
Faculteit Bedrijf en Organisatie

Comparative Study of NoSQL Data Storage Solutions for a social Recent Activity Feed

Florian Dejonckheere

Scriptie voorgedragen tot het bekomen van de graad van
professionele bachelor in de toegepaste informatica

Promotor:
Chantal Teerlinck

Co-promotor:
Guy De Tré

Instelling: Open Webslides

Academiejaar: 2017-2018

Tweede examenperiode

Faculty of Business and Information Management

Comparative Study of NoSQL Data Storage Solutions for a social Recent Activity Feed

Florian Dejonckheere

Thesis submitted in partial fulfilment of the requirements for the degree of
professional bachelor of applied computer science

Promotor:
Chantal Teerlinck

Co-promotor:
Guy De Tré

Institution: Open Webslides

Academic year: 2017-2018

Second examination period

Preface

The idea for this research originally comes from the Open Webslides project and its many
little side activities in development. One of the things that has always fascinated me was
how the platform would handle a massive influx of users, and specifically how it would
relate to the non-critical data storage of the news items in the Recent Activity feed. I wanted
to find out how a NoSQL data store would be integrated into the flow of data, and what
kind of data store would be the most efficient, scalable solution for this problem. My
interest in this problem was also piqued by using the Neo4j graph database in a personal
project, and how the data of the Open Webslides project would fit into the graph theoretical
model as opposed to the relational model. Digging into this subject while still maintaining
my vision on the Ruby on Rails implementation in the platform allowed me to let the
question bloom into this research paper.

This thesis was in part achieved by the support of Chantal Teerlinck, my promotor, who
has given me many tips and tricks, and provided a framework for conducting a proper
research. Guy De Tré, my co-promotor, also had an important influence on decisions taken
in the research and development phase, being a person who is immersed in the academic
world of relational and non-relational database management systems. Finally, my friends
and family also deserve recognition for helping me accomplish this paper, which is the
culmination of three years higher education in a fast-moving and innovative field.

Florian Dejonckheere, Ghent, May 2018

Samenvatting

De opkomst van grootschalige, dynamische web applicaties heeft geleid tot een enorme
toename in de behoefte voor performante database systemen om de overvloed van ge-
genereerde informatie op te slaan. Het antwoord van de industrie op dit probleem is de
NoSQL beweging, die beschikbaarheid en schaalbaarheid verkiest over belangen zoals data
consistentie en betrouwbaarheid. Traditioneel richten relationele database management
systemen zich meer op de laatstgenoemde belangen. Een belangrijker wordende vraag
voor onderzoekers en ontwikkelaars in het vakdomein is hoe de opslag van deze informatie
efficient kan gebeuren, om de performantie van de queries te maximaliseren, toegepast op
de relevante use case en inherente structuur van de betrokken data.

Deze thesis duikt in de wereld van NoSQL en niet-relationele data modeling door middel
van een vergelijkende studie van diverse NoSQL data store categorieën en leveranciers.
De Recent Activity feed van het Open Webslides project wordt gebruikt als case study. Een
vergelijkende studie voor drie NoSQL data stores wordt naar voren geschoven, waarbij
factoren relevant voor de use case besproken worden. Vervolgens worden twee logische
datamodellen voor document en graph data stores opgesteld, samen met twee bijbehorende
implementaties voor de MongoDB en Neo4j NoSQL data stores.

Het onderzoek concludeert dat document stores de meest efficiënte oplossing bieden onder
de vergeleken categorieën. De NoSQL data stores worden in het Open Webslides plat-
form gebruikt complementair aan een relationele database, gebruik makend van polyglot
persistence om een performante en schaalbare applicatie te verkrijgen.

De NoSQL implementaties ontwikkeld in deze thesis zullen bekwame en krachtige op-
lossingen bieden voor het probleem voorgesteld in de case study. Er zijn echter ook veel
mogelijkheden om de grenzen van dit onderzoek te overstijgen boven de use case.

Abstract

The advent of large scale, dynamic web applications has led to a massive increase in the
need for performant database systems to store the deluge of generated information. The
industry’s answer to this problem is the NoSQL movement, which prioritizes availability
and scalability over concerns such as data consistency and reliability. Traditionally,
relational database management systems focus more on the latter concerns. An increasingly
interesting question for researchers and developers in the field is how to store this data
in order to maximize the query performance, considering the use case and the inherent
structure of the data involved.

This paper dives into the world of NoSQL and non-relational data modeling, comparing
and examining the different NoSQL data store types and vendors. In this comparative
study, the Recent Activity feed of the Open Webslides platform is used as a case study. For
three NoSQL data stores, a comparative study is presented in which aspects relevant to the
use case are compared. Subsequently, two logical data models for document and graph
data stores are designed, along with two corresponding implementations for the MongoDB
and Neo4j NoSQL data stores.

The research concludes that document stores are the most efficient data stores among
the solutions considered. The NoSQL data stores are to be used complementary with a
relational database, leveraging polyglot persistence to achieve a performant and scalable
web application.

The NoSQL implementations developed in this thesis will provide capable and powerful
solutions for the problem presented in the case study. However, it was also found that there
are many opportunities to extend this research beyond the initial use case.

Contents

1 Introduction . 21

1.1 Context 21

1.2 Problem statement 22

1.3 Research questions 23

1.4 Research goal and objectives 23

1.5 Expected results and conclusions 23

2 State of the Art . 25

3 Overview . 29

3.1 Relational data stores 29

3.2 NoSQL data stores 30

3.2.1 Key-value . 31

3.2.2 Document . 31

3.2.3 Column-oriented . 31

3.2.4 Graph . 31

3.2.5 Object-oriented . 32

3.2.6 Multi-model . 32

3.2.7 NewSQL . 32

3.2.8 Triple store . 32

4 Methodology . 35

5 Data stores . 37

5.1 Selected data stores 37

5.2 Comparative study 39

5.3 Conclusion 50

6 Data model . 51

6.1 Domain description 51

6.2 Physical data model 53

6.2.1 Language bindings . 53

6.2.2 Document-oriented data model . 54

6.2.3 Graph-oriented data model . 55

6.3 Reference queries 57

6.3.1 Querying . 57

6.3.2 Insertion . 62

6.4 Conclusion 65

7 Empirical study . 67

7.1 Previous work 67

7.2 Experimental setup 68

7.3 Procedure 69

7.4 Results 69

7.4.1 Dataset size . 70

7.4.2 Query size . 70

7.4.3 Iteration count . 72

7.5 Conclusion 73

8 Opportunities . 75

9 Conclusion . 77

A Research proposal . 79

A.1 Introduction 79

A.2 Use case 80

A.3 State-of-the-art 80

A.4 Methodology 81

A.5 Expected results and conclusions 82

B Source code . 83

B.1 MongoDB 83

B.2 CouchDB 88

B.3 Neo4j 92

B.4 Empirical study 96

Bibliography . 101

13

List of abbreviations

BASE Basically Available, Soft state, Eventual consistency. 42

CAP Consistency, Availability, Partition tolerance. 42

MVCC Multi-Version Concurrency Control. 42

RDBMS Relational Database Management Systems. 29

List of Figures

3.1 CAP Theorem . 33

5.1 Master-slave replication . 47

5.2 Master-master replication . 47

6.1 Graph data model . 56

7.1 MongoDB query size . 71

7.2 Neo4j query size . 71

7.3 MongoDB iteration count . 72

7.4 Neo4j iteration count . 73

List of Tables

5.1 NoSQL data stores: Querying capabilities and language support 41

5.2 NoSQL data stores: Data integrity . 43

5.3 NoSQL data stores: Scalability . 45

5.4 NoSQL data stores: Hosting concerns . 49

7.1 Multiplication factor and dataset size . 70

1. Introduction

1.1 Context

Up until 500 years ago, knowledge was transferred mainly through verbal communication.
Only later were written records and publications added as a method of knowledge transfer.
Because of recent advances in technological constraints, course material in the 21st century
covers much more ground related to the way knowledge is stored. Modern courses consist
of slides, videos, websites and interactive applications. These novelties complement the
classical course texts, and are valuable additions in order to support various didactical
principles (Cottenier et al., 2016). Allowing students to learn the same content in different
ways stimulates the encoding of the content on the relevant parts of the brain (Paivio,
1969).

However, there is a lot more potential to gain from the modernization of educational
content, both for the teacher and the students. Education is still too often a one-way street,
where students are obligated to process the course content without being provided much
challenge or activity (Open Webslides, 2017a). This does not allow for any dialogue to
take place between students and teachers concerning feedback and improvement of the
course material itself.

Current educational software solutions do not allow co-creation discourse between teacher
and students easily, in many cases due to technological constraints („Co-created Courses
through Open Source initiatives”, 2018). Course material being locked to specific versions
of proprietary software is just one of the many problems teachers might encounter when
trying to apply this concept in real life. Using interactive tools and applications, the teacher
can engage the students more directly.

22 Chapter 1. Introduction

By building on modern, open standards, the Open Webslides project aims to provide a
platform that solves these problems (Open Webslides, 2017a). It creates a user-friendly
environment where teachers can create courses based on open source technologies and
standards, and it allows teachers and students to apply the co-creation narrative easily. This
also enables users to share their material not just with their immediate environment but
with a much broader educational audience.

1.2 Problem statement

The Open Webslides platform incorporates several ways to stimulate spontaneous co-
creation between teachers and students. One of the most prominent elements is the
Recent Activity feed. This reverse chronologically ordered list enumerates the most
recent user interactions with the platform and with other users. Feed items range from
simple actions such as a user having created or modified course content, to more complex
social interactions like a discussion facilitated by comments or a student’s changes being
incorporated in a teacher’s courses.

The size of the Recent Activity feed data set is directly correlated to the size and activity
of the users. The Open Webslides platform is built to cater to higher education institutions.
This entails that the traffic on the platform will be relatively high yet predictable, and
seasonally bound. It has the potential to grow explosively in timespans critical to teachers
and students, such as examination periods. In order for the infrastructure to be able to
handle the deluge of the retrieval requests, designing a system that allows for efficient
querying and easy scalability is of paramount importance. Further decoupling of this
subsystem from the business-critical processes is also important to ensure that downtime
of this subsystem has no impact on round the clock availability of course content to the
users.

As a result, the Open Webslides team is looking for an efficient solution to this problem,
in the form of a NoSQL data store integrated into the platform. It is important to note
that this NoSQL data store will complement the relational data store already present in
the platform. It does not contain business critical data and it is not an authoritative source
of information. The use of multiple data stores characterised by different data models is
called polyglot persistence (Sadalage & Fowler, 2012).

This research thesis will provide a comparative and empirical study of existing NoSQL
database solutions for the Open Webslides project to implement an efficient, scalable
data storage system in the context of the Recent Activity feed. A basic solution is already
implemented within the platform, however the proposed data model allows for more
flexibility and accommodates any future functionality expansion.

1.3 Research questions 23

1.3 Research questions

The research in this thesis is focused on finding an answer to three main research questions:

1. What frameworks and software packages currently exist in the industry to store
structured non-relational graph or document data and how do these data models
differ from each other?

2. How is the social graph as introduced by the Open Webslides’ Recent Activity feed
conceptually and logically structured and how is this data consumed?

3. What NoSQL data store is the most appropriate and efficient data store to store this
social graph?

Determining and exploring the NoSQL database landscape will provide us with a general
idea of the current state of affairs. This knowledge will then be utilized to answer the second
research question in form of logical data models, respective physical implementations and
reference queries. Finally, The first two questions will then lead into an empirical study to
answer the last research question. It will also provide a practical approach for the Open
Webslides development team to take into account this research paper when developing the
platform in the future.

1.4 Research goal and objectives

This research consists of two panels. The first is a comparative study of existing NoSQL
products applied to the Open Webslides use case. This chapter may be of interest to a
broader audience and future researchers analyzing similar use cases. Second, a concrete
recommendation of a NoSQL data store for the Open Webslides project will be made,
together with a reference implementation.

1.5 Expected results and conclusions

We expect to find a comprehensive answer to all of the research questions proposed in this
chapter. Primarily, this involves finding the best NoSQL data model for the studied use
case. We expect to find that graph databases are the most fitting data store in this context.
This results from the train of thought that the Open Webslides Recent Activity feed data is
structured as a directed graph, and behaves as such.

Furthermore, since physical implementations will be developed during this research in
order to perform the empirical study, the main result of this thesis is expected to be a
concrete recommendation for a NoSQL product, and a reference implementation of the
Recent Activity feed in the respective NoSQL product.

In chapter 2 an overview will be presented of current research, applied solutions and other
related work in the research domain based on a literature study. This literary review will
then be used to give a broad and global overview of the research domain, introducing

24 Chapter 1. Introduction

various relational and NoSQL concepts and explaining the ideas behind NoSQL and
polyglot persistence in chapter 3.

Chapter 4 will clarify the methodology used in this thesis to attempt to formulate an
answer to the research questions. The research is split into three distinct parts. The first
part, chapter 5, will evaluate existing NoSQL data stores using a comparative study in the
context of the Open Webslides use case. Certain NoSQL categories will also be ruled out
in this chapter, and a concrete selection of NoSQL database management systems will be
made for further comparison.

The second part in chapter 6 describes the domain model that is used in the Open Webslides
project, and proposes the logical and physical data models for every included NoSQL
database. Reference queries that cater to the needs of the domain will also be drawn up
and implemented. Chapter 7 combines the proposed data models and reference queries in
order to perform and discuss an empirical study on the data stores selected in chapter 5.

Chapter 8 will conclude and reflect upon the opportunities and inadequacies encountered
in this paper, providing an entrypoint for future research.

Finally, chapter 9 will present a general conclusion and summarize the research, formulat-
ing answers on all of the research questions.

2. State of the Art

Ever since the rise of the NoSQL databases in 2009 (Sadalage & Fowler, 2012) it has been
a subject of vigorous academic and professional research. The contrast with relational
databases, optimal use cases, performance and scalability are only some of the aspects
that have been analyzed with great regularity. This chapter will summarize previous
publications relevant to this thesis.

The book by Sadalage and Fowler (2012) provides an excellent entry into the world of
NoSQL. It explains the motivation behind the use of NoSQL techniques, and how this
differs from relational data storage. Furthermore it introduces the segregation of NoSQL
data stores into four main categories: key-value, document, column and graph databases.
Second, Sadalage and Fowler touch the concept of polyglot persistence. This describes
the concept of an application using multiple types of data stores to store heterogeneously
structured data. This technique is relevant in particular to this thesis, as the described data
schema only relates to one of the database management systems integrated in the Open
Webslides platform. The second part of the book provides a more practical approach to
using polyglot persistence in an enterprise application. The authors have written down
many pointers and guides in order to pick the right database for a particular use case.

