1/2 multiplied with the
number of pole pairs Np, and is assumed to be constant during the time interval k+1/2→ k+2.
This assumption can be justified since Tu is small compared to the speed. Besides, the mechanical
time constants of machines are typically larger than the update period. For the same reasons,
the rotor angle θ is considered constant during Tu.

Stator flux

Contrary to the stator currents, the stator flux cannot be measured directly. It needs to be
estimated based on other measured variables. An overview of different techniques that can be
used for this purpose is given in [2]. Since the permanent magnets determine the position of
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the rotor flux for a PMSM, it is appropriate to calculate the stator flux by means of the current
model in the qd-reference frame:

Ψ̂k+1
q = Lq î

k+1
q

Ψ̂k+1
d = Ld(̂i

k+1
d + imag)

}
⇒ |Ψ̂k+1

s | =
√(

Ψ̂k+1
q

)2
+
(

Ψ̂k+1
d

)2
(5.3)

A disadvantage of this technique is that it strongly depends on the stator inductances, which
are susceptible to saturation of the machine. These deviations in inductance will influence the
flux estimation as well.

However, an advantage of this method is that is does not make use of the stator resistance,
significantly varying due to skin effect and temperature changes. Besides, it ensures an accurate
estimation over the full speed range. This would not be the case if the flux were estimated
by integration of the back EMF using a low pass filter. For an induction machine, the latter
technique benefits from the fact that the flux and the torque can be estimated in the stator
reference frame, without knowledge of θ. Nevertheless, in a PMSM the flux originating from the
permanent magnets is defined in the qd-reference frame anyway, undermining this advantage.

Electromagnetic torque

The stator current components can be used to estimate the torque as well:

T̂ k+1
em = −3

2
NpLdimag î

k+1
q (5.4)

5.2.2 Prediction

For the prediction of the outputs for all eight switching possibilities Sk+1, the same computations
are executed as in the estimation step. The only difference is that the time step used for the
prediction of the current components equals Tu now instead of Tu/2.

5.2.3 Optimization

To decide which switching possibility results in the best control of both electromagnetic torque
and stator flux, a cost function is used. For each controlled variable a cost is determined,
representing how well the value approximates its corresponding reference. The cost can be
defined in various ways. A common choice is to express it as the square of the deviation of the
variable from its set-point. In this way, large deviations are punished more severely than small
deviations. To facilitate putting variables of different orders of magnitude in one function, the
use of p.u. values is recommended. The total cost Jk+1 corresponding to the application of a
certain switch state Sk+1 is then presented by:

Jk+1 =
(T̂ k+2

em − T ∗em)2

T 2
ref

+WΨ
(|Ψ̂k+2

s | − |Ψ∗s |)2

Ψ2
ref

(5.5)

where WΨ is a dimensionless weighting factor representing the relative strictness of the flux
control compared to the torque control, and Tref and Ψref are used to transform the two cost
terms into p.u. values. T ∗em and |Ψ∗s | represent the required torque and flux respectively. In
this text, Tref usually equals the required torque T ∗em, unless zero torque is required from the
machine. In that case, T ∗em = 0 Nm, while Tref is chosen to be 1 Nm. The same holds for |Ψ∗s |
and Ψref . In this way, a deviation of the same size will lead to a higher cost for small reference
values than for large reference values.
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Another possibility is to use the absolute value of the errors in the cost function instead of
quadratic terms, as is done in [9] and [16]. However, in [4] is demonstrated that this leads to a
comparable control quality.

The use of weighting factors is avoided in [17], since there is no systematic way to define them,
and their appropriateness depends on the system parameters and operating point. The authors
propose an alternative strategy in which the input voltage vectors are ranked for each separate
variable, according to the cost for that variable. Voltage vectors resulting in a lower error are
assigned a lower ranking, while voltage vectors leading to higher errors receive a higher ranking.
The vector that has the lowest average value of its ranking is selected as the best overall voltage
and applied to the system. However, since this strategy requires more computational effort
and its advantages are only pronounced for controllers dealing with plenty of variables, in this
master’s dissertation weighting factors will be used. In Section 5.3, more attention will be
devoted to the tuning of the weighting factors.

The reference value T ∗em for the torque is prescribed by the application. The flux, however,
is controlled to respect the linearity assumption of the used model and to constrain the Joule
losses. When the stator flux rises above a certain level (as a rule of thumb, this level equals
1.6T), saturation of the machine occurs. As a result, the accuracy of the linear model decreases,
which might jeopardize the torque control. Reduction of the Joule losses is another motivation
to regulate the flux. Since for PMSMs the rated flux is provided by the permanent magnets,
the effect of the stator current on the flux needs to be limited (except when field weakening is
required). For SPMSM the torque by ampere ratio is maximized by fixing the current id to zero.
This is called the principle of maximum torque per ampere (MTPA) in [18]1. Reduction of the
stator current amplitude and control of the flux level can be obtained by defining the reference
value for the modulus of the flux as:

|Ψ∗s | =
√

(Lqi∗q)
2 + (Ldimag)2 (5.6)

where the reference value i∗q is implicitly imposed by the reference value for the torque:

i∗q =
T ∗em

−3
2NpLdimag

(5.7)

Stator flux and torque are clearly correlated by the stator current component iq, making it
difficult to understand the actions of the controller. The fact that the control of the two regulated
variables cannot be decoupled, is a disadvantage of PTC. Furthermore, Eq. (5.6) is actually a
very circuitous and artificial way to express that i∗d = 0. This topic will feature in Section 6.2.

5.3 Simulations

The simulations in this master’s dissertation are performed in a MATLABr&Simulinkr envi-
ronment. Figure 5.2 shows the simulation results for the quadratic cost function of Eq. (5.5)
with a weighting factor WΨ = 3. The values for the other simulation parameters are listed in
Table 5.1. Those values will be used for all the simulations in this and the next chapter, unless
stated otherwise.

1The MTPA principle implies only for SPMSMs with Lq = Ld that id needs to be zero. For machines where
Lq 6= Ld, the MTPA principle requires a non-zero id.
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Table 5.1: Standard simulation parameters

Parameter Value

Tref [Nm] 15
Iq,ref = Tref/[−(3/2)NpLdimag] [A] 11.39

Ψref =
√

(Ldimag)2 + (LqIq,ref)2 [Wb] 0.11
Vdc [V] 200
fu = fs [kHz] 10
N [rpm] 1000
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Figure 5.2: PTC with quadratic cost function (WΨ = 3)
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Figure 5.3: Stator currents for PTC with quadratic cost function (WΨ = 3)

It is clear that the torque and flux follow their reference values well. Although no current control
is included in the control algorithm, the stator currents plotted in Figure 5.3 appear to be highly
sinusoidal. The ripple due to the inverter voltage supply is however clearly observable.

Nevertheless, the quadratic cost function given by Equation (5.5) results in a typical tracking
control, in which the controller tries to bring both torque and flux exactly to their reference
values. But a voltage vector realizing the set-points for both controlled values will exist only
very rarely. As a result, the controller will continuously adapt the input voltage in vain, trying
to bring the state to its reference value. Actually, this is not the behavior that is wished for. A
direct control aims at reaching an acceptable instantaneous deviation instead of trying to reach
a minimal steady-state deviation. Therefore the performance of a different type of cost function
will be tested as well, a cost function that does not work with tracking but with hard and soft
limits. Hard limits cannot be exceeded (which can prove useful to determine safety limits, for
instance for current limitation), soft limits can, but at a high cost.

An adaptation of the cost function that significantly influences the normal working of the ma-
chine when using PTC, and represents the hard and soft limits, is the definition of tolerance
bands for the torque and/or the modulus of the stator flux. Deviations from the set-point that
fall within these tolerance bands are not - or less severely - punished by a cost. The form of the
new cost terms is sketched in Figure 5.4.

Jk+1
T =


0, 0 ≤ |∆Tem| ≤ Tem,l

(∆Tem)2, Tem,l ≤ |∆Tem| ≤ Tem,u

WT∞(∆Tem)2, |∆Tem| > Tem,u

(5.8)

Jk+1
Ψ =


0, 0 ≤ |∆|Ψs|| ≤ |Ψs|l
WΨ(∆|Ψs|)2, |Ψs|l ≤ |∆|Ψs|| ≤ |Ψs|u
WΨ∞(∆|Ψs|)2, |∆|Ψs|| > |Ψs|u

(5.9)

Jk+1 = Jk+1
T + Jk+1

Ψ (5.10)

where ∆ represents the dimensionless deviation from the reference value, WΨ is again the weight-
ing factor representing the relative strictness of torque and flux control, Xl and Xu are respec-
tively the boundaries of the lower and upper tolerance band, and WX∞ is a relatively large
number representing the fact that the region |∆X| > Xu must be avoided whenever possible.
Choosing WX∞ =∞ is the same as expressing that Xu is a hard limit. In this text, WT∞ and
WΨ∞ are chosen to be finite numbers in order to avoid infeasibilities, situations in which the
controller cannot find an appropriate switch state since all voltage vectors from the finite set
lead to an infinite cost.
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The tolerance bands can be compared with the flux and torque hysteresis bands for DTC. Their
magnitude will greatly influence the inverter’s switching frequency, as has been investigated
for DTC in [19]. The authors of [20] have even gone one step further in the reduction of the
switching frequency than will be done in this text: for each feasible switch state they extrapolate
its output trajectory to derive the number of time steps after which at least one of the controlled
variables leaves its tolerance band. In this way, priority can be given to the switch state that
yields the highest number of time steps that can be applied before switching is required again.

An extensive study about the design of tolerance bands in a cost function is offered in [21].
One of the conclusions is that relaxing the flux control (which is the same as using a wider flux
tolerance band) results in better control quality of the torque. However, |Ψs|l cannot be taken
infinitely large, since the stator current is not minimized in this way: Joule losses would increase
due to a stator current component that does not contribute to the torque, nor is useful for the
flux. Thus, a compromise has to be made between the switching losses and the torque control
quality on the one hand, and the Joule losses and the flux control quality on the other hand.

Figure 5.4: Cost function with tolerance bands

Figure 5.5 plots the simulation results for the cost function given by Eq. (5.10) with Tem,l = 0.15
p.u., Tem,u = 0.25 p.u., WT∞ = 10, WΨ = 1, WΨ∞ = 100, |Ψs|l = 0.12 p.u. and |Ψs|u = 0.2 p.u.
How these parameters are derived, is explained in Section 5.5.

At first sight, the introduction of the tolerance bands increased the ripple on the stator flux
remarkably, while the torque ripple remained more or less the same. The detail views of Figures
5.6 and 5.7 confirm these assumptions. The switching frequency seems to have lowered by the
tolerance band. In Figures 5.6b and 5.7b can be noticed that torque and stator flux remain within
their inner tolerance band for most of the time, while they never leave their outer tolerance band.
This is exactly the kind of behavior cost function (5.10) aims for.

However, comparing two controllers based on a visual inspection of simulation results only,
does not result in well-founded conclusions. In order to assess simulation results of different
controllers in a proper way, an objective quantification of the control quality is urgently needed.
The following section addresses this topic.
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Figure 5.5: PTC with cost function with tolerance bands for both torque and flux (WΨ = 1)
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Figure 5.6: Detail views showing the effect of tolerance bands on the electromagnetic torque
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5.4 Objective Quantification of Quality by Means of Key Per-
formance Indicators

5.4.1 Control Quality

To compare different controllers in an objective way, [2] suggests to use the mean square error
(MSE) of the controlled variables. The equation for the MSE of the variable x compared to its
reference value x∗ is given in Equation 5.11. m is the amount of samples used in the calculation.

MSE(x) =

∑m
k=1 (x∗k − xk)

2

m
(5.11)

To express the global control quality, the (weighted) sum of the MSE-values for all controlled
variables is frequently used. Therefore p.u. values are recommended in the computation of the
total MSE. The used reference values are given in Table 5.1. Actually, the MSE can be compared
to a quadratic cost function: the smaller the MSE, the better the control quality.

An alternative for the MSE is the mean absolute error (MAE):

MAE(x) =

∑m
k=1|x∗k − xk|

m
(5.12)

The main difference between the MSE and MAE method is that MSE values show larger variation
than MAE values for the same deviations: in the MSE method large deviations from the reference
value have more weight than small deviations. This is not the case for MAE values. As a result,
a logarithmic scale is more appropriate for MSEs, while a linear scale is more appropriate
when using MAEs. An argument in the advantage of the MAE is that those values can be
interpreted more intuitively, especially when they are expressed in %. However, since larger
deviations should be penalized more in a good control, it is opted to mainly use the MSE in the
continuation of this text.

5.4.2 Average Switching Frequency and Voltage Quality

In the assessment of a certain control strategy, not only the quality of the control itself should
be taken into account. The switching losses and the voltage quality are important aspects of
the global quality as well.

Switching is inherently coupled with switching losses. Therefore the switching frequency is aimed
to be as low as possible. In this text the switching frequency fswitch is defined as the number of
times a switch changes its state from on to off or vice-versa, averaged over a certain period of
time and the three pairs of complementary switches.

Another important quality aspect is the voltage quality. In [2] the importance of the voltage
quality is emphasized. Four aspects are discussed:

� copper losses: Due to the current ripple caused by a low-quality voltage waveform the
RMS-value of the current, and consequently the copper losses in the stator windings,
increase.

� iron losses: Due to voltage pulses, additional eddy currents originate in the iron core,
resulting in extra iron losses.

� motor isolation: An electrical machine is fed by an inverter through a cable. When this
cable is long, transmission line effects become important and may cause reflections at the
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machine plugs, resulting in overvoltage. The magnitude of the overvoltage depends on the
length of the cable and the voltage transients: the larger both, the larger the overvoltage.

� axis and bearing currents: Due to the effect of fast switching and parasitic capacitive
coupling, high-frequent bearing current can arise, lowering the service life of the bearings.

In general, voltage quality assessment compares a voltage waveform with its reference voltage
waveform. However, since closed-loop torque control does not provide such a reference voltage
waveform, these techniques are not possible. In [2, 22] the extended pulse polarity consistency
rule (PPCR) is recommended as an alternative for this purpose, stating that a pulse in the
coupled voltage can not be followed by a pulse of opposite polarity. After all, polarity reversal
heavily burdens the machine isolation. Concretely this means that for a 2L-VSI the only allowed
switch state transitions are the ones between neighboring voltage vectors in three-phase space
vector representation (also called the αβ-representation). Figure 5.8 illustrates this requirement
for a 2L-VSI that needs to switch from state [1 1 0]. In this situation only four voltage vectors
can be chosen, under which one redundant null vector. For the null vector both [1 1 1] as [0 0 0]
can be chosen, but to reduce the switching losses [1 1 1] is the best option.

Although PPCR is a qualitative benchmark, it can be used quantitatively by counting how many
times the PPCR is not fulfilled for the switchings during a certain period of time.

Figure 5.8: The four allowable voltage vectors for a three-phase 2L-VSI according to the PPCR when
the current switch state is [1 1 0] [2]

5.5 Cost Function Design

When using FS-MBPC, one of the hardest tasks is the definition of an appropriate cost function.
The importance of the cost function cannot be underestimated: when it does not reflect the
desired behavior well, the controller will never be able to reach its expected performance. The
key performance indicators (KPIs) introduced in the previous section prove very useful in this
context. Not only can they be used to evaluate different types of cost functions, they can be
of great help in choosing well-suited parameters (like for instance the weighting factors and
tolerance bands in Equations (5.8) and (5.9)) as well.

To compare the simulation results of Section 5.3 for example, their KPIs are summarized in
Table 5.2. To compute MSE(id) and MAE(id), i

∗
d has been assumed zero, since this leads to

the lowest Joule losses. Due to the fact that iq is just a rescaling of Tem (according to Eq.
(5.4)), their MSE and MAE values are the same in p.u. As inferred by the simulation plots,
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the introduction of the tolerance bands increased the deviation of the stator flux significantly,
but within acceptable limits. The new cost function achieved its purpose: for a similar torque
ripple, the switching frequency and the percentage of switchings not fulfilling the PPCR have
been reduced, at the expense of an increased, but still acceptable Joule loss.

Table 5.2: Comparison in KPIs of a quadratic cost function and a cost function with tolerance bands

KPI quadratic tolerance band

MSE(Tem) = MSE(iq) [p.u.] 0.0066 0.0064
MSE(|Ψs|) [p.u.] 0.0013 0.0050
MSE(id) [p.u.] 0.0232 0.0837
MAE(Tem) = MAE(iq) [p.u.] 0.0668 0.0667
MAE(|Ψs|) [p.u.] 0.0285 0.0599
MAE(id) [p.u.] 0.1206 0.2451
Joule loss [W] 43.90 46.00
fswitch [kHz] 3.30 2.81
non-PPCR [%] 32.44 20.55

W
Ψ

10-2 10-1 100 101 102 103 104

M
S

E

10-4

10-2

100

102

MSE(T
em

)

MSE(|Ψ
s
|)

MSE(T
em

)+MSE(|Ψ
s
|)

Figure 5.9: MSE for varying weighting factor WΨ in a quadratic cost function

The MSE values can be used to find a proper value for the weighting factor WΨ for the quadratic
cost function as well. The plot in Figure 5.9 confirms that WΨ = 3 leads to good results. Remark
that the minimum of MSE(Tem) + MSE(|Ψs|) is flat, so small deviations of the optimum do not
strongly affect the MSE. Since the real system is never perfectly represented by the system
parameters of the model, it is preferable to have a range of weighting factors leading to good
results. In [23] is concluded that a similar range of appropriate weighting factors can be obtained
by experiments.

