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Summary

How is the structure of a neural network related to its function?

Up to the present day this simple question remains a largely unanswered
question. Slow but steady scientific progress has been made in studying
a related, but more limited problem: how do specific dynamical patterns
emerge from the complex network structure, and how does this dynami-
cal activity shape the network in its turn?

Until recently, it was technically impossible to record the activity of
a substantial number of neurons at once. This explains why the former
question is still situated at the very frontiers of neuroscience, physics and
computer science. In this master thesis project, we build on the recent
spectacular advancements in neuronal recording technology, induced
pluripotent stem cell techniques and (big) neuronal data analysis to shed
light on the relation between activity and connectivity at a very high
level of detail.

The outcome of this thesis is a set of numerical procedures that, start-
ing from a recording of a neural network, result in precise information
about the nature of the dynamical activity patterns, coupled to detailed
insights in the underlying network structure. As a proof-of-concept,
we apply these numerical procedures to recordings of an in vitro net-
work of stem cell derived human cortical neurons. Our findings on the
spontaneously arising neuronal dynamics are in agreement with pre-
vious studies: a self-organized increase in connectivity leads to global
synchronization patterns, while sparsely connected neurons exhibit a
typical slow rate spontaneous activity. We add to these findings methods
to derive detailed information about the underlying connectivity, such
as transmission delays and the direction of information flow. We hope
our work will induce at least a small acceleration towards insights in the
relation between form an function of neural networks.






Samenvatting

Hoe is de structuur van een neuraal netwerk gerelateerd aan zijn functie?

Tot op de dag van vandaag blijft deze simpele vraag een grotendeels on-
beantwoorde vraag. Langzame maar gestage wetenschappelijke vooruit-
gang wordt geboekt bij het bestuderen van een gerelateerd, maar beperk-
ter probleem: hoe komen specifieke dynamische patronen tevoorschijn
uit de complexe netwerkstructuur en hoe vormt deze dynamische ac-
tiviteit het netwerk op zijn beurt?

Tot voor kort was het technisch onmogelijk om de activiteit van een
aanzienlijk aantal neuronen tegelijk te registreren. Dit verklaart waarom
het nog steeds zo moeilijk is om de eerste vraag te beantwoorden en
waarom deze vraag de grenzen van de neurowetenschap, de fysica en de
computerwetenschappen aftast. In deze masterthesis bouwen we voort
op de recente spectaculaire doorbraken in de neuronale meettechnolo-
gie, geAfnduceerde pluripotente stamceltchnieken en (grote) neuronale
gegevensanalyse om een beter inzicht te krijgen op de relatie tussen ac-
tiviteit en connectiviteit, en dit op een zeer fijn niveau van detail.

De uitkomst van dit werk is een verzameling numerieke procedures
die, uitgaande van een opname van een neuraal netwerk, resulteren in
nauwkeurige informatie over de aard van de dynamische activiteitspa-
tronen, gekoppeld aan gedetailleerde inzichten in de onderliggende
netwerkstructuur. Als een proof-of-concept passen we deze numerieke
procedures toe op opnamen van een in vitro netwerk van menselijke cor-
ticale neuronen, afgeleid uit stamcellen. Onze bevindingen over de spon-
taan ontstane neuronale dynamiek zijn in overeenstemming met eerdere
studies: een zelfgeorganiseerde toename van de connectiviteit leidt tot
globale synchronisatiepatronen, terwijl schaars geconnecteerde neuronen
een spontane activiteit vertonen met een lagere karakteristieke tijdss-
chaal. We voegen aan deze vindingen methoden toe om gedetailleerde
informatie te verkrijgen over de onderliggende connectiviteit, zoals trans-
missievertragingen en de richting van de informatiestroom. Op die
manier hopen we dat ons werk een kleine versnelling zal veroorzaken
in de verkenning van de relatie tussen vorm en functie in het menselijk
brein.
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Introduction

At every instant in time, an endless collection of cognitive processes

take place in our human brains, or perhaps in any brain; all of them

are interesting at least, and absolutely fascinating at best. That we use
these very cognitive processes to examine cognition itself only adds to
the fascination. A persistent part of all human thinking is focused on
understanding the working of our own minds, and by extension the
working of our own brains. But, however imaginative we might be, the
practical exploration of how the mind emerges from the human brain has
always been constrained both in ethical and in technical ways * 2: even
if we would be willing to damage the brain of a living person along the
way, we would by no means be able make a detailed measurement of the
activity all 86 billion or so neurons 3 at once.

It's a major achievement of human thinking, then, that we realized
we can study large and complex systems by connecting our insights
across different scales. Trying to measure the activity of all neurons in
the brain at once might be as useless as tracking every single molecule
in a gas to obtain the temperature. Problems of this sort can be tackled
by approaching the problem at different levels, and by devising plausible
mechanisms that relate the properties at the smallest, local scales to the
behavior of the system at the largest, global scale. We thus study the
brain at all levels, from the dynamics of single neurons to how brain
regions are communicating during different states of consciousness;
and we hope to connect more and more of these levels in an effort to
understand the emergence of the utterly fascinating high-level cognitive
processes. This thesis, then, is situated on one of the smallest levels:
its focus is the neuronal activity of a small network of human cortical
neurons cultured in a dish.

At this level, a lot of fundamental questions remain to be answered.
The general question is of course how network structure affects neuronal
dynamics—and also the other way round: how neuronal dynamics shapes
the network structure. The neurons in a network spike, i.e., each neuron
sends out short electrical signals to the other neurons; it is these spikes

* How advances in neural recording
affect data analysis. Stevenson and
Kording,2011.

* Emerging ethical issues in neuroscience.
Farah,2002.

3 Equal numbers of neuronal and non-
neuronal cells make the human brain an
isometrically scaled-up primate brain.
Azevedo et al.,2009.



12 CONNECTING NEURONS.

and the overall spike firing patterns that form the basis of communica-
tion, computation and eventually cognition in the brain. (Of course, there
is far more to this picture than just spikes, ranging from specific pro-
teins to which languages you learned; but these are outside the scope of
both this thesis and the level in the brain structure hierarchy it is focused
on). These firing patterns is what we will mean by neuronal dynamics.
The general question thus amounts to asking how the firing patterns are
related to how the neurons are connected.

Within this general framework we will focus on the more specific
problem of neuronal variability. It has long been known that the response
of single neurons as well as the response of neuronal networks to the
exact same electrical stimulus is usually different from trial to trial 4 5 ©.
The spikes sometimes appear to happen in an almost completely random
fashion. In terms of neural encoding—the idea that the outside world,
entering in the form of external stimuli, should somehow be represented
in the activity of the neurons in order for it to be processed—this seems
highly counterintuitive: if a structured stimulus results in random activ-
ity, how is the neural system then encoding this stimulus, and how could
it possibly compute something about the outside world? The common
answer is that in this case most of the information seems to be captured
not in the exact spike times, but in the rates at which the neurons fire
those spikes. In other words, if someone would like to reconstruct the
external stimulus from the neuronal dynamics, he or she would suc-
ceed better when using the spike rate following the stimulus, than when
considering the exact timing of the spikes 7. However, not all spiking
happens completely randomly. Depending on the type, location and
function of the neurons, different studies have shown that the timing of
the spikes sometimes contains information as well 8:9. The information
about the stimulus is thus contained in a so-called time code, a rate code,
or in a combination of both *© **.

In those cases where only the spike rate carries the information, the
spiking processes can be described as Poisson processes: the spikes are
produced randomly and independently, but with a fixed average firing
rate (often denoted with the symbol A). Poisson models (and slightly
more complicated extensions thereof) are thus ubiquitous in spike train
analysis. Often, one wishes to model the variability in this spike rate
as well—after all, if the information is contained in the spike rate, this
spike rate should be able to change depending on the stimulus received
or the neural computation taking place ***3. This can be done by using
a doubly stochastic process, i.e., a Poisson or related process where the

Figure 1.1: Neuronal variability:

the exact same constant stimulus is
applied to a single in vitro neuron in
four different trials; the resulting spike
trains are shown on top of each other.
source: gerstner2oi4neuronal.

4 Reading a neural code. Bialek

et al., 1991.

5 A relationship between behavioral choice
and the visual responses of neurons in
macaque MT. Britten et al., 1996.

¢ Temporal precision of spike trains in
extrastriate cortex of the behaving macaque
monkey. Bair and Koch,1996.

7 Spikes: exploring the neural code. Rieke
and Warland,1999.

8 Deciphering the spike train of a sensory
neuron: counts and temporal patterns

in the rat whisker pathway. Arabzadeh
et al.,2006.

9 Bursting neurons signal input slope.
Kepecs et al.,2002.

10 Spike timing and spike rate make
complementary contributions to perceptual
decisions in rat S1 and S2 cortex. Zuo

et al.,2015.

** Neural coding: rate and time codes work
together. Seth,2015.

> Stimulus dependence of neuronal
correlation in primary visual cortex of the
macaque. Kohn and Smith,2005.

3 Stimulus onset quenches neural vari-
ability: a widespread cortical phenomenon.
Churchland et al.,2010.



spike rate is in itself a random variable *4-75.

In short, the neuronal variability is often discarded as noise and re-
placed by statistical properties such as the spike rate, but the question
remains how it actually arises: are neuronal systems just intrinsically
noisy, or are we missing a part of the picture? In other words: is all the
variability noise, or are we missing a part of the signal? At this point it is
instructive to consider the variability resulting from three different phe-
nomena ©. The first one is an intrinsic source of noise that arises even in
single, unconnected neurons. This noise is related to fluctuations in the
permeability of the cell membrane '7; since changes in this permeability
lie at the basis of spike train generation, the spikes can potentially be
generated at random, and under certain conditions even in the absence of
an external stimulus. This is then called spontaneous activity.

The two other sources of variability arise in networks of connected

neurons. One of them concerns the transmission of signals across synapses:

experiments with double electrode recordings revealed that only 10 to 30
% of spikes are reliably transferred across chemical synapses from one
neuron to the next '® 19. The reliability of signal transmission is thus a
stochastic element that definitely influences the dynamics of connected
neurons.

The last source of variability we consider leads us back to the original,
general question of how network structure relates to neuronal dynamics.
We will focus this discussion on cortical neurons. Numerous experi-
ments have indicated that spiking neurons in cortex of animals exhibit
a strong degree of temporal irregularity, and that their inter spike inter-
val distributions are usually in strong agreement with those generated
by processes with Poisson like statistics 2° 2* 22. Since active cortex are
processing information, this cannot be pure, intrinsic noise alone. The
first argument for the variability in the output of each neuron could be
that cortical neurons receive synaptic input with large variability: this
variability might be due to fluctuations in the sensory stimuli the corti-
cal neurons receive, or it might result from the stochastic action of their
synapses. But since cortical cells in vivo have thousands of synaptic con-
tacts (and since the structure of a neural cell leads up to a integration
or summation of its inputs over a typical time window), this variabil-
ity should more or less average out, yielding an output with very small
residual variability. Unless of course the fluctuating synaptic inputs are
substantially correlated. Experiments show that spike trains of pairs of
neurons in cortex can be correlated within a relatively narrow time scale
(order 10oms) 23 24, but only a small fraction of the total activity is tightly
correlated in this way. Another explanation is to be found in the network
structure.

Neurons can be excitatory or inhibitory: a signal or spike stemming
from an excitatory neuron will increase the probability of spiking in a
connected neuron, a signal stemming from an inhibitory neuron will

INTRODUCTION 13

4 Point processes. Cox and Isham,1980.

's Variance as a signature of neural
computations during decision making.
Churchland et al.,2011.

16 Neuronal dynamics: From single neu-
rons to networks and models of cognition.
Gerstner et al.,2014.

'7 Detecting and estimating signals in
noisy cable structures, I: Neuronal noise
sources. Manwani and Koch,1999.

8 The probability of transmitter release at
a mammalian central synapse. Hessler
et al., 1993.

19 Redistribution of synaptic efficacy
between neocortical pyramidal neurons.
Markram and Tsodyks,1996.

20 Power spectrum analysis of bursting
cells in area MT in the behaving monkey.
Bair et al., 1994.

2t An intracellular analysis of the visual
responses of neurones in cat visual cortex..
Douglas et al.,1991.

22 The highly irregular firing of cortical
cells is inconsistent with temporal inte-
gration of random EPSPs. Softky and
Koch,1993.

23 Dynamics of neuronal interactions in
monkey cortex in relation to behavioural
events. Vaadia et al., 1995.

* Oscillatory responses in cat visual cortex
exhibit inter-columnar synchronization
which reflects global stimulus properties.
Gray et al.,1989.



14 CONNECTING NEURONS.

decrease that probability. It has been shown that theoretical models
of randomly, uniformly connected networks where these two types of
connections are balanced can result in spiking activity with Poisson like

statistics 25 26 27 28

, even modeling the presence of intrinsic noise or other
stochastic elements. This because the behavior is chaotic, in the sense
that slight changes in the initial conditions lead to drastically different
firing activities. The activity thus merely looks random, but is actually
produced in a deterministic system. Anatomical studies have further-
more shown that the connections in cortex are not uniformly distributed
but instead can cluster into local groups of highly connected neurons;
theoretical models incorporating these types of network structure give
rise to doubly stochastic dynamics 29 3°. Further structural considera-
tions, such as distance-dependent connectivity, improved the extent to
which this balanced network theory can explain some aspects of neural
variability 3*.

Despite this recent progress, we are still a long way from fully un-
derstanding the link between network structure and activity, and by
extension, between network structure and function. And even though
theoretical network models are shedding light on various aspects of this
interesting problem, unambiguous experimental verification of these
models is hard to obtain. In fact, to verify the exact relation between
network structure and activity, one needs to know the exact network
structure and its exact activity. In fact, one needs a directed graph of infor-
mation flow 3, where the nodes represent single neurons and the edges
represent the directed transmission of neural signals. Such a graph can
only be constructed if one can measure the activity of multiple connected
neurons, and if one can subsequently attribute the resulting spiking
patters to the neurons that produced them. Given the very small scales
involved, both in space ( typical neural structures have sizes of the order
of a couple of um), time (a typical spikes lasts around 1ms) as activity
(spikes correspond to voltages in the order of ten to hundreds of mV),
as well as the intricate three dimensional structure neural networks can
form, this has been proven technically very challenging. Furthermore,
inserting electrodes in the brain of living animals, and certainly humans,
damages the underlying cells and network structure.

In this master thesis project, we constructed a directed graph of the in-
formation flow between active human cortical neurons growing on top of
a high-resolution multi-electrode array. The project brings together—for
the first time—some recent spectacular advancements in science: induced
pluripotent stem cells (iPSC) that can be driven to become human corti-
cal neurons and their supporting glia cells 33; the development of multi
electrode arrays for the extracellular recordings of neuronal ensembles
with an unprecedented resolution 34; the development of algorithms to,
from these extracellular recordings, attribute the activity to the correct
neurons in a fully automated way 35, and finally, the needed computa-
tional resources and procedures to handle large amounts of data 3°. The
aspects specific to this project are shown in Fig. 1.2.

*3 Chaos in neuronal networks with
balanced excitatory and inhibitory activity.
Van Vreeswijk and Sompolinsky,1996.

26 Chaotic balanced state in a model

of cortical circuits. Vreeswijk and
Sompolinsky,1998.

27 Dynamics of sparsely connected net-
works of excitatory and inhibitory spiking
neurons. Brunel,2000.

3 Two types of asynchronous activity

in networks of excitatory and inhibitory
spiking neurons. Ostojic,2014.

29 Slow dynamics and high variability

in balanced cortical networks with clus-
tered connections. Litwin-Kumar and
Doiron,2012.

3° Two layers of neural variability.
Churchland and Abbott,2012.

3 The spatial structure of correlated neu-
ronal variability. Rosenbaum et al.,2017.

32 Cliques of neurons bound into cavities
provide a missing link between structure
and function. Reimann et al.,2017.

3 The human brain in a dish: the promise
of iPSC-derived neurons. Dolmetsch and
Geschwind,2011.

3+ High-resolution CMOS MEA platform
to study neurons at subcellular, cellular,
and network levels. Miiller et al.,2015.

35 A spike sorting toolbox for up to thou-
sands of electrodes validated with ground
truth recordings in vitro and in vivo. Yger
et al.,2018.

