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Abstract

This thesis focuses on a Music Information Retrieval (MIR) problem, i.e. monau-

ral source separation from music tracks. This problem comes down to extracting

one particular signal, e.g. the vocals, from a mixture of multiple signals that are

overlapping. Recent advances in MIR show how deep neural networks may tackle

this problem by using convolutional networks. We make use of both convolutional

neural networks and deep convolutional U-nets. The experimental framework con-

siders two approaches for the preprocessing of the music files. The first method to

transform the music signals is done by using a short-time Fourier transformation

(STFT) which is the standard approach when looking at the state of the art for

this problem. The second approach is to use a constant-Q transformation (CQT).

This transformation increases the buffer size from high to lower frequencies, com-

pared to the constant buffer size that is used in a STFT. This corresponds to log-

arithmically spaced frequency bins, which makes it more comparable to how the

human hearing intercepts sound waves, since this also works on a logarithmic scale.

The CQT is computationally more expensive than the STFT, but the results are

promising for future research. Both approaches were used in combination with our

deep convolutional U-net and different evaluation metrics were compared. These

metrics show that the the model is more consistent in its predictions using CQT,

rather than STFT. Furthermore, subjective tests were made to gain new insights

in how well the CQT and the STFT perform according to the hearing experience,

compared to the objective metrics. The results of the subjective tests show that

the instruments predictions using the CQT perform much better compared to the

voice predictions, whereas this was not the case for the evaluation with the ob-

jective metrics. According to the results of the subjective tests, predictions from

songs whose arrangement includes string instruments like guitars seem to improve.

Keywords: deep convolutional U-net, audio source-separation, constant-Q trans-

form, subjective testing
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Abstract— Recent advances in Music Information Retrieval 

(MIR) show how deep neural networks may tackle the source-

separation problem by using convolutional networks. A deep 

convolutional U-net is proposed in combination with the usage of 

a constant-Q transform (CQT) which is logarithmically scaled and 

mirrors the human auditory system. A comparison is made 

between the usage of CQT and the standard short-time Fourier 

transform (STFT) which has, in contrast to the CQT, equally 

spaced frequency bins. Objective metrics show that the model is 

more consistent in its predictions when CQT is used. However, the 

means of the metrics are very similar. Subjective tests give us new 

insights and show that in general, a prediction for the instruments 

with the deep U-net is much more appreciated by the listeners 

when CQT is used. 

Keywords— deep convolutional U-net, audio source-separation, 

constant-Q transform, subjective testing 

I. INTRODUCTION 

The audio source-separation problem is a typical Music 

Information Retrieval (MIR) problem. When listening to a 

song, it is not that difficult for human beings to distinguish the 

vocals from the instruments and vice-versa. Humans are very 

good at solving these tasks as they are naturally able to focus 

their attention on the source of the sound they want to listen to. 

However, for machines there is still a lot of room for 

improvement. Recent research in deep neural networks has 

opened different paths towards elegant solutions for this 

problem, such as the usage of convolutional networks. A deep 

convolutional U-net is proposed which is based on the paper 

from Jansson et al. [1]. The deep convolutional U-net was 

initially developed for bio-medical imaging. Instead of using 

images, the model is now trained on two-dimensional data from 

the spectrograms.  

There are several ways for creating a spectrogram. Two 

techniques, i.e. short-time Fourier transform (STFT) and 

constant-Q transform (CQT) are discussed and compared by 

analyzing both objective metrics and subjective scores. The 

CQT is known to be logarithmically scaled in the frequency 

domain and thus mirrors the human auditory system in a better 

way than STFT does. A disadvantage of the CQT is that it has 

no exact inverse. This is due to the fact that the transform 

matrix is no longer square. However, there exist approaches 

which can construct a CQT that is (approximately) invertible. 

Three possible implementations for this are discussed by J. 

Ganseman et al. [2]. 

For the experimentation, the iKala dataset [3] is used. This 

dataset contains 252 excerpts of 30 seconds each. The tracks 

have a sampling rate of 44100Hz which makes it useful for 

testing the final model with more popular songs which mostly 

have the same sampling rate. The iKala dataset has been used a 

lot for research in music source-separation and thus has the 

advantage that the metrics of a new model can be more easily 

compared with the state-of-the-art. 

II. METHODOLOGY 

A. Data Pre-processing 

A first step that is needed before the data is fed into the neural 

network, is to pre-process the wave files from the iKala dataset. 

For every song in the iKala dataset, we obtain the groundtruth 

for the instruments and the vocals by taking the left and right 

channel from the stereo track, respectively. These wave files 

will be useful for creating the true labels from which the 

network will learn. Furthermore, the stereo track also needs to 

be converted into a mono signal. This way, a monaural 

waveform is created which contains all the sources. This will 

be used for creating the input data.  

A second step is to split every wave file (from both the 

mixture and the separate sources) into chunks of 10 seconds. 

Each chunk is then transformed into a two-dimensional 

spectrogram which contains now values in both time and 

frequency domain. This transformation can be done by either 

using a STFT, or a CQT. A spectrogram consists of complex 

values which contain both amplitude and phase information. 

Typically, the power spectrogram is taken, such that we only 

focus on the amplitude information. An issue with this 

approach is that it is not possible to rebuild a wave file from a 

power spectrum, because the phase information is thrown 

away. To solve this, there exists a technique called Wiener 

filtering which uses the power spectrograms from all the 

sources of the mix to create an ideal mask. The mask for the 

voice is created as follows: 

 

𝑚𝑎𝑠𝑘𝑣𝑜𝑐𝑎𝑙𝑠

=
|𝑣𝑜𝑐𝑎𝑙 𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚|²

|𝑣𝑜𝑐𝑎𝑙 𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚|² + |𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑠 𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚|²
 

 

With this mask, it is possible to rebuild the full spectrogram 

by taking the spectrogram of the mixture and multiplying it 

with the square root of the mask. This way, both amplitude and 

phase information are regained. With the spectrogram, we are 

able to apply an inverse STFT or a (pseudo-)inverse CQT for 

obtaining a wave file again.  

Knowing this, we can use the mask as a label when training 

the neural network. The power spectrum of the mixture will be 

used as an input. Something to keep in mind is that the mask 

contains values in the interval [0, 1]. By subtracting 1 with 

these values, we obtain a mask that could be used for recreating 

the spectrogram for the instruments. 



B. Training the Model 

By feeding the training data (the input power spectrograms 

and corresponding labels (masks)) to the model in small 

batches, the network learns how to distinguish the vocals from 

the instruments. Both the data pre-processed with the CQT and 

with the STFT were fed to the deep U-net separately. This way, 

we will have a model for both transformations from which the 

metrics can be compared with each other in a later stadium. 

C. Post-processing 

As said before, the power spectrogram of a mixed song is 

used to feed into the network. However, after training the 

model, we want to test it and see how well the predicted wave 

files sound. In order to rebuild these wave files, we first need 

the full spectrogram again from the mixed song. This is done 

with either STFT or CQT. Once we have this spectrogram, we 

can recreate a spectrogram of the predicted source as follows: 

 

𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚𝑣𝑜𝑐𝑎𝑙𝑠 = 𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑥 × √𝑚𝑎𝑠𝑘𝑣𝑜𝑐𝑎𝑙𝑠
̂  

 

where 𝑚𝑎𝑠𝑘𝑣𝑜𝑐𝑎𝑙𝑠
̂  is the predicted mask for the vocals. The 

same technique can be applied for the instruments. Once we 

have the predicted spectrogram, an inverse STFT or (pseudo-) 

inverse CQT can be applied to obtain a wave file again.  

III. THE MODEL 

The model that is proposed is a deep convolutional U-net 

which contains both an encoding and decoding phase. First, the 

power spectrogram of the mixture is fed into strided 

convolutional layers. A stride of 2 is used which means that the 

output of every convolutional layer will be approximately half 

the size of the input that is fed into it. This way, the input is 

downsampled a lot. However, the amount of output channels is 

doubled every subsequent convolutional layer. After every 

convolution, a leaky relu activation function is used with a leak 

of 0.2. Also dropout is added with a dropout rate of 0.5 which 

is used for regularization. After this stage, the network learns 

how to upsample the downsampled image again. This is done 

in the decoding phase which consists of ‘deconvolutional’ 

layers, each activated with a relu. Although the deconvolutional 

layers are not the exact inverse operation of the convolutional 

layers, they do make sure that the image is upsampled again to 

the exact same size as the initial image that was fed into the 

network. For every subsequent layer, the amount of output 

channels are now halved again. Only in the last layer, we keep 

two output channels to obtain a prediction for both the vocals 

and instruments. In addition, skip-connections are used to 

further optimize the model. With these skip-connections, we 

can concatenate the output of each convolutional layer with its 

corresponding deconvolutional layer, containing the same 

amount of output channels. This concatenation is then fed into 

the next layer. 

Since the labels that we feed into the network are only the 

masks of the vocals, we can calculate the loss as follows. First 

of all, we calculate the mean square error (MSE) for the voice 

prediction. 