There have already been numerous studies to differentiate the different types of NoSQL
databases and comparative studies between NoSQL database systems. Nayak, Poriya, and
Poojary (2013a) present a fifth NoSQL category: object-oriented databases. Other studies
such as Moniruzzaman and Hossain (2013) and Maroo (2013) provide a feature-based
comparison for various NoSQL vendors and database systems. Finally, the similarity and
resemblance of relational and NoSQL data stores is also a well-researched topic in current
literature. Studies and surveys such as Mohamed and Ismail (2014) and Cattell (2010)
tackle this subject in great detail.

26 Chapter 2. State of the Art

Grolinger, Higashino, Tiwari, and Capretz (2013) present a use-case based approach to
comparing different NoSQL and NewSQL data stores. The survey incorporates a feature-
based comparison over different aspects such as querying, scalability and security, and
analyzes these concepts in the context of a select number of NoSQL data stores.

Hecht and Jablonski (2011) provides a feature-based comparison of different NoSQL
database types and vendors. The researchers compare the data model, querying access,
concurrency, partioning and replication. The paper uses a duality-based approach, where
a minus indicates that the feature is not supported by the database system, and a plus if
the feature is supported. The paper also presents the problem of a lack of unified querying
interface for NoSQL databases. Furthermore, the importance of choosing the right NoSQL
database type for the use case is emphasized, however Hecht and Jablonski do not present
a specific case study.

The proceedings of the 2013 IEEE International Conference on Big data by Kaur and
Rani (2013) describe the theoretical modeling and querying of SQL and NoSQL data
stores. The paper then proceeds with a case study of a social networking site similar to
Slashdot (Malda & Bates, 1997). Starting from an entity-relationship diagram (ERD), the
researchers then proceed by modeling the entities in both a document and a graph database.
Finally, a set of seven queries related to the use case is then drawn up and compared for
the PostgreSQL, MongoDB and Neo4j data stores.

Zhao (2015) explores the use of NoSQL data stores to store huge amounts of observa-
tional data generated by astronomical research. It briefly discusses using filesystems and
relational data stores, before comparing NoSQL alternatives. A concrete data model to
store the astronomical data in a MongoDB data store is then presented, together with eight
scenarios and queries that may be used in a production system. Furthermore, performance
measurements of MongoDB are also analyzed. Data insertion, querying and deletion using
the aforementioned data scheme and real observational data are used in this section.

The proceedings of the AGILE 2015 conference by Schmid, Galicz, and Reinhardt
(2015) present an overview of selected SQL and NoSQL databases, focusing on the
geo-functionalities of the systems. It uses performance tests between two document-based
NoSQL data stores (MongoDB and CouchBase). The researchers conclude that geospatial
calculations in NoSQL database systems are still only supported for basic queries. Rela-
tional databases still perform superior to NoSQL databases in small to larger data sets for
queries with geo-functions. However the NoSQL response time only increases slightly
relative to data set size.

The technical report by Barahmand, Ghandeharizadeh, and Li (2015) quantifies the scalabil-
ity of MongoDB and HBase for processing simple operations using the social networking
benchmark BG (Barahmand & Ghandeharizadeh, 2013). It considers both horizontal and
vertical scalability of the data stores using the Social Action Rating (SoAR) introduced by
the benchmarking tool. In order to perform these benchmarks, two logical data models
for the database design are presented. The report concludes that while both data stores
scale superlinearly, their speedup is limited by the resources of a few nodes out of many
becoming fully utilized.

27

Another performance-based study written by Abramova, Bernardino, and Furtado (2014)
compares five popular NoSQL databases (Cassandra, HBase, MongoDB, OrientDB and
Redis) using the Yahoo! Cloud Serving Benchmark (Cooper, Silberstein, Tam, Ramakr-
ishnan, & Sears, 2010). The study compares read and write query performance. It
concludes that over the five compared data stores, MongoDB, Redis and OrientDB are
more read-optimized, and Cassandra and HBase are more update-optimized.

A more query-oriented study was performed by Zhou, He, Sheng, and Wang (2013).
The paper considers both the academic and the industry definition and description of
data models and system architectures. The researchers identify two kinds of searching
approaches: the MapReduce-oriented and the SQL-like querying.

The work of Atzeni, Bugiotti, Cabibbo, and Torlone (2016) dives deeper into the world of
non-relational data modeling. The paper investigates how traditional data modeling can
be used in the context of schemaless and heterogeneous data stores. Atzeni et al. propose
NoAM (NoSQL Abstract Modeling), an abstract data model to describe NoSQL databases
based on the common surfaces of the various data store types. This technique can be used
to describe system-independent application data and later to implement this in the specific
data stores, taking advantage of the various target system idiosyncrasies. Further articles by
the same authors (Bugiotti, Cabibbo, Atzeni, & Torlone, 2014) expand upon this abstract
data model to present a database design methodology for NoSQL systems.

The main differences between this study and the previous studies are:

1. Many studies have been conducted to understand the motivation between the NoSQL
principles and the shift from relational data stores. The division of NoSQL data store
types into four most commonly recognized categories and elaboration upon this is
usually also a topic in these studies. This research paper builds upon that knowledge,
providing only a brief introduction in the world of NoSQL and NewSQL concepts.

2. Some of the previously mentioned research papers also discuss a case study applied
to a specific use case. This is mostly related to business critical systems that store
and process large volumes of data. The use case described in this thesis is very
specific in that it’s a complementary subsystem that does not affect critical data.
Consequently, certain comparative attributes such as security and availability are not
considered in this research.

This thesis aims to provide a case study of data storage the Open Webslides (2017a)
platform. Several use case based surveys and studies already exist, however they aim at
replacing a relational database in an application with a NoSQL database without bringing
polyglot persistence into account. Sadalage and Fowler (2012) is one notable exception in
this aspect. In the case of Open Webslides, the NoSQL data store only complements the
relational database and does not fulfill a critical function. Therefore, several constraints
such as security and availability differ in interpretation from existing studies.

3. Overview

3.1 Relational data stores

Relational Database Management Systems (RDBMS) have been the de facto standard for
over two decades to efficiently store and query information in a wide variety of native and
web applications. These data stores are based on the relational model devised by Edgar
Codd (Codd, 1970). The data in the system is presented as relations: a collection of data
consisting of rows and columns. The user of the database can query and manipulate the
data using relational operators.

Codd presented thirteen rules for a database in order for it to be considered a relational
database (Codd, 1985). However, many of the modern database systems do not adhere
strictly to all of these rules. More commonly, a relational database is defined as a database
that exposes its information using a collection of rows and columns.

Relational database management systems provide certain guarantees during database
transactions. Härder and Reuter discussed recovery in transaction-oriented databases, and
introduced the concept of ACID: an acronym referring to a set of transactional properties
(Härder & Reuter, 1983).

1. Atomicity
Each transaction is “all or nothing”, either the transaction completes successfully
and the data is mutated in an atomic way, or the transaction fails in its entirety and
none of the data in the transaction is committed to the database.

2. Consistency
Each transaction, when successful, only commits legal results. This means that data
in the transaction and subsequently in the database does not violate any constraints.

30 Chapter 3. Overview

The database is always in a consistent state.
3. Isolation

Actions within a single uncommitted transaction are not visible to other, concurrently
running transactions. Once the transaction has successfully completed, the data is
visible for the other transactions.

4. Durability
Once a transaction has completed successfully and been committed to the database,
the system must guarantee that these results survive any subsequent malfunction.

3.2 NoSQL data stores

By 2009, a totally different concept of data storage was popularized (Leavitt, 2010).
NoSQL data stores provide a system of storage that is “non SQL” or “non relational”
(The NoSQL Archive, 2018). Furthermore, properties of NoSQL data stores included
horizontal scalability, inherently distributed and open source. More recently, the NoSQL
denomination has also been explained as “not only SQL”, pointing on the fact that most
NoSQL data stores provide a different interface besides SQL. Many databases expose a
REST API as primary execution interface. Other data stores have devised their own binary
communication protocol, such as the Bolt protocol (Neo Technology, 2007a) for the Neo4j
graph data store.

Another concept that became popular together with the increase in dataset size is MapRe-
duce. MapReduce is a conceptual programming framework and physical implementation
for processing big data sets using multiple, distributed nodes (Dean & Ghemawat, 2008).
Some NoSQL data stores support this paradigm natively, while others have later added
support for it.

The use of non-relational data stores was motivated by the needs of Web 2.0 companies
such as Facebook and Google (Mohan, 2013). NoSQL provides a way to store and process
massive amounts of data in a flexible way. The architecture of such systems is usually more
simple than the equivalent relational database systems, and are more aimed at improving
horizontal scalability as opposed to vertical scalability. Data is not stored in rows and
columns as is the case in the relational model, but rather in a different data structure.

Sadalage and Fowler (2012) reject the proposition that NoSQL data stores replace relational
data stores. Rather, the technology is meant to complement the relational one, and
substituting one for another is not deemed to be a potential solution for performance issues.
Since both systems are designed from the ground up with very different ideas in mind,
developers have to think about the potential advantages and pitfalls of each. NoSQL has
certain use cases where it shines, whereas the relational data model is a much better fit for
other purposes. The use of multiple data storage technologies and database management
systems within the same application is called polyglot persistence.

Nayak et al. (2013a) divide the data models used by NoSQL data stores into five categories.
The following sections describe these five categories, and present three additional categories

3.2 NoSQL data stores 31

that can be identified in recent NoSQL database trends.

3.2.1 Key-value

Key-value data stores are simple in design, yet powerful and efficient when used in the right
circumstances. A key-value data store allows the user to store schemaless data using an
opaque, unique key, creating a key and value pair. The values are stored in a manner similar
to hash tables or dictionaries commonly found in programming languages and standard
libraries. Queries are processed by looking up the value for the provided key, which is
used as an index in the database. Modern key-value data stores prefer high scalability
over consistency, resulting in the fact that more advanced ad-hoc querying and analytical
operations on the data such as joins are not supported.

3.2.2 Document

Document databases store their data in documents, indexed by a unique key. Documents
are usually structured in a hierarchical manner and represented in the JSON format.
Document stores are technically a subclass of key-value stores, however the difference
lies in the interpretation of the data itself. In contrast with key-value data stores, the
value (document) is not opaque to the database management system, but is parsed and
interpreted, and subsequently used for query optimization. Some document data stores
may provide advanced query capabilities on the contents of documents. Since documents
are schemaless, each document may have a similar structure, or a completely different one.

3.2.3 Column-oriented

Column-oriented data stores are designed to store data by column rather than by row. This
kind of NoSQL data store is more similar to relational database systems than the other
categories, in regard to data structure used to store the data (Daniel J. Abadi, Madden,
& Hachem, 2008). In column-oriented data stores, each key is associated with a set of
attributes, stored in columns. Concretely this means that the data is indexed by column
value, rather than by row. Column-oriented data stores are commonly used for queries
where only a subset of the attributes is retrieved, as opposed to row-based data stores where
the entire row is returned, after possibly discarding any unused values (Daniel J Abadi,
Boncz, & Harizopoulos, 2009).

3.2.4 Graph

Graph data stores keep their data persisted in the form of a graph. The graph is made up of
nodes and edges as the graph-theoretical model describes (West et al., 2001). The former
are the database entities that contain the data itself, similar to tables and their respective
columns in the relational model. The latter are the relations between these entities. Graph
data stores use a technique called index-free adjacency, where every node contains a logical

32 Chapter 3. Overview

pointer to the adjacent node (Weinberger, 2016). This makes graph traversal a very fast
operation. Some graph databases like Neo4j are ACID compliant (Miller, 2013).

3.2.5 Object-oriented

Object-oriented data stores represent the data as an object, closely resembling the concept
of an object in object-oriented programming languages. This puts object-oriented data
stores much closer to the programming environment than other database systems. It
provides all features inherent to object-oriented languages, such as data encapsulation,
inheritance and polymorphism. The concepts of class, class attributes and an object can be
mapped onto the relational concepts of a table, columns and a tuple. This concept of data
storage follows the programming model much better and makes software development
more flexible.

3.2.6 Multi-model

Data stores are generally built and optimized around one data model. However, databases
supporting multiple data models exist as well. These database systems allow storing data
using any of the different data models mentioned before, while integrating these into the
same server package. One example of such a data store is OrientDB (OrientDB Ltd, 2010).
Multi-model data stores support and facilitate the principle of polyglot persistence while
reducing operational complexity of running multiple database management systems.

3.2.7 NewSQL

NewSQL is a type of relational database management system that aims to provide the
same scalability and distributed performance of NoSQL data stores (Grolinger et al., 2013).
NewSQL data stores are ACID compliant.

3.2.8 Triple store

A triple store is a type of data store similar to key-value and graph data stores. Triple
stores process data using semantic queries on data triples. A triple consists of a subject, an
predicate and an object (Rohloff, Dean, Emmons, Ryder, & Sumner, 2007).

3.2 NoSQL data stores 33

Most NoSQL data stores are built around the concept of eventual consistency (Brewer,
2000). This is a consistency model that dictates that all accesses to a particular piece of
data will eventually return the last updated value. This principle is broadly implemented
in distributed computing systems. Systems providing this property are also classified as
BASE: Basically Available, Soft state, Eventual consistency. In contrast to the ACID
properties, systems built around the BASE principles prefer availability over consistency.

In 2000, Eric Brewer presented a conjecture known as the CAP theorem (Brewer, 2000).
This conjecture, later formally proven (Gilbert & Lynch, 2002a, 2), asserts that it is
impossible for a distributed data store to exhibit more than two out of three of the following
properties:

1. Consistency: Every read operation receives the most recent write result
2. Availability: Every request receives a non-error result
3. Partition tolerance: The system continues to work despite failure to communicate

between nodes

Figure 3.1: CAP Theorem

The CAP theorem states that when a network partition is present, the database developer
has to choose between providing consistency or availability. Note that consistency as
defined by the CAP theorem is not the same concept as consistency as described by the
ACID properties. Database systems respecting the ACID guarantees choose consistency
over availability, while database systems built on the BASE principle generally choose
availability over consistency.

4. Methodology

Analyzing and comparing every NoSQL data storage solution is not feasible due to the
sheer number of competing products. Therefore only a selection of the most popular
NoSQL data stores in the different NoSQL categories are considered in the research. This
selection is motivated by a list of the most popular databases kept up to date by Solid
IT (2018), and by the Gartner Magic Quadrant 2018 (Gartner, Inc., 2018a). For every
category, we select the most popular databases by quadrant and reported score, which is in
turn based on several other criteria. DB-Engine Ranking attempts to estimate the overall
popularity of the data store on the Web.

