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Summary 

The transmembrane protein glycoprotein-A repetitions predominant protein (GARP) binds 

latent TGF-β and is expressed on several cell types, such as regulatory T cells (Tregs) and 

endothelial cells (ECs). Although the precise function of GARP in each context is elusive, it is 

known that TGF-β and Tregs are involved in cancer development, while TGF-β and ECs 

contribute to angiogenesis. The aim of this master's thesis is to identify the role of GARP on 

Tregs and ECs in cancer and angiogenesis. 

MC38 cells and 3-methylcholanthrene (MCA) were injected in respectively endothelial (Tie2) 

and Treg (Foxp3) specific GARP knockout mice generated via the Cre-LoxP recombination 

system. Tumors were monitored and tumor infiltrating lymphocytes (TILs) were characterized 

in MCA tumors via flow cytometry. Treg functionality was also tested in an in vivo 

homeostasis model in immunodeficient mice. Angiogenesis was studied in Tie2 specific 

GARP knockout mice via a wound healing assay in which wound closure was monitored and 

via the matrigel plug assay in which blood vessel formation was determined via 

immunohistochemistry. 

Our results show that Treg GARP has no effect on tumor onset, TILs and Treg functionality. 

Strikingly, endothelial GARP had a significant effect on cancer progression: knockout mice 

showed a decrease in tumor volume. This could not be attributed to defects in angiogenesis, 

since wound closure and blood vessel formation were not different in knockout mice when 

compared to littermate mice.  

We conclude that Treg GARP has no influence on cancer development. Whilst endothelial 

GARP seems not involved in blood vessel formation, it contributes to tumor growth. 
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Samenvatting 

Het transmembraan eiwit GARP (glycoprotein-A repetitions predominant protein) bindt latent 

TGF-β en wordt onder andere tot expressie gebracht op regulatorische T-cellen (Tregs) en 

endotheelcellen (ECs). Ondanks het feit dat de functie van GARP op elk celtype nog niet 

volledig begrepen is, werd reeds bewezen dat TGF-β en Tregs betrokken zijn in 

kankerontwikkeling en dat TGF-β en ECs bijdragen tot angiogenese. In deze masterthesis 

wordt ingezoomd op de rol van GARP op Tregs en ECs in kanker en angiogenese. 

MC38-cellen en 3-methylcholanthreen (MCA) werden geïnjecteerd in respectievelijk 

endotheel (Tie2) en Treg (Foxp3) specifieke GARP knock-out muizen die gegeneerd werden 

via het Cre-LoxP recombinatiesysteem. Tumoren werden opgevolgd en de tumor-

infiltrerende lymfocyten werden bepaald in MCA-tumoren via flowcytometrie. Ook werd de 

Treg-functionaliteit getest in een in vivo homeostasemodel in immunodeficiënte muizen. 

Angiogenese werd onderzocht in Tie2 specifieke GARP knock-out muizen via een 

wondgenezingsmodel waarbij dorsale wonden werden gemaakt om zo de genezing op te 

volgen. Ook werd het matrigel-plug-model uitgevoerd om zo bloedvatvorming te bepalen via 

immunohistochemie. 

Onze resultaten tonen aan dat GARP op Tregs geen effect heeft op het ontstaan van 

tumoren, op de tumor-infiltrerende lymfocyten en op de Treg-functionaliteit. Opvallend zijn de 

resultaten die tonen dat GARP op ECs wel een significant effect heeft, daar de tumoren in 

knock-out muizen kleiner waren. Dit kon niet worden verklaard door een defect in 

angiogenese, want wondgenezing en bloedvatvorming waren identiek in knock-out en wild-

type muizen. 

We concluderen dat Treg GARP geen invloed heeft op kankerontwikkeling, terwijl GARP op 

endotheel veelbelovende resultaten heeft opgeleverd inzake tumorgroei, maar niet in 

angiogenese. 
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Chapter 1 - Glycoprotein-A repetitions predominant protein 

1. Structure 

The glycoprotein-A repetitions predominant protein (GARP) or leucine-rich repeat containing 

32 (LRRC32) protein was first described by Ollendorf et al. (1992). Garp is located in the 

11q13.5q-q14.1 chromosomal region in humans and on chromosome 7F in mice. With  

80% similarity, mouse and human Garp are highly homologous (Bekri et al., 1997; Ollendorff 

et al., 1992; Roubin et al., 1996).    

The Garp gene is composed of two coding exons encoding a transmembrane protein of 662 

amino acids with a molecular mass of 72 kDa (Macaulay et al., 2007; Ollendorff et al., 1994). 

The first exon contains a signal peptide and nine amino acids, while the second exon 

consists of the remaining coding sequence and the 3' untranslated region (UTR). Together, 

the exons give rise to a signal peptide, an extracellular domain of 20 leucine-rich repeats 

(LRRs), a transmembrane region and an intracellular domain of 15 amino acids (Figure 1) 

(Ollendorff et al., 1994). 

 

Figure 1: Representation of GARP. GARP consists of a signal peptide (SP), 20 LRRs grouped in 

two segments and separated from each other by a proline-rich segment, a transmembrane (TM) 

region and a short cytoplasmic domain (CP) (adapted from Wang et al., 2008). 

Since LRR is a structural motif, GARP shows conformational similarities with other proteins 

in the LRR superfamily. All these proteins have a common amino acid domain with the 

consensus sequence LXLXXNXLXXLXXXXLXXLXXL. In GARP, a proline-rich domain is 

found between the tenth and the eleventh LRR, which separates the two LRR segments 

(Figure 1) (Roubin et al., 1996).  

Proteins of the LRR family act in several biological processes. For example, the toll-like 

receptor 2 acts in neurogenesis and innate immunity (Rolls et al., 2007), while LRRC8 is 

involved in B cell development and LRRC8-like proteins promote proliferation and activation 

of lymphocytes (Kubota et al., 2004). Also, the members (GPIbα, GPIbβ, GPIX and GPV) of 

the glycoprotein Ib/IX/V (GPIb/IX/V) platelet receptor complex belong to the LRR family and 

are involved in the regulation of vascular processes (Andrews et al., 2003). 

GARP is expressed in the lung, the kidneys, the heart, the liver, the pancreas and the 

skeletal muscles (Ollendorff et al., 1994). Analytical techniques revealed that expression of 

GARP is also detected in placental endothelial cells, human umbilical vein endothelial cells 

(HUVECs), regulatory T cells (Tregs), B cells, platelets and megakaryocytes (Macaulay et al., 

2007; O’Connor et al., 2009; Roubin et al., 1996; Stanic et al., 2015; Wang et al., 2008).  

SP LRRs TM CP 
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2. The GARP receptor binds latent TGF-β  

GARP, expressed on the cell membrane of different cell types, binds latent transforming 

growth factor beta (TGF-β). The three isoforms of TGF-β form, together with the activins and 

the bone morphogenetic proteins, a superfamily of growth factors and cytokines. Members of 

the TGF-β superfamily are involved in development, wound healing, immunity and tissue 

homeostasis (O’Kane & Ferguson, 1997; Robertson & Rifkin, 2013).  

TGF-β is synthesized and expressed as a precursor polypeptide consisting of a prodomain 

and a growth factor domain. Before secretion, disulfide bonds are formed between two 

polypeptides to make a homodimer. Next, the endoprotease furin convertase cleaves the 

prodomain at the processing signal. However, the prodomain remains non-covalently 

associated with TGF-β and is called the latency-associated protein (LAP). The secreted 

complex is known as the small latent TGF-β and has no biological activity (Robertson & 

Rifkin, 2013). This complex can bind to GARP (Shi et al., 2011; Wang et al., 2012). 

GARP keeps TGF-β inactive by binding its latent form. The crystal structure of latent TGF-β 

bound to GARP is ring-like (Figure 2). Via disulfide bonds, the LAP domains make a ring 

around the two TGF-β monomers. GARP is also bound through disulfide linkages to LAP on 

the opposite side of the ring (Shi et al., 2011; Wang et al., 2012). 

 

Figure 2: Representation of a possible activation mechanism of latent TGF-β from GARP. 

GARP (blue) expressed on the surface of a cell is disulfide linked to LAP (purple/green). Another 

cell expresses the integrin αVβ6 that binds the RGD motif in LAP. Together, GARP and αVβ6 create 

tensile force, which induces a conformational change in LAP and thus the release and the 

activation of TGF-β (adapted from Wang et al., 2012). 

Release of TGF-β from LAP is necessary for its activation. Proteases, such as plasmin, 

cleave LAP, while thrombospondin-1 disrupts the non-covalent interactions between LAP 

and TGF-β in order to release an active form (ten Dijke & Arthur, 2007). Another activation 

mechanism involves the integrins αVβ6 and αVβ8. LAP contains the tripeptide arginine-glycine-

aspartate (RGD motif), which is recognized by the integrins. However, recognition and 

binding of the RGD motif is not sufficient for activation. Membrane anchoring of GARP, 

GARP 
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disulfide linkage between GARP and LAP and tensile force are also required to fully activate 

TGF-β (Figure 2) (Shi et al., 2011; Wang et al., 2012). 

 

 

Figure 3: Schematic representation of TGF-β processing and signaling. The arrowheads 

indicate the site of proteolytic cleavage performed by furin convertase. The small bars show the 

position of the disulfide bonds. Once TGF-β is active, it induces a signal in the cell through receptor 

binding (TGFBR). Here, the signal is propagated through the canonical pathway involving Smad 

proteins (adapted from Stockis et al., 2009a). 

Once active, TGF-β binds its receptors TGFBR1 and TGFBR2, which are serine/threonine 

kinases (Figure 3). Gene transcription can be induced through the canonical pathway, which 

involves signal propagation via intracellular Smad proteins. However, gene transcription is 

also possible via the non-canonical pathway, which signals through mitogen-activated protein 

(MAP) kinases and GTPases. Both the canonical and non-canonical pathway activate genes 

involved in apoptosis, cell proliferation and migration (Massagué et al., 2005; Moustakas & 

Heldin, 2005).  

3. Functions of GARP 

Besides earlier documented expression on Tregs, B cells, endothelial cells (ECs) and 

platelets, recent research indicates that GARP is expressed on a wider variety of different 

cell types, such as hepatic stellate cells and mesenchymal stromal cells (Carambia et al., 

2014; Carrillo-Galvez et al., 2015; Li et al., 2015; Macaulay et al., 2007; O’Connor et al., 

2009; Roubin et al., 1996; Stanic et al., 2015; Stockis et al., 2009a). 

3.1. GARP on regulatory T cel ls  

Tregs are specialized peripheral immune cells, which inhibit T cell responses in order to 

avoid autoimmunity caused by self-reactive T cells. Tregs are characterized as CD4+CD25+  

T cells expressing the transcription factor forkhead box protein P3 (Foxp3). Foxp3 is 

essential for the development and the suppressive capacity of Tregs. Mutation of Foxp3 
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induces severe autoimmunity and leads to immunodysregulation, polyendocrinopathy, 

enteropathy, X linked syndrome (IPEX) in humans (Sakaguchi, 2005). 

In 2008, expression of GARP on the human Treg surface was shown by DNA microarray 

analysis and qPCR. GARP expression was more than 100 times higher in stimulated Tregs 

than in memory or naïve T cells. So, Tregs need to be stimulated through the T cell receptor 

before GARP expression is increased. The study also demonstrated that GARP is involved in 

the regulation of the suppressive activity of Tregs. Knockdown of GARP, using short hairpin 

RNA (shRNA), downregulated the suppressive activity as compared to control shRNA (Wang 

et al., 2008). Next to activated human Tregs, a small fraction of resting murine Tregs also 

express GARP. After stimulation, GARP is upregulated (Edwards et al., 2013). 

Experiments done with short interfering RNA (siRNA) suggest that latent TGF-β can directly 

bind to GARP on the Treg surface and that GARP is required for the surface expression of 

latent TGF-β (Tran et al., 2009). An increase in GARP expression enhances cleavage of  

pro-TGF-β and secretion of the latent complex. These processes are regulated by micro 

RNAs targeting the Garp 3' UTR (Gauthy et al., 2013).  

However, the activation mechanism of latent TGF-β remains largely unknown. The absence 

of active TGF-β in culture supernatant of Tregs and effector T cell clones indicates that 

activation has to occur close to the Treg surface (Stockis et al., 2009b).  

Cuende et al. developed mouse anti-human GARP antibodies (Abs) that block TGF-β 

activation and the immunosuppressive capacity of human Tregs both in vitro and in vivo. To 

test the in vivo inhibition of Tregs, a xenogeneic graft-versus-host disease (GVHD) model 

was used, in which immunodeficient mice were injected with human peripheral blood 

mononuclear cells (PBMCs). Due to the xenotransplantation, the human T cells were 

reactive to murine tissue and induced GVHD. Nevertheless, co-injection with human Tregs 

delayed the onset of GVHD and showed the protective capacities of Tregs. Injection of an 

anti-GARP Ab accelerated GVHD and the onset of it was comparable with the injection of 

PBMCs without Tregs. These results show that anti-GARP Abs inhibit the 

immunosuppressive activity of human Tregs (Cuende et al., 2015). 

These results show that GARP regulates the suppressive activities of Tregs. However, the 

observation that latent TGF-β/GARP complexes were detected in the culture medium of T 

cells transfected with GARP raised the question whether GARP has a regulatory function 

independent of Tregs (Gauthy et al., 2013). Hahn et al. engineered a soluble GARP (sGARP) 

protein and showed that sGARP not only inhibits the differentiation of naïve CD8+ and CD4+ 

T cells into their respective effector T cells, but also promotes the differentiation of naïve 

CD4+ T cells into Tregs. Blocking TGF-β receptors diminished the effects. This demonstrates 
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that sGARP is able to act independently from Tregs and that its activity is regulated through 

TGF-β (Hahn et al., 2013, 2016). 

3.2. GARP on B cel ls  

Expression of GARP has also been reported in B cells. B cells play an important role in the 

adaptive immune system by Ab production, antigen presentation and cytokine synthesis.  

B cells might also have a role in limiting excessive immune reactivity and at least a subset 

may act as regulatory B cells, which secrete the anti-inflammatory cytokine IL-10. IL-10 

develops and maintains immune tolerance and homeostasis and is protective against 

excessive tissue damage caused by the host defense against pathogens. The suppressive 

activity of regulatory B cells is dependent on IL-10 secretion, but it is unknown how IL-10 

affects the phenotype and the functions of regulatory B cells. Therefore, transgenic 

overexpression of IL-10 was established in human B cells. It was shown that IL-10 induces 

an immunoregulatory phenotype by the upregulation of GARP, among other molecules 

(Figure 4) (Stanic et al., 2015).  

