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Preface  
Before you lies the Master’s dissertation “Assessing the ecological impact of reforestation on 

farmland in Nicaragua using the satellite-derived normalized difference vegetation index 

(NDVI)”, a case study with a strong statistical analysis that evaluates the ecological impact of 

a reforestation program by a Canadian NGO active in Northern Nicaragua using a “green-

index”. It has been written to fulfil the graduation requirements of the MSc degree in Business 

Engineering with main subject Data Analytics at the University of Ghent (UGent). I was 

engaged in researching and writing this dissertation from January to June 2018.   

  

The project was undertaken in consultation with Taking Root, a Canadian not-for-profit 

organisation. I first got in touch with the organisations’ co-founder Doctor Kahlil Baker via 

email in October 2017 in search of a development organisation willing to collaborate for this 

dissertation. My research subject was formulated together with my promotor, Dr. Prof. Ilse 

Ruyssen. Fulfilling a comprehensive research was of a great challenge, but conducting an 

extensive investigation, attending different congresses and meeting with the right people have 

allowed me to produce valuable insights. Fortunately, both Dr. Kahlil Baker and Taking Root’s 

IT specialist Mr Newton Tse were always available to answer my queries.  

  

I would like to thank my promotor for guiding me through this research, even though it was 

not clear at the beginning where this collaboration would lead to. Thank you very much for 

giving me this confidence. Thank you, Dr. Kahlil Baker for being so enthusiastic, fast and clear 

throughout all your communications, you kept me motivated. Also special thanks to Matthias 

Demuzere who assisted me to collect and geo-reference the vegetation indices on the Google 

Earth Engine. Because of all of you, my master’s dissertation was a real exciting and 

educational adventure (as it should be). I also benefitted from debating issues with my dear 

friend and colleague Jakob Biebuyck. To my other friends and family, too many to mention, 

all have been a great support during the whole process. A particular note of thanks to my 

parents: your faith and unconditional support, as always, served me well.   

  

I hope you enjoy your reading.  

  

Pello Mugica Gonzalez  

Ghent, June 5, 2018  
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Abstract  
Successful reforestation is dependent on effective and efficient technical training and 

assistance. This study aims to gain understanding of what types of training and technical 

assistance to smallholder farmers are truly adding value to a reforestation project’s success in 

the short term of 1 year. Does technical and sustainability training truly make a difference for 

smallholder farmers in a reforestation program? In this study, a geo-referenced dataset was 

extracted from a community development database of activities executed between September 

2016 and September 2017 in Northern Nicaragua. This project dataset was then merged with a 

series of high-resolution satellite data in order to evaluate their impacts on vegetation cover. 

Robust sound conclusions are made. No significant positive effects are found in the short term 

in this study context. However, a negative effect of delivery of materials is found. The latter is 

discussed as a logical finding since materials are used to prepare the plot for planting, and thus 

resulting in a decrease of vegetation cover in the short term. The conclusion of this study 

implies that short-term impact evaluation is valuable to detect dysfunctionalities and 

opportunities that can have a systematic impact on the long-term.   

  

Keywords: Reforestation, Poverty Alleviation, Smallholder Farming, Nicaragua, Data 
Analytics, Satellite Imagery 
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Glossary of terms  
 
AIC  The Akaike information criterion (AIC) is an estimator of the relative quality of 

statistical models for a given set of data (Wikipedia, 2018). The lower this value, the 

higher model quality.  

BaHa  Basal area per hectare is a term often used in forest management to define the area of 

a given section of land that is occupied by the cross-section of tree trunks and stems 

at the base.   

Copernicus  Copernicus is a single earth observation programme and is directed by the European 

Commission in partnership with the European Space Agency (ESA)  

DN  Digital Number; it is the generic term used for pixel values  

ESA  European Space Agency  

Fusion Tables  Fusion Tables is an experimental data visualization web application from Google to 

gather, visualize, and share data tables.  

GIE  Geospatial Impact Evaluation is a term for describing impact evaluation that makes 

use of geospatial analysis   

GIS  Geographic Information System  

Drop-out  Drop-outs are data missing from a satellite image. Drop-outs can be caused by signal 

interference or sensor failure.  

NDVI  Normalized Difference Vegetation Index; a satellite-based vegetation index that 

correlates strongly with aboveground net primary productivity.  

NGO Non-governmental organization 

NIR  Near Infrared Reflectance  

OECD Organisation for Economic Cooperation and Development 

RED  Red reflectance  

ROI  Region of Interest  

TOA  Top of the Atmosphere; by using Top of Atmosphere (TOA) reflectance values, 

instead of DNs, which are observed and measured at the sensor of the satellite, some 

distorting factors can be corrected.  

TPHa  Trees per hectare is a term often used in forest management to define the density of a 

forest.  

UInt16  Represents a 16-bit unsigned integer.  

QA  Quality Assessment  
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1 Introduction  
 

While the concern has risen for development organizations to do impact evaluations on 

their projects (Ten Hoorn & Stubbe, 2013), it remains an on-going challenge because it is often 

seen as a very technical exercise that can only be carried out by external experts operating at 

some distance from the program (Perrin, 2012). Also identifying the appropriate data that can 

efficiently assess project impact is difficult (Perrin, 2012). Advances in geospatial analysis 

tools, from which numerous are open to the public, have enabled access to a wide variety of 

remote sensing 1  data that can function as evaluation indicators for a broad spectrum of 

development projects. In the words of BenYishay et al. (2017): “Geospatial impact evaluation 

(GIE) methods opened new opportunities to understand what works, what does not, and why 

at a substantially shorter time and lower financial cost”. Examples of projects where remote 

sensing has been used for are health mapping (Sedda et al., 2015; Morikawa, 2014), evaluation 

of poverty alleviation projects (Morikawa, 2014), prediction of ecological effects of 

environmental change on ecosystems (Pettorelli et al., 2005), land titling (Buntaine, Hamilton 

& Millones, 2015), post-conflict environmental assessment (Steiner, 2007), and so on. Other 

examples of fields that make use of remote sensing are mineral exploration (Sabins, 1999), land 

cover/change classification (Rawat & Kumar, 2015), and many more. This study delivers 

empirical evidence of technical success drivers of a reforestation2 project by using a remote 

sensing indicator.   

  

The main aim of this study is to analyse to what extent forest performance is improved 

by technician visits and which type of visits have a stronger effect. It is possible to employ 

geospatial data as an indicator for forest performance since the four key ingredients for GIE 

(see Glossary) enumerated by BenYishay et al (2017) are available. Those ingredients are (a) 

a precisely defined and measured geographical scope of the intervention, (b) collection of 

spatially-explicit outcome and covariate data, (c) the possibility to fuse these geospatial data 

with in-situ measurement outcome and covariate data (d) and the access to econometric tools. 

Moreover, GIE is shown to be applicable to individual projects by (BenYishay, 2017; 

                                                
1 The following definition for remote sensing is used throughout this study: “The scanning of the earth by 
satellite or high-flying aircraft in order to obtain information about it.”   
2 “Reforestation is an endeavor to improve the condition of land and to speed up natural succession by planting 
trees on old fields and cleared land. Benefits of forest reducing the effects of global warming, maintaining 
biodiversity, and providing recreation and educational places for people.” (Shea, 1998).  
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Buchanan et al., 2016; Campbell & Hofmann, 2014; Dolan & Grepin, 2017), since remotely 

sensed data on forest cover and vegetation productivity are also accessible at fine spatial and 

temporal scales. These data are also proven to be feasible to measure agricultural productivity 

at the smallholder plot level in previous literature (Hansen et al., 2013). Another important 

reason why geospatial analysis is used for this study is that it is cheaper, saves a lot of time 

(BenYishay, Runfola & Buntaine, 2015) and it is believed by the researcher to be more generic 

for future research. The latter can be motivational because a researcher is able to assess the 

reforestation success through a remote sensing indicator, available at all times, independently 

from field observations.   

  

Derived from satellites, a Normalized Difference Vegetation Index (NDVI) is a suitable 

indicator for monitoring overground vegetation because of its direct correlation with vegetation 

(Reed et al., 1994). NDVI is derived from the red reflectance (RED) and near-infrared 

reflectance (NIR) ratio, which are the amounts of near-infrared and red light, respectively, 

reflected by the vegetation and captured by the sensor of the satellite (Myneni et al., 1995). The 

NDVI formula (Eq. 1) is based on the fact that chlorophyll absorbs RED, whereas the 

mesophyll leaf structures scatter NIR. The NDVI values varies from -1 to +1, where negative 

values correspond to an absence of vegetation (Myneni et al., 1995), and 0.2 is a sign of living 

vegetation. That is for example how bare bottoms (rocks, sand, ploughed country) also can be 

identified.  

