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Abstract

Ecosystems are often characterized by their diversity. The classic approach to evaluate diversity is

to assess the genetic composition of a community. However, there is a broad level of diversity at an

even finer scale, the phenotypic diversity. In literature, there is a growing interest in understanding

how phenotypic diversity is manifesting itself and what its potential importance might be in both

natural and engineered microbial ecosystems. This interest arises from the growing awareness that

bacterial heterogeneity is an essential trait for many biological processes. Currently, our knowledge

regarding factors that influence this phenotypic diversity is limited.

In this dissertation we have focused on the influence of microbial interactions on phenotypic diver-

sity. Our results show that interactions between bacteria can lead to an adjustment of the individual

phenotypic diversities of the interacting organisms. During this study we evaluated two techniques,

flow cytometry, which had previously been used for phenotypic diversity estimation, and Raman

spectroscopy, which had never been used for this purpose. Flow cytometry is a fast technique

that gives information on cell-morphology and specific cell properties for which has been stained.

Raman spectroscopy is a slower technique that gives a more holistic view on the molecular pheno-

typic traits. The potential of Raman spectroscopy as a tool to characterize phenotypic community

structure was assessed. In addition, we evaluated its added value compared to the flow cytometric

approach.

Furthermore, this study has been a part of research regarding development of the tools necessary

for characterizing the community composition in synthetic ecology experiments. We have demon-

strated that the experimental set-up and tools which were used during this study are suitable for

studying both biotic and abiotic factors that might influence phenotypic community structure. This

way we provided an experimental framework for further testing of ecological hypotheses regarding

phenotypic diversity and microbial interactions.





Samenvatting

Ecosystemen worden doorgaans gekarakteriseerd aan de hand van hun diversiteit. Conventioneel

wordt de diversiteit bepaald op basis van de taxonomische samenstelling van de gemeenschap.

Naast taxonomische diversiteit is er echter nog een significante diversiteit binnen isogene popu-

laties, namelijk de fenotypische diversiteit. In wetenschappelijke literatuur is er recentelijk een

groeiende interesse in hoe deze fenotypische diversiteit tot stand komt en wat het belang van

deze fenotypische diversiteit is in zowel natuurlijke als man-made ecosystemen. Deze interesse

is ontstaan vanuit het groeiende besef dat bacteriële heterogeniteit van essentieel belang is in heel

wat biologische processen. Desondanks is onze huidige kennis met betrekking tot de factoren die

fenotypische diversiteit beı̈nvloeden is beperkt.

In deze masterthesis werd het effect van microbiële interacties op de fenotypische diversiteit van

de interagerende bacteriën geëvalueerd. Onze resultaten tonen aan dat interacties tussen bacteriën

kunnen leiden tot een aanpassing van hun individuele fenotypische diversiteiten. In deze studie

werd gebruik gemaakt van twee technieken: flow cytometrie, een techniek die reeds gebruikt werd

voor het inschatten van fenotypische diversiteit, en Raman spectroscopie, een techniek die nog niet

gebruikt werd voor deze toepassing. Flow cytometrie is een snelle techniek die informatie geeft

over cel-morfologie en specifieke eigenschappen waarvoor gestaind werd. Raman spectroscopie is

een tragere techniek die een vollediger beeld van het moleculair fenotype kan geven. De mogelijk-

heid om Raman spectroscopie te gebruiken als een tool om fenotypische diversiteit in microbiële

gemeenschappen te karakteriseren werd geëvalueerd. Bovendien werd de toegevoegde waarde in

vergelijking met de flow cytometrie methodologie geëvalueerd.

Verder werd in deze studie ook nog actief meegewerkt aan de ontwikkeling van tools om de samen-

stelling van microbiële gemeenschappen in synthetische ecosystemen te achterhalen. Met dit

onderzoek werd aangetoond dat de experimentele set-up en tools die gebruikt werden doorheen

deze masterthesis geschikt zijn voor het bestuderen van zowel biotische als abiotische factoren die

mogelijks de fenotypische diversiteit van microbiële gemeenschappen kunnen beı̈nvloeden. Op

deze manier werd een experimenteel kader ontworpen dewelke kan gebruikt worden voor verder

onderzoek naar fenotypische diversiteit en microbiële interacties.





Preface

Communities are often characterised and compared based on their diversity. When evaluating this

diversity the classic approach is to evaluate the genetic composition of a community. However,

there is a broad level of diversity at an even finer scale, the phenotypic diversity. A phenotype is

a combination of all observable traits of an organism, and is assumed to be related to the func-

tionality of the organism. Recently, there is an interest in understanding how this level of bacterial

individuality is manifesting itself, which factors are influencing it and what its potential importance

in both natural and artificial ecosystems might be.

To gain insights in factors that are causing and influencing this phenotypic heterogeneity, a first ap-

proach is to study it in a fixed environment, where potential influencing factors are being carefully

controlled. These environments can be created through synthetic ecosystems. Sympatric bacterial

populations are populations that are present in the same environment and therefore encounter each

other on a regular basis, which implies they have the potential to interact. The goal of this study

was to evaluate whether microbial interactions between these sympatric bacterial populations can

lead to changes in phenotype, and at a broader scale, in phenotypic diversity of the community.



When we want to assess this fine scale diversity we need reliable tools to evaluate it. Since it

is a phenomenon that is occurring at the level of individual bacteria, we applied two single-cell

methods, flow cytometry and Raman spectroscopy. Both techniques give information regarding

phenotypical traits, yet they have very different approaches and thus result in different information.

When we want to filter out the relevant information from these analyses, we require a robust

computational data-analysis.



1
Literature study

1.1 Ecology of freshwater microbial communities

In nature, most organisms are not encountered as single cultures, but they are part of a larger asso-

ciation. A community is a naturally occurring group of organisms within a particular environment.

These organisms and their interactions make up a functional unit, which is called the ‘ecosystem’.

The ecosystem consists of the biome (the members) and the habitat (the environment), and is often

characterized by its diversity [1].

The two components of diversity are richness and evenness. Richness indicates how many species

are present, while evenness gives information on the relative abundances of the species. A low

evenness indicates that a few species are dominating the system. Diversity influences the ecosys-

tem functioning, but the exact mechanisms are unknown. Current theories propose two mecha-

nisms. The first is that different species can use slightly different resources and therefore a more

species-rich community results in a higher overall productivity of the ecosystem. Secondly, there is

variation in the effect an individual species can have on ecosystem functioning. Some species will

influence the community functionality more than others [2]. Systems with higher evenness often

have higher functionality and resistance to certain types of disturbances [3]. It should be noted that

diversity is not limited to species diversity alone, there exists a range of genetic and phenotypic

diversity within single species [1].

1.1.1 Microbial interactions

Microbial interactions occur both between members of different species as well as between mem-

bers of the same species. The interactions result in the functioning and properties of the entire

community. When studying organisms in mixed cultures, the observed community dynamics are

often different from what would be expected when studying the different members in isolation. The
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understanding of the rules and principles that govern these dynamics and community-properties is

still limited. Therefore, understanding binary interactions is a necessary first step towards under-

standing the microbial community. However, observed dynamics in studies with more than two

genotypes can still differ from what would be expected based on known binary interactions [4].

Interactions might involve physical contact, such as gene exchange, or there might be a uni- or

bidirectional exchange of small chemicals, such as in case of metabolic interdependencies. Organ-

isms can also provide a function for other organisms, such as the degradation of antibiotics [5].

Interactions can be split up into two categories, the active and the passive interactions. One organ-

ism might be producing some waste product, which can potentially be used as a food source for a

second organism. This interaction is passive since the first organism is not intentionally promoting

the growth of the second organism. In case an organism is intentionally investing resources in his

metabolic process or behavior in order to influence another organism, the interaction is active [4].

Classification of the interactions can also be based on the resulting effect for the interacting or-

ganisms. The interaction might be beneficial, neutral or detrimental for the involved organisms.

Depending on this, the interactions are indicated with different terms. ‘Commensalistic’ inter-

actions are interactions where one organism is benefiting from the relationship, while the other

neither has an advantage nor a disadvantage. An example of a commensalistic interaction can be

cross-feeding of one organisms by the waste products of another organism, or depletion of an an-

tibiotic by an antibiotic-degrading organism, which then allows non-resistant organisms to survive.

‘Mutualism’ describes relationships where two organisms are both benefiting. For example, two

organisms might both actively invest energy in their metabolisms in order to produce products that

can be used by their partner [4]. Mutualistic interactions can be disturbed by so-called ‘cheaters’.

These are individuals that make use of the benefits of the interactions in the community, but do

not contribute by producing resources themselves. This might lead to a breakdown of the mutual-

istic interaction [6]. The cooperating organisms can protect their interaction with different types of

anti-cheating mechanisms: targeted benefit and targeted punishment. In targeted benefit the coop-

erating organisms get access to benefits, which might vary according to their contributions to the

interaction. In the targeted punishment the cooperative organisms will actively punish the cheaters,

for example by producing a toxin that does not affect the cooperative organisms themselves [7].

A negative kind of interaction is competition. Exploitative competition, which is competition for

resources and space, can potentially have an important influence on the shape of the community,

mostly by causing selective extinction. This is referred to as the ‘competitive exclusion principle’,

which states that two species which are competing for the same limiting resource can not exist
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together. In other words, there is a limit on how many species can exist in the community before a

certain niche becomes saturated. In some cases species evolve towards different niches in order to

coexist, this is called ‘divergent co-evolution’. Niche differentiation can occur in space and time,

but most often manifests itself as a morphological differentiation [8]. Competition can be a barrier

for new organisms to enter the system [9].

Not only the community members decide the interactions, the environment also has an influence.

For example, in a homogeneous environment it is more likely that competition will lead to extinc-

tion of certain members in comparison to a more heterogeneous environment [8]. Sometimes there

can be a stable coexistence of similar species because of spatial organization of connections and

interactions [6]. The chemical composition of the environment also has an influence on the inter-

actions. Interactions can be induced or changed, not by changing the interacting microorganisms

themselves, but by changing their growing medium [5].

1.1.2 Freshwater ecosystems

Bacterial communities have relatively low cell densities in natural freshwater environments, typi-

cally 105-106 cells/mL [10]. Nevertheless, they are important members of lake ecosystems, where

they play a key role in the transformation and cycling of biologically active elements. Still, the

bacterial taxa that play the most prominent role in these ecosystems remain relatively unknown [11].

The current knowledge on aquatic microbial diversity is mainly based on the analysis of 16S rRNA

gene sequences that were produced by high-throughput sequencing of environmental DNA or on

the knowledge derived from databases that were established using rich solid media [12]. Despite

that the bacterial community present in lakes can vary enormously between different lakes, there

are some groups of freshwater bacteria who are widely distributed [13]. Betaproteobacteria are the

most abundant bacteria in the upper water column of lakes, especially the two genera Polynucle-

obacter and Limnohabitans. The class of Betaproteobacteria is split up into seven lineages: betI

to betVII. The betI lineage is further split up in two clades betIA and betIB, which is equivalent

to splitting it up in the genera Limnohabitans and Rhodoferax. Limnohabitans species are ubiqui-

tous in freshwater ecosystems and typically occur with high relative abundances, which makes it

an environmentally important group [11]. The genus Limnohabitans was only recently established,

in 2010 [14]. Phylogenetic analysis has revealed the presence of different tribes within the genus,

which are indicated as Lhab-A1, Lhab-A2, Lhab-A3 and Lhab-A4 [11]. However, some studies

have suggested other subdivisions of the genus [15].
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Within the genus of Limnohabitans, there is a high level of diversity, both morphologically and

physiologically. The large variability in cell sizes and morphologies is illustrated in Figure 1.1.

Cell sizes can be linked to differences in grazing pressures [16]. One of the factors that influence

the composition of the bacterioplankton in lakes is the trophic status, since this largely determines

the available niches and the composition of zooplankton that graze on the bacterioplankton [13].

Another important factor in shaping the community composition of bacteria in freshwater lakes is

pH. It is unknown whether pH directly influences the bacterial community or whether it indirectly

influences other growthfactors [17]. Limnohabitans species have shown a large diversity in pH-

preference, ranging from slightly acidic to alkaline waters, but with a more frequent preference for

alkaline habitats [18;19]. Since morphological and physiological differences indicate differences in

ecology, this observed diversity suggests that Limnohabitans might inhabit a wide variety of niches

in standing freshwater ecosystems [15], explaining why species of this genus are found so frequently

in different types of freshwater ecosystems [18]. The clear habitat preferences that have been found

for different Limnohabitans species indicate that their omnipresence cannot be explained by the

species to be ‘generalists’, but rather indicates a high level of specialization for different species [18].

Figure 1.1: Different sizes and morphologies of Limnohabitans isolates. The codes refer to identification

labels that were assigned to the isolates during the study of Kasalický et al.. The scale bar represents 2

µm [15].
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1.2 Testing of ecological theories with synthetic ecosystems

1.2.1 Synthetic ecosystems

Artificial communities, commonly referred to as ‘synthetic ecosystems’, are used to study micro-

bial ecosystems. Communities with the same key properties as a natural ecosystem of interest can

be created. A synthetic ecosystem consists of a selected set of species under specified conditions.

They have a reduced complexity in comparison to natural communities, which offers simplicity.

Next to their simplicity, also their controllability is an advantage [20]. These artificial ecosystems

can be used as a model to study particular processes and their influencing factors. Information

about structure, evolution and functioning of the microbial communities can be obtained [21]. How-

ever, these artificial ecosystems should not be seen as miniature versions of the actual ecosystem,

but rather as a way to test ecological theories to better understand the rules of nature and to answer

questions that are difficult to study directly in the field [22]. Researchers should be aware of the fact

that lab-observations do not always match the dynamics in natural systems exactly [23]. Synthetic

ecosystems allow to study organisms in mixed microbial communities rather than in pure cultures,

which might give unexpected insights since the behavior of an organism in a pure culture can be

different from its behavior in a mixed microbial community [20].

A specific set-up for synthetic ecosystems are co-cultures. The principle of such a system is that

two or more populations are grown together with some degree of contact between them [24]. These

systems can be used to cultivate organisms that are not easily monocultured because they need

the presence of certain other organisms [25]. They are also often used as tissue models for medical

applications such as drug testing or host-microbiome interaction studies [26]. Co-culture systems

appear in many different forms including gel encapsulated cells, Petri dishes and membrane sepa-

rated systems such as transwells (Figure 1.2) [24].

Figure 1.2: Transwell system for co-culturing. The basale and apicale phase are separated using a semi-

permeable membrane [24].
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Research based on synthetic ecosystems is sometimes criticized for being too simplistic because

the degree of complexity is much smaller in comparison to that of natural systems. This com-

plexity is determined by the researchers in stead of natural processes. The artificial nature of

these ecosystems is also criticized. Researchers have control over the inputs and constituents of

the system, such as environmental conditions and initial abundance of the organisms, which have

been shown to be important drivers for ecosystem structure and functioning. However, this low

complexity allows to exclude certain influencing factors or to assess only influencing factors of

interest, which is a necessity for testing ecological theories [22]. Once the experiment has started,

the dynamics that are observed are not created or directly controlled by the experimenter. And the

species which are combined to form these artificial ecosystems are mostly species that are found

together in nature [22]. Experiments in the full natural context would often be too complex to allow

clear conclusions [27]. Micro-organisms have ideal properties for synthetic ecology studies as they

have short generation times and small sizes. The short generation times allow to study processes

that are typically occurring over multiple generations, such as co-evolution, while the small sizes

make it practically possible to work with replicates [22].

1.2.2 Bottlenecks

When synthetic ecosystems are used to study fundamental principles of nature, there are some

difficulties. The change in community composition over time is often of interest. For example, one

wants to know which species will dominate the community after a certain period of time or under

certain conditions. A tool to evaluate this change in community composition is needed. Classically,

community composition is evaluated based on plate counting methods or molecular techniques.

However, these techniques have some drawbacks. They can be time consuming, which is not

feasible when one wants to follow up a change in community on relatively small time intervals.

Additionally, significant bias can be introduced in case cultivation-based methods are used [25].

Another difficulty is that molecular techniques are invasive, which implies that often only one

sample can be taken as most experimental set-ups are relatively small.

Another problem encountered when working with synthetic ecosystems is that the growth kinetics

of the individuals in the community is known for pure cultures, while it will most likely be different

in a mixed community. But this growth is mostly not known, nor is it easily determined [28].
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1.3 Phenotypes

The phenotype of an organisms refers to its observable traits. A phenotype is mostly defined as the

result of interaction between the genotype and the environment [29]. Over the years the concept of

phenotype has been expanded from morphological traits, to also ‘molecular phenotypic traits’, such

as protein contents and the mRNA levels of genes. The current definition of phenotype holds all

‘observable’ characteristics [30]. Different types of assays have become available to evaluate these

traits. These are called ‘phenotypic arrays’. Mostly they are focused on evaluating respirational or

growth characteristics of a certain species or community under different conditions (i.e. different

growing media, temperatures, etc.) [31].

There is a growing interest in the influence of phenotypic traits and phenotypic heterogeneity on

interactions, communities and ecosystems functions. In light of this, ‘phenotypic plasticity’ is

often of interest. Phenotypic plasticity is the ability of an organism to change its phenotype as an

adaptive response to a changing environment. This can relate to both changes in behaviour and in

morphology. A large plasticity indicates there can be large changes in phenotype in response to

the environment. Phenotypic plasticity has been reported to influence competition between species

and the possibility coexistence of different species related to this competition [32].

Phenotypic heterogeneity occurs in sympatric isogenic populations, i.e. isogenic populations

which coexist in a given habitat [33]. This heterogeneity is explained by a few processes. One of

those is that gene expression and other cellular processes are low rate processes regulated by small

molecules, which are present in small amounts in cells. These molecules are unevenly distributed

within the cell, and during the cell division they will be distributed unequally in both daughter

cells. This unequal distribution results in stochastic variation in cellular reactions and gene expres-

sion, which is called ‘biological noise’ [34]. Another factor that can cause heterogeneity at this level

are periodical changes in the cellular function, such as cell cycles or switches between different

metabolic processes [34]. Other factors, such as cell to cell interactions are also in play. Cells make

‘decisions’ regarding their gene expression, but it is very likely that these decisions are influenced

by other members of the population [34]. This diversity within isogenic populations can have impli-

cations on both functionality and survival. There can be a division of labour between phenotypes,

which increases overall productivity of the species [34]. Some phenotypes might be able to deal bet-

ter with a certain change in conditions. In this way the heterogeneity might allow subpopulations

of the species to persist during changing conditions, and thus increase the survival probability of

the species [35]. The discovery of this heterogeneity, which is by definition independent of genetics
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or environmental conditions, has led to a renewed view on microbial individuality [36].

Some new questions will need to be answered, such as how important this type of diversity is in

natural environments and whether this diversity is negligible in comparison to genetic diversity

and diversity caused by environmental gradients [34]. This level of diversity, has some of the same

key properties as genetic diversity, such as that it can offer resilience and functionality. However

there are also some fundamental differences. Phenotypes can not be depleted by continuously

changing environmental conditions, while genotypes can [34]. The disappearing phenotypes can be

replenished from other phenotypes of that genotype [34]. Division of labour between phenotypes

where one phenotype is providing something for others but does not receive anything in return is

possible, whereas this would not be possible for different genotypes [34].