30 Big data: A review. Sagiroglu and
Sinanc,2013.



The use of stem cell derived cortical neurons in an in vitro setup has
its advantages, but it also has obvious drawbacks: how the network
formed by these neurons relates to the structures that develop in vivo
is not exactly known 37 38, A substantial advantage of the in vitro ap-
proach, however, is the fact we are able to exactly control the external
input the network receives, by either stimulating it at certain sites or by
not stimulating it at all. In this thesis a network that was not stimulated
at all is studied; it furthermore lacked the inhibitory connections to bring
it a balanced network state. Even such a network forms spontaneous
connections and shows spontaneous activity and variability, even when
there is no meaningful computational task at hand. Eventually, such
studies could hopefully tell us more about what should be considered
meaningful signal and what is merely noise, and their results can act as a
baseline to compare with networks that do receive stimulation.

The main body of work for this thesis then consisted in constructing
a pipeline of numerical procedures that take a recording of the neuronal
activity, and output a directed graph of information flow, together with
detailed information about the nature of these connections in terms of in
transmission delays. This pipeline consists of the following steps:

1. identifying the spiking patterns belonging to separate neurons,
2. calculating the auto- and cross-correlations between pairs of neurons,

3. calculating the so-called network autoregressive kernels, which reflect
the flow of information between the different neurons and capture the
information about their transmission delays,

4. and finally the construction and visualization of a directed graph of
information flow.

Software:
Automated
Spike Sorting

Wetware:
Human Neurons

Hardware:
HD MEA

We furthermore propose a straightforward and easy to implement
classification scheme that relates the activity patterns of single neurons

INTRODUCTION 15

37 Modeling human cortical development in
vitro using induced pluripotent stem cells.
Mariani et al.,2012.

38 Using iPSC-derived neurons to uncover
cellular phenotypes associated with
Timothy syndrome. Pasca et al.,2011.

Figure 1.2: The recent scientific ad-
vancements that lie at the basis of this
project.



16 CONNECTING NEURONS.

to their connectivity. Along with these numerical procedures we present
some analytical results, mainly from the field of stochastic process analy-
sis, that helped us gain insight in our results. Finally, we will apply these
procedures to the data recorded from our in vitro networks of cortical
neurons. This setup, although a highly simplified version of real in vivo
cortical networks, proved to be an excellent testbed to tune and verify
our proposed numerical procedures.

Reading Guide

Directly following this first introductory chapter, we continue with a
chapter in which we discuss the basic properties of neurons in general,
and cultured cortical neurons in particular.

In chapter 3, we elaborate more on the physical models underlying de-
terministic and spontaneous action potential generation. We devote a
large section to a detailed analysis of stochastic spike spike train pro-
cesses, as these insights will be of great value to interpret our final re-
sults.

In chapter 4, we discuss our proposed method of detailed connectivity
analysis. We again relate this to a stochastic process, in order to further
enhance our understanding of the methods we use.

In chapter 5, we comment on the practical aspects of the project: we
present some details about the experimental setup, along with descrip-
tions of the needed numerical computations. We also introduce our
straightforward method to classify spiking patterns.

Finally, in chapter 6, we report in a proof-of-concept way on our ob-
tained results, and we elaborate on how they relate to previous studies
and more realistic setups.



2

Introduction to Cultured Cortical Neural Networks

2.1 Single Neurons

2.1.1  Neuron Morphology

There exist a great many type of neurons, and they could be classified

in a great many ways: based, e.g., on their shape, function, location,
activity or neurotransmittor production *. Their actual shape depends on
their function and the environment they develop in; it is for example the
case that stem cell derived neurons kept in vitro will in general develop
different from in vivo neurons of the same type 2 3. But it is of course
useful to discuss the common and most significant elements of all these
different neuron morphologies. A schematic representation of these
different structures is given in Fig. 2.1.

Cell body

Telodendria

Synaptic terminals

Endoplasmic
reticulum

Mitochondrion Y™ Dendrite

\
/
/ % Dendritic branches

The structures that we will most often use to interpret our results are
the following:

* Fundamental neuroscience. Squire
et al.,2012.

* Modeling human cortical development in
vitro using induced pluripotent stem cells.
Mariani et al.,2012.

3 Using iPSC-derived neurons to uncover
cellular phenotypes associated with
Timothy syndrome. Pasca et al.,2011.

Figure 2.1: Schematic representation of
a multipolar neuron, and how its axon
is leading up to the next neuron.
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* The dendrites, often forming a structure that is metaphorically called a
‘dendritic tree’. These structures receive the extracellular signals and
transmit them to

* the soma, or neuron cell body, where all these extracellular signals are
integrated and passed on to

o the axon initiation segment (AIS), where the action potentials (see later)
originate. This structure is followed by

e the axon; which transfers the action potentials from the AIS to the
synaptic terminals, and finally this structure branches to end up in

* the synapses. Here the signals are transferred from the axon terminals
to the dendrites of the next neuron.

2.1.2  Spikes and Action Potentials

Although, as we discussed in the introduction, it is not always the neu-
ron spikes in themselves that carry the information, they do form the
building blocks of the processes we eventually want to study. Often they
are taken to be binary events: either the neuron emits a spike (1), or it is
silent (0). This abstraction removes both the neuron morphology as well
as the underlying mechanism of action potential generation from the
picture; but, as will become clear later, both these concepts—and their
combination in terms of action potentials traveling in and between dif-
ferent neurons—will turn out to be important for our analysis. Here we
will first discuss the action potential in itself; in the next section, we will
explain how the action potentials are generated and transported within a
single neuron.

In essence, action potentials are the result of a rapid de- and repolar-
ization of the neuron cell membrane: the potential difference across the
membrane abruptly ‘spikes’ from its resting value, and then it rapidly
falls down again. After this voltage spike the membrane voltage is for a
short period in time even lower than its baseline value before the spike;
this is called the hyperpolarization phase or refractory period. The typ-
ical shape of an action potential is schematically shown in Fig. 2.2. We
will discuss the general model underlying action potential generation,
called the Hodgkin-Huxley model 4, in depth in section 3.1. This model
uses a set of coupled differential equations to described how the inter-
play between concentrations of sodium and potassium ions on the one
hand, and the cell membrane on the other hand, leads up to the genera-
tion of an action potential. Here we will start with a general introduction
to the process, an introduction we will subsequently connect to the neu-
ron morphology.

The rapid increase in the voltage is possible due to a feedback mecha-
nism between the permeability of the membrane and the potential differ-

4 A quantitative description of membrane
current and its application to conduction
and excitation in nerve. Hodgkin and
Huxley,1952.
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ence across the membrane. At rest, the membrane has a negative resting
potential difference denoted V;. A slight increase in this voltage, due to
the arrival of a stimulus or sometimes due to stochastic effects, opens
up certain so-called ion channels in the membrane, which allow ions to
diffuse from the outside of the cell to the inside. This depolarizes the
membrane further. The feedback consists of the ion-channels being volt-
age dependent, i.e., more channels open as the voltage increases, yielding
an ever faster voltage increase or depolarization. In the same process,
however, different types of ions and of ion channel states are involved:
the channels that were initially opening up become inactivated, and other
voltage-dependent channels that can transport ions from inside the cell
to the outside start to open, such that the membrane potential difference
rapidly decreases again. It finally reaches a value that is below the origi-
nal membrane voltage V;. After that, the systems needs a certain period
of time to restore itself to its original state.

The feedback mechanism only really "takes off” once a certain voltage
threshold is crossed. If an incoming stimulus is not strong enough to
depolarize the membrane above the threshold, no action potential will
be initiated (see Fig. 2.2). The needed strength of the stimulus to lead up
to an action potential initiation depends naturally on the voltage across
the membrane: during the hyperpolarized phase or refractory period,
the stimulus needs to be even stronger for the threshold to be crossed.
This is called the relative refractory period; a period during which the
same stimulus is less likely to induce a action potential, compared to
when it would arrive when the cell membrane patch was in its resting
state. During the first part of the refractory period, corresponding to the
time period in which the neuron is generating an action potential, it is
not physically possible for the membrane to generate an second action
potential. This period is called the absolute refractory period.

Figure 2.2: Schematic representation of
a typical action potential.
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2.1.3 Initiation and Transmission of Action Potentials

Action potentials make up the communication units between different
neurons, and they can be seen as the result of a local computation:

¢ the input consists of action potentials from other neurons the neuron
at hand receives through its synapses. The chemical synapses are
located at the end of its dendrites;

¢ the computation is the local integration of the signals through the
dendritic tree and the soma. If the integrated signal reaches the axon
initial segment (AIS) and is above the action potential initiation thresh-
old, a new axon potential will be initiated at this site.

¢ This initiated action potential is the output of the system and can be
transferred to the next neuron by traveling down the axon and its
branches to the axon terminals and synapses.

The action potential initiated at the AIS can travel down the axon be-
cause it is regenerated: the currents resulting from the change in voltage
spread across the axon and depolarize adjacent patches of the membrane,
often (but not always) inducing a new action potential and thus continu-
ing the signal propagation 5 ®. Once the traveling action potential arrives
at the end of the axon, it is potentially transmitted in a chemical synapse:
a junction between the axon of the original neuron and the dendrites of
the next neuron (often called the postsynaptic neuron), where, induced
by the action potential, neurotransmitter molecules are released to bind
on the receptors of the postsynaptic cell. This process is illustrated in
Fig. 2.3.

Neurotransmitter
Neurotransmitter

Synaptic s n»/_ 5 transporter Axon
vesicle ~ /[ \f terminal
Voltage- \
gated Ca** 1 (]
channel - e . Synaptic
Postsynaptic (I) AR R —Receptor cleft
density }Dendrite

The binding of the neurotransmitters to the receptors of the postsy-
naptic cell again induces a change in the voltage of the postsynaptic cell
membrane due to activation of certain voltage dependent ion channels.
However, the binding might induce two opposite changes: if it increases
the voltage (and thus depolarizes the cell membrane), the synapse is
called excitatory; if the binding affects the voltage in the opposite way
(polarizing the cell membrane further), the synapse is called inhibitory.
Either way these changes propagate passively to nearby regions of the
postsynaptic dendritic membrane. Unlike in the axon this process is not
regenerative: typically the signals decay exponentially with the distance

5 Evidence for electrical transmission in
nerve. Hodgkin,1937.

¢ Axon physiology. Debanne et al.,2011.

Figure 2.3: Schematic representation of
a chemical synapse.
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from the synapse. But an excitatory signal might eventually reach the
axon hillock, and if this voltage stimulus is still sufficiently large, a new
action potential might be initiated at this site. It is far more likely, how-
ever, that different excitatory signals from presynaptic neurons have to
arrive together to ignite an action potential at the axon hillock. As we
mentioned earlier, this can be seen as a kind of local computation; and
the complexity of this computation is enhanced through the existence
of inhibitory signals that can modulate the input-output relation even
further.

Connexol
connexin monomel

Plasma membranes

Intercellular spagé

2-4 nm space

Hydrophilic channel
@@

Chemical synapses are not the only way in which neurons could trans-
fer their action potentials. A faster connection is achieved when the neu-
rons have both their membranes connected in an electrical synapse: so-
called connexons then allow the ionic current of the presynaptic action
potentials to be directly transfered to the postsynaptic cell. A schematic
representation of an electrical synapse is shown in Fig. 2.4. This process
is much faster than the transferal in a chemical synapse, because there
is no need for the (relatively) slow diffusion of neurotransmitters. It can
only be formed, however, in cells that are close to each other: usually, the
cells approach within 4-5 nm of each other, whereas 20 to 4onm separates
the cells connected by a chemical synapse 7.

2.1.4 Owerview of Typical Timescales and Dimensions

The following overview of typical timescales and dimensions that will
turn out to be important for interpreting our results are compiled from
Kandel et al. [2000] 8 and Debanne et al. [2011] 9.

Spatial Dimensions. Typically

¢ The soma has a diameter of 50 ym or more.
¢ The axon has a diameter between 0.2 ym and 20 um.

¢ For a chemical synapse, the distance between cell pre- and postsy-
naptic cell membranes is between 20 nm and 40 nm. These cell mem-

Figure 2.4: Electrical synapse.

7 Principles of neural science. Kandel
et al.,2000.

8 Principles of neural science. Kandel
et al.,2000.
9 Axon physiology. Debanne et al.,2011.
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branes are the membranes of the synaptic terminals of the axon and
the dendrites (or soma) of the next cell.

¢ For an electrical synapse, the distance between cell pre- and postsy-
naptic cell membranes is between 4 nm and 5 nm. These cell mem-
branes are the membranes of the somas.

Transmission Speeds and Delays. Typically

¢ the electrical synaptic delay is virtually absent. The transmission is
usually bidirectional.

¢ the chemical synaptic delay is at least 0.3ms, and usually 1-5ms or
longer. The transmission is unidirectional.

¢ axonal conduction velocity depends on the axon diameter and on axon
myelination ( a structural property that greatly enhances conductance
speed). For unmyelinated axons, the conduction velocity is typically
0.4 to 2.0 m/s.

Amplitudes and Signal to Noise. Typically

* action potential amplitudes depend on the location in the neuron and
the received external stimulus. Extra-cellular voltage recordings are
typically between 5 and 500 mV.

e the action potential amplitude is highest in the axon initial segment
(AIS), lower in the soma and in the rest of the axon, and very small in
the dendritic structures.

* The signal to noise ratio naturally depends on the measuring device;
in our setup the largest amplitudes are up to 180 0,5, While the ax-

onal signals (not including the AIS) are usually 1-2 0,,js.. Dendritic
signals are unlikely to be detected or are buried in the noise.

Spike Rate Properties. Typically

¢ the absolute refractory period equals the duration of the action poten-
tial (1ms)

e relative refractory period takes around 4-5ms

¢ the spike rate of spontaneous activity is a couple of spikes per sec-
ond.
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2.2 Connected Cultured Cortical Neurons

As we mentioned before, measuring the activity of cortical neural net-
works in vivo is a technically challenging task, and the complicated and
dense structure of those networks makes it even more daunting (or even
sheer impossible) to analyze their detailed activity patterns and the re-
lated fundamental network properties. Studying such networks in vitro
alleviates this task greatly—but has the drawback of creating a perhaps
unrealistic situation. However, it has been shown that cortical networks
cultured in vitro are comparable to immature, developing neocortex net-
works in vivo '° ', Studying developing networks in vitro can thus at
least shed light on the interplay between early network formation and
activity.

There are in general three different types of in vitro networks one can
obtain: animal brain slices will have an intricate, fully developed network
structure that is more difficult to analyze, but is of course very close to
the in vivo structure; dissociated cultures are obtained from (chemically)
dissociating a premature or mature animal brain region of interest and
extracting its neural cells ?; and finally, as in our case, one can use a
stem cell culture, where neural cells and their supporting glia cells are
derived from induced pluripotent stem cells. We will denote the latter
two categories as cultured neurons.

e = =

h I
=
=

After a few days in culture, neurons start to connect to each other with
functionally active synapses, forming a random network and display-
ing spontaneous activity. Over time the networks shift from electrical to
chemical transmission, while at the same time the axonal connectivity in-
creases. At this stage the (dissociated) networks typically show repetitive
burst discharges '3 14 15 16 j.e,, they show spike trains where a couple of
spikes occur in very rapid succession, followed by relatively longer peri-
ods of silence’. These burst can be synchronized over large fractions of
the culture. An example of these kinds of patterns developing over time
in a network of cultured neurons is shown in Fig. 2.5.
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10 Spontaneous neuronal activity in
developing neocortical networks: from
single cells to large-scale interactions.
Luhmann et al.,2016.

* Spontaneous neuronal discharge patterns
in developing organotypic mega-co-
cultures of neonatal rat cerebral cortex.
Baker et al.,2006.

*> Dissociated cortical networks show
spontaneously correlated activity patterns
during in vitro development. Chiap-
palone et al.,2006.

Figure 2.5: Raster plots showing the
recorded spike trains of a developing
dissociated cortical network at dif-
ferent days in vitro (DIV). Time runs
horizontally, while the vertical axis
corresponds to the different recorded
neurons. (A) 7 DIV; (B) 14 DIV; (C) 21
DIV; (D) 28 DIV; (E) 35 DIV. Adapted
from Chiapalone et al., 2016.

'3 The mechanisms of generation and
propagation of synchronized bursting in
developing networks of cortical neurons.
Maeda et al.,1995.

4 Dissociated cortical networks show
spontaneously correlated activity patterns
during in vitro development. Chiap-
palone et al.,2006.

'5 Network dynamics and synchronous
activity in cultured cortical neurons.
Chiappalone et al.,2007.

16 Spontaneous neuronal activity in
developing neocortical networks: from
sinole cells to larce-scale interactions.
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The precise structure of these spatio-temporal patterns depends on a
number of factors 7, including;:

e the properties of the neurons, i.e., their structure, membrane proper-
ties, and their timescales of recovery and refraction,

¢ the flow of activity through the network, determined by the effective
connectivity,

e the timescales of signal propagation, i.e., the axonal and synaptic
transmission speeds and the timescale of dendritic integration,

¢ the balance between inhibitory and excitatory connections.