In general, MSE(Tem) decreases for smallerWΨ, since reducingWΨ means putting more emphasis
on the torque control. However, when WΨ is very small, the controller loses track of the torque
reference value. The cause of this phenomenon can be found in the electrical model of the
machine. The derivatives of the current components are:

diq
dt

=
1

Lq
[vq −Rsiq + ωLd(id + imag)] (5.13)

did
dt

=
1

Ld
[vd −Rsid − ωLqiq] (5.14)
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If the extreme case WΨ = 0 is considered, the only requirement the control imposes on the
system at start-up is that Tem, and thus iq, must rise. Since for N = 1000 rpm the factor ωLd of
the cross-coupling term exceeds Rs by more than a factor 6, the increase of iq is strongest when id
is large and positive. However, when iq rises, did/dt decreases until it becomes negative, causing
id to reduce until this current component falls far below zero. Since vq is limited by the DC bus
voltage, eventually iq will start to decline as well. The required torque can never be reached,
which is reflected in a high MSE. The cross-coupling terms thus lead to a counterintuitive result:
focusing too much on the control of the torque deteriorates the controller’s performance instead
of ameliorating it. The physical cause of this paradox is the back EMF of the AFPMSM.
According to Faraday’s law, a change in magnetic flux (due to a change in the stator current in
this case) induces an electromotive force. Lenz’ law states that this induced back EMF opposes
the change that produced it, which is exactly the observed phenomenon.

When the speed N is lowered, the effect of the cross-coupling is weakened, enabling a controller
with low WΨ to attain the required torque level as well. Another solution is to increase the DC
bus voltage. This will cause iq and id to have faster dynamics, but at the expense of a higher
torque and flux ripple, and more losses in the inverter switches.

(a) MSE(Tem) (b) MSE(|Ψs|)

(c) MSE(Tem)+MSE(|Ψs|)

Figure 5.10: Effect of the tolerance band and weighting factor on the MSE

Finding an appropriateWΨ for a controller with a cost function with tolerance bands is somewhat
more complex, since the width of the tolerance bands comes into play as well. When Tem,l, Tem,u

and |Ψs|u are, for instance, imposed by control quality requirements, WΨ and |Ψs|l can be tuned
in order to reduce the MSE values. Figure 5.10 shows how the MSE values vary in function
of both parameters. The simulations were performed for Tem,l = 0.15 p.u., Tem,u = 0.25 p.u.,
WT∞ = 10, WΨ∞ = 100 and |Ψs|u = 0.2 p.u. to avoid too large deviations from the rated stator
flux. In general an increase in WΨ and/or a decrease in |Ψs|l results in a lower MSE(|Ψs|), thus a
better control of the stator flux. MSE(Tem) on the other hand only increases significantly when
at the same time WΨ is high and |Ψs|l is low, since the controller gives most of its attention to
the regulation of |Ψs|l in this case. When WΨ is low or |Ψs|l is high, more importance can be
attached to the control of Tem.
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In contrast to the quadratic cost function, the controller with tolerance bands never loses his
grip on the torque due to the fact that WΨ∞ = 100 for all values of WΨ. The outer tolerance
band prevents that id falls too far below zero, keeping diq/dt positive until T ∗em is reached.
Nevertheless, in Figure 5.10a can be seen that the quality of the regulation of Tem has declined
for |Ψs|l = 0.2, as a result of a less strict control of the stator flux.

Figure 5.10a shows that for WΨ = 1 the torque is properly controlled for |Ψs|l ∈ [0.05, 0.2]. In
order to tune |Ψs|l, the effect of this parameter on the other KPIs must be taken into account
as well. Figure 5.11 shows the variation of the switching frequency in function of |Ψs|l. It can
be concluded that in general a larger bandwidth results in a lower switching frequency and thus
lower switching losses. The effect of |Ψs|l on the percentage of switchings that is not conform
the PPCR is illustrated in Figure 5.12. The general conclusion is again that the voltage quality
improves for larger bandwidths.
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Figure 5.11: Effect of the tolerance band for the flux on the average switching frequency
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Figure 5.12: Effect of the tolerance band for the flux on the percentage of switchings violating the
PPCR

To get an idea of the effect of the width of the tolerance band on the average Joule losses, they
are plotted in function of |Ψs|l in Figure 5.13. The Joule losses increase with |Ψs|l, because
a large |Ψs|l means that the stator current is not minimized. Nevertheless, since Rs is rather
small, the losses are still acceptable for |Ψs|l = 0.2 as well. |Ψs|l = 0.12 thus leads to a good
compromise and the choice |Ψs|u = 0.2 is also justified.

In [19] an important remark is made on the width of the tolerance bands. Since the current
ripple varies with the operating point, the tolerance bands cannot be optimal for each of them.
A lower speed, for instance, requires a lower DC bus voltage and consequently results in lower
ripple. The tolerance band, however, is set to cope with the worst case scenario, so in the low
speed region the system performance will be degraded. This disadvantage is not present when
using a quadratic cost function.
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Figure 5.13: Effect of the tolerance band for the flux on the average Joule loss

5.6 Conclusion

In this chapter, a comprehensive discussion of PTC was given. PTC uses FS-MBPC to regulate
torque and stator flux directly. The three basic steps of FS-MBPC, i.e. estimation, prediction
and optimization, were elaborated in the specific context of PTC for an AFPMSM. An overview
is given by the flowchart in Figure 5.14, where the state x represents the torque and stator flux.

Two different types of cost function were proposed for the optimization step: a quadratic cost
function, resulting in a typical tracking control, and a cost function with tolerance bands, al-
lowing the controlled variables to deviate a little from their reference values. To allow a fair
comparison between those two types, some KPIs to assess the control quality were introduced:

� MSE and MAE, to evaluate how much the controlled variables deviate from their reference
values

� fswitch, to give an indication of the switching losses

� the PPCR, to asses the voltage quality

� Joule losses

It could be concluded that a quadratic cost function leads to low MSE and MAE values, and
low Joule losses, but at the expense of a high fswitch and violations of the PPCR. A tolerance
band on the other hand increased the MSE and MAE for the flux, in favor of reduced switching
losses and a higher voltage quality.

The correlation between stator flux and torque was mentioned as well. The fact that the two
controlled variables are linked by the stator current component iq makes it more difficult to
predict the actions of the controller, which is a disadvantage of PTC.

Eventually, the effectiveness of the control strategy was validated by simulations.
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Field Oriented Control

6.1 Introduction

The DC commutator machine used to be the preferred machine for applications that required
four-quadrant operation and a fast response. For constant excitation and ideal compensation,
the torque of a DC machine is proportional to its current. By controlling the current, for instance
with a DC chopper or controlled rectifier, the torque is controllable over the entire speed range.

Advances in power electronics have made it possible to obtain controllable AC current supply
for AC rotating field machines as well. The combination with a control strategy called field
orientation allows to obtain a similar ideal dynamic behavior as for the DC machine. Field
oriented control (FOC), also known as vector control, has been proposed by Hasse and Blaschke.
In [2,10,13] a comprehensive explanation of this control strategy is given. Its greatest advantage
compared to PTC is that electromagnetic torque and rotor flux are decoupled, and Joule losses
are reduced.

In this chapter, four different implementations of field oriented control will be discussed and
simulated: PI control, FS-MBPC, deadbeat control and FS-MBPC with optimal duty cycle
calculation. An experimental verification can be found in Chapter 8.

6.2 Working Principle

Figure 6.1: qd-reference frame attached to the rotor and with the negative d-axis along the rotor flux [2]

To apply field oriented control, the AFPMSM is described in the qd-reference frame, rotating in
synchronism with the rotor flux vector Ψr. The stator current is split into two orthogonal current
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components with amplitude iq and id, oriented along the quadrature and direct axis respectively,
as illustrated in Figure 6.1. The new coordinates are called field coordinates. In Section 4.2.2,
a model is derived using these orthogonal components. The component iq is responsible for the
torque, while id defines the flux. Both components are controlled separately.

In FOC for PMSMs, the rotor flux can be chosen to be completely defined by the permanent
magnet flux Ψf (unless field weakening is required). This means that the current component in
the direct axis is controlled to be zero: i∗d = 0. The stator current vector is perpendicular to the
flux of the permanent magnets in this way. Thus, rotor flux and stator current are decoupled:
the torque will be proportional to iq, while the useful flux component is not influenced by the
stator current anymore. If T ∗em is the desired value for the torque, the reference values for the
current components can be computed using the equation for the electromagnetic torque (Eq.
(4.11)):

i∗q =
T ∗em

−3
2NpLdimag

=
T ∗em

K
(6.1)

i∗d = 0 (6.2)

For a PMSM, PTC and FOC are thus rather similar. The only difference is that Eq. (6.2)
replaces Eq. (5.6) of the predictive torque controller. While Eq. (5.6) implicitly imposes that i∗d
should be zero to reduce the Joule losses, this is done explicitly for FOC. In [21], it is concluded
that as a result of this explicit requirement the Joule losses for FOC are reduced in comparison
with PTC. The loophole of PTC is that, when iq does not equal its reference value i∗q , Eq. (5.6)
implies that id should not equal zero, which causes indeed higher Joule losses. Only when id = 0
the current layer and the magnetic flux density by the permanent magnets reach their maximum
values simultaneously, which results in the maximal producible electromagnetic torque per amp.
The MSE(id) and MAE(id) values for PTC of Table 5.2 confirm that id deviates from zero. This
extra freedom for PTC makes it more difficult to understand the actions of the controller as
well, since a change in iq affects both controlled variables.

As is mentioned in [14], FOC is also known under the name vector control, since magnitude,
frequency and instantaneous positions of voltage, current and flux linkage space vectors are
regulated. Vector control is a general control philosophy that acts on the positions of the space
vectors and provides their correct orientation both in steady-state and during transients. In
scalar control on the contrary, which is based on relationships valid in steady-state, only the
magnitude and frequency of the space vectors are regulated.

In the following sections, some attention is devoted to the implementation of FOC using different
types of controllers. Since plenty of implementations exist, this overview does not claim to be
complete, but is meant to give an idea of the possibilities.

6.3 PI Controller

One way to implement the FOC strategy, is by using a PI controller. Figure 6.2 illustrates the
main principles.

In a first step, the reference value for the torque T ∗em is converted to a reference value for i∗q .
The desired value for id is zero, according to the FOC principle. Then both current components
are regulated using a PI controller. Such a PI controller is defined by the parameters Kp and
Ki, representing respectively the proportional and integrating action. In the Laplace domain,
the PI controller can be presented as:

PI(s) =
sKp +Ki

s
(6.3)
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Figure 6.2: Principle of FOC with PI controller and PWM (Adapted from [2])

To tune the parameters, the electrical equations of the AFPMSM (Eq. (4.8)) are transformed
to the Laplace domain as well:

Vq = RsIq + sLqIq − ωLd(Id + Imag) (6.4)

Vd = RsId + sLdId + ωLqIq (6.5)

Due to the last terms of these two equations, representing the back EMF of the PMSM, the
current control loops will not be independent. To be able to tune the PI parameters using a
SISO system method, the loops need to be decoupled, for instance by assuming the speed ω to
be zero1. In this way, the control loop for both the q- and d-axis is as given in Figure 6.3. The
consequence of setting ω equal to zero during the design stage is that the PI controller will have
less performance when applied to the real, coupled system than when applied to the decoupled
system.

Figure 6.3: Decoupled current control loop

The closed loop transfer function I/I∗ can be deduced from Figure 6.3:

I

I∗
(s) =

s(Kp/L) +Ki/L

s2 + s(R+Kp)/L+Ki/L
(6.6)

The denominator can be rewritten in the standard form of a second order transfer function:

s2 +
R+Kp

L
s+

Ki

L
= s2 + 2ζωns+ ω2

n (6.7)

with damping factor ζ and natural frequency ωn.

Imposing requirements for the settling time Tsettling
2 of the system and the maximum percentage

overshoot %OS (shown in Figure 6.4), ζ and ωn can be calculated according to the principles

1The ideal way is to use feedforward to decouple the current control loops.
2In order to avoid confusion with the sampling period Ts, the settling time will be denoted by Tsettling in this

text, instead of the more common notation Ts.
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Figure 6.4: Control requirements for a second order transfer function: peak time Tp,
overshoot %OS = 100(cmax − cfinal)/cfinal, rise time Tr and settling time Tsettling [24]

explained in [24]:

ζ =
− ln(%OS/100)√
π2 + ln2(%OS/100)

(6.8)

ωnTsettling =
− ln(0.02

√
1− ζ2)

ζ
(6.9)

Eventually Kp and Ki can be computed by comparing the coefficients of Eq. (6.7). Since for a
SPMSM Lq equals Ld, the same controller can be used for both components.

Figure 6.2 shows that the output of the PI controller provides the reference value for the stator
voltages V in the qd-reference frame. After a rotation to the αβ-reference frame, PWM can
be used to determine the switching sequence of the 2L-VSI. SVM is suited for this purpose as
well. Since the 2L-VSI has only a finite DC bus voltage, the stator voltage will be limited to the
radius of the circle inscribed into the hexagonal formed by the six VSI vectors (thus to Vdc/

√
3)

by means of an anti-reset windup. Eventually the stator currents and the position of the rotor
are fed back from the AFPMSM to the control loop.

6.3.1 Simulation

Figure 6.5 shows the simulation results when the requirements are %OS = 2% and Tsettling = 5 ms,
leading to ζ = 0.78 and ωn = 1123.6 rad/s, or Kp = 4.13 and Ki = 3206.4. PWM is used for this
simulation, with a carrier frequency of 10 kHz. The other simulation parameters are summarized
in Table 5.1. An overview of the KPIs is presented in Table 6.1.
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Figure 6.5: PI torque controller using the FOC principle and PWM

Table 6.1: KPIs of the PI controller

KPI Value

MSE(Tem) = MSE(iq) [p.u.] 2.98 · 10−4

MSE(|Ψs|) [p.u.] 5.74 · 10−6

MSE(id) [p.u.] 2.96 · 10−4

MAE(Tem) = MAE(iq) [p.u.] 0.0138
MAE(|Ψs|) [p.u.] 0.0017
MAE(id) [p.u.] 0.0123
Joule loss [W] 12.00
fswitch [kHz] 20.00
non-PPCR [%] 0

It is clear that both current components follow their reference values well. However, the over-
shoot exceeds 2% and Tsettling ≈ 10 ms. The control is indeed slower for the real, coupled
system than for the uncoupled system. The zero in the closed loop transfer function might
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have increased the overshoot as well. Besides, the PI controller is implemented digitally: the
performance and stability of the controller depends on the sampling frequency fs. The higher
fs, the more the discrete time system approaches the continuous Laplace equations, and thus
the more appropriate the calculated Kp and Ki values are. For low fs, however, those control
parameters need to be tuned again. In Figure 6.6 the gain and phase margins of the system for
fs ranging from 6 to 16 kHz are shown, indicating that the closed loop is stable in this frequency
range.

The fact that the dynamics of iq and id are coupled is visible when a step is applied in i∗q . The
cross-coupling terms representing the back EMF cause id to increase when iq is decreased and
vice versa. However, the controller is able to bring id back to zero in 10 ms.

Compared to the PTC controller, the MSE and MAE values are very low and the ripple on the
controlled variables has decreased. However, this is actually not a fair comparison. The decrease
is also caused by the fact that the PI controller does not keep the switch state constant during
the whole update period Tu, while this is the case for PTC. Compared to PTC, the switching
frequency fswitch has increased fivefold. Thus the switching losses have increased as well. On the
other hand, the fast switching makes it possible to fulfill the PPCR at any time, improving the
voltage quality. To allow a fair comparison, FOC will be implemented by means of FS-MBPC
in the following section.
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Figure 6.6: Stability of the current control loop in function of fs

6.4 Finite-Set Model Based Predictive Control

A second way to implement FOC is by means of FS-MBPC. This strategy is called predictive
current control (PCC). The control scheme is given in Figure 6.7. According to Section 3.2 the
FS-MBPC algorithm selects the most appropriate switch state by means of a cost function for
every update period Tu, after which this voltage vector is applied during the entire following
update period. The inputs of the controller are the stator current reference values computed
according to the FOC principle (Eq. (6.1) and (6.2)) and the measurements of the stator current
components, as well as the actual switch state of the inverter and the position of the motor.