1.4 Monitoring of microbial ecosystems

1.4.1 Bacterial growth and population density

Bacteria reproduce by binary fission. This means that each cell grows larger and then divides into

two smaller daughter cells, which then in their turn grow and divide. Provided that no mutations

occur during the cell division, the daughter cells are genetically identical to the original cell and

form isogenic populations [37]. The time it takes for a bacterial cell to divide, is called the generation

time. So each generation time, the amount of bacterial cells is doubled. These generation times

can differ from a few minutes to several hours [38]. For optimal growth certain nutritional and

physical factors, such as pH and temperature, must be met. Nutritional factors can be split up in

macro- and micro-nutrients and include amongst others nitrogen, phosphorus, carbon, sulphur and

water [39]. When growing bacteria in laboratory conditions, these nutritional factors are provided

via the growth medium. Certain environmental conditions can be simulated by choosing a growth

medium with specific limiting factors [40].

The Monod equation gives the empirical relationship between the specific growth rate (µ) and the

concentration of the substrate that is limiting for growth (S) (Equation 1.1). The specific growth

rate is the relative amount of cells that is produced per amount of cells that is present per time. The

equation has two empirical parameters: the maximum specific growth rate (µmax) and the affinity

constant (Ks). This affinity constant is the substrate concentration S when µ is half of µmax
[41].

µ = µmax
S

Ks + S
. (1.1)
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Bacterial growth is classically presented in a graph that shows time on the x-axis and the logarithm

of the number of cells on the y-axis (Figure 1.3). This curve can be divided into four phases:

the lag phase, the log or exponential phase, the stationary phase and the death or decline phase.

During the lag phase there is none or very slow growth because the organisms are adapting to their

culture conditions. In the log or exponential phase, the cells double at optimal growth rates. In

the stationary phase, cell numbers stabilize as the medium gets depleted and metabolites start to

accumulate. There is as much growth as there is death during this stationary phase. Finally, during

the death phase there is a net loss of viable cells [42]. Of course, this is a theoretical model, and in

practice several exceptions to this classic growth curve have been observed, such as growth curves

with two exponential phases, which are called ‘diauxic growth curves’ [43].

Figure 1.3: Typical shape of the bacterial growth curve. Four phases can be distinguished: lag phase, log

phase, stationary phase and death phase. A logarithmic scale is used on the y-axis since bacterial growth is

exponential [44].

The properties of cells are not constant during growth, size and shape of the cells change during

the different growth phases [45]. In other words, bacteria exhibit different phenotypes throughout

the population growth. This implies that mass increase and increase in cell density are not di-

rectly related. When growing conditions become unfavorable, a large surface-to-volume-ratio is

more feasible. And thus during the stationary phase, bacteria will be smaller and less spherical,

while the opposite will be true during the exponential phase [46]. Cell size increases during the lag

phase, reaches a maximum during the log phase, and eventually decreases again in the stationary

phase [47]. Also chemical composition of the cell, for example DNA content, is changing during

the growth process. Sometimes size and protein content of cells can remain constant during ex-

ponential growth, however they can also change because the medium in which they are growing

is changing over time, due to the use of nutritional compounds and the accumulation of metabo-

lites [29].
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1.4.2 Phenotypic community structure

Phenotypic diversity has only been partly explored in natural systems. One of the reasons for this

is that it is difficult to asses single species diversity within mixed communities [1]. Two laser-based

methods that are suitable for assessing phenotypes are flow cytometry and Raman spectroscopy.

1.4.2.1 Flow cytometry

Flow cytometry (FCM) is a laser-based technology that analyses single particles, usually cells, by

sending them through a beam of light by a fluid stream. The general set-up is given in Figure 1.4.

In order to be able to interrogate every particle separately, there is a fluidics system that transports

the particles through the laser beam one by one. This fluidics system consists of a stream of sheath

fluid that directs the sample stream to the center of the laser beam. This process is known as

‘hydrodynamic focusing’ [48].

Figure 1.4: General set-up of a flow cytometer. The sample stream is directed towards the laser by a stream

of sheath fluid. The particles of the sample are send through the laser beam one by one. Scattered light and

fluorescence are collected by a system of dichroic mirrors and photomultipliers [49].

Two types of light can be detected in the flow cytometer, that is scattered light and fluorescence.

While the particles pass through the beam, they will scatter light, which can be measured by

a detector in front of the light as forward scatter (FSC) and by one or several detectors to the

side as side scatter (SSC). Particles can also be stained with fluorescent stains prior to analysis.

These stains will be excited by the laser, which will cause them to emit fluorescent light. The

fluorescence intensity is proportional to the amount of stain that is bound to the particle, thus
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there is a stoichiometric staining [50]. The scattered and fluorescent light are collected by a system

of dichroic mirrors and photomultipliers [51]. In general, the scattered light provides information

about the basic characteristics of the cells (e.g. size, shape and surface properties). The fluorescent

data provides additional features which can be used to characterize the bacteria, distinguish the

bacteria from abiotic particles and indicate cell viability and vitality [52].

Depending on the fluorochrome that is used for staining, information about different cell character-

istics such as membrane integrity, intracellular pH and metabolic activity can be obtained [53]. The

multitude of available stains gives FCM its broad applications in the fields of industrial biotech-

nology, immunology, pharmaceutics, microbial ecological research, etc.. Flow cytometers that are

equipped with multiple lasers and detectors allow for assessing multiple parameters simultane-

ously [51]. However, when multiple fluorescent markers are used, optical crosstalk poses a signifi-

cant issue. Cross-talk or spill-over occurs when fluorochromes have overlapping emission spectra,

and thus the detector that is intended for one fluorochrome will also measure signals coming from

the other fluorochrome [54]. In some cases there is no need for staining because of autofluorescent

properties of certain components. Chlorophyll a, a pigment present in for example cyanobacteria,

emits a red fluorescence, and thus cyanobacteria can be detected without any staining [55]. Also

bacteria with fluorescent labels such as a gfp-label (green fluorescent protein) can be used as such.

An often used application of flow cytometry is live/dead staining. For this, mostly a combination

of SYBR green I (SG) and propidium iodide (PI) is used, however other options exist. Both

SG and PI bind to nucleic acids and thus stain DNA and RNA. SG can permeate into all cells,

which makes it a useful stain for total cell counts, while PI can only enter cells with a damaged

cytoplasmic membrane. This way intact cells will only be stained by SG, while damaged cells will

be stained by both SG and PI. The emission spectrum of SG overlaps with the absorption spectrum

of PI. Therefore, the emission of SG is used as excitation energy for PI, which then in turn emits

red fluorescence while the SG fluorescence is quenched [56]. This difference in fluorescence signals

results in the fact that two groups can be distinguished by the flow cytometer, one group with intact

cells and one with damaged cells. Membrane integrity is widely accepted as a criterion to evaluate

cell viability [57].

Speed is a big advantage offered by FCM [51], up to 50,000 cells per second can be analysed [58].

The ability to use automated sample loading allows fast analysis of large amounts of samples.

When using autosamplers, care should be taken that the delay until the measurement of the last

sample is not to large, since this might cause bleaching of the stain. Sedimentation of larger cells

could also occur, which would have large effects on the results of the measurement [59].
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In contrast to conventional heterotrophic plate counting methods, microbial cells can be detected by

FCM irrespective of their cultivability. Since it is estimated that less than 1% of bacteria in aquatic

environments can be cultivated by traditional plate counting techniques [60], this is an important

benefit. Another benefit is that even in systems with low cell densities large amounts of cells

can be analysed [51]. This is particularly beneficial when one wants to study samples of natural

freshwater systems, since cell densities are typically low there.

Data generated by FCM analysis is generally presented in single parameter histograms or in two-

dimensional scatterplots. These two-dimensional plots are often referred to as ‘fingerprints’ (Fig-

ure 1.5). Abiotic particles, such as crystals or dust, can scatter light and potentially bind with the

stains or possess autofluorescent properties. Hence they might interfere with the signals that truly

originate from the cells [61]. When one wants to interpret the data correctly, these datapoints need

to be removed. This is done by so-called ‘gating’, illustrated in Figure 1.5. Gating is selecting

the area of interest and is mostly performed based on signal intensities of two fluorescent param-

eters [51]. Multiple gates can be created to differentiate between subpopulations of bacteria in a

sample. Gating is mostly performed manually by the operator and is therefore subjective, which

implies that care should be taken when comparing data of different datasets. Gates can also be

created using clustering algorithms [62]. Next to gating, there is another parameter which makes

it difficult to compare between separate datasets: the operator can change the voltages over the

photomultipliers in order to tune the detectors. Higher voltages will cause more electrons to be

generated per event, which implies also smaller events will be detected well by the device.

Figure 1.5: Illustration of the gating step. Left: Data before gating. The gate is manually created based on

signal intensities of two fluorescent parameters, here denoted as FL1 and FL3, in order to isolate the cellular

information from the background. Right: Isolated cellular information after gating. The colour intensity is

proportional to the log-scaled density of the events.
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As stated above, FCM can be used to gain information on phenotypic traits (i.e. size, shape, nucleic

acid content etc.) of single cells. Recently, a new method has been developed to assess phenotypic

community structure of bacterial populations based on flow cytometric fingerprinting [63]. The

pipeline will be explained here.

A first step when processing the FCM data is applying a transformation, such as a hyperbolic

arcsin function. The hyperbolic arcsin will transform low values approximately linearly and high

values approximately logarithmically. The reason for this transformation is that there is a broad

spread in values of the flow cytometric parameters (i.e. scatter and fluorescence). By applying a

transformation the variance in the data will be reduced, which will make the density estimation

more accurate. The next step is denoising the data in order to extract only the signals that are

resulting from bacteria, and removing all signals originating from the background (i.e. particles,

salts, etc.). For this, a gating step is performed (Figure 1.5). Next, the data is normalized to the

[0,1] interval by dividing each parameter by the maximum FL1 (i.e. the first fluorescence channel)

intensity value over the data set. The reason for this is to make a bandwidth of 0.01 appropriate

during the density estimation. The next step is to calculate the phenotypic community structure.

First, a discretization step is performed by applying a 128x128 binning grid (Figure 1.6 A and B).

This grid is applied for each of the binary parameter combinations. For example, when using two

scatter and two fluorescence parameters for characterizing the phenotypic community structure,

this would result in 6 binary parameter combinations. During the discretization step the operational

phenotypes (bins) are being defined. In each of the bins a Gaussian distribution is fitted by Kernel

density estimation, using a bandwidth of 0.01. Finally, all density estimations are summed, leading

to the density estimation of the community (Figure 1.6 C). The density values for all bins are then

concatenated into a 1D-vector, which is called the ‘phenotypic fingerprint’(Figure 1.6 D). This

phenotypic fingerprint has a structure similar to the output of sequencing pipelines, containing

the probability that a cell is present in each bin. And thus established ecological indices can be

calculated from it.

To evaluate alpha-diversity (i.e. within sample diversity) the first three Hill numbers are calculated:

D0 (species richness), D1 (the exponential of Shannon entropy) and D2 (the inverse of Simpsons

index). Formulas are given in Table 1.1. The larger the Hill order, the lesser rare species are taken

into account. Hill numbers can be interpreted in terms of ‘effective number of species’, which

represent the number of equally abundant species required to generate an identical diversity as the

one of the microbial community under study. Thus all Hill numbers have the same units as species

richness [64]. They also obey the doubling property which states that whenN equally diverse groups
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Figure 1.6: Conceptual illustration of the calculation of the phenotypic fingerprint. A: The data is trans-

formed, denoised and normalized. B: A binning grid of 128x128 is applied on each of the binary parameter

combinations. This binning grid defines the phenotypes. C: For each of the bins a distribution is fitted by

Kernel density estimation. All these density estimations are summed to create the phenotypic community

structure. D: The values for each of the bins are then concatenated into a 1D-vector.

which have no species in common are merged, the merged community has a diversity that is equal

to N times the diversity of one of the groups [64]. This makes Hill numbers easy to interpret.

Table 1.1: Formulas of the order-based Hill numbers, where pi is the relative abundance of bin i and S is

the number of non-empty bins in the phenotypic fingerprint.

Hill order (q) Diversity metric (Dq)

0 D0 = S

1 D1 = e−
∑S
i=1 piln(pi)

2 D2 =
1∑S
i=1 p

2
i

Beta-diversity (i.e. between sample diversity) is evaluated using the Bray-Curtis dissimilarity.

The Bray-Curtis dissimilarity for two samples A and B is given in Equation 1.2, where pAi is the

abundance of bin i in sample A and S is the total number of non-empty bins in the phenotypic

fingerprints of both A and B. This metric takes a value of zero in case of two identical samples,

and a value of one in case of two samples which have no bins in common [65] (for more information
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on Bray-Curtis dissimilarity see Appendix 5.1.1).

DAB =

∑S
i=1 |pAi − pBi|∑S
i=1(pAi + pBi)

. (1.2)

1.4.2.2 Raman spectroscopy

Raman spectroscopy is a laser-based technology that assesses the chemical composition of a sam-

ple. Molecules consist of atoms that are elastically bound to each other. These elastic bonds have

periodical motions, the vibrational modes, which include bending and stretching. Raman spec-

troscopy is a form of molecular spectroscopy that studies these vibrational modes. It is based on

scattering of monochromatic light. When monochromatic light is send to a sample, this light will

be partly scattered. Scattering can be split up in two types: elastic and inelastic scattering (Fig-

ure 1.7). The majority of the scattered light has the same wavelength as the incoming light, this

scatter is referred to as elastic or Rayleigh scatter. When there is a change in wavelength, this

scatter is referred to as inelastic scatter or Raman scatter. There are two types of Raman scattering:

Stokes and anti-Stokes. In case the photons get a lower energy level, and thus a higher wave-

length, compared to the incoming photons, the scatter is called Stokes scatter. While an increase

in energy level of the photon as compared to the incoming photons is called anti-Stokes scattering.

Molecules that are initially in the ground state give rise to Stokes scattering, while molecules that

are initially in an excited vibrational state give rise to anti-Stokes scattering. At ambient temper-

atures, more molecules are in their ground states, and therefore Stokes scattering is more intense

than anti-Stokes scattering [66;67].

The shift in energy is caused by interaction of the monochromatic laser light with the vibrational

states of the molecules that are present in the sample [69]. The vibrational state of the molecules

causes an electric field. The polarizability is the ease with which the electron cloud can be changed

in shape, size or orientation as a response to an external electric field. A photon will also generate

an electromagnetic field, with a frequency which is proportional to its energy level. This electro-

magnetic field, generated by the photon’s energy state, polarizes and vibrates the electromagnetic

field of the molecule. This is called an induced dipole. The photon can lose some of its energy

by causing this induced dipole or gain some energy in case of a constructive interaction with the

induced dipole. So this shift in energy, and thus wavelength, of the photon is the result of field-

interactions with the vibrational energy of the molecule [66]. The vibrational modes of a molecule

are dependent on mass of the atoms and their geometric arrangement, the nature of the chemical
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Figure 1.7: Illustration of the different types of scattering. Horizontal lines represent different vibrational

states of the molecular bond. Incoming photons have an energy equal to hv0, with v0 the incidents photon

frequency and h is Planck’s constant. In case of elastic or Rayleigh scattering, the scattered photons have

the same energy as the incoming photons. In case of Stokes scattering, the scattered photons have a lower

energy and the molecule gets a higher energy, while the opposite is true for anti-Stokes scattering [68].

bonds and their motions. Raman scattering can thus be used as information source for structure

and properties of the molecules present in a sample [67]. Next to that, the Raman signal is also

dependent on concentration of the molecules, which makes quantification of chemical compounds

possible [66].

As mentioned above, there needs to be a change in polarizability to create an induced dipole

and thus in order to be able to get Raman scattering. The larger the polarizability, the larger the

Raman-effect. This implies that only certain vibrational modes will be Raman-active, and thus

not all compounds can be detected using Raman spectroscopy. For example, water has a very

low Raman activity, which results in the fact that the presence of water will not interfere with the

Raman signal [70].

Raman scattering is inherently a very weak process, only 1 in 106 - 108 incident photons are

Raman scattered [71]. The Raman spectrum contains the intensity of the scatter signal as a function

of the energy difference with the incident light, expressed in terms of the so-called ‘wavenumber’.

This wavenumber is calculated based on the wavelength of the incoming photons (λ0) and of the

scattered photons (λ1), the relation is given in Equation 1.3. Wavenumbers are typically expressed

in cm-1. An important remark here is that the wavenumber is a relative value and thus depending

on the wavelength of the laser. This implies that spectra obtained with different lasers cannot
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be compared directly [72]. The Raman-peaks are indicative for different chemical bonds and their

vibrations [71].

∆w =
1

λ0
− 1

λ1
(1.3)

The general setup of a Raman spectroscope is given in Figure 1.8. A laser is used as monochro-

matic light source. This laser beam is sent to the sample through a monochromator which ensures

the incident light has only one particular wavelength. The incident light can interact with the

sample and the resulting scattered light is focused through a lens. The scattered light is usually

observed in the direction perpendicular to the laser beam. The signal is sent through band pass

filters in order to remove all the photons that have resulted from elastic scattering. The resulting

light consists of inelastically scattered photons and is send to a grating. This grating will reflect

each of the scattered wavelengths under a slightly different angle. In this way each wavelength is

collected on a separate spot on the detector. The photons are typically measured at lower energy

than the input light, which means the Stokes scattering is detected. However, also the anti-Stokes

could be used [69].

Figure 1.8: The laser beam is send through a monochromator and focussed on the sample. The laser light

interacts with the sample and the resulting scatter is collected through a lens. The light is send through a set

of filters to remove Rayleigh scatter. After grating, each wavelength is detected by the detector [73].

Raman spectroscopy has applications in a variety of fields, but is mainly used for material identifi-

cation, for example to identify mineral composition in geology, or to asses purity of polymers and

pharmaceuticals [74]. It is also frequently used for applications in life sciences such as single-cell

studies. The Raman spectrum of a single cell is a combination of the spectra of all the different

compounds that make up this cell (e.g. proteins, nucleic acids, fatty acids, etc.). This results in



1.4 MONITORING OF MICROBIAL ECOSYSTEMS 18

a very complex spectrum, which can be interpreted as a chemical fingerprint of the cell [75] (Fig-

ure 1.9). The spectrum can be used for phenotypic characterization of the cells [76]. The spectra are

used as an identification tool to distinguish between bacterial species or for the interpretation of the

presence of biomolecules. For the latter, a database of the spectra of the biomolecules is needed.

Some studies have been focussing on creating databases with reference spectra [77]. Because of the

complex nature of the Raman cell spectrum, interpreting it is not straightforward [77]. In case one

wants to use the spectra as an identification tool, one should take into account that the spectrum is

not only dependent on the species or strain that is evaluated, but also on the metabolic history of

the organism [71].
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Figure 1.9: Left: Raman spectrum of alanine, an amino acid. Right: Raman spectrum of single cell.

Even simple natural microbial communities consist of a large amount of species, and it is not

straightforward to determine which species are playing an active role in the community or are per-

forming key functions [21]. One goal in environmental microbiology is to link particular functional-

ities or activities to particular organisms. A way to do this could be to use Raman spectroscopy in

combination with stable isotope tracers [71]. This method has successfully been applied by tracking

of heavy water incorporation to evaluate cellular activity at the single cell level [78].