 

 

3.3. GARP on platelets and on endothelium  

The Bloodomics Consortium was established to examine hematopoiesis and to identify 

genes involved in the functionality of the precursors of the different blood cell types. The 

gene expression pattern was compared between the cell types and all genes were collected 

in the HaemAtlas, which is a gene expression atlas for cells of the hematopoietic system 

(Watkins et al., 2009). 

Whole-genome expression analysis performed on immune cells, erythroblasts and 

megakaryocytes showed that 279 genes were uniquely upregulated in megakaryocytes as 

compared to the other cell types. In a search for genes involved in thrombus formation, 

initially only genes encoding for transmembrane domains were selected. Transmembrane 

proteins are usually involved in cell functioning and can be more readily targeted for drug 

design. A list of 75 genes, with known and unknown functions, was obtained and further 

reduced by selecting genes with unknown functions in thrombosis, whether a reliable 

Figure 4: GARP expression is induced by IL-10 overexpression. GARP mRNA expression is 

significantly increased in B cells expressing transgenic IL-10 (ctrl_tr: control B cells; IL-10_tr: B cells 

expressing transgenic IL-10) (adapted from Stanic et al., 2015). 
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zebrafish ortholog existed, whether interesting protein domains were present and whether 

there was expression in both megakaryocytes and ECs. Using these criteria, the genes 

Garp, Bambi, Dcbld2 and Esam were identified. All were expressed in megakaryocytes and 

in HUVECs. Using flow cytometry and Western blot, it was shown that these proteins were 

also expressed in platelets (Figure 5) (Macaulay et al., 2007; O’Connor et al., 2009). 

 

Us  

 

 

 

Using a laser-induced thrombosis model in zebrafish, the selected genes, including Garp, 

were identified as having a role in thrombus formation and hemostasis. Genes were knocked 

down using antisense morpholinos. After induction of thrombosis and knockdown of Garp a 

significant defect in thrombus growth (29% decrease, p = 0.034) (Figure 6A) and a delay in 

platelet adhesion was detected (30% increase, p = 0.051) (Figure 6B) (O’Connor et al., 

2009).  

As shown in Figure 5A, Garp was not only expressed in platelets, but also in ECs (O’Connor 

et al., 2009; Roubin et al., 1996). Therefore, it was unclear whether the detected defect in 

thrombus growth in zebrafish was associated with the knockdown of Garp in platelets or in 

ECs, since morpholinos induce a full GARP knockdown (O’Connor et al., 2009). 

Recently, the expression of GARP has also been confirmed on murine platelets and ECs. To 

determine the contribution of GARP in thrombus formation, platelet and endothelial specific 

GARP knockout mice were created, since full knockout mice were not viable. In vitro platelet 

function assays, in vivo thrombosis models and bleeding assays, however, could not show a 

role for GARP in hemostasis or thrombosis (Vermeersch et al., 2017). 

A) 

B) 

Figure 5: (A) Heatmap of normalized intensity values of megakaryocyte genes. Antxr2 and 

Itga2b are included as positive controls. Increased expression of Garp was detected in 

megakaryocytes and in HUVECs (adapted from O’Connor et al., 2009). (B) Western blot of GARP 

distribution in purified populations of blood cells. GARP expression is restricted to platelets 

(adapted from Macaulay et al., 2007). 
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3.4. GARP on l iver sinusoidal endothelial  cel ls and hepat ic stellate cells  

Besides its well characterized metabolic functions, the liver is also involved in immune 

tolerance and in inducing the conversion of peripheral non-Treg CD4+ effector T (CD4+ Th) 

cells into Tregs. The liver dendritic cells, the liver sinusoidal endothelial cells (LSECs) and 

the Kupffer cells are the main antigen presenting cells (APCs). All cell types are able to 

induce Tregs in a TGF-β dependent manner. However, LSECs are more potent in the 

induction of this differentiation of peripheral T cells into Tregs, since they express GARP, 

which is essential in presenting latent TGF-β on the cell surface. Active TGF-β is then used 

in the conversion of CD4+ Th cells into induced Tregs (Carambia et al., 2014). 

The liver also consists of hepatic stellate cells (HSCs), which, in a healthy liver, regulate the 

development and regeneration of liver tissue. Due to liver damage, HSCs become active and 

secrete TGF-β, which contributes to liver fibrosis. HSCs also inhibit activated T cells through 

the constitutive expression of the GARP/TGF-β complex. TGF-β suppresses proliferation and 

cytokine synthesis in active T cells. Blocking GARP decreases the suppressive activity of the 

HSCs (Li et al., 2015).  

3.5. GARP on mesenchymal stromal cel ls  

GARP expression is also detected in mesenchymal stromal cells. These cells are multipotent 

and have immunomodulatory characteristics, which are controlled through TGF-β 

expression. Activation and secretion of TGF-β on the cell surface is regulated via GARP, 

which enhances the immunoregulatory activities of the mesenchymal stromal cells. 

Therefore, GARP might represent a relevant marker for a better understanding of the 

mesenchymal stromal cell biology (Carrillo-Galvez et al., 2015). 

  

A) B) 

Figure 6: Effect of antisense knockdown of Garp on thrombus formation. (A) The thrombus 

surface area (TSA) of morpholino-injected zebrafish is compared to control zebrafish and shows a 

significant decrease in thrombus size (p = 0.034, decrease = 29%). (B) The time to platelet 

adhesion (TTA) is slightly increased in morpholino-injected zebrafish as compared to control 

zebrafish (p = 0.051, increase = 30%) (adapted from O’Connor et al., 2009). 
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Chapter 2 - Cancer 

Cancer is caused by environmental and endogenous factors that induce DNA damage. 

Environmental factors, such as air pollution, asbestos, smoking and alcohol are big 

contributors to cancer development (Torre et al., 2015). Endogenous damage is caused by 

metabolic reactions that produce chemical intermediates which induce spontaneous DNA 

mutations and by DNA polymerases that are not flawless and incorporate non-

complementary nucleotides during DNA replication (Loeb & Loeb, 2000).  

In order to repair the damage, several DNA repair mechanisms exist. During DNA replication, 

the cell has to pass several checkpoints where possible mistakes might be repaired. 

However, if the mistake is irreparable, the cell undergoes apoptosis to avoid passing on 

harmful mutations to daughter cells. DNA repair and apoptosis are considered as intrinsic 

tumor suppressors (Vesely et al., 2011). Despite the intrinsic suppressors, mutations in 

checkpoint proteins and the apoptosis pathway lead to escape from the cell cycle control and 

apoptosis, respectively. Consequently, inaccuracies are replicated and accumulated in the 

cell (Loeb & Loeb, 2000).  

1. From immunosurveillance to immunoediting  

In the late 1950s, the hypothesis of immunosurveillance was introduced that stated that 

cancerous cells that are not eliminated through the intrinsic tumor suppressors can be 

detected by the immune system, which is an extrinsic tumor suppressor. This implies that 

immune cells can eliminate transformed cells before they become cancerous (Burnet, 1957; 

Dunn et al., 2004; Thomas, 1959).  

Several laboratories reported the importance of immune cells in immunosurveillance. 

Cytotoxic T cells (CD8+ T cells), natural killer cells, natural killer T cells and γδ T cells are all 

involved in the immunosurveillance and the protection of the host against carcinogenesis 

(Girardi et al., 2001; Smyth et al., 2000a, 2000b). 

However, observation of tumor development in immunocompetent and immunodeficient 

animals raised questions on the protective properties of the immune system as the cancer 

incidence in athymic nude mice was comparable to normal mice (Dunn et al., 2004). But, 

using tumor transplantation studies, it was shown that tumors raised in immunodeficient mice 

are more immunogenic than tumors from immunocompetent mice, since tumors grown in 

immunodeficient mice were rejected in wild-type mice. Tumor cells with reduced 

immunogenicity or with the capacity to suppress immune attacks have a higher chance of 

survival in the host (Dunn et al., 2004; Shankaran et al., 2001).  

Since tumors formed in the presence of an intact immune system are less immunogenic than 

tumors that develop in immunodeficient mice, it seems that the immune system promotes the 

growth of tumors that are able to escape immune detection. Hence, it is now proposed that 



 

10 

immunosurveillance is part of the process of immunoediting where immune cells are 

protective, but also shape the tumor immunogenicity (Shankaran et al., 2001). The concept 

of immunoediting is characterized by three phases, being elimination, equilibrium and escape 

(Dunn et al., 2004).  

1.1. El imination 

The elimination phase represents the original concept of immunosurveillance. Innate immune 

cells (IIC) sense danger signals coming from the invading tumor. Recruitment of IICs leads to 

IFN-γ production, which amplifies the innate immune response. Due to induction of anti-

proliferative and angiostatic signals and stimulation of apoptosis, some tumor cells die. 

Antigens coming from the dead tumor cells are taken up by dendritic cells and presented to 

adaptive immune cells (AIC) in the lymph nodes. Next, effector cells, mainly CD4+ Th cells  

and cytotoxic CD8+ T cells, invade and eliminate the tumor using direct and indirect 

mechanisms (Dunn et al., 2004). 

1.2. Equi l ibr ium  

However, not all tumor cells are eliminated and an equilibrium is established between the 

immune system and the tumor. The tumor cells that survived elimination form a 

heterogeneous tumor cell population in which some cells are dormant and other cells 

accumulate DNA mutations. Since lymphocytes and IFN-γ can only suppress the cancerous 

cells, more DNA mutations are acquired during the equilibrium phase and the heterogeneity 

of the tumor further increases. Consequently, the suppressive capacity of the immune 

system can be lost, the tumor will be able to escape the equilibrium phase and becomes 

detectable (Dunn et al., 2004). 

Koebel et al. showed that only the adaptive immune system is involved in the equilibrium 

phase. They injected the chemical carcinogen 3-methylcholanthrene (MCA) in wild-type mice 

and monitored the growth of sarcomas during 200 days. One group of mice was treated with 

control Abs, a second group received a mixture of AIC-depleting Abs and a third group was 

injected with Abs against the IICs. Only mice of the second group developed sarcomas  

(p = 0.0008) (Koebel et al., 2007). 

1.3. Escape 

During the escape phase, tumor cells have gained several immunosuppressive mutations 

that make recognition by the immune system impossible. The immune system is no longer 

able to kill or control them. Instead, the tumor releases factors that inhibit both IICs and AICs 

and induces an immunosuppressive microenvironment in which Tregs and macrophages are 

attracted. These cells suppress other subsets of immune cells to obtain inhibition of the anti-

tumor immune response. Furthermore, tumor cells become insensitive to IFN-γ and defects 

occur in antigen presentation. Consequently, tumor cells start to proliferate (Dunn et al., 

2004). 
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2. Regulatory T cells 

The physiological roles of Tregs are complex and involve tissue homeostasis and peripheral 

immune tolerance against self-antigens to avoid autoimmunity. However, when cancer 

evolves, Tregs inhibit the anti-tumor responses and, as a consequence, stimulate tumor 

growth (Oleinika et al., 2013). 

2.1. Regulatory T cel l mediated suppression  

Tregs have suppressive functions and regulate other immune cells through the expression of 

several cell-surface molecules and cytokines. An important molecule is CD25, a subunit of 

the interleukin-2 receptor (IL-2R) involved in binding the cytokine IL-2. IL-2R is upregulated in 

activated CD4+ Th cells and constitutively expressed on Tregs. In that way, competition for 

IL-2 exists between the two cell types. Consumption of IL-2 by Tregs is necessary for their 

survival, since they cannot produce IL-2 by themselves as contrasted to CD4+ Th cells. In 

vitro, IL-2 competition induces apoptosis in CD4+ Th cells, caused by IL-2 deprivation. 

Consequently, Tregs suppress CD4+ Th cells and thus modulate their growth and survival 

(Pandiyan et al., 2007). 

CTLA-4 (cytotoxic T lymphocyte-associated antigen 4) is a key modulator of Treg function, 

since knockout of CTLA-4 induces multi-organ inflammation, allergies, autoimmune diseases 

and increased tumor immunity (Wing et al., 2008). The ligands of CTLA-4 are CD80 and 

CD86, which are expressed on APCs. Binding of CTLA-4 with CD80 or CD86 induces their 

downregulation through trans-endocytosis induced by the CTLA-4 expressing cell. On  

CD4+  Th cells, the co-stimulatory molecule CD28 is competing with CTLA-4 for the ligands 

CD80 and CD86. Trans-endocytosis of CD80 and CD86 induced by CTLA-4 suppresses the 

CD4+ Th immune responses (Qureshi et al., 2011). Furthermore, CTLA-4 arrests the cell 

cycle, inhibits IL-2 synthesis by CD4+ Th cells and reduces the interaction time between 

APCs and CD4+ Th cells (Friedline et al., 2009; Tai et al., 2012). 

The PD-1:PD-L1 pathway (programmed death-1 and programmed death-1 ligand) is also 

involved in the balance between stimulatory and inhibitory signals necessary for immunity 

and maintenance of self-tolerance. The functionality of dendritic cells expressing PD-1 is 

negatively regulated by Tregs expressing PD-L1 (Francisco et al., 2010). Interaction between 

PD-1 expressed on CD4+ Th cells and PD-L1 on Tregs downregulates CD4+ Th cell 

proliferation and cytokine production (Freeman et al., 2000). PD-L1 expressed on APCs is 

also involved in the differentiation of naïve CD4+ T cells that express PD-1 into induced Tregs 

(Francisco et al., 2009). 

As previously described, activated Tregs express the transmembrane protein GARP, which 

binds latent TGF-β (Stockis et al., 2009a). Although the activation mode of TGF-β is not yet 

fully understood, Cuende et al. showed that GARP is required for TGF-β activation and thus 
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inducing the suppressive function of Tregs (Cuende et al., 2015). Downregulation of GARP 

weakened the suppressive function of Tregs and inhibited the role of Tregs in the regulation 

of other CD4+ Th cells (Probst-Kepper et al., 2009; Tran et al., 2009; Wang et al., 2008). 