Next, the selected data stores are subject to a use case based comparison. In this compara-
tive study every solution is analyzed based on various aspects. The data model, which is the
main driving force behind many other aspects, is one of the main focus points. The NoSQL
data stores are also discussed in relation to querying capabilities, scaling, partitioning
and replication, consistency and concurrency control. Certain aspects are not analyzed in
detail due to their irrelevance to the use case, such as database security, authentication and
auditing capabilities.

In the subsequent chapter, the conceptual and logical data model of the Open Webslides
project is presented. Building upon this, a physical data model is discussed and imple-
mented for the various NoSQL data stores that were selected in the first part of the paper.
Next, the typicial data access flow within the application is examined, and five reference
queries are introduced. These queries are examples of queries that could typically be used
to retrieve data from the data store as part of the normal operating procedures of the Open
Webslides application.

36 Chapter 4. Methodology

Finally, the implementation of the data model and the reference queries are used in the
last part of the research as a base for qualitative benchmarks. Since the Open Webslides
application is built on Ruby and Ruby on Rails, the benchmarks will be implemented in
a Ruby on Rails application, making use of the available Ruby language bindings to the
various data stores examined. For every data store used in the benchmark, the most popular
ORM gem is used as determined by the RubyGems repository (RubyGems, 2003). Related
work and previous NoSQL database benchmarks are also considered in this part, however
it is referenced only as a baseline due to the fact that previous work does not cover the
specific use case and NoSQL data stores studied in this research.

5. Data stores

5.1 Selected data stores

Due to the large number of active and maintained NoSQL data stores it is not feasible to
consider all of them for this research. Every NoSQL category described in chapter 3 will
be considered, discussing the use of the respective categories applied to the use case, and
decided upon whether or not it will be included in the research. In the applicable NoSQL
categories the most popular data stores are selected, where popularity is based on certain
predetermined parameters.

Solid IT (2018) maintains a list of database systems ranked by popularity, based on
parameters such as number of mentions on websites, Google Trends and relevance in social
networks. These parameters are also cross-referenced with professional networks such as
LinkedIn (Microsoft Corporation, 2002) and Upwork (Upwork Global Inc., 2015) using
the number of available job offers and professional profiles. This ranking is called the
DB-Engine Ranking. The list includes not only NoSQL databases but also other types of
data storage systems such as relational database systems.

The information technology division of Gartner maintains a yearly report on emerging
relational and non-relational database technologies (Gartner, Inc., 2018a). The Gartner
Magic Quadrant is a yearly or bi-yearly market research report that summarizes market
trends in many technological sectors. Gartner uses proprietary methods to qualitatively
score vendors on completeness of vision and ability to execute (Gartner, Inc., 2018b).
Vendors are categorized in four quadrants: leaders, challengers, visionaries and niche
players.

The DB-Engine Ranking is used primarily to determine which data stores are the most

38 Chapter 5. Data stores

interesting to consider in this research. The Magic Quadrant for Operational Database
Management Systems was used as a secondary resource. Due to licensing concerns
regarding the Open Webslides project, database systems that do not fall under a free license
as classified by the Free Software Foundation (1985) will not be considered.

Certain categories of NoSQL data stores will be omitted from the comparative study.
Key-value stores will not be accounted for due to the relative simplicity of this type of
data store. The main use case of key-value stores is not storing more complex information,
rather the emphasis lies more on scalability and consistency. Processing complex queries
that consist of the NoSQL equivalent of relational joins is not efficient in these data stores.
Implementing the proposed data model and queries is a more ambitious task that is not
aligned with the scope and goals of the research.

Column-oriented data stores are a category of NoSQL data stores that is questionably useful
in this case study. These data stores are commonly seen as inverse relational database
systems, where the storage of attributes per entity is more flexible regarding nullable values
and unstructured information (Daniel J Abadi et al., 2009). Column-oriented data stores
are very efficient when retrieving a subset of columns for a certain record. Since the data
store will be deployed as additional data store next to the authoritative relational database,
it will not contain any superfluous information that will not be used when querying the
database. This workflow cancels out the efficiency and usefulness of column-oriented data
stores, and subsequently this NoSQL category will not be considered as a viable candidate.

Furthermore, comparison and application of NewSQL data stores will not be included in
this paper either. As described in chapter 3, NewSQL aims to provide scalable performance
similar to that of NoSQL while still guaranteeing ACID properties. Since ACID is not
a major concern for this use case, NewSQL does not provide significant advantage over
NoSQL, and will therefore be omitted from the comparison. Similarly, object-oriented and
multi-model database such as OrientDB (OrientDB Ltd, 2010) are not within scope of this
research.

In conclusion, document and graph data stores will provide the most beneficial data storage
and are the main focus of this research.

The most popular document database systems according to the DB-Engine Ranking are
MongoDB (MongoDB Inc., 2009a), CouchDB (Apache Software Foundation, 2005b) and
Couchbase (Couchbase, Inc., 2010). While Couchbase is technically a multi-model data
store, it is being ranked as a document database. However, Couchbase is a conceptual
merge between CouchDB and Membase, and adds improved clustering capabilities and
strong consistency guarantees (Couchbase, Inc., 2018). Couchbase will not be investigated
upon in a practical capacity, however it is considered as an option to increase multi-host
scalability. This leads to MongoDB and CouchDB being the contestants in the document
database system category.

5.2 Comparative study 39

Finally, as sole graph database the Neo4j system (Neo Technology, 2007b) stands out
over competitors in the ranking. This database system will be analyzed as graph database
candidate in this research.

The data stores included in the comparative study will be MongoDB and CouchDB as
document databases, and Neo4j as graph database.

5.2 Comparative study

Data stores and databases can be compared and analyzed using many quantitative and
qualitative aspects. In this section we propose a selection of criteria based on the usefulness
applied to the studied use case. Since the landscape and feature-set of NoSQL data stores is
changing on a weekly base, the impact of these technologies must be carefully considered
in order to reach a durable conclusion in this research.

The features of a data store that are taken into account in this comparative study are:

• Querying capabilities
– Language
– Protocol
– MapReduce

• Programming language
• Language bindings
• Integrity model
• Atomicity
• Revision control
• Consistency
• Persistence
• Partitioning
• High Availability
• Concurrency
• Replication
• License
• Commercial support

Certain aspects are not relevant to the presented use case because of various reasons.
Aspects omitted from the study are:

• Security
• Compression
• Full-text search
• Geospatial functionality
• Cloud hosting

The specific use case described in this thesis does not focus on security, since the data
store is not public facing and clients do not interact directly with it. Security measures

40 Chapter 5. Data stores

include but are not limited to authentication, authorization, encryption and auditing. None
of these are features that are required or useful for the comparison. Authentication and
authorization is functionality that is present in all databases. It introduces the concept
of multiple clients or roles connecting to a database, and assigning permissions to these
clients in order to enforce permission-based access. However since there will only be
one client connecting to the database - the platform itself - deeper integration with LDAP,
ActiveDirectory or similar is superfluous and omitted from the comparison.

Encryption refers to the mechanism where data is encrypted and unreadable for unau-
thorized third parties. Encryption in databases is threefold: encryption of data at rest,
client-to-server communication and server-to-server communication (Grolinger et al.,
2013). However, since data protection is a comprehensive topic, it does not fall within
the scope of this research. Consequently, encryption functionality is not considered in the
comparative study.

Database auditing is a facility offered by the database management system that keeps track
of the usage of database resources and authorization. Operations on the database leave
a trail of events, called an audit log. Similarly to authentication, the usefulness of this
functionality is somewhat lost when there is only one client operating on the database.
However, many security standards such as PCI-DSS and HIPAA require the existance of
an audit log.

Compression of data in the database is not included in the comparison. Builtin compression
may provide additional storage space but as it is a disk space-CPU usage tradeoff we have
chosen to only consider CPU usage. Akin to compression, we leave the choice of cloud
hosting up to the database administrator.

Full-text search and geospatial functions are provided by certain data stores, however these
features are not used by the platform and subsequently are not relevant to this comparative
study.

5.2
C

o
m

p
a

ra
tive

stud
y

41

Querying Language

Language Protocols MapReduce Language Language bindings

Document
stores

MongoDB JavaScript
MongoDB Wire Protocol
REST 1 Yes C++

C/C++, C#, Java,
Node.js, Perl, PHP,
Python, Ruby, Scala
Erlang1, Go1

CouchDB REST HTTP Yes Erlang

C/C++1, Dart1, Go1,
Java1, Lua1, Node.js1,
Python1, R1,
Ruby1, Scala1

Graph
stores Neo4j

Cypher
SparQL1

Gremlin1

HTTP
Bolt No Java

C#, Java,
JavaScript, Python,
C/C++1, Clojure1,
Erlang1, Go1, Haskell1,
Perl1, PHP1, R1, Ruby1

Table 5.1: NoSQL data stores: Querying capabilities and language support

13rd party community supported

42 Chapter 5. Data stores

One of the most important factors when deciding on a NoSQL data store is the capability to
communicate with the data store, since NoSQL does not have a unified interface like SQL
for relational databases. Choosing a certain data store may allow the developer to integrate
data storage easier into the application. Every NoSQL data store has its own standard for
composing queries, related but not depending on the protocol used for communication with
the server. MongoDB allows querying using a JavaScript API, natively over MongoDB’s
binary protocol or over HTTP (REST) using a third party plugin. Subsequently, MongoDB
is popular among server-side applications written in JavaScript and Node.js (Dayley, 2014).
CouchDB takes another approach and provides a RESTful interface over HTTP to query,
modify and manage the database.

The Neo4j graph store is a different story. The native querying language of Neo4j is
called Cypher, and is much closer to SQL than MongoDB or CouchDB’s way of querying.
Cypher can be used natively both over HTTP and over Neo4j’s binary Bolt protocol. Third
party plugins can extend Neo4j to provide interfaces for SparQL and Gremlin querying
languages.

Another factor that might come into play when choosing a data store is the ability to
support MapReduce, explicitly or under the hood. MapReduce is a conceptual framework
and implementation for processing large data sets using multiple processing entities (Dean
& Ghemawat, 2008). It is composed of a map and a reduce procedure. The former filters
and sorts the data, while the latter performs an aggregating or summarizing operation as a
result to the query.

The chosen document data stores both support MapReduce as normal operating procedure.
The graph store does not support Neo4j, instead building upon index-free adjacency.

Luckily, all major vendors prove to be adequately supported by first- or third-party efforts.

5.2
C

o
m

p
a

ra
tive

stud
y

43

Integrity

Model Atomicity Revision control Consistency

Document
stores

MongoDB BASE Document level No
Configurable:
Eventual or strong consistency

CouchDB BASE Document level Yes Eventual consistency

Graph
stores Neo4j ACID Transaction level No Eventual consistency

Table 5.2: NoSQL data stores: Data integrity

44 Chapter 5. Data stores

Even though all of the compared data stores are classified as NoSQL and based on the
principle of eventual consistency, the integrity model is different for each. MongoDB is
designed with the Basically Available, Soft state, Eventual consistency (BASE) integrity
model in mind, which prioritizes availability over consistency over data in the Consistency,
Availability, Partition tolerance (CAP) theorem. CouchDB is designed around the BASE
model as well, however the data store solved the problem in a different way. Documents in
CouchDB are stored using a technique called Multi-Version Concurrency Control (MVCC).
Neo4j however, enforces ACID guarantees as only data store included in the comparison.

Data stores designed around the BASE model typically do not provide any strong con-
sistency guarantees. This is reflected in the fact that MongoDB and CouchDB provide
atomic operations only on document level. This means that operations on documents –
and embedded child documents – are atomic, however operations on multiple documents
are not guaranteed to be completely atomic. Neo4j is ACID-compliant and does provide
atomic transactions for multiple operations akin to the database transactions found in
relational data stores.

CouchDB’s concurrency control method is based on the technique of MVCC. Subsequently
it is the only data store that provides native version control as a result of the concurrency
control method used in the database engine. Neither MongoDB or Neo4j provide any
similar feature natively.

NoSQL data stores are in general based on the principle of eventual consistency, as tradeoff
versus the availability according to the CAP theorem. However, since the start of the
development on MongoDB a lot of research and implementation has been done, and the
software will soon provide both the option to configure the database to enable strong
consistency, and atomic operations on multiple documents – similar to transactions. Both
MongoDB and Neo4j provide eventual consistency as dictated by the principles of the
CAP theorem.

5.2
C

o
m

p
a

ra
tive

stud
y

45

Scalability

Persistence Partitioning Replication Concurrency control

Document
stores

MongoDB Memory
Disk Shard key Master-slave

MVCC (document)
Locks (global, database, collection)

CouchDB Memory
Disk Consistent hashing Multi-master MVCC

Graph
stores Neo4j Memory

Disk Cache sharding Master-slave Locks

Table 5.3: NoSQL data stores: Scalability

46 Chapter 5. Data stores

A big part of the featureset that NoSQL data stores have to offer is the possibility to
scale horizontally over multiple nodes, called clustering. Relational database management
systems scale very good vertically on a single node, however scaling to multiple nodes
is a more complex issue. This is where NoSQL systems typically stand out, prioritizing
availability over consistency according to the BASE principles.

MongoDB, CouchDB and Neo4j all support keeping the dataset in memory, and persistence
to disk. Memory accesses are typically magnitudes faster than disk access, independent of
whether traditional rotating media or more mordern solid state technologies are used. The
database management system will frequently commit the memory pages to disk, to ensure
durability of the data.

Since NoSQL data stores are designed from the ground up to be used in a distributed
context, the method used to support partitioning is of paramount importance. Distributed
databases typically partition networks using a method called sharding (MongoDB Inc.,
2009b). Sharding is the division of the entire dataset pushed to different nodes based on
certain, predetermined criteria. Choosing the sharding criteria in a smart way can allow all
sorts of distribution models, from an equal division over all nodes to a weighted distribution
based on node capabilities. One technique commonly used by multinational companies is
sharding based on geographical location. This ensures that the data of a user in a certain
geographical area is pushed to a node close to that geographical area, which in turn helps
out server latency and improves the general responsiveness of the server. Facebook is one
example of this: the company has a userbase and data centers that stretch over the entire
world (Barrigas, Barrigas, Barata, Bernardino, & Furtado, 2015). The algorithm used in
Facebook’s sharding selection is based on the most important geographical location for a
user.

MongoDB sharding is based on a shard key within the document. This shard key can be
either determined by the developer to allow more finegrained control over the process,
or automatically determined based on the unique identifier assigned to the document in
order to allow for a roughly equal distribution. CouchDB’s partitioning system works in a
different way. It utilizes consistent hashing, which means that the document ID is hashed
and the documents are distributed equally over the available nodes (Apache Software
Foundation, 2005a).