 

!"#$ = 	
(!$( − (*")

(!$( + (*")
							(1) 

  

The photosynthesizing property of plants expressed in a NDVI value has been shown 

to reliably gauge vegetation dynamics and intensity over a wide range of climate and ecology 

conditions (Fensholt & Sandholt, 2005; Huete et al., 2002). The link between the NDVI index 

and the fraction of absorbed photosynthetic active radiation intercepted (fAPAR) has been well 

documented, both theoretically (Sellers et al., 1992) and empirically (Asrar, Fuchs, Kanemasu 

& Hatfield, 1984). NDVI is a dependable tool to measure a wide variety of vegetation-related 

characteristics including crop type (Vintrou et al., 2012), cropping area famine (Vintrou et al., 

2012), early warning drought (Funk & Brown, 2006), land cover types (Combalicer et al., 

2011), soil erosion (Butt, Waqas, Mahmood, & Groop, 2010), and hydrological modification 

(Poveda et al., 2001). Aside from measuring basic vegetation metrics, NDVI has been 
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implemented as a proxy to reliably estimate various biodiversity indicators such as species 

richness (Gaitan et al., 2013; Parviainen, Luoto, & Heikkinen, 2009; Pau, Gillespie, & 

Wolkovich, 2012; Psomas et al., 2011), avian abundance (Mcfarland, Van Riper III, & Johnson, 

2012), tree species richness (Bawa et al., 2002; Gillespie et al., 2009; Hernandez-Stefanoni, 

Gallardo-Cruz, Meave & Dupuy 2011; Levin et al., 2007; Mohammadi & Shataee, 2010) and 

vegetation species abundance (Virtanen et al., 2010).  

  

There are several challenges for using remote-sensing data. First, the use of the data 

requires an advanced statistics and GIS. Secondly, since imagery is captured from space (or 

high in the sky) there is a lot of risk on atmospheric contamination (such as clouds, or birds 

disturbing the image). It makes daily monitoring impossible and it can also be a great challenge 

to filter the latter all out. Another problem can rise from low resolution of the images produced 

by public satellite-sensors when analysing small surfaces. Last but not least, satellites are in 

orbit and thus cannot constantly track the same place all the time.  

  
This study employs the satellite-derived NDVI to assess the ecological impact of a 

reforestation project. The project is working with farmers in Northern Nicaragua and is led by 

a Canadian NGO called Taking Root. This organisation employs a payment for ecological 

services3 (PES) system that is based on the performances and needs of the farmer. The latter 

implies that farmers who are participating in the program not only get paid based on the 

performance of their reforestation interventions, but also based on the needs and available 

budget of the farmer assessed by the employees of the organisation. Farmers participating in 

the project receive extra training and technical assistance to make their efforts on the field more 

effective. When farmers participate in the program they enter into an agreement that requires 

them to reach certain tree establishment and tree growth milestones. Taking Root employs 

extension agents (i.e. technicians) that work to help the farmers meet those targets. Because of 

that, it is of great interest to the organization and the farmers to know what current type of 

effective training is improving the survival rate of seedlings and growth of trees, thus creating 

a positive effect in vegetation growth and recovery. Perhaps it is even more critical to identify 

those interventions or trainings that have a counterproductive effect. Only by monitoring and 

                                                
3 (Rodrigo A. Arriagada, 2012) has proven that PES can increase participation in farm forest cover. Reforestation 
might be more attractive to landowners if they are paid for the ecological services. (Landell-Mills, 2012; Pagiola, 
2002; Rietbergen-McCracken, 2007; Schuyt, 2005) 
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evaluating its efforts, the organization can tune its social and ecological services to deliver a 

truly positive impact in the long-term.   

 
This study makes several contributions. First, a new dataset is collected and delivered 

on the vegetation indices of all the farms in the program from the beginning of the project 

(2010) until April 2018 which is useful for further research. Also, with the input of other 

perimeters, time-series of NDVI values are available on request. Second, this dataset is merged 

with remotely sensed activities of the organization itself. The latter can be used by the 

organization to conduct other research or as a framework for future evaluations. Third, the 

outcomes of this study can help the organization to improve their activities and trainings in the 

near future. Fourth, the methodology used in this study can be implemented in future research 

to investigate similar cases. A little extra effort makes it possible to implement and connect it 

to the organization’s platform through an API so that remotely sensed vegetation index values 

of the parcels can be tracked and updated at all times. Finally, this research can expose the 

value of conducting qualitative impact evaluation for other development organisations. 

Furthermore, the researcher hopes this study can inspire others with the right skill-set to help 

other small organisations by conducting impact evaluation. In the words of Dr. Kahlil Baker, 

the co-founder of Taking Root, “Development organizations almost always do all sorts of 

interventions without even knowing if those interventions actually help! I think that [this study] 

would be an amazing research contribution.”  

 

The activities of interest of this study are different types of technical training sessions. 

Technicians (a team of 25 full-time Nicaraguan employees) of the organization trained and 

provided technical assistance to the farmers. The effect of individual trainings is examined and 

can be easily compared to the disaggregated overall effect of assistance to the farmers in the 

project. Also, the effects of the visits by different technicians have been taken into account. 

Examples of technical training are seeding, weed control, pruning trees, and tree nursery. 

Technicians also give advice on fertilization, harvesting and planting. The main goal for the 

majority of these technical trainings is to improve the seedlings survival rate and tree growth. 

Different technical training activities, such as weed control and pruning trees, have shown to 

contribute to the success of reforestation in previous literature (Le, Smith, Herbohn, & Harrison 

, 2012). A complete overview of all variables included in this study can be found in Appendix 

Table II. Only the technical drivers of reforestation are thus examined in this study. Le et al. 

(2011) have demonstrated that reforestation has many other significant drivers. Those drivers 



 5 

can be grouped into biophysical and technical drivers (e.g. tree species selection, site quality), 

institutional, management and policy drivers (e.g. forestry support programs, long-term 

management planning), socio-economic drivers (e.g. livelihood planning, corruption, socio-

economic incentives) and project characteristics (e.g. goals and objectives, project 

implementers) (Le, Smith, Herbohn, & Harrison 2011).   

 

Reforestation has several ecological benefits such as prevention of soil erosion 

(Marden, 2012), quality improvement of degraded soils (Sauer et al., 2012) and water 

(Konijnendijk, Ricard, Kenney, & Randrup, 2006), balancing of global gas emission (Keles & 

Baskent, 2006), carbon sequestration (Ellis et al., 2012) and improvement of local air quality 

(Nowak, Crane, & Stevens 2006; Paolette, Bardelli, Giovanni & Pecchioli 2011). Reforestation 

also can have social and academic benefits. It can be used as an educational tool to teach people 

about sustainability and the environment. Because it also requires human interaction, it is an 

opportunity to work closely with the locals and a possibility to build community involvement. 

  
 In similar studies, time-series estimates of the treatment effect (which analyses 

differences over time) and supervised classification techniques are used in order to measure 

either the success of reforestation projects (Yu, 2017) or the effects of more infrastructural 

activities financed by public sector institutions (BenYishay et al., 2016). Because public 

databases are easy to access (the OECD’s Creditor Reporting System, the International Aid 

Transparency Initiative), it is often easier to conduct research about public intervention cases. 

This study provides details about the effectiveness of the methods used in a reforestation project 

on the individual level of a development organisation. Impact evaluations on the level of a 

private development organisation are often not easy to access for three reasons: (1) private 

organisations do not traditionally undertake impact evaluations or (2) do not publish them 

because many evaluations may have addressed particular and far more narrow problems and 

finally, (3) because most development organisation evaluations have been undertaken more as 

an interval learning tool than as a mechanism to provide objective information to external 

stakeholders (Kruse et al., 1997).   

  

Literature has identified different types of problems with reforestation programs in the 

past. Most complications can be grouped into two major groups. The first group is mostly 

caused by natural phenomena. For example, hypersalinization (Elset, 1998), too high 

sedimentation rates (Elset, 1998), lowering of the water level (Elset, 1998) or mammalian 
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browsing (Keiffer, 1999). The latter can be reduced to tree shelters4. The second group is more 

of a social nature. This type of problem occurs when communities do not welcome new forestry 

in the first place. The phenomenon happens to reforestation projects that do not bother to find 

out what local people really want (Dudley, Mansourian, & Vallauri, 2005). Reforestation 

projects are thus often conducted without understanding why trees are disappearing in the first 

place (Eckholm, 1979). Sometimes, there has been a misunderstanding between social and 

economic needs without reference to ecological goals, and vice versa (Le, Smith, Herbohn, & 

Harrison, 2012). Ecological motivations for reforestation are either about restoring original 

forest cover or fighting global warming5 (Ledig & Kitzmiller, 1992). For social development 

workers, the emphasis lies more in the field of establishing trees that are useful for fuel-wood, 

fruit, or as windbreaks and livestock enclosures (Le, Smith, Herbohn, & Harrison, 2012). 