 

𝑀𝑆𝐸𝑣𝑜𝑖𝑐𝑒 =
1

𝑛
∑(𝑚𝑎𝑠𝑘𝑣𝑜𝑖𝑐𝑒,𝑖 − 𝑚𝑎𝑠𝑘𝑣𝑜𝑖𝑐𝑒,𝑖)²̂

𝑛

𝑖=1

 

 

where 𝑚𝑎𝑠𝑘𝑣𝑜𝑖𝑐𝑒
̂  is the predicted mask for the vocals. 

The same can be done for the instruments prediction by first 

calculating the true mask for the instruments. By subtracting an 

array of ones (with the same dimensions of 𝑚𝑎𝑠𝑘𝑣𝑜𝑖𝑐𝑒) with 

𝑚𝑎𝑠𝑘𝑣𝑜𝑖𝑐𝑒 , we obtain 𝑚𝑎𝑠𝑘𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑠. Now, 𝑀𝑆𝐸𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑠 

can be easily calculated.  The following equation shows how 

the total loss function is calculated: 

 

𝑅𝑀𝑆𝐸 = √𝛼 × 𝑀𝑆𝐸𝑣𝑜𝑖𝑐𝑒 + (1 − 𝛼) × 𝑀𝑆𝐸𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑠  

 

where 𝛼 = 0.5 by default. To optimize this loss, the Adam 

optimizer is used. 

 

 

Figure 1 Proposed deep convolutional U-net. 

IV. EVALUATION 

Evaluating the deep convolutional U-net for both STFT and 

CQT can be done in two ways. First of all, the objective metrics 

can be calculated by comparing the predicted wave files with 

the groundtruth of both vocals and instruments. Secondly, we 

can gain new insights by using subjective tests and focus more 

on the actual hearing experience from certain a group of people. 

A. Objective metrics 

The most common metrics that are used for the audio source-

separation problem are the source-to-distortion ratio (SDR), 

source-to-interference ratio (SIR) and source-to-artifacts ratio 

(SAR), and are discussed in detail by Vincent et al. [4]. These 

metrics are expressed in decibels (dB). The higher these metrics 

are, the better the prediction. Table 1 shows the averages of the 

calculated metrics for both the STFT and the CQT approach, 

using the same convolutional deep U-net. Note that for both 

approaches, the calculated metrics from the vocal predictions 

are in general more than 5dB higher than for the instruments 

predictions. In general, the results from STFT and CQT are 

very similar and there are not a lot of remarkable differences at 

first sight. 

 

 

 

 

 



Table 2 Comparison of metrics (average) for both the STFT and CQT 

experiments. 

 Deep Convolutional U-Net 

STFT CQT 

vocals SDR 11.04 11.38 

SIR 17.65 17.23 

SAR 13.62 13.64 

instruments SDR 5.34 5.03 

SIR 13.06 10.06 

SAR 6.84 8.30 

 

If we have a closer look at the metrics in Figure 2 and 3, we 

notice that there are much more outliers when the STFT is used 

than when CQT is used. We could say that the model is more 

consistent in its predictions when CQT is applied. 

 

 

Figure 2 Boxplot of metrics for deep U-net (using STFT). 

 

 

Figure 3 Boxplot of metrics for deep U-net (using CQT). 

B. Subjective tests 

A second way of evaluating the two approaches, is by letting 

a group of people listen to a set of samples and by making an 

analysis of the scores which they have given to the predictions. 

The surveys contained 18 samples from which the vocal and 

instruments predictions were made (for both STFT and CQT 

approach). A score was given from 0 (not isolated at all) to 6 

(very well isolated). Figures 4 and 5 show that in general, the 

model performs better for the instruments predictions when 

CQT is used. For the vocal predictions, it is less obvious which 

transformation leads to a better hearing experience. In general, 

the CQT is a little better for the voice predictions, but the results 

are very close.  

Because the subjective tests were only done with a small 

group of people, we cannot simply assume that the CQT is 

better in all cases. It does however give an indication that it 

could be a better transformation to use.  

 

 

Figure 4 Weighted average of the subjective scores for every sample 

prediction of the vocals. 

 

 

Figure 5 Weighted average of the subjective scores for every sample 

prediction of the instruments. 

 

V. CONCLUSIONS 

A lot of research has already been done for the audio source-

separation problem. However, most of them only focus on 

training the parameters from the used neural network as good 

as possible and simply use a standard short-time Fourier 

transform (STFT). Instead of a STFT, we propose a constant-Q 



transformation (CQT) which could improve the predictions of 

the neural network, because the CQT has a logarithmic scale 

and thus mimics the human auditory system in a better way. 

By comparing both transformations using the same deep 

convolutional U-net, we notice that in general, there are not a 

lot of remarkable differences when looking at the objective 

metrics. We do however notice that the metrics of the 

predictions with STFT contain much more outliers than when 

CQT is used. This could imply that the model is more consistent 

in its predictions when a CQT is used. 

Evaluating the two approaches in a more subjective way, we 

learn that instruments predictions are almost always improved 

with CQT. Especially when a lot of (distorted) guitars are 

contained within the song. For the vocal predictions, it is hard 

to say which transformation should be used. Both objective and 

subjective tests give approximately the same results. For the 

vocal predictions, we notice that it is much harder for the model 

to filter out everything from the drums. These are still very 

noticeable in both STFT and CQT approaches. This could 

however be improved by applying some extra filters during pre-

processing. 
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Chapter 1

Introduction

When listening to a song, it is not that difficult for a human being to distinguish

the vocals from the instruments and vice-versa. Even when we are at a party, we

are able to focus on one particular person’s voice while all the other people in the

room are talking as well, or when there is a lot of background noise. Humans are

very good at solving these tasks as they are naturally able to focus their attention

on the source of the sound they want to listen to. However, for machines there

is still a lot of room for improvement. These problems are often called ‘Cocktail

party problems’. In this paper, the focus will be on one specific sub-problem,

i.e. the isolation of a singing voice from music. This can be useful in many soft-

ware tools aimed to private end-users interested in karaoke-like apps as well as to

professionals of the music industry interested in recording, post production, and

(re)mastering. Recent research in deep neural networks has opened different paths

towards elegant solutions for this problem. This requires a high computational

cost.

In this thesis, some of the existing approaches for this particular problem will be

discussed, followed by an explanation of the methodology. During the experimen-

tation, two main models have been used. The first model that will be discussed is

a deep convolutional network. The progress of how this model was improved will

be explained, together with all the lessons learned. Different techniques for im-

proving the model, such as dropout and data augmentation were used during this

process. Even after doing all the optimizations, this model still did not perform

very well in its predictions. For this reason, a second model called a deep U-net

is introduced where deconvolutional layers are added to the model. These layers

do the inverse operation of what happens in a convolutional layer. This model is

often represented in the shape of a U, hence the name U-net. The idea for using

1
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this architecture for the audio source separation problem was introduced by Jans-

son et al. [3] and is currently one of the best known performing approaches for

this purpose. The deep U-net used for this thesis is not tuned as much as is done

by Jansson et al., but the metrics are close to their results and the predictions

are acceptable. All the improvements that were used in the first model are again

applied to this model. Also batch normalization and a newer activation function,

i.e., the leaky ReLu are applied.

So far, a lot of research can be found where only short-time Fourier transforma-

tions (STFT) are used in order to create a two-dimensional dataset. However,

other transformations exist, such as the constant-Q transform (CQT). CQT has

the advantage that it mimics the human hearing in a better way than STFT does,

because of its logarithmic scale. We will take a closer look at the CQT and also

use this transformation for preprocessing the data. A comparison will be made

between the predictions of the final model using CQT and the predictions of the

exact same model, but using STFT instead. The main purpose of this thesis is

not just about finding a model that surpasses every other existing approach, but

rather to investigate how much influence the used transformation can have on the

predictions of the model.

The used framework which is written in Python will be briefly explained. For the

implementation of the neural network, the TensorFlow library is used, as this is

widely supported by industry. Furthermore, the results will be compared with the

state of the art, and several evaluation metrics will be discussed. Also, results of

subjective tests will be discussed, in order to get different insights in how well the

model performs when using CQT and STFT.



Chapter 2

State of the art

2.1 Source Separation

In this master’s thesis, the term source separation should be interpreted in the

context of audio, where we have a mixture of signals, i.e. multiple instruments

and vocals, and we want to extract or isolate one certain component from it. The

mixed sources are assumed to be monaural, so it is not possible to just split mul-

tiple channels and assume that one source will be more likely to be isolated from

the other sources in one channel.

Using just the raw audio files for separating sources is not the way to go1, because

all of the different harmonics (different frequencies) are overlapping in this case

and we would only have data in the time domain. Only if the different sources

never appeared at the same time, it would be possible to separate them. Other-

wise, there would be too much overlap.

The short-time Fourier transform (STFT) is a commonly used approach to obtain

data not only in the time domain, but also in the frequency domain. STFT deter-

mines the sinusoidal frequency and phase information of local intervals of the signal

as it changes over time. In other words, by using this transformation, we obtain

(complex) values in both the time and frequency domain. In this case, all of the

different harmonics will thus be separated. A visualization of this transformation

is shown in figure 2.2 and is called the spectrogram. Another possibillity to trans-

form a signal to the time-frequency domain is to use a Constant-Q Transformation

1There exists an approach by Google, called WaveNet [10] which is a deep neural network
that does make use of the raw audio files during training. This is however for another MIR
problem, i.e. for the generation of audio waveforms.