In addition, Tregs also secrete inhibitory cytokines, such as IL-10, IL-35, IL-9 and TGF-β to 

regulate the immune system (Josefowicz et al., 2012). Galectin-1, the tumor-necrosis factor-

related apoptosis inducing ligand-death receptor 5 (TRAIL-DR5) pathway and the granzyme 

B or granzyme A pathways are cytolytic and induce apoptosis of CD4+ Th cells (Garín et al., 

2007; Gondek et al., 2005; Grossman et al., 2004; Ren et al., 2007).  

2.2. Role of TGF-β in regulatory T cel l mediated suppression  

Tregs are able, depending on the strength of T cell receptor stimulation, to produce secreted 

and cell surface-bound TGF-β (Nakamura et al., 2004). TGF-β is an immunoregulatory 

cytokine with an influence on T cell proliferation, differentiation and survival.  

In vitro data were contradictory and do not include, nor exclude TGF-β in the mediation of the 

suppressive role of Tregs (Piccirillo et al., 2002). In contrast, in vivo studies do show the 

significance of TGF-β, since Tregs are only able to suppress the onset of inflammatory bowel 

disease and induce recovery from allergic encephalomyelitis through secretion of TGF-β. 

Inhibition of TGF-β eliminates these suppressive roles (Li et al, 2007; Zhang et al., 2006). 

The role of TGF-β in tumor development is complex. TGF-β has both promoting and 

inhibitory functions in the tumor microenvironment. This is known as the TGF-β paradox 

(Tian & Schiemann, 2009). In the early phase of the tumor, TGF-β suppresses tumor 

development through apoptosis, arrest of the cell cycle and prevention of cell immortalization 

(Datto et al., 1995; Korah et al., 2012; Lacerte et al., 2008; Li et al., 1995). TGF-β 

suppression is lost when inactivating mutations occur in the TGF-β receptors or Smad genes. 

Consequently, cancer cells are no longer inhibited by TGF-β and colon, gastric, breast and 

glioma cancerous cells are stimulated to grow (Chen et al., 1998; Fleming et al., 2013; Grady 

et al., 1999; Izumoto et al., 1997; Park et al., 1994; Sun et al., 1994).  

2.3. Regulatory T cel l mediated suppression in the tumor microenvironment  

When cancer cells escape immunosurveillance through selection of less immunogenic cells, 

an immunosuppressive environment is established (Dunn et al., 2004). Although the tumor is 

able to escape the control of the immune system, lymphocytes can still invade the tumor. 

These immune cells are known as the tumor infiltrating lymphocytes (TILs). The different 

types of T lymphocytes have several functions in the tumor environment. CD8+ T cells 

directly kill tumor cells, while CD4+ Th cells are a heterogeneous cytokine-secreting group 

and Tregs are involved in the suppression of CD4+ Th cells (Yu & Fu, 2006). Depending on 

the type and the amount of immune cells present in the TILs, correlations can be made 

between TILs and patient outcome. Presence of CD4+ and CD8+ T cells in advanced disease 
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indicated a 5-year survival of 38% of ovarian cancer patients. In contrast, absence of CD4+ 

and CD8+ T cells resulted in a survival of only 4.5% (Zhang et al., 2003). When looking at the 

subtypes of T cells, less Tregs (12%) were found in tumor biopsies from patients with stage I 

disease as compared to stage II-IV disease (25-30%) (Curiel et al., 2004). In conclusion, it 

seems that a higher CD8+/Treg ratio correlates with a significant higher survival of ovarian 

cancer patients (Sato et al., 2005). 

Unfortunately, the suppressive mechanisms of Tregs described above also contribute to the 

tolerance against tumors. As cancer progresses, Treg enrichment in the tumor environment 

is established through tumor-derived chemokines and microenvironmental macrophages that 

promote migration of Tregs to the tumor (Curiel et al., 2004). In the tumor, Tregs inhibit other 

infiltrating immune cells through secretion of TGF-β and other cytokines, expression of cell 

surface proteins and cytolysis of immune cells (Oleinika et al., 2013). Additional to their 

suppressive role, Tregs synthesize vascular endothelial growth factor (VEGF), which 

promotes angiogenesis. Vessel formation is essential for the tumor to get access to nutrients 

and growth factors (Facciabene et al., 2011). 

2.4. GARP expression in the context of malignancy  

GARP can also be expressed in some cancer tissues, such as breast cancer and melanoma. 

In other cancers, such as hepatocellular carcinoma (HCC), colon and ovarian cancer, tumor 

infiltrating Tregs show a rise in GARP expression. This contributes to an increase of the 

immunosuppressive activities induced by the tumor (DeRycke et al., 2013; Hahn et al., 2016; 

Kalathil et al., 2013; Metelli et al., 2016; Pastille et al., 2014). 

A recent study of Metelli et al. showed a significant increase of GARP in breast cancer 

tissues of patients. To determine the role of GARP in the tumor microenvironment, 

carcinoma cell lines were transfected with GARP. Injection of these cancer cells in 

immunodeficient mice induced an increase in tumor size, metastasis and signaling of the 

canonical TGF-β pathway. GARP expressing cancer cells were also two to three times more 

efficient in inducing Treg differentiation as compared to control cells and were able to 

stimulate Treg migration to the tumor microenvironment (Metelli et al., 2016). 

This shows that GARP expression in cancer can represent an important factor contributing to 

oncogenesis and immune tolerance, since it promotes the establishment of primary tumors, 

metastasis and the induction of Tregs in the tumor microenvironment (Metelli et al., 2016) 

Patients with HCC, a type of liver cancer, have increased levels of Tregs. Also, Tregs in 

advanced stage HCC patients have significant elevated expression of GARP and are thus 

more immunosuppressive (Kalathil et al., 2013). In parallel, in a mouse model of colitis-

associated colon cancer, more GARP positive Tregs were found in mice with colon cancer as 

compared to control mice (Pastille et al., 2014).  
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Tregs are also involved in ovarian cancer. Research on single nucleotide polymorphisms 

(SNPs) that influence the functionality of Tregs found a SNP in GARP in ovarian cancer 

patients. The SNP elevates GARP stability and expression levels on Tregs. Consequently, 

the immunosuppressive phenotype of the Tregs is increased, which lowers the chances of 

survival of ovarian cancer patients (DeRycke et al., 2013). 

In addition to the expression of GARP on both Tregs and cancer cells, GARP can also be 

shed from the cell surface from melanoma cells to form sGARP. sGARP contributes to the 

tumor microenvironment by inhibiting CD4+ Th cells, inducing Tregs and activating tumor-

associated macrophages (Hahn et al., 2016). Moreover, it was shown that the platelet 

GARP/TGF-β complex is involved in the suppression of immune cells invading the tumor and 

thus in promoting tumor growth (Rachidi et al., 2017). 

3. Mouse models in oncoimmunology 

To better understand the role of the immune system in tumor development and the design of 

therapeutic drugs, distinct experimental tumor models in mouse are used.  

3.1. Methylcholanthrene: A carcinogen-induced cancer mouse model  

Carcinogens are used to induce local tumors, which are easily monitored. After application of 

the carcinogens, 'natural' oncogenesis is induced, which is used to understand the 

relationship between the immune system and the transforming cells in the early stage of 

cancer development (Betts et al., 2007; Zitvogel et al., 2016).  

MCA is a polycyclic aromatic hydrocarbon. After enzymatic metabolism, its metabolites bind 

DNA and induce random mutations. Mutations in proto-oncogenes and tumor suppressor 

genes transform cells and allow tumors to develop. MCA induces malignant soft tissue 

sarcomas, called fibrosarcomas that are composed of fibroblasts (Qin et al., 2002). Using 

this model, Betts examined the influence of Tregs on MCA-induced sarcogenesis (Betts et 

al., 2007). 

Approximately 70 to 80% of mice injected with MCA developed fibrosarcomas by week 29 

after injection. Using histology, it was shown that tumors were infiltrated with lymphocytes 

and that almost half of the CD4+ fractions is Foxp3+ and thus regulatory. These Tregs were 

found in close proximity of CD4+ Th and CD8+ T cells, which were located at the border 

between tumor and healthy tissue (Figure 7). This indicates a continuous immune response, 

which is controlled via Tregs among others. Tregs were present in the TILs and significantly 

enriched in tumor-draining lymph nodes (TDLNs) as compared to non-TDLNs. This might 

imply that, in the case of tumor-specific immune activity, Tregs expand (Betts et al., 2007). 
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MCA injected in mice depleted of Tregs and in control mice showed that the tumor incidence 

in the control group was higher than in the mice without Tregs (Figure 7). Together, these 

results show that Tregs suppress immunosurveillance of carcinogen-induced tumors in 

immunocompetent mice (Betts et al., 2007). 

 

3.2. MC38: A syngeneic mouse tumor model  

The MC38 cell line is established from colon adenocarcinoma cells which were developed in 

C57BL6 mice. The model can be used to determine the identity of the TILs in the tumor 

microenvironment, since the implanted cells are immunologically compatible with the murine 

immune system and thus syngeneic (Budhu et al., 2014).  

It is shown that Tregs are significantly upregulated in the spleen, the TDLNs and the MC38 

tumor itself. Just as in the above described MCA model, proliferation of lymphocyte 

populations with antitumoral activity is suppressed by the Tregs (Budhu et al., 2014; Medina-

Echeverz et al., 2011).  

Also, MC38 cells have lost Smad4 signaling, which is a signaling pathway induced by TGF-β. 

Consequently, TGF-β switches from tumor suppressing to tumor promoting. Re-expression 

of Smad4 signaling reduces tumor growth and restores the tumor suppressing role of TGF-β 

(Zhang et al., 2010). 

2) 1) 

Figure 7: Enrichment of Tregs and tumor incidence in MCA-treated mice.  

(1) Sections of MCA-induced tumors are stained with anti-Foxp3-specific Ab (red) and (A) anti-CD4 

or (B) anti-CD8 Ab (green). (2) Mice were treated with either PC61 to deplete Tregs or GL113 as a 

control Ab. Nine out of 30 control mice remained tumor free, while 18 out 30 mice depleted of Tregs 

did not develop a tumor (adapted from Betts et al., 2007). 
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Chapter 3 - Angiogenesis 

1. Angiogenesis in health 

Blood vessels connect the different organs of the body and are involved in nutrient and 

oxygen supply, removal of waste products and immunosurveillance. In that way, tissue 

homeostasis and health are obtained (Carmeliet & Jain, 2011).  

De novo formation of blood vessels or vasculogenesis only occurs in the embryo. This differs 

from angiogenesis, which is the formation of blood vessels from pre-existing blood vessels. 

Angiogenesis is involved in normal repair processes in the body, but also in pathologies, 

such as in cancer (Carmeliet & Jain, 2011).  

Blood vessels are composed of a monolayer of ECs lining the lumen, surrounded by a 

basement membrane and subsequent layers of mural cells (smooth muscle cells and 

pericytes). ECs are quiescent cells, but due to circumstances such as tissue damage, low 

oxygen or nutrient levels and cancer, pro-angiogenic signals are released. ECs will lose their 

cell-cell contacts, start to proliferate, migrate and differentiate into new blood vessels in a 

process called sprouting angiogenesis (Carmeliet & Jain, 2011). 

1.1. Sprout ing angiogenesis  

Angiogenesis involves the differentiation of ECs into tip and stalk cells. Tip cells sense 

angiogenic signals through their filopodial extensions, while stalk cells play a supportive role 

in the extension of sprouting vessels. Stalk cells establish the vascular lumen and keep the 

new vessel in contact with the parental vessel. Thus, the tip cell guides, while the stalk cell 

proliferates and elongates the sprout. Proliferation and elongation continue until two tip cells 

fuse with each other to form a new circuit. Next, the lumen is established and mural cells are 

recruited via growth factors. Once the blood vessel is formed, ECs become quiescent and 

differentiate into the phalanx phenotype forming a tight barrier which makes blood flow 

possible (Potente et al., 2011).  

Determination of tip and stalk cells is dependent on the sensitivity of the ECs for VEGF and 

the presence of its receptor, the type 2 VEGF receptor (VEGFR2) (Gerhardt et al., 2003). 

VEGF expression is increased in ECs to induce angiogenesis in hypoxic tissues, and thus to 

restore oxygen and nutrient supply (Liu et al., 1995). VEGF signaling involves several 

downstream pathways, such as MAP kinases, phospholipase Cγ and small GTPases, 

through which EC proliferation and migration, development of filopodia and degradation of 

the extracellular matrix is made possible (Herbert & Stainier, 2011).  

1.2. Modulat ion of angiogenesis  

Angiogenesis is a complex process, which is regulated through several signals. Important 

players are VEGF and TGF-β. Both have different functions in the induction of angiogenesis 

and the role of TGF-β in angiogenesis is not yet completely understood. The sometimes 
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opposing functions of TGF-β are illustrated by studies performed in utero, in vitro and in vivo 

(Ferrari et al., 2006, 2009, 2012). 

In utero, TGF-β deficient mice die prenatally and have defective vasculogenesis. In vitro, 

TGF-β inhibits EC proliferation, induces EC apoptosis and downregulates VEGFR2, while in 

vivo angiogenesis is induced both indirectly and directly through VEGF and the type 1 TGF-β 

receptor (Ferrari et al., 2009). 

For several years, research has been done to unravel the regulatory mechanisms of 

angiogenesis and apoptosis. Apoptosis is a valuable mechanism in the formation of healthy 

blood vessels and the progress of angiogenesis, since inhibition of apoptosis results in 

abnormal vessels. Ferrari et al. found a relation between VEGF and TGF-β in regulating cell 

proliferation on the one hand and apoptosis on the other (Ferrari et al., 2006, 2009, 2012).  

TGF-β regulates apoptosis as well as angiogenesis through mediation by VEGF and through 

downregulation of the anti-apoptotic protein Bcl-2 (B-cell lymphoma 2) (Tsukada et al., 1995). 

Induction of angiogenesis is only possible when apoptosis is fast and transient. In 

conclusion, angiogenesis can only proceed when the optimal level of apoptosis is reached 

(Ferrari et al., 2009). 

2. Angiogenesis in wound healing  

Injury to the skin induces a range of processes in order to induce wound healing and to avoid 

possible microbial infections. Wound healing is characterized by blood clotting, inflammation 

and formation of new tissue through proliferation, angiogenesis and tissue remodeling. 

These steps have to be followed chronologically in order to restore vasculature. During 

wound healing, temporal and spatial regulation is needed between ECs, angiogenic growth 

factors and molecules of the extracellular matrix (Eming et al., 2007). 