Taking Root handles the socially natured problems by using a PES system which guarantees 

farmers that who are planting trees and have their own economic motivations to not reject the 

project goals. The organisation argues that the root cause of deforestation lies in the people’s 

pursuit of better economic opportunities in the first place. Therefore, they argue that the only 

way to reverse deforestation is by designing reforestation initiatives that provide new economic 

opportunities for people. Because in this case people are smallholder farmers, the organisation 

can address deforestation and poverty simultaneously. Also note that the organisation’s 

business model aligns their success with farmers’ success. This way, contrary to most other 

non-profits that earn revenue from providing services regardless of the outcomes, both the 

farmers and the organisation are encouraged to increase productivity, decrease costs, and 

increase prices. The latter again motivates the value of this study. It is of great importance to 

all stakeholders of the organisation that the training sessions and technical assistance are 

effective to guarantee the long-term success of the whole system.  

  

Several reforestation projects have nevertheless succeeded to reverse deforestation. Le, 

Smith, Herbohn, & Harrison (2012) have identified several successful reforestation projects 

and their success drivers in the Philippines. Also, infrastructural projects have proven they can 

produce significant development gains that can lead to a positive net impact on nearby forests 

(BenYishay et al., 2016). The impacts of these projects can indirectly reduce pressure on 

                                                
4 “Tree shelters are tubes or fencing that wraps around a sapling or seedling in order to make the tree 

unavailable to the deer” (Shea, 1998).    
5 “Many environmentalists agree that reforestation programs could play a crucial role in balancing our global 

gas emissions” (Keles, 2006).  
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forests. By way of illustration, if households have more access to reliable electricity their time 

collecting firewood for cooking and lightning is reduced (Foster, Lower, & Winkelman, 2011).  

Likewise, numerous studies have observed that roads can actually reduce forest infringement 

pressures by improving local development outcomes (Andersen, 2002; Deininger & Minten, 

1997; Deng et al., 2011; Qiao & Rozelle, 1998).   

  

Little quantitative academic research has been conducted on reforestation success 

drivers and potential success evaluation tools. This study delivers new empirical evidence of 

several technical drivers of a local reforestation program’s success. A critical shortcoming of 

this study is that the relative importance of the different drivers is not known, nor is their impact 

on other potential indicators of ecological impact or reforestation success.  

  

It is important to emphasize that parcels are being treated differently in the program 

according to their relative performance. Concretely this means that poorly performing farms 

(often new farms in the program) get more technical training and assistance than better 

performing farms. As a consequence, heterogeneous effects of the treatment variables are 

observed between different performing farms. These complications are handled in Section 4.4.  

  

This study is organized as follows: In Section 2, the study context and the interventions 

that will be evaluated in this study are described. Section 3 describes data collection efforts.  

The empirical methodology is described in Section 4, results are presented and discussed in 

Section 5. Finally, conclusions are made in Section 6.  

  

2 Study context  
  

This study draws on information concerning the number of farmers that are 

participating in the Taking Roots’ reforestation program. The organisation’s database provided 

a sufficiently large number of high-precision parcel locations of the farmers (as described in 

Section 3.1) stored as perimeters. These perimeters are measured in-situ by the technicians with 

the use of GPS technologies in their smartphones.   

 

The organisation that is involved in this study, Taking Root, is a Canadian based 

development organisation co-founded by Doctor Kahlil Baker. The team consists of 25 fulltime 
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employees with up to 1,200 seasonal workers across two countries (Canada and Nicaragua). 

Taking Root uses a market-based approach to fight deforestation and poverty by developing 

fully traceable reforestation products with smallholder farmers. The organisation argues that 

people's pursuit of better economic opportunities is the root-cause of deforestation. That is why 

Taking Root fights deforestation by providing economic opportunities for people. By working 

with smallholder farmers deforestation and poverty can be simultaneously addressed. The 

organisation’s business model aligns its success with farmers’ success. This way, contrary to 

most other non-profits that earn revenue for providing services regardless of whether the 

outcomes are successful, both the management, technicians and the farmers are incentivized to 

increase productivity, decrease costs, and increase prices.   

  

Taking Root identifies three main challenges that smallholder farmers face that are 

preventing them, economically, from growing trees on their farms. First, farmers often cannot 

access capital at an affordable interest rate, which prevents them from making long-term 

investments. Second, farmers in this area often lack the technical knowledge for advancing 

production techniques and meeting market requirements. Therefore, further assistance and 

training is a must to make their efforts more efficient. Third, smallholders receive low prices 

because they suffer from diseconomies and have to work together with intermediaries. Taking 

Root’s non-profit business model addresses these production and market barriers by providing 

access to existing markets for reforestation products because it is an incentive for farmers to 

grow trees on their farms. Without this project, farms would end up being used for non-forested 

activities like raising livestock which is often more profitable in the short term.   

  

 To achieve all this, Taking Root enables and implements different technologies. They 

created a technological platform that helps them to train and guide the farmers more efficiently. 

It is because of this platform that they were able to build a data-driven strategy. This strategy 

helps them to increase their yields, reduce costs, and connect farmers to premium markets. The 

platform is called Farm-Trace. This platform automatically combines global environmental 

databases (to collect covariates) and field observations (registered via the local technician's 

smartphone). This research can also enrich the platform with behavioural insights to track 

production and make management recommendations in the future. This study is thus a first step 

to uncover the value of satellite-data for the project, so the platform can be enriched with 

satellite data in the near future for more efficient and accurate impact evaluation.  



 9 

  

 All farms that are participating in this program are situated in the Northwest of 

Nicaragua, a few hundred kilometres from the border with Honduras (see Figure 1). Farms are 

spread over four municipalities (Limay, Somoto, San Juan de Rio Coco and Palacaguina) and 

more than two hundred communities. The study area is primarily agricultural and typified by 

elaborate mosaics of trees and crops associated with multi-story agroforestry systems. A live 

interactive map of all parcels with key figures can be found on the Taking Root website6.  

 

 

Figure 1 Visualisation of all the farms participating in the program 

  

Figure 2 zooms in on the municipality of Somoto (Nicaragua) and visualizes its 

surrounding farms. In the left image (Figure 2.a) the farms are projected on a typical road map. 

In the right image (Figure 2.b) the same farms are projected on a map with a sequential colour 

palette of NDVI. In the latter, the level of greenness is an indication of the NDVI value where 

darker green indicates higher NDVI and lighter green indicates lower NDVI. The municipality 

Somoto can be identified as yellow pixels on Figure 2.b, which are negative NDVI values.  

 

                                                
6 http://www.farm-trace.com/en/Communitree/  
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(a) 
 

(b) 

Figure 2 A visualisation of the farms around Somoto (Nicaragua) (a) shows a projection of the farms on a 
road map (b) shows a projection of the farms on a map with a sequential colour palette of NDVI 

 

 

2.1 Timeframe  
  

Taking Root’s smallholder reforestation program collects large amounts of data on a 

continuous basis. While the first farmer entered the program in 2010, technician’s activities 

were only being tracked since July 2016. Therefore, it is only possible to set a relatively short 

timeframe for this study (1 year). It is important to emphasize this because the true effects of 

reforestation are probably more relevant within a mid- to long-term period. Evaluation and 

analysis of the short-term activities are still of great value for a reforestation project. A lot of 

attention is dedicated within the first year due to vulnerable trees dying during this time period.  

  
In this study, effects of training on the change in vegetation is measured between 

September 2016 and September 2017. It is important to choose the same period of the year 

since NDVI has a strong seasonal trend (Eastman et al., 2013). As a way of illustration, Figure 

3 shows the time-series of the NDVI value of the first parcel that was active in the program 

since 1980. September is chosen because it was the month during the raining season with the 

most NDVI observations for unique parcels in both years. An advantage of picking a month 

during the raining season (May-October) for analysis is that vegetation is more healthy and 

visible. A disadvantage is the higher probability of less data observations because of 

atmospheric contamination (such as clouds). Farmers can have multiple parcels during this 

period. In total, NDVI values for 806 parcels from 512 farmers are measured in September for 

both years.   
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Figure 3 A visualisation of the time-series of NDVI from January 1980 until May 2018 of the first farm 

participating in the program since 2010 

 

 

3 Data  
  

3.1 Geographic Unit of Observation  
  

As noted above, this study’s analysis is focused on the parcels that are participating in 

the concerned reforestation program. Farms that are reforested (polygons) are extracted from 

the organisation’s database. Technicians monitor the perimeter of a farm with their smartphone 

(used for financial data, geo-location data, tree measurements, etc.) after the farmer registers 

to the program. This dataset is pruned to only include farms that were active before September 

2016 and did not leave the program before September 2017. This procedure yields an initial 

dataset of 768 parcels that are active in the program during the specified timeframe in Section 

2.1.   

  

3.2 Outcome data  
 

The primary outcome measure, Change in NDVI, varies from -0,437 to 0,465 and reflects 

the change of the satellite-derived vegetation index from September 2016 to September 2017 

(NDVIi,2017 – NDVIi,2016). Positive values thus reflect an increase in vegetation, while negative 
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values reflect a decrease in vegetation. Higher positive values reflect a more extensive increase 

in vegetation. Figure 4 shows the distribution of the primary outcome data. While some 

deviations can be observed in the details, Change in NDVI can be assumed to be normally 

distributed.  