Finally, Neo4j sharding is based on cache sharding, which is aimed at distributing the
graph over the nodes in order to send a query that hits a certain area of the graph always to
the same node.

Another important feature related to the architecture of a storage cluster is the replication
model and capabilities. Replication models are characterised and divided based upon the
amount of masters and slaves in the cluster. A master is a server that is the authoritative
source for data, while a slave is a node that is dependent on the master for certain queries.
This implies that in a master-slave replicated cluster, all write requests go solely to the
master node, which then replicates the modifications to the slave nodes. While master
nodes can handle read and write requests, slave nodes can only handle read requests. The
inherent scalability for read requests in this architecture means it is a very good candidate

5.2 Comparative study 47

Figure 5.1: Master-slave replication

Figure 5.2: Master-master replication

for data models where the read requests outnumber the write requests by a large amount.

As a side-effect, the cluster itself is more resilient to slave node failures: when a slave
node goes down, the remaining nodes can balance the load and the cluster can continue to
function. However, a master failure in this setup renders the cluster at least read-only, and –
depending on the sharding configuration – potentially only able to serve part of the data
that was stored on the nodes. Neo4j is an example of a data store that operates under a
master-slave replication configuration. In certain cases the cluster is able to automatically
recover from a master failure by a process called leader election, where a new authoritative
master node is chosen (Singh, 1996). This type of capability is commonly seen by data
stores supporting more simple data models, such as key-value stores.

Similarly to Neo4j, MongoDB operates in a master-slave configuration: one authoritative
master, and an undetermined amount of slave nodes. CouchDB on the contrary, supports a
multi-master or master-to-master configuration. These configurations allow for multiple
master nodes to exist within the cluster, and CouchDB implements a quorum algorithm
between master nodes in order to allow for eventual consistency in the cluster.

Finally, the way a data store implements its concurrency control algorithm is important
for both horizontal and vertical scalability. Traditionally, relational database management
systems handle concurrent accesses using a pessimistic locking system, utilizing row-,
table- and database-level locks (Bernstein, Hadzilacos, & Goodman, 1987). Two type of
locks exist in this context: shared locks (colloquially known as reader locks), and exclusive

48 Chapter 5. Data stores

locks (writer locks). The former implements a mechanism to allow an undetermined
amount of requests to access the data without mutating it, the latter prevents more than one
request to modify the data at the same time, provided there are no existing reader or writer
locks.

In this aspect, Neo4j behaves more like a relational database. As mentioned before, all
write requests are handled by the master node in the cluster, and the concurrent requests
are restricted using a lock mechanism.

CouchDB takes an entirely different approach to concurrency control. Revision control is a
feature built natively into the data store, and it is used in a mechanism called Multi-Version
Concurrency Control (MVCC) to provide concurrent write access to data. In short, MVCC
redirects running write requests on a document to a new version of that document, while
still serving the old version to concurrent read requests. Once the write request on the
new version is finished, the pointer pointing to the most recent version of the document is
updated to point to the new, updated document instead of the old, obsolete document. This
also has the benefit of automatically making document writes atomic, since only one value
has to be updated in the end: the document pointer.

MongoDB also makes use of MVCC, however certain requests are still restricted using
locks. This relates to requests that modify the entire database management system, the
database or the collection and shared and exclusive locks are enforced respectively.

5.2
C

o
m

p
a

ra
tive

stud
y

49

Features

License Commercial support Cloud environment

Document
stores

MongoDB GNU AGPLv3 (database)
Apache (drivers) Yes

Amazon EC2
Google Cloud Platform
Microsoft Azure
Digital Ocean
Cloud hosting partners

CouchDB Apache No No

Graph
stores Neo4j GNU GPLv3 (Community Edition),

AGPLv3 (Enterprise Edition) Yes

Amazon EC2
Google Cloud Platform
Microsoft Azure
Digital Ocean
Cloud hosting partners

Table 5.4: NoSQL data stores: Hosting concerns

50 Chapter 5. Data stores

Table 5.4 provides insight into the aspects related to hosting one or more database instances.
First, the type of license is important when hosting the data store. Since we have restricted
our research to licenses classified as free by the Free Software Foundation (1985), none
of these data stores prevent hosting instances without incurring additional licensing costs.
However, for two out of three data stores commercial support is available as well. Com-
mercial support includes licensing the product for enterprise use, which usually includes
additional functionality – commonly related to scalability – and customer support.

MongoDB is dual-licensed. The database management system itself is licensed under the
GNU Affero General Public License version 3. The language bindings – called drivers –
while officially supported are licensed under a different license, the Apache license

The GNU Affero General Public License version 3 is a modified version of the GNU
General Public License version 3. The GNU General Public License requires developers
that modify software licensed under the GPL to distribute their modifications as well.
However, the license does not cover the case of service providers: if a developer modifies
the source code and runs the software on a server, allowing other users to interact with it,
distribution of the modified source code is not required. The AGPL adds a provision to
prevent this loophole. Whenever a modified version of software licensed under the AGPL
runs on a server, the modified source code must be available to download. In the case of
data stores, this makes sure that the software remains free and cannot be commercially
exploited.

CouchDB, being an Apache project, is licensed under the Apache license.

The Neo4j graph store is dual-licensed as well: the Community Edition is licensed under
the GPL version 3, and the Enterprise edition is licensed under the AGPL version 3.
Deciding on data store hosting is a difficult topic, which is not within the scope of this
research. We merely enumerate the options available for every data store. Since all prod-
ucts are licensed under a free license, it is possible for invididuals and companies to host
instances themselves. MongoDB and Neo4j provide commercial support for this use case.
However, running a data store instance can also be outsourced to a plethora of companies
and hosting providers. Both MongoDB and Neo4j integrate with various cloud providers
such as Amazon EC2, Google Cloud Platform or the Digital Ocean hosting platform.

5.3 Conclusion

In this chapter the possible NoSQL data storage solutions were discussed using a list
of properties applicable to the Open Webslides use case studied in this research. Two
document stores and one graph store were selected as interesting candidates in order
to implement the Ruby framework in the next chapter. The three data stores – Mon-
goDB, CouchDB and Neo4j – were compared on their most important functional and
non-functional properties.

6. Data model

In this chapter we describe the conceptual domain of the use case, and provide logical data
models applied to the NoSQL data models selected in the previous chapter. Physical data
models for MongoDB, CouchDB and Neo4j will be presented, along with an implementa-
tion in a demo Ruby on Rails application using Ruby language bindings. Finally, a set of
reference queries that may typically be used in the context of the Recent Activity feed will
be proposed. These queries will be formally described, and subsequently implemented in
the query languages specific to the three data stores.

6.1 Domain description

On the Open Webslides platform, no distinction is made between a teacher and a student
in the data model. Both are represented by the User entity in the database. This entity
contains information pertaining to the user, such as email address, first name and last name.
The data models described in the next sections will closely follow the existing data model
of the platform. However, attributes irrelevant to the Recent Activity feed are omitted from
the model and not available in the NoSQL data store, in order to improve efficiency and
simplify abstraction.

A user can create or modify course content in an interactive online editor. The actual
course content, formally called a topic, is stored inside a git repository on the filesystem.
However, the platform also maintains a record of topic metadata in the relational database.
This metadata includes title and description, but also permissions and contributors on the
course content.

From a technical perspective, the user has three distinct paths of action for creation and

52 Chapter 6. Data model

co-creation on course content. Since the permission model in the platform is not relevant to
this research, we will not go into detail on it. First, the user can directly modify the course
content if the user has permission to perform this action. The second option is creating
annotations on the topic. This allows the user to attach private or public notes to specific
content on the topic. Annotations are stored in the relational database, in the Annotation
entity. The entity contains a logical pointer to the annotated content.

The final possibility to integrate user content into a topic is by adding comments. In
contrast to annotations, comments have a typical structure. They can take the form of
questions, notes, suggestions, and can also be nested - which allows simple interaction and
conversation between multiple users, and effectively enables dialogue between students
and teachers.

The intention of this thesis is to use the NoSQL data storage as storage mechanism for the
Recent Activity feed. This entails that the authoritative information will not be stored in
that data store, but rather be extracted from the relational database whenever an activity
event is generated. Accordingly, some information may be omitted from this data store,
while other information is copied.

Consider the following domain description structured as activity events in the Recent
Activity feed. These events are items that a user may typically encounter in the web
application as part of the feed.

“ John created Topic A. ”

“ Jane commented on Topic B: This is not a good example. Try and find a better one. ”

“ John commented on Jane’s comment on Topic B: I agree. ”

“ Jane annotated Topic A. ”

“ Bob updated Topic B. ”

“ Bob reacted to John’s comment on Topic B. ”

From this description we can already derive some requirements to take into account when
designing the data models. Every event has a structure characterised by three aspects. First,
there is a user at the base of the action, and in the descriptions this is the subject of every
sentence. Second, the subject performs an action, and the actions are limited to a certain
subset as determined by the developer. Third, the user operates on an object, which is
usually but not always a topic.

In the activity events, the underlined text fragments represent hyperlinks in the web appli-
cation to the relevant entities. A hyperlink for a user may link to the profile page of the
user, or the contributions of the respective user on the relevant topic. Similarly, a hyperlink
for a topic may link to a page that presents an overview of the topic, or directly to course
content inside the topic. The actual destination is up to the developers of the platform, and
is not directly relevant for this research. However, the existence of these hyperlinks entails

6.2 Physical data model 53

that every aspect previously described has to consist of at least one attribute that is used in
the hyperlinks – most likely this will be the unique identifier of the entity in question.

We present the following conventions and rules to be followed in all NoSQL data models.

• The user of an activity is called the subject
• The action of an activity is called the predicate
• The predicate can be one of the following values:
created, updated, renamed, commented_on, annotated, reacted_to

• The object to which an action refers, is called the item
• The item can reference topics and comments
• No additional attribute to facilitate hyperlinks will be included

Furthermore, since the data in the NoSQL data store is generated in function of the
business-critical data in the platform, it is expected to be written to the database only once,
and read many times. This enables us to design data models where read performance is
prioritized over write performance. It is also important to note that the data is always
queried in a reverse chronological way, since the Recent Activity feed displays the most
recent events first.

Using this logical description of the domain, we can start to derive physical data models
for the selected NoSQL data stores.

6.2 Physical data model

6.2.1 Language bindings

Table 5.1 lists for every NoSQL data store the programming languages for which language
bindings are available. Some of these are developed, maintained and officially supported
by the database vendor, while others blossomed forth from a community effort. For
developing the physical data model, we have selected the most popular language bindings
for Ruby and Ruby on Rails’ ActiveModel according to RubyGems (RubyGems, 2003). If
there is an official library available, it is preferred over a community library, with a view
on the maintainability of the application.

For MongoDB, an officially supported language binding is available for plain Ruby and
Ruby on Rails. The latter library, called Mongoid, integrates MongoDB directly into the
Rails ecosystem and was chosen as a viable candidate for developing the physical data
model and queries (MongoDB Inc., 2009c).

CouchDB on the contrary, does not have an officially supported Ruby binding. The most
popular gem on RubyGems is CouchRest and its ActiveModel equivalent, CouchRest
Model. However, as of the time of writing, CouchRest Model is not well maintained, with
only five beta releases and no stable releases during the past three years. Since this library
provides all the necessary integrations to develop the CouchDB data model and queries, it

54 Chapter 6. Data model

was chosen as framework in which to implement these.

Finally, Neo4j does not have an officially supported library, however the database vendor
recommends using a community supported alternative called Neo4j.rb. This library inte-
grates the Neo4j graph database with the Ruby on Rails stack and was subsequently used
as a platform to develop the graph data model and queries.

6.2.2 Document-oriented data model

The fundamental building block of a document data store is a document. The document
data model provides two distinct approaches to link between different documents. Each
option has its own advantages and disadvantages, and the proposed data models attempt to
use the most efficient option for the use case, despite making some trade-offs.

1. Embedded collections (denormalized data). Embedding of data stores information
in a single document. This technique is commonly used when the entity contains
the embedded entity: for example storing contact details of a user. Another use for
this approach is storing one-to-many relationships, where the child documents are
always queried within the context of the parent document.

2. References (normalized data): Storing a reference to another document, similar to
storing keys to other tables in the relational model.

Embedded collections provide better performance, since the embedded document is in-
cluded in the parent document and the database management system does not have to
execute an additional query. The disadvantage of embedding is that data may be duplicated,
if an embedded document is included in multiple parent documents. Using referenced
documents yields the exact opposite effects: slower performance due to additional queries,
yet less data duplication in case of a multiply referenced document.

Since the data model has to be optimized for read performance, we will try to use embedded
documents wherever possible.

From the domain description of the use case, we can identify one main entity which may
be stored in its own collection: Event. This is the entrypoint of the Recent Activity feed,
and the event document will embed or reference all other entities. The first relation that
can be identified is the subject relation: every event has exactly one subject. However, we
can infer that Event is not the only entity that has a link to Subject. Every comment also
references Subject. Since the only information included in the Subject entity is a name,
we have chosen to embed Subject in the parent documents. The data duplication of a
single attribute is negligible as opposed tot the performance penalty encountered when
using a referenced document in this case.

The same train of thought can be applied to Topic: both Event and Comment reference
the entity, yet it only contains one attribute. Subsequently Topic will be used only as an
embedded document as well.

One downside of this approach is that when a user changes the name or title of a subject or

6.2 Physical data model 55

topic respectively, the existing data in the NoSQL database does not get updated and the
Recent Activity feed may display outdated information.

The way a comment gets stored in the document data store is very particular. The storage of
both a comment and an event referencing the comment in different collections is redundant,
since the database will never be queried from the perspective of a comment. Considering
this, every top-level comment – comments made on a topic – is stored as a text attribute
of an event. This way the item of that event still refers to the topic itself. Events for child
comments – comments made on another comment – are structured differently. In this case,
the item refers to the parent comment, but does not include its text. This flexible approach
allows us to store the information efficiently.

This leads us to the following physical document data models, implemented in the Ruby
on Rails application.

MongoDB implementation

The physical data model for MongoDB is implemented using the Mongoid library, which
provides Ruby and Ruby on Rails bindings to the data store. Mongoid is officially supported
by Mongo, Inc.

The models developed during this research are available in appendix B.

CouchDB implementation

An attempt was made to provide a physical implementation of the proposed document
data model using the CouchRest Model library (Anderson et al., 2011). CouchRest Model
provides Ruby on Rails integrations and is built on the CouchRest Ruby library.

During the development of the data models in question, many roadblocks were encountered
that impeded development or even made it impossible to continue. The library does not
support object inheritance, and relationship polymorphism for instance.

The degree in which CouchDB is compatible with Ruby on Rails was deemed not sat-
isfactory, and as such CouchDB was dropped for the physical implementation of the
queries.