Like flow cytometry, Raman spectroscopy is cultivation independent. Thus also viable but non cul-

turable cells can be analyzed with Raman spectroscopy, which is an interesting property since most

of bacterial species occurring in nature cannot be grown easily under laboratory conditions [79]. An-

other advantage of the technique is that it does not require any stains or specific reagents [75].

The differences between bacterial spectra can be very subtle and therefore robust computational

data-analysis is highly required in order to filter out the relevant information. The spectra require

some pre-processing. There is a wide variety of pre-processing techniques available, however there

is not a clear consensus on an ideal pre-processing pipeline. Bad pre-processing can even cause

predictive models to have a lower accuracy in comparison to no pre-processing [80].
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1.4.2.3 Comparison

Flow cytometry and Raman spectroscopy are two techniques that are able to give information

about phenotypical traits of individuals in a bacterial population. In general, flow cytometry is

a fast technique that gives information on cell-morphology and specific cell properties for which

has been stained. Raman spectroscopy is a slower technique that gives a more holistic view on

the molecular phenotypic traits. A short comparison of some of their main features is given in

Table 1.2.

Table 1.2: Comparison of some of the main features of flow cytometry and Raman spectroscopy.

Flow cytometry Raman spectroscopy

Information morphological features,

information regarding nucleic

acids content, cell viability, etc.

(depending on the stain)

chemical composition of the

cell, presence of biomolecules

Throughput very high, up to 50,000 cells per

second

much lower

Level of automation use of autosamplers, possibility

for online measurements

not very automated, requires

more manual labor

Staining mostly, not in case of

autofluorescent cells

unnecessary

1.5 In silico communities

Following up the community composition over time is often a point of interest in synthetic ecology

studies. But as mentioned in Section 1.2.2, this is not easily done using the classical sequencing

or molecular techniques. Previous research revealed the potential of using machine learning tech-

niques to distinguish between different bacterial [81;82] or phytoplanktonic [83] species based on their

flow cytometric fingerprints, in both the artificial [81] and the natural [84] context.

Recently, a new method has been developed to assess community composition based on flow cyto-

metric fingerprinting [58]. In contrast to some of the previous studies, this method does not require

any adaptations to the flow cytometer. The pipeline is illustrated in Figure 1.10. First, a fingerprint
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of the axenic cultures that make up the synthetic community is made. In the next step the data of

the axenic cultures is aggregated to a so-called ‘in silico community’. This in silico community

consists of labelled data, which allows the use of supervised machine learning techniques. A clas-

sifier is trained to learn the difference between the fingerprints of the community-members. The

label to be predicted is the species, while the features or predictors are the scatter and fluorescence

parameters. Once this classifier has been trained on the dataset, it can be used to predict the relative

abundances of the species in a mixture [58]. As was the case in previous studies, some species are

more difficult to be distinguished than others because of overlapping phenotypical traits.

Figure 1.10: Conceptual illustration of a machine learning approach to infer the community composition

of synthetic microbial communities. The first step is to acquire cytometric fingerprints of the axenic cul-

tures that make up the synthetic community, as well as a cytometric fingerprint of the synthetic community

under study. In the second step the community is created ‘in silico’ by aggregating the data of the axenic

communities. In the next step a classifier is trained to learn the difference between the two species (in this

example LDA). Finally, this classifier can be used to predict the abundances of the two species based on the

cytometric fingerprint of the mixed community [58].
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1.6 Objectives

Recently, there has been a growing interest in understanding the ecological importance of pheno-

types and phenotypic diversity in microbial communities. To a large extend it is still unknown

which factors are influencing it and what the potential importance of this fine scale diversity might

be in both natural and engineered ecosystems. In literature, most studies are either focusing on

single species experimental set-ups or on entire communities. Typically these studies evaluate

metabolic potential or respiration in function of imposed stressors.

Sympatric bacterial populations are populations that are present in the same environment and there-

fore encounter each other on a regular basis, which implies they have the potential to interact. The

main objective of this study is to assess the influence of binary interactions between sympatric

bacterial populations in function of the phenotypic diversity of the interacting organisms. Ecolog-

ical theories will be tested using synthetic ecosystems, in which drinking water isolates will be

used as model organisms. During this study the phenotypic diversity will be assessed using two

single-cell techniques: flow cytometry and Raman spectroscopy. Both techniques measure widely

different optical properties of individual bacterial cells. Complementarity or similarities between

the two techniques will be evaluated. Currently there exist no validated computational approaches

for characterizing phenotypic diversity by means of Raman spectroscopy. We will evaluate the

potential to create such pipelines.

Quantification of organisms in synthetic ecology experimental set-ups is currently a difficulty. The

available tools require either large sample volumes (sequencing) or the development of specific

primers (qPCR). Recently, a new method has been developed to assess community composition

based on flow cytometric fingerprinting. The last goal of this study is to apply and evaluate the

performance of this methodology.
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2
Materials and methods

2.1 Bacterial strains

Drinking water isolates were provided by Pidpa (Provinciale en Intercommunale Drinkwater-

maatschappij der Provincie Antwerpen, Belgium). The isolates were grown in liquid minimal

medium, M9 with 200 mg/L glucose as a carbon source.

2.2 Molecular analysis

To identify the drinking water isolates, DNA extraction was performed using the FastPrep DNA-

extraction protocol [85]. The DNA was amplified by polymerase chain reaction (PCR) on the 16S

rRNA gene, with 63F and 1378R primers and the following thermal cycle: 5 min at 94◦C, 30x (1

min at 95◦C, 1 min at 53◦C, 2 min at 72◦C) and 10 min at 72◦C. The resulting PCR products were

purified and sent out for Sanger sequencing (LGC Genomics GmbH, Germany).

2.3 Microbial analysis

2.3.1 Bacterial growth

The growth curve for a bacterium in a certain set of conditions (T, growing medium, etc.) can

be determined by inoculating a fixed number of cells in fresh medium and measuring the change

in turbidity, and hence cell density, over regular time-intervals. This can easily be done using a

spectrophotometer [86]. The curve that results from this type of experiment has a typical sigmoidal

shape, to which several models can be fitted. The logistic growth model is widely used and given
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by Equation 2.1, where A is the carrying capacity, µ is the maximum specific growth rate and λ is

the lag phase [87].

y(t) =
A

1 + exp(
4µ
A

)(λ−t)+2
. (2.1)

Growth curves for some of the drinking water isolates were determined. First, the bacteria were

plated on nutrient agar (Oxoid, UK) plates. The next day, a single colony was picked and trans-

ferred to liquid minimal medium (M9 with 200 mg/L glucose as a carbon source). Two days

later, cell densities in the liquid cultures were determined by flow cytometry and the cultures were

diluted to a density of 2×106 cells/mL in sterile, 0.22 µm-filtered PBS. Double concentrated min-

imal medium was prepared. A 96-well plate was filled by adding 100 µL of double-concentrated

medium and 100 µL of the diluted culture to each well. Each strain was prepared in triplicate.

Blanks were prepared by adding 100 µL of PBS to the double-concentrated medium. Optical

density (OD) at 600 nm was measured using a Tecan Infinite® M200 PRO multiwell plate reader

(Tecan Trading AG, Switzerland) at time intervals of 15 minutes over a total period of 120 hours.

The temperature was set at 28◦C.

2.3.2 Flow cytometry

For flow cytometric analysis, the samples were diluted and stained with nucleic acid stains. The

stains that were used are SYBR® Green I (SG, 100x concentrate in 0.22 µm-filtered dimethyl

sulfoxide) for total cell analysis and SYBR® Green I combined with propidium iodide (SGPI, 100x

concentrate in 0.22 µm-filtered dimethyl sulfoxide) for live-dead analysis. Staining was performed

as described previously [63], with incubation for 20 min at 37◦C in the dark. Samples were analysed

immediately after incubation. Two flow cytometers were used in this study.

A C6 Accuri™ flow cytometer (BD Biosciences, Belgium), which was equipped with four fluo-

rescence detectors (530/30 nm, 585/40 nm, >670 nm and 675/25 nm), two scatter detectors and a

20-mW 488-nm laser. The flow cytometer was operated with Milli-Q (MerckMillipore, Belgium)

as sheath fluid.

A FACSVerse™ flow cytometer (BD Biosciences, Belgium) with nine fluorescence detectors (527/32

nm, 783/56 nm, 488/15 nm, 586/42 nm, 700/54 nm, 660/10 nm, 783/56 nm, 528/45 nm and 488/45

nm), a scatter detector and a blue 20-mW 488-nm laser, a red 40-mW 640-nm laser and a violet 40-

mW 405-nm laser. The flow cytometer was operated with FACSFlow™ solution (BD Biosciences,

Belgium) as sheath fluid.
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2.3.3 Raman spectroscopy

The fixation protocol for Raman spectroscopy was adapted from a previously described proto-

col [88]. 1mL of cell-suspension was centrifuged for 5 minutes at room temperature and 5000 g.

The supernatant was discarded and the cell pellet was resuspended in cold, 0.22 µm-filtered PBS

(4◦C). The cell-suspension was again centrifuged for 5 minutes at room temperature and 5000 g.

The supernatant was discarded and the cell pellet was resuspended in the fixative, 0.22 µm-filtered

4% (v/v) paraformaldehyde in PBS (pH 7.2). The sample was allowed to fix for 1h at room tem-

perature, in the dark. The fixative was removed by centrifuging for 5 minutes at room temperature

and 5000 g and resuspending the pellet in cold, 0.22 µm-filtered PBS (4◦C), twice. The fixed sam-

ple was stored at 4◦C. Prior to analysis, the fixed sample was centrifuged for 5 minutes at room

temperature and 5000 g and the pellet was resuspended in 0.22 µm-filtered, milli-Q (4◦C). The cell

suspension was spotted onto a calciumfluoride slide and allowed to dry.

The dried sample was analysed immediately using a WITec Alpha300 R+ confocal Raman micro-

scope with a 100x/0.9NA objective (Nikon, Japan), a 785 nm excitation diode laser (Toptica, Ger-

many) and a UHTS 300 spectrometer with a -60◦C cooled iDus 401 BR-DD CCD camera (Andor

Technology Ltd, UK). Laser power before the objective was measured daily and was about 150

mW. Spectra were acquired in the range of 110-3375 cm−1 with 300 grooves/mm diffraction grat-

ing. For each single cell spectrum, the Raman signal was acquired over 40 s.

2.4 Data analysis

2.4.1 Identification isolates

To identify the drinking water isolates, the sequences obtained via Sanger sequencing were blasted

against two databases, NCBI blast and the Ribosomal database project. Both databases resulted in

the same identities.

2.4.2 Bacterial growth

Prior to fitting the growth model, the optical density of the blanks was subtracted from each time

series to correct for absorption caused by the medium. For each replicate the time series was

selected from start to the point where the stationary phase was reached. Next, the data was imported
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in R (v3.3.1) [89] and analysed using the grofit package (v1.1.1-1) [90]. The logistic growth model

was fit to each replicate and R2 for each fit was calculated to evaluate the goodness of fit.

2.4.3 Flow cytometry

Phenotypic diversity

The data was imported in R (v3.3.1) [89] using the flowCore package (v1.40.3) [91]. A quality control

of the datasets was performed using the flowClean package (v.1.12.0) [92]. An air bubble or large

particle can potentially disturb the fluidics system for a very short or longer period of time and

disturb the process of hydrodynamic focussing. The flowClean package contains an algorithm that

tracks changes in fluorescence frequency within a sample. Events which are potentially anoma-

lies are flagged and excluded for further analysis. After quality control, the background of the

fingerprints was removed by manual gating on the primary fluorescent channels. A suitable gate

was created for each experiment separately. Data was further analysed using the PhenoFlow pack-

age (v1.1) [63]. This package translates the single-cell cytometric data into a phenotypic fingerprint

and subsequently calculates established diversity metrics, including alpha- and beta-diversity as

explained in Section 1.4.2.1. The Bray-Curtis dissimilarities were visualised by principal coor-

dinate analysis (PCoA, for more information see Appendix 5.1.8). Statistical significance of the

differences between the samples was assessed using permanova (for more information see Ap-

pendix 5.1.2).

In silico communities

After gating, the data was exported from R under Flow Cytometric Standard (FCS) format. The

files were converted to comma-separated values files (CSV) to be further analysed in Python, using

Scikit-learn [93]. The classifier that was used for the in silico communities is a random forest (for

more information see Appendix 5.1.4). To build the model, datasets were split into a balanced

trainings- and testset (70%/30%). During building of the model, 200 trees were grown as this had

previously been found to be sufficient [58].

2.4.4 Raman spectroscopy

The data was analysed in R (v3.3.1) [89]. Spectral preprocessing was performed using the package

MALDIquant (v1.16) [94].
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To preprocess the Raman spectra, the biologically relevant part of the spectrum (600-1800 cm−1)

was selected [76]. The spectra hold 333 data points over the selected range. Baseline correction was

performed using the statistics-sensitive non-linear iterative peak-clipping (SNIP) algorithm [95]. A

high number of iterations was selected in order to make the result of the baseline correction less

sensitive to small differences in the spectra. The spectra were normalised by means of surface

normalisation, i.e. setting the surface under the spectrum equal to 1. Finally, the necessity for peak

alignment was evaluated.

2.5 Experimental setups

2.5.1 Experiment 1

The aim of this experiment was to evaluate whether microbial interactions between sympatric bac-

terial populations can lead to changes in phenotype and phenotypic diversity of the interacting

organisms. Drinking water isolates were used as model organisms for the sympatric bacterial pop-

ulations. Two drinking water isolates were selected based on two criteria: the combination of these

bacteria had good performance for the supervised in silico community methodology described in

Section 1.5 and both bacteria were relatively fast growing (e.g. stationary phase was reached within

24 hours, starting from a cell density of 106 cells/mL). The selected bacterial species were Enter-

obacter sp. and Pseudomonas sp.. Since the organisms were merely used as model organisms they

will further be denoted as taxon A and B.

During the experiment, bacteria were cultured in transwell plates (Corning® Costar® 6-well cell

culture plates, Corning Incorporated) where apical and basal compartments were created using cell

culture inserts (ThinCert™ Cell Culture Inserts with pore diameter 0.4 µm, Greiner Bio-One). The

membrane of the culture inserts was replaced by membranes with smaller pore sizes to avoid mi-

gration of bacteria between the two phases (Cyclopore® polycarbonate and polyester membranes

with 0.2 µm pore size, Whatman). Different combinations of apical and basal phase and corre-

sponding starting cell densities are presented in Table 2.1. The starting cell densities were set to

have an initial cell density of 106 cells/mL in each synthetic community.

Before the start of the experiment, both bacteria were plated on nutrient agar (Oxoid, UK) plates.

From each plate a single colony was picked and transferred to liquid minimal medium (M9 with

200 mg/L glucose as carbon source). After two days of incubation at 28 ◦C, cell densities in the

liquid cultures were determined by flow cytometry and diluted to the desired starting cell densities
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in fresh medium. The required dilution was high enough to neglect differences in volume of fresh

medium, and thus resources for growth, that were needed to prepare the cultures. Each combination

of apical and basal phase was prepared in triplicate and randomised over the plates to account for

plate effects. A blank, containing fresh medium in both apical and basal phase, was present on

each plate as a control for cross-contamination. The plates were incubated at 28 ◦C and gently

shaken (25 rpm) to aid diffusion of the metabolites between the compartments.

Table 2.1: Initial conditions in the 6-well plates. Cell densities were set for each synthetic community to

have an initial cell density of 106 cells/mL and with equal relative abundances for both community members

in the coculture and mixed culture.

Basal phase (4 mL) Apical phase (2 mL) Cell density basal

phase (cells/mL)

Cell density apical

phase (cells/mL)
A fresh medium 1.5×106 0
A B 7.5×105 1.5×106

B fresh medium 1.5×106 0
A+B fresh medium 7.5×105 + 7.5×105 0

The communities were monitored over a period of 72 hours. Every 24 hours samples were taken

from each compartment for flow cytometric analysis. Each sample was split in two and diluted

in 0.22 µm-filtered, sterile PBS. One part was analysed using SG staining, the other part was

stained with SGPI. The samples were analysed on the FACSVerse™ flow cytometer. After 72

hours samples for Raman spectroscopy were taken and fixated. All Raman samples were analysed

within 1 week, with minimal time between them to limit possible differences caused by differences

in duration of the storage.

2.5.2 Experiment 2

The aim of this experiment was to evaluate whether the influence of microbial interactions on

phenotypic diversity, that was found in the previous experiment, was reversible. The same bacteria,

and a similar set-up as for the first experiment were used.

Before the start of the experiment, both bacteria were plated on nutrient agar (Oxoid, UK) plates.

From each plate a single colony was picked and transferred to liquid minimal medium (M9 with

200 mg/L glucose as carbon source). After two days of incubation at 28 ◦C, cell densities in the
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liquid cultures were determined by flow cytometry and diluted to the desired starting cell densities

in fresh medium. At the start of the experiment four synthetic ecosystems were created: two

axenic cultures and two cocultures (Table 2.2). The axenic cultures were created in triplicate, the

cocultures in sextuplicate. The communities were randomised over the plates to account for plate

effects. After three days of incubation, the first flow cytometric measurement took place and the

apical phases of the cocultures were replaced by new apical phases containing either 0.22 µm-

filtered milli-Q or fresh minimal medium (Table 2.2). The plates were incubated at 28 ◦C. From

the third day on, the cultures were monitored for another three days. Every 24h samples were taken

for flow cytometric analysis. Each sample was split in two and diluted in 0.22 µm-filtered, sterile

PBS. One part was analysed using SG staining, the other part was stained with SGPI. The samples

were analysed on the FACSVerse™ flow cytometer.

Table 2.2: Initial conditions in the 6-well plates during the first experiment. Cell densities were set for each

synthetic community to have an initial cell density of 106 cells/mL. The cocultures were created for both A

and B in the basale phase since this was more practical for the replacement of apical phases on the third day.

Two axenic cultures were present as reference for non-interacting genotypes.

Basal phase Apical phase Cell density basal

phase (cells/mL)

Cell density apical

phase (cells/mL)

Replacement

(t = 72h)
A fresh medium 1.5×106 0 none
B fresh medium 1.5×106 0 none
A B 7.5×105 1.5×106 milli-Q
A B 7.5×105 1.5×106 fresh medium
B A 7.5×105 1.5×106 milli-Q
B A 7.5×105 1.5×106 fresh medium

2.5.3 Experiment 3

A gfp-labelled strain of the Enterobacter sp. used in experiment 1 was available. In order to check

the evolution of the relative abundances that were found in the first experiment, mixed cultures

of Pseudomonas sp. and the autofluorescent Enterobacter sp. were created. Before the start of

the experiment, the bacteria were plated on nutrient agar (Oxoid, UK) plates. From each plate

a single colony was picked and transferred to minimal medium (M9 with 200 mg/L glucose as

carbon source). After two days of incubation at 28 ◦C, cell densities in the liquid cultures were



2.5 EXPERIMENTAL SETUPS 30

determined by flow cytometry. Three mixed cultures were created in 10 mL tubes, with equal

initial cell densities as the mixed culture in the first experiment. The communities were incubated

at 28 ◦C.

The mixed cultures were followed up over a period of 72 hours. Every 24 hours samples were

taken for flow cytometric analysis. The samples were split in two and diluted in 0.22 µm-filtered

bottle water (Evian). Due to the autofluorescent properties of Enterobacter sp. these cells can

be detected on the primary fluorescent channel of the flow cytometer without staining. The first

sample remained unstained and thus gives information about the cell density of Enterobacter sp.

only. The second sample was stained with SG to get information on the total cell density. The

samples were analysed on the C6 Accuri™ flow cytometer in fixed volume mode (25 µL).