3
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(CQT). The CQT can be understood as a STFT, but with logarithmically spaced

frequency bins. This is accomplished by varying the length of the analysis window,

instead of using a fixed window as is done in a STFT. Because the human hearing

also works on a logarithmic scale, using this transformation could have a better

influence on the predictions than the STFT does. Computationally, this transfor-

mation is more expensive compared to the STFT. The biggest disadvantage of the

CQT is that it is not invertible, since a DC component cannot be calculated due to

the logarithmic frequency spacing, and minimum and maximum frequency bands

need to be defined outside the signal which will not be analyzed. However, there

exist some methods which can construct a CQT that is (approximately) invertible.

Three possible implementations for this are discussed by J. Ganseman et al. [11].

For source separation, spectrograms are much more useful than the raw audio files,

because there are a lot more informative features that could be extracted from this.

Normally, we take the absolute value of the spectrogram in order to obtain the

amplitude values and get rid of the complex values. We call this the magnitude

spectrogram. However, one disadvantage is that a magnitude spectrogram cannot

be inverted, i.e. it is not possible to derive the estimate itself, because the phase

information is lost. Nevertheless, there exists an approach called Wiener filtering

which creates a mask for one certain source and then multiplies this mask with

the spectrogram of the original mixture. This way, the phase information can

(approximately) be recovered from the original signal. The mask is calculated as

follows:

mk =
|Sk|2∑n
i=1 |Si|2

, where 1 ≤ k ≤ n (2.1)

with mk the mask for source k (e.g. the vocals), n the amount of sources in the

mixture, and Si the spectrogram of source i, where 1 ≤ i ≤ n. This mask contains

normalized values between zero and one for one specific source. By multiplying

the original mixture spectrogram with the square root of this mask, the full spec-

trogram for the isolated source can again be obtained:

Ŝk = Sm ·
√
mk (2.2)

with Ŝk the reconstructed spectrogram for source k, Sm the original spectrogram of

the mixture, and mk the prediction of the mask from source k. Finally, the audio

file can be reconstructed using the inverse transformation, i.e. inverse short-time

Fourier or inverse constant-Q transformation.
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Figure 2.1: Sources in the time domain (overlapped harmonics)

Figure 2.2: Sources in both time and frequency domain (separated harmonics)
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2.1.1 Evaluation measures

Some evaluation metrics that are used a lot in research for audio source separation

are discussed by E. Vincent et al. [12]. There are different kinds of distortion we

can distinguish. When a source is estimated, it can be decomposed into a true

source part and three error terms, i.e. interference, additive noise, and artifacts.

ŝj = starget + einterference + enoise + eartifacts (2.3)

where ŝj is the estimated source.

The decomposition of this signal is based on orthogonal projections. For a sub-

space spanned by the vectors y1, ..., yk, we denote Π{y1, ..., yk} as the orthogonal

projector onto this subspace. Three orthogonal projectors are defined:

Psj := Π{sj}, (2.4)

Ps := Π{(sj′)1≤j′≤n}, (2.5)

Ps,n := Π{(sj′)1≤j′≤n, (ni)1≤i≤m}. (2.6)

The four terms of the decomposed source ŝj can then be defined as follows:

starget := Psj ŝj, (2.7)

sinterference := Psŝj − Psj ŝj, (2.8)

snoise := Ps,nŝj − Psŝj, (2.9)

sartifacts := ŝj − Ps,nŝj. (2.10)

The computation of starget is straightforward and only involves an inner prod-

uct: starget = 〈ŝj, sj〉sj/||sj||2. If the sources are mutually orthogonal, then

sinterference =
∑

j′ 6=j〈ŝj, sj′〉sj′/||sj′ ||2. Otherwise, we need to define a vector c

of coefficients: c = R−1ss [〈ŝj, s1〉, ..., 〈ŝj, sn〉]H , where Rss is the Gram matrix

and (.)H denotes the Hermitian transposition. We now can define Psŝj as fol-

lows: Psŝj =
∑n

j′=1 c̄j′sj′ = cHs. Ps,n can be computed in a similar fashion.

We can however assume that the noise signals are mutually orthogonal so that

Ps,nŝj ≈ Psŝj +
∑m

i=1〈ŝj, ni〉ni/||ni||2.

Based on the decomposition of ŝj, we can now define several performance measures,

i.e. the Source to Distortion Ratio (SDR), the Source to Interference Ratio (SIR),

the Source to Noise Ratio (SNR), and the Source to Artifacts Ratio (SAR). These
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metrics represent energy ratios and are expressed in decibels (dB). The higher

these values are, the better the performances.

• Source to Distortion Ratio

SDR := 10 · log10
( ||starget||2

||einterference + enoise + eartifacts||2
)

(2.11)

• Source to Interference Ratio

SIR := 10 · log10
( ||starget||2

||einterference||2
)

(2.12)

• Sources to Noise Ratio

SNR := 10 · log10
( ||starget + einterference||2

||enoise||2
)

(2.13)

• Sources to Artifacts Ratio

SAR := 10 · log10
( ||starget + einterference + enoise||2

||eartifacts||2
)

(2.14)

2.2 Existing Approaches

2.2.1 Neural Networks

Since the computational power for computers has increased a lot, different ma-

chine learning approaches have become more successful in all kind of fields, such

as speech and object recognition. One machine learning technique that has in-

creased a lot in popularity these days is deep neural networks. These are neural

networks with more than one hidden layer. For every layer, an activation function

is used which captures non-linear relationships between the inputs. This way, the

network is able to learn more complex relationships. Knowing that most real-life

problems can be pretty complex, this is eventually what we want to achieve.

In the next sections, a brief introduction of the basic concepts of neural networks

is provided. Some well-known approaches in deep learning are briefly discussed

for this particular problem, i.e. audio source separation. The most common ones

are convolutional and recurrent neural networks, but some other techniques are

introduced as well.
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2.2.1.1 Convolutional Neural network

A first example of an existing architecture for the monaural source separation prob-

lem is a convolutional neural network. This is a specialized kind of neural network

that uses convolution instead of general matrix multiplication and is known best

in image processing problems, such as object recognition and classification. The

model sees every input as some sort of grid, e.g. an image can be considered as

a two-dimensional grid of pixel values. Suppose we have a small image of 100 by

100 pixels. When using a fully connected layer, we would have 10000 weights for

each neuron in the second layer. When using a convolutional layer, the number

of parameters can be reduced a lot. We could for example divide the image in

regions of 5 by 5 pixels which would only require 25 learnable parameters (times

the amount of output channels) knowing that each region uses the same shared

weights. This approach also helps to allow much deeper networks, with fewer

parameters to train.

Figure 2.3: Convolutional layer [1]

Convolutional neural networks (CNNs) have been very successful in the identifi-

cation of faces and objects in images, but M. Espi et al. [2] thought this model

could be useful in monaural source separation problems as well. By applying a

short-time Fourier transform on a music signal, a spectrogram can be obtained.

This spectrogram can then be seen as a two-dimensional grid (i.e. in both time and

frequency domain). The rest can be done in a similar way as in image recognition.
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By using a convolutional neural network, the local characteristics of a spectrogram

can be exploited. A common use in CNNs is alternating convolutional layers with

pooling layers. Pooling layers are used for reducing the spatial size of the data,

which makes the computations less expensive. It can also be useful to prevent

overfitting. Although pooling can be very useful in image recognition, its use is

less effective in music source separation, because when too much detail in musical

data is reduced, it can be easily noticed. M. Espi et al. [2] experimented with

different pooling layers both along frequency and along time, and their results

showed that the performance degrades visibly when pooling is included along the

frequency domain.

Figure 2.4: Proposed convolutional network architecture of M. Espi et al. [2]

2.2.1.2 Vector Product Neural Network

A less obvious choice for solving this problem was proposed by Z.-C. Fan et al.

[13]. They propose a novel neural network model for music signal processing which

uses vector product neurons and dimensionality transformations. They map the

inputs from real values into three-dimensional vectors. These vectors are then fed

into a three-dimensional vector product neural network. The final outputs are then

mapped back into the real values. Two models for dimensionality transformation

are proposed: context window (context-Window Vector Product Neural Network

or WVPNN) and spectral coloring (Colored Vector Produc Neural Network or

CVPNN). For their experiments, they used the iKala dataset [14]. 189 clips from

this dataset were used for testing and only 63 clips for training. This was due to

the limitation of their GPU memory. To reduce computation, all the clips were

downsampled to 16000Hz. For evaluation they used the global NSDR (GNSDR),

global SIR (GSIR), and global SAR (GSAR). These are the same metrics as already
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mentioned before in section 2.1.1, except that the weightings are now proportional

to the length of each clip. Results in table 2.1 show that both their proposed

models WVPNN and CVPNN perform better than traditional DNNs.