The models developed during this research are available in appendix B.

6.2.3 Graph-oriented data model

Using the examples of activity events in section 6.1, several entities can be identified.
These entities are used to model the nodes, labels and edges in the graph data stores

The first step is to extract the nodes from the description. In the domain, there are four
main entities.

56 Chapter 6. Data model

Figure 6.1: Graph data model

• Event
• Subject
• Topic
• Comment

Similarly to the document data model, Event represents an entry in the Recent Activity
feed.

Neo4j data modeling also supports labels, a graph construct that groups nodes into sets. A
set contains all nodes that are labeled with the same label. A node can have any number of
labels.

In the use case, there is one important opportunity to make use of node labels. The item
relation of Event can reference multiple other entities, in this case Topic and Comment.
Using the label Item on top of the Topic and Comment labels allows room for future
expansion to other entity types.

A number of relationships can be identified in the domain description.

• Event has one Subject
• Event has one Item
• Comment has one Subject
• Comment has one Topic

These relationships are modeled in the graph data store as edges.

This leads to the graph data model in figure 6.1.

Neo4j implementation

The physical data model for Neo4j is implemented using the community-supported
Neo4j.rb library, which provides Ruby and Ruby on Rails bindings to the data store
(Underwood, 2010).

The models developed during this research are available in appendix B.

6.3 Reference queries 57

6.3 Reference queries

In order to perform an empricial analysis on the selected data stores and the proposed
physical data models, we present five reference queries in this chapter. These reference
queries will reflect the method of querying that would be the most common in the physical
platform implementation, and mirrors the way data is queried from a database perspective.
All reference queries will be implemented using the available language bindings, however
the generated implementation-specific query will also be presented.

Since the data of the use case is aimed at a write-once, read-many character, the majority
of queries will not touch the data itself, but rather only read it. Four read-only queries are
included in the following sections, and one query that will insert new data into the data
store.

6.3.1 Querying

Query 1

“ Select N most recent events, ordered reverse chronologically ”

This query, as most simple reference query presented, is an example of a query that can be
used on the homepage of the platform. When a user opens the web application, a reverse
chronologically ordered list of events is presented. This view allows for a quick overview
of the activity in the platform, and since the user is not signed in yet, it is not tailored. This
also means that everyone who visits the platform without signing in will receive the same
events in their Recent Activity feed.

MongoDB

MongoDB::Event
.all
.order_by(:created_at => :desc)
.limit(count)
.each(&:to_s)

Listing 1: MongoDB query 1

Neo4j

Neo4j::Event
.all
.order(:created_at => :desc)
.limit(count)
.each(&:to_s)

Listing 2: Neo4j query 1

58 Chapter 6. Data model

MATCH (result_neo4jevent:`Event`)
RETURN result_neo4jevent
ORDER BY result_neo4jevent.created_at DESC
LIMIT {limit_1} | {:limit_1=>count}

MATCH (previous:`Event`)
WHERE (ID(previous) = {ID_previous})
OPTIONAL MATCH (previous)-[rel1:`by`]->(next:`Subject`)
RETURN

ID(previous),
collect(next) | {:ID_previous=>result_neo4jevent.id}

MATCH (previous:`Event`)
WHERE (ID(previous) = {ID_previous})
OPTIONAL MATCH (previous)-[rel1:`on`]->(next:`Item`)
RETURN

ID(previous),
collect(next) | {:ID_previous=>result_neo4jevent.id}

Listing 3: Neo4j query 1 (CYPHER)

The Neo4j ORM call get converted into three distinct queries: one to get the Event node
and two queries to get the related nodes Subject and Item.

Query 2

“ Select N most recent events, where the event is related to a topic in a list of given topics,
ordered reverse chronologically ”

A user has to ability to subscribe to topics, which means that the Recent Activity feed
may be tailored to the user. Once the user logs in to the platform, the Recent Activity feed
can be presented in a more attractive way. The events in the feed will then consist of only
events related to topics the user has subscribed to (which also includes the topics where
the user is author or contributor).

MongoDB

List of subscribed topic identifiers
topic_ids = [...]

MongoDB::Event
.in('item._id' => topic_ds)
.order_by(:created_at => :desc)
.limit(count)
.each(&:to_s)

Listing 4: MongoDB query 2

6.3 Reference queries 59

Neo4j

List of subscripted topic identifiers
topic_ids = [...]

Neo4j::Topic
.where(:id => topic_ids)
.events
.order_by(:created_at => :desc)
.limit(count)
.each(&:to_s)

Listing 5: Neo4j query 2

MATCH (node2:`Topic`:`Item`)
WHERE (node2.uuid IN {node2_uuid})
MATCH (node2)<-[rel1:`on`]-(result_events:`Event`)
RETURN result_events
ORDER BY result_events.created_at DESC
LIMIT {limit_1} | {:limit_1=>1, :node2_uuid=>topic_ids}

MATCH (previous:`Event`)
WHERE (ID(previous) = {ID_previous})
OPTIONAL MATCH (previous)-[rel1:`by`]->(next:`Subject`)
RETURN

ID(previous),
collect(next) | {:ID_previous=>node2.id}

MATCH (previous:`Event`)
WHERE (ID(previous) = {ID_previous})
OPTIONAL MATCH (previous)-[rel1:`on`]->(next:`Item`)
RETURN

ID(previous),
collect(next) | {:ID_previous=>node2.id}

Listing 6: Neo4j query 2 (CYPHER)

Query 3

“ Select N most recent events, where the event is related to a given topic, ordered reverse
chronologically ”

Every topic also has an overview page, which mainly contains metadata such as description,
author, contributors and other information not directly related to the course content. Next
to the metadata, a custom Recent Activity feed is also included on the page. This feed only
contains events related to the topic the user is currently viewing, and effectively presents a
timeline of changes and discussions.

60 Chapter 6. Data model

MongoDB

Topic identifier
topic_id = ...

MongoDB::Event
.where('item._id' => topic_id)
.order_by(:created_at => :desc)
.limit(count)
.each(&:to_s)

Listing 7: MongoDB query 3

Neo4j

Topic identifier
topic_id = ...

Neo4j::Topic
.find(topic_id)
.events
.order(:created_at => :desc)
.limit(count)
.each(&:to_s)

Listing 8: Neo4j query 3

MATCH (neo4j_topic)
WHERE (ID(neo4j_topic) = {ID_neo4j_topic})
MATCH (neo4j_topic)<-[rel1:`on`]-(result_events:`Event`)
RETURN result_events
ORDER BY result_events.created_at DESC
LIMIT {limit_1} | {:limit_1=>1, :ID_neo4j_topic=>topic_id}

MATCH (previous:`Event`)
WHERE (ID(previous) = {ID_previous})
OPTIONAL MATCH (previous)-[rel1:`by`]->(next:`Subject`)
RETURN

ID(previous),
collect(next) | {:ID_previous=>neo4j_topic.id}

MATCH (previous:`Event`)
WHERE (ID(previous) = {ID_previous})
OPTIONAL MATCH (previous)-[rel1:`on`]->(next:`Item`)
RETURN

ID(previous),
collect(next) | {:ID_previous=>neo4j_topic.id}

Listing 9: Neo4j query 3 (CYPHER)

6.3 Reference queries 61

Query 4

“ Select N most recent events, where the event is related to a given user, ordered reverse
chronologically ”

Similarly to topics, a profile page also includes a timeline of the user’s activities: additions,
deletions, comments and annotations that were recently made by that user.

MongoDB

Subject identifier
subject_id = ...

MongoDB::Event
.where('subject._id' => subject_id)
.order_by(:created_at => :desc)
.limit(count)
.each(&:to_s)

Listing 10: MongoDB query 4

Neo4j

Subject identifier
subject_id = ...

Neo4j::Subject
.find(subject_id)
.events
.order(:created_at => :desc)
.limit(count)
.each(&:to_s)

Listing 11: Neo4j query 4

62 Chapter 6. Data model

MATCH (n:`Subject`)
WHERE (n.uuid = {n_uuid})
RETURN n
ORDER BY n.uuid
LIMIT {limit_1} | {:n_uuid=>subject_id, :limit_1=>1}

MATCH (neo4j_subject)
WHERE (ID(neo4j_subject) = {ID_neo4j_subject})
MATCH (neo4j_subject)<-[rel1:`by`]-(result_events:`Event`)
RETURN result_events
ORDER BY result_events.created_at DESC
LIMIT {limit_1} | {:limit_1=>1, :ID_neo4j_subject=>subject_id}

MATCH (previous:`Event`)
WHERE (ID(previous) = {ID_previous})
OPTIONAL MATCH (previous)-[rel1:`by`]->(next:`Subject`)
RETURN

ID(previous),
collect(next) | {:ID_previous=>result_events.id}

MATCH (previous:`Event`)
WHERE (ID(previous) = {ID_previous})
OPTIONAL MATCH (previous)-[rel1:`on`]->(next:`Item`)
RETURN

ID(previous),
collect(next) | {:ID_previous=>result_events.id}

Listing 12: Neo4j query 4 (CYPHER)

6.3.2 Insertion

Query 5

“ Insert N given :created or :updated events ”

Finally, since read requests will most likely outnumber write requests with several magni-
tudes in the studied use case, only one query where data is inserted is presented. The query
creates a single event in the data store.

6.3 Reference queries 63

MongoDB

Subject identifier
subject_id = ...

Item identifier
item_id = ...

MongoDB::Event.create! :subject => subject_id,
:item => item_id,
:predicate => :updated

Listing 13: MongoDB query 5

Neo4j

Subject identifier
subject_id = ...

Item identifier
item_id = ...

Neo4j::Event .create! :subject => subject_id,
:item => topic_id,
:predicate => :updated

Listing 14: Neo4j query 5

64 Chapter 6. Data model

MATCH (n:`Subject`)
WHERE (n.uuid = {n_uuid})
RETURN n
ORDER BY n.uuid
LIMIT {limit_1} | {:n_uuid=>subject_id, :limit_1=>1}

MATCH (n:`Item`)
WHERE (n.uuid = {n_uuid})
RETURN n
ORDER BY n.uuid
LIMIT {limit_1} | {:n_uuid=>item_id, :limit_1=>1}

CREATE (n:`Event`)
SET n = {props}
RETURN n | {:props=>{:uuid=>event_id, :created_at=>1526737892, :predicate=>1}}

MATCH (n:`Subject`)
WHERE (n.uuid = {n_uuid})
RETURN n
LIMIT {limit_1} | {:n_uuid=>subject_id, :limit_1=>1}

MATCH
(from_node),
(to_node)

WHERE
(ID(from_node) = {ID_from_node}) AND
(ID(to_node) = {ID_to_node})

CREATE (from_node)-[rel:`by` {rel_create_props}]->(to_node)
| {:ID_from_node=>event_id, :ID_to_node=>subject_id, :rel_create_props=>{}}

MATCH (n:`Item`)
WHERE (n.uuid = {n_uuid})
RETURN n
LIMIT {limit_1} | {:n_uuid=>item_id, :limit_1=>1}

MATCH
(from_node),
(to_node)

WHERE
(ID(from_node) = {ID_from_node}) AND
(ID(to_node) = {ID_to_node})

CREATE (from_node)-[rel:`on` {rel_create_props}]->(to_node)
| {:ID_from_node=>event_id, :ID_to_node=>item_id, :rel_create_props=>{}}

Listing 15: Neo4j query 5 (CYPHER)

6.4 Conclusion 65

6.4 Conclusion

In this chapter we presented an introduction to the domain, and provided some examples
of events in the Recent Activity feed. Furthermore, we analyzed this domain description,
and derived a logical data model for both document- and graph-oriented data stores. Next,
we proposed an implementation of this logical data model for one document-oriented, and
one graph-oriented data store in the Ruby language bindings available for the respective
database management systems. Finally, we presented five reference queries for the three
data stores, and included both a language binding-specific DSL and a physical query
implementation for each.

The CouchDB implementation was dropped due to the most popular Ruby language
binding available not being up to date and lacking many essential features.

7. Empirical study

In this chapter the previously proposed physical data models for MongoDB and Neo4j
are implemented and put to the test. A Ruby on Rails application was developed that
uses Mongoid and Neo4j.rb libraries to provide connectivity to the data stores. Custom
benchmarking scripts were implemented using the RSpec library (Chelimsky et al., 2005)
and the Benchmark class built into the Ruby implementation.

7.1 Previous work

In current literature there are already some studies present that compare NoSQL data
stores based on a performance review. Abramova et al. (2014) compare the Cassandra,
HBase, MongoDB, OrientDB and Redis data stores. The authors are using the Yahoo!
Cloud Serving Benchmark (Cooper et al., 2010), which presents a framework to facilitate
performance comparisons for cloud-based systems by providing a core set of benchmarks.
The paper concludes that Redis, as in-memory database, provides the best performance in
query processing. Redis is optimized for get and put operations due to in-memory data
mapping. On the other hand, Cassandra and HBase are optimized for update operations.

Finally, MongoDB was found to be the data store with the slowest execution times, having
an overall performance that was more than 58 times lower in comparison with Redis. This
proves that in-memory mapping of data results in a very performant query processing
system.

Schmid et al. (2015) develop a performance comparison aimed at applications using geo-
functionalities present in the database management system. The authors conclude that
requests purely on attributes NoSQL data stores are superior over relational data stores. For

68 Chapter 7. Empirical study

requests using geo-functions the NoSQL data stores also perform constant for increasing
dataset sizes. For smaller datasets with a more interlinked architecture, the relational data
stores perform predictably better.

Barahmand et al. (2015) quantify the horizontal and vertical scalability of MongoDB and
HBase in the context of a social benchmarking framework named BG (Barahmand &
Ghandeharizadeh, 2013). This benchmarking framework models a social graph in the data
store and performs simple operations reading and writing small amounts of data with in a
social interaction context. The researchers found that both data stores scale superlinearly,
limited by the complete utilization of certain nodes in the cluster.

The experimental comparison by Kolomičenko, Svoboda, and Mlýnková (2013) concludes
that Neo4j is the most performant product under the compared graph data stores, especially
in graph traversal queries. The authors also indicate that MongoDB performs well in
queries that are not or lightly graph related.

During the research of this thesis, the decision not to use BG or the Yahoo! Cloud Serving
Benchmark was made. First, there is already literature in the field concerning these bench-
marks and the data stores that were selected for comparison in this thesis. These sources
provide additional input when formulating an answer on the research questions. However,
developing custom benchmarks adjusted to the workload and environment the data schema
is intended to be used in, present a more realistic view of real-word performance. This
is coupled with the fact that this research delivers a Ruby implementation ready to be
integrated into the existing platform.