 

Figure 4 The distribution of Change in NDVI 

  
Alternative, non-geospatial, forest performance indicators are BaHa (basal area per 

hectare is the section of the land that is occupied by the cross-section of tree trunks) and TPHa 

(trees per hectare is an indicator of tree density). These indicators are currently used to measure 

the performance of the reforestation efforts but are less accurate since they require 

extrapolating techniques to make estimations about the entire parcel. Extrapolation is a 

technique to estimate the value of a variable, beyond the original observation range, based on 

the basis of its relationship with another variable (Muhammad, 2017). As explained in Box 1, 

the process thus allows to estimate the BaHa and TPHa values for an entire parcel, by only 

measuring a smaller part of the parcel. For only 52 parcels historical values of these indicators 

are available to make in-time comparisons.   

  
Box 1 A review of the BaHa and TPHa performance indicators. 

 
• Farms that are reforested (polygons) consist of many monitoring points representing about 10% of 

the farm by area. 
• Approximately every 12 months, a farm is monitored and all trees within monitoring points are 

measured (species, height, diameter). These data are then extrapolated to get estimated values at the 

farm level for indicators as BaHa and TPHa.   
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 Previous literature has shown a significant positive relationship between NDVI, BaHa 

and TPHa (A.A. Souza, 2010; Hadi Fadaei, 2009). In this study weak positive correlation is 

found between NDVIbaseline and BaHa (r = 0.079, df = 662, p = 0.041) and the NDVIbaseline and 

TPHa (r = 0.0566, df = 662, p = 0.132). No evidence of a relationship between Change in NDVI 

and Change in TPHa (r = 0.135, df = 40, p = 0.3939) and between Change in NDVI and Change 

in BaHa (r = -0.112, df = 40, p = 0.4795) can be found in this study. Unfortunately, the latter 

is hard to further investigate due to the low number of observations, thus no more attention is 

paid to these alternative outcome data. If sufficient data would have been available, it could 

have been useful to compare the results of the models with different reforestation indicators.   

  

 

3.3 Treatment Data  
  

The biggest challenge for doing impact evaluation in a development organisation is often 

the gathering of treatment data that are tracking the activities accurately (Ten Hoorn & Stubbe, 

2013). Taking Root’s smallholder reforestation program collects large amounts of data on a 

continuous basis and over a long period of time. As mentioned above, the organisation has a 

full-time staff of 25 people that record almost everything that they do with their smartphones 

(financial data, geo-location data, tree measurements, etc.), which are synchronized to a central 

platform.   

  
Box 2 A review of the treatment data.  

 
• On a periodic basis (1 to 29 times per year), technicians visit the farms to help the farmers 

improve their tree growth. The data records the visits and what exactly the technician did at 
location.  

  

  

Per parcel, a few treatment variables are computed from these recorded data. Because 

the technician not only tracks his/her visits but also the purpose of his/her visit, it is possible to 

count the number of different training sessions a farmer has received in a period in time. Notice 

that a farmer receives training and can have multiple parcels (see distribution in Table 1). Thus, 

the number of trainings a farmer receives is the same for all his/her parcels. This potential 

source of bias is handled further down. Appendix Table II summarizes the distribution of all 

treatment variables.  
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∑ /01232345
67879:	;<=>
?@:ABCD	;<=E 														FG0	H0123234I	2 = 1…3     (2) 

 

As mentioned in Section 3.1, only farms that were active in the program before 

September 2016 and which did not quit the program before September 2017 are included in 

this analysis. In total, 339 unique farmers are identified for this timeframe (with available 

outcome data), good for a total of 768 parcels which are included in further analysis.   

  
Table 1 Distribution of parcels per farmer  

Min 1st Qu. Median Mean 3rd Qu. Max 

1 1 1 2,265 2 24 

  

  

3.4 Covariate Data  
  

Some covariate data are hosted in this analysis that are known to influence forest cover 

change (Andam et al, 2008; Hao et al. 2012). The covariates in this study include mean annual 

precipitation and elevation (extracted from the WorldClim 7  database) that already are 

integrated in the organisation’s database. Table II in Appendix provides summary statistics for 

these covariates. In this dataset Elevation varies from 154 m to 1311 m and has a mean value 

of 479.8 m. Mean Annual Precipitation varies from 967 mm to 1596 mm and has a mean value 

of 1321 mm. It can be assumed that these natural phenomena also will have a significant and 

robust explanatory power for the defined response variable in this study. The latter can thus be 

used for controlling the relations of our variables of interest with the change in vegetation.  

 

4 Methods  
 

4.1 Data collection methods  
  

To obtain the final necessary data for the analysis, different pre-processing methods are 

executed. The pre-processing methodology can be summarized as the steps in Box 3. 

  
 
 
 
 
                                                
7 http://www.worldclim.org/  
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Box 3 A summarization of the pre-processing methodology to obtain NDVI values per parcel.  

  

1. Collect NDVI value per parcel on day t (Google Earth Engine)  

2. Compute Change in NDVI (R Studio)  

3. Extract and compute independent variables from organisation database (R studio)  

4. Merge two datasets to a base table ready for analysis (R studio)  

  

 
 
Step 1) Collect NDVI value per parcel on day t (Google Earth Engine)  

 

The Sentinel-2 dataset8 is used to compute the NDVI values (seasonal time-series) of 

all parcels (polygons). The dataset characterizes spectral bands holding different wavelength 

values for a pixel on a Sentinel-2 satellite-image. This dataset has been consulted and pre-

processed on the Google Earth Engine (GEE) platform. Using the satellite-derived data results 

in challenges with detecting clouds, cloud shadows and other atmospheric contamination. The 

data are only valid after being atmospherically corrected 9 . The GEE platform allows 

researchers to pre-process their geospatial data extractions in a Java-based code-editor and 

provides in library functions to handle the mentioned challenges. Using the GEE browser-based 

platform and code-editor has the following advantages: (a) fast debugging, (b) library of 

specific functions for pre-processing georeferenced-data, (c) fast computation time and (d) easy 

visualization on geographical maps. The pre-processing methodology on the GEE platform is 

visualized in Box 1. Note that the Landsat 8 dataset (NASA, 2018) is one of the alternatives to 

the Sentinel-2 dataset (ESA, 2018) which could be used for this study, but Sentinel-2 is chosen 

because of its better resolution and thus more accurate observations, which is very important 

in this study with small surface polygons. While Sentinel-2 has a 10 m resolution for the used 

bands, Landsat 8 has a resolution of 30 m. Appendix Table I is a summary of all bands that 

represent a wavelength in the Sentinel-2 database. 

 

                                                
8 The Sentinel-2 dataset contains 13 UINT16 spectral bands representing TOA reflectance scaled by 10000. 
Each band holds a different wavelength value for a pixel on an image. Also, three QA bands are present 
where one (QA60) is a bitmask band with cloud mask information (ESA, 2015).  
9 Atmospheric correction involves removing the effects of clouds (and other things) and aerosols. The result is 
an apparent surface reflectance image. The path of light can change as the radiance/light travels through the 
atmosphere, suffering wavelength-dependent scattering (UNOOSA, 2017). The reflectance thus must be 
calibrated. The Sentinel-2 database allows to calibrate its sensors to top-of-atmosphere (TOA) reflectance.   
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Box 4 Steps in Google Earth Engine  

1.  

  

Import polygons from Fusion Tables 

2.  Initialize ROI10 & timeframe  

3.  Collection of Sentinel-2 dataset for all pixels in ROI   

4.  Cloud masking all pixels using the Sentinel-2 QA60 bitmask band  

5.  Compute the NDVI per pixel on day t  

6.  Compute NDVI per imported polygon on time t (mean of all pixels)  

7.  Export table with mean NDVI value per polygon per day t in CSV format  
 

 

The NDVI value per pixel was calculated as shown in Eq. 1. In total, 204 Sentinel-2 

images from September 2016 and September 2017 were acquired. Finally, for every parcel, 

which is in mathematical words a polygon and thus a demarcated group of pixels on an image, 

an aggregate was computed by taking the mean of the vegetation index of all pixels in that 

polygon per available11 day.   

 

Step 2) Compute Change in NDVI (R Studio) 

 

The primary outcome measured reflects the change of vegetation in each parcel12. To 

compute the NDVI value in September 2016 (resp. September 2017), another aggregate was 

calculated by taking the mean of the vegetation index of the parcels of all days available in 

September 2016 (resp. September 2017). Then, the difference (NDVIi,2017 – NDVIi,2016) between 

the two values is taken as the indicator of change in vegetation.  

                                                
10 The ROI in this case is Nicaragua 
11 It happens that on cloudy days, or due to technical defects or other atmospheric contamination, an image 
becomes unusable or unavailable.   
12 A parcel is a plot of land owned by a farmer that is participating in the project. A farmer can have more than 
one parcel.  
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Figure 5 A visualisation of the computation of the average NDVI value in September 2016 of a 
random parcel. 