The formation of a blood clot following injury is necessary to prevent micro-organisms from 

entering the tissue, but also as an attachment site for degranulated platelets and invading 

immune cells, serving as a source of growth factors and cytokines. Platelets are a major 

source of TGF-β and its release, together with other growth factors and cytokines, initiates 

the healing process (Eming et al., 2007).  

3. In vivo models of angiogenesis  

Several models are developed to study angiogenesis and to screen pro- and anti-angiogenic 

compounds. 

3.1. Matrigel plug assay  

The matrigel plug assay is an in vivo assay used to test biological components and drugs for 

their effect on angiogenesis. The matrigel is a derivative of the Engelbreth-Holm-Swarm 

tumor composed of basement membrane proteins (Malinda, 2009). In the assay, an 
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angiogenic stimulus is added to the matrigel, followed by subcutaneous injection in mice. 

From then on, the matrigel gelifies and recruits ECs into the plug for the formation of vessels 

(Guillot et al., 2012; Malinda, 2009). 

The matrigel assay was used to determine the role of the endothelial cell protein BAMBI 

(BMP and activin receptor membrane bound inhibitor) in angiogenesis. It is a competitive 

receptor of the type 1 TGF-β receptor. It was shown that BAMBI-/- mice have higher levels of 

angiogenesis as compared to BAMBI+/+ mice, which indicates that BAMBI is important in the 

regulation of normal development of blood vessels (Guillot et al., 2012). 

3.2. Wound healing assay  

Another model to study angiogenesis is the wound healing assay. In the model, dorsal skin 

wounds are made and, during a certain period, wound closure, morphological architecture 

and degree of neovascularization are studied. The model has recently been used to study 

the role of the platelet endothelial aggregation receptor-1 (PEAR-1) on EC proliferation, 

migration and tube formation (Vandenbriele et al., 2015). 
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Chapter 4 - Objectives 

Since the first description of GARP as a transmembrane protein in 1992, research has 

shown that GARP expression is no longer limited to platelets, ECs and Tregs, but has 

expanded towards B cells, hepatic stellate cells and mesenchymal stromal cells (Macaulay et 

al., 2007; O’Connor et al., 2009; Roubin et al., 1996; Stanic et al., 2015; Wang et al., 2008). 

However, more questions than answers exist about the exact functions of GARP and the 

activation mechanisms of its ligand latent TGF-β. Therefore, three objectives were set in this 

master's thesis.  

First, the function of GARP on Tregs in the development of cancer was determined, since 

previous studies have shown that GARP expressed on Tregs contributes to the suppressive 

activities of Tregs and that GARP expressing Tregs are upregulated in certain cancer types 

(Cuende et al., 2015; Kalathil et al., 2013; Pastille et al., 2014). To test this, the carcinogen 

MCA was injected into the hind legs of Treg specific GARP knockout and littermate mice. 

Tumors that developed were measured and the TILs present in the tumor were determined in 

order to compare tumor incidence, tumor growth, tumor onset and immune cell populations 

present in the tumor. Next, an in vivo homeostasis model was also performed to compare the 

functionality of Tregs expressing and not expressing GARP in a tumor-free environment. 

Second, endothelial GARP was also of interest in the development of cancer, since 

Carambia et al. have shown that GARP expressed on LSECs contributes to the 

differentiation of effector T cells into Tregs (Carambia et al., 2014). Endothelial specific 

GARP knockout and littermate mice were compared to each other by subcutaneously 

injecting cells of the MC38 cell line into the ventral region. Tumor development was followed 

for 40 days and every two days, tumors were measured to determine a possible difference in 

tumor growth.  

Finally, the role of endothelial GARP in angiogenesis was also determined. Studies of 

O'Connor and Vermeersch already showed that GARP is expressed on the endothelium, 

which might be necessary for TGF-β activation, followed by regulation of angiogenesis 

(O’Connor et al., 2009; Vermeersch et al., 2017). To test this hypothesis, wound healing and 

matrigel plug assays were performed in endothelial specific GARP knockout and littermate 

mice. 
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Chapter 1 - Genotyping of Foxp3 and Tie2 mice 

1. Mice breeding 

Cell specific knockout mice were created via the Cre/LoxP recombination system. This 

system requires both a Cre mouse strain, in which the Cre recombinase is expressed under 

the control of a tissue specific promoter and a LoxP-containing mouse strain, in which the 

target gene is flanked by LoxP sites. Crossing the mouse strains generates offspring with a 

cell specific gene knockout, since the Cre recombinase recognizes the sequence motif of the 

LoxP site and excises the target gene (Kos, 2004). 

Tie2 (courtesy of M. Yanagisawa, Southwestern Medical School, Dallas, TX) and Foxp3 

(courtesy of A. P. Rudensky, Howard Hughes Medical Institute, Immunology Program, 

Ludwig Center, Memorial Sloan-Kettering Cancer Center, New York, NY) promoter-driven 

Cre recombinase transgenic mice were used to delete the target gene Garp in ECs and 

Tregs, respectively. Tie2 and Foxp3 specific GARP knockout mice were obtained through 

mating Cre recombinase transgenic mice with the Garpfl/fl mice, followed by backcrossing of 

Cre+/-, Garpfl/- mice with Garpfl/fl mice to obtain Cre+/-, Garpfl/fl (knockout) and Cre-/-, Garpfl/fl  

(littermate) mice (see Appendix B for breeding scheme). Due to cell specific Cre 

recombinase expression in Tie2 and Foxp3 mice, the first exon of Garp is cut out of the 

genome of the Treg and ECs and completely disrupts Garp expression (Edwards et al., 

2014; Rubtsov et al., 2008; Vermeersch et al., 2017). In experiments concerning Foxp3 mice, 

only male mice were used since the Foxp3 gene is located on the X chromosome, while both 

male and female mice were used of the Tie2 knockout mice. 

2. Genotyping of mice 

To determine the genotype of the Foxp3 and Tie2 specific GARP knockout mice and their 

littermates, the polymerase chain reaction (PCR) was performed on genomic DNA (gDNA). 

For the generation of transgenic mice expressing Cre recombinase under the Foxp3 

promoter, a construct was made in which Cre was fused to yellow fluorescent protein (YFP). 

This construct was knocked in in the 3'UTR of the Foxp3 locus. When the Cre recombinase 

is active, YFP expression can be detected, which can be used for cell sorting, flow cytometry 

analysis and genotyping (Rubtsov et al., 2008). 

gDNA was extracted from ear samples with the NaOH extraction method. Therefore, each 

ear sample received 75 µL work solution (Table 1). Samples were placed in the Thermomixer 

Comfort (Eppendorf, Rotselaar, Belgium) and stirred for 10 minutes at 1400 rpm and 95°C. 

Next, samples were placed for 10 minutes at 4°C. Finally, the work solution was neutralized 

with 75 µL TrisHCl pH 5. Following gDNA extraction, the master mix, which contains all 

components required for the PCR, was prepared in a DNA free environment and 5 µL gDNA 

was added to each PCR Eppendorf tube containing the master mix (Table 2). 
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Table 1: Composition work solution NaOH extraction method. 

Component Supplier 

0.5 M NaOH Fisher Chemicals Merelbeke, Belgium 

0.5 M Na2EDTA Fisher BioReagents, Merelbeke, Belgium 

dH2O - 

Table 2: Composition master mix for one sample. 

Component Volume Supplier 

10x PCR buffer 2.5 µL 

All from Invitrogen, Ghent, Belgium 

50 mM MgCl2 1.25 µL 

Primer forward 1 µL 

Primer reverse 1 µL 

10 mM dNTP mix 0.625 µL 

Platinum Taq polymerase 0.1 µL 

dH2O 14.525 µL - 

Total 21 µL  

Table 3: PCR protocol. Denaturation, annealing and synthesis were repeated 30 times. 

 Foxp3-Cre Tie2-Cre Garp LoxP 

Initial denaturation 2', 95°C 2', 95°C 2', 95°C 

Denaturation 30", 95°C 30", 95°C 30", 95°C 

Annealing 30", 62°C 30", 62°C 30", 55°C 

Synthesis 30", 72°C 30", 72°C 30", 72°C 

Elongation 10', 72°C 10', 72°C 10', 72°C 

Forever 12°C 12°C 12°C 

 

After adding the master mix, DNA was amplified using PCR (PTC-200 Thermal Cycler, Bio-

Rad Laboratories Inc, CA) (Table 3) with four different pairs of primers for LoxP, Cre driven 

by Tie2, Cre driven by Foxp3 and internal HIF700 and HIF960 control primers used for 

genotyping of Tie2 specific GARP knockout mice (Table 4). 

DNA analysis was performed via gel electrophoresis. To analyze the presence or absence of 

Cre, an 1.5% agarose gel with Gelgreen Nucleic Acid Stain was made (1/10 000 dilution, 

Biotium, CA), while for LoxP, a 2% agarose gel with Gelgreen Nucleic Acid Stain was 

prepared (1/10 000 dilution). The agarose gel was made with UltraPure Agarose (Invitrogen, 

Ghent, Belgium) dissolved in tris-borate-EDTA buffer (TBE, 0.5x, Table 5), which was heated 

until the solution boiled. Then, the solution was poured into a gel tray with the well comb in 

place and stored at room temperature (RT) until the gel was solidified. Before running the 

agarose gel, 5 µL loading dye (6x, Table 6) was added to the samples and a 100 base pair 
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(bp) molecular weight ladder (8 µL mQ; 2 µL 100 bp molecular weight ladder New England 

Biolabs, MA; 2 µL 6x loading dye) was prepared. The electrophoresis apparatus was filled 

with TBE (0.5x) and 20 µL of each sample was loaded into the gel. Electrophoresis was 

performed at 135 V. To detect the DNA, the gel was put under UV light (BioDoc-IT Imaging 

System, Ultra-Violet Products, Cambridge, UK). 

Table 4: Sequence of primer pairs of LoxP, Cre driven by Tie2 and Cre driven by Foxp3 and internal 

control primers HIF700 and HIF900 used in the genotypic analysis. 

Primer Sequence 

LoxP 5’-GCA AAG CAG ACG GTC ATA CA-3’ 

5’-TCT GGA ACT CAA GAG GCT GAG-3’ 

Cre driven by Tie2 

 

Internal primer HIF700 

Internal primer HIF960 

5’-CGC CGT AAA TCA ATC GAT GAG TTG CTT C-3’ 

5’-GAT GCC GGT GAA CGT GCA AAA CAG GCT C-3’ 

5'-CAA GCA TTC TTA AAT GTG GAG CTA TCT-3' 

5'-TTG TGT TGG GGC AGT ACT GGA AAG ATG-3' 

Cre driven by Foxp3 5'-AGG ATG TGA GGG ACT ACC TCC TGT A-3' 

5'-TCC TTC ACT CTG ATT CTG GCA ATT T-3' 

Table 5: Composition TBE buffer (10x, pH 8.3). 

Component Supplier 

0.90 M Tris Sigma Aldrich, St. Louis, Mo 

0.90 M H3BO3 

0.022 M Na2EDTA 

Acros Organics, Geel, Belgium 

Fisher Bioreagents, Merelbeke, Belgium 

dH2O - 

Table 6: Composition loading dye (6x). 

Product Supplier 

40% sucrose Acros Organics, Geel, Belgium 

0.25% bromophenol blue Acros Organics, Geel, Belgium 

10 mL dH2O - 
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Chapter 2 - In vivo homeostasis model 

1. Isolation and immunostaining of splenocytes  

The spleens of male Foxp3 specific GARP knockout and Foxp3-Cre mice were isolated in a 

laminar flow cabinet after the mice were killed by cervical dislocation. The spleen was 

washed in PBS (phosphate buffered saline, Table 7) and cut into pieces. Using a 70 µm 

nylon cell strainer (Greiner Bio-One, Vilvoorde, Belgium) a single cell suspension was made, 

which was washed in PBS and centrifuged at 400 g for five minutes. 

Erythrocytes were lysed by adding 5 mL of the erythrocyte lysis buffer for four minutes at RT 

(Table 8), followed by neutralization with 30 mL PBS. The suspension was centrifuged at  

400 g for 10 minutes to remove the lysis buffer. After resuspending the cells in PBS, cells 

were counted with the Hemavet 950FS (Drew Scientific, Cumbria, UK). 

Splenocytes were stained with anti-mouse CD4-PE (eBioscience, Vienna, Austria, clone 

GK1.5) and incubated for 20 minutes at 4°C. The non-bound Ab was removed by adding 

PBS and centrifugation at 400 g for five minutes. Cells were diluted in PBS to gain 6103.00 

cells/mL. 

Table 7: Composition PBS buffer (10x, pH 6.5). 

Product Supplier 

1.37 M NaCl Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

0.027 M KCl Merck, Darmstadt, Germany 

0.065 M Na2HPO4.2H2O Sigma Aldrich, St. Louis, Mo 

0.015 M KH2PO4 

dH2O 

Acros Organics, Geel, Belgium 

- 

Table 8: Composition erythrocyte lysis buffer. 

Product Supplier 

0.016 M NH4Cl Sigma Aldrich, St. Louis, Mo 

0.010 M NaHCO3 Acros Organics, Geel, Belgium 

dH2O - 

2. Fluorescence-activated cell sorting of splenocytes 

Fluorescence-activated cell sorting or FACS is based on flow cytometry and allows to collect 

individual cells from single cell suspensions. As opposed to FACS, flow cytometry is only 

able to identify cell populations and uses the light-scattering characteristics of single cells to 

identify different cell types in a heterogeneous cell population. Briefly, a single cell 

suspension is taken up in a liquid stream that passes through a laser beam. Cells passing 

the laser beam emit light in all directions. Light scattered in the forward direction (forward 

scatter, FS) is used to determine cell size, while side-scattered (SS) light measures 
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granularity. Cells carrying fluorochromes emit fluorescent signals and are detected by 

fluorescence detectors. Together, FS, SS and fluorescent emissions are used to determine 

the characteristics of certain cell types in the single cell suspension. In addition to FS, SS 

and fluorescence labels to identify cell populations, FACS can isolate certain cell types via 

the generation of single droplets which contain the cells of interest. These droplets are 

electrically charged and, via an electrical field, redirected in order to collect the droplets. 

Cells present in the droplet can then be used again in experiments (Macey, 2007). 