Several models and simulations based on the above factors have pro-
vided insight in how this synchrony could arise *® 19 20 21 22 23 We want
to emphasize two important facts: first, it is worth noting that the spatio-
temporal patterns depend on the ratio between inhibition and excitation
in the network; but, unlike in the case of chaotic behavior in a balanced
network, the presence of inhibitory neurons is not a necessary condi-
tion for synchronization to emerge. In our developing network of purely
excitatory neurons, there should thus be some kind of synchronization
present, presumably depending on the connectivity pattern. Further-
more, it has been shown experimentally >4 that very young cultures
exhibit a random topology, which over time evolves to a so-called small-
world topology (i.e. the neurons start to form local clusters) *>. This kind
of network balances integration of network areas with segregation of spe-
cialized processing units, which increases the network efficiency 6. The
fact that this topology can arise without external stimulation points to
the presence of intrinsic biological mechanisms.

7 Dynamics and plasticity in developing
neuronal networks in vitro. van Pelt
et al.,2005.

8 Oscillations, complex spatiotemporal
behavior, and information transport in
networks of excitatory and inhibitory
neurons. Destexhe,1994.

*9 The mechanisms of generation and
propagation of synchronized bursting in
developing networks of cortical neurons.
Maeda et al.,1995.

2 Inhibition can disrupt hypersynchrony
in model neuronal networks.. Deyo and
Lytton,1997.

2t Emergent oscillations in a realistic
network: the role of inhibition and the
effect of the spatiotemporal distribution of
the input. Pauluis et al.,1999.

2 Dynamics of sparsely connected net-
works of excitatory and inhibitory spiking
neurons. Brunel,2000.

3 Changing excitation and inhibition

in simulated neural networks: effects

on induced bursting behavior. Kudela
et al.,2003.

 Emergence of a small-world functional
network in cultured neurons. Downes
et al.,2012.

25 Emergence of a small-world functional
network in cultured neurons. Downes
et al.,2012.

26 Complex networks: Structure and
dynamics. Boccaletti et al.,2006.
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Neural Dynamics

3.1 Deterministic Action Potential Generation

In this section, we will discuss action potential generation and their
underlying models. Action potentials are the results of currents flowing
through the ion channels of the neuronal cell membrane, and Hodgkin
and Huxley ' were the first to derive differential equations for these
dynamics through a extensive series of experiments on the giant axon of
the squid.

3.1.1  The Hodgkin-Huxley model

The cell membrane of a neuron separates the interior of the cell from the
extracellular space; a difference in ion concentration in those two regions
naturally results in an electric potential across the membrane. The cell
membrane itself consists of a lipid bilayer that acts as an electrical iso-
lator. However, there exist specific proteins throughout the layers that
act as ion channels: some of them are capable of actively pumping ions
across the membrane (and are therefore adequately called ion pumps),
other merely form channels through which the ions can migrate. More
than 200 different ion channels are known to date 2, but the original
Hodgkin-Huxley model is based on the dynamics of three specific ion
channels: a potassium (K) channel, a sodium (Na) channel, and a general
channel through which all sorts of ions can ‘leak’. The general dynamics
of action potential generation does not depend on the specificity of the
ions, however; as we will soon see, the Hodgkin-Huxley model reveals
that it is the role they take and the interplay between them that matters.

* A quantitative description of membrane
current and its application to conduction
and excitation in nerve. Hodgkin and
Huxley,1952.

2 Channelpedia: an integrative and inter-
active database for ion channels. Ranjan
et al.,2011.
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Passive State

Let us first consider the state of the system when no action potential

is being generated. This passive state is a steady state governed by two
different "forces": an electrical force and a thermodynamic force. The
thermodynamic force arises due to the difference in concentrations in-
and outside the cell for each type of particle; the electrical force of course
arises due to the difference in the concentration of charges.

A typical mammalian cell in the passive state has a concentration of
around 18 millimoles Na™ inside the cell, compared to 150 millimoles
outside. In contrast, the concentration of K™ is much higher inside the
cell: typically around 135 millimoles inside, compared to 3 millimoles

outside (for more details, see 3). Let us focus on the K™ molecules for 3 Larry Squire, Darwin Berg, Floyd E
Bloom, Sascha Du Lac, Anirvan Ghosh,

. . . and Nicholas C Spitzer. Fundamental
to move outwards. This movement causes the intracellular potential to neuroscience. Academic Press, 2012

a moment: due to their concentration gradient, the K™ molecules tend

become more negative, offsetting the outward flow, and at some mem-
brane potential difference Ex the system reaches a dynamic equilibrium
(if only potassium ions were present and conducted). The value of Eg
can be calculated from thermodynamic principles (specifically, using the
Nernst equation 4), and for the above typical mammalian cell and tem- 4 Zur kinetik der in losung befindlichen
perature T = 37°C, the value is Ex = —102mV. Similarly, the value for korper. Nernst,1888.
the equilibrium potential of the sodium ions would be Ey, = +56mV.
Due to the presence of multiple ion concentrations—all types of ka-
tions, and all types of anions—none of these dymical equilibria is actu-
ally reached, and the system is instead in a steady state with a potential
difference across the membrane that lies in between the equilibrium
values. This potential difference is called the resting potential, and is
denoted V;. The exact value can be calculated through the Goldman-
Hodgkin-Katz equation > and lies, for a typical mammalian cell, usu- 5 Potential, impedance, and rectification in
ally between —60mV and —75mV. If one knows the Nernst equilibrium membranes. Goldman, 1943.
potential for each of the ions separately as well as the conductance of
the membrane due to the ion channels, V; can be calculated straight-
forwardly from noting that, in a steady state, the total current density

should be zero:

itor = 0 (3.1)
= ing +ix+igL (3-2)
= GNa(Vr — Eng) + Gk (Vr — Ex) + GL(Vy — EL) (3-3)

where i denotes a current density, and G is the conductance per unit area

for each type of ion. Therefore:

B GnoEng + GkEx + GLE]
GNne +Gr+ Gt

Vi (3-4)

The difference (V; — Ex) thus acts as a driving force that keeps the
system of ions of type X from reaching its dynamical equilibrium.
Hodgkin and Huxley also derived that the conductances Gy, and Gg
are actually voltage dependent, which will be discussed in the next para-
graph.



Gating Models

Before we elaborate on the deterministic equations that describe the
gating mechanisms in the Hodgkin and Huxley model, we would like to
emphasize that the ion channels actually open and close stochastically.
The Hodgkin and Huxley model thus corresponds to an average taken
over a sufficiently large amount of experiments. This is illustrated in Fig.

3.1.
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The deterministic gating model, then, is based on the assumption that
populations of channels of the same type undergo changes collectively;
this means that we can describe the population as transitioning between
the states of all open and all closed, depending on the voltage across the
membrane. This transition is governed by voltage dependent rate coef-
ficients a (V) (closed — open) and B(V) (open — closed). Thus, if we
denote the fraction of an ion channel population that is open with n, we

can write:
W = BV + (V)1 ) G5)
@Tn(V)fl—IZ = —nt (V) (3.6)
where we defined 1
W)= v+ ) 67
with dimension of time, and
_aV)
=)= )+ B 69

a dimensionless quantity. For time-dependent voltages, i.e.,, V = V(t),
the solution to Eq. 3.6 is in general given by:

+o00
n(t) :n(to)h(t)+/_oo Bt — Yoo ()t (3.9)
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Figure 3.1: Stochastic channel acti-
vation. The current flowing to the
membrane after application of a volt-
age step (top row) shows step-like
changes and is different in each trial
(subsequent traces). The bottom trace
is the average over many traces, which
corresponds to the description in

the Hodgkin-Huxley model. Source:
Gerstner et al, 2014.
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(3.10)

with
_i=ty
h(t) =e mOO(t —ty).
The solution to Eq. 3.6 for a given constant voltage (thus 7, constant and

e constant) can be derived easily from solving the differential equation,
(3.11)

).

or one could use Eq. 3.9:
_tto _
n(t) =n(tg)e” ™ +ne(l—e

Thus, if the voltage across the membrane remains fixed, the fraction of
open channels n eventually reaches the equilibrium value 7., and it does
so with time constant 7,,. Hodgkin and Huxley used 3 such variables in

their description of the gating mechanisms:

 m describes the fraction of open Na™ channels
1 describes the fraction of inactivated (see below) Na™t channels

e n describes the fraction of open K™ channels

The equilibrium values and time constants as a function of the mem-
brane for these gating variables are shown in Fig. 3.2. These values were

experimentally determined by Hodgkin and Huxley. They also found,

from fitting different functions to their data, that the conductances of the
(3.12)

1 3
= m°h,
RNa &Na
(3.13)

membrane were related to these variables in the following way:

and
1 e
Rx 8kn-,
where gy, and gk are constants denoting the maximum conductance per
unit area of the membrane.
I I |
1.0} ]
0.8 F h‘ .fé{’ ! i
.. IIII ;
—, . II
L =] | , .
So06r o
g [
Y04 F .
. ' T
0.2 . / =
/
— | = | 1
0 al)

0.0
~100 150
u [mV]

Figure 3.2: The curves he, Mo and oo
in function of the membrane potential

difference u.
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Action Potentials

Finally, to understand how an action potential can be generated, it is
instructive to translate the above descriptions into an electrical circuit.
Such a circuit is shown in Fig. 3.4. The membrane itself can be modeled
by a capacitor with capacitance C; each channel type is represented by

a resistor: the sodium channel resistance Ry, the potassium channel
resistance Rk and the resistance of the general 'leak” channel R;; and,
knowing that the sodium and potassium channels are actually voltage
dependent, they are pictured with a diagonal arrow. The corresponding
Nernst potential differences Ey,, Ex and E; make up the batteries in the
circuit. The potential difference across the membrane (thus the capacitor)
is denoted u.

Figure 3.4: Visualization of the resting
x I l potential difference across the cell
membrane V, due to different con-

| inside Kt ! : ¢ : :

| ! centrations of ions in- and outside the
I S ‘ i C R /E;z /qu u cell; and this biophysical description

| + + + o, T Na K represented as an electrical circuit.

! outside Na | EL '|' TENa TE K Source: Gerstner et. al., 2014.

We can now derive what happens when an external current L.y arrives
in the circuit. This current will be split in a current I that charges the
capacitor, and in different components I which pass through the ion
channels. Thus:

k
ngt(t) = Ic(t) + ZIk(i’) (3.14)

(u— Eng) + L(u —Ex) + i(u —Ep). (3.15)

=Ic(t) + Re R,

RNu

Since C = ¢q/u, with q the charge on the capacitor, we can write Ic =
C‘fi—”t‘. Rearranging Eq. 3.15 and using the expressions for the conduc-
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tances (Eq. 3.12 and Eq. 3.13), we arrive at:

du
CE = —gNam3h(u —Eng) — gKn4(u —Eg) —gr(u — EL) + Lyt.  (3.16)

Together with the differential equations for the gating variables:

dm

Tmﬁ = —M + Mo, (317)

Tnd—lz = —1+ Neo, (3.18)
dh

Ty = —h+ heo, (3.19)
dt

this equation (Eq. 3.16) makes up the Hodgkin Huxley model.

3.2 Spontaneous Activity

In a deterministic model of action potential generation such as the
Hodgkin-Huxley model, the ion channels in the considered patch of

cell membrane are treated as a population of channels. It is assumed that
the population properties, namely the fraction of channels that are in a
certain state, continuously and deterministically evolve depending on the
membrane potential difference. In reality, however, thermal noise drives
conductance fluctuations in ion channels. This leads to the channels
opening and closing randomly, and instead of a continuous and deter-
ministic process, the process of ion permeation through the membrane

is thus foremost a discrete and stochastic process. However, one might
naturally expect that the deterministic model is recovered in the limit of
large channel populations.

We will summarize two different analytical approaches to these
stochastic dynamics, but they essentially lead to the same conclusion:
channel fluctuations can lead to spontaneous action potentials, i.e., an
action potential can be generated without an external stimulus. The first ana-
lytical approach ® models the ion channels through Markov chains: each
channel is assumed to randomly fluctuate between a discrete number
of possible states. The transition probabilities between these states are
(assumed to be) only dependent on the current state and the current
membrane voltage. The exact transition matrix to be used can be de-
rived from experimental data (for the ubiquitously used giant axon of
the squid, one could, e.g., use the results of 7). Once the transition matrix
is determined, the Markov chain can be simulated in order to compare
the results with the outcome of the deterministic Hodgkin-Huxley model
(using experimentally determined parameters derived from a similar
setup, e.g., measurements on the giant axon of the squid). As one would
intuitively expect, the models only converge for large numbers of chan-
nels. For small numbers of ion channels, or, equivalently, for a smaller
area of membrane patch at the same ion channel density, the models di-
verge significantly: the mean firing rate is non-zero even in the absence

® Limitations of the Hodgkin-Huxley
formalism: effects of single channel kinetics
on transmembrane voltage dynamics.
Strassberg and DeFelice,1993.

7 Isabel Llano, Christina K Webb,
and Francisco Bezanilla. Potassium
conductance of the squid giant axon.
single-channel studies. The Journal of
general physiology, 92(2):179-196, 1988



of an external stimulus in the stochastic case, and it is higher with re-
spect to the deterministic model in the presence of an external stimulus,
as can be seen from Fig. 3.5.

Channel model response to

Hodgkin-Huxley model response to
linject=100 pAfuma

ing Frequency (Ha)

Mean Firi

Channel model responseto
linject=0 pAjumz.

Hodgkin-Huxley model response to linject =0 pAJum2.

The second analytical approach [Chow and White, 1996] reformulates
the problem by drawing an analogy between action potential generation
and a particle escaping a potential well by jumping over a barrier. The
analysis starts from a separation of the time scales: the sodium current
has a faster time scale than the membrane potential difference, which in
turn is faster that the time scales involving the potassium current (for
details, see section 3.1). This allows to approximate the system by a bi-
stable Langevin equation where the location of the particle corresponds
to the membrane potential, and the inverse number of sodium channels
plays the role of temperature. The channel noise, in this description
playing the role of thermal noise, can occasionally "kick" the membrane
potential over the barrier. The mean firing rate, which we will denote A,
can then be calculated using Kramers’ classic result for barrier escape
[Kramers, 1940]. It turns out that A is an exponential function of the
absolute number of sodium channels Ny,:

A~ e NNa, (3.20)

This corresponds approximately to the analysis of Strassberg and DeFe-
lice (for a quick comparison, one can look at Fig. 3.5 where a log-linear
scale is used; a detailed comparison is given in 8 ). The inter spike in-
terval (ISI) distribution, i.e., the probability distribution of the times be-
tween subsequent action potentials, can also be derived from this model
9.

pisi(t) = A(Nig)e HNne)® (3.21)

This indicates that the action potentials are fired randomly and indepen-
dently: the ISI distribution corresponds to a Poisson process with mean
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Figure 3.5: The mean firing rate is

non-zero even in the absence of an
external stimulus. Source: adapted
from Strassberg and DeFelice

8 Spontaneous action potentials due
to channel fluctuations. Chow and
White,1996.

9 Fokker-planck equation. Risken,1996.
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firing rate A(Ny,). A more realistic model would incorporate the refrac-
tory period, which would result in a so-called a renewal process. Poisson

processes and renewal processes as models for neuronal activity will be

discussed in depth in section 3.3.

3.3 Spike Train Analysis

3.3.1  Spike Train Analysis of Single Neurons

Autocorrelation Functions and the Power Spectral Density. The au-
tocorrelation function of a continuous stationary random process x(t)
observed between t = —T and t = +T is defined by

1T
Rux(f) = Tlgx;oﬁ/_Tx(t—l—T)x(t)dt. (3.22)
Let

x(t) if —T<t<T

xr(t) =
0 otherwise.

We can write down the Fourier transform of this function:

r(w) = /j:o xr(t)e Wtdt = [Z x(H)e~wtdt, (3-23)

and define the power spectral density S(w) of x(t) as

Syx(w) = lim i5CVT(aJ)5c°§(a)) (3-24)

The power spectral density has a useful physical interpretation: if x7(t)
is a current flowing through a unit resistor during the interval (—T,T),
then S(w) is the average power dissipated with frequencies between w
and w + dw. It is thus a useful characterization of a random process in
the frequency domain. The power spectral density is furthermore related
to the autocorrelation of the function through the Wienerd ASKhinchin

theorem: | e

Rix(T) = E/ﬂw Syx(w)etdw (3.25)
and oo

Syx(w) = Ryx(T)e tdr, (3-26)

stating that the power spectral density and the autocorrelation function
are related through (inverse) Fourier transforms. Given that these func-
tions contain the same information, we can use the function that best
suits our needs to analyze a certain process, and obtain its equivalent in
the time or frequency domain when desired.