  
Figure 5 visualizes the complete process for how the average value of NDVI was 

computed in September 2016 for a random parcel in the program. The same method was 

applied to other parcels in the program that year and for all parcels in September 2017. Note 

that not all days have available data due to atmospheric contamination as explained above. 

  

Step 3) Extract and compute independent variables from organisation database (R studio)  

  

The treatment variables are extracted from the organisation’s PostgreSQL database by 

setting up a database connection in R studio. Tables with information about the parcels, farmers 

and activities (“activity log”) of the technicians were extracted. The most important features 

that are used in this study are explained in as follows. The parcel table contains technical 

information about the farmer plot (such as registration date, owner of the parcel, perimeter, 

program type, etc.). The parcel identifier and perimeter from this table are also used from Step 

1 to extract outcome data. The activity log tracks every technician visit, to which farmers on a 

certain day and for what reason (i.e. type of training). From the latter, the frequency per type 

of received training per farmer is computed (which are the variables of interest in this study).  

  

Many independent variables can be extracted from this rich database. Yet, is has been 

suggested to keep models as simple as possible to make them less demanding (Zuur, 2009). 

The reason is that for every variable added to the model the complexity increases, which makes 
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identification of the impact the variables of interest more challenging. For that reason, some 

variables are aggregated and others are left out. In this study, model simplification is done by 

(1) filtering out or aggregating variables that are highly correlated (because they explain the 

same and thus add not much explanatory power, but require more model complexity), (2) 

grouping variables that can be grouped intuitively, (3) leaving out variables that cannot function 

as control variables, that are not relevant to the study and that are not often used in academic 

research. Arbitrary choices are avoided, by comparing the AIC of GLM models (with control 

variables) with and without the handled variable to pursue the highest model quality with 

available data. This process is discussed in detail in the pre-processing Section 4.2 and 4.3 

below.  

  

Step 4) Merge the two datasets to a base table ready for analysis (R studio)  

    
Eventually the two datasets resulting from step 2 (outcome data) and step 3 (treatment 

data) are merged using the parcel identifier. The latter results in a base table that is ready for 

pre-processing and will be covered in more detail in Section 4.2 and 4.3. A complete overview 

of all variables available in this interim base table can be found in Table II in Appendix.  

  

4.2 Pre-analysis: defining high quality control variables   
  

The first relations between different control variables are examined. An example of a 

“null” GLM model (Eq. 3) (a model that we used for comparison) for this quality test is 

specified as  

K5 = L4M5 +	N5										O2Hℎ	Q10RMSI	2 = 1…3     (3) 
 

and is then being compared with models that also include (1) Elevation and (2) Mean Annual 

Precipitation. The covariate Elevation did show in previous literature a positive relationship 

with the vegetation index (Zhong, 2012), but in this context an inverse relationship is found 

with the NDVIbaseline (r = -0.500, df = 766, p-value = 0.000). In this study, Elevation is also 

inversely correlated with the Mean Annual Precipitation (r = -0.658, df = 766, p-value = 0.000) 

which asks for an intervention. Only the Mean Annual Precipitation is left in the model which 

proves to be increasing the quality of the model significantly (AICnull = -993.31, AICMean Annual 

Precipitation = -1008.99), when compared to Elevation that is decreasing model quality (AICnull = 
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-993.31, AICElevation = -991.01). If both would have improved model quality, this would have 

been a possibility to make one index of both variables.   

  

  Parcels longer in the program are assumed to make less marginal improvement than 

newcomers (r = -0.058, df = 766, p-value = 0.1039), but this assumed weak relationship in this 

case. Therefore, the same quality test is done for the Age variable (compared to a null model 

with Mean Annual Precipitation only). The results show no motivation to keep the variable in 

the model (AICnull = -1020.473, AICAge = -1008.999). Furthermore, intuitively it is expected 

that the NDVIbaseline should have a positive relationship, as an indication of reforestation success 

on the long-term (r = 0.398, df = 766, p-value = 0.000).  

 

Also, better performing parcels leave less room for improvement than bad performing 

parcels. A strong indication of this relationship is found in this study by testing correlation 

between Change in NDVI and the Relative Performance Score (r = -0.708, df = 766, p-valve 

= 0.000). It goes without saying that the Relative Performance Score strongly contributed to 

the quality of the model (AICnull = -1020.473, AICRelative Performance Score = -1535.246). The 

Relative Performance Score is computed out of the NDVIbaseline but contains more info about 

the benchmark group of a parcel and is therefore more preferred (AICRelative Performance Score = -

1535.246, AICNDVI baseline = -1493.793). The calculation of the Relative Performance Score and 

more info on benchmarks groups can be found in Section 4.4. 

 

Regional identifiers (Municipality and Community) and Agroforestry Type are left out 

for the same reason. We observe a significant quality drop for Community (AICnull = -1535.246, 

AICCommunity= -1311.494) that is probably due to the 200+ communities and a small decrease 

for Municipality (AICnull = -1535.246, AICCommunity= -1519.993). Although a strong significant 

difference is found for the relation between Change in NDVI and the different types of 

Agroforestry type (F(5,762) = 3.279, p-value = 0.00616) it does not add enough quality to the 

model (AICnull = -1535.246, AICAgroforestry type= -1511.251).  
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The Relative Benchmark Group13 is a categorical variable and is assumed to be an 

important source of bias and is therefore added to the base model with control variables. By 

adding it to the model another slight increase is observed in model quality (AICnull (4)= 

-1535.246, AICRelative Benchmark Group (7) = -1539.685).  

  

As a result from the pre-analysis Mean Annual Precipitation, the Relative Performance 

Score, and Relative Performance Group are selected as qualitative control variables that will 

be used for further research. The distribution of these variables can be found in Table II in 

Appendix.  

  

4.3 Pre-analysis: defining the variables of interest   
  

Nine relevant training types received by the farmers in the specified timeframe are extracted 

from the organisation’s database. To reduce further model complexity the variables are grouped 

intuitively. Weeding, Pruning, Planting and Tree Nursery are aggregated into Technical 

Training. Introduction, Diagnose and Certificate are aggregated into Sustainability Training. 

Other work is left as a separate category because it is already an aggregation of unclassified 

tasks. Also, Materials Delivery remains untouched. This transformation further improves the 

model quality (AICNo Transformation = -1460.838, AICTransformation= -1503.110). 

 

The variables of interest used in the further analysis are thus /MRℎ32R1S	/0123234 , 

TUIH1231V2S2HK	/0123234, WHℎM0	OG0X and Y1HM021SI	"MS2ZM0K. A complete overview of 

all variables used in further analysis can be found in Table II in Appendix. 

  

4.4 Empirical methodology  
  

R studio (2018) was used for data analysis. The process for calculating the outcome data 

(see Section 4.1) used to measure reforestation success is described in Table 3. This study 

follows the strategy that is recommended by Gelman & Hill (2007) and Verbeek (2008) for 

building a model with random effects. First, bivariate analysis is conducted to identify 

association between the independent and dependent variables (see Appendix Table II), and 

simple linear models are built to explore associations between the different independent 

                                                
13 More info and calculations can be found in Section 4.4  
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variables. Then, a more complex multilevel model with varying-intercept is set up to better 

understand the by-farmer variability in the variables of interest. Each of the simpler models can 

be informative in its own right, and they help to understand the partial pooling14 in a multilevel 

model (Gelman & Hill, 2007).   

  

First, the interactions between the control variables and the dependent variables are being 

studied. Then, these control variables are held constant and two other models are built to 

understand the effect of the different treatment variables of interest. The first model assumes a 

homogeneous effect of the different types of training by aggregating - or simply taking the sum 

of - all the number of training sessions received. The second model considers a heterogeneous 

effect of the different training sessions by allowing the coefficient to vary over different types 

of sessions. Also, because it can be expected that the person who gives the training can have a 

significant influence on the training effect, the robustness of the latest model is tested by adding 

the visits of the different technicians. Eventually, the interactions between the different Relative 

Performance Groups and the types of training are being studied, with respect to the design of 

the study context, these interactions should give a deeper understanding of the effect of the 

variables of interest. Before conducting linear regressions, a preliminary analysis was 

conducted to ensure no violation of the assumptions of normality, linearity, multi-collinearity, 

and homoscedasticity among the variables. A summary of this preliminary analysis can be 

found in the Appendix. The simple linear regression models can be written mathematically as   

 

K5[ 		= 			\ + ]5[^ +	_5[ 										FG0	Q10RMSI	2 = 1…3     (4) 

K5[ = 	 =̂][= + ⋯+ ^a][a + _5		FG0	F10bM0I	c = 1… d	(5) 

  
where  denotes a constant term, the errors _5 have independent normal distributions with mean 

0 and standard deviations e . The vector ]5 denotes the variables Age, Elevation, Mean Annual 

Precipitation and Relative Performance Score which, can function as control variables since 

they all are expected to have a logical relationship with the response variable. All included 

control variables are held constant during the analysis to further understand the relationship 

between the dependent variable and the variables of interest. An overview of all models can be 

found in Table 3.  