This section will give an in-depth examination of the estimation, prediction and optimization
step introduced in Section 3.2, specifically applied to FOC. The timing scheme of Figure 3.2
will be used. The main goal of the control is to follow the set-points of the stator current
components accurately. Secondary control goals, like for instance reducing the switching losses,
can be formulated as well by means of the cost function.
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Figure 6.7: Principle of PCC (Adapted from [2])

Estimation

As was already explained in Section 3.2, the first step of the algorithm serves to compensate for
the finite calculation time of the controller itself: the controller needs a finite time to select the
subsequent optimal switch state. At update instant k a new switch state Sk is applied to the
inverter, giving rise to a stator voltage change and consequently a change in the stator current.
The new motor position and state of the current are measured at k + 1/2 to avoid measuring
transient phenomena. Together with the inverter model (Section 4.3.1) and the discrete electrical
equations (Eq. (5.1) and (5.2)) they enable to estimate the stator current components îk+1

q and

îk+1
d . Contrary to PTC, stator flux vector and torque estimation are not required.

Prediction

Since there are only eight different Sk+1, the easiest way to choose the optimal switching state
is by predicting the output for all eight possibilities and afterwards picking the best one among
them. The same equations that are used in the estimation step are applied to predict these
outputs. Only now a time step Tu needs to be used, instead of a time step Tu/2.

Optimization

In this last step a certain cost will be associated to each of the eight possible Sk+1. Depending
on the imposed requirements on the control quality, various forms of cost functions exist for this
purpose. The voltage vector resulting in the lowest cost is applied to the system.

6.4.1 Simulations

Just like for PTC, controllers with two different types of cost function will be simulated: a
quadratic cost function and a cost function with tolerance bands.

An appropriate weighting factor WI for the quadratic cost function

Jk+1 =
(̂ik+2
q − i∗q)2

I2
q,ref

+WI
(̂ik+2
d − i∗d)2

I2
q,ref

(6.10)

can be found by plotting the MSE values of iq and id in function of WI . The result is presented
in Figure 6.8. In general, MSE(iq) increases with increasing WI , while MSE(id) decreases. After
all, a larger WI means putting more emphasis on the control of id. For very small WI , however,
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the back EMF jeopardizes a proper control of iq. Neglecting the regulation of id leads to a
situation in which the stator voltage is not able to bring iq to its reference value anymore, as
was explained in detail in Section 5.5. WI = 1 leads to an accurate regulation of both iq and
id. The simulation results for this weighting factor are presented in Figure 6.9. Its KPIs are
summarized in Table 6.2. Since MSE(iq)+MSE(id) has a flat optimum, small deviations of the
weighting factor will have limited influence.
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Figure 6.8: MSE for varying weighting factor WI in a quadratic cost function

Table 6.2: Comparison in KPIs of a quadratic cost function and a cost function with tolerance bands

KPI quadratic tolerance band

MSE(Tem) = MSE(iq) [p.u.] 0.0101 0.0104
MSE(|Ψs|) [p.u.] 0.0014 0.0004
MSE(id) [p.u.] 0.0234 0.0062
MAE(Tem) = MAE(iq) [p.u.] 0.0849 0.0864
MAE(|Ψs|) [p.u.] 0.0320 0.0165
MAE(id) [p.u.] 0.1291 0.0652
Joule loss [W] 42.87 41.41
fswitch [kHz] 3.11 3.20
non-PPCR [%] 24.90 30.84

For a second simulation is opted for a cost function with tolerance bands:

Jk+1
Iq

=


0, 0 ≤ |∆Iq| ≤ Iq,l
(∆Iq)

2, Iq,l ≤ |∆Iq| ≤ Iq,u
WIq∞(∆Iq)

2, |∆Iq| > Iq,u

(6.11)

Jk+1
Id

=


0, 0 ≤ |∆Id| ≤ Id,l
WI(∆Id)

2, Id,l ≤ |∆Id| ≤ Id,u
WId∞(∆Id)

2, |∆Id| > Id,u

(6.12)

Jk+1 = Jk+1
Iq

+ Jk+1
Id

(6.13)

When Iq,l, Iq,u and Id,u are imposed by the application, appropriate values for WI and Id,l can
be found by studying their influence on the KPIs, as described in Section 5.5 for PTC. Figure
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Figure 6.9: PCC with quadratic cost function (WI = 1)

6.10 illustrates how the MSEs vary in function of WI and Id,l. For the simulations is opted for
Iq,l = 0.15 p.u., Iq,u = 0.25 p.u., WIq∞ = 100, WId∞ = 100 and Id,u = 0.25 p.u. The main
difference with PTC is that MSE(id) does not vary a great deal with Id,l for low WI , while the
effect of |Ψs|l on MSE(|Ψs|) for low WΨ is more pronounced, as can be seen in Figure 5.10.
When WI is low, little emphasis is put on the regulation of id, irrespective of the width of the
inner tolerance band of id. The situation involving the stator flux is more complicated, since iq
is proportional to Tem, and has a direct influence on |Ψs|, as is clear from Eq. (5.3). Therefore a
low WΨ does not necessarily result in a high MSE(|Ψs|): this value is kept low by the low error
on Tem, and thus on iq.

A similar line of thought can be followed to explain the abrupt changes in MSE(iq) and MSE(id),
while MSE(Tem) and MSE(|Ψs|) vary more smoothly. For WI = 0.5 the cost term related to
id in cost function (6.13) surpasses the term related to iq, causing the priority of the controller
to switch from keeping iq in its inner tolerance band to keeping id in its inner tolerance band.
Thus, when the controller focuses on keeping JIq low, JId increases and vice versa. The situation
is different for PTC. Since |Ψs| depends on both iq and id, JT and JΨ can both be decreased by
improving the control of iq. However, when the deviation of id from zero grows, this will only

45



Chapter 6. Field Oriented Control

increase JΨ and not JT . JΨ can also be lowered while JT rises: this situation occurs when the
error in id decreases at a higher rate than the error in iq increases. Briefly worded: focusing on
keeping JT low does not necessarily result in an increase in JΨ and vice versa.

(a) MSE(iq) (b) MSE(id)

(c) MSE(iq)+MSE(id)

Figure 6.10: Effect of tolerance band and weighting factor on MSE

Bearing in mind the effect of |Ψs|l, Iq,l also influences fswitch, the percentage of switchings
violating the PPCR and the Joule losses. A good compromise between the quality of the
voltage and the control of iq on the one hand, and the Joule losses and the quality of the control
of id on the other hand, can be found for WI = 1 and Id,l = 0.15. The simulation results for
these parameters are plotted in Figure 6.11, while its KPIs are listed in Table 6.2. From the
results in this table can be concluded that a cost function with tolerance bands can also improve
the regulation of the controlled variables, by means of narrow tolerance bands. However, the
advantageous effects on fswitch and the percentage of switchings not fulfilling the PPCR vanish
in this case.

6.4.2 Effect of a Larger Prediction Horizon

In Section 3.2, the basic working principle of MBPC is explained. In this explanation of the
basic steps of FS-MBPC is assumed that the effect of the control action applied at instant k
already affects the state at instant k + 1. This is not always the case: in general a system can
exhibit a dead time Nd larger than one. The states at instants k + i (i ∈ {1, ..., Nd}) need to
be estimated in the estimation step, based on the previous control inputs. In Figure 6.12 these
control inputs are denoted as u(t), the states as x(t).

Moreover, the prediction phase does not need to be limited to one step in the future. A prediction
step with a prediction horizon of N time steps is possible as well. The control horizon Nu, in
which a change of the control signals is allowed, can be adapted as well. In the general case, the
evolution of the controlled variables is predicted over an interval [k + Nd + 1, k + Nd + N ] for
all the possible control sequences in the interval [k + 1, k +Nu]. Nu does not need to equal N .
When Nu < N the control signals can be varied over the first Nu update periods, after which
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Figure 6.11: PCC with cost function with tolerance bands (WI = 1, Id,l = 0.15)

the input remains constant.

In the optimization step, the optimal control action will be selected by means of a cost function.
Only the first control signal of the sequence will be effectively applied to the system, since at the
following update instant the estimation, prediction and optimization step are repeated. This is
called the receding horizon principle.

The amount of required calculations increases with the power of Nu. When N = Nu = 1 (as is
the case in all the previous simulations), only 23 = 8 switching possibilities need to be evaluated.
For a larger control horizon, this number increases to 8Nu . Thus for Nu = 2 already 64 states
need to be calculated in the prediction step, and for Nu = 3 even 512. This larger required
computation capacity can only be justified if the control quality is significantly improved.

A simulation performed for Nd = 1 and N = Nu = 3, with cost function

Jk+1 =

N∑
n=1

[
(ik+1+n
q − i∗q)2

I2
q,ref

+WI
(ik+1+n
d − i∗d)2

I2
q,ref

]
(6.14)

for WI = 1, demonstrates however that an extended prediction horizon even results in a degra-
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Figure 6.12: MBPC principle with general dead time Nd, prediction horizon N and control horizon Nu

(Adapted from [2])

dation of the control quality, as testified by the KPIs summarized in the second column of Table
6.3. The cause of this poor result lies in the discretization of the machine equations. Irrespective
of the local truncation error of the first order Euler approximation, the assumption that θ is
constant during the entire prediction phase leads to an accumulation of errors. If θ is adapted
by means of the linear model

θi+1 = θi + ωi ·∆t (6.15)

during the prediction step, a slight improvement of the KPIs is achieved by an expansion of
the prediction horizon. Nevertheless, this modest improvement is not worth the extra compu-
tational burden. In fact, this poor result could have been predicted a priori, bearing in mind
the perfect prediction model used in simulation (solely deviating from the implemented machine
by linearization), and the fact that only a limited amount of input voltages is enabled by the
2L-VSI. Under these circumstances, the optimal switch state in the next update period will be
almost always the same, regardless of how many update periods are considered. In [2, 25] is
stated that for real-life implementations a larger prediction horizon even can lead to an infe-
rior control quality, since the deviations between the (simplified) prediction model and the real
machine will make predictions further in the future less accurate. In [26] is mentioned that the
large computational burden for large N requires low update frequencies, which will increase the
torque ripple and reduce the quality of the stator currents.

In [22,27] is stated that increasing N does not increase the control quality if no additional control
terms (such as number of switch events) are added to the cost function. The situation changes
however if it is a secondary goal to improve the voltage quality. Increasing the prediction horizon
may be useful in this context. This secondary goal requires an adaptation of the cost function:

Jk+1 =

N∑
n=1

(ik+1+n
q − i∗q)2

I2
q,ref

+WI
(ik+1+n
d − i∗d)2

I2
q,ref

+WS

 3∑
j=1

(
Sk+n
j − Sk+n−1

j

) (6.16)

where WS is a weighting factor representing the importance of the improvement of the voltage
quality relative to the importance of the current control , and j ∈ {1, 2, 3} represents the three
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Table 6.3: Effect of the prediction horizon on the KPIs for cost function (6.14)

without θ correction with θ correction
KPI N = 1 N = 3 N = 3

MSE(Tem) = MSE(iq) [p.u.] 0.0101 0.0108 0.0099
MSE(|Ψs|) [p.u.] 0.0014 0.0016 0.0014
MSE(id) [p.u.] 0.0234 0.0269 0.0216
MAE(Tem) = MAE(iq) [p.u.] 0.0849 0.0880 0.0842
MAE(|Ψs|) [p.u.] 0.0320 0.0342 0.0317
MAE(id) [p.u.] 0.1291 0.1388 0.1238
Joule loss [W] 42.87 42.93 44.12
fswitch [kHz] 3.11 3.20 3.15
non-PPCR [%] 24.90 21.75 23.31

phases {a, b, c}. The extra term in the cost function discourages any change in the switch state
that is not absolutely necessary for a good current control, and especially changes that violate
the PPCR. Small errors in iq and id will thus be tolerated, if this permits to make less changes
in the switch states. The KPIs in Table 6.4 for WI = 1 and WS = 0.1 prove that fswitch

and the percentage non-PPCR indeed have lowered by means of cost function (6.16), at the
expense of the other control quality parameters. Extending the prediction horizon to N = 3
causes the percentage non-PPCR to reduce even further. In principle, the controller is able to
evolve towards every possible switch state in this period without any violation of the PPCR,
independent of the initial state of the inverter.

Table 6.4: Effect of the prediction horizon on the KPIs for cost function (6.16) with extra cost term

KPI N = 1 N = 3

MSE(Tem) = MSE(iq) [p.u.] 0.0165 0.0218
MSE(|Ψs|) [p.u.] 0.0019 0.0018
MSE(id) [p.u.] 0.0265 0.0225
MAE(Tem) = MAE(iq) [p.u.] 0.1063 0.1225
MAE(|Ψs|) [p.u.] 0.0360 0.0348
MAE(id) [p.u.] 0.1332 0.1192
Joule loss [W] 48.92 52.88
fswitch [kHz] 2.06 2.33
non-PPCR [%] 9.71 2.38

In [28] a control scheme called Long Horizon Few Switches (LHFS) is proposed using a longer
prediction horizon, without applying the receding horizon principle. The investigated strategy
searches not only for the optimal voltage vectors, but also for the best switching instants,
at which the next iteration of the FS-MBPC scheme needs to be performed. This new method
reduces the switching frequency efficiently, without compromising the current tracking too much.

6.4.3 Effect of the Discretization

In Section 4.2.3 is explained how the machine model is linearized and discretized by means of
the first order Euler approximation. In [11] can be found that the local truncation error will
be of order O(∆t2) in this case. In order to obtain a more accurate discretization when the
quantity x has a changing slope in the time interval ∆t, the modified Euler approximation can
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be used as well:

xEUi+1 = xi + ∆t · f(xi, ui, i) (6.17)

xi+1 = xi +
∆t

2
·

(
f(xi, ui, i) + f(xEUi+1, ui+1, i+ 1

)
(6.18)

where xi = x(t), xi+1 = x(t + ∆t) and f(xi, ui, i) represents the derivative of the quantity
x evaluated at time t using the input ui and state xi at that same time instant. The local
truncation error is reduced to order O(∆t3).

In Figure 6.13 can be seen that the difference between the estimated and measured current iq has
not visibly improved by using the modified Euler method, since the time step for the linearization
is only Tu/2 in this case. The error between the measured current and the predicted current,
however, has improved a little. This is due to the fact that the error from the estimation
has accumulated with the error from the linearization with ∆t = Tu in the prediction step.
However, the effect of the linearization method on the control quality is negligible, as can be
concluded from the KPIs given in Table 6.5. For the considered operating point, MSE(id) even
increases a little when the modified Euler approximation is used, while it decreases for other
operating points. Even for a larger prediction horizon (N = 3), where the linearization errors
are accumulated, the influence of changing to the modified Euler approximation on the KPIs
is negligible. Since there are only eight possible switch states, a small change in the predicted
values will only very rarely influence the choice of Sk+1 in the optimization step. Therefore the
first order Euler approximation will be used throughout this master’s dissertation.

Table 6.5: Effect of the linearization method on the control quality

N = 1 N = 3
KPI first order modified first order modified

MSE(Tem) = MSE(iq) [p.u.] 0.0101 0.0101 0.0099 0.0099
MSE(|Ψs|) [p.u.] 0.0014 0.0016 0.0014 0.0013
MSE(id) [p.u.] 0.0234 0.0259 0.0216 0.0201
MAE(Tem) = MAE(iq) [p.u.] 0.0849 0.0842 0.0842 0.0845
MAE(|Ψs|) [p.u.] 0.0320 0.0341 0.0317 0.0310
MAE(id) [p.u.] 0.1291 0.1367 0.1238 0.1185
Joule loss [W] 42.87 42.86 44.12 44.36
fswitch [kHz] 3.11 3.11 3.15 3.11
non-PPCR [%] 24.90 20.47 23.31 22.67

6.4.4 Torque and Current Ripple

It can be noticed that the current ripple of FS-MBPC is large in comparison with the simulation
results for PI control. In many high performance applications, low acoustic noise and high
efficiency are highly demanded, as well as a long lifetime. Torque ripple is a critical concern in
this context. Since the existence of torque ripple degrades the control accuracy and makes the
motor less stable, numerous research activities have been conducted to solve this problem, for
instance in [18, 29, 30]. Because the magnitude of the torque ripple is influenced by the voltage
magnitude of the DC bus and the update frequency of the controller, it might be advantageous
to adapt these two parameters. However, if the magnitude of the DC bus voltage is too small, a
quick torque response cannot be assured anymore. Reducing Tu lowers the oscillation amplitude
as well, but is not a suitable solution either, since this results in an increase in the switching
loss and requires a larger computational effort.

50



Chapter 6. Field Oriented Control

 time [s]
0.0105 0.011 0.0115 0.012

 i q
 [A

]

9

10

11

12

13

14
 

reference
estimation
prediction
measurement

(a) First order Euler approximation

time [s] 

0.0105 0.011 0.0115 0.012

 i
q
 [

A
]

9

10

11

12

13

14
 

reference

estimation

prediction

measurement

(b) Modified Euler approximation

Figure 6.13: Effect of the discretization method. The estimated and predicted current have been shifted
back in time over Tu/2.