7.2 Experimental setup

In order to keep the results of the tests consistent, the following rules are applied:

• Query caching is disabled in Mongoid. Neo4j.rb does not have an equivalent feature.
• Connection pooling is disabled
• Clustering is disabled as horizontal scalability performance is not within the scope

of this research
• No additional performance tweaks were applied on the database management sys-

tems

Mongo Wire Protocol and Bolt Protocol were chosen as native protocols for MongoDB
and Neo4j respectively.

All tests were performed on a single machine with the following specifications.

• Ruby 2.5.0, operating under Arch Linux
• Intel Core i7-3840QM (4 cores, 8 threads)
• Hyperthreading and Intel Turbo Boost enabled
• 32GB DDR4 RAM
• 180GB SATA-III SSD

7.3 Procedure 69

The data store versions that were tested are the following versions.

• MongoDB 3.6.3
• Neo4j Community Edition 3.0.6

7.3 Procedure

The following procedure was followed throughout the performance benchmarks.

First, the database was filled with random testing data. The script included in appendix B
was developed in order to create random data and insert this into each of the data stores.
The variable FACTOR in the script is a multiplication factor that directly influences the
amount of data generated.

Next, every test was ran sequentially for the data stores, and the timing results were written
to separate files. During the tests all database management systems were running in the
background.

Since the execution time of a single iteration of a query is negligable, every query was
executed a number of times to negate the effect of external factors, such as operating system
scheduling and I/O wait times. The effects of varying the iteration count are discussed in
section 7.4.2. Having multiple iteration runs allows analyzing the vertical scalability of the
query in limited fashion as well. As indicated in the informal descriptions of the reference
queries, the query itself is also dependent on a variable N which signifies the event count
that is to be retrieved from the database. The effects of varying query sizes were analyzed
and discussed in section 7.4.2. A sane default for query size in a concrete implementation
could be 100, meaning that 100 events are retrieved every time the user loads the Recent
Activity page.

In summary, there are three variables that can be modified in the performance tests:

• Data multiplication factor: total size of the dataset in the database
• Iteration count: number of sequentially ran iterations of the query
• Query size: number of retrieved events from the database

7.4 Results

Small-scale, informal tests determined that the Neo4j implementation is many times slower
than the MongoDB implementation. Hence, the the benchmarks are ran independently for
MongoDB and Neo4j, using an iteration count that is magnitudes smaller for Neo4j, yet
yielding roughly the same execution times.

The execution times represent the real wall-clock time elapsed for every query. It is
measured from the moment the query gets dispatched to the ORM, and hence includes the

70 Chapter 7. Empirical study

Multiplication factor Dataset size

500 7 250 events

1000 14 500 events

2500 36 250 events

5000 72 500 events

Table 7.1: Multiplication factor and dataset size

time to traverse the entire software stack, including instantiation of the database objects in
Ruby. This overhead is intended to be included in the measurements, since the total time
a user has to wait for a database query is influenced both by the software stack and the
database management system.

7.4.1 Dataset size

By varying the multiplication factor in the seed data generator the size of dataset can be
controlled. The effects of dataset size on query performance were not tested and discussed
in this paper. Since the system will most likely be scaled horizontally before dataset will
reach a sufficiently large enough level to be measurable, this variable was not benchmarked.
Horizontal scalability is not within the scope of this research.

All queries below were ran on a dataset with multiplication factor 5000, which implies that
72 500 events are stored in the database.

7.4.2 Query size

The amount of events retrieved from the database is another aspect that could possibly
influence the query performance heavily. In this section different values for the query size
are compared, in order to find any trends

MongoDB repeats the following 10 000 times, while Neo4j only uses an iteration count of
10. All queries operate on a dataset with multiplication factor of 5000, yielding 72 500
events in the database.

Queries 1, 2 and 3 in section 6.3.1 were used as queries in this test. Query 4 is very similar
to query 3 in structure of the queried data itself, so it was omitted. Query 5 is a query
that tests insertion of data, and it was omitted as well due to the fact that query size is not
relevant for insertion queries.

7.4 Results 71

Figure 7.1: MongoDB query size

The horizontal axis in figure 7.1 represents query size in the logarithmic scale. The vertical
axis represents the execution time of 10 000 iterations of the query in seconds.

All measured execution times fall roughly within 7 and 9 seconds, which means that the
query execution time is constant for a varying query size in MongoDB

Figure 7.2: Neo4j query size

Neo4j however, renders a completely different result. Figure 7.2 plots out the execution
time for the different queries running on the Neo4j graph database management system.
The first difference with MongoDB is already very apparent in iteration size: MongoDB
can handle roughly 1000 times as many requests in the same execution time. This is due to

72 Chapter 7. Empirical study

the fact that for every entity retrieved from the database, MongoDB only has to execute
one request and retrieve one document, while Neo4j’s inherent linked structure means that
at least three entities have to be retrieved (event, subject and item).

Query 2 and query 3 remain constant, similar to their MongoDB equivalents. Query 1
however, rises exponentially with query size. This is not an expected result since a database
index exists for the created_at field on which the query orders. However, for small,
realistic values of query size this should not pose a problem.

7.4.3 Iteration count

Varying the iteration size of the queries simulates sequental requests to the data store,
handled by the server. Using these tests we attempted to determine how the queries and
the data stores would behave when handling an increased workload.

The multiplication factor in these tests was set to 5000, similar to the previous tests. Query
size for all queries is 100.

Analogous to the previous test, query 4 was not included in the benchmark.

Figure 7.3: MongoDB iteration count

All MongoDB query execution times rise linearly in function of the iteration count. The
first query gets slower a little bit faster than the other queries. This is due to the fact
that the query operates on the entire dataset, whereas the other queries only consider part
of the dataset. The effect of sorting through the entire dataset instead of a slice of it is
not measurable within a single iteration, but it becomes visible when the iteration size is
increased.

7.5 Conclusion 73

Figure 7.4: Neo4j iteration count

The Neo4j query execution times exhibit a behavious similar to the MongoDB query
execution times. The first query is a lot slower than the others, and this effect is only
amplified in the graph database. While query 2 also decreases in speed in function of
iteration count, it is not as dramatic as the first query.

7.5 Conclusion

We can conclude that MongoDB is a far superior solution for this specific use case.
However, the data models, queries and database settings were not optimized at all, leaving
the defaults in place.

8. Opportunities

Since the field of NoSQL is comprised of a lot of different products, varying in data model
and features, choosing the right data store for a use case is a difficult and complex choice.
The analysis and comparison of the NoSQL data stores in this research has revealed certain
pain points and opportunities for future research.

First, a common terminology needs to be established for NoSQL data stores, at least
for data stores within the same NoSQL category that adhere to the same data model.
Comparing data stores using different vocabulary for the same concepts is confusing and
impedes comparison and analysis of these products. Establishing a common terminology
in the NoSQL field will not only allow to make a more informed decision and doing this
more efficient, but also facilitates the switch between different NoSQL products.

Secondly, the difficulty and time penalties imposed by the proposed implementation of
the data models and reference queries in the three compared NoSQL data stores, proved
that there certainly is an opportunity for a common querying language between NoSQL
products, at least for data stores that have the same data model. For example, the difference
in interface between MongoDB’s JavaScript API and CouchDB’s REST API – while still
having the same data model – does not allow for an easy switch between the two data
stores, effectively requiring a complete rewrite and -engineering of the data storage layer
in the application. Standardizing the querying of NoSQL data stores – at least per category
– would likely help the adoption of NoSQL storage systems and lower developer learning
curve.

Some experimental solutions already exist to aggregate querying on certain data stores.
Hive provides an interface that uses SQL-like semantics to allow querying multiple data
stores, however this project is in practice limited to a small number of backing stores, most

76 Chapter 8. Opportunities

importantly HBase and Cassandra (Apache Software Foundation, 2017). Another pro-
posed solution is UnQL, a Unified Querying Language for NoSQL data stores (Buneman,
Fernandez, & Suciu, 2000). This collaboration between Couchbase and SQLite aimed to
implement a unified API covering all NoSQL data stores, from document-oriented to graph
data stores. However, seeing the massive scope of this project, it seems to have suffered
from a severe case of hybris and is no longer being developed (Weinberger, 2012).

There exists a similar discrepancy in data modeling for NoSQL data storage solutions.
Every product and more generally every NoSQL data store category imposes its own
implementation-specific data modeling layer. Since reimplementation and adjustment of
the data storage layer of the application is a far reaching and costly operation, designing an
application’s data model for an intermediate, abstract data model before approaching the
practical implementation would be a solution for this problem. Bugiotti et al. suggests a
novel abstract data model for NoSQL systems called NoAM (NoSQL Abstract Model),
which exploits certain commonalities between different NoSQL data models, allowing
developers to model information in an intermediate format that can be adapted to multiple
storage systems.

Additionally, RDF triple stores were not considered in the scope of this research. However,
similarly to key-value stores, usage of RDF semantics and the performance implications
of data stores using simple data models may provide an interesting entrypoint for future
research as an applied case study.

Finally, benchmarking NoSQL solutions is also a pain point encountered in this research.
There is no standardized way to provide reliable benchmarks of the different NoSQL
categories, in part due to the data models that differ conceptually. Any performance
comparisons have to be done either at an atomic entity level, or a global use-case level
as is presented in this thesis in order to obtain results that are reliable and not tainted
by any modeling-specific conditions. Furthermore, plenty of important factors were
not considered in this research. The performance benchmarks do not take into account
the horizontal scalability of NoSQL solutions, and use the default configuration for each
product. Finetuning the database management system parameters would allow performance
gains without any additional logical design or implementation. Finally, since this thesis
only represents a minor venture into NoSQL data modeling, the presented data models can
also be improved upon.

9. Conclusion

The intended aim of NoSQL data stores is to store and process massive amounts of data
in a distributed fashion. However, there exist multiple data models which store data in a
different way, which can be more or less performant to the applied use case. NoSQL data
stores are not “one size fits all”.

In this paper all proposed research questions were satisfactorily answered. First, a literature
review offered insight in the NoSQL products currently available on the open source
and commercial market. The different data models were discussed by advantages and
disadvantages.

Second, a conceptual and technical definition of the Open Webslides data model was
designed and analyzed. This proved to be a valuable resource to proceed with the design
and development of the physical data models and corresponding implementation in the
MongoDB and Neo4j graph data stores. The second research question was answered by
these presented data models, along with the five reference queries that were drawn up and
represent typical usage in the studied use case.

Finally, as most efficient data store MongoDB was selected as NoSQL candidate. Sub-
sequently, the recommendation for the Open Webslides development team is to use the
MongoDB as a polyglot persistent NoSQL database to store the derived data for the Recent
Activity feed.

In contrast to the expected results, using the Neo4j data store turned out to be magnitudes
slower in performing the reference queries on the developed data model. Instead, Mon-
goDB demonstrated that the document data model is far superior over the graph data model
in this specific use case. The fact that the data from which the Recent Activity feed is
derived is highly interlinked and easily structured as a graph, counteracts the expectations

78 Chapter 9. Conclusion

of a highly linked data structure to be efficient.

It was found that MongoDB has excellent support for Ruby and Ruby on Rails using
the Mongoid ORM framework. For all these reasons MongoDB is the clear winner as
performant NoSQL data store for the Open Webslides’ Recent Activity feed.

This research presents a case study of NoSQL data store selection for a specific use case.
The paper may offer additional opportunities for research as described in chapter 8, and
can be used as a guideline to pick the right data store for other, similar use cases.

Finally, the physical implementation of the data schema proposed in this thesis can be
implemented in the Open Webslides platform to integrate a highly scalable, performant
polyglot infrastructure to accommodate the Recent Activity feed.

A. Research proposal

The subject of this thesis is based upon a research proposal that was graded by the promotor
in advance. This proposal has been included as an attachment.

A.1 Introduction

The Open Webslides (2017b) project provides a user-friendly platform to collaborate on
webslides - slides made with modern web technologies such as HTML, CSS and JavaScript.
One of the core features this application provides is co-creation. The co-creation aspect
manifests itself in several forms within the application; annotations on slides and a change
suggesting system resembling GitHub’s pull request feature are the main mechanisms.
Because of the inherent social nature of co-creation, a basic notifications feed was also
implemented. This feed is tailored to the user, and reflects the most recent changes,
additions and comments relevant to the slide decks the user is interested in.

However, at the moment the functionality implemented in the system contains only the bare
necessities. The module will be expanded in the future, and doing so requires a structural
and conceptual rethinking of how the notifications are generated, stored and queried. The
size of the dataset is also expected to grow linearly with user activity, therefore scalability
is a requirement as well.

This paper has two research questions.

1. What frameworks and software packages currently exist in the industry to store
structured non-relational graph or document data?

2. How is the social graph provided by the Open Webslides’ notification feed structured

80 Chapter A. Research proposal

and how is this data consumed?

Answering these questions is paramount for the final section of the paper, which describes
a data storage mechanism that performs well given the functional requirements of the
project’s data flow.

A.2 Use case

This thesis is a study of NoSQL data storage techniques applied to the Open Webslides
(2017b) project. The online, interactive platform that the project provides includes a list of
notifications in reverse chronological order, tailored to the user. This feature is called the
social feed. It enumerates the most recent social activity on the platform. For example, if a
user updates a slide deck, the user’s friends would be able to find a change notification in
their respective social feeds.

From the perspective of the application code that generates the social feed, the user, slide
deck and notification should be considered separate entities. The notification itself has
relations to the other entities: the author (the subject), the slide deck (the object), along
with the predicate property that provides information on what operation was performed
(for example creating or updating a slide deck).

This data model is also characterized by the write-once read-many nature of the informa-
tion; once the notification has been generated, it does not need to be modified again. It
will also only be queried in a very specific way: the application server will always attempt
to retrieve the most recent notifications starting from the user entity. This principle is an
important aspect to take into consideration in the choice of data storage mechanism.

A.3 State-of-the-art

In current literature, studies such as Moniruzzaman and Hossain (2013), Nayak, Poriya,
and Poojary (2013b) and Dayne Hammes and Mitchell (2014) have already analyzed the
disparity between traditional relational database systems and NoSQL stores. However,
the conceptual and technical difference between these data storage models will not be
scrutinized any further, since this paper presents a data storage solution applied to the
social notification feed of the Open Webslides (2017b) project.

There are already many existing free and commercial products for the storage of NoSQL
data, such as Redis (Sanfilippo, 2009), CouchDB (Apache Software Foundation, 2005c),
MongoDB (Inc., 2009) and Neo4j (Technology, 2007). Finding the right database model
for this use case (section A.2) is one of the hurdles this paper intends to handle. Zhao
(2015) describes the development of a messaging system for astrophysical transient event
notifications. Part of this paper is a qualitative comparison between document-based
NoSQL storage solutions fit for this particular use case. We expect this paper to provide

A.4 Methodology 81

a solid base of reasoning in order to find a scalable and efficient solution for resolving
similar computational challenges.