                                                
14 Partial pooling is a synonym for hierarchical or multilevel models.    
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 As introduced above, heterogeneous effects are expected to exist for different reasons. 

First, the response variable is defined in a lower dimension than the variables of interest15. 

Second, heterogeneous groups are also expected to exist because the organisation reports that 

different performing farms are being treated differently by the technicians. This last statement 

can affirmed for Sustainability training as determined by one-way ANOVA (F(3,764) 5.477, 

p = 0.001), Material delivery (F(3,764) = 7.055, p = 0.000) and Other work (F(3,764) = 2.987, 

p = 0.030). The groups are treated in the same way for Technical training (F(3,764) = 1.086, 

p = 0.354). Relatively worse performing farms receive on average more sustainable support 

and materials, and vice versa for relatively better performing farms. To be able to catch this 

potential source of bias, a relative performance score (% of benchmark value) for each farm 

was computed by comparing its NDVIbaseline performance to a benchmark (see Eq. 6). This 

variable captures the effect of bad farms continuing to perform poorly. It is thus also an 

alternative for the NDVIbaseline (r = 0.755, df = 766, p = 0.000), but it is believed by the 

researcher to be more comprehensive because it also takes the group-related benchmark into 

account. If a farm has a NDVI value of 0,20 in the previous time period and the benchmark is 

0.5, it would have (0.20/0.5) 40% of the benchmark value. A benchmark value was computed 

for each group of farms with the same technical specifications (type of agroforestry, program 

type, and rounded years since registration to the program). Eventually, four groups were 

extracted from this relative performance score. Quantile 1 are the relatively worst performing 

farms up to quantile 4 which are relatively the best performing farms as shown in Table 2.  

 

(MS1H2ZM	fM0FG0b13RM	TRG0M5 =
ghijk,mnopqrst

uCv@wxyDaz
       (6) 

 
Table 2 Distribution of the Relative Performance Score   

Min  1st Qu.  Median  3rd Qu.  Max 

0.2569  0.8719  1.0205  1.1065  1.6311 

 

Relative 

Performance 

Group 1 

 

Relative 

Performance 

Group 2 

 

Relative 

Performance 

Group 3 

 

Relative 

Performance 

Group 4 

 

  

 

                                                
15 While the dependent variable is observed per parceli from farmerj, the variables of interest are observed per 
farmerj.  
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4.4.1 Pooled model   

  
 After only estimating the effects of the control variables, a pooled model introducing 

the variable of interest (see Table 3 (2)) was fitted. A pooled model ignores the fact that there 

are heterogeneous effects for different types of training and that the farmers own several 

parcels. It gives an idea of the overall mean effect of all the treatment variables on the Change 

in NDVI. The variable is called Frequency of training, which is the total sum of all training 

sessions a farmer of a parcel received in the defined timeframe. The specification for each 

parcel that was estimated can be found in Table 3.  

  
4.4.2 Pooled model with heterogeneous effects  

  
The pooled model with heterogeneous effects (see Table 3 (3)) examines the individual 

effect of separate trainings which are the variables of interest in this study. Furthermore, 

because it can be assumed that technicians who provide these training sessions have an effect 

on the different variables of interest, another model is built to check robustness of the previous 

findings by adding the Technicianm visit variables. These dichotomous variables are thus added 

to the base model in order to capture the effect of the technicians. If a technicianm visited a 

farmerj at least once in the defined timeframe, the variable technicianm visit will be 1, and 0 

otherwise. The full specification and results of this model can be found in Table 3.  

 

 

 Finally, as mentioned above, an interaction model (Table 3 (5)) is built with an 

interaction term between the different variables of interest and the Relative Performance 

Group. Worse performing farms should receive more assistance by the technicians and 

therefore other effects are expected across groups. 

  

4.4.3 Random effect model  

  
In all the models created above, the response variable (per parcel of a farmer) is 

measured in a different dimension than the variables of interest (per farmer). Because no farmer 

indicator was implemented in the previous models, average results for different parcels of 

farmers were obtained. Yet, we may expect to have similar effects that will be obtained for 

parcels owned by the same farmer, which might form another potential source of bias. Only by 
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including this effect, the above models and findings can be tested to be robust. Unfortunately, 

it is not possible to include a dummy identifying farmers as a fixed effect because this dummy 

would have the same dimension as the variables of interest, in which case, the latter would be 

dropped from the model. If adding farmers as fixed effect would have been a possibility, a 

Hausman specification test could have been used to weigh the fixed effects model against a 

model with a farmer-specific random effect and select the most efficient one. In this case, the 

only option is to build a model with the farms as random effect. This implies that it is assumed 

that farmer-specific random effects are not correlated with independent variables. Only if this 

assumption holds in reality, the random effect model can be called consistent (Verbeek, 2008).  

 

 Thus, in order to further model unexplained variance and to better understand the by-

farmer variability in the treatment variables, the Farmer variable is included as a random effect. 

A random effects model can be thought of as a method for compromising between the two 

extremes of excluding farmers from a complete pooling model, or estimating separate models 

per farmer (Gelman, 2007). In this method only varying-intercepts for the different are assumed 

to catch the random effect. Varying intercepts can be interpreted as interactions between an 

individual level intercept (parcel) and farmer intercept (Gelman & Hill, 2007). Adding the 

farmer as a random effect improves the model quality significantly (AICnull = -1539.685, 

AICRandom Effect = -1740.165).  

  

 A model with random effects leads to higher model complexity. Compared to the 

pooling model (Eq. 3) has four times as many vectors of second-level coefficients (a,b) and 

potential correlation between the random effect and the predictors. Assume that  {5[	and the 

varying intercepts \[ correlate. If this correlation is not modelled, it will be absorbed into the 

error term |[=,	which results in the violation of a key Gauss-Markov assumption (Verbeek, 

2008). If Eq. 8 is substituted in Eq. 7 the error terms combine to create a new error term. This 

new regression error now correlates with the predictor in the model. This violation may result 

in poor estimates of parameter uncertainty (Verbeek, 2008). These complications are handled 

in Appendix. The notation i used for individual parcels and ij for the Farmer j that owns parcel 

i (Verbeek, 2008). 

K5[ = \[ + ∑^ {5[ + _5[,													FG0	Q10RMSI	2 = 1…3      (7) 

\[ = 1< + ∑V< U[ + |[								FG0	F10bM0I	d = 1	, … , c.     (8) 
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Here, xi and uj represent predictors at the parcel and group levels, respectively, and are 

independent error terms at each of the two levels. The number of farmers (J = 339) are less 

than n (= 768), the sample size of the lower-level model. As shown in Figure 4, the response 

variable is assumed to be normally distributed which is an assumption for the mixed model that 

is built. 
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Table 3 Summary of all linear regression models  

Dependent variable:  
 Change in NDVI 
 generalized linear 
 least squares random effects 
 (1) (2) (3) (4) (5) (6) 

Constant 0.482*** (0.035) 0.477*** (0.036) 0.454*** (0.037) 0.417*** (0.044) 0.470*** (0.039) 0.420*** (0.042) 
       
Control variables       
Mean Annual Precipitation -0.0001*** (0.00002) -0.0001*** (0.00002) -0.0001*** (0.00002) -0.00003 (0.00003) -0.0001*** (0.00002) -0.00003 (0.00003) 
Relative Performance Score -0.359*** (0.036) -0.360*** (0.036) -0.358*** (0.036) -0.358*** (0.036) -0.362*** (0.037) -0.358*** (0.032) 
Relative Performance Group 2 -0.050*** (0.012) -0.050*** (0.012) -0.050*** (0.012) -0.048*** (0.012) -0.065*** (0.016) -0.048*** (0.010) 
Relative Performance Group 3 -0.043** (0.020) -0.043** (0.020) -0.045** (0.020) -0.042** (0.020) -0.046** (0.021) -0.047*** (0.017) 
Relative Performance Group 4 -0.064*** (0.015) -0.064*** (0.015) -0.061*** (0.015) -0.061*** (0.015) -0.080*** (0.018) -0.055*** (0.013) 
       
Variables of interest       
Frequency of training  0.0004 (0.001)     
Sustainability training   0.003 (0.002) 0.002 (0.002) 0.003 (0.004) 0.003 (0.002) 
Technical training   0.0005 (0.002) 0.001 (0.002) 0.0001 (0.004) 0.001 (0.003) 
Materials delivery   -0.009*** (0.003) -0.013*** (0.003) -0.016** (0.007) -0.010** (0.005) 
Other work   0.002 (0.002) 0.0001 (0.002) -0.002 (0.004) 0.001 (0.002) 
       
Technician visits       
Technician 1 visit    -0.049*** (0.014)   