2.5.4 Experiment 4

The aim of this experiment was to evaluate whether presence of multiple carbon sources would

lead to a higher phenotypic diversity. Before the start of the experiment, Enterobacter sp. and

Pseudomonas sp., that were used in previous experiments, were plated on nutrient agar (Oxoid,

UK) plates. From each plate a single colony was picked and transferred to minimal medium (M9

with 200 mg/L glucose as carbon source). After two days of incubation at 28 ◦C, cell densities

in the liquid cultures were determined by flow cytometry and the cultures were diluted to 2×106

cells/mL in sterile M9 without carbon source. Three different carbon sources were used (Table 2.3).

For each of the carbon sources M9 with double carbon concentrations was prepared.

Synthetic communities were created in sterile 12 well-plates (Corning® Costar® 12-well cell cul-

ture plates, Corning Incorporated) by adding 2 mL of the diluted cultures to 2 mL of the double

concentrated medium. The communities that were present on each of the plates are presented in

Table 2.4, and were randomized over the plate to account for plate effects. The 12 well plates were

incubated at 28◦C. Every 24h samples were taken for flow cytometric analysis. Each sample was

diluted in 0.22 µm-filtered bottle water (Evian) and stained with SG. The samples were analysed

on the C6 Accuri™ flow cytometer using fixed volume mode (25 µL).



2.5 EXPERIMENTAL SETUPS 31

Table 2.3: Different carbon sources that were added to M9. For glucose a concentration of 200 mg/L was

selected, similar to previous experiments. For the mixture of glucose, acetate and pyruvate the concentra-

tions were determined to have a total C content equal to the one of the glucose treatment, and with equal

contributions of the 3 compounds to the total C content. For yeast extract a concentration of 200 mg/L was

selected. Since yeast extract has varying compositions and thus also varying C contents, the total C content

in this treatment will likely differ from those of the other two treatments.

Carbon source(s) Compound stock solution Final concentration in M9 (mg/L)
Glucose Glucose (C6H12O6) 200
Glucose, acetate, pyruvate Glucose (C6H12O6) 66.67

Sodiumacetate (CH3COONa) 91.06
Sodiumpyruvate (C3H3NaO) 81.44

Yeast extract Yeast extract (Oxoid, UK) 200

Table 2.4: Initial conditions for the synthetic communities present on each of the three 12-well plates. On

each plate all possible combinations of bacteria and carbon sources are present once. Each plate contains

three wells with fresh medium as a control for cross-contamination.

Cell density A (cells/mL) Cell density B (cells/mL) Carbon source(s)
1×106 0 glucose
0 1×106 glucose
5×105 5×105 glucose
0 0 glucose
1×106 0 glucose, acetate and pyruvate
0 1×106 glucose, acetate and pyruvate
5×105 5×105 glucose, acetate and pyruvate
0 0 glucose, acetate and pyruvate
1×106 0 yeast extract
0 1×106 yeast extract
5×105 5×105 yeast extract
0 0 yeast extract
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3
Results

3.1 Experiment 1: Interactions between bacteria can lead to adjust-

ment of their individual phenotypic diversities.

The aim of this experiment was to evaluate whether microbial interactions can lead to changes in

phenotypic diversity of the interacting organisms and if this change is dependent on the compo-

sition of the sympatric bacterial populations. Phenotypic diversity was assessed through flow cy-

tometry and Raman spectroscopy. Two drinking water isolates Enterobacter sp. and Pseudomonas

sp. were selected as model organisms. Since the organisms were merely used as model organisms

they will further be denoted as taxon A (Enterobacter sp.) and B (Pseudomonas sp.), respectively.

Both isolates were relatively fast growing. Based on growth curves that were determined prior the

start of the experiment, species A reached the stationary phase at 11h and species B at 22h.

Four synthetic communities were created (Figure 3.1). Both isolates were grown in axenic cul-

tures as a reference for the non-interacting genotypes. To be able to study the individual commu-

nity members separately after they have been interacting via their joint medium, a coculture with

physical separation by a membrane was created. Lastly, a mixed culture without physical separa-

tion, representing ‘full interaction’, was created. Each community was created in triplicate. These

synthetic communities were monitored over a period of 72h. Every 24h samples were taken for

flow cytometric analysis and at 72h samples were taken for Raman spectroscopy. Since the first

measurement took place at 24h, both community members were expected to be in stationary phase

during the whole experiment. For flow cytometric analysis both SG and SGPI staining was applied.

From the SGPI stained samples it can be concluded that all cultures were viable throughout the

entire experiment. Following results are based on the SG stained samples (i.e. total cell analysis).

In the following results the samples are indicated with names in the form of ‘X treated with Y’,

where X is the species in the sample (A, B or AB) and Y is what was present on the other side

of the membrane (A, B or fresh medium). When referring to the ‘coculture’, the physically sepa-
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rated mixed culture is intended, while ‘mixed culture’ indicates the mixed culture without physical

separation.

Figure 3.1: Illustration of the experimental set-up of experiment 1. Bacteria in apical and basal phase can

interact via metabolites in their shared medium while they are physically separated by the membrane of the

cell culture inserts. Four synthetic communities were created: two axenic cultures, a coculture and a mixed

culture. For each synthetic community biological replicates (n = 3) were present.

3.1.1 Phenotypic diversity assessment through flow cytometry

The cell densities for each bacterial species as well as the mixed community were monitored at

three time points. Cell densities of species A remain stable over time, while for species B and the

mixed culture a limited increase over time is observed (Figure 3.2).

Figure 3.2: Evolution of cell densities for both individual bacterial species in communities of single species,

cocultures and mixed cultures. There were biological replicates (n = 3) for each community. The dashed

lines indicate the average trend of the replicates.
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Figure 3.3: Hill diversity parameters D0 (richness) and D2 (richness and evenness) for both individual

bacterial species in communities of single species, cocultures and mixed cultures. Error intervals on the

D2 are generated by bootstrapping (999 bootstraps). There were biological replicates (n = 3) for each

community. The dashed lines indicate the average trend of the replicates.

Phenotypic alpha- (within sample) and beta- (between sample) diversity was calculated based on

two scatter and five fluorescence detectors of the FACSVerse flow cytometer, as these were found

to be the most informative [96]. Results for D1 are not shown since D1 is highly correlated with

D2 (rp = 0.97). When looking at phenotypic richness (D0), the diversity of the species in axenic

cultures is larger compared to the diversity of the same species when it was present in one of the

compartments of the coculture (Figure 3.3). This difference is more pronounced for species A.

The same observation is true for D2, with the exception of one replicate of B treated with A and

one replicate of B treated with fresh medium. The difference between the axenic cultures and

the coculture becomes larger over time. Diversity in the mixed community is generally largest,

however, there are some exceptions and the difference is only small. The phenotypic richness

of the mixed community remains relatively constant over time. It should be noted there is some

variability in the diversity dynamics of the biological replicates.

To further compare the phenotypic fingerprints, a PCoA ordination was generated based on the

Bray-Curtis dissimilarity between the fingerprints (Figure 3.4). Overall the populations are sig-

nificantly differing (p = 0.001, r2 = 0.859). Homogeneity of variance in groups of replicates was

assessed before performing permanova. In this ordination, the fingerprints of both species are

separated, with the mixed culture in between. The populations showed a significant shift in their

phenotypic structure through time (p = 0.001, r2 = 0.158 ). All populations evolve in the same

direction over time (left to right in Figure 3.4), except for species A that was grown in axenic cul-
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ture. In addition, there is a significant difference in the fingerprints of species A when present in

an axenic culture compared to when present in the coculture (p = 0.001, r2 = 0.412). For species

B the differences in the fingerprints when present in an axenic culture compared to when present

in the coculture were not significant (p = 0.089, r2 = 0.168). The mixed culture shifted from a

community that is more resembling A at the first measurement, towards a community that is more

similar to species B at the second and third measurement. In general, the biological replicates are

ordinated together, even when there was some variability in their alpha diversity dynamics.

Figure 3.4: PCoA ordination of phenotypic fingerprints for all individual bacterial species in communities

of single species, cocultures and mixed cultures. In the three lower graphs the result of the above ordination

was split according to the different time points, since this allows for easier interpretation of how the different

communities are relating to each other at each time point. There were biological replicates (n = 3) for each

community.
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To assess the shift in phenotypic community structure that is occurring due to the interaction, the

differences in scattering pattern (FSC and SSC) and fluorescence (FITC) of the axenic cultures and

the cocultures was evaluated using a contrast analysis. Differences in scatter patterns were limited

for both species. In contrast, a clear difference in nucleic acid content was observed (Figure 3.5).

For species A there is a shift towards high nucleic acid individuals in the coculture as compared to

the axenic culture. This difference becomes larger over time. For species B there is a more limited

difference, with a small enrichment of lower nucleic acid individuals. Thus, the shift in phenotypic

community structure that is observed is depending on the taxon.

Figure 3.5: Contrast analysis of the phenotypic fingerprints to compare the difference in phenotypic com-

munity structure of axenic cultures and coculture members with respect to nucleic acid content. Each plot is

a comparison between the axenic culture and coculture of the same species at the same time point, averaged

over the biological triplicates. The color gradient indicates whether populations in the coculture increased

(purple) or decreased relative (dark green) to their respective axenic growth at the specified timepoint. Pale

green indicates no or very limited changes. The upper row (A) gives contrast results for species A, the lower

row (B) gives contrast results for species B. If the difference between the two communities is lower than

0.01, no contrast value is shown on the graphs.
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3.1.2 Prediction of relative abundances in the mixed culture

In the previous section the phenotypic structure of each taxon was analyzed when grown in axenic,

coculture, and mixed culture conditions. In order to infer the community composition of the mixed

cultures the supervised machine learning approach described in Section 1.5 was used. For training

of the random forest, the biological replicates were pooled together and 10,000 cells of both A

and B were randomly sampled. The data was partitioned into a balanced (i.e. the cell numbers

for species A and species B are equal in these datasets) training and test set of 70% and 30%

respectively. Relative abundances in the mixed culture were predicted for each of the biological

replicates separately.

The analysis conducted above confirmed our initial hypothesis that the phenotypic diversity of a

taxon can be conditional on the presence of other taxa. Therefore, in order to take into account this

conditional aspect, we compared the abundance predictions of models that were constructed using

different fingerprints as input data for model training (Figure 3.6, Appendix 5.3.1 for exact values).

First, the random forest was trained on the fingerprints of the axenic cultures at the first measure-

ment. Second, the random forest was trained, for each time point separately, on the fingerprints of

the axenic cultures of the corresponding time point. Third, the random forest was trained, for each

time point separately, on the fingerprints of the coculture members at the corresponding time point.

The differences in predicted relative abundances between training the random forest on the data

of the axenic cultures from the start or on the data of the axenic cultures from the corresponding

time point, are small (<1%). Both predict a higher abundance of A at 24h, and a community that

hardly contains any member of A (<1%) from 48h on. In contrast, the predictions based on the

coculture members indicate a more gradual shift in community composition. As was the case for

the predictions based on the axenic cultures, the predictions indicate a higher abundance of A in

the community at 24h, but now a gradual enrichment of species B at the second and third time

point is predicted. This indicates that the choice of input data leads to different predicted relative

abundances.
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Figure 3.6: Relative abundances in the mixed cultures were predicted using the supervised in silico commu-

nity methodology. The random forest classifier that was used to infer community composition of the mixed

cultures (‘AB treated with fresh’) was trained using different input data, as represented on the left side. A:

The random forest was trained using the fingerprints of the axenic cultures from the first measurement. B:

The random forest was trained on the fingerprints of the axenic cultures of the corresponding time point.

For example, the relative abundances in a sample at t = 48h was predicted by a random forest that was

trained using the data of the axenic cultures of A and B at t = 48h. C: The random forest was trained on the

fingerprints of the coculture members at the corresponding time point.
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3.1.3 In silico approach

In the previous section it was found that using data from different communities as input data for

the model led to different predicted relative abundances. In order to evaluate which of the above

predictions are most correct and whether the interaction in the coculture is different from the one

in the mixed culture, the random forest was used to create communities on the computer (in silico)

by merging or splitting data of the measured samples (Figure 3.7). Communities were created in

two ways: data of the mixed cultures were split into ‘in silico coculture samples’ and data of either

axenic cultures or cocultures were merged together to ‘in silico mixed culture samples’.

To create the mixed cultures in silico, data of the coculture members were mixed according to the

relative abundances that were predicted by the random forest that was trained on members of the

coculture. For example, to create an in silico community of the mixed culture at 48h, data from a

measurement of species A in the coculture at 48h were concatenated to data of species B at 48h in

the coculture in a ratio of 33/67, as these were the relative abundances that were predicted by the

random forest that was trained on the cocultures at 48h (Figure 3.6, C). The same approach was

taken to mix the data of the axenic cultures according to the predicted abundances of the random

forest that was trained on the fingerprints of the axenic cultures (Figure 3.6, B).

To create the cocultures in silico, mixed communities were split in two. To decide whether a

cell in data of the mixed culture belonged to species A or to species B a decision threshold was

set for both species separately. These thresholds were determined based on the ROC curve of

the random forest. The ROC curve (receiver operating characteristic) indicates the true positives

and false positives of a binary classifier in function of the threshold that is used to discriminate

between the two classes (for more information see Appendix 5.1.6). In case of the random forest,

the standard approach is to take the majority vote among the decision trees, thus using a threshold

of 0.5. Rather than selecting the threshold for which no wrong predictions were made (i.e. FP

= 0 on the ROC curve), the threshold was chosen so that the corresponding point on the ROC

curve was as close as possible to the point (0,1). This way the random forest was allowed to

make some mistakes in classifying the cells. The reason for this choice is that if the fingerprints

of both species have overlapping phenotypes, and the random forest is not allowed to make any

mistakes, these overlapping phenotypes can not be classified as A, neither as B. This way a ‘hole’

would be created in the fingerprints of the in silico communities where the overlapping phenotypes

occur. The false positive rate, i.e. wrong classifications, at the selected thresholds was <0.5%

(Appendix 5.3.2). The random forest classifier was trained on cells of the pooled replicates, but
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Figure 3.7: Illustration of the approach to create communities in silico. Data from FCM measurements is

split or merged to create communities in silico. These communities were created in two ways: data of the

mixed cultures was split into in silico coculture populations and data of either axenic cultures or cocultures

was merged together to in silico mixed culture populations. The mixed cultures were created based on the

relative abundances as predicted by the random forest. The cocultures were created by splitting the mixed

samples according to optimal thresholds that were determined based on the ROC curve. Between brackets

is indicated whether the community was created based on the model or predictions of the axenic cultures or

the cocultures.

when creating the communities the biological replicates were not pooled. Also during merging

of the data of the coculture members, the data of cultures that were present in the same well was

merged, thus there was no combination of data from the apical phase of one well to data of the

basal phase from another well. This way the in silico created communities can still be thought of

as three biological replicates. The phenotypic fingerprint of these in silico communities could then

be compared to the ones in the measured samples in order to evaluate whether the fingerprint of the

species in the coculture is the same as the fingerprints of both members of the mixed cultures, i.e.

whether interaction in the coculture and interaction in the mixed culture lead to the same changes

in phenotypic fingerprint. This allowed to validate our experimental set-up.

Fingerprints of the in silico created communities were compared to those of the measured samples

by procrustes analysis on the PCoA ordinations. In short, this technique compares two matrices
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by translating, reflecting, rotating and dilating one of the matrices in order to minimize the sum

of residuals between the two matrices. A randomized test is used to determine the significance

of the obtained sum of residuals (see Appendix 5.3 for more details). This technique allows to

quantify whether the ordination based on the relation between the in silico created communities

is similar to the one of the measured samples (Figure 3.8). Since no counterparts for the axenic

cultures can be created in silico, the original measurements of the axenic cultures was appended to

the datasets of in silico cultures. This way also the relationship of the in silico created communities

towards the axenic cultures was taken into account. Due to the low predicted relative abundances

of species A when using the random forest that was trained on data of the axenic cultures, the

‘in silico - axenic cultures’ for species A have low cell numbers. During diversity estimation

the samples of each population are randomly resampled to the lowest sample size, which led to

communities of only 99 cells. Therefore the results of the procrustes analysis for the ‘in silico

- axenic cultures’ and ‘in silico - cocultures’ cannot be compared directly. Both ordinations are

showing a trend in time, similar to the one of the measured samples. The ordinations are respecting

the relationships towards the axenic cultures of species A. The relationship towards the axenic

cultures of B seems to be preserved better for the ‘in silico - cocultures’ compared to the ‘in silico

- axenic cultures’. For the ‘in silico - cocultures’, the samples of the mixed cultures are no longer

ordinated between the ones of the cocultures, they are ordinated in between the samples of species

B. It should be noted that the procrustes analysis evaluates replicates of the same community as

completely different instances. During the minimisation of the sum of residuals a match will be

made between replicate 1 of the in silico samples for a certain community to replicate 1 of the

measured samples. However, replicate 1 of the in silico samples is not more related to replicate 1

of the measured samples than would be replicate 2 or 3 of the in silico samples. Thus there is some

artificial matching of samples. However, since replicates are ordinated close to each other and

this issue is occurring in both the comparison of measured samples to ‘in silico - axenic culture’

samples and the comparison of measured samples to ‘in silico - coculture’ samples, this was not

expected to be a problem. Both ordinations were found to be significantly similar to the one of the

original measurements (Table 3.1).
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Table 3.1: Procrustes analysis (999 permutations) was used to compare the ordination of the in silico created

communities to the one of the measured samples. The m2 statistic indicates the final concordance of both

ordinations. The smaller m2, the better the fit. (* = ordinations based on only 99 cells, other ordinations are

based on 20,000 cells)

Ordination 1 Ordination 2 m2 p-value
Measured* In silico - axenic cultures* 0.834 0.001
Measured In silico - cocultures 0.885 0.009



3.1 EXPERIMENT 1: INTERACTIONS BETWEEN BACTERIA CAN LEAD TO ADJUSTMENT OF THEIR
INDIVIDUAL PHENOTYPIC DIVERSITIES. 44

Figure 3.8: A: Ordination of the measured samples. B: Ordination of the measured axenic cultures and the

in silico created samples that are based on the random forest that was trained on data of the axenic cultures.

C: Ordination of the measured axenic cultures and the in silico created samples that are based on the random

forest that was trained on data of the cocultures. Note: the in silico created samples that are based on the

random forest that was trained on data of the axenic cultures (C) is based on only 99 cells, other ordinations

are based on 20,000 cells. (• = measured, ◦ = created in silico).
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3.1.4 Phenotypic characterization through Raman spectroscopy

Through FCM analysis it was found that the phenotypic community structure of a taxon is depend-

ing on the community composition. Raman spectrosopy was used to measure single cell spectra

for phenotypic characterization. Raman spectra of single cells for the axenic cultures and the two

coculture compartments were acquired from one of the replicates of each community at 72h in

the experiment. For each sample between 51 and 55 single cell spectra were measured. To have

a similar level of uncertainty, 51 spectra of each sample were selected for further analysis. The

spectra with the lowest intensity were assumed to be of lesser quality, therefore the spectra with

the lowest average intensity were discarded. After preprocessing, the average spectrum and cor-

responding standard deviations for each sample were calculated (Figure 3.9). A large peak in the

range of 810 - 1010 cm-1 was present in the average spectrum of species A in the axenic culture,

while this peak was not observed in any of the other samples. The cells of this sample showed large

differences in intensity of this peak, as can be seen by the large standard deviations. We believe

this peak might be the result of technical issues during fixation or storage of the sample, and is not

directly related to presence of biomolecules in the sample.