Correlation and Covariance. The tacit assumption when discussing
correlation functions is (usually) that the values of these functions have
been standardized such that they lie between —1 and 1. The fact that the
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term correlation function is used where actually the covariance function
is given might be confusing. We will try to clarify this where needed.

Poisson Processes with Finite Event Duration. We start with the case
where a single neuron produces spikes which occur independently and
in a random manner, such that the underlying stochastic process can be
characterized as a Poisson process with a constant spiking rate A. Let us
recall some basic properties of such a Poisson process. The probability
that exactly k spikes occur in a time interval (o,T) can be written as:

k
pu(t) = I (.27

The time intervals A between subsequent events, in the field of neuro-
science conventionally called the inter spike intervals (ISI), are distributed
according to:

pisi(T) = Ae 7 (3-28)

A neuron typically produces a series of spikes with a particular shape,
a shape which we will call the spike waveform or simply the waveform,
and which we will denote with f;,(#). The waveform in itself reflects the
underlying process of de- and hyperpolarization as well as the method of
measurement. But, once the spike times are known, one could construct
a signal with any possible waveform—this could be done, as we will do,
to smoothen the point process to be used in a numerical calculation. We
can describe such a spike train x(t) as f,(t) convolved with a series of
Dirac delta distributions centered at the N spike times ¢;:

N N
x(t) = ;fw(t —t) = ;fw(t) *O(t—t;), (3-29)

and, to gain insight in the correlation functions calculated from the data,
we can examine how different temporal patterns of the Dirac delta train
will influence the theoretical correlation functions.

We will first derive an expression for the average of the signal x(t).
To this end we can start by considering exactly k spikes, occurring in an
interval T. Since the spikes arrived independently, the probability of a
spike occurring in a subinterval dt follows a uniform distribution with
probability dt/T. The time average of the signal over this interval T is
then given by:

E[xi(t)] = %/()wa(t —2z)dz = ;/_:ofw(t —2z)dz (3.30)

where the last equation holds due to the compact support of f;,(¢). Thus,
if we use the well-known result E[k] = Y 2° ( kp(k) = AT, the (ensemble)
average of the signal x(t) is given by:

E[x(t)] = kzoo E[xi(H)]pr(t) = A - folt—z)dz = A - foo(u)du.
=0 -0 —o0
(3-31)
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We can now compute the power spectral density, and subsequently the
autocorrelation function. Starting from the Fourier transform of Eq. 3.29:

Fr(w) = folw) Y e ™ h, (3:32)
i=1
we can write:
N N
T1(@)T5(w) = ful@) folw) Y e (3:33)
i=1j=1
= fulw) fi(w) (N + Y Y e @ti=t)y, (3-34)
i#]

It can be shown that for large N and | w [> %, and in case the t; and

t; are distributed independently, the double summation represents a
number with amplitude of order v/N. On letting N and T tend to infinity
we can thus retain only the first term:

5V(w) = Jim T (@)TH (@) = JAful@)fal@): (39)

This equation is only valid for | w |> 0, however, which can be seen from
the divergence of Eq. 3.34 when w = 0 and N going to infinity. This is
why we added the \0 in superscript. The DC term can be obtained from
the Fourier transform of the average of xr(t), and the complete power
spectral density is given by:

Sex(w) = A folw) i (@) + 275(w) ELx(1)]2. (3.36)

Finally, on taking the inverse Fourier transform, we get (see Eq. 3.25 and
Eq. 3.31):

“+o00 “+o00
R() =4 [ ful®fult=Dat+ (A [ folbdt?. G37)
We thus see that, if we let E[x(f)] = 0, the autocorrelation function of

a spike train with random and independent spikes simply equals the
waveform autocorrelation function, up to multiplication with a scalar
factor A, the average spike rate that characterizes the underlying Poisson
process. It’s easy to see that, if the signal x(t) would have been a spike
train without convolved waveforms:

N
x(t) =) 6t —t;) (3-38)
i=1
the autocorrelation function '° is given by, for large N, © this is the covariance function,
the actual correlation amounts to
Ryx (T) — )\5(7) + }\2. (3.39) (after subtracting the mean term

and normalizing by the variance A)
Ryx(T) = 6(7).

Renewal Processes. If we want to incorporate refractory periods and
transmission delays, we have to generalize our expression for the (auto)correlation
function to include cases where the occurrence of a spike is dependent

on the time passed since a previous spike. In this section we will derive
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the expression for the autocorrelation, which can be split in the following
way:

Rux() = RE™ (1) + RV (7) + Ryx (0) (3.40)
— REM™ (1) + RI¥™® (—7) + Ryx (0) (3.41)

where Réztwe(r) = 0 for T < 0. It will turn out useful to disentangle this
expression even further:

R (T) = R (1) + R (=) + RE(0)0(T) + (x)2, (342)

where zm denotes zero mean, indicating the relation with the zero mean
signal x*"(t) = x(t) — (x). Furthermore, to derive the expression for
Ri’;:’f ”mre( T), we will make use of functions that are naturally only de-
fined for input values T > 0; it is, for example, not sensible to talk about
the inter spike interval (ISI) distribution for intervals that are negative or
zero. These functions are extended across the whole domain by making
use of a Heaviside step function.

Ri;”’f utm( T) is naturally related to the conditional probability that a
spike occurs at a time t + T when there was a spike at time t. We will
denote this conditional probability distribution C(7)—with the implicit
understanding that this function is extended across the whole domain
by using a Heaviside step function. It is important to note that C(7) is a
conditional probability for any spike to occur at time t + 7, not only the
first one. C(7) is thus given by the sum of the probabilities for:

e the first inter spike interval (ISI) to equal T

¢ the first inter spike interval to equal s < 7, and the second inter spike
interval to equal T — s

e the first spike interval to equal s, the second inter spike interval to
equal ¢/, and the third inter spike interval to equal T —s — s’

We can thus write:
T
C(7) = ps1(7) +/o pisi(s)pisi(s — T)ds

T T
+ /0 /0 pisi(s)pisi(s)pisi(t —s —s")dsds’ + ... (3-43)

We can extend the inter spike interval distribution p;s; across the whole
domain by using a Heaviside step function, which allows us to extend
the integral boundaries from —oo to +-co. We can now see that Eq. 3.43 is
in fact a recurrent equation:

C(t) = psi(7) + /Ooo pisi(s)C(s — T)ds, (3-44)

and this recurrent equation can be solved by Fourier transforming to the
frequency domain, where the convolution becomes a multiplication:

f(w _ Pisi(w)

1= psi(w)’ (5-43)
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If we know the Fourier transform of the inter spike interval probabil-
ity distribution pjs;(w), we can thus obtain the conditional probability
C(w). Subsequently we can relate this to the autocorrelation function:
the conditional probability should be multiplied by the average rate at

which spikes are produced, i.e., the function Ri’}:’f utwe(r) is given by:

R (7) = AC(7). (3.46)

Then, given the symmetry of Ryx(T) (Eq. 3.42), its Fourier transform,
the power spectral density, is for | w |> 0 given by:
S2(w) = 27 (R (0) +2Re (R () ), (3.47)

and by adding the DC term and using Eq 3.46, we arrive at:

Sex(w) = Zn(R?gg(o) +2ARe(C(w)) + 8(w) <x>2) . (3.48)

We can perform a sanity check at this point. If we compute this power
spectral density (Eq. 3.48) for a Poisson process, we should arrive, after
taking the inverse Fourier transform, at Eq. 3.39. The probability density
distribution for the inter spike intervals in a Poisson process is given by
Eq. 3.28, and after extending it to the whole domain, we get:

e*AT

pisi(T) = u(T)A (3-49)

with u(7) the Heaviside step function. Its Fourier transform is given by:

~ A
pisi(w) = =5 (3-50)
and it is straightforward to arrive at
Prsi(w A
Pisi(w) -~ (3.51)

1-psi(w)  iw

Taking the real part of this purely imaginary quantity yields zero, and
we finally arrive at

Sxxl(w) = 27 (R (0) + 6(w) (x)?). (3-52)

which, upon taking the inverse Fourier transform, indeed corresponds to
the earlier obtained result Eq. 3.37 where RZ%(0) = A.

The difference in the autocorrelation function between a Poisson and a
renewal process is thus captured by the conditional probability—entirely
as one would expect. Because we can relate this conditional probability
to the inter spike interval distribution, we will now discuss a family
of ISI distributions that give rise to stochastic spiking with a (relative)
refractory period.



Relative refractory period. To model such a relative refractory pe-
riod, intuitively, the probability for short inter spike intervals should
be smaller than in the case of a Poisson process. The family of gamma
probability distributions of different orders « captures this behavior:

—KAT

plar(T) = (xA) T

x = 1 yields the exponential distribution of a Poisson process (Eq. 3.28),
while order 2 also introduces a relative refractory period through the
factor 7; higher orders not only yield longer refractory periods, but also
correspond to increasingly narrow ISI distributions, resulting in highly
regular spiking processes. This is illustrated in Fig. 3.6.

A

IR
i
I
E|||||||ZDT

We can now derive expressions for the PSD and autocorrelation func-
tion of a neuron spiking stochastically with an average rate A, and a
relative refractory period captured by:

pio () = 427t 2 Tu(1), (3.54)

i.e.,, a gamma probability distribution of order x = 2. The Fourier trans-
form of this distribution yields:

_ A?
pisi(w) = At iw?’ (3-55)

R (3-53)
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Figure 3.6: Sample spike trains from
renewal processes with different
gamma process orders. Source: Gabi-
ani and Koch.
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and, by Eq. 3.45, we find:

iw _ w?
A 4)2

After some straightforward calculations, we can obtain the real part of
this expression:

~ —4)?

Re(C(w)) = W2 +16)2 (3:57)
A 8A
T (3.55)

where we rearranged Eq. 3.57 into Eq. 3.58 to reveal that we can use the
Fourier transform pair

20
—alt]

N A S (3-59)

in inverse Fourier transforming the PSD:

S — 2 (REM(0) — 25N ) 2 6
xr(w) =27 (R (0) — m+ (w)(x)?) (3.60)
to finally obtain:

Ryx(T) = A8(T) — A2e 47 4 32 (3.61)

where we used the previously obtained results RZ"(0) = A and (x)? =
A2. The average spiking thus changes with respect to the pure Poisson
process. Eq. 3.61 corresponds to what one would intuitively expect from
the autocorrelation of a process with a relative refractory period: the
correlation relatively decreases for small | T | with respect to the pure
Poisson process; but, as T — oo, the autocorrelation converges to the
autocorrelation of a pure Poisson process. This is visualized in Fig. 3.7.

2
6000- SPK/S)

3000+

40 -20 20 40
ms
-3000H

autocorrelation

-6000
time

Figure 3.7: Zero mean autocorrelation
function corresponding to an ISI
distribution following a gamma
distribution of order 2. In this example
A = 80Hz. Source: Gabiani and Koch.



3.3.2  Spike Train Analysis of Connected Neurons

Cross correlation functions and transmission delays. We will now con-
sider the correlation function between the spike trains of two different
neurons, which we will denote x; and x,. This cross correlation func-
tion can be obtained in a way very similar to that of the autocorrelation
function, although there are two major differences in its actual shape:

1. there is no trivial zero lag term, and

2. the function might not be symmetric.

By analogy to Eq. 3.42, we can write:

Ry, (T) = iy "™ (1) + RIL™ (1) + R, (000(7) + (1) (v2)  (3.62)

zm

where the zero lag term RY", (0) is proportional to the probability that
the two neurons fire at the exact same instant. In fact, we can interpret
R, (0) similar to the way we interpreted RFmfuture (see Eq. 3.46): as
the conditional probability that the second neuron will spike at the same
time, given that the first neuron spikes; and this multiplied by the prob-
ability that the first neuron spikes. For two pure Poisson with spike rate
A1 and Aj processes we thus get:

R31%,(0) = 0.A1 =0, (3.63)
compared to the trivial zero lag term in the autocorrelation of x;:

RI" (0) = LAy = Ay (3.64)

Suppose now we don’t have two independently spiking Poisson neu-
rons, but two neurons that are coupled through a synaptic connection.
Neuron 1 fires with an average spike rate of A1, and neuron 2 fires with
an average spike rate of A, = 3. In this (not very realistic) example we
assume the spikes of neuron 2 are all the direct consequence of spikes in
neuron 1, and that the transmission takes a certain time #;,/,y. In other
words, half of the spikes of neuron 1 are reliably transmitted to neuron 2
and result in an action potential there. The conditional probability that a
spike is detected in x; a time t4,,, after there was a spike detected in xy,
is thus 0.5. On the other hand, the probability that a spike is detected in
x1 a time t4,1,, before a spike is detected in x; is equal to 1. Therefore:

Riznaéjzruture(tdelay) = 0-5/\1 (3-65)
— 1A, (3.66)
= Ri;néfHSt(—fdelay)- (3-67)
It is in general true that R{Zﬁ;‘re(r) = Rlifiﬁ (—7) and RJ;]u ;gre(r) =

t
Rﬁ;il (7T) .
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In the above case, we would thus find a sharp peak at R{ﬁgre(tdelay)

with amplitude 0.51; plus the mean term **, provided of course tg/,, >

Ere frac-

In a more realistic network of neurons, the cross correlation functions
between neurons might be influenced by the following factors:

¢ the synaptic transmission reliability

¢ the postsynaptic reliability of transmission to the soma and axon
hillock

e the integration of signals (stemming from different neurons) in the
dendritic tree and soma

¢ the relation between the resting potential difference and the action
potential generation threshold

¢ the average spike rate of the neurons, which might be related to intrin-
sic noise and all the factors above.

Within one neuron, i.e., between the different structures of a neuron,
the cross correlation functions might be much closer to those of a pure
transferral of signals like in the simplified example given above. This will
turn out to be an important fact that we can use interpreting our data.

Doubly stochastic processes. Finally, although we will not elaborate
on or use this further, we note that the cross correlation function between
two neurons that are solely correlated through their spike rates can be
calculated ™ from using:

Plxy,x2) = [dhdAaP(xy | M)P(x2 | A2)P(Ay,22)  (3.68)

where P(A1, Ay) is the joint distribution of the respective spike rates.
And, to arrive at the covariance:

(x1x2) = Y ) P(x1, x2). (3.69)

X1 X2

1 or, after standardization,
Rfuture 0.5M4

X1% (tdelay) = \/E\/E

> Measuring and interpreting neuronal
correlations. Cohen and Kohn,2011.



4
A Directed Graph of Information Flow

Eventually, we wish to obtain insight in the effective connectivity of the
network: which connections are used, their transmission delays, and
finally the direction of information flow between the active neuronal
structures in the network. So far, we explained how to identify these
neuronal structures from the data through a spike sorting process; and
we elaborated on the likely form of (and the needed calculation for) the
auto- and cross-correlations of the obtained spike trains. In this chapter
we discuss how we can obtain the effective connectivity from this set of
auto- and cross-correlation results.

A straightforward (but somewhat naive) way to obtain the directed
signal flow in the network could be based solely on the cross correlation
functions between the spike trains of two neuronal structures. After all,
these functions reflect the transmission of spikes (together with some
information about the delays at which those happen). The problem is
that those functions often exhibit spurious correlations, i.e., they might
indicate a relationship that in reality does not exist * 2. For two (coupled
or independent) point Poisson processes, the spurious relations are less
common than in case of, e.g., low frequency continuous processes, but
they nevertheless exist. Consider for example the situation where two
independent Poisson processes are recorded for a finite time and with
a finite sampling rate; one of them has a very high average spike rate
and the other one spikes much slower. Depending on the parameters,
the computed cross correlation might look as if spikes of the slower neu-
ron are caused by the faster neuron, just because in a lot of cases there
happens to be a spike of the first neuron preceding it. Thus, the infor-
mation about the spike rates should be included; and this information
is to be found in the autocorrelation functions (or, strictly speaking, in
the unstandardized autocorrelation functions). Furthermore, in networks
where neurons receive signals from multiple neurons (as is almost al-
ways the case), the information contained in the correlation functions of
all connected neurons should be included.

In section 4.1, we will first discuss a general framework to model the

* Why do we sometimes get nonsense-
correlations between Time-Series?—a study
in sampling and the nature of time-series.
Yule,1926.