Neural networks Arch.
Context

Window Size
GNSDR GSIR GSAR

DNN1 512x3 1 8.16 11.88 12.11
DNN2 1536x3 1 8.37 12.64 11.82

CVPNN 512x3 1 8.87 13.38 11.37

DNN3 1536x3 3 8.85 12.59 12.52
WVPNN 512x3 3 9.01 13.82 11.97

Table 2.1: Comparison of ordinary DNN with WVPNN and CVPNN

2.2.1.3 Deep U-Net Convolutional Network

Another possibility for solving the singing voice separation problem, is to use

a deep U-net convolutional network. This means that the network consists of

several convolutional layers, followed by deconvolutional layers as can be seen in

figure 2.5. Deconvolution is used to reverse the effects of the convolutions in order

to go back to the original size of the input. A deconvolution can be seen as the

inverse operation of a convolution. The U-net architecture was initially developed

for (bio-medical) imaging, but A. Jansson et al. thought it could be useful in

musical applications as well. Instead of using images [15], spectrograms from

music signals are used. Evaluation is done by comparing the evaluation metrics

signal-to-distortion ratio (SDR), signal-to-interference ratio (SIR), and signal-to-

artifacts ratio (SAR) with state of the art (shown in table 2.2). As can be seen

in the table below, their U-net model has the highest scores which means that it

performs better than the ChimeraNet, which was proposed by Y. Luo et al. [16].

U-Net Chimera

vocals
NSDR 11.094 8.749
SIR 23.960 21.301
SAR 17.715 15.642

instruments
NSDR 14.435 11.626
SIR 21.832 20.481
SAR 14.120 11.539

Table 2.2: iKala mean scores for the U-net model from Jansson et al. and the
ChimeraNet from Luo et al.
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After evaluating the metrics, they also made use of subjective tests to see if the

observations from the metrics were the same as for the hearing experience of the

predictions. For their survey, they asked CrowdFlower users to listen to three

clips of the isolated audio, generated by their U-net model, a baseline model and

Chimera. The order of these three clips was randomized. Another thing they

did, was adding “control questions” to the survey. These contained an audio file

without music or a prediction but with a person’s voice asking the listeners to fill

in a certain rating. Whenever such a control question was answered incorrectly,

the user was disqualified from the task. For the survey, they used 25 clips from

IKala and 42 from MedleyDB.

Figure 2.5: Proposed deep U-net convolutional network architecture by A. Jansson
et al. [3]

A less deep network but with the same principle, is proposed by P. Chandna et al.

[4]. Their architecture contains an encoding stage and a decoding stage just like in

the previous example, but both stages only contain two (de)convolutional layers.

The difference is that they focus more on one dimension per layer, i.e. in the first

convolutional layer, the model will try to search for local timbre information which

are features in the frequency domain, and in the second convolutional layer there is

more focus on features in the time domain. As can be seen in figure 2.6 the encoding

stage also contains a fully connected layer. This layers acts as a bottleneck and

is used for dimensionality reduction. The decoding stage is then used for doing
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the inverse operations of the encoding stage, such that the output gets back the

original size. In their research, they do not only focus on separating the voice

from music tracks but also every instrument separately. For these experiments,

the Mixing Secrets Dataset 100 (MSD100) and the Demixing Secrets Dataset 100

(DSD100) were used. Both these datasets consist of 100 professionally produced

full track songs. They contain separate tracks for drums, bass, vocals, and other

instruments for each song in the set, which makes it ideal for cases where specific

instruments need to be separated.

Figure 2.6: Proposed network architecture by P. Chandna et al. [4]

2.2.1.4 Recurrent Neural Network

Another example of an existing architecture for the monaural source separation

problem is that from P.-S. Huang et al. [5]. They propose a deep recurrent

neural network (RNN) consisting of three stacked layers, a dense layer (one for

each source), and an extra normalization layer, which they call the time-frequency

masking layer (also one for each source). A figure of the model architecture is

shown in figure 2.8. The main idea behind a recurrent neural network is to make

use of sequences of information where consecutive elements (e.g. words in a sen-

tence, musical tones from a melody) are dependent on each other, compared to

a traditional neural network where it is assumed that all inputs and outputs are

independent of each other. The term recurrence indicates the hidden state that is

brought along (and updated) every time step.

The diagram in figure 2.7 shows a RNN being unfolded into a full network, i.e. we

write out the network for the complete sequence of information.
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Figure 2.7: A recurrent neural network and the unfolding in time

P.-S. Huang et al. used their RNN to focus on singing voice separation, but speech

separation and speech denoising were tested as well. For these tests, they used the

MIR-1K, TSP, and TIMIT datasets, respectively. The MIR1-1K dataset is most

relevant for this thesis. In order to evaluate the proposed model, the evaluation

metrics global NSDR (GNSDR), global SIR (GSIR), and global SAR (GSAR) were

used (as previously discussed in section 2.2.1.2) and compared to other approaches

from the state of the art as shown in table 2.3. Their proposed RNN model

performs better than the RPCA and RNMF approaches, which will be discussed

briefly in section 2.2.2. Huang et al. also further explored different discriminative

training objectives to enhance the source to interference ratio. Their approach

achieves 2.30∼2.48 dB GNSDR gain and 4.32∼5.42 dB GSIR gain compared to

the other models.

Unsupervised
Model GNSDR GSIR GSAR

RPCA [17] 3.15 4.43 11.09
RPCAh [18] 3.25 4.52 11.10

RPCAh + FASST [18] 3.84 6.22 9.19

Supervised
Model GNSDR GSIR GSAR

MLRR [19] 3.85 5.63 10.70
RNMF [20] 4.97 7.66 10.03
DRNN-2 7.27 11.98 9.99

DRNN-2 + discrim 7.45 13.08 9.68

Table 2.3: Comparison between the models proposed by Huang et al. [5] and
other proposed approaches. The “discrim” denotes the models with discriminative
training
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Figure 2.8: Proposed neural network architecture by P.-S. Huang et al. [5]

Another example of a recurrent neural network approach is that from Hershey

et al. [21]. They introduced the term ‘Deep clustering’ which means they use a

Bi-directional Long Short-Term Memory (BLSTM) neural network to learn use-

ful embeddings of time-frequency bins of a mixture. To estimate the partition

of one source, they use an objective function which encourages these embeddings

to cluster according to their source such that K-means can be applied [21]. For

these experiments, the focus was more to separate speech from multiple speakers.

LSTMs are a commonly used type of RNNs and are know to be much better at

capturing long-term dependencies. The fact that Hershey et al. use a bi-directional

LSTM, basically just means that two independent LSTMs are put together. The

input sequence is fed in normal time order for one network and in reverse time

order for the other one. BLSTMs allow the network to have both forward as well

a backward information about a given sequence at every time step.

So far, most of the existing approaches rely on a post processing step where Wiener

filtering is applied, i.e. after training a mask is generated in order to rebuild the

spectrogram of the source that needs to be predicted. P.-S. Huang et al. [5] made

this post processing step unnecessary by adding an extra ‘time-frequency layer’ to

their model itself which immediately returns a mask output. S. I. Mimilakis et al.

[7] propose another method where the model trains directly on a source-dependent

mask which makes the post processing step unnecessary. Furthermore, they apply
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Figure 2.9: Basic idea of bi-directional RNN compared to uni-directional RNN [6]

a denoising filter to the results obtained from the time-frequency masking which

enhances the result even more. Compared to previous state-of-the-art methods for

music source separation from Grais et al. [22], Chandna et al. [4], and Mimilakis

et al. [23, 24], they obtained results with an increase of 0.49 dB for the signal to

distortion ratio and 0.30 dB for the signal to interference ratio.

2.2.1.5 Combining Audio Features with Visual Features

There are a lot of cases where not only an audio signal is provided, but also a

visual representation of the person who is talking or singing. Google’s research

group recently experimented with this idea. Their focus was not on extracting

vocals from music tracks but rather on isolating voices within a crowd or a noisy

environment [25].
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Figure 2.10: Proposed architecture by S. I. Mimilakis et al. [7]

Figure 2.11: Visual explanation of Google’s idea [8]

By looking closer to the model that was used in Figure 2.12, it can be seen that

again a convolutional network has been used for both the visual and audio fea-

tures. After the convolutional network, both streams are added together and

subsequently passed through a bidirectional recurrent network. Finally, the masks

can be obtained through the dense (or fully connected) layers, from which the

spectrograms can be recalculated. For creating the spectrograms and reconstruct-

ing the wave file from the spectrogram the short-time Fourier transform (STFT)

and the inverse STFT were used, respectively.

Google states that the visual component is the key here to make the predictions

more accurate, because by watching a person’s mouth, it is easier to identify who

is talking and identify which voices to focus on.
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Figure 2.12: Proposed model by Google for combining both audio and visual
features [8]

2.2.2 Other Techniques

In the next part, techniques other than neural networks are briefly discussed that

have been used a lot in the past for audio source separation. As mentioned before,

Huang et al. have shown that neural networks can already surpass these techniques

a lot (table 2.3). Because of this reason, we will not look at them too much in

detail.

2.2.2.1 (Robust) Non-Negative Matrix Factorization

Before deep learning was becoming more popular, Non-Negative Matrix Factoriza-

tion (NMF) was one of the most used techniques for supervised source separation.