By using the FACSAria Ilu (BD, Erembodegem, Belgium) of the KU Leuven FACS Core, the 

splenocytes were sorted to gain the CD4+ Th and Treg cells expressing GARP and Treg cells 

knockout for GARP. Treg specific GARP knockout mice express a Cre recombinase, which is 

flanked by YFP as reporter protein. Therefore, YFP was used to sort the CD4+Foxp3+ Treg 

and the CD4+Foxp3- Treg cell population (Figure 8). 

 

Figure 8: FACS gating strategy of splenocytes of a Foxp3-Cre mouse. (A) Scatter plot of the 

different cell types present in the cell suspension. (B + C) Gating used to select for single cells.  

(D + E) CD4 positive T cells were selected as CD4-PE positive cells (rectangular gate). The YFP 

signal was used to select for the Treg cells present in the CD4 positive T cell population. 

CD4
+
Foxp3

+
 T cells and thus Tregs were selected as YFP positive cells (cell population on the 

right). YFP negative cells were CD4
+
Foxp3

-
 T cells (cell population on the left). In a Foxp3 specific 

GARP knockout (KO) mouse, YFP positive cells are Tregs not expressing GARP, while YFP 

negative cells are Tregs without Cre recombinase expression. 

A) B) C) 

D) E) 
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3. Injection of CD4+ effector T and regulatory T cells into NOD scid 

gamma mice 

The sorted splenocytes were injected via the tail vein of NSG (NOD scid gamma) mice at a 

concentration of 6101.00  CD4+ Th cells and 6100.25   Treg cells in 200 µL PBS. NSG mice 

were housed in individually ventilated cages and sacrificed one week later. 

4. Analysis of the homeostasis model 

The NSG mice were sacrificed via cervical dislocation and the spleens were isolated. Two 

third of the spleens were used to make a single cell suspension as described before. Blood 

samples were also taken. Again, erythrocytes were lysed and cells were counted with the 

Hemavet 950FS. 

4.1. Flow cytometry analysis on spleen t issue  

Samples were prepared from each mouse to perform combined surface and intracellular 

staining for CD45, CD4 and Foxp3 antigens. For the surface staining, anti-mouse CD45 

eFluor450 (eBioscience, clone 30-F11) and anti-mouse CD4-APC-H7 (Miltenyi Biotec, 

Leiden, The Netherlands, clone GK1.5) were used. The antibodies were incubated for  

30 minutes at 4°C.  

Following washing of the cells in PBS, the intracellular staining was performed to assess 

Foxp3 expression. Therefore, cells were permeabilized with 1 mL of the 

fixation/permeabilization working solution during 18 hours at 4°C (Foxp3 staining buffer set, 

eBioscience). After incubation, permeabilization buffer (1x) was added and cells were again 

centrifuged for five minutes at 400 g. This step was repeated, followed by removal of the 

supernatant and resuspension of the remaining volume after decanting. To avoid aspecific 

binding, FcR block (anti-mouse CD16/CD32, eBioscience, clone 93) was added and cells 

were incubated for 10 minutes on ice, followed by incubation with the anti-mouse/rat Foxp3 

PerCP-Cyanine 5.5 Ab (eBioscience, clone FJK-16s) during one hour at 4°C. After the 

incubation period, 2 mL of the permeabilization buffer was added and samples were 

centrifuged at 400 g for five minutes. The permeabilization step was repeated, followed by 

resuspension of the cells with 200 µL of the flow cytometry staining buffer (0.2% 

paraformaldehyde and 154 mM NaCl). Samples were acquired with a FACSVerse flow 

cytometer and analyzed using FACSuite software (Figure 9). 

4.2. Cell count ing and f low cytometry analysis on blood samples  

Via the retro-orbital plexus, blood was taken both on citrate (3.8%) and on 5 mM EDTA. 

EDTA blood samples were used to determine total cell numbers with the Hemavet 950FS. 

The citrated blood was used for the flow cytometry analysis. Therefore, anti-mouse CD4-

APC-H7 and anti-mouse CD45 eFluor450 Abs were added and samples were incubated for 

20 minutes at RT, followed by a three minute incubation period with erythrocyte lysis buffer. 
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Samples were centrifuged, fixated with the flow cytometry staining buffer and analyzed with 

the FACSVerse flow cytometer. 

 

 

Figure 9: Gating strategy flow cytometry analysis of splenocytes isolated from a NSG 

mouse. (A) FS and SS show the scatter plot of the cell population present in the spleen.  

(B) Gating of the single cell population. (C) The gated cell population shows the CD45 positive 

cell population and thus the leukocytes (CD45 eFluor450, clone 30-F11). (D) The CD4 positive 

T cells were identified using a CD4 positive marker (CD4 APC-H7, clone GK1.5). (E) Foxp3 

positive cells were detected with the anti-Foxp3 Ab (clone FJK-16s). (F) FMO (fluorescence 

minus one) of the anti-Foxp3 Ab. 

4.3. Immunofluorescent staining on spleen t issue  

One third of the spleen of the NSG mice was embedded in Tissue-Tek O.C.T Compound 

(Sakura Finetek Europe, Alphen aan den Rijn, The Netherlands), snap-frozen in liquid 

nitrogen and stored at -80°C. Cryosections were made of the spleen tissue with the Cryostat 

CM1950 (Leica Biosystems, Diegem, Belgium) (performed by Inge Pareyn) and used in an 

immunofluorescence assay. Briefly, cryosections were fixated for 15 minutes in acetone with 

a temperature of -20°C, followed by a five minutes washing step in PBS. Tissue was 

encircled with a DAKO Pen (Dako, Heverlee, Belgium) and blocked with PBS, 3% bovine 

serum albumin (BSA, Carl Roth GmbH + Co. KG, Karlsruhe, Germany) and 1% normal goat 

serum (NGS, Abcam, Cambridge, UK). After 30 minutes, the blocking solution was removed 

and anti-mouse CD4-PE was added (incubation for one hour at 37°C; 1/100 dilution in PBS, 

3% BSA, 1% NGS). Subsequently, three washing steps with PBS were performed, followed 
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by an incubation of one hour in the dark with anti-rat IgG-PE (BioLegend, London, UK, clone 

Poly4054) at RT (1/100 dilution in PBS, 3% BSA, 1% NGS). Finally, cryosections were 

washed three times in PBS, three times in mQ water and mounted with the Prolong Gold 

antifade reagent that contains DAPI (Invitrogen). 

Spleen sections were observed under the Eclipse TE-200 inverted fluorescence microscope 

(Nikon, Tokyo, Japan; 20x objective), which was coupled to a Hamamatsu CCD camera 

(ORCA-R2, Hamamatsu Photonics, Hamamatsu, Japan). Each section was illuminated with 

green excitation light (545-565 nm). Following excitation, each sample emitted red 

fluorescent light. The fluorescent images were analyzed with ImageJ (National Institutes of 

Health, MD) to determine the mean CD4 positive signal as a percentage of the total surface 

area. 
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Chapter 3 - The MCA tumor model 

1. Induction of fibrosarcomas in regulatory T cell specific GARP 

knockout and littermate mice 

Male Treg specific GARP knockout mice and their littermates were anaesthetized with 5% 

isoflurane in O2 and their hind limbs were shaved. A suspension of MCA (Sigma Aldrich, St. 

Louis, Mo) in olive oil (4 mg/mL) was prepared and a dose of 100 µL was injected 

subcutaneously (s.c.) in the left hind limb. The right hind limb served as a control and 

received the same volume of olive oil only. The 25G needle stayed in-situ for 30 seconds to 

make sure that the MCA settled. Small leakages of the suspension were accounted as 

normal. Once a week, mice were checked for tumor development. The diameter of the hind 

limbs were measured with a digital caliper (Fine Science Tools GmbH, Heidelberg, Germany) 

and the difference between the legs was calculated and used to fit an exponential growth 

curve to estimate the growth rate k (mm/week, kxeY  with x time in weeks and Y as the 

difference in diameter between the hind legs in mm). Once a tumor developed, tumor width, 

height and depth were measured to determine the tumor volume using the formula of an 

ellipsoid ( depthheightw idthπ34Volume  ), respectively. The number of weeks that a 

mice remained tumor-free was determined by calculating the standard deviation on the 

difference between the diameters of the hind legs until week nine. Differences in diameter 

exceeding this standard deviation were used to determine the tumor onset. 

2. MCA tumor isolation and flow cytometry analysis  

To determine the TILs present in the tumor, flow cytometry was performed on tumor tissue. 

Tumors were isolated, washed in PBS (Table 7) and cut into pieces to make a single cell 

suspension (see Chapter 2), which was diluted in 25 mL RPMI medium containing 10% fetal 

bovine serum (FBS) (all from Gibco, Life Technologies, Ghent, Belgium) and centrifuged at 

400 g for six minutes. 

Erythrocytes were lysed with 5 mL of the erythrocyte lysis buffer (Table 8) for 90 seconds at 

RT (previously described in Chapter 2). After centrifuging the cell suspension at 400 g for  

10 minutes, cells were resuspended in PBS and counted with the Hemavet 950FS. 

An equal amount of cells was put in four different tubes and centrifuged at 400 g for  

five minutes. After removal of the supernatant, cells were stained with anti-mouse CD45 

eFluor450, anti-mouse CD3e-FITC (eBioscience, clone 145-2C11), anti-mouse CD4-APC-

H7, anti-mouse GARP (LRRC32)-APC (Miltenyi Biotec, clone REA139) and anti-human REA 

control(I)-APC (Miltenyi Biotec, clone REA293). The antibodies were incubated at 4°C for  

30 minutes. An intracellular Foxp3 staining was also performed as described (Chapter 1), but 

here the anti-mouse/rat Foxp3-PE Ab (eBioscience, clone FJK-16s) was used. Acquisition 

and analysis were performed with the FACSVerse and FACSuite software (Figure 10). 
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A GARP staining was also performed on cells of MCA tumors of littermate mice. The same 

protocol was applied as described above. The surface staining was performed with the anti-

mouse CD45-FITC (ImmunoTools, GmbH, Friesoythe, Germany, clone IBL-5/25), the anti-

mouse CD4-APC-Vio770 (Miltenyi Biotec, clone GK1.5), the anti-mouse GARP-PE 

(eBioscience, clone YGIC86) and the isotype control IgG2aκ-PE (BD, clone R35-95). The 

intracellular staining was performed with the anti-mouse Foxp3-PerCP-Cyanine5.5 Ab. 

Figure 11 shows the gating strategy acquired with the FACSVerse and FACSuite software. 
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Figure 10: Gating strategy flow cytometry analysis of MCA-induced fibrosarcomas. 

Graphs represent the analysis of a Foxp3 littermate (LM) mouse. (A) FS and SS show the 

scatter plot of the cell population present in the MCA tumor. (B) Gating of the single cells.  

(C) The gated cell population shows the CD45 positive cell population and thus the leukocytes 

(CD45 eFluor450, clone 30-F11). (D) The gated cell population is CD3 positive, which were T 

lymphocytes (CD3e-FITC, clone 145-2C11). (E) CD4 positive T cells were gated using the CD4-

APC-H7 ab (clone GK1.5). (F) Gating of Foxp3 positive Tregs (clone FJK-16s).  
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Figure 11: Gating strategy flow cytometry analysis for the presence of GARP on Tregs in 

MCA-induced tumors. (A) FS and SS show the scatter plot of the cell population in the single cell 

suspension of the MCA-induced tumor. (B) Gating of the single cells. (C) Scatter plot to gate the 

CD45 positive and CD4 positive cells (CD45-FITC, clone IBL-5/25; CD4-APC-Vio770, clone 

GK1.5). (D) Scatter plot to assess the Foxp3 positive and GARP positive cells (Foxp3-PerCP-

Cy5.5, clone FJK-16s; GARP-PE, clone YGIC86), gated within CD4 positive T cells. (E) Isotype 

control of the GARP Ab (IgG2aκ-PE, clone R35-95). 
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Chapter 4 - The MC38 tumor model 

1. Thawing of MC38 cell stocks  

MC38 cells (kindly provided by Sophie Lucas, De Duve Institute, UCL, Brussels, Belgium) 

were thawed by putting the vial in a water bath of 37°C. Cells were brought into RPMI 

medium containing 10% FBS and 1% penicillin/streptomycin (Gibco, Life Technologies) with 

a temperature of 37°C and centrifuged at 1000 rpm for five minutes. The supernatant was 

removed and the pellet resuspended in RPMI medium. Cells were cultured in T-75 or T-125 

culture flasks containing RPMI medium at 37°C and 5% CO2. 

2. MC38 cell passage 

Cells were passed when 90% confluency was reached. Cells were collected and centrifuged 

at 1000 rpm for five minutes. Supernatant was decanted and the pellet was resuspended in 

RPMI medium. A split ratio of one flask in four was maintained. 

3. Production of MC38 cell stocks  

Harvested cells were centrifuged at 1000 rpm for five minutes and were resuspended in FBS 

and DMSO (dimethyl sulfoxide, ratio 10:1). Cell stock tubes contained 1 mL of the cell 

suspension and were frozen at -80°C before being stored in liquid nitrogen.  

4. MC38 cell isolation and injection in endothelial specific GARP 

knockout and littermate mice 

Harvested cells were counted with a Bürker chamber (Brand GmbH + Co. KG, Wertheim, 

Germany) and s.c. injected in the left flank of the endothelial specific GARP knockout and 

littermate mice at 5105.00  cells in 200 µL PBS. Three times a week, tumor height and width 

were measured with a digital caliper. Mice were followed up for 40 days. When a tumor 

reached the predefined humane endpoint (volume of 1300 mm³), mice were sacrificed. 

Tumor volume was calculated with the following formula: heightw idthπ34Volume 2  . 
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Chapter 5 - A wound healing and matrigel plug assay 

1. Wound healing assay 

1.1. Surgery 

Endothelial specific GARP knockout and littermate mice were sedated with an intraperitoneal 

injection (100 µL/10 g body weight) of Ketamine (100 mg/mL) and Xylazine (20 mg/mL). The 

mice were shaved and Veet was applied to remove the fur. The mice were then taped on 

their ventral side on a heating pad and received pain relief injected s.c. in the flank 

(Vetergesic 0.3 mg/mL, 1/10 dilution, 100 µL s.c.). Using a 5 mm dermal biopsy punch 

(Stiefel Laboratories, Wavre, Belgium), a piece of skin was removed on the back of the mice. 