The goal of this paper is to provide a performant, scalable and maintainable data storage
schema for the Open Webslides (2017b) platform, regarding the linked social graph that
powers the Social Feed functionality present in the platform.

A.4 Methodology

First, a range of industry-standard NoSQL database management systems such as Mon-
goDB (Inc., 2009), HBase (Apache Software Foundation, 2005d) and Neo4j (Technology,
2007) will be qualitatively analyzed. Three of the five types of NoSQL database types
(Nayak et al., 2013b) will be included in the study: column-oriented, document based and
graph databases. Criteria for comparison include how the database management system
concretely stores its data on disk, the query format and specific programming language
bindings. Another important aspect is the distributed nature of many NoSQL databases.
Using Brewer’s conjecture (Gilbert & Lynch, 2002b, 2) – often called the CAP theorem –
the existing types of data storage systems will be examined and summarized. There is also
a practical factor present in the research; this includes the license of the project, its active
maintainability and future prospects. Common types of NoSQL databases include key-
value store, column-oriented, document store and graph databases (Nayak et al., 2013b).
This paper will provide a short introduction to these types, before proceeding with the type
that fits our use case the most.

Second, the data model specific to the Open Webslides project will be examined. We
will start from the data model that is already implemented in the current iteration of the
platform. At the time of writing, the existing base implementation of the social notification
feed only contains two types of notifications. This paper will try to extrapolate this concept
into a more generalized, abstract system in which developers can easily plug additional
notification types. The physical properties of the data model will also be taken into account:
the data will be written to the data storage only once, but read many times. It is also highly
interlinked information, as a notification will always relate to one or more users as a
subject, and a target object as well – most likely a slide deck or collection of slide decks.
These links need to be maintained, and efficiently reconstructed when queried.

Finally, a sample dataset will be constructed using the aforementioned detailed analysis.
Empirical testing will be conducted against multiple database management systems, and
the results will be summarized and interpreted. Various information flows will be tested;
however, the most important process remains efficiently querying the stored data.

Using the comparative study of storage engines, data model analysis and the empirical re-
sults an implementation plan will be constructed. This plan will serve as a recommendation
for future development.

82 Chapter A. Research proposal

A.5 Expected results and conclusions

The NoSQL ecosystem, unlike relational databases, is headed towards specialization, so
different solutions are headed in different directions (Maroo, 2013). In this paper, we
expect to find one type of NoSQL database that is a better fit for the Open Webslides use
case, in clear contrast with the other types of storage engines. Due to the inherently highly
interlinked nature of the stored data, we suspect a graph-based database management
system to provide most advantages, and generally the most performant experience.

This expectation is amplified by the availability and good community support of Ruby
bindings to the most popular graph database management systems.

Since the platform being discussed only caters to a small to medium user base, we do not
expect the need to scale horizontally beyond one instance. However, the vertical scalability
is still a topic for discussion, and we expect to determine the computational order of
magnitude in order to efficiently query the given dataset during this study.

Finally, the implementation plan should describe a concrete roadmap, stretching over a
development period with a baseline expectation of one to three months. Roll-out of this
mechanism should also be included in this plan.

We also expect that this thesis will provide a good reference to a further stable, scalable
and extendable implementation of the social feed feature in the Open Webslides (2017b)
project as outlined in section A.2.

B. Source code

B.1 MongoDB

Event

frozen_string_literal: true

module MongoDB
class Event

include Mongoid::Document
include Mongoid::Timestamps::Created
extend Enumerize

##
Properties
#
field :predicate,

:type => String

enumerize :predicate,
:in => %i[created updated renamed commented_on annotated reacted_to],
:predicates => true

field :text,
:type => String

##
Relationships
#
embeds_one :subject,

:class_name => 'MongoDB::Subject'

84 Chapter B. Source code

embeds_one :item,
:class_name => 'MongoDB::Item',
:as => :event

##
Validations
#
validates :predicate,

:presence => true

validates :text,
:presence => true,
:if => :commented_on?

validates :subject,
:presence => true

validates :item,
:presence => true

##
Methods
#
def to_s

if predicate == :commented_on
"#{subject} #{predicate.to_s.humanize.downcase} #{item}: #{text}"

else
"#{subject} #{predicate.to_s.humanize.downcase} #{item}"

end
end

end
end

Comment

frozen_string_literal: true

module MongoDB
class Comment < Item

##
Properties
#
##
Relationships
#
embeds_one :subject,

:class_name => 'MongoDB::Subject'

embeds_one :topic,
:class_name => 'MongoDB::Topic'

##
Validations

B.1 MongoDB 85

#
validates :subject,

:presence => true

validates :topic,
:presence => true

##
Methods
#
def to_s

"#{subject}'s comment on #{topic}"
end

end
end

Item

frozen_string_literal: true

module MongoDB
class Item

include Mongoid::Document

##
Properties
#
field :_type

##
Relationships
#
embedded_in :event,

:polymorphic => true,
:class_name => 'MongoDB::Event'

##
Validations
#
##
Methods
#

end
end

Subject

frozen_string_literal: true

module MongoDB
class Subject

include Mongoid::Document

86 Chapter B. Source code

##
Properties
#
field :first_name,

:type => String

##
Relationships
#
embedded_in :event,

:class_name => 'MongoDB::Event'

##
Validations
#
validates :first_name,

:presence => true

##
Methods
#
def to_s

first_name
end

end
end

Topic

frozen_string_literal: true

module MongoDB
class Topic < Item

##
Properties
#
field :title,

:type => String

##
Relationships
#
##
Validations
#
validates :title,

:presence => true

##
Methods
#
def to_s

"'#{title}'"
end

B.1 MongoDB 87

end
end

88 Chapter B. Source code

B.2 CouchDB

Event

frozen_string_literal: true

module CouchDB
class Event < CouchRest::Model::Base

extend Enumerize

##
Properties
#
property :predicate,

String

enumerize :predicate,
:in => %i[created updated renamed commented_on annotated reacted_to]

property :text,
String

property :created_at,
Time

##
Relationships
#
property :subject,

CouchDB::Subject

property :item,
CouchDB::Item

##
Validations
#

validates :predicate,
:presence => true

validates :text,
:presence => true,
:if => -> { predicate == :commented_on }

validates :created_at,
:presence => true

validates :subject,
:presence => true

validates :item,
:presence => true

##

B.2 CouchDB 89

Methods
#
def to_s

if predicate == :commented_on
"#{subject} #{predicate.to_s.humanize.downcase} #{item}: #{text}"

else
"#{subject} #{predicate.to_s.humanize.downcase} #{item}"

end
end

##
Views
#
design do

Return events ordered by created_at
view :by_created_at,

:map => "function(doc) {
if (doc['#{model_type_key}'] == 'CouchDB::Event') {

emit(doc.created_at, doc);
}

}"

Return events with topic item, ordered randomly
view :random_with_topic,

:map => "function(doc) {
if (doc['#{model_type_key}'] == 'CouchDB::Event' && doc.item.item_type == 'topic') {

emit(Math.random(), doc);
}

}"

Return events with topic item
view :with_topic,

:map => "function(doc) {
if (doc['#{model_type_key}'] == 'CouchDB::Event' && doc.item.item_type == 'topic') {

emit(doc.created_at, doc);
}

}"
end

end
end

Item

frozen_string_literal: true

module CouchDB
class Item < CouchRest::Model::Base

include CouchRest::Model::Embeddable
extend Enumerize

##
Properties
#
property :item_type,

90 Chapter B. Source code

String

enumerize :item_type,
:in => %i[topic comment]

Subject properties
property :title,

Symbol

Comment properties
property :subject,

CouchDB::Subject

property :topic,
CouchDB::Item

##
Relationships
#
##
Validations
#
validates :item_type,

:presence => true

Subject properties
validates :title,

:presence => true,
:if => -> { item_type == :topic }

Comment properties
validates :subject,

:presence => true,
:if => -> { item_type == :comment }

validates :topic,
:presence => true,
:if => -> { item_type == :comment }

##
Methods
#
def to_s

case item_type
when 'topic'

"'#{title}'"
when 'comment'

"#{subject}'s comment on #{topic}"
else

'item'
end

end
end

end

B.2 CouchDB 91

Subject

frozen_string_literal: true

module CouchDB
class Subject < CouchRest::Model::Base

include CouchRest::Model::Embeddable

##
Properties
#
property :first_name,

String

##
Relationships
#
##
Validations
#
validates :first_name,

:presence => true

##
Methods
#
def to_s

first_name
end

end
end

92 Chapter B. Source code

B.3 Neo4j

Event

frozen_string_literal: true

module Neo4j
class Event

include Neo4j::ActiveNode
include Neo4j::Timestamps::Created

##
Properties
#
enum :predicate => %i[created updated renamed commented_on annotated reacted_to]

property :text,
:type => String

##
Relations
#
has_one :out,

:subject,
:type => :by,
:model_class => 'Neo4j::Subject'

has_one :out,
:item,
:type => :on,
:model_class => 'Neo4j::Item'

##
Validations
#
validates :predicate,

:presence => true

validates :text,
:presence => true,
:if => :commented_on?

validates :subject,
:presence => true

validates :item,
:presence => true

##
Methods
#
def to_s

if predicate == :commented_on
"#{subject} #{predicate.to_s.humanize.downcase} #{item}: #{text}"

else

B.3 Neo4j 93

"#{subject} #{predicate.to_s.humanize.downcase} #{item}"
end

end
end

end

Comment

frozen_string_literal: true

module Neo4j
class Comment < Item

##
Properties
#
##
Relations
#
has_one :out,

:subject,
:type => :by,
:model_class => 'Neo4j::Subject'

has_one :out,
:topic,
:type => :on,
:model_class => 'Neo4j::Topic'

##
Validations
#
validates :subject,

:presence => true

validates :topic,
:presence => true

##
Methods
#
def to_s

"#{subject}'s comment on #{topic}"
end

end
end

Item

frozen_string_literal: true

module Neo4j
class Item

include Neo4j::ActiveNode

94 Chapter B. Source code

##
Properties
#
##
Relationships
#
has_many :in,

:events,
:type => :on,
:model_class => 'Neo4j::Event'

##
Validations
#
##
Methods
#

end
end

Subject

frozen_string_literal: true

module Neo4j
class Subject

include Neo4j::ActiveNode

##
Properties
#
property :first_name,

:type => String

##
Relations
#
has_many :in,

:events,
:type => :by,
:model_class => 'Neo4j::Event'

##
Validations
#
validates :first_name,

:presence => true

##
Methods
#
def to_s

first_name

B.3 Neo4j 95

end
end

end

Topic

frozen_string_literal: true

module Neo4j
class Topic < Item

##
Properties
#
property :title,

:type => String

##
Relations
#
##
Validations
#
validates :title,

:presence => true

##
Methods
#
def to_s

"'#{title}'"
end

end
end

96 Chapter B. Source code

B.4 Empirical study

Seeds

frozen_string_literal: true

Variables
Test data multiplication factor
FACTOR = 5000

##
Global utility functions
#
def random(model)

model.skip(rand(model.count)).first
end

https://gist.github.com/O-I/3e0654509dd8057b539a
def weighted_rand(freq)

freq.max_by { |_, weight| rand**(1.0 / weight) }.first
end

##
Seeding
#

require_relative 'seeds/mongo_db'
require_relative 'seeds/neo4j'

MongoDB

frozen_string_literal: true

puts 'Seeding MongoDB database'

##
Clear database
#
[

MongoDB::Event,
].each(&:delete_all)

##
Seed database
#

Subjects (embedded)
puts 'Creating subjects'
subjects = (FACTOR / 5).times.map { FactoryBot.build :mongodb_subject }

Topics (embedded)
puts 'Creating topics'
topics = FACTOR.times.map { FactoryBot.build :mongodb_topic }

B.4 Empirical study 97

Events
puts 'Creating events'
topics.each do |topic|

subject = subjects.sample

MongoDB::Event.create! :subject => subject,
:item => topic,
:predicate => :created,
:created_at => Faker::Time.backward(365)

3.times do
MongoDB::Event.create! :subject => subject,

:item => topic,
:predicate => weighted_rand(:updated => 0.9, :renamed => 0.1),
:created_at => Faker::Time.backward(365)

end
end

(FACTOR * 5).times do
MongoDB::Event.create! :subject => subjects.sample,

:item => topics.sample,
:predicate => :annotated,
:created_at => Faker::Time.backward(365)

end

Comments
puts 'Creating comments'
comments = (FACTOR * 3).times.map do

FactoryBot.build :mongodb_comment,
:subject => subjects.sample,
:topic => topics.sample

end

items = (topics + comments)
(FACTOR * 5).times do

MongoDB::Event.create! :subject => subjects.sample,
:item => items.sample,
:predicate => :commented_on,
:text => Faker::Lorem.words(20).join(' ').capitalize,
:created_at => Faker::Time.backward(365)

end

(FACTOR / 2).times do
MongoDB::Event.create! :subject => subjects.sample,

:item => items.sample,
:predicate => :reacted_to,
:created_at => Faker::Time.backward(365)

end

Neo4j

frozen_string_literals: true

puts 'Seeding Neo4j database'

98 Chapter B. Source code

tx = Neo4j::ActiveBase.current_session.transaction

##
Clear database
#
[

Neo4j::Comment,
Neo4j::Item,
Neo4j::Subject,
Neo4j::Topic,

].each(&:delete_all)

##
Seed database
#

Subjects
puts 'Creating subjects'
(FACTOR / 5).times { FactoryBot.create :neo4j_subject }
subjects = Neo4j::Subject.all.to_a

Topics
puts 'Creating topics'
FACTOR.times { FactoryBot.create :neo4j_topic }
topics = Neo4j::Topic.all.to_a

Events
puts 'Creating events'
Neo4j::Topic.all.each do |topic|

subject = subjects.sample

Neo4j::Event.create! :subject => subject,
:item => topic,
:predicate => :created,
:created_at => Faker::Time.backward(365)

3.times do
Neo4j::Event.create! :subject => subject,

:item => topic,
:predicate => weighted_rand(:updated => 0.9, :renamed => 0.1),
:created_at => Faker::Time.backward(365)

end
end

(FACTOR * 5).times do
Neo4j::Event.create! :subject => subjects.sample,

:item => topics.sample,
:predicate => :annotated,
:created_at => Faker::Time.backward(365)

end

Comments
puts 'Creating comments'
(FACTOR * 3).times.map do

FactoryBot.create :neo4j_comment,
:subject => subjects.sample,

B.4 Empirical study 99

:topic => topics.sample
end
comments = Neo4j::Comment.all.to_a

items = (topics + comments)
(FACTOR * 5).times do

Neo4j::Event.create! :subject => subjects.sample,
:item => items.sample,
:predicate => :commented_on,
:text => Faker::Lorem.words(20).join(' ').capitalize,
:created_at => Faker::Time.backward(365)

end

(FACTOR / 2).times do
Neo4j::Event.create! :subject => subjects.sample,

:item => items.sample,
:predicate => :reacted_to,
:created_at => Faker::Time.backward(365)

end

tx.commit

100 Chapter B. Source code

Benchmark support

require 'benchmark'

Number of iterations to perform
ITERATIONS = [

1_000,
10_000,
100_000,

].freeze

Count of queried events
COUNT = [

100,
1_000,
10_000,

].freeze

##
Execute block benchmark according to parameters
#
def benchmark

ITERATIONS.each do |iteration|
COUNT.each do |count|

it "executes #{iteration} iterations with limit #{count}" do
b = Benchmark.measure do

iteration.times { yield count }
end

puts 'it = %8s, co = %4s, ti = %3ss' % [iteration, count, b.real.round(2)]
end

end
end

end

Bibliography

Abadi, D. J. [Daniel J.], Madden, S. R., & Hachem, N. (2008). Column-stores vs. Row-
stores: How Different Are They Really? In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data (pp. 967–980).