The idea behind this approach is to represent a matrix Y = BG, where B is the

basis vector and represents the frequency response of a source at a given time and

G represents the gain of the frequency response at any point along the time axis.

Thus, if we have two sources, S1 and S2, that are mixed into the mixture Y , i.e.

Y = S1 + S2, and we know that the basis vectors for S1 and S2 are computed as

B1 and B2, then we can write the mixture Y as follows:

Y = B1G1 +B2G2 (2.15)

where G1 and G2 are the activation gains for the sources S1 and S2, respectively.

One thing to keep in mind is that NMF assumes that the mixture can be repre-

sented as a linear combination of the basis dictionaries. The example in equation
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2.15 can be generalized for multiple sources:

Yi,j =
K∑
k=1

Bi,kGk,j (2.16)

where K is the amount of sources.

Sprechmann et al. [20] proposed a more robust version of this approach, i.e. robust

NMF (RNMF). This model extends the standard NMF to consider the low rank

and the outlier terms to be non-negative.

Despite the fact that the results from deep neural network approaches are already

a lot better than when a NMF approach is used, NMF can still be very useful.

Grais et al. [26] propose a deep neural network (DNN) for single channel source

separation where NMF is used to initialize the DNN estimate for each source. The

results of their experiments show that using a DNN initialized by NMF improves

the quality of the separated signal compared with using only NMF for source

separation.

2.2.2.2 (Robust) Principal Component Analysis

Compared to the techniques that were discussed earlier, principal component anal-

ysis (PCA) is an unsupervised approach, which means that it learns without know-

ing the groundtruth of the training data. PCA is a widely used technique for di-

mensionality reduction. However, its performance can be very sensitive to outliers.

To remedy this issue, a technique has been developed called robust PCA (RPCA)

[17, 18, 27]. The algorithm decomposes a spectrogram X into a low-rank matrix

A plus a sparse matrix X − A and can be formulated as follows:

min
A
||A||∗ + λ||X − A||1 (2.17)

where ||A||∗ = tr(
√
ATA) is the trace norm of A, ||X − A||1 is the entrywise l1-

norm, and λ is a positive constant which can be set to
1√

max(m,n)
.

The l1-norm is used to characterize sparse corruptions and thus makes it more

robust against outliers.
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2.3 Datasets

There are a number of datasets available that have been created for research on

music information retrieval (MIR) tasks. In this section, several datasets will be

discussed and a comparison of their advantages and disadvantages will be made.

2.3.1 MIR-1K

The MIR-1K dataset [28] was created especially for singing voice separation and

contains 1000 song clips. The vocals and instrumental accompaniment are recorded

at the right and left channel, respectively. The duration of the clips can have a

variable length from 4 up to 13 seconds. The songs are Chinese pop songs and

sung by 8 female and 11 male singers. Most of the singers are amateur and do not

have professional music training. The songs have a sampling rate of 16000Hz so it

is perfect for small experiments and to do research on, but for experimenting with

‘real-world examples’, the dataset is not representative.

2.3.2 iKala

The iKala dataset [14] is currently the most used dataset for source separation in

audio. A lot of papers that were discussed in the previous section [3, 13, 18, 27]

used this dataset for their experiments. This has the advantage that the metrics

of a new model can be more easily compared with the state of the art.

This dataset contains 252 clips of 30 seconds each. The same principle is used

as for the MIR-1K dataset, i.e. the voice is recorded at the right channel and

the music accompaniment at the left channel. An advantage from this dataset

compared to the previous one is that the tracks now have a fixed length. This

makes it more easy to work with. Another advantage is that the sampling rate is

now higher (44100Hz) so a model that is trained on this data could then be tested

more easily on songs that we hear on the radio for example. The iKala dataset

is not publicly available, but can be requested by signing a license agreement. A

download link is then sent by e-mail within five working days.

2.3.3 DSD100

The demixing secrets dataset (DSD) [29] is a multi-track dataset, which means that

it not only contains a groundtruth for the vocals, but also for every instrument

individually. This makes it possible to go further than only isolating the voice
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from a music track. The set consists of 100 tracks and the supported targets are

‘vocals’, ‘accompaniment’, ‘drums’, ‘bass’ and ‘other’. The sampling rate of the

songs is 44100Hz.

2.3.4 MedleyDB

Another example of a multi-track audio dataset is MedleyDB [30]. It contains 122

songs, each with a sampling rate of 44100Hz. The duration of the songs is mostly

around 4 minutes, but there are a few excerpts that are about 7 hours in total.

MedleyDB consists of different genres, a.o. singer/songwriter, classical, rock, jazz,

pop, rap, etc.

Dataset Contents
Hours
in total

Metadata
Sampling

rate
MIR-1K 1000 excerpts 2.22 Vocals and background 16000Hz

iKala 252 excerpts (30s) 2.10 Vocals and background 44100Hz
DSD100 100 songs ±6.5 Multitrack 44100Hz

MedleyDB 122 songs ±14.2 Multitrack 44100Hz

Table 2.4: Comparison datasets

By comparing these datasets, there are huge differences that can be noticed. First

of all, the sampling rate from MIR-1K is much lower than from the other datasets.

Not only the sampling rate is low, but also the quality of how the recordings were

made is not optimal, because it was made by amateur singers. This is one of the

main reasons this dataset has not been used for our model. Secondly, we notice

a big difference in total hours when we compare the MIR-1K and iKala with the

two multitrack datasets. Despite the fact that the recordings from the DSD100

and MedleyDB datasets sound much better than the tracks from iKala and contain

much more data, the choice was made to use iKala for our experiments. First of all

because a lot of the approaches from the state of the art used this dataset, which

makes it easy to compare our approach with. Secondly, this thesis focuses on the

constant-Q transformation which causes the transformed training data to be much

larger than when the standard STFT is used. This already makes it harder to load

everything into memory. Using an even larger dataset would probably overload

the machine.
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Methodology & Implementation

3.1 Proposed framework

The framework consists of three different main parts. First of all, the dataset needs

to be preprocessed before it can be used for the training of the model. As discussed

earlier, the music signals should be transformed into a two-dimensional space, such

that all the different frequencies can be distinguished from each other at every time

instance. This can be done by using a short-time Fourier transformation (STFT)

or a constant-Q transformation (CQT). After this process, these transformations

are used to create the ideal masks needed to reconstruct the original source’s

spectrograms. Then the transformed dataset should be split into a training set, a

developer set and a testing set. The second part will be the training of the model.

By feeding the training data to the model in small batches, the network learns

how to distinguish the vocals from the instruments. The developer set can then

be used to finetune the hyperparameters to make sure that the model performs

as good as possible when unseen data is fed to the network. Finally, the trained

model can be used to predict unseen batches of data (from the test set), and for all

these estimated sources, the evaluation metrics can be calculated. In the following

sections, these three main steps will be discussed.

3.1.1 Preprocessing

Since this master’s thesis mostly focuses on the comparison between STFT and

CQT, there is a preprocessing script provided for both these transformations. For

loading the wave files and transforming them, the Librosa [31] library is used. In

order to get the magnitudes, the absolute value is taken from the spectrograms.

This way, we get rid of the complex values and the phase information is thrown

21
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away. However, if the magnitude spectrograms would be used for training (in

case only the groundtruth of one source is fed to the network), it would not be

possible to recover the full spectrograms afterwards, i.e. the spectrograms with

complex values which contain both amplitude and phase information. To solve

this problem, a mask is created for every song. As already discussed in section 2.1

(equation 2.1), this mask represents the ratio between the power spectrogram of

one source, e.g. the vocals, and the sum of the powerspectra of all the sources from

the mix. With this mask the full spectrogram can be recreated by multiplying it

with the spectrogram of the mix (equation 2.2). This way, both the amplitude and

phase information are regained from the input information. For the final model,

the samples from the dataset are not downsampled and kept at their original sam-

pling rate, i.e. 44100Hz.

Furthermore, there is a third preprocessing script which basically just splits the left

and right channel from the original mix, which contain the voice and instruments

respectively. These represent the original sources and can be used for subjective

testing. A comparison can then be made with the estimated sources.

As will be explained in section 3.2, every sample is split into three chunks of 10

seconds each. This can be easily done with the Librosa library.

Before we can start training the network, the data needs to be split into a separate

training set, developer set, and testing set. That way, we can make sure that a

certain subset of the data remains untouched and we can evaluate the model

using the data that the network has not seen yet. For this, the 3 chunks that

were extracted from one sample are always contained within one set (this is only

applicable for the final deep U-net model which will be explained in section 3.2.3).

3.1.2 Training the model

Before actually training the model, a configuration file can be adjusted and the

following parameters can be changed:

• epochs : the amount of times the model needs to go over the full training set

• epoch save checkpoint : after how many epochs a checkpoint is saved

• learning rate: learning rate of the Adam optimizer

• dropout rate: the probability that a unit (neuron) is dropped out of the

network
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• batch size: the size of the batches that are used for training based on mini-

batch gradient descent-like optimization

• loss type: the loss function that needs to be minimized

• alpha: factor in the loss function (equation 3.6). The higher alpha, the more

the model focuses on the loss of the vocals. The lower alpha, the more the

model focuses on the loss of the instruments (0.0 6 alpha 6 1.0). This

parameter is only used for the U-net model.