The main issue of the FS-MBPC algorithm is that the number of voltage vectors that can be
applied during an update period Tu is limited. One solution to overcome this problem is the use
of multilevel inverters, providing more voltage vectors in modulation and thus lower torque ripple
and lower harmonic content. Nonetheless, an increasing amount of power switches increases the
complexity of the system and the hardware cost as well. Moreover, the number of voltage
vectors remains limited in this case. A more effective solution is to allocate a fraction of Tu to
an appropriate null vector. This is achieved by using a space vector pulse width modulation
(SVPWM)-based control scheme, making use of the principle explained in Section 4.3.2. Two
main advantageous features can be realized by means of this technique: inputs with a varying
average voltage amplitude, and a fixed switching frequency, just like for the PI controller. In
the following sections, two SVPWM-based control schemes will be presented, making use of
FOC. Similar practices can be adopted for torque control as well. In [30], for instance, a DTC
algorithm using SVM for IPMSMs is investigated, in order to attain low ripple in flux and
torque. The authors of [18], [29], and [31] propose a PTC strategy in which an optimal reference
voltage vector is calculated based on a mathematical model for the torque, and applied to the
machine using SVPWM.
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6.5 Deadbeat Control

A deadbeat controller combines the advantages of both FS-MBPC and PI control: on the one
hand, it can benefit from its knowledge of the machine model; on the other hand, it is used in
combination with a PWM, reducing the current and torque ripple. Moreover, the substantial
calculation effort of testing all feasible voltage vectors is avoided by using a DB solution. Hence,
the process of selecting the best switch state is optimized.

In Section 3.3 is explained how the deadbeat algorithm makes use of a model inverse solution
to compute the reference value for the manipulated input, required to bring the output to its
reference value in one time step Tu. In this section, the use of the DB algorithm for FOC will
be elaborated. The control scheme is given in Figure 6.14. The inputs for this controller are the
stator current reference values computed according to Eq. (6.1) and (6.2), the measured current
components, the previously computed stator voltage reference value, and the motor position.
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Figure 6.14: Principle of FOC with DB and PWM (Adapted from [2])

Estimation

The stator voltage components computed in the previous update period and currently applied
to the PMSM (vkq and vkd), and the stator current components measured at half the update

period (i
k+1/2
q and i

k+1/2
d ) are used to calculate the stator currents at instant k + 1 by means

of the discrete time electrical model given by Equations (5.1) and (5.2). This estimation step is
identical to the estimation step of FS-MBPC.

Deadbeat

The aim of the controller is to bring iq and id to their reference values in one time step Tu.
To obtain the voltage V ∗k+1 required to achieve this goal, it is assumed that the stator current

equals its set-point at instant k + 2: îk+2
q = i∗q and îk+2

d = i∗d. In this way, the voltage to be
applied at k + 1 can be computed as:

vk+1
q = Rsî

k+1
q +

Lq
Tu

(
i∗q − îk+1

q

)
− ωk+1/2Ld

(
îk+1
d + imag

)
(6.19)

vk+1
d = Rsî

k+1
d +

Ld
Tu

(
i∗d − îk+1

d

)
+ ωk+1/2Lq î

k+1
q (6.20)

The reference waves vxo (x ∈ {a, b, c}) for the voltages over the load are obtained by applying
the rotation (4.13) to the αβ-reference frame, followed by the inverse Clarke transformation
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(4.12). Eventually, a PWM algorithm determines the switch states during the update period, as
explained in Section 4.3.2. Since the PWM enables to vary the duty cycle of each inverter leg
separately, not only the magnitude of the voltage vector can be changed, but also its direction.

In case the amplitude of the control action computed by the DB controller is larger than the
maximum feasible input vector amplitude of the inverter, the vector amplitude will be saturated
to the maximum value that fits in the hexagon of Figure 4.7. This so-called clipping strategy is
far from optimal, but more sophisticated limitation methods are out of the scope of this master’s
dissertation.

The deadbeat control algorithm does not involve a cost function. The tedious activity of tuning
this cost function is hence avoided. The other side of the coin is that the option to impose
secondary control goals disappears as well.

Since the DB controller determines more than one configuration of the inverter during one
update period, Tu can be increased to obtain the same switching frequency as for FS-MBPC.
In [32] is pointed out that the real-time constraint of the DB controller is then less than for
FS-MBPC, so cheaper controllers can be used. Moreover, for FS-MBPC the mean switching
frequency depends on the operating point, while DB allows to have a more or less constant and
known switching frequency, equal to two times the update frequency.

In [26], a DB control idea is used to reduce the calculation effort of the classic PTC. The main
idea is to estimate the voltage vector that is required to bring the controlled variables to their
reference value by means of the DB principle. Only the three voltage vectors near this optimal
input vector are necessary to be tested by the cost function. Thus, the exhaustive evaluation of
all the feasible voltage vectors of the inverter is avoided.

6.5.1 Simulation

The major advantage of DB control compared to PI control is that the former can use the
information provided by the machine model. Compared to FS-MBPC, the current ripple (and
thus the torque ripple as well) is reduced by using DB control, which is clearly visible in the
simulation results of Figure 6.15. Notice that the current peaks at the steps in the iq set-point
are strongly reduced compared to the PI control shown in Figure 6.5. However, it must be
admitted that the other KPIs of the PI controller still outshine the DB controller. The major
disadvantage of DB controllers mentioned in literature is that they are prone to instability in
case of parameter mismatch. After all, the DB solution relies on precise machine parameters to
calculate the appropriate input voltage. In practice, however, it is difficult to implement accurate
parameters, due to variations injected by noise or temperature. Therefore the robustness of the
controllers will be compared in Section 7.2.4.

Table 6.6: KPIs of the DB controller

KPI Value

MSE(Tem) = MSE(iq) [p.u.] 4.34 · 10−4

MSE(|Ψs|) [p.u.] 0.0011
MSE(id) [p.u.] 0.0176
MAE(Tem) = MAE(iq) [p.u.] 0.0172
MAE(|Ψs|) [p.u.] 0.0330
MAE(id) [p.u.] 0.1313
Joule loss [W] 43.68
fswitch [kHz] 17.33
non-PPCR [%] 0.02
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Figure 6.15: DB torque controller using the FOC principle and PWM

6.6 Model Based Predictive Control with Duty Cycle
Calculation

Although the DB controller provides a solution to decrease the torque ripple, it also disables
the opportunity to impose secondary control goals by means of the cost function. Therefore, a
controller combining these two features will be proposed in this section. The structure of the
algorithm is similar to that of FS-MBPC, with the only difference that an optimal duty cycle for
the applied voltage vectors is determined as well, responding to the need for inputs with a varying
voltage amplitude. In [32], this technique is called Two-Configuration Predictive Control (2PC).
The authors of [16, 33, 34] implemented a similar controller for PTC. The algorithm elaborated
in this section is derived from the PTC with optimal duty cycle control for induction motor
drives presented in [34].

Estimation

This step is identical to the estimation step of FS-MBPC, elaborated in Section 6.4.
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Figure 6.16: Principle of FS-MBPC with duty cycle calculation (Adapted from [2])

Prediction

Contrary to the classic FS-MBPC scheme, in which all eight switch states of the inverter are
evaluated successively, and eventually only one voltage vector is selected and applied during
the whole update period Tu, the new proposed algorithm evaluates only the six active vectors
separately. Just a fraction of the control period is allocated to the optimal active vector. The
rest of the time a null voltage is applied. Therefore two slopes must be calculated in each of the
six steps: the current slope si (i = 1, ..., 6) if the active vector is applied, and the current slope
s0 if a zero vector is applied. Those slopes can be calculated by means of the dynamic model
derived in Section 4.2.2.

 sk+1
q,0 = 1

Lq
·

[
−Rsî

k+1
q + ωk+1/2Ld

(
îk+1
d + imag

)]
sk+1
q,i = 1

Lq
·

[
vk+1
q,i −Rsî

k+1
q + ωk+1/2Ld

(
îk+1
d + imag

)] (6.21)

 sk+1
d,0 = 1

Ld
·

[
−Rsî

k+1
d − ωk+1/2Lq î

k+1
q

]
sk+1
d,i = 1

Ld
·

[
vk+1
d,i −Rsî

k+1
d − ωk+1/2Lq î

k+1
q

] (6.22)

The optimal duration tk+1
opt,i for the active voltage vector under consideration is determined ac-

cording to the deadbeat principle, by assuming that îk+2
q equals its reference value:

i∗q = îk+2
q = îk+1

q + sk+1
q,0 ·

(
Tu − t∗opt,i

)
+ sk+1

q,i · t∗opt,i (6.23)

and thus

t∗opt,i =
i∗q − îk+1

q − sk+1
q,0 ·Tu

sk+1
q,i − s

k+1
q,0

(6.24)


tk+1
opt,i = 0, if t∗opt,i < 0

tk+1
opt,i = t∗opt,i, if 0 ≤ t∗opt,i ≤ Tu

tk+1
opt,i = Tu, if Tu < t∗opt,i

(6.25)

Eventually, the current components at instant k + 2 can be predicted based on sk+1
0 , sk+1

i and
tk+1
opt,i.

îk+2
q = îk+1

q + sk+1
q,0 ·

(
Tu − tk+1

opt,i

)
+ sk+1

q,i · tk+1
opt,i (6.26)

îk+2
d = îk+1

d + sk+1
d,0 ·

(
Tu − tk+1

opt,i

)
+ sk+1

d,i · tk+1
opt,i (6.27)

55



Chapter 6. Field Oriented Control

Optimization

To compare the appropriateness of the six active voltage vectors and their accompanying duty
cycle, a cost is assigned to each of them:

Jk+1 =

(
îk+2
q − i∗q

)2

I2
q,ref

+WI

(
îk+2
d − i∗d

)2

I2
q,ref

(6.28)

To allow an easy comparison with the previous controllers, it is opted to use a quadratic cost
function. Nonetheless, other types of cost functions are also feasible.

The selected null vector is the one that requires the lowest number of switches to change their
state.

Contrary to DB control followed by a modulation algorithm, the optimization of the duty cycle
only allows to change the magnitude of the applied voltage vector, and not its direction. The
difference in switchings is illustrated in Figure 6.17.
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Figure 6.17: Difference in modulation between DB control and PCC with DC calculation

In [16] a similar control algorithm is used to reduce the torque ripple of induction motor drives
controlled by means of PTC. However, instead of taking the duty cycle calculation into account
in the optimization process, topt is determined after the selection of the active vector in this
article. Although the torque ripple is effectively reduced in this way, in [34] is justly remarked
that the active voltage vector selected by means of conventional FS-MBPC may no longer be the
optimal one when a zero vector is inserted along with it. Therefore, the selection of the vector
and the computation of its duration are optimized simultaneously in this master’s dissertation.

6.6.1 Simulation

To allow a fair comparison with PCC without the calculation of topt, WI = 1 is used for the
simulation of the new controller as well. In Figure 6.18 can be seen that the current ripple in
the q-component of the stator current has reduced. This same effect is reflected in the KPIs:
the MSE and MAE values are low, but at the expense of a worse voltage quality.
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Figure 6.18: PCC with duty cycle calculation

Table 6.7: KPIs of the PCC with duty cycle calculation

KPI PCC with DC

MSE(Tem) = MSE(iq) [p.u.] 9.2797 · 10−4

MSE(|Ψs|) [p.u.] 2.9616 · 10−4

MSE(id) [p.u.] 0.0050
MAE(Tem) = MAE(iq) [p.u.] 0.0256
MAE(|Ψs|) [p.u.] 0.0128
MAE(id) [p.u.] 0.0532
Joule loss [W] 41.6635
fswitch [kHz] 15.19
non-PPCR [%] 78.13
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6.7 Conclusion

This chapter started with an explanation of the FOC principle. According to FOC, the stator
current can be thought of as consisting of two orthogonal components. One component (iq)
is responsible for the torque of the PMSM, the other component (id) for the flux. Since it is
assumed that the permanent magnets completely define the rotor flux, the required i∗d can be
set equal to zero.

FOC can be implemented in different ways. Four implementations were discussed:

� PI control

� FS-MBPC

� DB control

� FS-MBPC with duty cycle calculation

The basic working principles of FS-MBPC and DB control introduced in Chapter 3 were elab-
orated for the specific case of FOC, and combined into the FS-MBPC with DC calculation
strategy. A summary of these control algorithms can be found in the flow charts presented in
Figures 5.14, 6.19 and 6.20 respectively. The state x represents the stator current components
iq and id.

Simulation results were given for each of the four control options. It was noticed that the PI
controller led to smoother results than FS-MBPC, due to its use of SVPWM. SVPWM permits
to change the amplitude and direction of the on average applied voltage vector during Tu, hence
reduces the ripple in torque and current at the expense of higher switching losses. However,
FS-MBPC has the advantage that it can make use of the information provided by the model
of the AFPMSM. DB control combines these two advantages, but compared to FS-MBPC it
allows less freedom concerning the control optimization. After all, the DB algorithm contains
no cost function in which secondary control goals can be expressed. Therefore, the deadbeat
and FS-MBPC principle were combined in a FS-MBPC algorithm with duty cycle calculation.
The use of a cost function is preserved in this method, as well as the possibility to change the
average amplitude of the voltage vector during an update period. Consequently, the torque
ripple is reduced, while secondary control goals can still be included.
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Comparison of the Controllers

7.1 Introduction

In Chapter 5 and 6, different types of predictive controllers were studied. An overview of the
most prominent ones is given in Figure 7.1. In order to be able to compare the performance
of the predictive controllers with a more classical control strategy, the FOC principle was also
implemented by means of a simple PI controller.

FS-MBPC 

PTC 

quadratic cost 
function 

cost function 
with tolerance 

bands 

PCC 

quadratic cost 
function 

with DC 
calculation 

without DC 
calculation 

cost function 
with tolerance 

bands 
DB 

Figure 7.1: Overview of the most prominent predictive controllers of Chapter 5 and 6

In this chapter, a more in-depth evaluation and comparison of the control algorithms will be
given. Apart from the KPIs proposed in Chapter 5, some new parameters will be introduced
for this purpose as well.

In Chapter 8, the same tests will be conducted on a real AFPMSM, in order to validate the
conclusions derived from the simulation results.

7.2 Key Performance Indicators

In Section 5.4, MSE, MAE, Joule losses, fswitch, and the percentage of switchings violating
the PPCR were put forward to give an objective quantification of the global control quality.
Although these parameters provide a well-founded basis to study the differences in behavior
between the controllers, they do not cover all the nuances of a proper control, as will become
clear in the next sections.
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7.2.1 Control Quality

The main goal of the controllers is to track the reference values precisely. Torque and current
ripple must be minimized, and their average values must approximate their reference as close as
possible. In Section 5.4, the MSE and MAE values were used to evaluate how well a controller
meets both requirements. However, neither of these two parameters can distinguish between
the ripple on the one hand, and the average deviation of the controlled variables on the other
hand. Since the machine model cannot be perfectly estimated, biased machine parameters will
give biased currents and torques when the controllers are tested on the real machine. In [28] is
justly remarked that this systematic error due to slightly inaccurate machine parameters should
not be taken into account as ripple. To obtain a more nuanced assessment of the ripple and the
systematic error, three extra KPIs are proposed in this master’s dissertation: the mean absolute
ripple (MAR), the mean square ripple (MSR) and the average deviation of the reference value
x∗ (bias):

MAR(x) =

∑m
k=1 |x̄− xk|

m
(7.1)

MSR(x) =

∑m
k=1 (x̄− xk)2

m
(7.2)

bias(x) =

∑m
k=1 xk − x∗k

m
(7.3)

m is the amount of samples used in the calculation and x̄ is the average value of the controlled
variable x over these m samples. The difference between MSR and MAR is similar to the differ-
ence between MSE and MAE: MSR punishes large deviations more severely, while MAR is more
convenient to interpret. To simultaneously express the quality of multiple control parameters,
the weighted sum of multiple MSR, MAR and bias values is frequently used. Utilizing p.u.
values is therefore strongly recommended.

In case of excessive bias, [35] proposes to add an integrating action, which sums the deviations of
the controlled variables from their reference values over time. By adding this so-called I-action
to the cost function, the bias can be brought close to zero. However, this extra cost term requires
the tuning of an extra weighting factor. Moreover, the I-action can cause stability issues if not
implemented properly.

7.2.2 Harmonic Distortion

In [8, 36] is recommended to study the total harmonic distortion (THD) that is present in the
stator current, since it represents a rough measure of the motor losses and indicates the different
harmonics introduced by the inverter switching.

Different expressions exist for the THD, but they all have in common that they make use of the
root-mean-square (RMS) value of the fundamental current component I1 and the DC component
I0. When the stator current is(t) is decomposed by means of the Fourier transform

is(t) = I0 +
√

2I1 cos(ωt+ φ1) +
√

2I2 cos(2ωt+ φ2) + ... (7.4)

with fundamental frequency ω, the RMS-current can be expressed as:

IRMS =

√√√√I2
0 +

∞∑
n=1

I2
n (7.5)
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Since only the fundamental component is desired, the THD is defined as:

THD =

√√√√(I0

I1

)2

+
∞∑
n=2

(
In
I1

)2

(7.6)

To apply this definition, the sum can be broken off after a sufficiently high number of harmonics,
since the high frequency components are mostly less important.

7.2.3 Transient Behavior

The studied controllers not only differ in static performance, their dynamic behavior needs to
be examined as well. In Figure 7.2, two parameters indicating the transient performance are
introduced: the rise time Trise and the overshoot OS. It is advised to express the overshoot as
a percentage of the reference value.