Technician 2 visit    0.089 (0.063)   

Technician 3 visit    0.004 (0.025)   

Technician 4 visit    0.063*** (0.020)   

Technician 5 visit    -0.012 (0.008)   

Technician 6 visit    0.024 (0.016)   

Technician 7 visit    0.045*** (0.014)   

Technician 9 visit    -0.012 (0.012)   

Technician 11 visit    0.013 (0.008)    

Table 3 Continued       
 

Dependent variable: 
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 Change in NDVI 
 generalized 

least squares 
linear 

 mixed effects 
 (1) (2) (3) (4) (5) (6) 
       

Technician 12 visit    -0.025*** (0.009)   

Technician 15 visit    -0.018 (0.022)   
Technician 16 visit    -0.018 (0.026)   
Technician 17 visit    0.005 (0.018)   
Technician 19 visit    0.013 (0.022)   

       
Interaction effects       
Sustainability training * Relative Performance Group 2     -0.005 (0.005)  

Sustainability training * Relative Performance Group 3     0.00004 (0.005)  

Sustainability training * Relative Performance Group 4     0.003 (0.006)  

Technical training * Relative Performance Group 2     0.009 (0.006)  

Technical training * Relative Performance Group 3     -0.007 (0.005)  

Technical training * Relative Performance Group 4     0.005 (0.006)  

Materials delivery * Relative Performance Group 2     0.009 (0.009)  

Materials delivery * Relative Performance Group 3     0.009 (0.010)  

Materials delivery * Relative Performance Group 4     0.008 (0.009)  

Other work * Relative Performance Group 2     0.004 (0.005)  

Other work * Relative Performance Group 3     0.006 (0.005)  

Other work * Relative Performance Group 4     0.005 (0.006)  

Observations 768 768 768 768 768 768 
Log Likelihood 776.843 770.633 762.586 747.911 718.344 861.829 
Akaike Inf. Crit. -1,539.685 -1,525.267 -1,503.171 -1,445.821 -1,390.689 -1,699.659 
Bayesian Inf. Crit. -1,507.234 -1,488.190 -1,452.234 -1,330.520 -1,284.550 -1,644.091 

Significance codes: *** p-value < 0.01 (2-tailed), ** p-value < 0.05 (2-tailed), * p-value < 0.10 (2-tailed) 
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5 Results and discussion  
  

5.1 Relationships between different types of training and the change in the 
Normalized Difference Vegetation Index (NDVI)  
    
 While previous literature has observed technical support (Borglandan et al., 2001) and 

sustainable management (Nawir & Rumboko, 2007) to be important drivers for the success of 

reforestation programs in different developing countries, no significant training support drivers of 

reforestation success in terms of Change in NDVI can be found in this context (Table 3). The beta 

weights suggest that Materials Delivery explained most of the variance of all variables of interest 

showing a negative relationship (Table 3) with the change in vegetation. This relationship is 

visualised in Figure 6. Plots of other variables can be found in Appendix. Findings are proven to 

be robust to the effect of technicians, relative performance and farmers. These features are proven 

to be three important sources of variance that have no effect on the relationships between the 

variables of interest and the response variable. Interactions effects between the different Relative 

Performance Groups and training frequencies showed no evidence of heterogeneous effects for 

the types of training between the groups.  

 

 
Figure 6 Visualisation of the negative relationship between 

 Change in NDVI and Materials Delivery 
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Taking Root explains that Materials Delivery is usually related to nurseries. Only farms that are 

in need to plant new trees require new materials. These materials are then used for clearing the 

land to be able to plant the trees. Finding a negative relationship between Materials Delivery and 

Change in NDVI in short term is thus a logical finding.   

  

5.2 Implications for reforestation planning and management  
  

 This study revealed that reviewing the ecological impact of a reforestation project in the 

short-term can provide useful insights. The risk of focusing on this ecological indicator in isolation 

to measure the impact runs the risk of focusing on the symptoms of poor performance rather than 

the underlying causes. Nonetheless, understanding the true meanings of these results allows an 

organization to identify points of leverage where change can have a broad systematic effect.  

 

 The next step could be to build a management assessment framework to allow for more 

efficient and effective management on the level of an individual technician. The framework result 

can be optimized thus identifying and reducing unintended consequences.  

  

 However, in developing a management assessment framework based on the results created, 

it is important to recognize some of the limitations of this study. First, the understanding that was 

gained in this study of the driver/indicator relationships only extends to those variables for which 

data were collected and the researcher was aware that the actual working methodology contains 

many soft variables that are difficult to measure but are important to the working of the project. 

Soft variables that are related to the farmer were included by adding the random effect of the 

farmer. Second, understanding the relationships and reasons for significant relationships between 

the independent and the dependent variable may not be obvious and the results do not necessarily 

fully explain why variables are related. Luckily, in this case for Materials Delivery, a fairly certain 

explanation for the relation can be assumed as mentioned above. Third, this static analysis does 

not take the continuous character of the project into account. Technicians are making different 

decisions every day for different reasons that cannot be tracked, so it cannot be used to simulate 

continuous dynamic behaviour over time. Fourth, this study is conducted on a short-term basis. 

Sometimes, after an area is cleared for reforestation, there is thus a period of decrease in vegetation 

so that the trees can be planted. In the short-term period, this is thus captured as a decrease in 

vegetation and thus an important observation given the short period of this study. Also, 

reforestation programs, and development programs in general, often aim to deliver positive results 
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in terms of forest expansion in the long-term (Perrin, 2012). Last but not least, only if the 

assumption that farmer-specific random effects are not correlated with control variables holds in 

reality, the random effects model can be called consistent.   

  

 It is also important to note that in this study and also in previous literature reported that 

only a varying-intercept random effects model (Table 3 (6)) is constructed. It makes much more 

sense to assume varying-slopes for all farmers as well (Winter, 2013). Researchers in different 

fields have shown through simulations that mixed-models without varying-slopes are often 

conservative (Barr, Levy, Scheepers, & Tily, 2013; Schielzeth & Forstmeier, 2009) which leads to 

a high type I error rate (easier to find significant results that are actually due to chance). (Schielzeth 

& Forstmeier, 2009) therefore suspect that many published findings have too narrow confidence 

intervals. It is thus recommended for further research to build a mixed-model with varying-slopes 

to reduce type I errors and reduce residual variance by accounting for between-parcel variation in 

slopes. The latter makes it easier to detect treatment effects that are applied between parcels, hence 

reducing type II errors as well (Schielzeth & Forstmeier, 2009). Given these limitations, it is 

recommended to the concerned organization to pay particular attention to the following when 

adjusting their reforestation methods.   

  

 By maintaining a long-term commitment from both the farmers and technicians, the 

information generated from their interaction will be a significant source of bias for vegetation 

changes. As mentioned earlier, by implementing the PES system and a performance–based 

business plan, Taking Root is expecting farmers to establish and maintain their own economic 

motivations in the long-term. Through the reforestation program, farmers can take out payments 

in advance to cover expensive establishment costs. In the literature, past reforestation projects 

success has been linked to similar profit-sharing arrangements and planting payments.   

  

 Developing countries with large population and poor economy, like Nicaragua would not 

truly benefit from a good reforestation program that is only successful years later. Through 

implementation of various integrated production systems (i.e. agroforestry, reforestation, 

woodcrafts, timber production, coffee production, etc.) can lead to long-term success of 

reforestation resulting in several income generating opportunities on both a short and long-term 

basis. Farmer participating the Taking Roots’ program already profit from different income 

streams from other production systems (to connect farmers to buyer, trees are selectively harvested 

to make woodcrafts). New incentives produced by these streams of income, motivate farmers to 
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grow more trees. Another key to the success of the reforestation efforts that is heavily depending 

on the species of the trees and the ability of the forest that will satisfy the demand of the local 

people and their livelihoods.  

  

5.3 Recommendations to the organization  
  

 Taking the limitations into account that were described in Section 5.2 several 

recommendations can be made for the organisation. First, the use of geo-spatial data has proven to 

be an efficient tool for evaluating the project success in terms of ecological impact. It is believed 

by the researcher that it is worth the investment to enrich the Farm-Trace platform with these 

techniques. NDVI might be a more accurate and cheaper performance indicator than the current 

BaHa and TPHa forest measures. There are several services that allow the extraction of the NDVI 

for a polygon. Google Earth Engine has a well-documented Python API that allows more complex 

analysis and access to different datasets, but an easier option might be to use a cURL-request16 

from the Proba Vegetation programme (ESA) that can be directly connected to the organisation’s 

database as a first step. The latter allows you to retrieve a time series for a given point or polygon 

with simple parameters. Second, it is strongly advised to conduct periodically impact evaluations. 

Even short-term analysis, like in this study conducted, might give insights to hidden inefficiencies 

or opportunities that enables greater value on the (mid) long-term. It also can be used to build 

prescriptive analysis to give management recommendations based on behavioural insights. For 

example, it is possible to predict when new materials need to be delivered to a specific farmer. 