• transf : the used transformation (STFT or CQT)

• trainset, devset and testset : the path to the location of the data

When the network is learning, it writes data to an events-file every epoch. This

file can be loaded into TensorBoard and the course on the loss curves for both

the training and developer set can be followed. This way, it can be monitored

when the model starts overfitting, i.e. when the loss on the developer set stops

reducing. The decision of when to stop training the model was made manually

after an analysis was made of the final loss curves. Every X amount of epochs (see

epoch save checkpoint parameter in the configuration file), a checkpoint is saved

to the machine. After training, these checkpoints can then be used for testing the

model. Another useful feature of TensorBoard is that it makes it possible for the

user to see a graphical representation of the model that is implemented.

3.1.3 Testing the model

The model can be tested in different ways. First of all, the test set will be fed

into the model. If the model is already trained, the framework will load the most

recent checkpoint to make predictions on the test set. If it would be the case that

the model was already overfitting at this point (which can be monitored using

TensorBoard), it is possible to use a checkpoint from earlier in time. This can be

done by adjusting the epoch in the checkpoints file. During the testing process,

the evaluation metrics (SDR, SIR, and SAR) are stored per predicted test sample.

If all samples are processed, a boxplot is automatically generated and stored in

PNG format to evaluate the results.

Another possibility to test the model and its predictions is to make use of subjective

testing. For this approach, we do not look at the strict evaluation metrics that

were calculated for every sample, but rather test how much the predictions are
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appreciated by the people. Since this is not a part of the framework, this approach

will be discussed more in detail in section 4.3.

3.2 Experimentation

In this section, the different steps of the progress are explained and the evolution

of the used models are discussed.

3.2.1 Comparison Convolutional and Recurrent Network

The first small experiment was to implement a simple network and see if it was

able to learn a very small training set by heart. This is a first step to be sure

that the model is capable of learning the data. The next step is then to check if

the network is capable of learning new data that it has not seen before. Both a

convolutional and a recurrent network were implemented. For these experiments,

the iKala dataset was used which contains audio files of 30 seconds each and a

sampling rate of 44100Hz. Since this was only a small first test, all the files were

downsampled to 16000Hz to reduce the computation. Also only short-time Fourier

transformations were used during preprocessing for these experiments. It soon

became clear that the recurrent neural network needs a lot more computation time

than the convolutional one and thus converges much slower. This was a first reason

to give more attention to convolutional networks. A second reason for focusing

more on convolutions is that recurrent networks are known to incorporate feedback.

For the audio source separation problem, this feedback can have the impact that

the model is less stable when tested under novel conditions that were not seen

during the training process [32]. Also by using convolutional neural networks,

smaller, robust features of the timbres can be learned across smaller subsections

of the spectrogram.

3.2.2 Deep Convolutional Network

After the decision was made to focus on convolutional neural networks, the simple

model with only two convolutional layers was transformed into a deeper network.

Several experiments were done to improve the model and its predictions. Also

for these experiments, the samples from the dataset were kept at their original

sampling rate, i.e. 44100Hz. This way, the trained model could also be tested on

commercial songs which have almost always this sampling rate (CD quality).
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The first version of the model contained only convolutional layers and at the end

one dense layer. Several experiments were done using different channel sizes for

each layer. One approach was to increase the channel size up until the last layer,

another test was to first increase the channel size for a few layers and then gradually

decrease the output channels again. As the latter gave more promising results, this

was the model to focus on. In the following section the evolution of this model

will be discussed as well as the improvements that were made.

3.2.2.1 Evolution of the model

As can be seen in figure 3.1, the loss curve on the developer set is going down at

the beginning but compared to the training loss, its minimum is still way too high

and tends to go up again really fast. To improve this loss, different methods can

be applied. First of all, we should search for an optimal size for both the train

and test sets. In case the test set is small and there is one (or more) outlier(s),

the evaluation metrics will not be representative. Several ratios were tested for

splitting the dataset into train and test sets and then a comparison was made in

order to find the best division. When splitting the dataset into two equal partitions

for both the training set and the two evaluation sets (one for developing and one

for testing), the minimum from the loss curve on the developer set went from a

RMSE of 0.39 to about 0.37 (Figure 3.2). The loss function that was used for this

model is defined in equation 3.3.

Figure 3.1: First RMSE loss curves (training loss: green, evaluating loss: yellow)
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Figure 3.2: RMSE Loss curves after making the evaluation set bigger (training
loss: purple, evaluating loss: blue)

As can be inferred from figure 3.2, the model is still not doing well when it tries to

predict unseen data. There are still some options to enhance the predictions. First

of all the data can be augmented, because the more data, the more the network

can learn. By slicing every audio file into different chunks and slightly allowing

some overlap, we could improve the model. Another possibility is to add several

dropout layers [33] which is a regularization technique that will make sure that the

model does not overfit too fast on the training set. As shown in figure 3.3, it can be

clearly seen that the developer loss tends to go lower when a higher dropout rate

is used. When looking at the curves for the training loss, indeed the model does

learn much slower when the dropout rate is higher. In other words, the higher the

dropout rate, the more the loss for the train and developer set tends to become

closer to each other.

Figure 3.3: Comparison RMSE loss curves for different dropout rates

3.2.2.2 The model

The final version of this model consists of seven convolution layers, each followed

by a dropout layer and is shown in figure 3.5. The layer after the last dropout



3.2. EXPERIMENTATION 27

Figure 3.4: Sigmoid function

layer is a fully connected layer which predicts the final output in the same format

as the input. For the convolutional layers a filter was used of three by three and

the output channels have the following order: 16, 32, 64, 32, 16, 16, 1. Every

convolution is followed by a rectified linear unit (ReLu) activation function (see

figure 3.6). This function keeps all values that are positive, but sets all negative

values equal to 0. The biggest advantage of this activation function is that it works

better for gradient propagation. It has fewer vanishing gradient problems if we

compare it to e.g. sigmoidal activation functions. The ReLu activation function

can be expressed as follows:

ReLu(x) = x+ = max(0, x) (3.1)

For the dense layer a sigmoid activation function is used which is visualized in

Figure 3.4 and defined as follows:

Sigmoid(x) =
1

1− e−x
(3.2)

What this formula actually does, is transforming values between −∞ and ∞ into

values that are in the interval [0, 1]. Whenever x is a big positive value, e−x will

become very close to 0 so the output of the sigmoid function will be (close to) 1.

If x is a very small value (negative), e−x will be much higher, which causes the

output to be 1 divided by a very big number. The output will thus be much closer

to 0 in this case.

For all the above figures where the losses are visualized, the root mean square
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error (RMSE) is used as a loss function. Another possibility would have been to

simply use the mean square error (MSE). This is a more common alternative which

makes the additional square root unnecessary. However, for all our experiments

with both this model and the U-net model, the RMSE was used.

This deep convolutional model only predicts the isolated vocals, which implies that

the loss is only based on this prediction. We can formulate the loss function as

follows:

RMSE =

√√√√ 1

n

n∑
i=1

(Yvoice,i − Ŷvoice,i)2 (3.3)

with Yvoice the target value for the voice and Ŷvoice the value that is predicted by

the model.

To optimize this loss, the Adam optimizer is used. Adam is a derivation from

‘adaptive moment estimation’. The Adam algorithmn tries to combine the best

properties of two other optimization algorithms, i.e. Adaptive Gradient Algo-

rithm (AdaGrad) and Root Mean Square Propagation (RMSProp). These are

both extensions of the classical stochastic gradient descent. AdaGrad maintains

a per-parameter learning rate and improves the performance on problems with

sparse gradients such as natural language problems. RMSProp also maintains

per-parameter learning rates but here, they are adapted based on the average of

recent magnitudes of the gradients for the weight. The advantage of RMSProp is

that it works well for online and non-stationary problems. The Adam optimizer

only requires first-order gradients with little memory requirement and computes

individual adaptive learning rates for different parameters from estimates of the

first and second moments of the gradients. The decaying averages of past and past

squared gradients (mt and vt, respectively) are computed as follows:

mt = β1mt−1 + (1− β)gt (3.4)

vt = β2vt−1 + (1− β)g2t (3.5)

where gt denotes the gradient at time step t. mt represents the estimate of the

first moment (the mean) of the gradients and vt represents the second moment

(the uncentered variance).

The Adam optimizer was introduced by Kingma et al. [34]. They made a com-

parison with other optimization algorithms and showed that this optimizer has a
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lot of advantages. Adam can handle sparse gradients on noisy problems very well

and it is relatively easy to configure. The default configuration parameters are rec-

ommended for most problems so for the experiments with the deep convolutional

network, these were left untouched (learning rate=0.001, beta1=0.9, beta2=0.999,

epsilon=1e-08).

3.2.3 Deep U-net

Despite the improvements that were made for the deep convolutional neural net-

work to reduce the loss, the predictions on the unseen data with that model were

still not performing well on unseen data, given the evaluating loss compared to the

training loss. There was need for a better model that actually learned some useful

features. Based on the model of A. Jansson et al. [3], a U-shaped network was

implemented which builds upon a fully convolutional network and is similar to the

deconvolutional network [15]. In a deconvolutional network, a stack of convolu-

tional layers encodes the image (in this case the mask of a source) into a small and

deep representation. In each convolutional layer, the size of the image is halved

(by using strides of 2x2) and the output channels are doubled. In the second part

of the network, the encoded image is then decoded again back to the original size

of the input by a stack of upsampling layers.