To gain insight in the differences between the phenotypic properties of cells from each microcosm,

spectra were centered and scaled to perform PCA (Figure 3.10 A). Because of the presence of

the large peak in the sample of species A in the axenic culture, the difference in these spectra

compared to the other spectra seems to be large overall. PCA did not result in a clear separation

of the samples. There is a large overlap between cells from species B that were grown in axenic

culture and cells from species B that were grown in coculture, and a more limited overlap between

the cells of species A that were grown in coculture and the cells of species B that was grown in

axenic culture. Therefore another visualisation technique, t-SNE, was used to gain more insight

in the underlying structure of the data (Figure 3.10 B). t-SNE is a highly performant visualisation

technique that can map the underlying structure of high dimensional data in a low dimensional

(2- or 3D) space. It specifically aims to preserve the ‘local’ structure of the data. By seeding

the algorithm with the result of a PCA the ‘global’ structure can be respected as well (for more

information see Appendix 5.1.9). Using t-SNE cells from each microcosm can be separated better.

The spectra of both species are separated well and the spectra of the same species with a different

treatment are separated relatively well too, with some exceptions for species B.
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Figure 3.9: Average Raman spectra of the single-cell measurements. A: Species A in axenic culture. B:

Species A in the coculture. C: Species B in axenic culture. D: Species B in the coculture. Colored bands

indicate the standard deviations. All average spectra are based on 51 single cell measurements.
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Figure 3.10: Visualisation of the underlying structure in the dataset of single cell Raman spectra for species

A in axenic culture, species A in the coculture, species B in axenic culture and species B in the coculture.

51 single cell measurements are present for each of the samples. Visualisation was carried out using two

techniques, PCA (A) and t-SNE seeded with the result of PCA (B). Note: Distances between clusters on a

t-SNE plot cannot be interpreted as a measure of dissimilarity between the clusters.

3.1.5 Difference in cellular compositon

In the previous sections, it was found that interaction between bacteria was leading to a shift in

nucleic acid content and that the single cell spectra of the different populations can be separated.

However, based on FCM results alone it is impossible to infer whether this shift in nucleic acids is

related to a change in DNA or RNA content of the cells. To know which biomolecules were dif-

fering in spectra of the different samples, the location of peaks in the spectra can be compared to

known databases of biomolecules, provided that these were measured using a laser with the same

wavelength as the laser that was used to measure the single cell spectra. A database containing

60 preprocessed spectra of biological molecules measured with a laser with equal wavelength as

the one used in this study is available for public from a study of De Gelder et al., 2007 [77]. This

database includes the spectra of all DNA and RNA bases (Appendix 5.2.1). Since the standard

deviations around the average spectra indicated some variability between cells of the same sample,

a robust method to find the wavenumbers to discriminate between the spectra of different treat-

ments is needed. Finding these most important features to discriminate between classes is called

‘feature selection’. Several techniques to do this exist. Since we believe the peak in the range of

810 - 1010 cm-1 that was observed in the spectra of species A in the axenic culture is the result of

technical issues, we excluded this region during analysis of the spectra of species A.
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First, a randomized logistic regression model (RLR) was built for each species separately. The

features are the intensity values for each of the wavenumbers and the label to be predicted is the

treatment of the bacterium (axenic culture or coculture). A randomized model generates a ranking

of features according to their importance for predicting the label (for more information on this

procedure see Appendix 5.1.5). Based on this ranking several models were built. First, a model

containing only the most important predictor was built. Next, a model containing the two most

important predictors was built This procedure was repeated until all predictors are used in the

model. For each of the models a 10-fold cross-validation was carried out. The model that holds

only the best predictor, will likely have too less information to make a reliable distinction between

the classes and thus will not have the best accuracy. When adding other important predictors,

more information is being incorporated in the model and thus the accuracy will go up. The point

where the highest attainable accuracy is reached can be determined based on the cross-validation

errors. This point corresponds to the optimal minimum number of required predictors. To eval-

uate whether these results could be generalized, a leave-one-out cross-validation (LOOCV) was

applied. In LOOCV one sample of the dataset is set aside before building the model. When the

RLR model was built and cross-validated, the optimal model was used to predict the label of the

hold-out sample. Since this sample was not used during feature selection and validation, the ac-

curacy on the hold-out sample gives information on whether the feature selection that has been

found to be optimal was generalizable to unseen data. The entire procedure for feature selection

and cross-validation was repeated for each of spectra as the hold-out sample. Since we believed

the range of 810 - 1010 cm-1 in the spectra of species A in the axenic culture was due to technical

issues and not biological differences, this region was removed in all spectra of species A. For both

species only a small number of features was required to reliably predict their treatment (Table 3.2).

Moreover, the selection of the low number of optimal features could be generalized to unseen data

as can be seen by the high LOOCV accuracies.

Table 3.2: Results of the RLR models for both species. The cross-validated accuracies were determined

using 10 folds.

Species Range of optimal number

of features

Cross-validated accuracy at

optimal number of features (%)

LOOCV

accuracy (%)
A 1 - 2 100 99.02
B 4 - 6 100 99.02
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The RLR model showed that a clear distinction between treatments can be found for both species.

However, since the spectra of biomolecules such as nucleic acids have several peaks over the

biologically relevant region, the low amount of selected wavenumbers made it difficult to attribute

the differences to certain compounds. Therefore another approach was taken, the χ2 statistic was

calculated for different treatments of the spectra for each species (Figure 3.11). The values for χ2

were then visually compared to the spectra of the nucleic acid bases (Appendix 5.2.1). For most

peaks in the spectra of the nucleic acid bases, both DNA and RNA, a peak in the values for χ2 is

found. Next to this, there were also peaks in the χ2-values that were not corresponding to peaks in

of nucleic acid bases, which might indicate that also other compounds next to nucleic acid bases

were differing between the treatments. However, one should be aware of the fact that each peak

in a Raman spectrum is the result of multiple compounds, and thus from this analysis it is still

somewhat ambiguous to conclude which biomolecules were differing between the treatments.

Figure 3.11: The χ2 statistic between the spectra of the different treatments for each species separately. A:

χ2 statistic for species A. B: χ2 statistic for species B.
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3.2 Experiment 2: Reversibility of the effect of interactions on the in-

dividual phenotypic diversities of the bacteria.

The aim of this experiment was to evaluate whether the influence of microbial interactions on

phenotypic diversity, that was found in the previous experiment, was reversible. The same bacte-

ria, and a similar set-up as for the first experiment were used (Figure 3.12). Axenic cultures were

created as a reference for the level and dynamics of diversity in non-interacting genotypes. Cocul-

tures were created in the same way as during the first experiment. After three days of incubation,

the apical phases of the cocultures were replaced with new apical phases, containing either fresh

medium or milli-Q. Milli-Q was used since the level of dilution has been found to influence com-

munity dynamics, and thus only removing the apical phase and not replacing it by a new apical

phase might lead to community dynamics that are related to the level of dilution or upconcentration

and not to the presence or absence of an interacting partner [97]. Fresh medium was used since the

bacteria are already in stationary phase, and therefore might need some pulse to start recovering.

After three days of incubation the first FCM measurement took place and the apical phases were

replaced. The communities were then followed up over three days. Every 24h samples were taken

for FCM and analysed using both SG and SGPI staining. From the SGPI stained samples it can

be concluded that all cultures were viable throughout the entire experiment. Following results are

based on the SG stained samples.

Figure 3.12: Illustration of the experimental set-up of the second experiment and the related hypothesis.

Cocultures were created in the same way as for the first experiment. After three days of incubation, the apical

phases of the cocultures were replaced with new apical phases, containing either fresh medium or milli-Q (A

and B). Axenic cultures were created as a reference for non-interacting genotypes. For the axenic cultures

there was no replacement of the apical phase (C and D).
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Diversity was again calculated based on two scatter and five fluorescence detectors of the FACS-

Verse flow cytometer [96]. After three days, the expected lower level of phenotypic richness D0 and

phenotypic diversity D2 was not observed for either of the species (Figure 3.13). Diversity of the

coculture members was similar to the diversity of the axenic cultures. These diversity values are in

the same range as the axenic cultures during the first experiment. Over time, a decrease of diversity

in the axenic cultures (‘control’) is observed for both species. For species A, the replacement of

the apical phase with either fresh medium or milli-Q led to an increase in phenotypic diversity over

time. For species B, an increase in diversity was observed for the communities with fresh medium

in apical phase, but not for the communities with milli-Q.

Figure 3.13: Hill diversity parameters D0 (richness) and D2 (richness and evenness) for both individual

bacterial species in communities of single species, denoted as ‘control’, and cocultures, denoted as ‘fresh

medium’ and ‘milli-Q’, from the third day on. The colors indicate the contents of the apical phase that was

applied to the communities on the third day. The dashed lines indicate the average trend of the replicates.

The upper row (A) gives results for species A, the lower row (B) gives results for species B. Note that the

measurements started only on the third day



3.3 EXPERIMENT 3: VALIDATION OF THE PREDICTED RELATIVE ABUNDANCES. 52

3.3 Experiment 3: Validation of the predicted relative abundances.

The aim of this experiment was to validate the trend in relative abundances that was found in the

first experiment using the supervised in silico community methodology. A gfp-labeled strain of

the Enterobacter sp. used in the first experiment was available. Mixed cultures of Pseudomonas

sp., denoted as B, and the gfp-expressing Enterobacter sp., denoted as A, were created. These

cultures were sampled every 24h over a total period of 72h, similar to the first experiment. Due to

the autofluorescence properties of species A these cells can be detected on the primary fluorescent

channel of the flow cytometer without staining. The samples were analyzed once without staining

to get information about the cell density of species A, and once with SG staining to get information

on the total cell density. This way the relative abundances of the two species in the mixed culture

can be assessed. It should be noted that the gfp-labeled strain suffers from a metabolic burden due

to the presence of his gfp and that not all bacteria with a gfp-label will be fluorescent, which might

cause deviations as compared to what the relative abundances of the non fluorescent Enterobacter

sp. were during the first experiment. Over time a gradual enrichment of species B was observed

(Figure 3.14). This trend is most similar to what was found in the first experiment by training the

random forest on the coculture members, however the absolute values of the relative abundances

are differing. The predicted abundance of A was lower than what was found in this experiment.

Figure 3.14: Evolution of the relative abundances as predicted by the random forest that was trained on

fingerprints of the axenic cultures in experiment 1 (A), on fingerprints of the coculture members in exper-

iment 1 (B) and as determined using a fluorescent A in experiment 3 (C). Green lines indicate the relative

abundances of species A, blue lines indicate the relative abundances of species B. The different shades

correspond to biological replicates (n = 3).
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3.4 Experiment 4: Influence of carbon source diversity on pheno-

typic diversity.

The aim of this experiment was to evaluate whether presence of multiple carbon sources would

steer the microbial populations to a higher phenotypic diversity. The hypothesis for this experi-

ment was that the presence of multiple carbon sources leads more niche differentiation within the

community, i.e. the breakdown and consumption of different carbon sources compared to only

one, and therefore would lead to a higher phenotypic diversity. Three carbon sources were added

to minimal medium: glucose, a mixture of glucose, acetate and pyruvate and yeast extract. For

glucose and the mixture of glucose, acetate and pyruvate, the concentrations were set to have the

same amount of carbon in each of the treatments. Since the composition of yeast extract differs

among batches, the amount of C in the yeast extract treatment was not controlled. The same En-

terobacter sp. and Pseudomonas sp., denoted as A and B, as for the first and second experiment

were used. The two axenic cultures and a coculture were monitored over a total period of 72h.

Approximately every 24h samples were taken for flow cytometic analysis.

Diversity was calculated based on two scatter and two fluorescence detectors of the Accuri C6

flow cytometer. Both D0 and D2 were evaluated, since it was unknown if presence of multiple

carbon sources would lead to a higher level of phenotypic richness (D0), a reorganization of the

phenotypic community landscape (D2), or both. Results for D1 are not shown since D1 is highly

correlated with D2 (rp = 0.99).

When evaluating differences in diversity, no clear influence of the presence of multiple carbon

sources was found (Figure 3.15). For both axenic cultures and the coculture, replicates of the

different treatments have similar diversity values. When evaluating differences in diversity for each

carbon source separately, similar diversity dynamics are observed for each species, irrespective of

the carbon source (Figure 3.16). Except for yeast extract, where the diversity of species B at the

first measurement is slightly higher compared to the diversity of species B in the other two carbon

treatments. Thus no clear dependence of phenotypic diversity on the carbon source diversity was

observed in this experiment.
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Figure 3.15: Hill diversity parameters D0 and D2 of both individual bacterial species and the mixed culture,

for each carbon source separately. Error intervals on the D2 are generated by bootstrapping (999 bootstraps).

There were biological replicates (n = 3) for each sample, missing replicates are due to too low cellnumbers

for reliable diversity estimation. Note: y-axis are not set equal, since this made interpretation of the graphs

more difficult.
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Figure 3.16: Hill diversity parameters D0 and D2 of both individual bacterial species and the mixed culture,

for each carbon source separately. Error intervals on the D2 are generated by bootstrapping (999 bootstraps).

There were biological replicates (n = 3) for each sample, missing replicates are due to too low cellnumbers

for reliable diversity estimation.
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4
Discussion

4.1 Hypothesis 1: Interactions between bacteria leads to an adjust-

ment of their individual phenotypic diversities.

One of the aims in this study was to evaluate whether microbial interactions can lead to changes in

the individual phenotypic diversity of the interacting organisms. To investigate this, an experiment

was carried out where four synthetic communities were created, using two drinking water isolates

as model organisms (Section 3.1). The communities that were created consist of two axenic cul-

tures, a coculture with physical separation between the genotypes and a mixed culture without

physical separation. In this experiment phenotypic diversity was evaluated through flow cytometry

and Raman spectroscopy.

Based on the FCM results of this first experiment, the phenotypic diversity of the community

members was different when they were grown in a coculture compared to when they were grown

in axenic cultures. For both genotypes a lower phenotypic diversity was observed in the cocul-

ture compared to the same genotype in axenic culture (Figure 3.3). This effect of interaction on

alpha diversity was more pronounced for species A than for species B, indicating that different

genotypes have different phenotypic responses to the interaction. The phenotypic richness (D0)

decreased, which indicates that the interaction did not only lead to a reorganization of the pheno-

typic community structure (i.e. change in the relative abundances of the phenotypes), but that there

are phenotypes which disappeared due to the interaction. Over time, the differences in alpha di-

versity between the axenic and cocultures was becoming more pronounced. This might indicate

that the interaction which causes the adaptation of the individual phenotypic diversities is mainly

present during stationary phase, and less pronounced or absent during the exponential growth of

the bacteria.



4.1 HYPOTHESIS 1: INTERACTIONS BETWEEN BACTERIA LEADS TO AN ADJUSTMENT OF THEIR
INDIVIDUAL PHENOTYPIC DIVERSITIES. 58

When evaluating the beta-diversity between the populations, similar trends were found (Figure 3.4).

The axenic cultures of species A were showing only moderate changes over time, while species A

in the cocultures was more dynamic and became more distinct from the axenic cultures over time.

For species B, the fingerprint of the coculture and the axenic culture followed a similar trend over

time, with insignificant differences between the axenic culture and the coculture. This confirms

our previous findings that different genotypes adopt different phenotypic responses to the interac-

tion and that the interaction which causes the adaptation of the individual phenotypic diversities

mainly takes place during stationary phase. However, for species B the difference between the two

conditions was slightly more pronounced at 24h. This could be explained by the fact that species

B was expected to reach stationary phase only just before the first measurement, and the moment

at which species B reached stationary phase in the axenic culture and in the coculture might have

been different. If the growth dynamics in the two microcosms were different, then the phenotypic

fingerprints would also be different since different phenotypes are exhibited during the different

stages of growth [45]. The preliminary determined growth curves were based on OD measurements.

Since OD measurements are not accounting for changes in cell properties, there is often a dis-

crepancy between growth curve estimations based on OD measurements and the ones based on

total viable counts [98].Therefore the exact point where the stationary phase was reached might be

slightly different from our preliminary estimate and species B might not have been in stationary

phase at 24h. For species B and the mixed culture of A and B a limited increase in cell density over

time was observed, especially from the first measurement to the second (Figure 3.2). This might

imply that species B was indeed not yet in stationary phase at 24h and thus differences in growth

dynamics might be the explanation for the larger difference between the cocultures and the axenic

cultures at 24h.

To further investigate the differences in phenotypic community structure based on the FCM results,

scattering and fluorescence patterns of the populations were evaluated for each species separately

(Figure 3.5). The differences in scattering patterns were limited for both species. Since scattering

gives information on size, morphology and granularity [52], our findings indicate there were no

large changes in cell morphology due to the interaction for either of the species. The fluorescence

signals are the result of the SG staining. SG is a nucleic acid stain that primarily stains double

stranded DNA, but will also stain the RNA [99]. Since SG staining is a stoichiometric staining [50],

a higher fluorescence signal is directly related to a higher nucleic acid content. In terms of nucleic

acid content, large differences were observed for species A and smaller differences for species B.

Species A is shifting to a community with a lower variance in nucleic acid content and with a higher
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abundance of high nucleic acid individuals. This higher nucleic acid content might be the result of

different shifts in physiology that could have been occurring. On the one hand, the cells could have

had a higher DNA copy number, indicating an adaptation of their cell cycle. Bacteria are known to

adapt their cell cycle behaviour and chromosome content under certain environmental conditions.

For example, for Pseudomonas putida a constant growth rate with an accelerated DNA replication

has been observed in relation to different types of stress [100]. On the other hand, the bacteria might

have had a higher RNA content, indicating a shift in their gene expression. The bacteria could

have been more active while still expressing the same genes as they were in the axenic cultures,

or they might have shifted towards expression of other genes compared to the axenic cultures.

The spread in nucleic acids content in a clonal population can be attributed to several causes.

There is natural stochasticity in gene expression, which is called ‘gene expression noise’ [101]. This

noise can be attributed to noise in the expression itself and in other cellular components that are

present in low concentrations. This biological noise has been found to be both controlled [102] and

structured [103;104], i.e. the amount of biological noise in gene- and protein expression is assumed to

be related to the function of the gene or protein. The noise levels are found to reflect the potential

costs and benefits related to the noise, for example, stress-related proteins are more noisy compared

to proteins for synthesis [103]. Thus, if the bacteria were changing their gene expression due to the

interaction, the noise levels of their gene expression might have changed as well. Based on flow

cytometry results alone, it is impossible to draw conclusions on the reason for this difference in

nucleic acid contents.

Through Raman spectroscopy we investigated whether specific biomolecules could be associated

with the observed shifts in phenotypic diversity. The spectra of all DNA and RNA bases were

available from literature and were measured using the same laser wavelength as in this study [77].

We aimed to investigate which of the above mentioned scenario’s was most likely to be occurring.