* Dangers and uses of cross-correlation

in analyzing time series in perception,
performance, movement, and neuroscience:
The importance of constructing transfer
function autoregressive models. Dean and
Dunsmuir,2016.
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causal relationships between a set of coupled time series. We will then
show how, based on a general assumption of gaussianity, we can obtain
the parameters of this framework from the computed auto- and cross-
correlation functions. Finally, we will explain how these parameters can
be converted into a directed graph; and we will also discuss how this
graph might deviate from the actual flow of information in the network.

4.1 Autoregressive Kernels

4.1.1  Autoregressive Processes

A multivariate, higher order autoregressive process is a process that can

be written in the form 3: 3 An introduction to multivariate statisti-
cal analysis. Anderson,1958.

x(t) =Y AWx(t —k) + E(1), (4.1)

where x(t) is a vector of size n that represents the values of the n time-
series at time f; p is the order of the model; A(k) is the matrix of size nxn
with entries that relate x() to the values of x at distance k in the past,
and E(f) is a diagonal matrix adding Gaussian noise at step t. Note that
A® is a constant matrix that does not depend explicitly on time.

The elements Al@ tell us how the values x;(t — k) influence the value
x;(t). In words, Eq. 4.1 tells us that the current value of a timeseries in
the network can be obtained as a linear combination of the past values of
g{) capture a
causal relationship in the sense that they reveal which events in the past

all the timeseries, including its own past. The coefficients A

are relevant for predicting the current state, given all relevant informa-
tion (i.e., given the past values of all the timeseries up to p timesteps in
the past).

(k)

If we consider A; ;( for each time k, we obtain a so-called autoregres-

®
1
past of x;(t) gives the contribution of this jt" timeseries to the present

sive kernel which we will denote A;.”. Convolving this function with the

value of the i*" timeseries, x;(t)—hence the name kernel. The concept
slightly differs from the more conventional Volterra or Wiener kernels,
however. First of all it is an extension to the multivariate case; and more-
over, the considered input consists not only of the signals received from
the other elements in the network, but also the timeseries” own past.
How these kernels can be estimated, then, is the topic of the next section.
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4.1.2  Gaussian Processes

The assumption of Gaussianity often yields an effective and practical ap-
proach to modeling, and this is not different in the problem we are trying
to solve. In this section, we will discuss this assumption of Gaussianity
using a one-dimensional time series. More precisely, we will model this
timeseries as a Gaussian Process (GP):

A Gaussian Process is a collection of random variables, any finite number of
which has a joint Gaussian distribution.

Loosely speaking, we will consider an (in our case ordered) collection
of random variables {Xj, ..., X, }, one variable for each time {; moreover,
we will take the joint distributions between any number of variables to
be Gaussian. The Gaussian Process in this way defines a distribution over
sample functions, where a function is considered the (possibly infinite)
vector of particular instances of these ordered random variables. (The
latter definition is not entirely rigorous, but sufficient for the current
discussion.) This distribution is completely characterized by a mean
function m(t) and a covariance function k(t,t'):

£(£) ~ GP (m(t) k(t,1)). 42)

Before we continue to see how this works, we will review some prop-
erties of the classical Gaussian probability distribution. First some nota-
tional conventions: x and y symbolize vectors of any number of random
variables that are jointly Gaussian distributed, p, and p,, the vectors of
their respective means. Thus, e.g.,

- - 1 -
plx | Zx) ~ (21) P72 | 2o |72 exp (— Q(x—ﬂx)Tle(x—ﬂx))

(4-3)
where D is the length of the vector x, and Xy is the DxD, symmetric,
positive definite covariance matrix. Using shorthand notation:

x ~ N (px, Zx). (4-4)

If x and y are also jointly Gaussian with covariance matrix K,

x 2 _ x| |Cx B
~ 7 K) = 7 ’ .
RS R Al sl
then the marginal distribution of x is
x ~ N (px, Cx), (4.6)

and the conditional distribution of y given x is:

y | x ~ N(uy + BC; " (x — px), Cy — BC;'BT). (4.7)
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There’s an important point to emphasize here: these equations are
entirely linear. Let
A =BC./, (4.8)

and conditional covariance matrix X
¥~ =C,— BC,'B". (4.9)

Then we can see that ¥ is independent of x, which allows us to interpret
y as an affine function of x plus a random noise vector # that is indepen-
dent of x. In other words,

y=py+Ax—px) +n (4.10)
with the noise vector n satisfying:
(ny =0, (nx)=0, (nn)=2=x. (4.11)

If y is the system output and x is the system input, then (Eq. 4.10) de-
scribes the linearity of the system. However, within the framework of
Gaussian Processes, x is not the input of the system but rather the output
in the past. Predictions of the future output are thus obtained as a linear
combination of outputs in the past (Eq. 4.10)—but the described system
itself may not be linear in the sense of the output being a linear combina-
tion of the input. The latter would only be the case when the covariance
function k is a linear function.

Then, to gain insight in Gaussian Processes, consider the case where
all the random variables X; are taken to be independent; we can then
“draw” a sample function f(t) by obtaining at each time t an instance
of the random variable X; that follows a marginal Gaussian distribu-
tion characterized by m(t) and k(t, t). If we shift to the vector nota-
tion as above, we can let K be the covariance matrix of the joint Gaus-
sian distribution over all variables X;. Since in the independent case,
all off-diagonal elements of K are zero, we can thus just sample from
the individual marginal distributions (Eq. 4.6) X; ~ N (ux, Ky) =
N (m(t),k(t,t)).

We can obtain more interesting functions by introducing correlations
between the variables, however. A common example is the squared expo-
nential covariance function with characteristic length-scale I:

1
Kt 1) = exp(—p5 | =1 P), (4.12)

which tells us both that the process is stationary, and that the covariance
is almost unity between nearby variables, but decreases exponentially as
the distance in time increases. In other words, the sample function are
smooth, in this case over a timescale of length I. Now, in constructing
such a sample function f(¢) we cannot restrict ourselves to sampling
from the marginal distributions of individual variables X;. We need to
take into account the structure captured by the joint distributions. The
computational efficiency of Gaussian Processes, then, lies in the fact that
this can be achieved from using the conditional distributions (Eq. 4.7).
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Suppose we are given a starting value, f(y). We wish to obtain a value
f(t) at another time .. The covariance matrix K’ of the joint distribution
between X}, and X;, is given by:

,_ |k(to, to)  k(to,ts)
K= [k(t*,to) k(t*/t*)] ’ 13
and thus, from (Eq. 4.7),
2
(Xt, | Xty = f(to)) NN(m(t*)—i— ];E:i:ii;(f(to)—m(to))r k(to, to) — IM)
(4-14)

4.1.3 Gaussian Processes and Bayesian Modeling

Now the groundworks are laid to switch viewpoints: from generating
sample functions from a known Gaussian process, to estimating the
properties of a Gaussian process given a sample function. We will as-
sume the process is stationary, in which case it is convenient to define
zero-mean variables: x — p, — x. We can then rewrite Eq. 4.10:

y=Ax+n. (4.15)

The weight matrix A can be estimated from basic linear regression: if the
noise is white or can be whitened, the solution is simply given by Eq.

4.8. We will discuss this further below. Here we will first briefly explain
how we can incorporate prior knowledge in this estimation by using the
framework of bayesian modeling; this will turn out to be important when
we wish to regularize our final results. We start by recalling Bayes’ rule:

_rlylxA)p(A) .
p(A|xy) = o) (4.16)

or, in words,
likelihood x prior

terior = . .
posterior marginal likelihood (4-17)
For ease of notation, we will rewrite Eq. 4.15 as
y=x'A'+n (4.18)

Suppose now we have a prior believe that the weights A’ are distributed
according to a Gaussian function:

A/ ~ N(O,Zp). (4‘19)
Then it follows
p(A" | xy) o ply | x, A')p(A") (4.20)
wexp(— 3y — 2T A)TE y — AT A)) exp(— 5 A8, A)

(4.21)
1 -1
* (A/ a xZ—Ti‘T —|—yZ;71 ) T (xquT * Z;l) (A/ - xZ—TfT —|—yE;1 )

(4.22)
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where we used only the terms dependent on the weight matrix A’. From
this, we can recognize that the posterior distribution is Gaussian with

mean 4
¥ ly
=~ 2
Ma= STy 51 (4-23)
and covariance matrix X 4
-1
Y4 = (xZ_le + Z;l) . (4.24)

Having no prior beliefs corresponds to infinite covariances ¥, in which
case Eq. 4.22 reduces to the solution of linear regression with correlated
noise with covariance 2. If the noise is uncorrelated, the solution reduces
further to the classical linear regression solution Eq. 4.8.

4.1.4 Estimating the Autoregressive Kernels

Saying the timeseries we are trying to model is a sample drawn from a
Gaussian process thus entails the following assumptions:

¢ the function is stationary,
¢ the function can be non-linear, but

¢ the function can be completely defined by a mean and covariance
function plus the addition of Gaussian noise.

These assumptions yield a straightforward solution to estimating the
coefficients of the corresponding autoregressive process based on the
conditional distribution: the problem can be solved by linear regres-
sion, and the solution is given by Eq. 4.8 (in case the function has zero
mean). Note that the only properties of the data used in this estimation
are correlation functions (again, in case of zero mean). These might thus
as well be the correlation functions associated to a Poisson process, ob-
served with some additional Gaussian noise (the double usage of the
term “process’ in both ‘Gaussian process” and "Poisson process” might be
somewhat confusing in this case). However, processes such as doubly
stochastic processes will not be correctly modeled by this framework.

We can easily extend this linear regression problem ( Eq. 4.8 ) to the
multi-variate, higher order case 4, and we finally arrive at the Yule-
Walker equations 5 :

Co G G Gi... Cpq] [ AW G
Ci C C G... Cpof | A® C
Cc C G C... Cosl|| AB | 2 |G
Cp1 Cpo Cpz ... GCo ] [AP7D Cp

where C; is the covariance matrix between all variables at lag 7.

4 Estimation of parameters and eigenmodes
of multivariate autoregressive models.
Neumaier and Schneider,2001.

5 On periodicity in series of related terms.
Walker,1931.



A DIRECTED GRAPH OF INFORMATION FLOW 47

4.2 A Directed Graph of Information Flow

Once the full matrix A—and thus each autoregressive kernel—has been
estimated, obtaining a directed graph boils down to computing a value
from the kernel that captures the connectivity. In general words one
could say there is a directed connection between two neuronal structures
in the network if the kernel for that direction is not uniformly zero, that
is, non-zero in a statistically significant way. A significance test is not
easy to obtain, however: the estimation of the kernels is a highly nonlin-
ear function of the original data, and the distributions of their estimators

are not well established . We will discuss our (pragmatic) approach to ¢ Evaluating causal relations in neural

this problem in chapter 5. systems: Granger causality, directed
transfer function and statistical assessment
of significance. Kaminski et al.,2001.
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Finally, we should mention that this method of determining the di-
rected flow of signals is not always able to capture the real directed flow
of information. Consider, e.g., the situation as depicted in Fig. 4.1. On
the right hand side, the information flows from the bottom and splits
after the second node, such that it arrives with a certain time delay in
each of the upper nodes; the signals arrive at the same times, however,
in the situation on the right. The correlation functions will thus be ex-
actly the same, and since the kernels are derived from nothing else but
the correlation functions, there is no way to discern the true path from

the spuriously derived path. This could be resolved by using structural
information however; to do this, knowledge about the actual underly-
ing structure could be used as a Bayesian prior. This is again outside

the scope of this project however (but might be added to the analysis in
future work).






5
Experimental Setup and Methods

5.1 Multi Electrode Array Recordings at High Resolution

The complete sensor array covers a region of 3.85x2.10sq — mm with
26400 electrodes, each covering a region of 9.35.45sq — yum. Due to con-
straints in the electronics implementation, we can only read out from
1024 electrodes at once. However, we can determine which electrodes to
record from, and the configuration is changed in a matter of seconds. We
sample the data at a rate of 20K Hz; our recordings of several minutes
thus have a considerable size in terms of data (a couple of Gb per file).

5.2 Querview of the Data Processing Pipeline

¢ Identifying Neuronal Structures. The output at this stage is a list
of detected neuronal structures in terms of their spike times, spatio-
temporal footprint and location. The results are only really reliable for
structures producing high amplitude spikes; the lower the amplitude,
the higher the probability that the detected spike was actually noise.
The low amplitude detections will provide us with additional infor-
mation about the network structure, however. The discussion of the
underlying algorithms makes up the first section of this chapter.

* Spike Train Analysis of Single Neurons. Based on the spike interval
distributions of the high-amplitude structures (which we assume
to represent a single neuron), we will try to classify the neurons as
producing slow-rate spontaneous activity, as producing activity at
both smaller and larger timescales, or as exhibiting an inter spike
interval close to the corresponding Poisson distribution.

¢ Computing the Correlations. Based on the output from the first
step, we will elaborate on the methods and data transforms used
to compute the auto- and cross-correlation (in fact, auto- and cross-
covariance) matrices of the spike trains of all neuronal structures.
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¢ Constructing the Effective Connectivity Graph. In the last section we
provide some additional information on the methods used to deter-
mine the kernels and on the methods used to construct the effective
connectivity graph.

5.3 Identifying Neuronal Structures

In order to model the effective connectivity between different neurons,
we have to disentangle the data: each sensor might receive signals from
different neurons, and each neuron might be inducing signals in dif-
ferent sensors. Consider a single neuron. The axon hillock and soma
usually produce spikes with a high amplitude, with resulting signals
being recorded in the sensors directly covering these structures, as well
as in other sensors nearby. But an action potential could travel through
the other parts of the axon and all its branches as well, and the activity of
a single neuron might thus potentially leave traces across a large part of
the sensor array. We can also switch perspectives, and look at the prob-
lem from the viewpoint of a single sensor: the same sensor might receive
signals from different nearby neurons. This is of course especially the
case when the sensor covers an area where neuronal structures are dense.

Although some general conclusions can be drawn from the sensor
time series alone, detailed insights can only be obtained once the data is
disentangled (correctly) into the respective neuron time series. This pro-
cess, which goes by the name of spike sorting, has been the focus of many

research efforts in computational neuroscience ' * 3. Feasible due to the * A review of methods for spike sorting: the
detection and classification of neural action

low dimensionality of the recorded data, this process was for a long time ¢ 155Y
potentials. Lewicki,1998.

mainly performed manually. But recently the advent of recording devices 2p . .
ast, present and future of spike sorting
with up to hundreds of electrodes has urged the development of semi- techniques. Rey et al.,2015.
automated to fully automated algorithms to tackle this problem. Below, ? Spike sorting for large, dense electrode
we will discuss the general approach of those automated spike sorting arrays. Rossant et al. 2016.

algorithms.

Spike sorting is usually performed in a setting with relatively low
recording resolution, i.e., each sensor or electrode records signals from
multiple neurons, and it is very likely that only the high amplitude sig-
nals are recorded (i.e., those originating from the action initial segment).
In case the spacing between the electrodes is large, such that the proba-
bility of one neuron being detected by more than one electrode is very
small, the spike sorting problem simplifies further: the detected spikes
on each electrode can be assigned to the neuron that produced them
based on the spike shape. This is illustrated in Fig. 5.1.

Once all the spikes in the signal have been detected, the (usually cor-
rect 4) assumption is that the different neurons produce spikes with a 4 Axon physiology. Debanne et al.,2011.
shape and amplitude typical to that neuron (the latter being only partly
due to their difference in distance to the electrode). They can thus either
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be manually assigned to a neuron; or the shape of the spike or action
potential can be used as input to a classification algorithm.

In a next step, we can consider the fact that the high amplitude sig-
nals originating from the AIS could possibly be recorded in multiple
electrodes. This is due to the electrical signal spreading from where it
originated; it is thus not always the case that the signal will be recorded
at exactly the same instant in each of the neighboring electrodes. The
goal can be, somewhat vaguely, formulated in this way: when a neuron
spikes, we want to be able to say what the resulting measurement typi-
cally "looks like” in space and time, i.e., we want to determine a spatio-
temportal footprint for each neuron. These spatio-temporal footprints
can then be matched to the original data in order to determine the spike
times for each neuron.

Due to the very high resolution of our recordings, we are, unlike in
other spike sorting settings, able to pick up signals from different struc-
tures of the same neuron. We deliberately lowered the spike detection
threshold to also detect these signals. This, unfortunately, also yields a
multitude of false detections (i.e., detection of noise). We will show in the
results in which ways this information can still be valuable, however.
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5.4 Spike Train Analysis of Single Neurons

Once the spike sorting process is completed, we have a list of the activity
of the different neuronal structures in hand, i.e., a list of locations, spike
times, and average amplitudes. We will discard the data from the low
amplitude structures for the time being—this will be used later on. For
now, we can concentrate on the structures emitting spikes with a high
amplitude, which presumably correspond to axon initial segments. We
will consider this activity to represent a ‘single’ neuron in this section.