𝑇rise 
𝑡 

𝑥 

𝑂𝑆 

reference 𝑥∗ 
signal 𝑥 

Figure 7.2: Definition of the dynamic behavior KPIs

7.2.4 Robustness

In [26,32,36–38] is mentioned that the performance of predictive controllers - and especially the
DB controller - is often sensitive to model parameter mismatching errors, system delay, and the
inverter’s non-linearity. The feature that predictive controllers can use the information provided
by the machine model, can thus be a disadvantage as well. Knowledge of system parameters
such as Rs, Lq, Ld and back EMF is crucial for a good control quality, but their values cannot be
obtained precisely, due to for instance disturbances, temperature variations, saturation and time
delay. The flux of a permanent magnet machine is for example higher for a brand new machine
than for a heavily used one, and the stator resistance increases with increasing temperature.
Passing on inappropriate parameters might lead to unsatisfactory control.

In [38] the issue of parameter sensitivity is solved by developing a model-free approach that
alleviates the need for excessive prior knowledge about the system. Only the stator currents as
well as the current difference corresponding to different switch states of the inverter are utilized.
No additional information on resistance, inductance and back EMF is required. As a result,
the new approach can be applied to non-PMSM AC motors as well, without adaptation. It
is noteworthy that the experimental results provided in the mentioned article are satisfactory,
both in transient as in steady-state behavior. This Model Free Predictive Control (MFPC) is
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also simulated in [7]. It is concluded that MFPC leads to reliable results, but does not match
the level of performance of MBPC.

According to [16], the estimation of the state variables of induction motor drives can be made
more robust against motor parameter variations by introducing error feedback of the stator
current. The authors also propose an alternative method to calculate topt, based on the difference
between the measurements and the reference values and thus eliminating the machine parameter
dependence.

In [37], the root locus technique is applied to analyze the stability of a deadbeat current controller
for field oriented induction motor drives. In this text, a similar working method as in [32] is
employed: a comparative study is performed to examine the difference in parameter sensitivity
between various controllers.

Figure 7.3 shows simulation results for both the PCC with cost function (6.10) (WI = 1) and the
DB controller. The parameters in the ‘real’ machine in the loop are kept equal to the machine
parameters summarized in Table 4.1, while the machine parameters in the control algorithm are
adapted, in order to see the effect of inaccurate machine parameters on the control quality. The
reference value T ∗em for the torque is adapted in such a way as to keep i∗q the same, regardless of
the parameter variations. The speed of the AFPMSM is set to 300 rpm and the DC bus voltage
to 100V. The update frequency fu amounts to 10 kHz, unless stated otherwise.
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(a) PCC with quadratic cost function (WI = 1)
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Figure 7.3: Parameter sensitivity (blue: reference i∗q ; red: simulated iq)

From Figure 7.3 can be deduced that variations in Rs have little effect on the torque control
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quality, while variations in L = Lq = Ld and imag cause a systematic deviation between iq
and i∗q . Moreover, an overestimation of L clearly causes the current ripple to increase for the
DB controller. Similar figures for the other controllers, given in Section A.1 of the appendices,
lead to similar conclusions. Therefore, it seems appropriate to examine the effect of parameter
inaccuracy by means of the resulting change in bias and MAR:

∆bias =
|bias| − |biasref |
|biasref |

(7.7)

∆MAR =
MAR−MARref

MARref
(7.8)

where biasref and MARref are respectively the bias and MAR values in case the parameters of
Table 4.1 are used in both the ‘real’ machine and the control algorithm. Tables 7.1 and 7.2 give
an overview of those parameters for the control of iq by means of PCC and DB. Similar tables
for the other controllers can be found in Appendix A.

Table 7.1: Robustness of PCC

KPI 0.1 ·Rreal 1.9 ·Rreal 0.5 ·Lreal 1.5 ·Lreal 0.5 · imag,real 1.5 · imag,real

∆bias [-] 13.1493 12.3433 234.4478 79.2537 120.3582 119.5224
∆MAR [-] 0 0 0.0952 0.1238 -0.0095 0

Table 7.2: Robustness of DB

KPI 0.1 ·Rreal 1.9 ·Rreal 0.5 ·Lreal 1.5 ·Lreal 0.5 · imag,real 1.5 · imag,real

∆bias [-] 47.5790 50.8947 853.7368 282.4211 424.8947 426.7368
∆MAR [-] 1.3333 1.6667 0 53.3333 0 0

The presumptions arisen from Figures 7.3a and 7.3b are confirmed by the results in Tables 7.1
and 7.2. The DB controller is indeed more sensitive to parameter mismatch than the PCC. The
bias of the controllers is affected the most. Therefore ∆bias will be used as the KPI to represent
the robustness of the control strategies.

The results in Tables 7.1 and 7.2 also endorse the fact that an incorrect estimation of L or
imag affects the controller’s performance most. This can be understood by taking a closer
look at the dynamic model equation (4.8). The term containing Rs is small compared to the
current derivatives and the back EMF (since the simulations are at high speed), and thus the
influence of Rs will be limited. An underestimation of the stator resistance causes iq to stay
just below its reference value on average, since the reference value for the voltage will be slightly
underestimated in this case. An overestimation of Rs has the inverse effect.

When the absolute value of imag is underestimated, the back EMF term (−ωLd(id + imag)) is
underestimated, leading to the application of a lower voltage - and thus a lower torque - than
actually required. A similar way of thinking leads to a similar conclusion for the bias caused by
an inaccurate stator inductance.

The effect of L on the torque ripple can be explained by means of Eq. (5.13), providing an
expression for the derivative of iq. Since L can be found in the denominator of this equation,
an overestimation of L causes the controller to underestimate the torque ripple. Consequently,
the torque ripple will be larger in the real machine.
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7.3 Simulation Results

In this section, the performance of various controllers with different design choices (such as the
type of cost function, or the update frequency) are compared. The same torque reference signal
is applied to the following list of controllers:

(a) PTCquadr: PTC with quadratic cost function (5.5)
with WΨ = 3

(b) PTCtol: PTC with cost function (5.10) with tolerance bands
with Tem,l = 0.15 p.u., Tem,u = 0.25 p.u., WT∞ = 10, WΨ = 1, WΨ∞ = 100, |Ψs|l = 0.12
p.u. and |Ψs|u = 0.2 p.u.

(c) PCCquadr: PCC with quadratic cost function (6.10)
with WI = 1

(d) PCCtol: PCC with cost function (6.13) with tolerance bands
with Iq,l = 0.15 p.u., Iq,u = 0.25 p.u., WIq∞ = 100, WI = 1, WId∞ = 100, Id,l = 0.15 p.u.
and Id,u = 0.25 p.u.

(e) PCC2f: PCC with quadratic cost function (6.10) and double fu

with WI = 1

(f) PCCDC: PCC with DC calculation and quadratic cost function (6.10)
with WI = 1

(g) PI
with Kp = 4.13 and Ki = 3206.4

(h) DB

A DC bus voltage of 250V is applied, to be able to control the machine rotating at 1000 rpm.
The standard update frequency amounts to 10 kHz. Only for controller (e), fu is doubled to
20 kHz.

The reference values to transform the cost terms into p.u. values are adapted to T ∗em according
to Table 7.3, since a similar absolute deviation has relatively more importance for small T ∗em

than for large T ∗em. Nevertheless, it must be kept in mind that the weighting factors in Chapter
5 were tuned for the Tref and Ψref values corresponding to T ∗em = 15 Nm. Changing those refer-
ence values according to Table 7.3 actually increases the relative weight of the flux regulation.
However, from Figures 5.9 and 5.10 can be concluded that putting more emphasis on the flux
regulation does not jeopardize the control.

Table 7.3: Reference values to transform the cost terms into p.u. values

T ∗em = 0Nm T ∗em = 8Nm T ∗em = 12Nm T ∗em = 15Nm

Tref [Nm] 15 8 12 15
Iq,ref [A] 1 6.0772 9.1158 11.3947
Ψref [Wb] 0.1097 0.1108 0.1121 0.1135

The simulation results for all these controllers are assembled in Figures 7.5 and 7.6. Figure 7.5
shows the simulation plots for iq, while Figure 7.6 contains the results for id. The difference in
current ripple between the controllers strikes immediately.

The effect of changing Tref and Ψref with changing T ∗em is clearly visible for PTC in Figure 7.6a.
For larger T ∗em, Tref increases more than Ψref , resulting in more strict control of |Ψs| and less
strict control of Tem, and thus iq. As a result, id will be controlled better when T ∗em is high, and
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worse when T ∗em is low. This is not the case for PCC, since both cost terms are scaled by means
of Iq,ref .

Taking a closer look at the current components of PCCDC gives some deeper insight in its
working principle. In Figure 7.4, a continuously repeating pattern can be noticed. Since the
calculation of topt focuses on iq only, id always starts to deviate more and more from zero, while
iq is kept close to i∗q . At a certain time instant, however, the deviation of id is too flagrant,
causing the cost function to select the voltage vector bringing id back to zero, although this
results in a temporary larger deviation from i∗q .
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Figure 7.4: Detail views clarifying the control principle of PCCDC (blue: reference; red: simulation)

The iq-waveforms of both PI and DB control, shown in Figures 7.5g and 7.5h respectively, are
the only two that show some distinct overshoot peaks. For DB control, these peaks are due to
the fact that the first order Euler approximation is not that accurate when iq has a changing
slope. The fact that iq and id are coupled by the back EMF, is visible in the peaks in id in Figure
7.6g: a change in iq also affects id. Actually this link can be perceived in all id-plots for PCC in
Figure 7.6, since id deviates more from zero on average if i∗q is large. In Eq. (5.2) can be seen
that the combination of a large ω and a large iq are indeed very likely to decrease id. Therefore,
prediction errors due to the discretization of the machine model can cause id to slightly deviate
from zero, since in Figure 6.13 can be noticed that iq is more frequently underestimated than
overestimated in the prediction step.

An objective comparison of the different controllers can be obtained by comparing their KPIs,
which is the intention of the next section.
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Figure 7.5: Simulation results for the control of iq (blue: reference i∗q ; red: simulated iq)
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Figure 7.6: Simulation results for the control of id (blue: reference i∗d; red: simulated id)
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Figure 7.7: Overview of the KPIs of the simulations
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7.4 Discussion of the Simulated KPIs

To facilitate the comparison of the controllers, their KPIs are summarized in Figure 7.7. The
charts display values averaged over the different reference values for the torque; a more detailed
overview of the KPIs can be found in the tables in Appendix A. The following sections are
dedicated to a discussion concerning the differences in KPIs between the different controllers.

7.4.1 Control Quality

Figures 7.7a, 7.7b, 7.7c, 7.7d and 7.7e compare the KPIs assessing the control quality. A first
observation is that the error on |Ψs| is rather small compared to the error on iq and especially id.
The reason can be found in Eq. (5.3): a substantial part of |Ψs| is determined by the fixed flux
of the permanent magnets, keeping the instantaneous flux always relatively close to its reference
value.

In general can be concluded that PTCtol leads to the lowest control quality. This result is mainly
caused by the not so strict control of id. Controlling the flux already permits some degree of
freedom for id, a feature that becomes even more apparent when a small deviation of the flux
itself is allowed as well. As to the control of iq on the contrary, PTC actually outperforms PCC.
The PI controller however outshines every predictive controller. The DB controller and PCCDC

are the best performing predictive controllers. The weakest point of the DB controller is its
offset in iq and especially in id. Concerning current ripple, it performs similar to PI control.

Another feature that can be noticed, is the fact that the type of cost function does not strongly
affect the control quality of iq. Its influence on id is more pronounced. For PTC, the tolerance
bands worsen the quality of the id control, while for PCC the bands are narrow enough to improve
the control of id. However, those KPIs are strongly related to the chosen design parameters for
the cost function. A smaller |Ψs|l, for instance, might have led to similar conclusions for both
PTC and PCC.

Doubling the update frequency of PCC leads to significantly improved results concerning the
control quality.

The Joule losses in Figure 7.7f are tightly connected to the current control. The large ripple in
PTCtol leads to the highest Joule losses, while the PI controller - with its small ripple and bias
- results in the lowest Joule losses.

7.4.2 Voltage Quality

Figures 7.7g and 7.7h illustrate the voltage quality achieved by the controllers. The switching
frequency of the DB and PI controller amounts to the twofold of the update frequency, since each
switch changes its state from off to on, and then back to off during Tu. fswitch of PCCDC is lower
than 20 kHz, since not every switch needs to change its state during Tu. When, for instance,
the active voltage vector corresponds to Sk = [110] and the null vector to Sk,0 = [111], only
the third switch needs to change its state from 1 to 0, and back to 1. The standard PTC and
PCC lead to the lowest switching frequency, regardless of the type of cost function. Doubling
fu results in almost doubling fswitch.

On the other hand, the low fswitch of the standard PCC and PTC forces the switchings that
do take place to violate the PPCR. Maintaining the same switch state during the whole update
period leads to large deviations from the reference after all, causing the input voltage for the
next Tu to be changed more abruptly. Halving Tu does not resolve this problem, since it does not
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tackle the root cause of the issue, which is the fact that the amplitude of the voltage vector cannot
be changed when applying standard PTC or PCC. Since PCCDC does address this shortcoming,
its percentage of switchings violating the PPCR is lower. Because the PI and DB controller
allow to change not only the amplitude of the voltage vectors, but also their direction, almost
all their switchings fulfill the PPCR.

7.4.3 Harmonic Distortion

In general, a higher fswitch reduces the harmonic distortion of the phase currents. This statement
is endorsed by the decrease in THD of PCC2f compared to PCC with update frequency fu, and
the low THD of the PI and DB controller. Since PCC directly regulates both q- and d-current
components, while for PTC the d-component is only controlled indirectly, PCC shows superior
properties concerning harmonic distortion when compared to PTC.

7.4.4 Transient Behavior

An overview of the percentage overshoot and the rise time of iq for the different controllers is
presented in Figures 7.7j and 7.7k respectively. The first comment that must be made, is that
the %OS measured for all the PTC and PCC controllers, is only due to the current ripple that
is present in their static behavior as well. As could be seen in Figure 7.5, only the DB and the
PI controller show some distinct overshoot peaks. From Figure 7.7j can be concluded that the
DB controller displays a larger overshoot than the PI controller on average. However, the rise
time of the PI controller lasts longer than the twofold of Trise of the DB controller. Furthermore,
it must be borne in mind that the PI controller can be tuned to have a lower Trise as well, but
at the expense of more overshoot and less stable behavior.

In general can be stated that the PTC and PCC controllers excel in both low %OS and a short
Trise.

7.4.5 Robustness

Especially the deadbeat controller is prone to instability in case the system model is not fully
accurate, since the exact motor parameters are required to compute the optimal voltage vector.
FS-MBPC on the contrary only makes use of the eight input vectors directly available at the
output of the inverter, rendering this control strategy more robust. After all, a small deviation in
the predicted state x̂k+2 due to parameter mismatch will only occasionally result in the selection
of a different voltage vector. This effect is even reinforced by the use of tolerance bands in the
cost function. Doubling fu - and thus the sampling frequency - ameliorates the robustness a
little, since the faster feedback allows the controller to intervene more quickly in case of errors.
Since FS-MBPC with DC calculation combines the FS-MBPC and DB strategy, its stability
features lie somewhere in between those two strategies. In [26] is pointed out that the calculated
topt has a relative wide error range, since it is based on the DB principle. However, due to the
fact that only the amplitude of the voltage vectors is varied by means of topt, but not their
direction, this controller will be less sensitive to parameter mismatch than the DB controller.
For the PI controller at last, the model parameters are only used to tune Kp and Ki, hence
this strategy is assumed to be the most robust against parameter mismatch. The strategy of
passing on wrong parameters to the controller in order to test its robustness cannot be applied
however. In order to test its sensitivity to parameter inaccuracy, an alternative but similar
working method is employed: the parameters in the simulation model of the ‘real’ machine are
adapted. The average ∆bias obtained in this way equals 0.33, which confirms that PI control
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is indeed the least sensitive to parameter inaccuracy when compared to the ∆bias values of the
other types of controllers in Figure 7.7l.

7.4.6 PI Controller versus Predictive Controllers

In the previous discussion, it is very striking that the PI controller often outperforms the more
advanced predictive controllers. Only the deadbeat controller can approach its quality of torque
regulation. The other predictive controllers excel solely in terms of switching losses and dynamic
performance. Consequently, the use of a predictive control algorithm to regulate an AFPMSM
fed by a 2L-VSI seems a bit overkill. A similar conclusion was made in [7].

The major reason for this unexpected outcome, is the fact that the major strengths of the pre-
dictive controllers are not fully exploited. FS-MBPC, for instance, is particularly well-suited to
deal with Multiple-Input Multiple-Output (MIMO) systems. In addition, this type of controller
is well-known for its natural way of dealing with constraints. Thus, the situation might have
been different if, for instance, flying-capacitor multi-level inverters would have been used, with
two pairs of complementary switches in each inverter leg, and capacitors which can be put in
series with the DC bus by means of the extra pair of switches. For this type of inverter, a larger
variation of switch states is available than for the 2L-VSI, and regulation of the voltage over
the capacitors is required as well. This situation would reflect the strengths of FS-MBPC much
better. A similar conclusion holds for highly non-linear processes.