If only an intensity shift in the peak regions related to the DNA bases was observed, this would

indicate there is only a change in the DNA content, implying an adaptation of the cell cycle.

Uracil is replacing thymine in RNA molecules compared to DNA [105]. If a shift in intensity related

to the peaks in the spectrum of uracil was observed, a shift in presence of RNA and thus gene

expression is indicated. In addition, this shift in gene expression would then also cause a difference

in protein content, which would be detectable through Raman spectroscopy as well. It is not

possible to draw a conclusion on whether this shift in gene expression is related to only a more

intense activity or a different activity compared to the coculture. There is variation in the spectra

of bacteria from the same population, indicating we can already observe a range of phenotypes
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via the spectra. Therefore, we attempted to find the major differences in the spectra between

different populations through feature selection (Section 3.1.5). Differences in intensities in the

peakregions of both DNA and RNA bases were observed, as well as in regions where DNA and

RNA bases have no peaks. These last might be related to the backbone of the DNA and RNA

molecules or to other cell constituents such as proteins, etc. Since we observed changes in DNA

bases as well as in RNA bases, we were still not able to conclude which of the above mentioned

hypothesis was most plausible. Through more specific techniques such as transcriptomics, which

would allow comparison of gene expression patterns, a better understanding of the interaction that

was occurring might be obtained.

The phenotype of an organism is related to its functionality [34]. Making the link between indi-

viduals and their activity is a difficult task and is one of the key objectives in microbial research

nowadays [106]. Based on the FCM fingerprints and Raman spectra we were not able to make this

link either. However, if the assumption that a higher cytometric diversity (e.g. diversity in nucleic

acid content and morphology) corresponds to the capacity to occupy a broader range of niches can

be withhold, we can state an alternative hypothesis based on the results of this experiment: when

a single genotype is growing in an axenic culture it is creating an entire ‘community’ of isogenic

cells, where the constituent isogenic cells occupy multiple niches, leading to a high phenotypic

diversity. In case multiple genotypes are present, two in this study, the available niches can be

distributed among the genotypes according to their efficiency to occupy the niche. This would

enable each genotype to occupy the niches at which it is most performant, thus creating a mixed

community with a high functionality. This hypothesis of phenotypic niche differentiation due to

genotypic richness is illustrated in Figure 4.1. During this study, communities containing only two

genotypes were used. This means that no conclusions can be drawn regarding the validity of this

hypothesis or the exact phenotypic diversity trajectory related to the amount of genotypes in the

community. The observed change in diversity was different for both model organisms, indicating

that diversity dynamics might be different for each genotype.

Besides the number of genotypes, there might be other factors that could potentially influence the

diversity dynamics of a single genotype in the community. For example, the change in phenotypic

diversity might be interaction-, partner- or environment-dependent. A community of species A and

species B might lead to a different change in phenotypic diversity for species A, compared to when

the community consists of species A and another species C. The environment might influence the

amount of available niches, for example by its physical organisation and the existence of micro-

environments [107]. The amount of available niches for a certain genotype might also be a function
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Figure 4.1: Potential trajectories for the hypothesis of phenotypic niche differentation for a single genotype

as a function of genotypic richness of the community. A non-interacting genotype might be unaffected by

the presence of other species (light blue line). An interacting species might evolve to a lower phenotypic

diversity where it is only occupying the niches where it is most efficient. This could happen at a fast rate

(dark blue line), more gradually (pink line) or instantaneously when some other species that preferentially

occupies similar niches enters the community (green line). Note that these are some hypothetical dynamics

and that there might be other possible patterns as well.

of which other genotypes are present. For example, a species that is excreting a metabolite might

make new niches available to species which can feed on this metabolite and in this way increase

the phenotypic diversity of these species. Alternatively, a species which degrades antibiotics, can

create antibiotics-free micro-environments and therefore create more available niches for non-

antibiotic resistant organisms. Potentially, when a predator enters the community, the competition

between various species may be controlled, possibly creating additional niches for some species.

Niche differentiation in sympatric populations is a phenomenon that has widely been observed for

macro-ecological communities. It has been reported for two [108] and more [109] sympatric popu-

lations. Some patterns regarding diversity and functionality relationships in micro-ecology have

been found to show similarities to those in macro-ecology [110]. Niche differentiation might be a

pattern that also occurs in microbial communities. This has previously been hypothesized in many

studies, for example in a study regarding co-occurrence of sympatric yeasts related to their poten-

tial for resource partitioning [111] and in a study where the relationship between gene expression

similarity and the potential for interaction and co-existence of freshwater green algae was evalu-

ated [112]. Surprisingly, in this last study the researchers found that algae with more similar general

gene expression patterns were more likely to co-exist while the initial hypothesis stated the op-



4.1 HYPOTHESIS 1: INTERACTIONS BETWEEN BACTERIA LEADS TO AN ADJUSTMENT OF THEIR
INDIVIDUAL PHENOTYPIC DIVERSITIES. 62

posite. Therefore they stated that their hypothesis might have been incomplete and hypothesized

that the potential of species to differentiate their niches and to coexist is related to differences in

expression of rare genes, rather than to the expression of the‘core genome’, which is responsible

for survival and reproduction. Since FCM and Raman spectroscopy both result in general mea-

surements of nucleic acids, we can only hypothesize about potential differences and shifts in gene

expression that were occurring here. As stated previously, more sensitive techniques such as tran-

scriptomics might provide a better understanding of the community dynamics that were observed

during this study.

Reversibility of the effect of interactions on phenotypic diversity

Related to this first experiment, two more experiments were carried out (Section 3.2 and 3.4). In

the second experiment we attempted to assess the potential of the species to partially return to

their axenic phenotypic diversity states after they were disconnected from their partner genotype.

This hypothesis is illustrated in Figure 4.2. When the species are isolated from the coculture the

microbial interaction ceases and they might return to the situation where they were creating an

entire ‘community’ of isogenic cells, displaying a higher level of phenotypic diversity. Since the

expected lower diversity for the species when grown in coculture was not observed after three days,

we were not able to investigate this (Figure 3.13). The reason why we did not observe this lower

level of diversity might be that there was a small difference in the experimental set-up of the first

experiment compared to the second experiment. In the first experiment the cultures were gently

shaken to aid diffusion of metabolites between the two compartments. In the second experiment

there was no shaking, which might have led to a reduction of metabolite exchange, and thus the

two species might have been unaware of each others presence. After three days, the apical phases

were replaced with either milli-Q or fresh medium. This replacement will have caused some liquid

exchange between the compartments which explains why some trends were observed after this

replacement, even though the cultures were still not shaken.

For species A, higher levels of phenotypic diversity were observed in both treatments compared to

the control cultures where the apical phase had not been replaced (Figure 3.13). This might be ex-

plained by the fact that the cultures were in stationary phase at high cell densities (3×108 cells/mL)

and therefore the community might have been shifting towards lesser active states, exhibiting lower

levels of phenotypic diversity. When the apical phase was being replaced by milli-Q, this led to a

small dilution of the accumulated metabolites which stimulated the bacteria to become somewhat
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Figure 4.2: Hypothesis of the experiment where reversibility of the effect of interactions on phenotypic

diversity was assessed. After three days of incubation, the apical phases of the cocultures were replaced

with new apical phases, containing either fresh medium or milli-Q. The cultures where fresh medium was

added were expected to grow and thus return to a higher level of phenotypic diversity at a faste rate (dark blue

line). The replacement with milli-Q was intended to simulate the termination of any interaction between the

genotypes. A recovery to higher levels of phenotypic diversity was expected after removing the interacting

partner, but at a slower rate compared to the cultures where fresh medium was added (light blue line). The

axenic cultures were intended as control samples. For these cultures either relatively stable levels of diversity

were expected (red line) or a small decrease since the cultures were becoming less active (dashed red line).

more active again and therefore display a higher level of phenotypic diversity. We hypothesize

that same could have happened when replacing the apical phase by fresh medium. For species B,

the differences between the treatments were more limited, with a small increase in diversity for

the cultures that were treated with milli-Q. These observations demonstrate that species-specific

phenotypic responses can occur as a result of changing environments.

Influence of carbon source diversity

In the last experiment we assessed whether carbon source diversity drives phenotypic diversifi-

cation in synthetic communities. An experiment was conducted where either glucose, a mixture

of glucose, acetate and pyruvate or yeast extract was added to minimal medium. Our hypothe-

sis stated that more carbon sources would lead to more niches in the community and therefore

a higher level of phenotypic diversity would be observed. The diversity dynamics that were ob-

served were related to community composition rather than to the carbon source that was added to

the community (Figure 3.15 and Figure 3.16). This can potentially be explained by the fact that
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all species were assumed to be in stationary phase and were therefore under starvation conditions.

Bacterial strains are found to maintain a recognisable strain-specific DNA pattern when grown

under limited conditions [113]. If the cultures were also displaying similar RNA patterns because

they were under starvation conditions, both DNA and RNA patterns would be similar for a certain

genotype, irrespective of the carbon source that was added. This would explain why the axenic

cultures were showing similar phenotypic diversity patterns under all conditions. Based on trends

observed through beta-diversity analysis, the community composition was evolving in a similar

way irrespective of the carbon sources (graph not shown). If both community composition and

the influence of interaction on phenotypic diversity of the community members were similar, the

community fingerprint would also evolve in a similar way. And as such result in similar diversity

patterns for the mixed cultures. Potentially, the expected differences in diversity would have been

observable throughout the growth of the bacteria, when they would not be under starvation. This

could be evaluated by following up the phenotypic diversity during growth. Or, since bacteria

exhibit different phenotypes during the different growth phases and the evolution of the growth

phases might be different when different carbon sources are available, it might be difficult to dis-

tinguish between phenotypic diversity differences which are due to growth and differences which

are due to the presence of multiple carbon sources. Therefore a chemostat set-up where growth

rates can be controlled might be a more appropriate set-up to evaluate the effect of these types of

influences on phenotypic diversity.
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4.2 Hypothesis 2: Flow cytometry and Raman spectroscopy give com-

plementary information regarding phenotypic community struc-

ture.

Phenotypic diversity is a population property that is manifesting itself at the level of individuals.

When we want to assess this fine scale diversity we need tools that can reliably measure character-

istics of single cells without disturbing their biochemical state [114]. During this study phenotypes

were evaluated using two techniques, flow cytometry and Raman spectroscopy. One of the aims in

this study was to evaluate whether these techniques give similar or complementary information.

When we want to assess phenotypic diversity we need to define the phenotypes between which we

will distinguish. For evaluating diversity based on flow cytometrically derived phenotypic traits,

we use our in-house pipeline [63] (explained in Section 1.4.2.1), where a binning grid is applied to

each of the bivariate parameter combinations. Bacteria that fall within the same bin are defined

as the same phenotype. Thus, phenotypes are defined in an arbitrary way, which implies that also

our calculated diversity metrics, especially the phenotypic richness (D0) which is the amount of

non-empty bins, have somewhat arbitrary values. This arbitrary definition of phenotypes can be

disputed. However, when diversity at the species level is assessed through sequencing, arbitrary

cut-offs are used as well. The reads that result from sequencing are clustered together in OTU’s

(operational taxonomic units), which are used as a proxy for species. To define the OTU’s an

arbitrary cut-off of 97% similarity is frequently used, which is something that has been disputed

in literature as well [115]. However, we are not interested in the absolute values of the diversity

metrics. It is rather by comparison of diversity values under different conditions or by following

up the diversity over time, that we can gain insights in the underlying ecological processes that are

occurring [116].

When evaluating phenotypic diversity based on flow cytometry the phenotypic traits on which

information is gained are cell size, morphology, granularity and nucleic acid content. Information

regarding these traits is embedded in the scatter and fluorescence parameters. But, only a certain

level of information is retained in these parameter representations [117]. For example, based on

the values of the scatter parameters the exact cell morphology (e.g. bacillus, rod, spiral, etc.)

cannot directly be inferred. Moreover, since SG is a stain which stains all nucleic acids, it is

unknown whether the fluorescence signal arises from DNA or RNA. Thus the phenotypic traits

derived through flow cytometry give an abstract representation of the phenotypic traits. Moreover,

only taking into account these traits is an abstraction of the entire phenotypic diversity of the
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bacteria. Nonetheless, morphology and nucleic acids content are phenotypic traits of interest.

DNA gives information regarding presence of species (e.g. genome sizes) and copy numbers of

their genome. Previously flow cytometry-derived phenotypic diversity has been found to serve as

a good proxy for taxonomic diversity in freshwater communities [63]. Note that in this study the

presence of species was a controlled factor. Additionally, the RNA content inferred from FCM

gives information on activity of the bacteria. DNA and RNA levels are thus both properties of

interest when assessing community dynamics regarding functionality. Even though the parameter

representations are abstractions of the phenotypic traits, they can serve as comparative measures

that are implicitly holding information regarding the phenotypic traits.

Heterogeneity is encountered for more cell constituents than nucleic acids alone. There can be

both quantitative and qualitative differences in molecular phenotype between individuals, i.e. dif-

ferences in concentration of biomolecules and differences in types of biomolecules [34]. The Ra-

man spectrum of a single cell is comprised of the spectra of all compounds that are present in the

cell. Moreover, the signal intensity is proportional to the concentration of the compounds [66], and

therefore the spectrum offers an in depth view on the molecular phenotype. In Section 3.1.5 we

attempted to gain some insight in whether specific biomolecules could be associated with the shifts

in phenotypic diversity that were observed through flow cytometry. The inference of biochemical

composition of bacterial cells based on their Raman spectra is not an automated procedure, and

is therefore a time-consuming and unprecise task. In literature several approaches are used to

gain insight in the spectra; some studies use visual comparison [77] while others prefer the use of

peak detection algorithms and subsequent visual comparison [76]. A study of Bergholt et al. [118] at-

tempted to automate biomolecule detection from Raman spectra in a clinical set-up, however they

focused on changes in only a few cancer-specific biomolecules and not on whole cell analysis.

More automated pipelines for detection of biomolecules would be an interesting improvement.

Even though interpretation of the spectra is not straightforward, we argue the spectra can still be

used for phenotypic diversity estimation. As is the case for flow cytometric parameter representa-

tions, an exact interpretation of the underlying phenotypic differences is not necessary to be able

to use the spectra for comparative diversity analysis. We are not aware of any attempts to charac-

terize phenotypic community structure based on Raman spectroscopy in literature. A first step to

assess phenotypic diversity based on Raman spectra will be to find a way to define the phenotypes

between which will be distinguished. During this study 51 single cell spectra were acquired for

each population, without biological replicates. As indicated by the standard deviations that were

found when calculating the average spectra for each population, there is a broad range of diversity
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between cells of the same population (Figure 3.9). In a study of Nichols et al. [119] single knock-out

strains of Escherichia coli were subjected to a broad range of stresses in order to define the number

of phenotypes that could be exhibited by each strain. The researchers concluded that the expected

number of phenotypes ranged between 1 and 31. Therefore, we believe the 51 cells measured

during this study do not provide enough sampling depth (i.e. enough coverage of the phenotypic

landscape) for reliable diversity estimation.

Single-cell Raman measurements are time-consuming since they require manual focusing of the

cells. The required exposure times are relatively long since Raman scatter is a weak signal [120].

This requires an immobilization of the cells. The time consuming measurements cause the need

for sample fixation and make it difficult to analyse large cell numbers or to replicate. In the field

of Raman microscopy several methods have been developed to make the measurements shorter

and more automated. For example through the use of microfluidics systems or by measuring

single cell spectra directly in aqueous solution through optical trapping [121]. Application of such

techniques might provide a way to increase sampling depth and reduce the potentially human

induced differences in the spectra through manual focusing etc.

In summary, flow cytometry is a high-throughput method for which we have an established diver-

sity estimation pipeline. The main benefits of the flow cytometric approach are its speed and the

fact that large amounts of cells can be analysed. This allows to have good coverage of the pheno-

typic landscape of the community and to apply a high measurement frequency. The properties

which are taken into account by flow cytometric diversity are limited and thus the obtained diver-

sity estimates are a coarse approximation of the entire diversity of the community. When a shift in

phenotypic diversity is observed, it is not straightforward to draw a conclusion about the underly-

ing biological or ecological process that is occurring. Raman spectroscopy on the other hand is a

more sensitive technique that allows for a more holistic view on molecular phenotypic traits. This

technique holds a lot of potential for phenotypic diversity estimation. However, there are some po-

tential enhancements which would make the application easier, such as more automated and faster

measurements since speed is currently the major bottleneck. The spectra are holding a lot of infor-

mation, but they are difficult to interpret. More automated pipelines for detection of biomolecules

would be an interesting improvement. Finally, it would be interesting to find confirmation of the

phenotypic diversity estimates by flow cytometry through Raman spectroscopy. Considering the

current study, both techniques have their benefits and drawbacks. They can give information on

different (e.g. morphology, protein content) and similar (e.g. nucleic acids) properties, and there-

fore a combination of both technologies is interesting for further research.
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4.3 Application of the in silico methodology to infer community com-

position

The supervised in silico community methodology described in Section 1.5, makes use of the cy-

tometric fingerprints of species to infer community composition in synthetic ecology experiments.

One of the aims in this study was to apply this newly developed method to a synthetic ecosystem

study and to evaluate its performance.

In the first experiment, a shift in the cytometric fingerprint over time was observed for both species.

When the species were grown in a coculture, where they could interact, their cytometric finger-

prints were different from those of the axenic cultures. To evaluate whether these shifts, both in

time and due to the interaction, in fingerprint would affect the model predictions, classifiers were

trained in three ways using different input data (Figure 3.6). Based on the PCoA ordination the

mixed culture was shifting from a culture that was resembling more to species A at 24h to a culture

that was resembling more to species B at 48h and 72h; therefore, a gradual enrichment of species B

in the mixed culture was expected (Figure 3.4). To evaluate the effect of the trend in time, predic-

tions were made using a classifier that was trained on data of the axenic cultures from only the first

timepoint or data of the axenic cultures for each of the corresponding timepoints. The predictions

for these two approaches were very similar (differences <1%). This might be explained by the

fact that both species were in stationary phase, and thus even though there were some dynamics

in their fingerprints the decision boundary did not change very much. To evaluate the effect of the

changing fingerprints due to interaction, the relative abundances in the mixed culture were pre-

dicted by a classifier that was trained on the data of the membrane separated cultures as well. This

resulted in very different predicted relative abundances compared to when the model was trained

on data of the axenic cultures. At 24h, the differences in the predicted relative abundances were

rather limited (<10%). At 48h and 72h the differences were larger. The predictions based on the

axenic cultures predicted that species A was present in a relative abundance of less than 1%, while

the predictions based on the cocultures predicted a relative abundance of species A of about 30%.