A silicone ring of 8 mm internal diameter was glued and stitched around the wound. The 

wound was moistened with 0.9% NaCl and covered with Tegaderm dressing. Every two 

days, a digital picture was taken of the wound, the Tegaderm was renewed and the wound 

was moistened with 0.9% NaCl. At day eight, mice were sedated with 5% isoflurane in O2 

and sacrificed by cervical dislocation. Wound dimensions were measured with ImageJ 

(National Institutes of Health, MD).  

1.2. VWF-VIP staining on skin t issue sections  

To determine vessel growth in the dorsal wounds, skin compromising the wound area was 

isolated at day eight and embedded in Tissue-Tek O.C.T Compound, snap-frozen in liquid 

nitrogen and stored at -80°C. Cryosections of the skin tissue were used for a von Willebrand 

Factor (VWF)-VIP staining. 

Briefly, sections were fixated during 15 minutes in acetone with a temperature of -20°C, 

followed by a five minutes washing step in TBS (tris-buffered saline, Table 9) and 0.1% 

Tween20. Next, the sections were blocked for one hour with 10% normal swine serum 

(Jackson ImmunoResearch, St.-Martens-Latem, Belgium), 1% BSA and 0.1% Tween20. 

Sections were incubated overnight at 4°C with cross-reacting polyclonal rabbit anti-human 

VWF (Dako, 1/1500 dilution in TBS, 0.1% Tween20, 1% BSA). The following day, sections 

were washed three times for five minutes in TBS and 0.1% Tween20 and the endogenous 

peroxidase activity was blocked with 0.3% H2O2 (Sigma Aldrich) in TBS. After three washing 

steps, the sections were incubated for 30 minutes with anti-rabbit biotin (Dako, 1/500 dilution 

in TBS, 0.1% Tween20, 1% BSA), followed by 30 minutes incubation with the Vectastain 

ABC kit (Vector Laboratories, Brussels, Belgium). Sections were developed with the VIP 

HRP Substrate (Vector Laboratories) and washed in distilled H2O and counterstained with 

methyl green at 60°C. Methyl green was washed away with distilled H2O and sections were 

dehydrated by putting them in an ascending gradual series of respectively 50%, 70%, 95% 

and 100% ethanol and Sub-X. Finally, slides were dried and mounted with Sub-X mounting 

medium (Leica Biosystems). High-resolution digital images of the sections were made with 

the NanoZoomer-SQ (Hamamatsu Phototonics, Mont-Saint-Guibert, Belgium). 
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Table 9: Composition TBS buffer (pH 7.5, 5x). 

Product Supplier 

1.50 M NaCl Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

0.20 M Tris Sigma Aldrich, St. Louis, Mo 

dH2O - 

2. Matrigel plug assay 

2.1. Subcutaneous inject ion and isolat ion of the matrigel plug  

The matrigel (Corning Matrigel basement membrane matrix growth factor reduced; Corning, 

NY) was thawed overnight at 4°C. A mixture of 500 µL matrigel, 300 ng/mL VEGF (R&D 

systems, 493-MV-005) and 700 ng/mL bFGF (basic fibroblast growth factor, R&D systems, 

133-FB-025) was made. Endothelial specific GARP knockout and littermate mice were 

sedated with 5% isoflurane in O2 and s.c. injected in the right groin. The needle remained in-

situ for 30 seconds. After two weeks, mice were sacrificed and matrigels were recovered and 

embedded in Tissue-Tek O.C.T. Compound, snap-frozen in liquid nitrogen and stored at  

-80°C (s.c. injection and isolation of the matrigel plug were performed by drs. Elien 

Vermeersch). 

2.2. VWF staining 

Cryosections were made of the matrigel plug, followed by a VWF staining (performed by Inge 

Pareyn). A similar protocol was used as for the CD4 staining performed in Chapter 3 (4.4). 

Here, the blocking solution also contained TritonX100 (Table 10).  

Table 10: Composition blocking solution VWF and CD31 staining. 

VWF staining CD31 staining Supplier 

PBS PBS See Table 7 

3% BSA 1% BSA Carl Roth GmbH + Co. KG, 

Karlsruhe, Germany 

1% NGS 10% NGS Abcam, Cambridge, UK 

0.2% TritonX100  

0.1% Tween20 

Sigma Aldrich, St. Louis, Mo; 

Acros Organics, Geel, Belgium 

Volume per slide 200 µL  

  

Anti-human VWF was used as the primary Ab and was applied for one hour at 37°C (1/1500 

dilution in PBS, 0.2% TritonX100, 3% BSA, 1% NGS). The secondary Ab was anti-rabbit 

AF555 (Abcam, Cambridge, UK), which was incubated for one hour at RT (1/1000 dilution in 

PBS, 0.2% TritonX100, 3% BSA, 1% NGS).  
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2.3. CD31 staining 

The cryosections of the matrigel plug were also used for a CD31 staining. Again, an identical 

protocol was used as for the CD4 and the VWF staining (Chapter 3 and Chapter 4). Here, 

washing steps were done in PBS and 0.1% Tween20 and a specific blocking solution was 

applied (Table 10). The primary anti-CD31 (Abcam, clone RM0031-1D12) was applied for 

one hour at 37°C (1/100 dilution in PBS, 0.1% Tween20, 3% BSA, 1% NGS). The secondary 

Ab anti-rat AF555 (Abcam) was applied for one hour at RT (1/1000 dilution in PBS, 0.1% 

Tween20, 3% BSA and 1% NGS). 

2.4. Analysis of the matrigel plug sections 

Matrigel plug sections were examined under the Eclipse TE-200 inverted fluorescence 

microscope (10x objective), which was coupled to a Hamamatsu CCD. Each section was 

illuminated with green excitation light (545-565 nm). Of each matrigel, sections were selected 

from the beginning, middle and end of the matrigel plug. Five pictures, with a total of 15 

images of each matrigel plug, were taken of each section stained for VWF. Images taken at 

the center from sections stained with CD31 were not analyzed. Therefore, the analysis was 

performed on 12 images. To measure the VWF and CD31 positive signals as a percentage 

of the total surface, pictures were analyzed with ImageJ (National Institutes of Health, MD). 
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Chapter 6 - Statistics 

Data were presented as mean ± standard deviation (SD). Two-way ANOVA with multiple 

comparisons and Bonferroni corrections was used to compare the tumor growth curves of 

the MCA and MC38 tumors. Statistical analysis of two independent groups was done by a 

two-tailed unpaired Student's t-test. To compare the mean of more than two independent 

groups, a one-way ANOVA analysis with multiple comparisons and Bonferroni corrections 

was performed. Analysis of more than two groups in combination with more than two 

independent variables was performed by a two-way ANOVA with multiple comparisons and 

Tukey posthoc tests. The Kaplan-Meier curves of the number of weeks mice remained 

tumor-free were compared using the Log-rank test. Association of genotype and tumor 

development was tested with the Fisher's Exact test to determine χ2. Statistical analyses 

were performed with GraphPad Prism 6 (GraphPad Software, Inc., La Jolla, CA). Differences 

were considered significant at p < 0.05. 
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Part III: Results 
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Chapter 1 - Role of GARP on regulatory T cells in cancer 

One objective of this thesis was to determine the role of GARP in the suppressive function of 

Tregs. Since GARP binds latent TGF-β, which is an important immunological regulator, we 

wanted to investigate whether there was a difference in suppressive capacity between Tregs 

with and without GARP. To study this, we performed the MCA tumor model in mice lacking 

GARP on Tregs and an in vivo Treg homeostasis model in NSG mice.  

1. Genotyping of Foxp3  mice 

To study the role of GARP on Tregs in vivo, Treg specific GARP knockout mice were 

generated. PCR was performed on gDNA of the mice to unravel their genotype. GARP 

expressed on Tregs is specifically knocked out when the Cre recombinase is present in 

combination with two LoxP sites flanking Garp. Littermate mice have only the two LoxP sites 

and do not express the Cre recombinase enzyme.  

The presence of LoxP sites and Cre recombinase was determined and as shown in Figure 

12A, Garp was homozygous floxed (181 bp) in all transgenic mice, since only one band was 

detected at 181 bp and not a combination of a band at 181 bp and 111 bp, which would 

represent heterozygous floxing of Garp. The presence of the Cre-YFP construct was 

identified by a second PCR and resulted in a fragment of 346 bp (Figure 12B). 

 

2. Mice lacking GARP on regulatory T cells are not resistant against 

MCA-induced fibrosarcomas 

To investigate whether GARP expressed on Tregs, and as receptor for latent TGF-β, helps in 

shaping the tumor microenvironment and development, the Treg dependent MCA tumor 

- 

B) 

1 2 3 + mQ 

346 bp 

1 2 3 4 mQ - +/- + 

181 bp 

111 bp 

A) 

Figure 12: Genotypic analysis of gDNA from transgenic mice. (A) Determining the presence 

of LoxP sites. LoxP is measured at 181 bp and the WT allele (negative control) at 111 bp. Lanes 1 

to 4 represent mice which are homozygous for LoxP. (B) Determining the presence of Cre 

recombinase. Presence of Cre is measured at 346 bp. Lane 3 is Cre positive. Lanes 1 and 2 

represent mice that do not have the Cre gene. In each gel, positive (+) and negative (-) controls and 

mQ controls were included. 
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model was performed on Treg specific GARP knockout mice. A possible change in active 

TGF-β levels, caused by the Treg specific GARP knockout, could change the level and 

nature of invading immune cells into the tumor, which are necessary to destroy the cancer 

cells.  

The MCA tumor model was performed in male Foxp3 specific GARP knockout (n = 7) and 

littermate (n = 10) mice. Tumor growth was followed for a period of 29 weeks. Each week, 

the diameters of the hind legs were measured to determine the difference between the tumor 

and non-tumor leg, which was then used to establish the week of tumor onset and to 

calculate the tumor growth curve. Next to this, we analyzed each tumor to define the TILs 

present in the tumor. 

2.1. MCA-induced f ibrosarcoma incidence  and growth kinetics in specif ic 

GARP knockout and l it termate mice  are not signif icant ly dif ferent  

Using flow cytometry, it was shown that 11 ± 3% of the Tregs present in the tumor of 

littermate mice express GARP.  

By week 26, eight out of ten littermate mice and three out of seven knockout mice developed 

a tumor. A Kaplan-Meier curve was made of the weeks in which the mice were tumor-free to 

verify whether there was a difference in tumor onset. The Log-rank test shows that Treg 

specific GARP knockout mice did not have tumors at a significant later time point as 

compared to littermate mice (p = 0.1460, Figure 13A). To test whether tumor development 

was dependent of the genotype, the Fisher's Exact test was performed. This showed that the 

association between genotype (littermate or knockout) and tumor development was 

insignificant (p = 0.1600). 

Mice were sacrificed 4 ± 2 weeks after the tumor had become detectable (Figure 13B). 

Figures 13C and 13D show that there was no difference in tumor growth in knockout and 

littermate mice, since the average tumor volume and growth rate k were not significantly 

different. The k value was 0.58 ± 0.27 mm/week in knockout and 0.76 ± 0.45 mm/week in 

littermate mice.  

In conclusion, no significant difference was seen in tumor onset and tumor growth kinetics 

when comparing Treg specific GARP knockout and littermate mice.  
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2.2. Tumor inf i l t rat ing lymphocytes in the f ibrosarcomas are not signif icantly 

dif ferent in regulatory T cel l  specif ic GARP knockout and l it termate mice   

To investigate if GARP on Tregs is involved in the infiltration of immune cells in the MCA 

tumor, a predefined set of immune cell types was measured in the tumor. In the single cell 

suspension of the tumor, CD45+ cells (leukocytes) were measured to determine the 

percentage of CD3+ cells (T lymphocytes) and CD4+ Th cells, while the Treg+ percentage 

was determined in the CD4+ cell population.  

A) B) 

C) D) 

Figure 13: Onset and growth kinetics of MCA-induced tumors in Treg specific GARP 

knockout and littermate mice. (A) A Kaplan-Meier curve of the number of weeks a mouse 

remained tumor-free was made to determine whether LM mice develop a tumor at an earlier point 

in time as compared to the Treg specific GARP KO mice. Data were analyzed with the Log-rank 

test. (B) For each mouse (KO: n = 3; LM: n = 8), tumor volume (mm³) was calculated based on 

tumor width, height and depth. (C) The mean tumor volume (mm³) of KO (n = 3) and LM (n = 8) 

mice. Data show mean tumor volume ± SD and were analyzed with a two-way ANOVA with 

Bonferroni corrections. (D) The rate constant k (mm/week) of each exponential growth curve was 

determined. Data show mean k ± SD and were analyzed with an unpaired Student's t-test.  
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This showed that the percentages of the CD3+ cells, CD4+ Th cells and Tregs were not 

significantly different in tumors of Treg specific GARP knockout and littermate mice (Figure 

14A). Tumor volumes were used to calculate the absolute cell number/mm³ for each tumor. 

Again, no difference in immune cell population was seen between the tumors of Treg specific 

knockout and littermate mice (Figure 14B). 

 

Figure 14: Relative and absolute abundance of TILs in MCA-induced tumors. (A) CD3
+
, CD4

+
 

and Treg
+
 cell percentages measured in the flow cytometry analysis of the MCA-induced tumors of 

LM (n = 7) and KO (n = 3) mice. Data show mean cell percentages ± SD and were analyzed with 

two-way ANOVA with multiple comparisons and Bonferroni corrections. (B) Using the cell 

percentages and the cell numbers of the Hemavet analysis, the absolute cell number was 

calculated, which was then divided by the tumor volume to gain the absolute cell number per mm³. 

Data show mean ± SD (LM: n = 5; KO: n = 2). 

3. GARP deficient regulatory T cells show no compromised 

suppressive capacity  

The results of the MCA tumor model and the TILs did not show a significant difference 

between Treg specific GARP knockout and littermate mice. However, the tumor 

microenvironment is complex. Therefore, we opted for an in vivo homeostasis model to 

determine the difference between Tregs expressing and not expressing GARP in a tumor-

free setting. 