7.5 Conclusion

The different controllers introduced in the previous chapters were subjected to a profound com-
parison. For this purpose, some new KPIs were introduced, apart from the ones that were
already in use in previous chapters:

� MAR and MSR, to give an indication of the torque and current ripple

� the bias, to quantify the systematic error between the controlled variables and their refer-
ences

� THD, to indicate the harmonics in the stator current

� Trise and %OS, to examine the dynamic performance

� ∆bias, to study the sensitivity to parameter inaccuracy

A comparison of all those KPIs led to the conclusion that the major disadvantages of the
classical PTC and PCC controllers are their high torque and current ripple (especially for PTC
with a cost function with tolerance bands), their high harmonic content in the stator current,
and their poor performance concerning the fulfillment of the PPCR. However, these controllers
excelled in their dynamic performance and low switching losses. The DB and PI controller on
the contrary, showed outstanding simulation results for the same KPIs for which PTC and PCC
performed not so well. However, those controllers led to high switching losses and exhibited
distinct overshoot peaks. Moreover, it took the PI controller a relatively long time to bring the
torque to its reference value. The major weaknesses of the DB controller were its systematic
error in both current components and its parameter sensitivity. The other types of controllers
showed mediocre performance. A more complete overview of the controller’s ratings can be
found in Table 7.4.
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Table 7.4: Strengths and weaknesses of the controllers, based on simulations

PTC PCC PCC2f PCCDC DB PI

ripple - - - + + ++ ++
bias - - + - - - ++
Joule losses - + + + + +
switching losses ++ ++ + - - - - -
PPCR - - - - + ++ ++
THD - - - + + ++ ++
overshoot ++ ++ ++ ++ - - -
rise time ++ + ++ + + - -
robustness + + + - - - ++

Finally it was concluded that the use of predictive control for an AFPMSM fed by a 2L-VSI is
a slight overkill, since the major advantages of predictive controllers - like their appropriateness
to deal with MIMO systems and systems constraints - are not fully exploited.
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Chapter 8

Experimental Verification

8.1 Introduction

The major drawback of model predictive control is its high computational cost and its associated
long calculation times. This used to make MBPC unattractive for processes with small time
constants. The development of new and faster control hardware platforms, however, enabled the
deployment of computationally demanding control schemes for fast real-time applications, even
for processes with time constants in the millisecond range. Hence predictive control became a
realistic candidate for application to electric drives.

An example of such a new hardware platform is a Field Programmable Gate Array (FPGA), an
integrated circuit consisting of programmable logic components. In this chapter, the previously
examined control algorithms will be implemented on-line by means of such an FPGA. After a
short description of the test set-up, and an overview of the main characteristics of programming
an FPGA, the features of the controllers will be verified by repeating the simulations of the
previous chapter on the test set-up.

8.2 Test Set-up

To validate the performance of the controllers on the real AFPMSM, the set-up of Figure
8.1 is used. The variable DC source is fed from a 3-phase 400V grid. The inverter converts
this rectified voltage in a sequence of voltage vectors, determined by the torque and current
controllers. Those controllers are implemented on a Xilinxr Kintexr-7 XC7K325T FPGA,
which has a clock period of 10 ns and is embedded in a MicroLabBox of dSPACE. The digital
signal processor (DSP) of the latter is used to change the control parameters on-line. The
MicroLabBox also provides the interface between the AFPMSM, its FPGA, its 2GHz dual-
core real-time Freescale QorlQ P5020 processor and the computer. The FPGA is programmed
using the Xilinx System Generator blockset (part of the Vivador System Edition Design Suite)
in a MATLABr&Simulinkr environment. Signals are visualized by means of the dSPACE
ControlDeskr software.

The employed AFPMSM is a prototype developed in the EELab research group of Ghent Uni-
versity. Its specifications are presented in Table 4.1. An induction machine (IM) is connected
to the AFPMSM as load. It is the IM that ensures the constant speed of the AFPMSM. The
speed control of the IM was already implemented at the start of this master’s dissertation by
means of a DS1104 R&D Controller Board of dSPACE.
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Figure 8.1: Experimental set-up

8.3 Field Programmable Gate Array

According to [21, 22, 27, 39], the main advantage FPGAs offer is the possibility of parallel pro-
cessing. Since the algorithms are directly implemented into hardware (such as flip-flops), their
parallelism can be maintained in their implementation, resulting in a short execution time. For
FS-MBPC, for instance, this feature is used for parallel evaluation of the q- and d-variables, and
for calculation of the different cost terms. The calculation time is reduced in this way. On the
other hand, parallel processing requires special attention to the timing aspect. When the results
of two parallel operations need to be processed together, for instance, it must be ensured that
those two parallel operations last exactly the same amount of FPGA clock cycles. This condition
can be fulfilled by adding delays to the fastest process, or by simultaneous enabling of the results
of the two branches by means of triggers from a central counter. In case this requirement is not
met, there is a real risk of processing the signal of the fastest parallel branch with a former result
of the slowest branch, impeding a correct execution of the algorithm. Profound knowledge of
the timing of signal flows in the model is thus a vital prerequisite for programming an FPGA.

Another key factor mentioned in [27] is the possibility of pipelining. Since paralleling the calcu-
lations for all switch states in the prediction step, for instance, is not possible due to the limited
FPGA resources, and each switch state requires the evaluation of the same equations, pipelining
is particularly well-suited for this case. At each clock cycle, a new switch state is fed into the
pipeline. Since it takes 27 FPGA clock periods of 10 ns to go through all the calculations of
the prediction step, the first prediction (according to the first switch state) will be available at
the end of the pipeline after these 27 clock periods. The prediction for the second switch state
will leave the pipeline one clock period later, and so on for the other six switch states, until
the pipeline is empty. With this fully pipelined prediction block, all predictions are available
after only 27 + 7 = 34 clock periods. Without pipelining, the same calculations would require a
computation time of 27 · 8 = 216 clock periods.

The major drawback of working with an FPGA is that it only allows to perform simple calcu-
lations. Addition and subtraction, multiplication of two signals or multiplication of one signal
with a constant, and logical and bitwise operations pose no problems. Sines and cosines, division
of two varying signals, and taking the square root of a signal belong to the possibilities as well,
but require a great amount of resources and time steps compared to the other operations. Other
functions need to be built by the programmers themselves by means of the operators that are
available.

A fourth important aspect is the availability of a wide range of design tools. For this master’s dis-
sertation, for instance, the whole system is designed in a MATLABr&Simulinkr environment.
The controllers can be graphically built up in this environment, and the underlying software
generates the corresponding FPGA bit stream. Since the control algorithms to be implemented
on the FPGA can be simulated beforehand in Simulinkr, a first debugging of the controllers can
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already be done off-line. In this way, the risk of applying an incorrect control to the real process
is reduced. The only drawback is the fact that the controllers must be simulated with small
time steps, determined by the clock period of the FPGA. Since this period equals 10 ns, those
simulations are very costly in terms of processing time and required memory of the computer.

Moreover, the Simulinkr environment automatically encourages a modular build up of the
algorithms. For FS-MBPC, for instance, separate subsystems can be implemented for the mea-
surements, the estimation, the prediction, the optimization and the generation of the inverter
switch states. Signal latency is provided in each subsystem, and each subsystem is enabled sep-
arately by means of triggers from a central counter, greatly simplifying a correct timing of the
operations. In this way, the subsystems are decoupled and reusable. Extending the prediction
horizon, for instance, can easily be done by reusing the original prediction block.

Another difference between an FPGA implementation and a processor implementation, is that
for each fixed-point arithmetic operation, the bit precision can be adapted manually for an
FPGA. Depending on the magnitude of the signals the block works with and the required
accuracy, its fixed point position and the number of available bits can be differed, enabling
efficient use of the available hardware resources and short computation times. On the other
hand, this characteristic requires knowledge of the order of magnitude of each considered signal,
in order to avoid overflow errors. Round-off errors are another inevitably drawback of the
limited number of available bits. Thorough research is done into these two type of errors in [40].
However, this analysis is out of the scope of this master’s dissertation.

Due to all this properties, FPGAs are particularly well-suited to implement predictive controllers,
which is confirmed by numerous articles, such as [39,41].

8.4 Measurements

Since measurement noise, the utilization of a simplified model, and parameter uncertainty (or
variability under operation) can degrade the performance of the control systems and even affect
their stability, the controllers are tested in real-life as well. The same tests as in Section 7.3 are
carried out on the experimental set-up. Plots of the measurements for iq and id are assembled
in Figures 8.2 and 8.3 respectively. All controllers are able to track the reference value for iq,
and thus for the torque. The difference in current ripple between the various controllers and the
fact that only the PI controller is able to keep id equal to zero properly, catch the eye as well.

The fact that id is only properly controlled by the PI controller, can be explained by a similar
argument as for the simulations: the large back EMF term in Eq. (5.2), involving the large
factors ω and iq, tends to pull id away from zero; the larger iq, the larger this effect. Due
to measurement noise and inaccuracies in the machine model, this effect is more pronounced
in the measurements than in the simulations, and only noticed for the predictive controllers.
An underestimation of Lq, for instance, causes id to be more negative, since the back EMF is
underestimated in this case.

Concerning inaccuracies in the machine model, it can be remarked as well that the waveforms
of the PI controller in Figures 8.2g and 8.3g are less damped than in simulation. Hence, it can
be concluded that the actual machine exhibits less damping than inferred by the model. The
larger bias in Figures 8.2f and 8.2h can be explained in a similar way.

Compared to the simulation results in Figures 7.5 and 7.6, the measurements look less ‘clean’,
which can also be ascribed to measurement noise and parasitic effects in the real machine that
were not included in the machine model.
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Figure 8.2: Experimental validation of the control of iq (red: reference i∗q ; blue: measured iq)
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Figure 8.3: Experimental validation of the control of id (red: reference i∗d; blue: measured id)
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Figure 8.4: Overview of the KPIs of the measurements
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8.5 Discussion of the Measured KPIs

To enable an easy comparison of the controllers, their KPIs are assembled in Figure 8.4. The
values displayed in the charts are averaged over the different T ∗em; separate results can be found
in the tables in Appendix B. In this discussion, the focus lies on the differences between the
measurements on the one hand, and the simulation results of Section 7.4 on the other hand.

8.5.1 Control Quality

Compared to the simulation results of Section 7.4, the ripple on iq has increased due to measure-
ment noise, as have the Joule losses. For all controllers but the PI controller, the static error on
id has seriously deteriorated. Especially PTCquadr performed worse than expected, on all fronts
of the control quality. As to its bias, it even surpassed the DB controller and PCCDC. Its high
current ripple generated an unacceptable level of acoustic noise.

The performance of PCCDC is slightly disappointing as well. The average ripple might be reduced
compared to the standard PCC, but the maximal ripple amplitude is still high. Furthermore,
iq displays a large bias.

In general, PI control still shows superior control quality, followed closely by DB control.

8.5.2 Voltage Quality

The switching frequencies themselves have slightly changed compared to the simulation results,
but the general conclusion concerning the switching losses is still valid: the DB and PI controller
cause the highest switching losses, while the classic PTC and PCC perform best for this KPI. The
cost function with tolerance bands slightly decreased fswitch for both PTC and PCC compared
to the quadratic cost function, but the difference is hardly noticeable. Qua violations of the
PPCR, PTC has achieved a better result than was anticipated: while the simulations predicted
that this controller would have a higher percentage of switchings not fulfilling the PPCR, it
actually performed similar to PCC.

8.5.3 Harmonic Distortion

Due to measurement noise and non-linearities in the behavior of the real inverter, the stator
currents obtained by DB and PI control also contain some harmonics in reality. The harmonic
distortion of PCCDC is worse than in simulation, due to its deterioration in control quality.
The statement that using tolerance bands in the cost function leads to an increase in harmonic
distortion has been endorsed by the measurements. The fact that PTC shows less harmonics in
its stator current than PCC is however very surprising.

8.5.4 Transient Behavior

As opposed to what was predicted by the simulation results, the DB controller shows less
overshoot in real-life than the PI controller. The so-called overshoot of the other controllers is
actually only due to their current ripple. In Figure 8.2 can indeed be observed that only the DB
and the PI controller show distinct overshoot peaks when applying a step in the reference value.

Concerning the rise time, the PI controller is a bit slower than anticipated. The measurements
validate that the shortest rise time is achieved by using PTC.
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8.5.5 Robustness

While PTC showed to be the most robust against parameter inaccuracy among the predictive
controllers in simulation, and the DB controller the least, the measurement results claim exactly
the opposite. However, these results need to be nuanced a little bit by bearing in mind that
∆bias represents the relative change in bias due to passing on inaccurate model parameters to
the controllers, and not the absolute change. The difference in robustness between, for instance,
PTCtol and DB is much harder to notice when comparing the plots in Figure 8.5. Similar plots
for the other types of controllers can be found in Appendix B.
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Figure 8.5: Parameter sensitivity (red: reference i∗q ; blue: measured iq)

8.5.6 Measurements versus Simulations

In general, the main features of the controllers that showed up in the simulations are preserved
in the experiments as well. The classical PTC and PCC controllers are still characterized by
their high torque and current ripple, their high harmonic content in the stator current, and their
high percentage of switchings violating the PPCR, while the PI and DB controller excel in those
same properties. On the contrary, the low switching losses of PTC and PCC are in favor of
these two control strategies, as well as their superior dynamic performance.

The most striking difference between the measurements and the simulations is that it is not DB
control that performs worse concerning bias and parameter sensitivity, but PTC. Furthermore,
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the real-life performance of PCCDC qua decrease in current ripple is slightly disappointing
under the tested circumstances (Vdc = 250V, N = 1000 rpm). However, under the operation
circumstances of the robustness test (Vdc = 100V, N = 300 rpm), the improvement in the
current ripple is much more pronounced, as is illustrated in Figure 8.6. Therefore the effect of
the speed and the DC bus voltage should have been taken into account for a more complete
comparison.
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Figure 8.6: Difference in torque ripple for Vdc = 100V and N = 300rpm
(red: reference i∗q ; blue: measured iq)

However, based on the measurements that were performed at 250V and 1000 rpm, a table similar
to Table 7.4 can be constructed, summarizing the relative ratings for the controllers for different
features. The ratings that were changed compared to Table 7.4 received a green background
when they were upgraded, and a red background when they were downgraded.

Table 8.1: Strengths and weaknesses of the controllers, based on experiments

PTC PCC PCC2f PCCDC DB PI

ripple - - - + - ++ ++
bias - - + + - - ++
Joule losses - - - + + + +
switching losses ++ ++ + - - - - -
PPCR - - - - - - + ++ ++
THD - - - + - - ++ ++
overshoot ++ ++ ++ ++ - - -
rise time ++ + + + + - -
robustness - - + + + + ++

8.6 Conclusion

The simulations performed in Chapter 7 were repeated on a test set-up, in order to test the
performance of the controllers when exposed to measurement noise and the actual AFPMSM
instead of its simplified model. The control algorithms were implemented by means of an FPGA.
Short calculation times were obtained by exploiting the major strengths of the FPGA, more
specifically paralleling and pipelining. Experimental results confirmed that all controllers were
able to track their reference value. In general, they exhibited similar features as in simulation.
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Conclusion and Future Work

9.1 General Conclusion

The recent focus on ecodesign led to the development of new electrical machine topologies. The
AFPMSM with a YASA topology and surface mounted permanent magnets used throughout
this thesis, is a typical example. In Chapter 2 a brief description of its main features was given.
Compared to other electrical machines, the AFPMSM excels in its outstanding efficiency, power
density and compactness.

The major goal of this master’s dissertation was to regulate the rotor torque of an AFPMSM
(fed by a 2L-VSI) by means of predictive control. The task of the controllers was to select the
optimal sequence of switch states for the inverter, in order to achieve a given torque demand.
Two prominent predictive control families were closely examined for this purpose: FS-MBPC
and DB control. In Chapter 3, the three basic steps of FS-MBPC were explained: estimation,
prediction and optimization. This control algorithm directly outputted the switch states to be
sent to the inverter. DB control on the contrary, consisted of only two steps - estimation and
deadbeat - and determined only a reference for the input voltage of the machine. A separate
modulation algorithm was thus required to obtain the necessary switch states for the inverter.

Since an adequate system model is an absolute must for a proper predictive control, Chapter 4
was devoted to the modeling of the AFPMSM and the 2L-VSI. A compromise between high ac-
curacy and low computational burden had to be made. Different types of modulation techniques
were studied as well.

In Chapter 5, the electromagnetic torque and stator flux of the AFPMSM were controlled directly
by implementing the FS-MBPC algorithm in a MATLABr&Simulinkr environment. Two dif-
ferent types of cost function were proposed for the optimization step: a quadratic cost function,
resulting in a typical tracking control, and a cost function with tolerance bands, allowing the
controlled variables to deviate from their reference values within acceptable limits. Some atten-
tion was devoted to the tuning of the width of these tolerance bands, as well as to the weighting
factors expressing the relative importance of the control goals. A set of KPIs was introduced
to compare not only the differences in control quality, but also the variation in switching losses,
Joule losses and voltage quality.