The fact that the differences in predicted relative abundance were more limited at 24h, corresponds

with the previous observation that the differences in phenotypic fingerprint between the coculture

and the axenic culture were limited at 24h and became larger over time (Figure 3.3). As the co-

culture data best represents the phenotypic behaviour of both species during interaction, we argue

that the model trained by this dataset is the most biologically accurate.
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To validate whether this conclusion was correct, an independent experiment was carried out where

mixed cultures were created using a gfp-labeled strain of species A. This causes species A to emit

green fluorescence and thus to be detectable on the first fluorescence channel of the flow cytometer

without staining. The mixed cultures were analysed without staining to get information on the cell

density of species A, and with SG staining to get information on the total cell density. This way the

relative abundances in the mixed culture could be inferred. It should be noted that the presence of

the gfp-label causes a metabolic burden for bacteria, which implies the relative abundances during

the first experiment might be slightly diverging from the ones found in the third experiment. Next

to this, the gfp-expression in a clonal population is heterogeneous [33;101], therefore some members

of species A will have remained undetected causing an underestimation of the relative abundances

of species A. With these two factors in mind, the relative abundances of species A were expected to

be slightly lower than the ones that were predicted in the first experiment. In the third experiment

we found a higher abundance of species A at 24h and a gradual enrichment of species B from

48h on (Figure 3.14). This trend is similar to what was found when training the classifier on

data of the cocultures. However, the exact values of the relative abundances were different. This

could be due to differences in the experimental set-up. In the third experiment, the cultures were

grown in 10mL tubes in stead of 6-well plates and were not shaken while they were shaken during

the first experiment. Competition is known to be influenced by mixing of cultures in laboratory

settings [122]. Therefore we believe this observed discrepancy of relative abundances in the first and

third experiment might be explained by the differences in the experimental set-up. Since the trend

in relative abundances in both experiments is similar and is confirmed by what was expected based

on the beta-diversity analysis of the cultures (Figure 3.4), we believe the in silico communities are

a reliable tool for inferring community compositions in a synthetic ecology experiment, provided

that the correct (i.e. of interacting genotypes) input data is used to train the classifier. To have a

final confirmation of the method, the coculture experiment could be repeated using a gfp-labeled

strain.

Further, we applied the in silico methodology to validate our experimental set-up (Section 3.1.3).

We created communities digitally, by merging and splitting data of measured cultures. Mixed

cultures were created by merging data of species A and B. Coculture members were created by

splitting data of the mixed cultures. By evaluating the similarity between the ordination based on

the measurements and the ordination based on the predicted (in silico) populations, we aimed to

validate whether the fingerprints of species A and species B in the coculture were the same as the

fingerprints of species A and species B in the mixed culture. In other words, we wanted to validate
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whether studying the effect of binary interactions on the phenotypic fingerprints in mixed cultures

via a coculture set-up was a valid approach. In silico communities were created based on data

of both the axenic cultures and the cocultures. Similarity of the ordinations was quantified using

Procrustes analysis. Both in silico ordinations were significantly similar to the one of the measured

samples (Table 3.1). Surprisingly, the ordination of the in silico created communities based on the

axenic cultures was most similar to the one of the measured sample, however the difference was

very small. A possible explanation for this might be that the evolution through time has a clear

effect in the ordination, and thus even though there are some discrepancies in the interrelationships

of the fingerprints the time effect dominates the sample positioning. Moreover, the lowest cell

number in a population for the in silico created communities based on the axenic cultures was only

99 cells. To make a fair comparison all populations, including those of the measured samples, were

subsampled to 99 cells. This probably caused an unreliable estimation of the phenotypic commu-

nity structure with high estimated abundance for only the most abundant phenotypes. When these

communities are then compared there is a comparison of the most abundant phenotypes and not

of the entire community structure. Therefore we argue this comparison is probably unreliable.

Despite that there are some small discrepancies when we visually compare the ordination of the

measured samples and the ordination of the predicted (in silico) communities based on the cocul-

tures, most interrelationships between the cultures are preserved well and the similarity between

the cultures is significant. From this we conclude that studying the effect of binary interactions on

the phenotypic fingerprints in mixed cultures via a coculture set-up was a valid approach.
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4.4 Experimental set-up

There is a growing interest in understanding how phenotypic diversity is manifesting itself and

what its potential importance might be in both natural and engineered microbial ecosystems. This

interest arises from the growing awareness that bacterial heterogeneity is an essential trait for many

biological processes [101], such as pathogenicity [123] and steering of microbial-based processes [124].

It is still unknown how phenotypic diversity is influencing microbial communities and what the

importance and implications of phenotypic diversity in natural environments might be [33].

In literature, phenotypic diversity is often studied using phenotypic arrays [31], isotope labeling with

stable or radioactive probes or fluorescent labeled proteins [101;103]. Via phenotypic arrays insights

can be gained concerning the potential phenotypes that a certain species or an entire community

can exhibit. These set-ups are used to evaluate diversity in for example metabolic potential, but

cannot be used to quantify diversity within clonal populations in the same environment. Both

isotope labeling and fluorescent labeled proteins do allow to study diversity in clonal populations.

However, they require either a modification of the organisms under study by inserting a fluorescent

protein or the use of rather expensive and potentially dangerous isotopes.

The experimental set-up applied in this study does not require any genetic alteration of bacte-

ria or the use of isotopes. It can be used to study both biotic (interacting partner or interacting

community) and abiotic (growing medium, temperature, agitation, perturbations, etc.) factors that

might influence phenotypic diversity of microbes. It should be noted that this set-up does not

account for interactions which involve physical contact. Nonetheless is it an interesting experi-

mental set-up to study freshly isolated bacteria. Additional insights could be gained in the ecology

of interesting bacteria, such as the genus Limnohabitans, discussed in Section 1.1.2. Potentially,

their omnipresence might be related to their phenotypic diversity or phenotypic plasticity under

different circumstances, such as competition.

Thanks to recent advances in the field of flow cytometry, high-frequency automated sampling is

now possible as well [125]. After some adaptations in the experimental set-up, for example the use of

dialysis membranes to separate bacterial populations in larger volume cultures, it would be possible

to extend this set-up to follow up microbial populations at a higher measurement frequency through

online FCM. This could be interesting in the context of follow-up of growth dynamics in mixed

cultures or to evaluate the response of microbial populations on perturbations. Experimental set-

ups that allow these kinds of studies are of interest and are being developed in recent literature [126].
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4.5 Conclusion and further perspectives

The main finding of this study is that interactions between sympatric bacterial populations can

lead to an adjustment of the individual phenotypic diversities of the interacting populations. This

is an interesting finding which opens a future for research on phenotypic diversity and microbial

interactions. This can be within the context of both engineered ecosystems, such as a refined

steering and optimisation of microbial-based processes, or natural ecosystems, such as an increased

understanding of the drivers and sensitivities of microbial communities in natural ecosystems.

We proposed a hypothesis which stated that the individual phenotypic diversity of a genotype is

function of the other genotypes in the community and that this might be related to niche separation

between the genotypes. Our work has now provided the framework under which this hypothesis

can be further evaluated at higher genotypic richness.

Furthermore, we concluded that the experimental set-up that was used in this study was very suit-

able for its purpose. It can be used to study both biotic and abiotic factors that might influence

phenotypic diversity of microbes. We propose to extend this set-up for applications where a higher

sampling frequency is desirable. This would allow to monitor microbial population dynamics at

a very fine temporal resolution which will enhance our understanding of microbial community

dynamics. Interesting experimental set-ups could be used to monitor the growth of single geno-

types in mixed communities, which is currently a difficulty, or to follow-up microbial responses to

perturbations.

We evaluated two techniques, flow cytometry, which had previously been used for phenotypic

diversity estimation, and Raman spectroscopy, which has never been used for this purpose. We

concluded that both techniques have their benefits and drawbacks, that they give similar and com-

plementary information and that a combination is necessary. In this study we were not able to

estimate phenotypic diversity based on Raman spectroscopy. Nonetheless, we were able to gain

valuable information regarding its bottlenecks and its potential for evaluating phenotypic diversity.

Furthermore, we suggest that a pipeline for a more automated detection of biomolecules would be

an interesting enhancement for microbial research using Raman spectroscopy. This would com-

plement the fast diversity screening of FCM.

Following up the community composition in synthetic ecosystem experiments is currently a diffi-

culty. The available tools either require large sample volumes (sequencing) or the development of

specific primers (qPCR). Through phenotypic fingerprinting we found that we are able to infer the

evolution of the community composition using beta-diversity analysis, but more importantly, that
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we can quantify the relative abundances in a mixed culture experimental set-up by means of su-

pervised machine learning techniques. We concluded that in silico communities are a reliable tool

for inferring community composition in a co-culture synthetic ecology experiment, provided that

the correct input data is used to train the classifier. We advise to validate the approach by means

of a gfp-labeled strain before applying the approach to new experiments. We also found that the

phenotypic community structure of a species is a very dynamic property, in time as well as in re-

lation to external influencing factors. And, that this causes the in silico approach to break-down

in case of experimental set-ups which do not involve a co-culture standard. Therefore, research

regarding development of the tools necessary for characterizing the community composition in

synthetic ecology experiments is still ongoing.

In summary, in this thesis we found that interactions between sympatric bacterial populations can

lead to an adjustment of the individual phenotypic diversities of the interacting populations. We

evaluated the potential of Raman spectroscopy to estimate phenotypic diversity. The experimen-

tal design presented here forms a framework within which new ecological hypotheses regarding

phenotypic diversity and microbial interactions can be tested.
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[57] Grégori G., Citterio S., Ghiani A., Labra M., Sgorbati S., Brown S, and Denis M. Resolution

of Viable and Membrane-Compromised Bacteria in Freshwater and Marine Waters Based on

Analytical Flow Cytometry and Nucleic Acid Double Staining. Applied and Environmental

Microbiology, 67:4662–4670, 2001.

[58] Rubbens P., Props R., Boon N., and Waegeman W. Flow cytometric single-cell identification

of populations in synthetic bacterial communities. PLOS ONE, 12:1–19, 2017.

[59] Van Nevel S., Koetzsch S., Weilenmann H.U., Boon N., and Hammes F. Routine bacterial

analysis with automated flow cytometry. Journal of Microbiological Methods, 94:73–76,

2013.

[60] Epstein S.S. The phenomenon of microbial uncultivability. Current Opinion in Microbiol-

ogy, 16:636–642, 2013.

[61] Shapiro H.M. Practical Flow Cytometry. Wiley, 2005.



BIBLIOGRAPHY 79

[62] Bashashati A. and Brinkman R.R. A Survey of Flow Cytometry Data Analysis Methods.

Advances in Bioinformatics, 2009:1–19, 2009.

[63] Props R., Monsieurs P., Mysara M., Clement L., and Boon N. Measuring the biodiversity

of microbial communities by flow cytometry. Methods in Ecology and Evolution, 7:1376–

1385, 2016.

[64] Hastings A. and Gross L. Encyclopedia of Theoretical Ecology. University of California

Press, 2012.

[65] Greenacre M. and Primicerio R. Multivariate Analysis of Ecological Data. Fundación

BBVA, 2014.

[66] Larkin P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. Else-

vier Science, 2011.

[67] Koenig J.L. Infrared and Raman Spectroscopy of Polymers. Rapra Technology, 2001.

[68] B&W TEK. Theory of Raman Scattering, 2016.

[69] Ferraro J.R. and Nakamoto K. Introductory Raman Spectroscopy. Elsevier Science, 2012.

[70] Dieing T., Hollricher O., and Toporski J. Confocal Raman Microscopy. Springer Berlin

Heidelberg, 2011.

[71] Huang W.E., Li M., Jarvis R.M., Goodacre R., and Banwart S.A. Shining light on the

microbial world the application of Raman microspectroscopy. Elsevier Inc., 2010.

[72] Kaiser Optical Systems. Raman Tutorial, 2016.

[73] Butler H.J., Ashton L., Bird B., Cinque G., Curtis K., Esmonde-white K., Fullwood N.J.,

Gardner B., Martin-hirsch P.L., Walsh M.J., McAinsh M.R., Stone N., and Martin F.L.

Using Raman spectroscopy to characterise biological materials. Nature Protocols, 11:1–47,

2016.

[74] Schrader B. Infrared and Raman Spectroscopy: Methods and Applications. Wiley, 2008.

[75] van de Vossenberg J., Tervahauta H., Maquelin K., Blokker- Koopmans C.H.W., Uytewaal-

Aarts M., van der Kooij D., VanWezel A.P., and van der Gaag B. Identification of bacteria

in drinking water with Raman. Analytical Methods, 5:2679–2687, 2013.



BIBLIOGRAPHY 80

[76] Read D.S., Woodcock D.J., Strachan N.J.C., Forbes K.J., Colles F.M., Maiden M.C.J.,

Clifton-hadley F., Ridley A., Vidal A., Rodgers J., Whiteley A.S., and Sheppard K. Ev-

idence for Phenotypic Plasticity among Multihost Campylobacter jejuni and C . coli Lin-

eages, Obtained Using Ribosomal Multilocus Sequence Typing and Raman Spectroscopy.

Applied and Environmental Microbiology, 79:965–973, 2013.

[77] De Gelder J., De Gussem K., Vandenabeele P., and Moens L. Reference database of Raman

spectra of biological molecules. Journal of Raman Spectroscopy, 38:1133–1147, 2007.

[78] Berry D., Mader E., Lee T.K., Woebken D., Wang Y., Zhu D., Palatinszky M., Schintlmeister

A., Schmid M.C., Hanson B.T., Shterzer N., Mizrahi I., Rauch I., Decker T., Bocklitz T.,

Popp J., Gibson C.M., Fowler P.W., Huang W.E., and Wagner M. Tracking heavy water

(D2O) incorporation for identifying and sorting active microbial cells. Proceedings of the

National Academy of Sciences of the United States of America, 112:194–203, 2015.
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[85] Vilchez-Vargas R., Geffers R., Suárez-Diez M., Conte I., Waliczek A., Kaser V.S., Kralova

M., Junca H., and Pieper D.H. Analysis of the microbial gene landscape and transcriptome

for aromatic pollutants and alkane degradation using a novel internally calibrated microarray

system. Environmental Microbiology, 15:1016–1039, 2013.

[86] Nair A.J. Principles of Biotechnology. Laxmi Publications, 2008.

[87] Zwietering M., Jongenburger I., Rombouts F., and Van’t Riet K. Modeling of the Bacterial

Growth Curve. Applied and Environmental Microbiology, 56:1875–1881, 1990.

[88] Kniggendorf A., Gaul T., and Meinhardt-wollweber M. Effects of Ethanol, Formaldehyde,

and Gentle Heat Fixation in Confocal Resonance Raman Microscopy of Purple NonSulfur

Bacteria. Microscopy Research and Technique, 183:177–183, 2011.

[89] R Core Team. R: A Language and Environment for Statistical Computing, 2016.

[90] Kahm M., Hasenbrink G., Lichtenberg-Frat’e H., Ludwig J., and Kschischo M. grofit:

Fitting biological growth curves with R. Journal of Statistical Software, 33:1–21, 2010.

[91] Ellis B., Haaland P., Hahne F., Le Meur N., Gopalakrishnan N., Spidlen J., and Jiang M.

flowCore: flowCore: Basic structures for flow cytometry data, 2016.
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5
Appendix

5.1 Supplementary information data analysis

5.1.1 Bray-Curtis dissimilarity

The Bray-Curtis dissimilarity is widely used in ecology for comparison of species abundance

data [65] and is given by Equation 5.1.

DAB =

∑S
i=1 |pAi − pBi|∑S
i=1(pAi + pBi)

. (5.1)

A simple illustration of the Bray-Curtis dissimilarity applied to the phenotypic fingerprints is given

in Figure 5.1. Note that Bray-Curtis dissimilarity is a ‘dissimilarity’ and not a ‘distance’. This is

because it does not satisfy the triangle inequality. The triangle inequality states that the sum of the

lengths of any two sides of a triangle is greater than the length of the third side (DAB ≤ DAC +

DCB), which is not valid in Bray-Curtis space [65].

Figure 5.1: Simplified illustration of the Bray-curtis dissimilarity on phenotypic fingerprints. In the upper

left corner a two dimensional fingerprint for two samples, A and B, after density estimation and normali-

sation. These are converted into phenotypic fingerprints by concatenating all bins into a one-dimensional

vector. For these vectors the Bray-Curtis dissimilarity can be calculated using Equation 5.1.
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5.1.2 Permutational multivariate analysis of variance using distance matrices

(permanova)

Permanova [127] is a non-parametric test to analyze variance for multivariate data. In a classical

analysis of variance approach for univariate data the total sum of squares (SST ) is partitioned in the

within-group sum of squares (SSW , i.e. sums of squared differences between individual replicates

and their group mean) and the among-group sum of squares (SSA, i.e. sums of squared differences

between group means and the overall sample mean). From the ratio of SSA over SSW , we can

see whether it is likely that the null hypothesis, which states there are no significant differences

between the group means, is false. This concept can be expanded to the multivariate setting. SSW

can be thought of as the sum of the squared distances of each point to the centroid of the group to

which the points belong, while SSA is the sum of squared distances from group centroids to the

overall centroid (Figure 5.2 A).

Figure 5.2: A: In a multivariate setting SSW can be thought of as the sum of the squared distances of each

point (green dots) to the centroid of the group (red squares) to which the points belong. SSA is the sum of

squared distances from group centroids (red squares) to the overall centroid (blue square). B: The summed

distances from points to their group centroids (red lines) is equal to the summed inter-point distances (grey

dotted lines) divided by the number of points in this group, 5 in this case. Figures redrafted after Anderson,

2001 [127].

Suppose we have a multivariate dataset with a groups, each containing n replicates. This dataset

can be presented as a matrix where each row is a sample and each column is a variable (Fig-

ure 5.3 A). To evaluate whether the a groups are different, the values of SSW and SSA are needed.

However, when similarity between these groups is evaluated based on some similarity or dissimi-

larity metric, finding the centroids might be problematic. For example, if the Bray-Curtis dissim-

ilarity is used, the centroid will not correspond to the average of the replicates in the Bray-Curtis

space. This is because Bray-Curtis does not satisfy the triangle inequality (Section 5.1.1). A rela-
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tionship that can be used to circumvent this problem is the fact that the sum of squared distances

from individual points to their group centroid is equal to the sum of squared interpoint distances

divided by the number of points in that group (Figure 5.2 B). This implies that if the Bray-Curtis

dissimilarities between the data points are known, i.e. the dissimilarity matrix has been calcu-

lated, the sum of squared distances to the centroids can easily be calculated without knowing the

exact location of the centroid. This way both SST and SSW can be calculated directly from the

dissimilarity matrix (Figure 5.3 B and C). From this SSA can be derived (SSA = SST - SSW )

and subsequently the F-statistic can be calculated (Equation 5.2). Often, r2 values are reported,

which indicate the proportion of variance explained by a certain factor (such as time or location in

ecological research).

F =
SSA/(a− 1)

SSW/(na− a)
. (5.2)

To know whether the obtained value for the F-statistic is significantly higher than what would be

expected when there would be no difference in the a groups, the distribution for the F-statistic

under the null hypothesis has to be known. This distribution can be created by permutating group

memberships among the data points. In case the null hypothesis would be true the labels for

the rows in the similarity matrix can be shuffled. By calculating F-values, indicated as F’, for all

possible random shuffles of the labels the distribution for the F-statistic under the null hypothesis is

created. Comparing the obtained F-value with the distribution of the F’-values generates a measure

of significance. Considering all possible permutations to calculate F would be computationally

intensive, therefore mostly a large, fixed number of permutations is executed (999 in this study).