Splenocytes of Foxp3-Cre mice were sorted and this resulted in 6105.50   CD4+ Th cells and 
6101.00   wild-type Tregs. Sorting of splenocytes of Foxp3 specific GARP knockout mice 

resulted in 6107.00  CD4+ Th cells and 6101.00  Tregs lacking GARP. The cells were 

injected in three groups of NSG mice. The first group was injected with CD4+ Th cells and it 

was expected that CD4+ Th cells without Tregs would proliferate without regulation. The 

second group received a combination of wild-type Tregs and CD4+ Th cells, in which the 

A) B) 



 

42 

Tregs were supposed to control the proliferation of the CD4+ Th cells. Since the third group of 

mice was injected with a combination of CD4+ Th cells and Tregs lacking GARP, it was 

hypothesized that the Tregs would be less suppressive resulting in more proliferation of the 

CD4+ Th cells. However, since Tregs also have other suppressive mechanisms, such as cell-

surface molecules and inhibitory cytokines, it was expected that CD4+ Th cells would 

proliferate less as compared to the first group.  

One week after injection of the cells in the NSG mice, blood samples were taken and spleens 

were isolated to determine the absolute CD4+ Th and Tregs cell numbers (Figure 15). In the 

spleen, absolute cell numbers show that the CD4+ Th cells injected in combination with Tregs 

expressing GARP have significantly less proliferative capacity as compared to CD4+ Th cells 

that were injected alone (p < 0.001; Figure 15A). The significant difference in CD4+ Th cell 

numbers was not found in the blood samples (Figure 15B). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When comparing the CD4+ Th cell numbers in the spleens of mice injected with CD4+ Th 

cells alone or with a combination of CD4+ Th cells and Tregs not expressing GARP, a 

significant difference was also found in that CD4+ Th cell numbers were significantly lower in 

B) 

Figure 15: Absolute cell numbers of CD4
+
 Th cells and Tregs (A) in spleen and (B) in blood of 

NSG mice injected with CD4
+
 Th cells and/or Tregs. (A) Absolute cell numbers of the CD4

+
 Th 

and Treg cell populations in the spleen were calculated with the cell percentages acquired from the 

flow cytometry analysis and with the cell numbers from the Hemavet analysis. (B) Absolute cell 

numbers in the blood (V = 130 µL) were calculated with the cell percentages from the flow 

cytometry analysis and with the cell numbers from the Hemavet analysis with EDTA blood. Data 

show mean cell numbers ± SD and was analyzed with one-way ANOVA with multiple comparisons 

and Tukey posthoc tests. Each group consists of n = 4. Asterisks show significant differences  

(*** p < 0.001). 

A) 



 

43 

mice injected with CD4+ Th cells and Tregs knockout for GARP as compared to the group 

that received only CD4+ Th cells (p < 0.001; Figure 15A). 

No difference was found between the second and third group, which were injected with wild-

type Tregs and Tregs not expressing GARP, since absolute CD4+ Th cell numbers in the 

spleen did not show a significant difference (Figure 15A). These results were in parallel with 

the absolute CD4+ Th cell numbers in the blood, in which again no difference was found 

(Figure 15B). 

Besides CD4+ Th cells, we also looked at Treg cell numbers. This showed that Tregs were 

present in the spleens of the three groups of injected mice and that there were no significant 

differences in absolute Treg cell numbers (Figure 15A). 

The results of the MCA model and the in vivo homeostasis model suggest that GARP 

expressed on Tregs does not contribute to the suppressive activity of Tregs in the regulation 

of the CD4+ Th cell population. 

To confirm the flow cytometry results of the CD4+ Th cell numbers present in the spleen, an 

immunofluorescent staining was performed on spleen sections (Figure 16). The mean CD4 

positive signal revealed no significant difference between the mice receiving only CD4+ Th 

cells and the mice receiving a combination of CD4+ Th cells and Tregs expressing GARP. In 

contrast, CD4+ Th cell numbers in mice injected with CD4+ Th cells were significantly higher 

when compared to the cell numbers of mice treated with CD4+ Th cells and Tregs lacking 

GARP (p < 0.05). Hence, these results oppose the hypothesis and the flow cytometry 

analysis. 
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A) 

Figure 16: Immunofluorescence microscopy on spleens isolated from NSG mice injected 

with CD4
+
 Th cells and/or Tregs. (A) Fluorescence images (20x magnification) of the CD4 

staining of spleen sections of mice receiving CD4
+
 Th cells (i), CD4

+
 Th cells and Tregs 

expressing GARP (ii) and CD4
+
 Th cells and Tregs knockout for GARP (iii). CD4

+
 Th cells were 

stained with anti-mouse CD4-PE (clone GK1.5). The secondary antibody was anti-rat IgG-PE 

(clone Poly4054). (B) Five pictures were taken and analyzed by two individuals who were 

blinded to avoid bias. Data were pooled and show mean CD4 positive signal ± SD and were 

analyzed with a one-way ANOVA with multiple comparisons and Tukey posthoc tests. Asterisks 

show significant differences (* p < 0.05). 

(i) (ii) (iii) 

B) 
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Chapter 2 - Role of GARP on endothelial cells in cancer 

Next to the role of GARP on Tregs, we also wanted to determine the role of endothelial 

GARP in cancer, since Carambia et al. reported that the LSECs of the liver, which express 

GARP on their cell surface, induce naïve T cells to become Tregs in a TGF-β dependent 

manner (Carambia et al., 2014). Besides this, Hahn et al. reported that sGARP also has a 

regulatory impact on the CD4+ Th cell population (Hahn et al., 2013, 2016). Hence, it might 

be possible that endothelial GARP also contributes to immune regulation and thus to the 

promotion of tumor development.  

1. Genotyping of Tie2  mice 

To study the role of endothelial GARP in cancer, we first needed to genotype Tie2 specific 

GARP knockout mice. The same PCR protocol was used as for genotyping the LoxP sites in 

the Foxp3 specific GARP knockout and littermate mice.   

The presence of the Cre recombinase identifies the mouse as a knockout. The DNA 

fragment of Cre is at 450 bp (Figure 17). A DNA fragment of 230 bp is also present. This 

DNA is derived from internal control primers. Littermate mice only show a band at 230 bp. 

 

 

 

 

2. Specific GARP knockout mice develop significant smaller MC38 

tumors when compared to littermate mice 

MC38 cells were s.c. injected into the flank of endothelial specific GARP knockout (n = 5) 

and littermate (n = 7) mice. Figure 18 shows the evolution of the tumors throughout the 

experiment. Tumors started to develop two to seven days post-injection.  

The tumor volumes of littermate mice can be divided into three phases. In the first phase, 

tumors increased until day 14, on which tumors had a mean volume of 325.82 ± 158.05 mm³. 

During the second phase, from day 14 until day 21, tumors decreased again to 262.94 ± 

450 bp 
230 bp 

1 2 + - mQ 

Figure 17: Genotypic analysis of gDNA from transgenic mice. Presence of Cre is measured at 

450 bp. Lane 2 is Cre positive. Lane 1 does not have the Cre gene. Positive (+),  negative (-) 

controls are included together with mQ. Positive control is derived from a mouse with known 

expression of Cre, while the negative control was from a C57BL6 mouse not expressing Cre. 
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199.64 mm³. The last phase was characterized by tumor growth until the end of the 

experiment on day 40. Tumors had a final mean volume of 804.24 ± 692.12 mm³. Two of the 

seven littermate mice were able to reject the tumor on days 14 and 19, respectively. 

A similar first stage was also observed in knockout mice, since tumors continued to grow 

until day 16 and reached a mean volume of 254.49 ± 120.14 mm³. However, the second 

phase was not characterized by tumor growth, but by a decrease in volume. Two out of five 

knockout mice also rejected their tumor on day 16. Three and five days later, on days 19 and 

21, two other mice had undetectable tumors. So, in total, four out of five EC specific GARP 

knockout mice were able to reject the tumor. Only one knockout mouse could not. The tumor 

volume of that mouse remained steady-state until day 35 and was then followed by an 

increase in volume. 

On day 33, a significant difference in the mean tumor volume was found between endothelial 

specific GARP knockout and littermate mice (p < 0.05) when the average tumor volume in 

knockout mice was 57.61 ± 109.42 mm³ and in littermate mice 557.85 ± 449.24 mm³. This 

significant difference remained until the end of the experiment. Therefore, these results show 

that endothelial specific GARP knockout mice were significantly better protected against the 

development of MC38 tumors when compared to littermate mice. 

 

Figure 18: Development of MC38 tumors in endothelial specific GARP knockout and 

littermate mice. A) Individual graphs of tumor volumes of endothelial specific GARP KO (n = 5) 

and LM (n = 7) mice. B) Data represent mean tumor volumes ± SD. Significant differences are 

shown with asterisks: * p < 0.05, ** p < 0.01, *** p < 0.001. Data were analyzed with two-way 

ANOVA with multiple comparisons and Bonferroni correction. 

 

B) A) 
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Chapter 3 - Role of GARP on endothelial cells in angiogenesis 

In situations, such as wound repair and angiogenesis, a temporarily shortage in TGF-β might 

occur. ECs might represent important storage sites that are able to compensate for the 

higher demand of TGF-β. To address this, different in vivo assays were performed, such as a 

wound healing and matrigel plug assay in endothelial specific GARP knockout mice and 

littermate mice.  

1. Endothelial specific GARP knockout mice do not show a 

difference in blood vessel formation in the matrigel plug when 

compared to littermate mice  

The matrigel plug assay is a known model to study angiogenesis. VEGF and bFGF present 

in the matrigel plug will recruit ECs, which form blood vessels in the matrigel plug. To test 

whether endothelial GARP plays a role in the formation of vasculature, matrigel sections 

were analyzed by measuring VWF and CD31. Both are markers for the detection of ECs. 

Fluorescent images illustrate that both VWF and CD31 were present throughout the matrigel 

plug sections (Figure 19). However, the observed CD31 signal was higher at the edges of 

the sections when compared to the center of most of the sections, while the VWF signal was 

detected at both the edges and the center. Also, the CD31 signal was more continuous when 

compared to the VWF signal.  

After analysis of the microscope images, it was seen that matrigel plugs formed in littermate 

and knockout mice were not significantly different in fluorescent VWF and CD31 signals and 

thus in blood vessel density (Figure 19). 

2. Endothelial specific GARP knockout mice  do not show a 

difference in wound healing when compared to littermate mice  

Another method to study angiogenesis in a more physiological and in vivo context is via a 

wound healing model. The skin on the back of endothelial specific GARP knockout mice and 

littermates was surgically removed and regrowth of the skin was measured.  

In Figure 20, the dorsal wounds of endothelial specific GARP knockout and littermate mice 

were compared. Wound size gradually declined in littermate mice from 100 ± 24% on day 

zero to 32 ± 15% on day eight, compared to a decrease of 100 ± 19% on day zero to 26 ± 

12% on day eight for knockout mice respectively. Thus, no significant difference was found 

on any of the days in the eight day follow-up period between knockout and littermate mice. 

Besides the measurement of wound closure, blood vessels were also detected in the wound 

area of both knockout and littermate mice by using a staining for VWF (Figure 21). Healthy 

skin that was not injured during the wound healing assay was identified by the presence of 

hair follicles. In newly formed skin, hair follicles were not yet present.  
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(i) (ii) (iii) 

(i) (ii) (iii) 

C) D) 

Figure 19: Immunofluorescence staining on matrigel plugs of endothelial GARP specific 

knockout and littermate mice. (A+B) Fluorescent VWF (A) and CD31 (B) staining and analysis on 

cryosections of the center (i) and the edges (ii, iii) of a matrigel plug of a endothelial GARP specific KO 

mouse. A) Sections were stained with the primary anti-human VWF Ab and anti-rabbit AF555 as 

secondary Ab. B) Sections were stained with the anti-CD31 Ab and the secondary Ab anti-rabbit 

AF555. DNA was stained with DAPI (blue). Both CD31 and VWF emit a red fluorescent signal.  

(C) Analysis of five images of sections stained with VWF. (D) Analysis of four images of sections 

stained with CD31. Data show mean fluorescent signal ± SD and were analyzed with an unpaired 

Student's t-test. 
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Figure 20: Wound size (%) of dorsal wounds in endothelial specific GARP knockout and 

littermate mice. (A) Pictures of dorsal wounds in endothelial specific GARP KO and LM mice. 

Pictures were taken every other day in a period of eight days. (B) Wound size was calculated as 

the surface area relative to the surface area to the silicone ring. Mean surface areas of day zero 

were considered as 100% in order to compare wound sizes between mice and days. Specific 

GARP KO mice (n = 7) were compared to LM mice (n = 7). Data represent mean wound size ± SD 

and were analyzed with two-way ANOVA with multiple comparisons and Bonferroni correction.  

A) 

B) 
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Figure 21: Immunohistochemistry on newly formed skin tissue in the dorsal wounds of endothelial specific GARP knockout and littermate mice.  

(A) Skin section of a LM mouse stained with anti-human VWF and VIP HRP substrate. VWF positive cells are purple, DNA was stained with methyl green 

(magnification 1.25x). Hair follicles are found in the ovals. (B) Detail of the wound area from (A) (magnification  5x, rectangle). Arrows indicate the newly formed 

vessels. (C) Skin section of a KO mouse stained with anti-human VWF and VIP HRP substrate (magnification 1.25x). Hair follicles are located in the ovals.  

(D) Detail of the wound area from (C) (magnification 5x). Arrows indicate the newly formed vessels. 
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Part IV: Discussion & conclusions 
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TGF-β is an important cytokine regulating several processes in the body. Amongst other 

functions, it has a key role in maintaining the delicate balance between immunity and 

immunological tolerance. In this perspective, inhibition of it can lead to the development of 

autoimmune diseases. Next to this, mutations in the TGF-β pathway can induce cancer or 

defective angiogenesis. Interestingly, latent TGF-β is bound to GARP that is expressed on 

Tregs and ECs, cell types that are involved in development of certain tumors and 

angiogenesis, respectively. Hence, we wanted to investigate the role of GARP on Tregs and 

ECs in the development of cancer and the formation of blood vessels. 

Tregs use, next to soluble and membrane-bound factors, TGF-β in order to regulate and 

suppress autoreactive CD4+ T cells. To test the role of GARP expressed on Tregs in these 

inhibitory activities, we set up the MCA model and induced fibrosarcomas in the hind legs of 

Treg specific GARP knockout and littermate mice. In some cancers, it is known that Tregs 

are attracted to the tumor microenvironment and start to secrete TGF-β in order to inhibit 

other immune cells. We expected that, due to a possible difference in TGF-β levels, tumor 

onset and/or development would be impacted in knockout as compared to littermate mice. 