As discussed before, the activity of a single neuron can be classified
based on the properties of the spike train; we will consider the categories
Poisson (i.e., close to Poisson or second order gamma), exhibiting mixed
timescales, and slow rate spontaneous activity. We will try to classify the
activity based on the inter spike interval (ISI) distributions, and propose
the following easy to implement metrics:

¢ if the ISI distribution is close to a first- or second order gamma pro-
cess, the 10% quantile of the distribution will have a relatively small
value.

¢ if the process is not Poisson like, we discriminate by looking at the
number of timescales: in a spontaneous activity process, there should
be a ‘peak’ at lower frequencies; in case there are two timescales in-
volved a model fitting two peaks to the distribution should thus yield
a better fit.

The discrimination of time scales is more easily discernible using a
log transform of the ISI distribution. After this transformation, we fit a
two component Gaussian mixture to the log ISI histogram, and use the
difference in the means of the obtained distributions as a straightforward
indicator of different timescales. This procedure will be illustrated with
data exampled in the results section.

Figure 5.2: Example of a spatio-
temporal neuron footprint: the same
action potential is detected in multiple
neighboring electrodes.



EXPERIMENTAL SETUP AND METHODS 53

5.5 Computing the Correlations

To compute the correlations, we don’t bin the data but instead convolve
the detected spike times with a waveform which has a substantial width
over 0.5ms, corresponding to the natural temporal resolution implied by
the spike sorting algorithm. The used function is furthemore Lorentzian,
because its longer tails will increase the smoothness.
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Due to the high computational resources needed to compute the cor-
relation functions up to lags of several hundreds of timesteps, we imple-
mented the computations using a map-reduce procedure.

5.6  Constructing the Effective Connectivity Graph.

The matrix involved in the Yule-Walker equations has a block Toeplitz
structure; we can make good use of this structure to efficiently solve the
system of equations through applying the Levinson algorithm 5.

Then, considering a test of significance: a good approach would be
to generate new datasets that retain the underlying stochastic properties
but discard the causal connections. An example procedure would be to
sample new spike trains using the inter spike interval distributions ob-
tained from the original dataset. Once a surrogate dataset is created, we
can again compute the correlations and the kernels; a large collection of
surrogate datasets would then yield an estimator of the variance of the
kernels. The drawback of this procedure is that it is extremely costly in

Figure 5.3: Waveform function used to
construct the spike trains.

5 Efficient inversion of Toeplitz-block
Toeplitz matrix. Wax and Kailath,1983.
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terms of computational resources: despite the measures taken to speed
up the computations and to handle the large datasets, a reasonable sig-
nificance test would take days to compute.

For the time being, we thus resorted to a much simpler significance
test. We computed the median absolute deviation (the median because
this is more robust to outliers) of the absolute values of each kernels,
and considered it an effective connection if a values was found above a
threshold value vyye51014 defined by:

Othreshold,ij = OMAD(| AI(;) ) (5.1)

where 6 was taken to be § = 5.
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Results and Conclusion

In this analysis, we will restrict ourselves to a single set of recordings
from a low density network at day 34 in vitro. The network consisted
solely of excitatory neurons and was not stimulated during its devel-
opment. The whole sensor array is covered by a set of 6 configuration
recordings, each of which make up a simultaneous recording of half
the electrodes of their respective sensor regions. In other words, at each
recording time one sixth of the whole sensor array is recorded simulta-
neously by a checkerboard pattern of 1024 electrodes, and this for two
minutes at a sampling rate of 20 oooHz.

6.1 Spike Sorting Results

Using the information obtained from the spike sorting procedure, we

can create straightforward visualizations that provide us some basic
insights in the network and its activity. At this point we can combine the
results of different recordings covering the whole sensor array—the spike
sorting process is not based on the assumption that the different involved
structures were recorded simultaneously (although some information
about neuronal structures exactly lying at the boundary of recording
sites might be lost). A compiled map of all found average spike rates,
together with a similar map of all amplitudes, is shown in Fig. 6.1. We
will shortly explain why the average rate map does not provide us with
a reliable view of the network; the amplitude map, however, already
reveals clusters of high amplitude structures (presumably produced

by the axon initial segments (AIS) or other regions close to the soma)
and the low amplitude structures (presumably axononal segments) that
connect them. In the remainder of this chapter we will denote the former
as somatic signals, and the latter as axonal signals.

Fig 6.2 shows a plot of the average spike amplitude in function of the
average spike rate for all detected neuronal structures. If anything, this
plot reveals that the axonal structures are confounded with noise: aver-
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age spike rates higher than 20Hz are biologically not very plausible, and
these rates rather correspond to a multitude of false detections. We can
try to separate the axonal from the somatic signals based on amplitude,
however, although from activity amplitudes alone we are only able to
make a somewhat arbitrary distinction. Structural information, which
could be obtained from microscopy pictures, could help to estimate the
correct boundary; but for this proof of concept analysis it will turn out
to be sufficient to classify the somatic signals as those with an amplitude
above somV.

Figure 6.1: Maps of the whole sensor
200 Frequency Map array, showing (a) the average spike

.- . rate of the detected neuronal struc-
. . " ' tures, and (b) the average amplitude at
400 - ’ . .l - ' - the center electrode.
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Given the spike times of each detected structure, we can also construct
so-called spike triggered averages (STA): centered on each spike time,
we extract a ‘'window’ of data, and we subsequently average over the
windows obtained for all spike times of the structure. If we do this for
the center electrode of a neuronal structure that produces high amplitude
signals, the average reveals not much more than what can be seen if we
consider a single window (see Fig. 6.3 for an example). This is of course
a reflection of the high signal to noise ratio of these spikes, together with
the fact that we exactly determined the spike times based on the sim-
ilarity between waveforms. But because we allowed the spike sorting
algorithm to pick up spikes with very low amplitude, confounded with a
lot of noise, the spike triggered average of a low amplitude structure re-
veals much more information. An example is given in Fig. 6.4. Averaging
out the noise, a low-amplitude axonal action potential becomes visible.
We can verify that this is truly a neuronal structure by constructing an
STA over all simultaneously recorded electrodes; this is in fact a movie
of what happens (on average, and in space and time) when the neuronal
structure spikes. The 'movie stills” also shown in Fig. 6.4 indeed reveal
the flow of an axonal action potential *
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Figure 6.2: amplitude versus frequency

* This visible flow of information is in
itself a very useful piece of information
about the network connectivity, but is
not further used within the scope of
this project.
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Figure 6.3: Example of high amplitude
spikes that were detected by the spike
sorting algorithm. In (a) and (b), a
window of the original timeseries data
centered around the detected peak
(the “spiketime’) is shown. (c) shows
the average over all such windows of
data corresponding to the detected
spiketimes.
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Figure 6.4: Example of low amplitude
10 10 axonal signals, buried in noise, that
were detected by the spike sorting
algorithm. In (a) and (b), a window of
the original time series data centered
on the detected spike time is shown.
(c) shows the average over all such
windows (STA). (d) and (c) use the
) same procedure, but visualize the
. STA at a single instance in time for
45 . the whole recorded part of the sensor
b array. (d) shows the averaged data
(a) (b) exact at the spike time, and (c) reveals
the subsequent flow of the signals in
two axonal branches at 0.5ms later
in time. Red corresponds to positive
6r voltages, blue negative voltages.
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Finally, it is very insightful to plot the spiking patterns of all somatic
structures in a raster plot, i.e., a plot where each spike for each somatic
structure is represented as a dot in function of time. Figure 6.5 shows
two such raster plots, obtained from spike sorted recordings covering
two qualitatively different regions. The first raster plot corresponds to
the region in the upper left corner of the sensor array, where a cluster
and some other high-amplitude structures can be seen (see Fig. 6.1 (b)).
The second raster plot corresponds to the region in the lower right cor-
ner, where high amplitude structures are sparse. The first raster plot (Fig.
6.5 (a)) clearly shows global synchronized activity between the different
somatic structures, while Fig. 6.5 (b) shows rather uncorrelated, spon-
taneous activity at different but relatively slow rates. It is precisely this
difference in activity patterns and the relation with the network effective
connectivity that we will analyze in the next sections.

Figure 6.5: Raster plots corresponding

1ar to spike sorted recordings of the upper
L R A c . left corner (a) and the lower left corner
7] N R, ce .. v . (b) of the sensor array.
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6.2 A Study of the Spike Train Statistics

As described in section 5.4, we will try to classify the somatic spike trains
in three different categories: those with statistics close to a Poisson or
second order gamma process, those exhibiting mixed time scales, and
those that exhibit only the relatively large timescales of pure spontaneous
activity. Three distinctive examples for each category are shown in Fig.
6.6.
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In the first column of Fig. 6.6 (figures (a), (d) and (g)), the inter spike
interval distribution is shown. Note the timescale on the x-axis: previ-
ously, we discussed spike train statistics of Poisson and second order
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Figure 6.6: Inter spike interval distri-
bution (left), log inter spike interval
distribution (middle), and spike trains
(right) from three distinctive examples
of each considered category. (a), (b)
and (c) correspond to a neuron exhibit-
ing Poisson like statistics; (d), (e), (f) to
pure spontaneous activity; and (g), (h)
and (f) to a neuron emitting spikes at
two distinct timescales.
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gamma processes in view of the refractory period, which is of the order
of ms; here, the inter spike intervals are spread across multitudes of o.1s.
The effect of a refractory period, however present, is thus not visible in
these plots. We plotted three curves in addition to each histogram of the
ISI distributions: the Poisson ISI distribution (orange), the second order
gamma process (yellow), and the fifth order gamma process (purple) cor-
responding to the average spike rate (see Eq. 3.53). Clearly, the histogram
in (a) exhibits Poisson like statistics; (d) is most related to a 5th order
gamma process, indicating a relatively slow rate activity correspond-

ing to pure spontaneous activity. In fact, we can consider the absence

of small inter spike intervals as a generalized refractory period, occur-
ring at a much larger timescale than the original refractory period. (g),
then, seems not to be closely matching any gamma process, but instead
exhibits two clearly different timescales.

The second column of Fig. 6.6 shows the histograms of the log inter-
vals, which aids in distinguishing peaks at smaller and larger timescales.
If the histogram is best fitted by a single Gaussian (which is the case for
the spontaneous activity neuron, as can be seen in (e)) that Gaussian
distribution is shown in red; if the histogram is better fitted by a two-
component Gaussian mixture, the additional Gaussian distribution is
shown in blue ((b) and (h)). Note that the log ISI histogram of a neu-
ron with Poisson like statistics is also better fitted by a mixture of two
Gaussians, as compared to a fit with a single Gaussian. Finally, the third
column of Fig. 6.6 shows snippets of the corresponding spike trains. The
limits on the x-axis are rescaled as to show a similar number of spikes for
an easy comparison of regularity (or the lack thereof); the scales between
the figures are thus substantially different.

We then classified all the somatic activity patterns based on the dif-
ference in mean of the fitted Gaussian mixtures (fitted to the log ISI
distributions) and the 10% quantile values of the original ISI distribu-
tions, as described in section 5.4. The result is shown in Fig. 6.7 (a). The
boundary (10%) quantile value was set to 0.1s, and the boundary value
of the difference in means was chosen to be 0.2s. These values are not
derived from first principles, but they seem to reflect the underlying bio-
physical reality; however, the distinction between the classes is in fact not
that clear-cut, and the boundaries values are used in a proof-of-concept
manner.

Fig. 6.7 (b) shows the average amplitude in function of the average
spike rate for each of the somatic structures, colored according to their
class. Members of the Poisson like class naturally show a higher average
spike rate than the members of the slow rate spontaneous activity class,
while the timescale mixture class members mostly exhibit average rates
somewhere in between. Fig. 6.7 (c) then shows the location of the mem-
bers of each class in the sensor array. This is entirely in accordance with
our findings in the previous section (compare with Fig. 6.6).
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Figure 6.7: Classification of the single
neuron activity (represented by the
activity patterns of the somatic struc-
tures). (a) shows the absolute value of
the difference between the means of
the two-component Gaussian mixtures
in function of the 10% quantile values
of the corresponding ISI distributions.
The dark blue dots correspond to
Poisson like processes, the yellow dots
to slow rate spontaneous activity, and
the green dots to double timescale
mixtures. The same coloring scheme
is used in (b) a scatter plot of the av-
erage amplitude in function of the
average spike rate, and (c) a scatter
plot revealing the location of somatic
structures.
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6.3 A Study of the Effective Connectivity

We can now relate our previous results to the effective connectivity prop-
erties we derived from computing the network autoregressive kernels.
First of all, it is important to note that the directed flow and transmission
of signals in a neural network take place at much smaller timescales than
the timescales involved in the spontaneous activity (see chapter 2). We
thus computed the correlations and kernels up to lags of 25ms, which
roughly corresponds to the largest transmission delay a signal between
two neurons could have (given our recording area).

We will discuss a single, distinctive example we derived from our
recordings: two closely connected neurons, both classified as being of
the time scale mixture type. Fig. 6.8 shows a part of their spike trains.

A close inspection of (a) shows that the spike train of the second neuron
(bottom trace) correspond to the sum of its own spontaneous activity
plus the spikes of the first neuron. When we zoom in on the spike trains
( Fig. 6.8 (b)), it seems to be the case that the spikes of the first neuron
always precede the spikes of the second neuron.

Figure 6.8: Spike train snippets of two
closely connected neurons. (b) is a
zoomed in version of (a).

Upon inspecting the computed kernels (shown in Fig. 6.9), we can
see that this information is exactly captured by the kernels: the first
neuron sends spikes to the second neuron (direction of the transfer) with
a transmission delay of around 0.5ms, which might indicate a transfer via
a chemical synapse.

Figure 6.9: Resulting kernels. (a) a
significant contribution from neuron

1 to neuron 2 (which have general

0075 0075 neuron IDs 59 and 62); (b) the kernel
0050 0050 corresponding to the other direction is
not significant.
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Finally, we show the complete graphs of information flow as derived
from the significant kernels in Fig. 6.10, for the two earlier considered
regions in the upper left and lower right corner of the sensor array. It
is immediately clear that (a) corresponds to a region of much larger
effective connectivity, with even a local cluster of super high connectivity
visible; (b) on the other hand is a region where connectivity has not
developed beyond some sparse connections. The colors of the nodes
again correspond to their classes, with gray indicating axonal structures.
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6.4 Discussion and Conclusion

Combining all these results and their visualizations, we can arrive at a
straightforward explanation of the measured activity patterns in terms of
the connectivity. All neurons seem to show a spontaneous, slow rate ac-
tivity when not significantly connected. A significant effective connection
between two neurons will result in the activity of the receiving neuron

to be the (partial) sum of its own spontaneous activity and the activity of
the source neuron. This sum of stochastic processes introduces smaller
timescales in the spiking pattern of the receiving neuron: if we think of
the spontaneous activity as showing a generalized, large refractory pe-
riod, then this refractory period might be violated by the arriving spikes
(since, in a unidirectional connection, the source neuron emits spikes in-
dependent of the receiving neuron). Connected neurons are thus generally
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Figure 6.10: Graphs of the significant
information flows. (a) shows the
significant connection in the upper left
corner of the sensor array. (b) shows
the significant connections in the lower
right corner of the sensor array. The
small, gray nodes correspond to axonal
structures, the gray lines to significant
connections. The somatic structures
are again colored according to their
class.
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spiking at multiple time scales. We can even go further, and explain the
Poisson like spiking processes in terms of very high connectivity: the
more incoming spikes associated to independently spiking source neu-
rons, the more the inter spike interval will lose its dependence on the
previous spike. The generalized refractory period associated to the slow
rate higher order gamma process thus gradually disappears, and the
process starts to look more and more like a second order gamma process
with its natural, short refractory period, depending on the number of
effective, significant connections.

The proposed method to classify the neuronal activity patterns can
in this case thus be directly linked to the connectivity: the difference in
means of the two component Gaussian mixture is a first indication of
connectivity, because it indicates the existence of at least two different
time scales. The 10% quantile value then indicates the degree of connec-
tivity: the higher the connectivity, the more the ISI distribution will shift
from the slow rate spontaneous activity distribution to a Poisson or sec-
ond order gamma distribution, both having a large probability mass in
the smaller timescales.