It was concluded, however, that the direct link between torque and stator flux made the control
more difficult. Therefore, Chapter 6 examined how the torque could be regulated by applying
the FOC principle. Four different implementations were discussed: a simple PI control, FS-
MBPC, DB control and a hybrid version of the two latter ones. Simulation results revealed
that FS-MBPC led to quite high current ripple compared to PI and DB control. However,
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FS-MBPC had the advantage of a large flexibility to express secondary control goals by means
of an adaptation of its cost function. Combining these two advantages led to the emergence of
a hybrid version of FS-MBPC and DB control: FS-MBPC with DC calculation.

Chapter 7 assembled a selection of the previously introduced controllers and subjected their sim-
ulation results to a profound comparison. New KPIs were determined for this purpose, assessing
the harmonic distortion in the stator current, their dynamic performance, and their robustness
against parameter mismatch as well. The controller’s ratings were summarized in Table 7.4. It
was concluded that the use of predictive control for an AFPMSM fed by a 2L-VSI was a slight
overkill, since the major advantages of predictive controllers - like their appropriateness to deal
with MIMO systems and system constraints - were not fully exploited. Out of all the evaluated
predictive controllers, DB control performed best, in spite of its high switching losses compared
to FS-MBPC.

Finally, the performance of the controllers was experimentally verified on a test set-up, by
implementing the algorithms on an FPGA. The measurements provided in Chapter 8 confirmed
that all controllers were able to track their reference value. Barring a few exceptions, the
experimental results revealed similar features as the simulations.

9.2 Future Work

Although the major part of the controllers tested in simulation were applied on the real AFPMSM,
not all their variations have been experimentally verified yet. The effect of extending the pre-
diction horizon, for instance, or adding an extra term to the cost function in order to reduce the
switching losses and to improve the voltage quality, still has to be validated on the test set-up.

The algorithms that were implemented on the FPGA still need some optimization as well.
In [21,22,27] is mentioned, for instance, that the same calculation core can be used for both the
estimation and the prediction step by means of multiplexing, as the same system model is used
for both steps. This would considerably reduce the utilized number of FPGA resources.

In order to reduce the bias noticed in the experimental results, it might be advisable to test the
effect of the I-action mentioned in [35] as well.

Finally, in Chapter 8 was remarked that the characteristics of the controllers could vary with the
operation point. To examine this influence, extra measurements should be performed. Besides,
a statistical analysis would be useful to demonstrate the significance of the perceived effects.
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Appendix A

Simulation Results

A.1 Robustness

For all plots in this section applies that the blue curve represents the reference signal i∗q and the
red curve the simulated signal iq.
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Appendix A. Simulation Results

Table A.1: MAR(iq) [A]

PTCquadr PTCtol PCCquadr PCCtol PCC2f PCCDC DB

ref 0.0075 0.0078 0.0105 0.0102 0.0054 0.0004 0.0003
0.1Rreal 0.0075 0.0076 0.0105 0.0104 0.0052 0.0007 0.0007
1.9Rreal 0.0073 0.0075 0.0105 0.0104 0.0054 0.0008 0.0008
0.5Lreal 0.0142 0.0148 0.0115 0.0119 0.0058 0.0006 0.0003
1.5Lreal 0.0083 0.0109 0.0118 0.0120 0.0057 0.0006 0.0163
0.5imag,real 0.0083 0.0098 0.0104 0.0105 0.0052 0.0004 0.0003
1.5imag,real 0.0081 0.0090 0.0105 0.0104 0.0052 0.0004 0.0003

Table A.2: bias(iq) [A]

PTCquadr PTCtol PCCquadr PCCtol PCC2f PCCDC DB

ref 0.0473 -0.0514 -0.0067 -0.0098 -0.0058 -0.0003 0.0019
0.1Rreal -0.0615 -0.1406 -0.0948 -0.0997 -0.0521 -0.0945 -0.0923
1.9Rreal 0.1509 0.0456 0.0894 0.0871 0.0468 0.0964 0.0986
0.5Lreal -2.7852 -2.7850 -1.5775 -1.5606 -0.7865 -1.6137 -1.6240
1.5Lreal 0.3663 0.1767 0.5377 0.4138 0.2649 0.5392 0.5385
0.5imag,real -0.8256 -0.8540 -0.8131 -0.8050 -0.4003 -0.8111 -0.8092
1.5imag,real 0.8164 0.7113 0.8075 0.8156 0.4036 0.8105 0.8127
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A.2 Detailed KPIs

Table A.3: PTCquadr

KPI 0 Nm 8 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.5946 1.3515 0.0007 0.0149 0.1364 0.0026
MAE [p.u.] 0.6566 0.9721 0.0226 0.1014 0.2940 0.0404
average [A, A, Wb] 0.0582 -0.4256 0.1108 5.9913 -0.8894 0.1130
bias [p.u.] 0.0582 -0.4256 0.0100 -0.0141 -0.1464 0.0208
MAR [p.u.] 0.6537 0.8897 0.0204 0.1028 0.2722 0.0362
MSR [p.u.] 0.5912 1.1703 0.0006 0.0152 0.1183 0.0021

fswitch [kHz] 5.05 4.63
non-PPCR [%] 55.29 70.27
THD [%] - 42.79
Joule loss [W] 0.67 13.54
OS [%] -142.72 -20.04
Trise [ms] 0.2 0.2

KPI 12 Nm 15 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0086 0.0274 0.0011 0.0054 0.0157 0.0009
MAE [p.u.] 0.0758 0.1367 0.0273 0.0600 0.1019 0.0249
average [A, A, Wb] 9.0824 -0.0924 0.1124 11.4964 -0.3514 0.1144
bias [p.u.] -0.0037 -0.0101 0.0027 0.0089 -0.0308 0.0088
MAR [p.u.] 0.0759 0.1371 0.0272 0.0592 0.0979 0.0237
MSR [p.u.] 0.0087 0.0275 0.0011 0.0052 0.0145 0.0008

fswitch [kHz] 4.66 4.51
non-PPCR [%] 61.39 52.71
THD [%] 18.53 14.34
Joule loss [W] 27.92 43.73
OS [%] 18.25 11.37
Trise [ms] 0.2 0.6
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Table A.4: PTCtol

KPI 0 Nm 8 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.6021 6.4267 0.0035 0.0160 0.2933 0.0056
MAE [p.u.] 0.6130 2.1277 0.0493 0.1023 0.4489 0.0616
average [A, A, Wb] 0.0844 -0.1188 0.1100 6.1462 -1.8365 0.1155
bias [p.u.] 0.0844 -0.1188 0.0027 0.0114 -0.3022 0.0424
MAR [p.u.] 0.6048 2.1203 0.0489 0.1009 0.3610 0.0478
MSR [p.u.] 0.5949 6.4126 0.0034 0.0156 0.1974 0.0035

fswitch [kHz] 4.71 4.46
non-PPCR [%] 62.23 69.20
THD [%] - 33.15
Joule loss [W] 2.29 15.90
OS [%] -127.69 -10.05
Trise [ms] 0.4 0.2

KPI 12 Nm 15 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0075 0.0911 0.0037 0.0052 0.0569 0.0035
MAE [p.u.] 0.0696 0.2589 0.0523 0.0584 0.1909 0.0469
average [A, A, Wb] 9.2056 -1.5745 0.1161 11.5093 -0.8762 0.1157
bias [p.u.] 0.0099 -0.1727 0.0357 0.0101 -0.0769 0.0203
MAR [p.u.] 0.0683 0.2016 0.0387 0.0570 0.1810 0.0436
MSR [p.u.] 0.0073 0.0601 0.0022 0.0050 0.0499 0.0029

fswitch [kHz] 4.36 4.31
non-PPCR [%] 65.36 54.79
THD [%] 26.36 22.18
Joule loss [W] 30.13 45.34
OS [%] 4.04 9.80
Trise [ms] 0.2 0.6
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Table A.5: PCCquadr

KPI 0 Nm 8 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.8956 1.4771 0.0008 0.0288 0.0618 0.0012
MAE [p.u.] 0.7906 1.0110 0.0234 0.1400 0.2071 0.0294
average [A, A, Wb] -0.0726 -0.3092 0.1105 6.2178 -0.9458 0.1132
bias [p.u.] -0.0726 -0.3092 0.0073 0.0232 -0.1556 0.0226
MAR [p.u.] 0.7880 0.9762 0.0224 0.1350 0.1590 0.0222
MSR [p.u.] 0.8903 1.3815 0.0007 0.0270 0.0359 0.0007

fswitch [kHz] 4.66 4.37
non-PPCR [%] 41.87 37.07
THD [%] - 23.46
Joule loss [W] 0.90 13.81
OS [%] -87.65 -13.00
Trise [ms] 0.5 0.5

KPI 12 Nm 15 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0142 0.0239 0.0010 0.0086 0.0232 0.0015
MAE [p.u.] 0.0984 0.1218 0.0250 0.0764 0.1283 0.0330
average [A, A, Wb] 9.0548 -0.9532 0.1145 11.5381 -1.3201 0.1168
bias [p.u.] -0.0067 -0.1046 0.0214 0.0126 -0.1159 0.0300
MAR [p.u.] 0.0989 0.0947 0.0190 0.0746 0.0818 0.0206
MSR [p.u.] 0.0143 0.0132 0.0005 0.0082 0.0095 0.0006

fswitch [kHz] 4.19 4.11
non-PPCR [%] 40.18 33.48
THD [%] 15.11 11.51
Joule loss [W] 27.69 44.46
OS [%] 23.39 8.09
Trise [ms] 0.2 0.6
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Table A.6: PCCtol

KPI 0 Nm 8 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.8966 1.3844 0.0007 0.0294 0.0336 0.0007
MAE [p.u.] 0.7958 0.9591 0.0222 0.1418 0.1428 0.0208
average [A, A, Wb] -0.0677 -0.2604 0.1104 5.9728 -0.0874 0.1110
bias [p.u.] -0.0677 -0.2604 0.0064 -0.0172 -0.0144 0.0018
MAR [p.u.] 0.7944 0.9372 0.0215 0.1428 0.1458 0.0208
MSR [p.u.] 0.8920 1.3166 0.0007 0.0301 0.0346 0.0007

fswitch [kHz] 4.63 4.75
non-PPCR [%] 41.91 47.92
THD [%] - 25.4
Joule loss [W] 0.83 12.41
OS [%] -34.77 -20.56
Trise [ms] 0.3 0.4

KPI 12 Nm 15 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0120 0.0153 0.0007 0.0086 0.0135 0.0009
MAE [p.u.] 0.0915 0.1014 0.0215 0.0781 0.0951 0.0239
average [A, A, Wb] 9.0126 -0.3660 0.1130 11.5136 -0.4859 0.1148
bias [p.u.] -0.0113 -0.0402 0.0080 0.0104 -0.0426 0.0115
MAR [p.u.] 0.0921 0.0970 0.0204 0.0769 0.0917 0.0236
MSR [p.u.] 0.0122 0.0140 0.0006 0.0083 0.0115 0.0007

fswitch [kHz] 4.42 4.35
non-PPCR [%] 39.52 38.08
THD [%] 15.29 14.93
Joule loss [W] 27.02 43.91
OS [%] 17.6 8.11
Trise [ms] 0.6 0.6
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Table A.7: PCC2f

KPI 0 Nm 8 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.2242 0.3741 0.0002 0.0062 0.0119 0.0002
MAE [p.u.] 0.3951 0.5065 0.0117 0.0652 0.0891 0.0124
average [A, A, Wb] 0.0081 -0.0164 0.1097 6.0185 -0.3528 0.1117
bias [p.u.] 0.0081 -0.0164 0.0000 -0.0097 -0.0581 0.0081
MAR [p.u.] 0.3950 0.5064 0.0117 0.0655 0.0770 0.0106
MSR [p.u.] 0.2241 0.3738 0.0002 0.0063 0.0087 0.0002

fswitch [kHz] 9.13 9.01
non-PPCR [%] 41.30 40.92
THD [%] - 12.19
Joule loss [W] 0.23 12.05
OS [%] -48.52 -7.40
Trise [ms] 0.25 0.20

KPI 12 Nm 15 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0032 0.0066 0.0003 0.0021 0.0045 0.0003
MAE [p.u.] 0.0472 0.0663 0.0135 0.0375 0.0547 0.0137
average [A, A, Wb] 9.1136 -0.4759 0.1133 11.3714 -0.4536 0.1146
bias [p.u.] -0.0002 -0.0522 0.0107 -0.0020 -0.0398 0.0097
MAR [p.u.] 0.0472 0.0509 0.0105 0.0375 0.0450 0.0115
MSR [p.u.] 0.0032 0.0039 0.0002 0.0021 0.0030 0.0002

fswitch [kHz] 8.84 8.62
non-PPCR [%] 37.88 38.96
THD [%] 8.71 6.99
Joule loss [W] 27.24 42.14
OS [%] 5.38 1.48
Trise [ms] 0.30 0.65
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Table A.8: PCCDC

KPI 0 Nm 8 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0153 1.2909 0.0007 0.0003 0.0242 0.0005
MAE [p.u.] 0.0978 0.8586 0.0199 0.0134 0.1252 0.0172
average [A, A, Wb] 0.0051 -0.3313 0.1105 6.1084 -0.2952 0.1115
bias [p.u.] 0.0051 -0.3313 0.0008 0.0312 -0.2952 0.0008
MAR [p.u.] 0.0984 0.8261 0.0190 0.0128 0.1154 0.0158
MSR [p.u.] 0.0152 1.1811 0.0006 0.0002 0.0216 0.0004

fswitch [kHz] 11.96 10.70
non-PPCR [%] 20.89 16.74
THD [%] - 14.77
Joule loss [W] 0.47 12.49
OS [%] -15.35 -2.84
Trise [ms] 0.4 0.3

KPI 12 Nm 15 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0001 0.0133 0.0005 0.0001 0.0080 0.0005
MAE [p.u.] 0.0076 0.0895 0.0179 0.0068 0.0701 0.0172
average [A, A, Wb] 9.1117 -0.3578 0.1130 11.3838 -0.3352 0.1143
bias [p.u.] -0.0041 -0.3578 0.0009 -0.0109 -0.3352 0.0008
MAR [p.u.] 0.0076 0.0857 0.0171 0.0069 0.0689 0.0168
MSR [p.u.] 0.0001 0.0118 0.0005 0.0001 0.0072 0.0004

fswitch [kHz] 12.20 12.23
non-PPCR [%] 21.63 21.75
THD [%] 10.90 8.17
Joule loss [W] 27.32 42.31
OS [%] 1.86 1.02
Trise [ms] 0.4 0.8
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Table A.9: PI

KPI 0 Nm 8 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MAE [p.u.] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
average [A, A, Wb] 0.0000 0.0000 0.1097 6.0772 0.0000 0.1108
bias [p.u.] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MAR [p.u.] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MSR [p.u.] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

fswitch [kHz] 20.00 20.00
non-PPCR [%] 0.07 0.00
THD [%] - 0.00
Joule loss [W] 1.34 12.08
OS [%] -120.67 -11.58
Trise [ms] 1.1 1.1

KPI 12 Nm 15 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MAE [p.u.] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
average [A, A, Wb] 9.1158 0.0000 0.1121 11.3947 0.0000 0.1135
bias [p.u.] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MAR [p.u.] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MSR [p.u.] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

fswitch [kHz] 20.00 20.00
non-PPCR [%] 0.00 0.00
THD [%] 0.00 0.00
Joule loss [W] 27.01 42.35
OS [%] 4.41 13.98
Trise [ms] 1.1 1.1
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Table A.10: DB

KPI 0 Nm 8 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0006 0.2867 0.0002 0.0002 0.0303 0.0006
MAE [p.u.] 0.0250 0.5354 0.0124 0.0129 0.1741 0.0243
average [A, A, Wb] 0.0250 -0.5354 0.1111 6.1558 -1.0582 0.1135
bias [p.u.] 0.0250 -0.5354 0.0128 0.0129 -0.1741 0.0244
MAR [p.u.] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MSR [p.u.] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

fswitch [kHz] 20.00 20.00
non-PPCR [%] 0.03 0.00
THD [%] - 0.00
Joule loss [W] 0.19 12.77
OS [%] -371.20 -36.38
Trise [ms] 0.4 0.4

KPI 12 Nm 15 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0001 0.0210 0.0009 0.0001 0.0177 0.0011
MAE [p.u.] 0.0116 0.1448 0.0298 0.0110 0.1330 0.0335
average [A, A, Wb] 9.2212 -1.3197 0.1155 11.5202 -1.5157 0.1173
bias [p.u.] 0.0116 -0.1448 0.0294 0.0110 -0.1330 0.0335
MAR [p.u.] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MSR [p.u.] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

fswitch [kHz] 20.00 19.96
non-PPCR [%] 0.00 0.00
THD [%] 0.00 0.00
Joule loss [W] 28.16 43.72
OS [%] 9.78 7.89
Trise [ms] 0.4 0.8
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Appendix B

Experimental Results

B.1 Robustness

For all plots in this section applies that the red curve represents the reference signal i∗q and the
blue curve the simulated signal iq.