Figure 5.3: Illustration of permanova analysis applied on the phenotypic fingerprints. A: The raw data

of the phenotypic fingerprints for two samples A en B, each holding three replicates. B: The phenotypic

fingerprints are converted into a dissimilarity matrix using the Bray-Curtis dissimilarity, which results in a

symmetrical dissimilarity matrix. From this dissimilarity matrix SST can be calculated by summing the

square of all similarities (blue triangle) and dividing by na, the total number of observations. C: SSW can

be calculated by summing the square of all similarities within the same group and dividing by n, the number

of members in that group. Figure based on Anderson, 2001 [127].
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5.1.3 PROcrustean Randomization TEST (PROTEST)

This section is based on Jackson, 1995 [128]. Protest is a randomized test which is based on Pro-

crustes analysis applied on matrices. It compares two matrices by translating, reflecting, rotating

and dilating one of the matrices in order to minimize the sum of residuals between the two matri-

ces. In order to assess the significance of the final matrix concordance, a randomized test is used

to determine if the sum of residual deviations is less than could be expected to occur by chance.

Consider two matrices for which every point in the first matrix has a corresponding point in the

second matrix (Figure 5.4). The fit of these two matrices is maximised by translating, reflecting,

rotating and dilating matrix X to some matrix X’. This is done by minimization of the residual

sum of squares between the corresponding points in the matrices (i.e. the m2 statistic, given in

Equation 5.3). The final value of m2 describes how well both matrices fit after the transformation.

m2
XY = ∆2(X ′i, Yi). (5.3)

To evaluate the significance of the obtained m2 value, a permutation test is performed to get an idea

about the probability of observing this value. During the permutation, each of the observations

from one of the matrices are randomly reshuffled, while maintaining the covariance structure that

was present in the matrix.

Figure 5.4: Illustration of procrustes analysis. A: Consider two matrices X and Y for which every point in

the first matrix has a corresponding point in the second matrix. B: The fit of these two matrices is maximised

by translating, reflecting, rotating and dilating matrix X to some matrix X’. Figure redrafted after Jackson,

1995 [128].
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5.1.4 Random forest classifier

A random forest classifier [129] consists of a set of fully grown decision trees, which are sets of

decision boundaries that split up the feature space. The decision tree can be thought of as a set

of if- and then-rules via which a new instance can be assigned to a class (Figure 5.5). The new

instance will get the label of the class that occurs the most among the data points of the subspace

where it is assigned to. Single decision trees tend to ‘overfit’ the data, which means they are

good at predicting labels of data which they have seen during the training of the model, but not at

predicting labels of unseen data. Random forests avoid this problem by making multiple decision

trees. To build this random forest, the dataset is split up into bootstrap samples. For each of the

bootstrap samples a decision tree is created. This results in a lot of slightly different solutions to

the same problem. Next to the bootstrapping, the algorithm is allowed to choose from only a subset

of the predictors at each split. For example, if a random forest is trained on flow cytometry data,

at a certain split the algorithm might be allowed to choose from the parameters FL1 and FSC to

make its decision boundary, while SSC and FL3 would not be allowed. This approach is used to

decorrelate the trees; because in case there is a very strong predictor present in the dataset, most

of the trees would use this predictor at the root of the tree, which would result in very similar trees

for each of the bootstrap samples. The prediction of all trees is combined into a single prediction

by taking the majority vote for all the trees in the forest [130].

Figure 5.5: Illustration of the concept of a decision tree, applied classification of single-cell FCM data.

Through the if- and then-rules an unknown cell can be assigned to species A or species B.
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5.1.5 Randomized logistic regression (RLR)

Logistic regression

This section is based on James et al., 2013 [130]. Logistic regression is a linear regression model

that is used to model the probability an instance belongs to a certain class (Y =1), given the features

X of this instance (i.e. the conditional probability P (Y = 1|X), abbreviated as p(X)). Since the

logistic regression models probabilities, the model output p(X) should range between 0 and 1.

Several functions which are suitable for this exist. In logistic regression the logistic function is

used (Equation 5.4):

p(X) =
exp(β0 +

∑k
i=1 βixi)

1 + exp(β0 +
∑k

i=1 βixi)
. (5.4)

Linear regression models result in continuous outcomes. Since the outcome of the logistic regres-

sion model should be ranging between 0 and 1, the probability p(X) can not be used directly as the

model outcome. A solution to this is to rearrange Equation 5.4 to have the ratio of the probabilities

on the left side of the equation (Equation 5.5). This ratio of probabilities is called the ‘odds’ and

ranges between zero and infinity. The odds is the ratio of the probability the event occurs (class

equal to 1), divided by the probability the event does not occur (class equal to 0).

p(X)

1− p(X)
= exp(β0 +

k∑
i=1

βixi). (5.5)

By taking the natural logarithm of Equation 5.5, Equation 5.6 can be obtained. Now the right side

of the equation takes the shape of a linear model, the left side is called the ‘logodds’ or ‘logit’.

ln

(
p(X)

1− p(X)

)
= β0 +

k∑
i=1

βixi. (5.6)

The regression coefficients β of the linear model can be estimated via maximum likelihood esti-

mation.
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Regularization

Regularization is a way to reduce complexity of a model and often leads to improved model-

predictions. In regularization, a penalty term is added to the objective function that is minimized

to estimate the parameters of the model. Different penalties exist, however, only L1-regularization

will be discussed here. In a L1-regularization the penalty that is added to the objective function

aims to set some of the coefficients to zero. This is known as feature selection and increases

the interpretability of the model. The penalty takes the form λ
∑k

i=1 |βi|, with λ the penalization

parameter. The intercept coefficient β0 is generally not penalized. A large value of λ introduces

a strong regularization (i.e. a lot of coefficients will be set to zero). The optimal amount of

regularization (i.e. optimal value of λ) is generally estimated via cross-validation. The shape of an

L1-penalized objective function is given in Equation 5.7.

J = objective function + λ
k∑
i=1

|βi| . (5.7)

Stability selection

Through L1-penalisation a subset of features can be selected. To know whether this subset selec-

tion is stable, stability selection can be used [131]. Stability selection is a combination of subsam-

pling and feature selection. The dataset is split up into n bootstrap samples. For each of these

bootstrap samples a feature selection procedure is carried out, which results in n sets of selected

features. During each of these feature selections a random subset of coefficients β is perturbed (i.e.

the coefficient is scaled with a factor si), influencing their chance of being selected (Equation 5.8).

By evaluating how many times a variables is selected, a feature ranking can be generated.

J = objective function + λ

k∑
i=1

|βi|
si
. (5.8)
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5.1.6 Receiver operating characteristic (ROC)

The ROC curve gives the true positive and false positive rate for different thresholds a classifier

can use to discriminate between two classes. For example, we construct the ROC curves for the

classifier which is used for the flow cytometric in silico communities (Figure 5.6). In the ROC

curve of species A, a true positive would be a cell which is predicted to be species A and is in

reality a member of species A. A false positive would be a cell which is predicted to be species A,

but is in reality a member of species B. If a threshold of 0.9 would be applied, this would mean

the random forest predicts species A when 90% of the trees in the forest predict species A. At this

threshold, the false positive rate would be low (not a lot of cells that are predicted to be species

A would in reality be species B), but the true positive rate would also be low since a lot of cells

that are in reality species A would not be predicted to be species A with such a stringent threshold.

If a threshold of 0.1 would be applied, the true positive rate would be high (a lot of cells that are

predicted to be species A, are in reality species A), but also the false positive rate would be high (a

lot of cells that are predicted to be species A, are in reality species B). The optimum of the ROC

curve is the point (0,1), where there all cells which are predicted to be species A are in reality a

member of species A. These ROC curves can be constructed based on the trainingsdata. A random

forest classifier normally uses the majority vote of the decision trees to classify a new instance (i.e.

threshold of 0.5).

Figure 5.6: Illustration of a ROC curve applied to the flow cytometric in silico communities. The optimum

of the curve is located in the upper left corner, at (0,1).
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5.1.7 Principal component analysis (PCA)

This section is based on Jolliffe, 2013 [132]. PCA is a technique that is used to visualize multivariate

data. It tries to compress high dimensional data into a graph that represents the essence of the

information that is captured in the data. The goal is to transfer the data to a 2- or 3D space with the

least loss of information, to make it more easily interpretable. This is done by creating new axes in

the high-dimensional space that capture as much variance as possible (Figure 5.7). The first axis

will be created in the direction that explains the most variance in the high-dimensional space. A

second axis will be created orthogonal to the first axis, and in the direction that captures as much

as possible of the variance that is still left in the data. New axes will be created until all variance in

the data is captured, this implies the number of principal components is lower than or equal to the

original number of variables. Correlation is the driver for the principal component analysis since it

means some information in the features is redundant. PCA thus turns a large number of correlated

variables into an equal or lower number of uncorrelated variables. These new variables are referred

to as the ‘principal components’ and are linear combinations of the original variables. To evaluate

whether the PCA is doing a good job at presenting the data in the two first components while

retaining as much information as possible, the ‘scree plot’ can be evaluated. This plot gives the

percentages of variance that are explained by each of the principal components. A good PCA will

have large percentages for only a few of the first components and small values for all subsequent

components.

Figure 5.7: Illustration of how PCA finds new axes that explain as much variance as possible. A: Consider

some data points for which two correlated variables are known. B: The first principal component is con-

structed in the direction that explains the most variance in the dataset. C: The second principal component

is constructed orthogonal to the first. In this case there is only one option left, however, if the original data

would have had more dimensions, multiple options for constructing PC2 would have been possible. In that

case, PC2 would have been chosen to capture as much as possible of the variance that was still left in the

data.
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5.1.8 Principal coordinate analysis (PCoA)

This section is based on Zuur et al., 2007 [133]. Principal coordinate analysis (PCoA) is a kind of

metric multidimensional scaling (MDS). It is a technique that is used to visualize dissimilarities.

Any dissimilarity measure that is appropriate for the data can be used. The aim of PCoA is to

construct a plot in a low-dimensional (2- or 3D) space while respecting the dissimilarities between

the data points as well as possible. This way the dissimilarity matrix can easily be interpreted:

points that are further away are more distinct, points that are closer to each other are more similar.

The exact location of the points is not of interest, it is the spacing from which insight in the

underlying behaviour of the data can be gained.

The way this graph is constructed is the following. All dissimilarities between the data points are

calculated. The data points are then projected into a high-dimensional Euclidian space respecting

all their dissimilarities. By performing a PCA on this high-dimensional space, the points can be

represented in a low-dimensional space (for an explanation on PCA see Section 5.1.7). Thus when

Euclidean distance is used a PCoA is equivalent to PCA (Section 5.1.7). Note that it is often

impossible to map all similarities correctly, the mapping is an approximation of the true similarity

matrix [134].

5.1.9 t-Distributed Stochastic Neighbor Embedding (t-SNE)

This section is based on Van Der Maaten et al., 2008 [135]. t-SNE is a visualisation technique that

visualizes the underlying structure of high-dimensional data in a low-dimensional (2- or 3D) space.

It specifically aims to preserve the ‘local’ structure of the data.

The first step is constructing pairwise similarities for the high-dimensional data. The distances

between the data points in the high-dimensional space are converted into conditional probabilities.

The similarity of a data point xj to another data point xi is the conditional probability, pj|i, that xi

would pick xj as its neighbor if neighbors were picked in proportion to their probability density

under a Gaussian centered at xi (Figure 5.8). For each point xi a value of σi will be set, so that

the conditional probability has a fixed perplexity for each point. This means the bandwidth of

the Gaussian in each point is set so that the same number of neighborhood points fall into the

Gaussian. This way the Gaussian is adapted to the local densities in the high-dimensional space

for each point. The conditional probabilities are then renormalized over all points that contain xi

(Equation 5.9). The final value of similarity pij between the points xi and xj can be calculated as
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the average of the conditional probabilities pi|j and pj|i.

pj|i =
exp (−||xi − xj||2/2σ2

i )∑
j′ 6=i exp (−||xi − xj′||2/2σ2

i )
. (5.9)

Figure 5.8: The distances between the data points in the high-dimensional space are converted into condi-

tional probabilities. Point xj2 is located closer to xi in the high-dimensional space, compared to xj1. When

a Gaussian is centered around xi, the neighbour point xj2 that is located closer will receive a higher condi-

tional probability pj2|i compared to the neighbour point xj1. This way the conditional probability reflects

the similarity between the data points in the high-dimensional space.

Now a low-dimensional map (2- or 3D) can be created where each data point in the high-dimensional

space will be presented by a point. In a similar way as for the high-dimensional space, conditional

probabilities qij for the points in this low-dimensional space can be calculated. However, in this

low-dimensional space a Student-t distribution is used instead of a Gaussian distribution to cal-

culate the conditional probabilities (see further). The aim is to have the similarities in the low-

dimensional map representing the similarities in the high-dimensional space. In other words we

want qij to be representing pij as well as possible. If qij’s and pij’s are similar, the original structure

of the data is preserved well. Therefore an objective function that will measure the discrepancy

between similarities in the high-dimensional space and similarities in the low-dimensional map is

needed. For this a cost function C based on the Kullback Leibler divergence is applied (Equa-

tion 5.10). By minimizing this cost function, the discrepancy between pij and qij is minimized

while giving most importance to preserving the local structure of the data. This is due to the fact

that Kullback Leibler divergence is asymmetric. When two points which are far away from each

other in the high-dimensional space (small pij) are close to each other in the low-dimensional space

(high qij), this will lead to a smaller penalty compared to the situation where two points which are

close to each other in the high-dimensional space (high pij) are far away from each other in the
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low-dimensional space (small qij). This way more importance is given to the local data structure.

C = KL(P ||Q) =
∑
i

∑
j

pij log

(
pij
qij

)
. (5.10)

The reason for the use of a Student-t distribution when calculating the conditional probabilities in

the low-dimensional space is that this distribution has a more heavy ‘tail’ compared to a Gaussian

distribution. When high-dimensional data is mapped down to a lower number of dimensions, it

is impossible to preserve all similarities of the high-dimensional space exactly. t-SNE gives more

importance to the local structure of the data which results in the fact that data points that are far

away in the high-dimensional space often get mapped too far away in the low-dimensional space.

This will cause a small contribution to the cost function. However, in these large datasets there are

often many points that are mapped to far away from each other. All these (small) contributions to

the cost function can cause the low-dimensional graph to collapse and thus no longer represent the

clusters that are present in the data. Using a heavy-tailed distribution explicitly allows data points

that are far away in the high-dimensional space to get mapped far away in the low-dimensional

space, avoiding the accumulation of all these small contributions to the cost function.

t-SNE is not designed to conserve the global structure in the data, however, when one wants to

mitigate this issue, the t-SNE algorithm can be seeded with the result of a PCA. This way the local

structure will be embedded in a graph that is already organized in a way to respect the more global

structure in the data. The reason why t-SNE sometimes does a better job than PCA at visualizing

the structure of the data is that PCA focuses on explaining as much variance as possible in the

dataset and is therefore focusing at placing observations that are far away in the high-dimensional

space also far away in the low-dimensional map. Observations that are present in between are

simply projected onto the principal component without taking their interrelationships into account

(Figure 5.9).
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Figure 5.9: Illustration of a situation where t-SNE might lead to a better visualisation of the underlying

structure of high-dimensional data compared to PCA. A: Consider data that is organized according to some

structure (indicated with the light blue line) in the high-dimensional space. B: If a PCA would be performed

on this dataset not all relationships between data points would be respected correctly. The axis that explains

the most variance would be chosen as PC1 (indicated with the green line). The location of the points x1, x2

and x3 on the principal component would not be reflecting their true relationship. The point x1 would be

situated in between x2 and x3. While, if you would take into account the local structure of the data x2 should

be in between x1 and x3, with x1 more similar to x2 compared to x3.
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5.2 Supplementary figures

5.2.1 Raman spectra nucleic acids
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Figure 5.10: Raman spectra of DNA and RNA bases: adenine (A), cytosine (B), guanine (C), thymine (D)

and uracil (E). Preprocessed data was retrieved from the study of De Gelder et al., 2007 [77].
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5.2.2 Lake isolates

Sequences of the Limnohabitans lake isolates were obtained from Lake Michigan during the 2016

Summer survey. In order to situate the available isolates within the genus of Limnohabitans, a

phylogenetic tree was created. The isolate sequences were aligned to the Silva database (v123)

using Mothur (v1.38, seed = 777). Fasttree (v2.1.10) was used to create the phylogenetic tree. The

tree was visualised using iTOL (v3.4.1). The result is shown in Figure 5.11. All three lake isolates

belong to the Lhab-A1 clade.

Figure 5.11: Phylogenetic tree to situate the available lake isolates within the genus of Limnohabitans. The

three isolates are indicated with an arrow. All three belong to the Lhab-A1 clade.
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5.3 Supplementary tables

5.3.1 Predicted relative abundances experiment 1

Table 5.1: Predicted relative abundances for both community members in the mixed cultures during exper-

iment 1. Predictions were made for each of the biological replicates (n = 3) separately. The first column,

‘Approach’, corresponds to the identifiers that were used in Figure 3.6 (A = fingerprints of the axenic cul-

tures at 24h were used as training data, B = fingerprints of the axenic cultures at the corresponding time

point were used as training data, C = fingerprints of the cocultures at the corresponding time point were

used as training data).

Approach Time (h) Replicate Abundance A (%) Abundance B (%) Accuracy test set (%)
A 24 1 70.19 29.81 99.70

2 72.50 27.50
3 65.00 35.00

48 1 0.42 99.58
2 0.25 99.75
3 0.29 99.71

72 1 0.24 99.76
2 0.25 99.75
3 0.33 99.67

B 24 1 70.19 29.81 99.70
2 72.50 27.50
3 65.00 35.00

48 1 0.59 99.41 99.95
2 0.61 99.39
3 0.73 99.27

72 1 0.11 99.89 99.97
2 0.22 99.78
3 0.22 99.78

C 24 1 62.23 37.77 99.7
2 63.93 37.07
3 63.40 36.60

48 1 32.14 67.86 98.83
2 31.83 68.17
3 34.98 65.02

72 1 29.47 70.83 97.20
2 28.58 71.42
3 29.45 70.55
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5.3.2 Criteria for cell classification

Table 5.2: Optimal thresholds that were used as decision boundary when creating the in silico communities

based on the axenic cultures. These thresholds were determined as the point closest to (0,1) on the ROC

curve when the random forest was trained on data of the axenic cultures. (TP = true positive, FP = false

positive)

Time (h) Threshold A TP A FP A Threshold B TP B FP B
24 0.72 0.9983 0.0037 0.30 0.9963 0.0017
48 0.65 0.9993 0.0000 0.44 1.0000 0.0017
72 0.64 0.9990 0.0000 0.57 1.0000 0.0017

Table 5.3: Optimal thresholds that were used as decision boundary when creating the in silico communities

based on the cocultures. These thresholds were determined as the point closest to (0,1) on the ROC curve

when the random forest was trained on data of the cocultures. (TP = true positive, FP = false positive)

Time (h) Threshold A TP A FP A Threshold B TP B FP B
24 0.59 0.9841 0.0294 0.42 0.9705 0.0159
48 0.63 0.9924 0.0147 0.38 0.9853 0.0076
72 0.59 0.9751 0.0304 0.42 0.9696 0.0249
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5.3.3 Relative abundances experiment 3

Table 5.4: Relative abundances of the two species A and B in as determined in the mixed community with

a gfp-labeled strain of species A.

Time (h) Replicate Relative abundance A (%) Relative abundance B (%)
24 1 76.55 23.45

2 82.08 17.92
3 80.36 19.64

48 1 72.54 27.46
2 60.43 39.57
3 69.01 30.99

72 1 54.30 45.67
2 56.27 43.73
3 66.63 33.37
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