3.2.3.1 Evolution of the model

The initial U-net model was implemented with four convolutional layers and four

deconvolutional layers. For the convolutions, the channel size started from 16 and

was doubled every next layer up till 128. For the deconvolutions, the same channel

sizes were used but in reversed order. Before every deconvolution (except the first

one) a skip-connection is made such that the output of the convolutional layer and

the output of their corresponding deconvolutional layer can be concatenated and

fed into the next layer. This allows low-level information to flow directly from

the high-resolution input to the high-resolution output. All the lessons learned

from the previous model, such as dropout, the use of ReLu activation functions,

and equally divided train and evaluation sets, were now again applied to the model.

During the experiments with this model, leaky ReLu activations were used as well

for some layers with a default leak of 0.2. They allow a small, positive gradient

when the unit is not active. They are only used in the convolutional layers. For

the deconvolutional layers, normal ReLu’s are used. Adding these leaky ReLu

activations had a significant impact on the predictions.
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Figure 3.5: Proposed deep convolutional network architecture.
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Figure 3.6: ReLu function Figure 3.7: Leaky ReLu function

Finally, batch normalization is added to the model which also acts as a regularizer

(sometimes this approach even eliminates the need for dropout, but in this case a

combination of both is used). Batch normalization allows us to use higher learning

rates and be less careful about initialization. It allows each layer of the network

to learn more by itself and make it more independent of the other layers [35].

As discussed in the section of the previous model (section 3.2.2.1), we introduced

some overlap in the preprocessed data to create a bigger dataset. With the U-net

model, this augmented data could still be used for the experiments with the STFT,

but for the CQT experiments, this was impossible because of the much bigger file

sizes. To make sure the machine did not go out of memory, the overlapping parts

were removed again from the dataset for these experiments, and the batch size was

reduced from 10 to 8. Nevertheless, the curves for the developer loss compared to

the training loss for this model were still a lot more promising than for the deep

convolutional network.

Figure 3.8: Loss curves for the U-net model (STFT training loss: green, STFT
evaluating loss: purple, CQT training loss: orange, CQT evaluating loss: blue)
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By looking at the loss curves in figure 3.8, a few things stand out. First of all,

it can be noticed that the CQT training loss decreases to a RMSE of 0.32 while

the STFT training loss only decreases to a value of 0.34. A second, and maybe

more important aspect, is that the loss on the developer set for the CQT follows

almost exactly the same trend as the CQT training loss, whereas for the STFT

experiment, there is a big gap between the training and developer loss. By looking

at the losses on the 500th epoch, the STFT developer loss has decreased to a

RMSE of only 0.36, while the CQT developer loss is close to 0.32.

3.2.3.2 The model

For the final version of this model, an extra convolutional and deconvolutional

layer were added to the network, both with an output channel of size 256 (again

the channel size is doubled from the previous layer). Compared to the deep con-

volutional model, the final layer now gives an output with two channels, one for

the voice prediction and one for the instruments prediction. In this case, both

predictions are used in the loss function. A parameter α can be adjusted in the

configuration file to emphasis more on the voice loss or the instruments loss. By

default both the voice and instruments loss are threated equally, so this value is

set to 0.5. The loss function is defined as follows:

Ltotal =
√
α ·MSEvoice + (1− α) ·MSEinstruments (3.6)

where MSE is the mean squared error for each source:

MSEsource =
1

n

n∑
i=1

(Ysource,i − Ŷsource,i)2 (3.7)

A graphical representation of this loss function can also be seen below in figure 3.10.

Again, the same algorithm was used as for the previous model to optimize this

loss, i.e. AdamOptimizer. A visualization of the model itself is shown in figure 3.9.
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Figure 3.9: Proposed deep U-net convolutional network architecture.
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Figure 3.10: Loss function for U-net convolutional network architecture.
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Evaluation

4.1 Results

During the experimentation, the mir eval library [36] was used for calculating the

evaluation metrics SDR, SIR and SAR. These were calculated for every file in the

test set from which then the average was taken to compare it with the state of

the art. However, only using the average can sometimes give a wrong impression

if there are a lot of outliers. Because of this reason, boxplots were generated as

well to get a more general idea of the metrics. Since the predictions of the deep

convolutional model were not acceptable enough compared to the state of the art,

the evaluation metrics were only calculated for the predictions of the second model,

i.e. the deep U-net convolutional model. As can be seen in both the boxplots for

the STFT (figure 4.1) and CQT experiments (figure 4.2), the metrics are very

similar. This can also be noticed in table 4.1. We could say that the SIR and SAR

scores for the isolated instruments using STFT are a little bit better than when

using CQT, but the difference is very small and could differ when using another

test set.

Something else that can be noticed in the boxplots is that the predictions from the

STFT experiment contain more outliers than the ones from the CQT experiment.

Both experiments were tested on the same testing set, so we can imply that the

model is more consistent in its predictions when using CQT. The same evaluation

metrics were calculated on the developer set and indeed, the same findings could

be made. There were a lot of (bad) outliers for the vocals using STFT, a lot

of (good) outliers for the instruments using STFT and only a few outliers using

CQT. And even if there are outliers when using CQT, they are mostly close to the

mean, compared to the big gaps that can be noticed between them in the STFT

predictions.

35
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Figure 4.1: Boxplot of metrics for deep U-Net (using STFT)

Figure 4.2: Boxplots of metrics for deep U-Net (using CQT)
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Deep Convolutional
U-Net

STFT CQT

vocals
SDR 11.04 11.38
SIR 17.65 17.23
SAR 13.62 13.64

instruments
SDR 5.34 5.03
SIR 13.06 10.06
SAR 6.84 8.30

Table 4.1: Comparison of metrics (average) for both the STFT and CQT experi-
ments

4.2 Comparison with state of the art

If we take a look at the results of the evaluation metrics and compare it with the

state of the art, it can be noticed that the deep U-net achieves much better results

for the isolation of the vocals than the proposed recurrent network by Huang et

al. [5] when comparing the metrics from table 4.1 with table 2.3. The deep U-net

also surpasses the models based on RPCA [17, 18] and RNMF [20] easily. How-

ever, comparing it with the results from Jansson et al. [3] (Table 2.2), is more

difficult. The results for the predictions on the vocals are close to each other when

looking at the signal to distortion ratio. The predictions on the instruments are a

lot better when their model is used and also the SIR and SAR metrics are much

higher in general. The reason for this difference is probably because they had the

resources to feed both voice and instruments data into the network, which makes

it for them possible to train the voice and instruments predictions separately. In

our approach, we had to find a way not to overload the machine and thus only

make a separation in the last layer of our model. However, the main goal of this

thesis is not so much to surpass these highly trained models, but rather to get

better insights in the use of constant-Q transformations for this purpose, as stated

before. Our deep U-net does however achieve better SDR results for the vocal

predictions than their baseline model.

Evaluating the predictions based on the results of the metrics is a first good step

and already gives some insights into the performance of the model for both the

STFT and CQT approach. The second step is to listen to the results and try

to observe the differences. What can be easily noticed is that the predictions for
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songs with a lot of guitars and heavy arrangement perform very good when using

CQT. What sticks in both approaches are the drums. These are very hard to

get rid of in the vocal predictions. The bass on the other hand is almost always

isolated completely. This is relatively easy to declare, since these frequencies are

at a whole other level than the vocals.

A possible way to improve the predictions for the vocals could be to do some

preprocessing on the input files. E.g. equalizing the songs and applying some

filtering techniques could already bring the drums more to the background of the

track. This preprocessing would probably do the trick to obtain higher quality

predictions.

4.3 Subjective testing

Evaluating the predictions of the deep U-net for the STFT and CQT experiments

by only comparing the evaluation metrics (SDR, SIR, SAR) does give an idea of

how well both approaches perform, but the human hearing is quite complex and

can be more sensitive to some frequencies than to others. To get a better idea of

how well the model predicts on the STFT data and the CQT data, some subjective

tests were created and a group of about 20 people were asked to fill in these surveys.

From the final predictions of the U-net model, 18 samples were chosen at random.

These were separated into two parts (part A and part B) each using 9 samples of

the set. Each of these parts was then again separated into 4 different parts:

• Predictions on the vocals using STFT

• Predictions on the vocals using CQT

• Predictions on the instruments using STFT

• Predictions on the instruments using CQT

Each part contained 9 questions where both the original mix as well as the pre-

diction can be heard. For each part the same 9 samples were used in combination

with their prediction. The respondents were asked to rate how well they thought

the source (voice or instruments) was separated from the original mix on a scale

from 0 (not isolated at all) to 6 (very well isolated).
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If we take a look at figure 4.3, we see a boxplot for every set of scores that was given

to the samples. From every sample, a weighted average was taken and added as a

data point for the boxplot visualization. Something that is immediately noticeable

is that the subjective scores of the STFT and CQT predictions for the vocals are

quite comparable while the scores for the STFT predictions of the instruments are

in general much lower than for the CQT predictions.