Finally, the relatively fast timescales of axonal and synaptic transmis-
sion (as compared to the timescale of spontaneous activity) will result in
a highly connected network to appear synchronized (of course depend-
ing on the binning of timesteps). Or results are thus in close agreement
with what was found in previous experimental studies of in vitro cortical
networks. However, the simple underlying mechanism we can discern
is most likely not the only one of importance in a real in vivo cortical
networks. Apart from the fact that these networks have both inhibitory
and excitatory connections, and the fact that they receive natural external
stimulation from the earliest stages of development, these types of net-
works also exhibit a much higher degree of connectivity. This particular
experimental setup has proven to be an excellent testbed for our data
analysis procedures, however, and we will continue to test and improve
our methods in more realistic settings in the future.
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Summary

Artificial neural networks are inspired by their biological counterparts,
but in developing those artificial networks we are by no means limited

to mechanisms that are plausible in the natural world. Thus far, this
biologically inspired design process has yielded artificial neural networks
that can be applied in a very wide range of practical situations—from
cancer screening to self-driving cars—often with astounding results. To
develop these artificial neural networks even further, we can resort to
adding purely artificial architectures and enhancements; still it seems
there is lot left to learn from the efficient computational processes taking
place in biological neural networks.

In previous work ', we showed how in an in vitro network of cortical
human neurons the spiking activity is related to the effective connectiv-

ity.

In this thesis, we will elaborate on the methods we used to analyze
this large collection of multivariate time series data. We will discuss the
algorithm that allowed us to identify neuronal structures, and we will
describe the used method to compute effective connectivity from activity
data. However, our main goal is to compare the obtained model of the
biological network to different related types of artificial neural network
models for which the computational power has been studied. To put our
analysis in context, we will start by discussing the symbiosis between
artificial and biological neural network research in general, and between
networks of biological and artificial spiking neurons in particular. The
latter artificial models will turn out to be the closest related to our model
of the biological network. Given the particular dynamics arising in our
culture of cortical neurons, we will also be able to explain why this net-
work can be reasonably approximated by a single layer perceptron net-
work.

Our general results are meant to be a starting point for future research
exploring the relation between biological and artificial neural networks.
Through developing these methods, we hope to be able to—at some
point in the future—increase insight in the computational properties of
biological neural networks, as well as in the biologically inspired princi-
ples that could further advance the field of artificial neural networks.

* Connecting Neurons: A Stochastic
Model of Information Flow in Cultured
Networks of Human Neurons, master
thesis physics (unpublished).
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Introduction

Biological neural networks and their artificial counterparts have a symbi-
otic relationship. Understanding of the former sparked the development
of the latter, and gained insights in artificial neural networks might in
their turn increase our understanding in biological neural networks *.
However, in further developing artificial neural networks (ANN) we

are by no means limited to mechanisms that are plausible in the natural
world. To the extent that biological processes or constraints suggest use-
ful approaches, we can adopt them; but we are of course free to dispense
of any property or mechanism that seems to impede us from arriving at
our goal—and at the same time we can add any purely artificial mecha-
nism that allows us to reach it .

A successful example of this biologically inspired approach is a convo-
lutional neural network 3, a type of artificial neural network that has
been very successfully applied in the field of computer vision 4. Its
multi-layered structure is based on the architecture of the visual cortex
in the primate brain 5 ©. But the ubiquitous back propagation algorithm
typically used to train ANN like convolutional neural networks was
not conceived from an equivalent biological mechanism. This algorithm
seems to work so well, however, that it bears a question in the field of
neuroscience in its turn: is the back propagation of signals in biologi-
cal neurons related to learning? 7 & The symbiotic relationship between
artificial and biological neural networks is thus certainly of the mutual
kind.

* Review of advances in neural networks:
Neural design technology stack. Almasi
et al.,2016.

2 Artificial Intelligence (A Modern Ap-
proach). Russell and Norvig,2010.

Figure 1.1: Schematic representation
of how research in computational
neuroscience inspires the design of
artificial neural networks. Source:
Almasi et al, 2016.

3 Convolutional networks for im-

ages, speech, and time series. LeCun

et al.,1995.

4 Imagenet classification with deep con-
volutional neural networks. Krizhevsky
et al.,2012.

5 Mathematical description of the responses
of simple cortical cells. Margelja,1980.

6 Receptive fields, binocular interaction and
functional architecture in the cat’s visual
cortex. Hubel and Wiesel,1962.

7 Experience-dependent changes in ex-
tracellular spike amplitude may reflect
regulation of dendritic action potential
back-propagation in rat hippocampal
pyramidal cells. Quirk et al.,2001.

8 Cortical action potential backpropagation
explains spike threshold variability and
rapid-onset kinetics. Yu et al.,2008.
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The recent successful applications of artificial neural networks in a
wide range of domains?—from face recognition over cancer screening
to self-driving cars—are all involving artificial neural networks that are
based on more or less the same abstractions of biological neurons and
networks. Within this group of artificial networks, there are of course
differences in architecture and design. These are often implemented to
facilitate the processing of data with a particular structure: e.g. the con-
volution operations in a convolutional neural network are well suited
for image tasks, while the recurrence operations in recurrent neural net-
works provide a form of memory that is useful in time series prediction.
But neuroscience research has shown that there are in fact a lot more
computational mechanisms in the biological brain that could, after some
form of abstraction, be used to construct artificial neural networks © 11,
It is for example known that computations in the biological brain are
based on information encoded in the exact spike times of the neurons, in
their average spike rates, or sometimes in a combination of both >. While
the class of artificial neural networks commonly used today are based on
spike rate encodings, it can be shown that abstractions of biological neu-
ral networks that incorporate exact spike timings yield equally expressive
and more efficient artificial neural networks '3 4. Such artificial neural
networks are usually called spiking neural networks (SNN).

Despite their advantages, the application of SNN is not yet on a par
with commonly used ANN. While they are in theory equally expressive
but more efficient (in terms of number of artificial neurons needed to
compute the same type of function), they usually require more computa-
tional resources to simulate: the more realistic the model of the artificial
neuron, the more expensive it becomes to simulate large networks to
compute the desired outcomes. The Hodgkin-Huxley model, e.g., is a
famous and detailed model of deterministic spike generation involving
four coupled differential equations *>: using this model as the building
block in large scale simulated networks is almost infeasible. Integrate-
and-fire models *® on the other hand are the simplest models that in-
corporate exact spike times, but they are not able to capture all parts of
realistic neuronal dynamics '7. A very different approach is developed
by Izhikevich 8: the artificial spiking neuron model is not biologically
plausible in itself, but it is very efficient; on the other hand, simulations
of networks with these specific (biologically implausible) building blocks
yield a large range of network dynamics commonly encountered in bi-
ological neural networks. The biological plausibility in function of the
implementation cost for different spiking neuron models is shown in Fig.
1.2.

Another aspect of the practical use of artificial neural networks is of
course the learning of the network parameters. While back propagation
of signals can take place in biological networks, the commonly used back
propagation algorithm does not seem biologically feasible—amongst
other things biological neural networks do not seem capable of comput-
ing derivatives '9. Of course, that does not prohibit us from implement-

9 Deep learning. LeCun et al.,2015.

10 Review of advances in neural networks:
Neural design technology stack. Almasi
et al.,2016.

" Theory and simulation in neuroscience.
Gerstner et al.,2012.

> Neuronal dynamics: From single neu-
rons to networks and models of cognition.
Gerstner et al.,2014.

'3 Networks of spiking neurons: the third
generation of neural network models.
Maass,1997b.

4 Deep Learning in Spiking Neural
Networks. Tavanaei et al.,2018.

5 A quantitative description of membrane
current and its application to conduction
and excitation in nerve. Hodgkin and
Huxley,1952.

6 Neural engineering: Computation, repre-
sentation, and dynamics in neurobiological
systems. Eliasmith and Anderson,2004.

7 How good are neuron models?. Gerst-
ner and Naud,2009.

8 Simple model of spiking neurons.
Izhikevich,2003.

19 Review of advances in neural networks:
Neural design technology stack. Almasi
et al.,2016.



ing it in simulated SNN 2° >* 22 In a biological neural network, however,
the relative timing of the spikes in spiking neurons alters the weights, a
process called Spike-Timing Dependent Plasticity (STDP) 23 24. This thus
makes for another learning mechanism that can be used in SNN 5. In
short, spiking neural networks are in theory equally expressive and more
efficient; and in practice they can be implemented with different learning
algorithms, but they often require more resources than the commonly
used artificial neural networks when simulated. Their true power will
probably only be fully leveraged if we can also use biologically inspired
hardware instead of the commonly used von Neumann architectures. A
successful example of such a very efficient neuromorphic hardware im-
plementation of a spiking neuron network was developed by Merolla

et al. 20,

The symbiotic relationship between artificial and biological neural net-
work research has been very fruitful so far. For its further advancements,
however, there seems to be a practical piece missing: until very recently,
it was not technically possible to simultaneously record the spiking ac-
tivity of more than a couple of neurons at once. This severe constraint
is of course due to the very small scales involved: in space (typical neu-
ral structures have sizes of the order of a couple of um), time (a typical
spikes lasts around 1ms) and activity (spikes correspond to voltages in
the order of ten to hundreds of mV). On top of these scale constraints,
the intricate three dimensional structure and the density of neural net-
works, render it extra challenging to analyse the recorded data. But, for
both the understanding of biological neural networks in se, as for in-
sights in their computational properties that could be used to advance
the field of artificial intelligence, detailed information on the activity
and connectivity of large networks of neurons seems imperative. In fact,
one needs a directed graph of information flow 27, where the nodes repre-
sent single neurons and the edges represent the directed transmission of
neural signals. Such a graph can only be constructed if one can measure
the activity of multiple connected neurons, and if one can subsequently
attribute the resulting spiking patters to the neurons that produced them.

In this master thesis project, we constructed a directed graph of the in-
formation flow between active human cortical neurons growing on top of
a high-resolution multi-electrode array. The project brings together—for

INTRODUCTION ¢

Figure 1.2: Schematic representa-

tion of biological plausibility versus
implementation cost for different com-
monly used models of artificial spiking
neurons. Source: Almasi et al, 2016.

2 Error-backpropagation in temporally
encoded networks of spiking neurons.
Bohte et al.,2002.

** Training deep spiking neural networks
using backpropagation. Lee et al.,2016.
** Deep Learning in Spiking Neural
Networks. Tavanaei et al.,2018.

3 A neuronal learning rule for sub-
millisecond temporal coding. Gerstner
et al., 1996.

2 Regulation of synaptic efficacy by
coincidence of postsynaptic APs and
EPSPs. Markram et al.,1997.

25 Simulation of networks of spiking
neurons: a review of tools and strategies.
Brette et al.,2007.

6 A million spiking-neuron integrated
circuit with a scalable communication net-
work and interface. Merolla et al.,2014.

27 Cliques of neurons bound into cavities
provide a missing link between structure
and function. Reimann et al.,2017.
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Software:
Automated
Spike Sorting

Wetware:
Human Neurons

Hardware:
HD MEA

the first time—some recent spectacular advancements in science: induced
pluripotent stem cells (iPSC) that can be driven to become human corti-
cal neurons and their supporting glia cells 2%; the development of multi
electrode arrays for the extracellular recordings of large neuronal ensem-
bles with an unprecedented resolution 29; the development of algorithms
to, from these extracellular recordings, attribute the activity to the correct
neurons in a fully automated way 3°, and finally, the needed computa-
tional resources and procedures to handle large amounts of data 3*. The
aspects specific to this project are shown in Fig. 1.3.

The use of stem cell derived cortical neurons in an in vitro setup has
its advantages, but it also has obvious drawbacks: how the network
formed by these neurons relates to the structures that develop in vivo is
not exactly known 32 33. A first substantial advantage of the in vitro ap-
proach, however, is the fact that the two dimensional network structure
developed by these neurons is much easier to analyze. Another substan-
tial advantage is the complete control we have over the input the network
receives, by either stimulating it at certain sites or by not stimulating it
at all. In this thesis a network that was not stimulated at all is studied.
Even in this case—when there is no meaningful computational task at
hand—the neurons form spontaneous connections and show sponta-
neous activity. By studying spontaneous networks we can obtain insights
in the fundamental mechanisms of network formation and in the charac-
teristics of spontaneous activity; these results could then also be used as
a baseline in future studies where the networks are changing depending
on the provided structured input.

The main body of work for this thesis then consisted in constructing
a pipeline of numerical procedures that take a recording of the neuronal
activity, and output a directed graph of information flow, together with
detailed information about the nature of these connections in terms of
transmission delays. This pipeline consists of the following steps:

Figure 1.3: The recent scientific ad-
vancements that lie at the basis of this
project.

8 The human brain in a dish: the promise
of iPSC-derived neurons. Dolmetsch and
Geschwind,2011.

2 High-resolution CMOS MEA platform
to study neurons at subcellular, cellular,
and network levels. Miiller et al.,2015.

3 A spike sorting toolbox for up to thou-
sands of electrodes validated with ground
truth recordings in vitro and in vivo. Yger
et al.,2018.

3' Big data: A review. Sagiroglu and
Sinanc,2013.

32 Modeling human cortical development in
vitro using induced pluripotent stem cells.
Mariani et al.,2012.

33 Using iPSC-derived neurons to uncover
cellular phenotypes associated with
Timothy syndrome. Pasca et al.,2011.
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1. identifying the spiking patterns belonging to separate neurons,
2. calculating the auto- and cross-correlations between pairs of neurons,

3. calculating the so-called network autoregressive kernels, which reflect
the flow of information between the different neurons and capture the
information about their transmission delays,

4. and finally the construction and visualization of a directed graph of
information flow.

We will present a summary of the results obtained from applying
this pipeline to a particular recording, and we will finally discuss how
this resulting model of a biological network can be mapped to artificial
networks of spiking neurons.

1.1 Reading Guide

In the next chapter, we discuss some important properties of biological
neural networks in general, and of connected cultured cortical neurons
in particular. This chapter thus contains the neuroscientific background
needed to put the remainder of this thesis and its results in context.

In chapter 3, we elaborate on the relationship between biological and
artificial neural networks, and we summarize some theoretical results on
expressibility, efficiency and learnability of neural networks in general.
This chapter provides the theoretical framework needed to analyze our
results.

Chapter 4 and 5 then contain more detailed discussions of the pro-
cedures and algorithms that were used to analyze the neuronal data.
Chapter 4 elaborates on the process of spike sorting, a suite of algorithms
that allows one to attribute the measured spikes to the correct neurons.
Chapter 5 contains the description of the machine learning techniques
used to calculate the connectivity and transmission delays from the mul-
tivariate time series data.

Finally, in chapter 6, we provide a summary of the obtained connec-
tivity models, and we discuss how these results relate to specific types of
artificial neural networks.
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Cultured Cortical Neural Networks

In this chapter, we briefly discuss some important properties and mech-
anisms of single biological neurons and of biological neural networks.
We will focus the latter discussion on cultured cortical neural networks,
since an extended discussion of biological neural networks in general is
outside the scope of this thesis. [This chapter is an adapted version of
chapter 2 in the master thesis physics.]

2.1 Single Neurons

2.1.1  Neuron Morphology

There exist a great many type of neurons, and they could be classified

in a great many ways: based, e.g., on their shape, function, location,
activity or neurotransmittor production . Their actual shape depends on
their function and the environment they develop in; it is for example the
case that stem cell derived neurons kept in vitro will in general develop
different from in vivo neurons of the same type 2 3. But it is of course
useful to discuss the common and most significant elements of all these
different neuron morphologies. A schematic representation of these
different structures is given in Fig. 2.1.

The structures that we will most often use to interpret our results are
the following:

* The dendrites, often forming a structure that is metaphorically called a
‘dendritic tree’. These structures receive the extracellular signals and
transmit them to

* the soma, or neuron cell body, where all these extracellular signals are
integrated and passed on to

' Fundamental neuroscience. Squire
et al.,2012.

2 Modeling human cortical development in
vitro using induced pluripotent stem cells.
Mariani et al.,2012.

3 Using iPSC-derived neurons to uncover
cellular phenotypes associated with
Timothy syndrome. Pasca et al.,2011.
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* the axon initiation segment (AIS), where the action potentials (see later)
originate. This structure is followed by

* the axon; which transfers the action potentials from the AIS to the
synaptic terminals, and finally this structure branches to end up in

* the synapses. Here the signals are transferred from the axon terminals
to the dendrites of the next neuron.

Cell body

Telodendria

Synaptic terminals

Golgi apparatus
~—

Endoplasmic
reticulum

Mitochondrion Y™ Dendrite

\
! >
/ % Dendritic branches

2.1.2  Spikes and Action Potentials

Spikes—short electrical signals emitted by neurons—form the building
blocks of the computational processes we eventually want to study. Often
they are taken to be binary events stemming from (point like) neurons:
either the neuron emits a spike (1), or it is silent (0). This abstraction
removes both the extended neuron morphology as well as the underlying
mechanism of action potential generation from the picture; but, as will
become clear later, both these concepts—and their combination in terms
of action potentials traveling in and between different neurons—will turn
out to be important for our analysis. Here we will first discuss the action
potential in itself; in the next section, we will explain how the action
potentials are generated and transported within a single neuron.