Abadi, D. J. [Daniel J], Boncz, P. A., & Harizopoulos, S. (2009). Column-oriented Database
Systems. Proceedings of the VLDB Endowment, 2(2), 1664–1665.

Abramova, V., Bernardino, J., & Furtado, P. (2014). Which NoSQL Database? A Perfor-
mance Overview. Open Journal of Databases, 1(2).

Anderson et al. (2011). CouchRest Model. Retrieved from https://github.com/couchrest/
couchrest_model

Apache Software Foundation. (2005a). Consistent Hashing. Retrieved from http://guide.
couchdb.org/draft/clustering.html#hashing

Apache Software Foundation. (2005b). CouchDB. Retrieved from https://couchdb.apache.
org/

Apache Software Foundation. (2005c). CouchDB. Retrieved from https://couchdb.apache.
org/

Apache Software Foundation. (2005d). Neo4j. Retrieved from https://hbase.apache.org/
Apache Software Foundation. (2017). Hive. Retrieved from https://hive.apache.org/
Atzeni, P., Bugiotti, F., Cabibbo, L., & Torlone, R. (2016). Data Modeling in the NoSQL

World. Computer Standards & Interfaces.
Barahmand, S. & Ghandeharizadeh. (2013). BG: A Benchmark to Evaluate Interactive

Social Networking Actions. University of Southern California.
Barahmand, S., Ghandeharizadeh, S., & Li, J. (2015). On Scalability of Two NoSQL Data

Stores for Processing Interactive Social Networking Actions. University of Southern
California.

https://github.com/couchrest/couchrest_model
https://github.com/couchrest/couchrest_model
http://guide.couchdb.org/draft/clustering.html#hashing
http://guide.couchdb.org/draft/clustering.html#hashing
https://couchdb.apache.org/
https://couchdb.apache.org/
https://couchdb.apache.org/
https://couchdb.apache.org/
https://hbase.apache.org/
https://hive.apache.org/

102 BIBLIOGRAPHY

Barrigas, H., Barrigas, D., Barata, M., Bernardino, J., & Furtado, P. (2015). Scalabil-
ity of Facebook Architecture. In New Contributions in Information Systems and
Technologies (pp. 763–772). Springer International Publishing.

Bernstein, P., Hadzilacos, V., & Goodman, N. (1987). Concurrency control and recovery in
database systems.

Brewer, E. (2000). Towards Robust Distributed Systems.
Bugiotti, F., Cabibbo, L., Atzeni, P., & Torlone, R. (2014). Database Design for NoSQL

Systems. In International Conference on Conceptual Modeling (pp. 223–231).
Buneman, P., Fernandez, M., & Suciu, D. (2000). UnQL: a query language and algebra for

semistructured data based on structural recursion. The VLDB Journal, 9(1), 76–110.
Cattell, R. (2010). Scalable SQL and NoSQL Data Stores. SIGMOD Rec. 39(4), 12–27.
Chelimsky et al. (2005). RSpec. Retrieved from http://rspec.info/
Co-created Courses through Open Source initiatives. (2018).
Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks. Commun.

ACM, 13(6), 377–387.
Codd, E. F. (1985). Is Your DBMS Really Relational? Computerworld, 19(41), 1–2.
Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., & Sears, R. (2010). Benchmark-

ing Cloud Serving Systems with YCSB. In Proceedings of the 1st ACM Symposium
on Cloud Computing (pp. 143–154). ACM.

Cottenier, S., Verstraete, A., Verborgh, R., Brysbaert, M., De Loof, E., & Janssens, C.
(2016). Aanvraag onderwijsinnovatieproject COCOON.

Couchbase, Inc. (2010). Couchbase. Retrieved from https://www.couchbase.com/
Couchbase, Inc. (2018). Couchbase and Apache CouchDB compared. Retrieved from

https://www.couchbase.com/couchbase-vs-couchdb/
Dayley, B. (2014). Node.js, MongoDB, and AngularJS web development. Addison-Wesley

Professional.
Dayne Hammes, H. M. & Mitchell, H. (2014). Comparison of NoSQL and SQL Databases

in the Cloud. Southern Association for Information Systems.
Dean, J. & Ghemawat, S. (2008). MapReduce: Simplified Data Processing on Large

Clusters. Commun. ACM.
Free Software Foundation. (1985). Free Software Foundation. Retrieved from https://www.

fsf.org/
Gartner, Inc. (2018a). 2018 Magic Quadrant for Operations Support Systems.
Gartner, Inc. (2018b). Magic Quadrant Methodology. Retrieved from https://www.gartner.

com/technology/research/methodologies/research_mq.jsp
Gilbert, S. & Lynch, N. (2002a). Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services. ACM SIGACT News, 33, 51–59.
Gilbert, S. & Lynch, N. (2002b). Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services. ACM SIGACT News, 33, 51–59.
Grolinger, K., Higashino, W. A., Tiwari, A., & Capretz, M. A. (2013). Data Management

in Cloud Environments: NoSQL and NewSQL Data Stores. Journal of Cloud Com-
puting: Advances, Systems and Applications, 2(1), 22. doi:10.1186/2192-113X-2-22

Härder, T. & Reuter, A. (1983). Principles of Transaction-oriented Database Recovery.
ACM Comput. Surv. 15(4), 287–317.

Hecht, R. & Jablonski, S. (2011). NoSQL Evaluation: A Use Case Oriented Survey. In
2011 International Conference on Cloud and Service Computing (pp. 336–341).

http://rspec.info/
https://www.couchbase.com/
https://www.couchbase.com/couchbase-vs-couchdb/
https://www.fsf.org/
https://www.fsf.org/
https://www.gartner.com/technology/research/methodologies/research_mq.jsp
https://www.gartner.com/technology/research/methodologies/research_mq.jsp
https://dx.doi.org/10.1186/2192-113X-2-22

BIBLIOGRAPHY 103

Inc., M. (2009). MongoDB. Retrieved from https://www.mongodb.com/
Kaur, K. & Rani, R. (2013). Modeling and Querying Data in NoSQL Databases. In 2013

IEEE International Conference on Big Data (pp. 1–7).
Kolomičenko, V., Svoboda, M., & Mlýnková, I. H. (2013). Experimental Comparison

of Graph Databases. In Proceedings of International Conference on Information
Integration and Web-based Applications & Services (pp. 115–124). ACM.

Leavitt, N. (2010). Will NoSQL Databases Live Up to Their Promise? IEEE.
Malda, R. & Bates, J. (1997). Slashdot. Retrieved from https://www.slashdot.org/
Maroo, T. (2013). Handling with Dynamic, Large Data Sets - NoSQL a Buzzword or

Savior? JECRC Foundation.
Microsoft Corporation. (2002). LinkedIn. Retrieved from https://www.linkedin.com/
Miller, J. J. (2013). Graph Database Applications and Concepts with Neo4j. In Proceedings

of the Southern Association for Information Systems Conference, Atlanta, GA, USA.
Mohamed, M. A. & Ismail, M. O. (2014). Relational vs. NoSQL Databases: A Survey.

International Journal of Computer and Information Technology, 3(3).
Mohan, C. (2013). History Repeats Itself: Sensible and NonsenSQL Aspects of the NoSQL

Hoopla. In Proceedings of the 16th International Conference on Extending Database
Technology.

MongoDB Inc. (2009a). MongoDB. Retrieved from https://www.mongodb.com/
MongoDB Inc. (2009b). MongoDB Sharding. Retrieved from https://docs.mongodb.com/

manual/sharding/
MongoDB Inc. (2009c). Mongoid. Retrieved from https://docs.mongodb.com/mongoid/

master/
Moniruzzaman, A. B. M. & Hossain, S. A. (2013). NoSQL Database: New Era of Databases

for Big data Analytics - Classification, Characteristics and Comparison. International
Journal of Database Theory and Application, 6(4).

Nayak, A., Poriya, A., & Poojary, D. (2013a). Type of NOSQL Databases and its Com-
parison with Relational Databases. International Journal of Applied Information
Systems, 5(4).

Nayak, A., Poriya, A., & Poojary, D. (2013b, March). Type of NoSQL Databases and its
Comparison with Relational Databases. International Journal of Applied Information
Systems (IJAIS), 5(4).

Neo Technology. (2007a). Neo4j. Retrieved from https://boltprotocol.org/
Neo Technology. (2007b). Neo4j. Retrieved from https://neo4j.com/
Open Webslides. (2017a, March). Open Webslides. Retrieved from http://openwebslides.

github.io/
Open Webslides. (2017b). Open Webslides. Retrieved from http://openwebslides.github.io/
OrientDB Ltd. (2010). OrientDB. Retrieved from https://orientdb.com/
Paivio, A. (1969). Mental Imagery in Associative Learning and Memory. Psychological

Review, 76, 241–263.
Rohloff, K., Dean, M., Emmons, I., Ryder, D., & Sumner, J. (2007). An evaluation of

triple-store technologies for large data stores. In OTM Confederated International
Conferences "On the Move to Meaningful Internet Systems".

RubyGems. (2003). RubyGems. Retrieved from https://rubygems.org/
Sadalage, P. J. & Fowler, M. (2012). NoSQL Distilled: A Brief Guide to the Emerging

World of Polyglot Persistence. Pearson Education.

https://www.mongodb.com/
https://www.slashdot.org/
https://www.linkedin.com/
https://www.mongodb.com/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/mongoid/master/
https://docs.mongodb.com/mongoid/master/
https://boltprotocol.org/
https://neo4j.com/
http://openwebslides.github.io/
http://openwebslides.github.io/
http://openwebslides.github.io/
https://orientdb.com/
https://rubygems.org/

104 BIBLIOGRAPHY

Sanfilippo, S. (2009). Redis. Retrieved from https://redis.io/
Schmid, S., Galicz, E., & Reinhardt, W. (2015). Performance Investigation of Selected

SQL and NoSQL Databases. In AGILE 2015.
Singh, G. (1996). Leader Election in the Presence of Link Failures. IEEE Transactions on

Parallel and Distributed Systems, 7(3), 231–236.
Solid IT. (2018). DB-Engine Ranking. Retrieved from https://db-engines.com/en/ranking
Technology, N. (2007). Neo4j. Retrieved from https://neo4j.com
The NoSQL Archive. (2018, April). The NoSQL Archive. Retrieved from http://nosql-

database.org/
Underwood, B. (2010). Neo4j.rb. Retrieved from http://neo4jrb.io/
Upwork Global Inc. (2015). Upwork. Retrieved from https://www.upwork.com/
Weinberger, C. (2012). Is UNQL Dead? Retrieved from https://www.arangodb.com/2012/

04/is_unql_dead/
Weinberger, C. (2016). Index Free Adjacency or Hybrid Indexes for Graph Databases.

Retrieved from https://www.arangodb.com/2016/04/index-free-adjacency-hybrid-
indexes-graph-databases/

West, D. B. et al. (2001). Introduction to Graph Theory. Prentice hall Upper Saddle River.
Zhao, Y. (2015). Event Based Transient Notification Architecture and NoSQL Solution for

Astronomical Data Management (Doctoral dissertation, Massey University).
Zhou, L., He, K., Sheng, X., & Wang, B. (2013). A Survey of Data Management System

for Cloud Computing: Models and Searching Methods. Research Journal of Applied
Sciences, Engineering and Technology, 6(2), 244–248.

https://redis.io/
https://db-engines.com/en/ranking
https://neo4j.com
http://nosql-database.org/
http://nosql-database.org/
http://neo4jrb.io/
https://www.upwork.com/
https://www.arangodb.com/2012/04/is_unql_dead/
https://www.arangodb.com/2012/04/is_unql_dead/
https://www.arangodb.com/2016/04/index-free-adjacency-hybrid-indexes-graph-databases/
https://www.arangodb.com/2016/04/index-free-adjacency-hybrid-indexes-graph-databases/

	1 Introduction
	1.1 Context
	1.2 Problem statement
	1.3 Research questions
	1.4 Research goal and objectives
	1.5 Expected results and conclusions

	2 State of the Art
	3 Overview
	3.1 Relational data stores
	3.2 NoSQL data stores
	3.2.1 Key-value
	3.2.2 Document
	3.2.3 Column-oriented
	3.2.4 Graph
	3.2.5 Object-oriented
	3.2.6 Multi-model
	3.2.7 NewSQL
	3.2.8 Triple store

	4 Methodology
	5 Data stores
	5.1 Selected data stores
	5.2 Comparative study
	5.3 Conclusion

	6 Data model
	6.1 Domain description
	6.2 Physical data model
	6.2.1 Language bindings
	6.2.2 Document-oriented data model
	6.2.3 Graph-oriented data model

	6.3 Reference queries
	6.3.1 Querying
	6.3.2 Insertion

	6.4 Conclusion

	7 Empirical study
	7.1 Previous work
	7.2 Experimental setup
	7.3 Procedure
	7.4 Results
	7.4.1 Dataset size
	7.4.2 Query size
	7.4.3 Iteration count

	7.5 Conclusion

	8 Opportunities
	9 Conclusion
	A Research proposal
	A.1 Introduction
	A.2 Use case
	A.3 State-of-the-art
	A.4 Methodology
	A.5 Expected results and conclusions

	B Source code
	B.1 MongoDB
	B.2 CouchDB
	B.3 Neo4j
	B.4 Empirical study

	Bibliography