Figure 4.3: Boxplots of the subjective scores (comparison STFT and CQT)

Based on the subjective tests, we could infer that the CQT predictions are more

preferred over the SFTF predictions, but let’s have a closer look at the different

samples. If we compare the weighted average for every STFT and CQT sample

individually, we can see that in most cases the scores for the CQT samples are

indeed better than for STFT. For the instruments predictions, this is very clear

in figure 4.5. Figure 4.4 however shows that it was much harder for the listeners

to determine which one of the voice predictions (using STFT or CQT) was better

isolated from the original mix. Most of the time, the scores are very close together,

but there are a few exceptions. E.g. the sample for question 6 gives a score of

about 1.88 for the vocal prediction using STFT while the score for the CQT ap-

proach is 2.61. By listening to this sample, it can be noticed that for the STFT

prediction, there are still some small parts of the bass that are not completely
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isolated. This creates some extra noise which might be less pleasant for a person

to listen to. For the CQT prediction of sample 6, the bass has (almost) completely

become unnoticeable. The same observation can be made for the sample predic-

tions of question 7, 14, and 18. For the other exceptions, there are only very small

differences noticeable, and it is hard to say why people could have preferred the

one over the other.
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Figure 4.4: Weighted average of the subjective scores for every sample prediction
of the vocals

Figure 4.5: Weighted average of the subjective scores for every sample prediction
of the instruments
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If we look at figure 4.5, we see a much bigger gap between the subjective scores of

the STFT and CQT approaches. CQT clearly outperforms the STFT in almost

all the samples. By listening to the songs that were used for the tests, we notice

that the CQT performs better than STFT if the sample contains guitars and a

more heavy arrangement. The exceptions where STFT is more appreciated by the

listeners than CQT are the samples of question 3 and 5. For these samples there

are (almost) no guitars in the original mix and the main instrument is a piano in

these cases.

Subjective score
(average)

Question Sex of singer STFT CQT

Part A

Q1 Male 2.32 2.84
Q2 Female 3.26 3.21
Q3 Male 2.63 3.58
Q4 Female 3.16 3.37
Q5 Female 2.72 2.78
Q6 Male 2.17 2.61
Q7 Male 1.89 2.61
Q8 Male 2.78 3.00
Q9 Male 3.06 2.61

Part B

Q10 Male 3.50 3.75
Q11 Female 3.58 3.50
Q12 Female 3.08 3.17
Q13 Female 2.75 2.67
Q14 Female 3.00 3.42
Q15 Female 3.50 3.58
Q16 Male 2.00 2.42
Q17 Male 2.33 3.00
Q18 Male 2.50 3.75

Table 4.2: Subjective score (average) for the vocal prediction of every sample +
sex of singer

Table 4.2 shows the average subjective scores for the voice prediction of every

sample in more detail. This table also contains a column that shows the sex of the

singer. With this data we can compare the average scores of the voice predictions

for both male and female singers, and see if there are any differences (Table 4.3).

Let us first focus on the STFT approach. By taking the average over all the scores

from samples with a female singer, we get a score of 3.13. The average score for

samples with a male singer is only 2.52. If we calculate the averages for the CQT
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approach, we obtain a slightly higher score for the female voice predictions, i.e.

3.21, and for the predictions of the male singers 3.12, which is a great improvement

compared to the STFT predictions. For both the STFT and CQT approaches, the

predictions with a female singer get in general a higher rating than the ones with a

male singer. A second observation is that the difference in score between the STFT

and CQT approach for the female singers is only 0.08 which is not a significant

difference, while the difference for samples with male singers is 0.6. This brings

new insight when looking again at the plot in figure 4.4. If we take a look at the

samples where the difference is bigger between the blue and red dots, these are

indeed always samples with a male singer, with only one exception (the sample of

question 14).

Average score
STFT CQT

Female 3.13 3.21
Male 2.52 3.12

Table 4.3: Average subjective scores: comparison male and female singers
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Conclusions

A lot of research has already been done in music information retrieval problems

using deep neural networks. Currently, from most of the proposed models that try

to solve the audio source separation problem, the focus is on the parameters that

need to be tuned. Preprocessing is mostly done by using a standard short-time

Fourier transformation (STFT) which divides the spectrogram in equally spaced

frequency bins. The human hearing however works on a logarithmic scale, so this is

where the idea of the constant-Q transformation (CQT) comes in. The CQT uses

logarithmically spaced frequency bins and thus should mimic the human hearing

in a better way.

During the experimentation, a deep convolutional neural network was used for this

problem. Improvements were made by adding several aspects that are important

in the field of deep learning such as dropout layers, batch normalization, the use of

ReLu activation functions, etc. Furthermore we have learned that a better model

was needed in order to get the network perform well on unseen data as well. For

this, a deep convolutional U-net was implemented using the same ideas as the first

model, but with deconvolutional layers added to the network. After analyzing the

learning curves, we learned that the U-net managed to make much better predic-

tions on unseen data than the deep convolutional model.

In the next step, the STFT and CQT have been compared by feeding the prepro-

cessed data into the network and comparing the evaluation metrics, i.e. signal-to-

distortion ratio (SDR), signal-to-interference ratio (SIR) and the signal-to-artifacts

ratio (SAR). The metrics for both experiments were very similar and the differ-

ences between the means of the SDR, SIR and SAR were mostly not more than

1dB. However, when looking at the metrics more extensively, the predictions using
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the STFT seemed to have more outliers than than the ones using CQT. In both

cases the metrics for the vocal predictions scored significantly higher than the in-

struments predictions with differences of more than 5dB.

When evaluating the experiments based on human assessments, we gained some

new insights from the subjective scores. While the evaluation metrics in the objec-

tive tests for both the STFT and CQT approach are in general much lower for the

instruments than for the vocals, this difference is less noticeable in the subjective

scores when looking at the CQT approach. In this case the average score for the

instrument predictions is even a little bit higher than for the vocal predictions. For

the objective testing, it was quite hard to compare the metrics for the STFT with

the CQT, but if we look at the subjective scores of the instruments predictions, we

see a clear difference between both approaches. The instrument predictions where

the CQT is used clearly have a higher rating in general, especially when there are

a lot of guitars in the song. For the vocal predictions it is less obvious, but the

CQT still performs a little bit better than the STFT. Furthermore, we could also

conclude from the subjective scores that in general, for the vocal predictions a

higher rating was given with a female singer than to the ones with a male singer.

This applies to both the STFT and CQT approach.



Chapter 6

Future work

The results of the predictions when using a constant-Q transformation instead

of a short-time Fourier transformation are promising, so further research should

be very interesting. Using the CQT works best for predictions of the instruments

where a lot of guitars and a more heavy arrangement are included in the song. The

voice predictions however still need some more improvements. The drums are still

noticeable in every voice prediction, both for the CQT and STFT experiments.

A possible way to improve the quality is to do some preprocessing on the data.

Equalization and filtering would probably do the trick to obtain better results.

Right now, the deep U-net is only tested on the iKala dataset which means that

either only the voice or the instruments can be predicted. In the future, this model

should be tested on a multi-track dataset as well (e.g. DSD100 dataset) in order

to see if the CQT helps to predict certain instruments better than others. The

DSD100 dataset is also more representative than the iKala dataset if we compare

it with the daily music we hear on the radio, because these songs are in English

and the quality of how the recordings were made is much better (the sampling rate

is however the same, i.e. 44100Hz).

While the instruments predictions could be used for karaoke-like applications, the

voice predictions could be very useful as well. E.g. when looking at the auto-

matic subtitle generation from YouTube, it can be noticed that their predictions

are already very good when a speaker’s pronunciation is correct and the sound

quality is not too low. However, from the moment that there is some background

noise or background music, their model fails to predict or just stops predicting. As

discussed previously in section 2.2.1.5, Google is already working on a model that

predicts voice based on both audio and visual aspects, from which they state that
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the visual component is the key to predict more accurately. By first applying their

methodology to the videos on YouTube, the automatic subtitle generation should

improve as well. A last step is then to try combining this approach with the CQT

instead of the standard STFT and see if the predictions can be improved even more.

Figure 6.1: Equal loudness (Fletcher-Munson) curves [9]

Using a CQT for the transformations of the dataset gives a better representation

of the human hearing than when the songs are transformed using a STFT, be-

cause CQT uses logarithmically spaced frequency bins and our hearing works on a

logarithmic scale as well. Another possibility would be to find a way to transform

the input and target data in the frequency domain to something that has a higher

chance of leading to the best hearing experience. For this approach, we can make

use of the so called equal loudness curves or Fletcher-Munson curves [9] as shown

in figure 6.1, where the y-axis shows the measure of sound pressure (dB SPL) and

the ‘phon’ is the unit of measurement for loudness level. The idea would be to

focus more on the frequencies that the human ear is more sensible to. E.g. at

60 dB, we do not hear a sound at a frequency of 4kHz at the same loudness as a

sound at a frequency of 30Hz. Something to keep in mind is that it would not be

possible to evaluate this approach objectively and subjective tests will be needed.
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