time [s]
0 0.2 0.4

i q
 [A

]

0

5

10

time [s]
0 0.2 0.4

i q
 [A

]

0

5

10
0.1R

real

time [s]
0 0.2 0.4

i q
 [A

]

0

5

10
1.9R

real

time [s]
0 0.2 0.4

i q
 [A

]

0

5

10
0.5L

real

time [s]
0 0.2 0.4

i q
 [A

]

0

5

10
1.5L

real

time [s]
0 0.2 0.4

i q
 [A

]

0

5

10
0.5i

mag,real

time [s]
0 0.2 0.4

i q
 [A

]

0

5

10
1.5i

mag,real

Figure B.1: Parameter sensitivity PTCquadr
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Figure B.2: Parameter sensitivity PCCquadr
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Figure B.3: Parameter sensitivity PCCtol
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Figure B.4: Parameter sensitivity PCC2f

time [s]
0 0.2 0.4

i q
 [A

]

0

5

10

time [s]
0 0.2 0.4

i q
 [A

]

0

5

10
0.1R

real

time [s]
0 0.2 0.4

i q
 [A

]

0

5

10
1.9R

real

time [s]
0 0.2 0.4

i q
 [A

]

0

5

10
0.5L

real

time [s]
0 0.2 0.4

i q
 [A

]

0

5

10
1.5L

real

time [s]
0 0.2 0.4

i q
 [A

]

0

5

10
0.5i

mag,real

time [s]
0 0.2 0.4

i q
 [A

]

0

5

10
1.5i

mag,real

Figure B.5: Parameter sensitivity PCCDC
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Table B.1: MAR(iq) [A]

PTCquadr PTCtol PCCquadr PCCtol PCC2f PCCDC DB

ref 0.0116 0.0050 0.0084 0.0092 0.0027 0.0014 0.0018
0.1Rreal 0.0117 0.0062 0.0091 0.0092 0.0032 0.0026 0.0035
1.9Rreal 0.0129 0.0069 0.0077 0.0083 0.0026 0.0007 0.0007
0.5Lreal 0.1115 0.1050 0.1201 0.1222 0.0352 0.1231 0.1444
1.5Lreal 0.0304 0.0148 0.0218 0.0198 0.0072 0.0185 0.0052
0.5imag,real 0.0495 0.0264 0.0367 0.0361 0.0099 0.0306 0.0356
1.5imag,real 0.0304 0.0246 0.0225 0.0250 0.0066 0.0151 0.0112

Table B.2: bias(iq) [A]

PTCquadr PTCtol PCCquadr PCCtol PCC2f PCCDC DB

ref -0.0675 -0.0236 -0.1520 -0.1225 -0.1008 -0.1478 -0.2309
0.1Rreal -0.1229 -0.1264 -0.2619 -0.2229 -0.1551 -0.2442 -0.3202
1.9Rreal 0.0327 0.0738 -0.0776 -0.0231 -0.0144 -0.0571 -0.1382
0.5Lreal -1.7431 -1.6945 -1.8224 -1.8455 -0.9870 -1.9173 -2.0827
1.5Lreal 0.5199 0.2849 0.4953 0.3918 0.2562 0.4322 0.3916
0.5imag,real -0.8403 -0.7727 -0.9457 -0.9292 -0.4862 -0.9520 -1.0353
1.5imag,real 0.7713 0.7232 0.6677 0.7138 0.3573 0.6561 0.5745
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B.2 Detailed KPIs

Table B.3: PTCquadr

KPI 0 Nm 8 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 3.2394 3.6843 0.0020 0.0482 0.4896 0.0097
MAE [p.u.] 1.4754 1.5528 0.0366 0.1826 0.6643 0.0935
average [A, A, Wb] -0.4556 -1.2970 0.1131 6.4616 -4.0372 0.1211
bias [p.u.] -0.4556 -1.2970 0.0310 0.0633 -0.6643 0.0939
MAR [p.u.] 1.4022 1.1619 0.0261 0.1646 0.1639 0.0227
MSR [p.u.] 3.0319 2.0020 0.0010 0.0391 0.0427 0.0008

fswitch [kHz] 3.67 3.85
non-PPCR [%] 45.95 37.38
THD [%] - 15.71
Joule loss [W] 2.44 20.16
OS [%] -330.90 -40.52
Trise [ms] 0.3 0.3

KPI 12 Nm 15 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0267 0.3738 0.0163 0.0211 0.3163 0.0204
MAE [p.u.] 0.1325 0.5870 0.1219 0.1193 0.5332 0.1340
average [A, A, Wb] 9.6790 -5.3513 0.1258 11.6466 -6.0753 0.1287
bias [p.u.] 0.0618 -0.5870 0.1222 0.0221 -0.5332 0.1340
MAR [p.u.] 0.1152 0.1308 0.0269 0.1153 0.1461 0.0359
MSR [p.u.] 0.0203 0.0259 0.0011 0.0197 0.0307 0.0019

fswitch [kHz] 3.68 2.97
non-PPCR [%] 42.88 39.50
THD [%] 14.90 10.15
Joule loss [W] 41.02 57.83
OS [%] 6.53 30.96
Trise [ms] 0.2 0.7
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Table B.4: PTCtol

KPI 0 Nm 8 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 3.1169 4.8530 0.0027 0.0763 0.5410 0.0108
MAE [p.u.] 1.3887 1.8780 0.0442 0.2250 0.6921 0.0974
average [A, A, Wb] -0.2029 -1.6635 0.1140 6.3821 -4.2027 0.1216
bias [p.u.] -0.2029 -1.6635 0.0392 0.0502 -0.6916 0.0975
MAR [p.u.] 1.3775 1.1784 0.0261 0.2080 0.1898 0.0264
MSR [p.u.] 3.0757 2.0857 0.0010 0.0669 0.0569 0.0011

fswitch [kHz] 3.78 3.68
non-PPCR [%] 46.68 48.05
THD [%] - 19.46
Joule loss [W] 2.67 20.71
OS [%] -2.56 -11.62
Trise [ms] 0.2 0.1

KPI 12 Nm 15 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0285 0.3412 0.0147 0.0187 0.3069 0.0197
MAE [p.u.] 0.1401 0.5602 0.1155 0.1114 0.5342 0.1345
average [A, A, Wb] 9.4406 -5.1064 0.1251 11.7014 -6.0865 0.1287
bias [p.u.] 0.0356 -0.5602 0.1160 0.0269 -0.5342 0.1349
MAR [p.u.] 0.1326 0.1302 0.0261 0.1058 0.1156 0.0281
MSR [p.u.] 0.0254 0.0256 0.0010 0.0170 0.0205 0.0012

fswitch [kHz] 3.49 3.06
non-PPCR [%] 42.56 32.12
THD [%] 17.90 8.88
Joule loss [W] 39.09 57.55
OS [%] 17.23 33.55
Trise [ms] 0.0 0.5
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Table B.5: PCCquadr

KPI 0 Nm 8 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.9361 1.1826 0.0006 0.0563 0.1733 0.0034
MAE [p.u.] 0.7697 0.8602 0.0199 0.2024 0.3661 0.0511
average [A, A, Wb] 0.2130 0.1086 0.1095 6.0596 -2.1872 0.1163
bias [p.u.] 0.2130 0.1086 -0.0018 -0.0029 -0.3599 0.0506
MAR [p.u.] 0.7406 0.8690 0.0201 0.2029 0.1672 0.0223
MSR [p.u.] 0.8907 1.1708 0.0006 0.0566 0.0440 0.0008

fswitch [kHz] 4.58 3.93
non-PPCR [%] 47.79 37.94
THD [%] - 21.22
Joule loss [W] 0.76 14.94
OS [%] -203.88 -43.34
Trise [ms] 0.5 0.4

KPI 12 Nm 15 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0276 0.1547 0.0065 0.0168 0.1662 0.0104
MAE [p.u.] 0.1400 0.3580 0.0734 0.1085 0.3872 0.0969
average [A, A, Wb] 9.1629 -3.2566 0.1203 11.5122 -4.4123 0.1244
bias [p.u.] 0.0052 -0.3572 0.0731 0.0103 -0.3872 0.0970
MAR [p.u.] 0.1391 0.1315 0.0251 0.1068 0.1033 0.0243
MSR [p.u.] 0.0273 0.0268 0.0010 0.0163 0.0159 0.0009

fswitch [kHz] 3.63 3.29
non-PPCR [%] 42.78 38.32
THD [%] 13.37 11.50
Joule loss [W] 31.98 49.84
OS [%] 1.30 10.90
Trise [ms] 0.7 0.7
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Table B.6: PCCtol

KPI 0 Nm 8 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.8788 1.1700 0.0006 0.0566 0.1672 0.0033
MAE [p.u.] 0.7221 0.8770 0.0202 0.2002 0.3497 0.0488
average [A, A, Wb] 0.0679 0.0805 0.1095 6.0950 -2.0677 0.1160
bias [p.u.] 0.0679 0.0805 -0.0018 0.0029 -0.3402 0.0478
MAR [p.u.] 0.7225 0.8799 0.0203 0.1996 0.1880 0.0252
MSR [p.u.] 0.8742 1.1635 0.0006 0.0563 0.0511 0.0009

fswitch [kHz] 4.16 3.61
non-PPCR [%] 43.83 40.39
THD [%] - 21.63
Joule loss [W] 0.70 14.92
OS [%] -145.87 -23.66
Trise [ms] 0.3 0.5

KPI 12 Nm 15 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0223 0.1624 0.0068 0.0187 0.1726 0.0108
MAE [p.u.] 0.1276 0.3771 0.0772 0.1148 0.3962 0.0988
average [A, A, Wb] 9.2177 -3.4376 0.1208 11.4431 -4.5144 0.1247
bias [p.u.] 0.0112 -0.3771 0.0776 0.0042 -0.3962 0.0987
MAR [p.u.] 0.1257 0.1157 0.0228 0.1142 0.0999 0.0232
MSR [p.u.] 0.0217 0.0198 0.0008 0.0185 0.0155 0.0008

fswitch [kHz] 3.50 3.02
non-PPCR [%] 44.29 33.93
THD [%] 23.83 14.95
Joule loss [W] 32.11 49.96
OS [%] 3.22 24.82
Trise [ms] 0.1 0.7
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Table B.7: PCC2f

KPI 0 Nm 8 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.1998 0.3472 0.0002 0.0123 0.0656 0.0013
MAE [p.u.] 0.3559 0.4793 0.0111 0.0944 0.2290 0.0321
average [A, A, Wb] -0.0565 -0.0965 0.1100 6.2128 -1.3858 0.1143
bias [p.u.] -0.0565 -0.0965 0.0027 0.0223 -0.2280 0.0316
MAR [p.u.] 0.3501 0.4735 0.0109 0.0902 0.0944 0.0131
MSR [p.u.] 0.1966 0.3379 0.0002 0.0113 0.0130 0.0003

fswitch [kHz] 9.16 7.83
non-PPCR [%] 46.79 37.19
THD [%] - 12.69
Joule loss [W] 0.29 13.56
OS [%] -310.72 -59.72
Trise [ms] 0.4 0.4

KPI 12 Nm 15 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0062 0.0471 0.0020 0.0044 0.0507 0.0032
MAE [p.u.] 0.0667 0.2030 0.0417 0.0552 0.2143 0.0543
average [A, A, Wb] 9.2300 -1.8507 0.1168 11.6097 -2.4419 0.1196
bias [p.u.] 0.0125 -0.2030 0.0419 0.0189 -0.2143 0.0546
MAR [p.u.] 0.0647 0.0632 0.0127 0.0520 0.0563 0.0137
MSR [p.u.] 0.0059 0.0058 0.0002 0.0039 0.0046 0.0003

fswitch [kHz] 7.36 6.96
non-PPCR [%] 34.68 29.36
THD [%] 7.99 6.00
Joule loss [W] 29.20 45.66
OS [%] 24.07 21.60
Trise [ms] 0.3 1.1

112



Appendix B. Experimental Results

Table B.8: PCCDC

KPI 0 Nm 8 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.3930 0.8264 0.0004 0.0334 0.2171 0.0039
MAE [p.u.] 0.4993 0.7647 0.0178 0.1466 0.4429 0.0597
average [A, A, Wb] -0.1529 -0.6452 0.1114 5.4806 -2.6914 0.1174
bias [p.u.] -0.1529 -0.6452 0.0155 -0.0982 -0.4429 0.0596
MAR [p.u.] 0.4866 0.5228 0.0119 0.1381 0.1312 0.0150
MSR [p.u.] 0.3696 0.4101 0.0002 0.0292 0.0257 0.0003

fswitch [kHz] 9.83 10.09
non-PPCR [%] 13.60 14.57
THD [%] - 20.94
Joule loss [W] 0.47 12.84
OS [%] -231.03 -61.55
Trise [ms] 0.1 0.1

KPI 12 Nm 15 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0147 0.2063 0.0080 0.0230 0.2292 0.0131
MAE [p.u.] 0.0959 0.4428 0.0874 0.1252 0.4584 0.1099
average [A, A, Wb] 8.5189 -4.0366 0.1219 10.5517 -5.2237 0.1259
bias [p.u.] -0.0655 -0.4428 0.0874 -0.0740 -0.4584 0.1102
MAR [p.u.] 0.0856 0.0871 0.0149 0.1191 0.1209 0.0238
MSR [p.u.] 0.0119 0.0116 0.0003 0.0205 0.0222 0.0009

fswitch [kHz] 9.59 9.81
non-PPCR [%] 12.70 13.57
THD [%] 13.01 19.80
Joule loss [W] 29.26 46.35
OS [%] 30.88 20.79
Trise [ms] 0.3 1.4
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Table B.9: PI

KPI 0 Nm 8 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0043 0.0061 0.0000 0.0019 0.0017 0.0000
MAE [p.u.] 0.0539 0.0621 0.0014 0.0359 0.0335 0.0046
average [A, A, Wb] -0.0413 -0.0538 0.1098 6.0243 -0.0551 0.1109
bias [p.u.] -0.0413 -0.0538 0.0009 -0.0087 -0.0091 0.0009
MAR [p.u.] 0.0409 0.0474 0.0011 0.0350 0.0333 0.0045
MSR [p.u.] 0.0026 0.0032 0.0000 0.0019 0.0016 0.0000

fswitch [kHz] 20.01 20.00
non-PPCR [%] 0.03 0.00
THD [%] - 3.09
Joule loss [W] 0.53 12.01
OS [%] -121.87 -57.29
Trise [ms] 2.0 2.0

KPI 12 Nm 15 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0008 0.0008 0.0000 0.0007 0.0006 0.0000
MAE [p.u.] 0.0237 0.0228 0.0045 0.0208 0.0201 0.0048
average [A, A, Wb] 9.0376 -0.0801 0.1123 11.3115 -0.0878 0.1136
bias [p.u.] -0.0086 -0.0088 0.0018 -0.0073 -0.0077 0.0018
MAR [p.u.] 0.0228 0.0224 0.0044 0.0196 0.0194 0.0047
MSR [p.u.] 0.0008 0.0007 0.0000 0.0006 0.0006 0.0000

fswitch [kHz] 20.00 19.93
non-PPCR [%] 0.00 0.00
THD [%] 1.64 2.13
Joule loss [W] 26.75 42.46
OS [%] 18.38 48.09
Trise [ms] 1.4 1.7
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Table B.10: DB

KPI 0 Nm 8 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0211 0.6026 0.0003 0.0088 0.2772 0.0051
MAE [p.u.] 0.1229 0.7693 0.0178 0.0872 0.5249 0.0710
average [A, A, Wb] 0.1112 -0.7693 0.1117 5.5474 -3.1896 0.1186
bias [p.u.] 0.1112 -0.7693 0.0182 -0.0872 -0.5248 0.0713
MAR [p.u.] 0.0785 0.0832 0.0019 0.0320 0.0394 0.0045
MSR [p.u.] 0.0087 0.0108 0.0000 0.0014 0.0021 0.0000

fswitch [kHz] 20.03 19.99
non-PPCR [%] 0.03 0.00
THD [%] - 5.20
Joule loss [W] 0.28 13.51
OS [%] -170.56 -36.03
Trise [ms] 0.4 0.4

KPI 12 Nm 15 Nm

iq id |Ψs| iq id |Ψs|
MSE [p.u.] 0.0058 0.2266 0.0088 0.0049 0.2314 0.0133
MAE [p.u.] 0.0722 0.4751 0.0935 0.0672 0.4804 0.1152
average [A, A, Wb] 8.4580 -4.3305 0.1226 10.6289 -5.4736 0.1265
bias [p.u.] -0.0722 -0.4751 0.0937 -0.0672 -0.4804 0.1155
MAR [p.u.] 0.0220 0.0280 0.0047 0.0184 0.0232 0.0048
MSR [p.u.] 0.0006 0.0010 0.0000 0.0005 0.0007 0.0000

fswitch [kHz] 20.00 18.27
non-PPCR [%] 0.00 0.01
THD [%] 3.81 2.78
Joule loss [W] 29.23 45.98
OS [%] 3.21 4.75
Trise [ms] 0.7 1.1
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