Prescriptive analysis tools can thus increase management efficiency significantly by providing, to 

individual technicians, guidelines on which farmer, needs what at what time and what type of 

training; taking to account different time- and space-related constraints. Of course, it is important 

to also stress the value of mid- and long-term analysis, which will deliver totally different insights 

that are at least as important to consider. Publishing results of impact evaluations can be an 

effective way to promote the organisation’s innovative effort and efficiency (Zhong, 2018). The 

researcher arguments that the credibility of the analysis can be higher if it is outsourced to an 

independent organisation and if it is done periodically. Third, the data-driven approach of the 

organisation demonstrates their beliefs about the value of gathering data, but it is important to 

stress that working on techniques to improve the quality and quantity of the data is always a good 

idea.  

                                                
16 https://proba-v-mep.esa.int/sentinel-web-services  
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6 Conclusions  
 

 Using satellite-derived data is shown to be a convenient tool to do ecological impact 

evaluation of a reforestation program on the level of a development organization. Robust models 

are built to evaluate different types of training that smallholder farmers receive to improve their 

reforestation efforts. This study cannot provide any effective evidence of this type of technical 

support in order to improve reforestation efforts in the short-term. On the other hand, a negative 

relationship between the delivery of materials and the change in vegetation is found. The 

relationship shows that when a farmer needs to plant new trees, materials are delivered by the 

organization must first clear the land to be able to plant the new trees. Based on these findings and 

discussion, it can be concluded that also short-term impact evaluations of reforestation programs 

are useful to identify dysfunctionalities and opportunities that can have a systematic impact on the 

system on the long-term. The methodology of this study also can be used for evaluations on the 

medium to long-term. The significant negative relationship of the delivery of materials also shows 

that interpretation of these models needs to be conducted carefully, with full respect to the study 

context and in dialogue with concerning organisation’s management.  
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Appendix 
 

Table I Overview of all bands in the Sentinel-2 database   

Sentinel-2 Bands Central Wavelength (µm) Resolution (m) Bandwidth (nm) 

Band 1 – Coastal aerosol  0.443 60 20 
Band 2 – Blue  0.490 10 65 
Band 3 – Green  0.560 10 35 
Band 4 – Red  0.665 10 30 
Band 5 – Vegetation Red Edge  0.705 20 15 
Band 6 – Vegetation Red Edge  0.740 20 15 
Band 7 – Vegetation Red Edge  0.783 20 20 
Band 8 – NIR  0.842 10 115 
Band 8A – Narrow NIR  0.865 20 20 
Band 9 – Water vapour  0.945 60 20 
Band 10 – SWIR – Cirrus  1.375 60 20 
Band 11 – SWIR  1.610 20 90 
Band 12 – SWIR  2.190 20 180 

 
  

    
 Table II Overview of all variables extracted from datasets before pre-processing   

Variable  Description  Min  1st Qu.  Median  Mean  3rd Qu.  Max  Corr. with  
Change in 
NDVI  

Dependent variables                  
Change in NDVI  Difference in NDVI 

between September ‘17 
and September ’16  

-0.437  -0.099  -0.033  -0.018  0.04104  0.465  1***  

Change in BaHa  Difference in BaHa 
between ‘17 and ‘16  

-2.342  0.2122  0.753  1.197  1.875  6.896  0.086 (52 
obs.)  

Change in TPHa  Difference in TPH 
between ’17 and ‘16  

-875.43  -153.43  5.89  -65.71  71.62  526.19  -0.141 (52 
obs.)  
  

                  
Baselines                  
NDVIbaseline  The baseline greenness 

of parcel in September 
2016.  

0.158  
  

0.533  
  

0.655  
  

0.623  
  

0.740  
  

0.801  
  

-0.683***  

TPHa2016  The baseline trees per 
hectare of parcel in 2016.  

127.4  284.9  395.0  684.1  1220.5  1859.9  0.064  

BaHa2016  The baseline basal area 
per hectare of a parcel in 
2016.  

0.001  0.165  0.898  1.280  2.204  4.792  -0.196   
  

                  
Parcel specifications                  
Age (years)  Time in years since the 

parcel is registered to 
the program.  

1.668  2.668  4.668  4.260  5.671  7.671  -0.058  

                  



 XII 

Performance  
indicators  

                

Relative Performance  
Score  

A score that captures the 
relative performance of 
a parcel. It is the  
performance compared 
to a benchmark (see 
Section 4.4).  

0.2569  0.8719  1.0205  0.9895  1.1065  1.6311  -0.735***  

Relative Performance  
Group (categorical)  

Parcels are divided into 
4 groups, which are the 
quantiles of the Relative 
Performance Score.  

na  na  na  na  na  na  one-way 
ANOVA  
F(3,764) =  
223.5***  

                  
Covariates                  
Elevation    154  310  366.5  479.8  657  1311  0.166***  
Mean Annual  
Precipitation  

  967  1187  1372  1321  1460  1596  -0.222***  

                  
Training type                  
Weeding  Technician is assisting 

in weeding with a 
machete around the 
trees.  
  

0  0  0  0.468  1  3  0.092**  

Pruning  Pruning the trees so that 
they grow straight and 
make quality trees.  

0  0  0  0.287  0  9  -0.048  

Planting  Planting trees session.  0  0  0  0.404  0  6  0.053  
Diagnose  Checking in on a farm to 

see how it is doing.  
0  0  1  1.147  1  17  0.130***  

Materials delivery  Handing over materials 
needed for the managing 
the plantations. Includes 
materials for tree 
nurseries, pruning 
scissors, etc.  

0  0  0  0.704  1  5  -0.139***  

Introduction  Presentation about to 
program.  

0  0  0  0.125  0  4  0.092**  

Certificate  Working to register the 
plantation with some  
certification like with 
the government or some 
standard.  

0  0  0  0.013  0  5  -0.027  

Tree nursery  Working with the tree 
nursery.  

0  0  0  0.350  0  7  0.038  

Other work  Default option for when 
other things aren't 
available.  

0  0  1  1.788  3  11  -0.025  

Frequency of training    Disaggregated count of 
all trainings received in 
timeframe.  

1  2  5  5.971  7  29  0.040  

                  
Technician visit                  
Technician  
(dichotomous)  

Dummy for each  
technician if he/she 
visited the farmer in the 
timeframe (0 = no visit,  
1 = visit)   

na  na  na  na  na  na  na  

                  
Agroforestry type                  



 XIII 

Agroforestry category  
(categorical)  

Type of agroforestry the 
parcel has. The program 
includes Living Fence  
(old), Mixed Species, 
Shade Coffee and 
Silvopastoral.   

na  na  na  na  na  na  one-way 
ANOVA  
F(5,762) =  
 3.279***  

  
Significance codes: *** p-value < 0.01 (2-tailed), ** p-value < 0.05 (2-tailed), * p-value < 0.10 (2-tailed)  

 
  
 
 

 
Figure i Visualisation of the relationship between 

 Change in NDVI and Other work 
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Figure ii  Visualisation of the relationship between 

 Change in NDVI and Sustainability Training 

 

 
Figure iii Visualisation of the relationship between 

 Change in NDVI and Technical Training 
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Figure iv Visualisation of the relationship between 

 Change in NDVI and Mean Annual Precipitation 

 

 
Figure v Visualisation of the relationship between 

 Change in NDVI and Relative Performance Score 
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Assumptions of the regression model 
 

Validity 

The validity of the panel data used in this study is discussed in Section 3. This assumption implies 

that the data used in the model should map to the research question. 

 

Additivity and linearity 

This assumption is checked by plotting the residuals to the independent variables. If additivity is 

violated (a non-linear pattern in the plot), it might make sense to transform the data.  
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Figure vi Checking for non-linear relationships between the independent variables and the residuals 
 

Independence of errors 

The regression model assumes that the errors of the prediction line are independent.  

Since Generalized Least Squares models are built in this study no high 

autocorrelation problems are assumed. Also for the linear random effects model, no 

violation is found. 

 
Table III Independence of errors  

 
Dependent variable: 

 

 Change in NDVI 

 generalized 

least squares 

linear 

 random effects 

 (1) (2) (3) (4) (5) (6) 

      independent random 

Durbin-Watson statistic 1.872 1.876 1.875 1.932 1.898 1.862 1.972 

 



 XVIII 

 

Equal variance of errors 

Variance over all errors should be equally distributed and show no pattern. 

 

 
(1) 

 
(2) 

 
(3) 

 
(4) 

 
(5) 

 
(6) 

Figure vii Inspection of the error terms of all models from Table 3 
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Normality of errors 

In a regression model errors are assumed to be normally distributed. This assumption is 

checked visually. 

 
(1) 

 
(2) 

 
(3) 

 
(4) 

 
(5) 

 
(6) 
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(6 – Random Effect) 

 

Figure viii Distributions of the error terms of all models in Table 3 

 