Betts et al. reported that 70 to 80% of the MCA-injected mice had a fibrosarcoma by week 29 

(Betts et al., 2007). In line with these findings, 80% of littermate mice in our hands developed 

a tumor by week 27. In contrast, only 40% of the MCA treated Treg specific GARP knockout 

mice had a tumor 27 weeks post-injection.  

The first tumor of a littermate mouse was seen in the 10th week of the experiment, which is 

in parallel with the reported 12 weeks after MCA injection (Betts et al., 2007). The first tumor 

in a knockout mouse was detected in week 18 of the experiment. This suggested that tumors 

in knockout mice developed later as compared to littermate mice. However, the Kaplan-Meier 

curve, which determined the number of weeks a mice remained tumor-free, was not able to 

confirm this observation, since the difference was insignificant. Next to this, no significant 

difference was found in the tumor growth rate k between tumors of knockout and littermate 

mice.  

These results do not confirm our hypothesis that tumors in knockout mice would develop 

differently. However, the experiment has not yet come to an end and mice will be followed for 

another 20 weeks. In those weeks, other tumors may develop in both littermate and knockout 

mice, although we think that we have reached the top-level of tumor development in 

littermate mice, since already 80% have a tumor.  

Next to determining tumor incidence and onset, we also identified the TILs present in the 

tumor to examine if a difference in tumor immune response could be detected between 

tumors of littermate and Treg specific GARP knockout mice. It was already shown that MCA 

tumors are infiltrated by Tregs (Betts et al., 2007; Hindley et al., 2011).  
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We could confirm Treg infiltration in the tumors of both knockout and littermate mice, but to a 

lower extent when compared to the study of Betts. They reported Treg percentages present 

in the CD4+ T cell population in the tumor between 40% and 50%, while we see much lower 

Treg levels present in the CD4+ cell population, ranging from 19 ± 15% in littermate mice to 

22 ± 8% in knockout mice.  

We are currently not able to explain this discrepancy in cell percentages between our results 

and the data from Betts and Hindley. Including more mice in new experiments could give 

more clarity, since we were only able to report on the TILs in the tumors of three Treg 

specific GARP knockout mice. This results in difficulties when comparing littermate and 

knockout mice and thus in making solid conclusions about immune cell infiltration. 

Also, our hypothesis stated that the lack of GARP on Tregs would cause a drop in TGF-β 

levels in the tumor microenvironment. We did not look into that during this thesis, but it might 

be a good idea to try to find out whether this is indeed the case in Treg specific GARP 

knockout mice. Measuring levels of active TGF-β could be done by measuring the 

phosphorylation level of the Smad transcription factors, which are phosphorylated after 

binding of active TGF-β to its receptor (Stockis et al., 2009a).  

The puzzling data obtained from the MCA model led us to the direct assessment of the 

suppressive capacities of Tregs expressing GARP and Tregs not expressing GARP in an in 

vivo homeostasis model performed in NSG mice. The model would tell us, without the 

complexity of tumors, whether a difference can be observed between the two types of Tregs. 

Results showed a significant increase of absolute CD4+ Th cells in mice injected with only 

CD4+ Th cells when compared to mice receiving a combination of Tregs and CD4+ Th cells. 

These results clearly show the effect of the presence of Tregs on the proliferative capacity of 

the CD4+ Th cells.  

In parallel with the MCA tumor model, we did not find a change in the suppressive capacity of 

the two types of Tregs in the cell numbers retrieved from the spleen. CD4+ Th cells did not 

differ in knockout and littermate mice. Treg numbers were also similar, which means that the 

absence of GARP has no influence on the functionality of the Tregs and that Tregs are able 

to suppress the CD4+ Th cell population independently of GARP.  

We also tried to confirm the flow cytometry analysis of the spleen by performing an 

immunofluorescence assay on spleen sections, but we were unable to reproduce the flow 

cytometry results. This might be attributed to the analysis of the fluorescent images. Flow 

cytometry is more sensitive as compared to immunofluorescent staining, since single cells 

are detected.  
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Our data from the in vivo homeostasis model are in parallel with previous assays performed 

in vitro on T effector proliferation with Tregs lacking GARP and wild-type Tregs. Both types of 

Tregs were equally suppressive (Edwards et al., 2013). It was shown, in another in vivo 

homeostasis model, that Tregs are dependent on TGF-β, but that they do not have to secrete 

it themselves in order to be suppressive (Fahlén et al., 2005). Therefore, it might be possible 

in our model that Tregs expressing and not expressing GARP do not use TGF-β bound to 

GARP in order to suppress. 

The in vitro study of Edwards et al. also showed that Tregs without GARP were no longer 

able to induce the differentiation from CD4+ Th cells into Tregs (Edwards et al., 2013). 

Considering the Treg population of our in vivo model, an equal number of Tregs in the spleen 

was found in the three groups of mice. This probably reflects that, in vivo, Tregs without 

GARP were still able to regulate the differentiation of CD4+ Th cells into Tregs, as could the 

wild-type Tregs. We also detected Tregs in mice injected with CD4+ Th cells only. These 

Tregs were probably induced from CD4+ Th cells without TGF-β derived from Tregs. They 

reached cell numbers that were as high as in the mice injected with Tregs. However, these 

induced Tregs were not able to suppress the proliferation of the CD4+ Th cells. An 

explanation is lacking, but the time needed for the differentiation of Tregs might be too long 

to stop the proliferation of the injected CD4+ Th cells. 

We also tested the role of GARP on ECs in cancer. Carambia et al. reported the expression 

of GARP on liver LSECs, which contributed to the differentiation of peripheral T cells into 

induced Tregs via TGF-β released from the GARP/LAP complex (Carambia et al., 2014). 

Next to this, sGARP derived from Tregs was shown to have immunoregulatory functions on 

naïve CD4+ T cells independent from Tregs (Hahn et al., 2013, 2016). Hence, GARP might 

also be shed from the EC surface and exhibit suppressive functions. 

Little is known about endothelial GARP in cancer development and therefore, a hypothesis 

was formulated in accordance to the data of Carambia et al. and Hahn et al. Since TGF-β 

bound to GARP might induce Tregs, we wanted to know whether the development of tumors, 

in which it is established that Tregs are involved, differ in endothelial specific GARP knockout 

mice compared to littermate mice. Loss of GARP, and thus a possible reduction in bioactive 

TGF-β, could lead to less Tregs or Tregs that are less suppressive. To test this, we 

challenged endothelial specific GARP knockout and littermate mice with the MC38 tumor cell 

line. 

Overt tumors were detected in both knockout and littermate mice, which increased in volume 

during the first sixteen days of the experiment. Two out of seven littermate mice and four out 

of five knockout mice rejected the tumor. Tumors of the other littermate mice increased in 
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volume until the end of the experiment. This eventually resulted in a significant difference in 

tumor volumes between knockout and littermate mice from day 33 onwards.  

These interesting results could be explained in two ways. A first answer is already stated in 

our hypothesis. A lower level of active TGF-β, due to loss of GARP as receptor for latent 

TGF-β, can lead to less differentiation from CD4+ Th cells into Tregs and thus to a drop in the 

suppressive actions of Tregs on the immune cells that are attacking the cancer cells. 

Whether this is true is so far unknown, but recent research performed in platelet specific 

GARP knockout mice could shine a light on our hypothesis. Rachidi et al. have recently 

shown that significantly more platelet specific GARP knockout mice were able to reject MC38 

tumors when compared to wild-type mice. Tumors in wild-type mice increased in volume, 

because GARP mediated the activation of TGF-β. This caused, through the GARP/TGF-β 

complex, suppression of the antitumor immunity. Absence of GARP resulted in significantly 

lower levels of active TGF-β and thus in effective antitumor immunity. On top of these results, 

knockout mice had less Tregs in their tumors (Rachidi et al., 2017). 

The results of the platelet specific GARP knockout mice might possibly be applicable to 

explain the rejection of tumors in endothelial specific GARP knockout mice. However, we 

have not yet evidence that this is true and it will be noteworthy to also check this in our 

experimental setting by measuring TGF-β levels and the number of Tregs.  

A second possibility might that, because of the endothelial specific GARP knockout and thus 

a possible drop in TGF-β  levels, blood vessels are malformed. It is already known that  

TGF-β is not only involved in immunity, but also in blood vessel formation through VEGF and 

that mice deficient in TGF-β show several defects (Ferrari et al., 2009). In general, we do not 

think that the loss of the endothelial GARP/TGF-β complex induces severe problems. In 

addition, since all mice developed first stage tumors, and tumors need newly formed blood 

vessels when they reach a volume of more than two cubic millimeters (Nishida et al., 2006), 

we do not think that a problem with blood vessel formation is the cause of the difference 

between knockout and littermate mice. Arguments contributing to this conclusion on the 

MC38 model come from the wound healing and matrigel plug assays that we performed in 

this study. Both assays did not reveal significant differences between endothelial specific 

GARP knockout and littermate mice.  

However, we need to be careful in drawing conclusions from these assays. First of all, only a 

small number of mice was included. Consequently, statistical power was low.  

Second, we have some concerns regarding the matrigel plug assay. Although it is the 

method of choice for the in vivo analysis of angiogenesis, we encountered some difficulties. 

Matrigel plugs show high heterogeneity in volume. Despite injecting the same volume, plugs 

vary greatly in the three dimensional plane. This might lead to great variability in the analysis 
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and can only be overcome by using averaged data of different sections of the same matrigel 

plug. Next to immunofluorescent staining, it might be interesting to use reverse transcription-

quantitative PCR to quantitatively evaluate the amount of endothelium formed in the matrigel 

plug. This might avoid the variability between the matrigel plugs and provide a more accurate 

quantification (Coltrini et al., 2013).  

Finally, we used both a VWF and a CD31 staining to visualize the blood vessels. Sections 

stained with VWF mostly showed signal in the center and at the edges, while the sections 

stained with CD31 often had no signal at the center. Therefore, five VWF images were 

analyzed per mouse as compared to four of the CD31 staining. Although this did not result in 

a difference in mean fluorescent signal when comparing both markers in the assay, CD31 is 

known as the better marker, since VWF is not a specific EC marker. It is also present in 

platelets. Next to this, presence of VWF in blood vessels depends on the type of organ and 

the type of blood vessel (Randi et al., 2013; Yuan et al., 2016).  

These models show that endothelial GARP is not involved in angiogenesis. Other models 

should be used in the future to confirm this conclusion. Examples could be studying the 

blood vessel formation in the postnatal retina or in mouse ears, since the ear and eye are 

highly vascularized. An advantage of such assays is that mice would not need to be 

manipulated as in the above described assays (Stahl et al., 2010; Starke et al., 2011). 

Three major conclusions can be drawn from this study. First, no significant difference in 

tumor onset and incidence was found between Treg specific GARP knockout and littermate 

mice. This might be explained by the functionality of the Tregs, since Tregs lacking GARP 

were as suppressive when compared to wild-type Tregs: no differences were found in TILs 

present in the MCA-induced tumors or in the CD4+ Th cell numbers in mice injected with a 

combination of CD4+ Th cells and Tregs that did or did not express GARP in the in vivo 

homeostasis model (Figures 22A, 22B). Second, results from the MC38 model indicate that 

endothelial GARP seems to have an influence on cancer development, as significantly more 

endothelial specific GARP knockout mice were able to reject subcutaneous tumors, while 

most of the littermates could not (Figures 22C, 22D). There is no doubt that these date are 

highly promising. That is why the experiments will be repeated and elaborated more 

thoroughly in order to unravel the underlying mechanism. Finally, blood vessel formation was 

not defective in endothelial specific GARP knockout mice as shown in our preliminary 

experiments. 
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Figure 22: GARP on regulatory T (A, B) and endothelial cells (C, D) in cancer. (A, B) Tregs expressing GARP (A) and Tregs not expressing GARP 

(B) are not different in their suppression of CD4
+
 T effector cells. No difference was found in TILs between MCA tumors isolated from Treg specific GARP 

KO and LM mice. Also, tumor onset and growth kinetics were not significantly different. (C, D) Mice expressing GARP (C) on ECs had significantly bigger 

tumors, when compared to endothelial specific KO mice (D). 

A) B) 

D) C) 
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Appendix A - Risk analysis 

The Laboratory for Thrombosis Research (Latron) at KU Leuven Kulak has a containment 

level L1. During experiments, a lab coat was always worn and products were carefully 

handled to avoid spatters and aerosols.  

Gloves were worn when irritating or potentially carcinogenic products were used, such as 

Gelgreen, methyl green, acetone (E3), sodium hydroxide (E3), boric acid (E3), TBE (E4) and 

hydrogen peroxide (E4). Hydrogen peroxide was collected in a hydrogen peroxide waste 

container, VIP and acetone in a special waste container (category 5), methyl green residues 

in a halogenated organic waste container (category 4) and TBE residues in a non-

halogenated organic waste container (category 3). 

Special precautions were taken when MCA (E4) was used, since it is a strong carcinogenic 

substance. A mask, disposable lab coat, double gloves (with the first pair secured with tape) 

were worn. The MCA suspension was prepared under a hood. The hood where the 

experiments were carried out was lined with tape and covered with towel. All waste, needles, 

excess MCA, pipettes, lab coats and gloves were collected in the appropriate waste 

container. The bin was closed off and stored after the experiment. 

Eukaryotic cell lines were handled under a laminar flow. Gloves and lab coat were always 

worn and especially when working with tryptan blue, which is a carcinogen. Work surfaces 

were regularly disinfected with servanol. 

Mice experiments were performed during this master's thesis. The mice are housed in an A1 

animalium. When entering the animalium, a special lab coat and gloves were worn to avoid 

scratch and bite wounds. Injections were performed according to the correct protocols of the 

Institutional Animal Care and Use Committee of KU Leuven (Belgium). Needles were thrown 

away in the appropriate waste containers and recapping of needles was forbidden. 

Sacrificing of the animals was done by administering an overdose of 5% isoflurane (E3) in 

O2. Mice were laid in an anesthetic box connected to a waste gas scavenging system in 

order to contain the isoflurane and avoid the presence of isoflurane in the surroundings. Mice 

were killed by cervical dislocation and mouse carcasses were stored in a freezer until the 

specialized company Rendac collected them. 
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Appendix B - Breeding scheme 
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Figure 23: Schematic representation of the generation of Tie2 specific GARP KO mice and 

controls. KO and LM mice were used in the experiments. Breeding scheme is identical for Foxp3 

mice.  
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