In essence, action potentials are the result of a rapid de- and repolar-
ization of the neuron cell membrane: the potential difference across the
membrane abruptly ‘spikes’ from its resting value, and then it rapidly
falls down again. After this voltage spike the membrane voltage is for a
short period in time even lower than its baseline value before the spike;
this is called the hyperpolarization phase or refractory period. The typ-
ical shape of an action potential is schematically shown in Fig. 2.2. We
will not discuss the general model underlying action potential genera-
tion in great detail here 4, but instead we will continue with a general
overview that we can subsequently connect to the neuron morphology.

Figure 2.1: Schematic representation of
a multipolar neuron, and how its axon
is leading up to the next neuron.

4 ref thesis fysica
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The rapid increase in the voltage is possible due to a feedback mecha-
nism between the permeability of the membrane and the potential differ-
ence across the membrane. At rest, the membrane has a negative resting
potential difference denoted V;. A slight increase in this voltage, due to
the arrival of a stimulus or sometimes due to stochastic effects, opens
up certain so-called ion channels in the membrane, which allow ions to
diffuse from the outside of the cell to the inside. This depolarizes the
membrane further. The feedback consists of the ion-channels being volt-
age dependent, i.e., more channels open as the voltage increases, yielding
an ever faster voltage increase or depolarization. In the same process,
however, different types of ions and of ion channel states are involved:
the channels that were initially opening up become inactivated, and other
voltage-dependent channels that can transport ions from inside the cell
to the outside start to open. This makes the membrane potential differ-
ence rapidly decrease again. It finally reaches a value that is below the
original membrane voltage V,. After that, the systems needs a certain
period of time to restore itself to its original state.

The feedback mechanism only really "takes off” once a certain voltage
threshold is crossed. If an incoming stimulus is not strong enough to
depolarize the membrane above the threshold, no action potential will
be initiated (see Fig. 2.2). The needed strength of the stimulus to lead up
to an action potential initiation depends naturally on the voltage across
the membrane: during the hyperpolarized phase or refractory period,
the stimulus needs to be even stronger for the threshold to be crossed.
This is called the relative refractory period; a period during which the
same stimulus is less likely to induce a action potential, compared to
when it would arrive when the cell membrane patch was in its resting
state. During the first part of the refractory period, corresponding to the
time period in which the neuron is generating an action potential, it is
not physically possible for the membrane to generate an second action
potential. This period is called the absolute refractory period.

Figure 2.2: Schematic representation of
a typical action potential.
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2.1.3 Initiation and Transmission of Action Potentials

Action potentials make up the communication units between different
neurons, and they can be seen as the result of a local computation:

¢ the input consists of action potentials from other neurons the neuron
at hand receives through its synapses. The chemical synapses are
located at the end of its dendrites;

¢ the computation is the local integration of the signals through the
dendritic tree and the soma. If the integrated signal reaches the axon
initial segment (AIS) and is above the action potential initiation thresh-
old, a new axon potential will be initiated at this site.

¢ This initiated action potential is the output of the system and can be
transferred to the next neuron by traveling down the axon and its
branches to the axon terminals and synapses.

The action potential initiated at the AIS can travel down the axon be-
cause it is regenerated: the currents resulting from the change in voltage
spread across the axon and depolarize adjacent patches of the membrane,
often (but not always) inducing a new action potential and thus continu-
ing the signal propagation 5 ®. Once the traveling action potential arrives
at the end of the axon, it is potentially transmitted in a chemical synapse:
a junction between the axon of the original neuron and the dendrites of
the next neuron (often called the postsynaptic neuron), where, induced
by the action potential, neurotransmitter molecules are released to bind
on the receptors of the postsynaptic cell. This process is illustrated in
Fig. 2.3.

Neurotransmitter
Neurotransmitter

Synaptic s n»/_ 5 transporter Axon
vesicle ~ /[ \f terminal
Voltage- \
gated Ca** 1 (]
channel - e . Synaptic
Postsynaptic (I) AR R —Receptor cleft
density }Dendrite

The binding of the neurotransmitters to the receptors of the postsy-
naptic cell again induces a change in the voltage of the postsynaptic cell
membrane due to activation of certain voltage dependent ion channels.
However, the binding might induce two opposite changes: if it increases
the voltage (and thus depolarizes the cell membrane), the synapse is
called excitatory; if the binding affects the voltage in the opposite way
(polarizing the cell membrane further), the synapse is called inhibitory.
Either way these changes propagate passively to nearby regions of the
postsynaptic dendritic membrane as so-called post-synaptic action po-
tentials. Unlike in the axon this process is not regenerative: typically the

5 Evidence for electrical transmission in
nerve. Hodgkin,1937.

¢ Axon physiology. Debanne et al.,2011.

Figure 2.3: Schematic representation of
a chemical synapse.
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signals decay exponentially with the distance from the synapse. But an
excitatory signal might eventually reach the soma and the axon initial
segment. If the voltage stimulus is still sufficiently large, a new action
potential might be initiated at this site. It is far more likely, however, that
different excitatory signals from presynaptic neurons have to arrive to-
gether to ignite an action potential at the axon initial segment. As we
mentioned earlier, this can be seen as a kind of local computation; and
the complexity of this computation is enhanced through the existence

of inhibitory signals that can modulate the input-output relation even
further (see Fig. 2.4).

Figure 2.4: Schematic representation
of excitatory and inhibitory synaptic
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Chemical synapses are not the only way in which neurons could trans-
fer their action potentials. A faster connection is achieved when the neu-
rons have both their membranes connected in an electrical synapse: so-
called connexons then allow the ionic current of the presynaptic action
potentials to be directly transfered to the postsynaptic cell. A schematic
representation of an electrical synapse is shown in Fig. 2.5. This process
is much faster than the transferal in a chemical synapse, because there
is no need for the (relatively) slow diffusion of neurotransmitters. It can
only be formed, however, in cells that are close to each other: usually, the
cells approach within 4-5 nm of each other, whereas 20 to 4onm separates

the cells connected by a chemical synapse 7. 7 Principles of neural science. Kandel
et al.,2000.

Figure 2.5: Electrical synapse.
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2.1.4 QOverview of Typical Timescales and Dimensions

The following overview of typical timescales and dimensions that will
turn out to be important for interpreting our results are compiled from
Kandel et al. [2000] 8 and Debanne et al. [2011] 9. 8 Principles of neural science. Kandel

et al.,2000.

Spatial Dimensions. Typically

¢ The soma has a diameter of 50 um or more.
* The axon has a diameter between 0.2 ym and 20 pm.

* For a chemical synapse, the distance between cell pre- and postsy-
naptic cell membranes is between 20 nm and 40 nm. These cell mem-
branes are the membranes of the synaptic terminals of the axon and
the dendrites (or soma) of the next cell.

* For an electrical synapse, the distance between cell pre- and postsy-
naptic cell membranes is between 4 nm and 5 nm. These cell mem-
branes are the membranes of the somas.

Transmission Speeds and Delays. Typically

e the electrical synaptic delay is virtually absent. The transmission is
usually bidirectional.

¢ the chemical synaptic delay is at least 0.3ms, and usually 1-5ms or
longer. The transmission is unidirectional.

¢ axonal conduction velocity depends on the axon diameter and on axon
myelination ( a structural property that greatly enhances conductance
speed). For unmyelinated axons, the conduction velocity is typically
0.4 to 2.0 m/s.

Amplitudes and Signal to Noise. Typically

¢ action potential amplitudes depend on the location in the neuron and
the received external stimulus. Extra-cellular voltage recordings are
typically between 5 and 500 mV.

¢ the action potential amplitude is highest in the axon initial segment
(AIS), lower in the soma and in the rest of the axon, and very small in
the dendritic structures.

¢ The signal to noise ratio naturally depends on the measuring device;
in our setup (see chapter 5) the largest amplitudes are up to 180 07;s,
while the axonal signals (not including the AIS) are usually 1-2 77,5jg,.
Dendritic signals are unlikely to be detected or are buried in the noise.

9 Axon physiology. Debanne et al.,2011.



CULTURED CORTICAL NEURAL NETWORKS 19

Spike Rate Properties. Typically

¢ the absolute refractory period equals the duration of the action poten-
tial (1ms)

¢ the relative refractory period takes around 4-5ms

¢ the spike rate of spontaneous activity is a couple of spikes per second
(see below).

2.2 Neuronal Variability, Rate Codes and Temporal Codes

It has long been known that the response of single neurons as well as the
response of neuronal networks to the exact same electrical stimulus is

usually different from trial to trial '© ** 12 (

see Fig. 2.6). In some cases,
the spikes seem to happen in an almost random fashion, in the sense
that the exact timing of one spike does not depend on the time of the
previous spike 3. In terms of neural encoding—the idea that the outside
world, entering in the form of external stimuli, should somehow be rep-
resented in the activity of the neurons in order for it to be processed—
this seems highly counterintuitive: if a structured stimulus results in
random activity, how is the neural system then encoding this stimulus,

and how could it possibly compute something about the outside world?

The common answer is that in this case most of the information seems
to be captured not in the exact spike times, but in the rates at which the
neurons fire those spikes. In other words, if someone would like to re-
construct the external stimulus from the neuronal dynamics, he or she
would succeed better when using the spike rate following the stimulus,
than when considering the exact timing of the spikes 4. However, not all
spiking happens completely randomly. Depending on the type, location
and function of the neurons, different studies have shown that the timing
of the spikes sometimes contains information as well 5. The informa-
tion about the stimulus is thus contained in a so-called temporal code, a
rate code, or in a combination of both 17 18,

If one considers the speed of computations, however, experiments
seem to suggest that fast computations by networks of neurons in the
cortex must be implemented through temporal codes *9 *°. The argu-
ments goes as follows: it has been shown that a single cortical area in-
volved in visual processing can complete its computation in just 20-30ms

1° Reading a neural code. Bialek

et al.,, 1991.

* A relationship between behavioral choice
and the visual responses of neurons in
macaque MT. Britten et al., 1996.

2 Temporal precision of spike trains in
extrastriate cortex of the behaving macaque
monkey. Bair and Koch,1996.

3 apart from the fact that it has a
reduced probability of occurring
during the relative refractory period

Figure 2.6: Neuronal variability:

the exact same constant stimulus is
applied to a single in vitro neuron in
four different trials; the resulting spike
trains are shown on top of each other.
Source: Gerstner et al., 2014.

4 Spikes: exploring the neural code. Rieke
and Warland,1999.

'5 Deciphering the spike train of a sensory
neuron: counts and temporal patterns

in the rat whisker pathway. Arabzadeh
et al.,2006.

16 Bursting neurons signal input slope.
Kepecs et al.,2002.

17 Spike timing and spike rate make
complementary contributions to perceptual
decisions in rat S1 and Sz cortex. Zuo

et al.,2015.

8 Neural coding: rate and time codes work
together. Seth,2015.

9 Processing speed in the cerebral cortex
and the neurophysiology of visual masking.
Rolls and Tovee,1994.

2 Brain mechanisms for invariant visual
recognition and learning. Rolls,1994.
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1. But the firing rates of neurons involved in these computations are
usually below 100Hz (thus firing less than o.1 times per millisecond).

To determine the frequency of a completely regular process one needs

at least two spike occurrences, meaning that at least 20ms need to pass
before the exact spike rate of these neurons can be determined (in case of
an irregular process, one evidentially needs more spikes to estimate the
average rate). It is thus very unlikely that this fast computation can be
achieved based on the information contained in the average spike rates of
the neurons involved. However, as we will discuss in the next chapter, al-
most all of the artificial neural network models currently in use are based
on spike rate implementations.

2.3 Connected Cultured Cortical Neurons

We will now discuss some important results on the nature and activity
of connected cultured cortical neurons as they have been described in
scientific literature.

As we mentioned before, measuring the activity of cortical neural
networks in vivo is a technically challenging task, and the complicated
and dense structure of those networks makes it even more daunting (or
even sheer impossible) to analyze their detailed activity patterns and the
related fundamental network properties. Studying such networks in vitro
alleviates this task greatly—but has the drawback of creating a perhaps
unrealistic situation. However, it has been shown that cortical networks
cultured in vitro are comparable to immature, developing neocortex
networks in vivo ?* 3. Studying developing networks in vitro can thus
at least shed light on the interplay between early network formation and
activity.

There are in general three different types of in vitro networks one can
obtain: animal brain slices will have an intricate, fully developed network
structure that is more difficult to analyze, but is of course very close to
the in vivo structure; dissociated cultures are obtained from (chemically)
dissociating a premature or mature animal brain region of interest and
extracting its neural cells *4; and finally, as in our case, one can use a
stem cell culture, where neural cells and their supporting glia cells are
derived from induced pluripotent stem cells. We will denote the latter
two categories as cultured neurons.

The cultured cells exhibit spontaneous activity, meaning that they pro-
duce spikes even in the absence of external stimuli. This is related to fluctu-
ations in the membrane potential due to the sometimes random opening
and closing of the ion channels > [Chow and White, 1996]. What is im-
portant is that this activity is typically of a relatively slow rate (a couple
of spikes per second) and that it can be modeled as a random process
with a ‘generalized’ relative refraction period: the exact spike time of

2! Biological constraints on connectionist
modelling. Thorpe and Imbert,1989.

** Spontaneous neuronal activity in
developing neocortical networks: from
single cells to large-scale interactions.
Luhmann et al.,2016.

23 Spontaneous neuronal discharge patterns
in developing organotypic mega-co-
cultures of neonatal rat cerebral cortex.
Baker et al.,2006.

24 Dissociated cortical networks show
spontaneously correlated activity patterns
during in vitro development. Chiap-
palone et al.,2006.

25 Limitations of the Hodgkin-Huxley
formalism: effects of single channel kinetics
on transmembrane voltage dynamics.
Strassberg and DeFelice,1993.
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the next spike depends on the current spike time, in the sense that the
probability of it occurring very quickly (within a range of around 100ms)
after the current spikes are lower. The typical timescale of the “original’
refractory period as mentioned above, is around 5ms, hence why we call
this property of the spontaneous activity rather a ‘generalized’ refractory
period. Also, unlike for the original refractory period, this generalized
refractory period does not imply that the probability of the neuron spik-
ing following an external input signal is decreased (it merely describes
the statistical dependence between its ‘own’ spikes, i.e., the spikes it
generates spontaneously).

After a few days in culture, neurons start to connect to each other
with functionally active synapses, forming a random network. Over
time the networks shift from electrical to chemical transmission, while
at the same time the axonal connectivity increases. At this stage the
(dissociated) networks typically show repetitive burst discharges 20 7
2829 je., they show spike trains where a couple of spikes occur in very
rapid succession, followed by relatively longer periods of ‘silence’. These
burst can be synchronized over large fractions of the culture. An example
of these kinds of patterns developing over time in a network of cultured
neurons is shown in Fig. 2.7.

The precise structure of these spatio-temporal patterns depends on a
number of factors 3°, including:

e the properties of the neurons, i.e., their structure, membrane proper-
ties, and their timescales of recovery and refraction,

¢ the flow of activity through the network, determined by the effective
connectivity,

¢ the timescales of signal propagation, i.e., the axonal and synaptic
transmission speeds and the timescale of dendritic integration,

¢ the balance between inhibitory and excitatory connections.

Figure 2.7: Raster plots showing the
recorded spike trains of a developing
dissociated cortical network at dif-
ferent days in vitro (DIV). Time runs
horizontally, while the vertical axis
corresponds to the different recorded
neurons. (A) 7 DIV; (B) 14 DIV; (C) 21
DIV; (D) 28 DIV; (E) 35 DIV. Adapted
from Chiapalone et al., 2016.

26 The mechanisms of generation and
propagation of synchronized bursting in
developing networks of cortical neurons.
Maeda et al.,1995.

*7 Dissociated cortical networks show
spontaneously correlated activity patterns
during in vitro development. Chiap-
palone et al.,2006.

3 Network dynamics and synchronous
activity in cultured cortical neurons.
Chiappalone et al.,2007.

29 Spontaneous neuronal activity in
developing neocortical networks: from
single cells to large-scale interactions.
Luhmann et al.,2016.

3 Dynamics and plasticity in developing
neuronal networks in vitro. van Pelt

et al.,2005.
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Several models and simulations based on the above factors have pro-
vided insight in how this synchrony could arise 3* 32 33 34 35 36, We want
to emphasize two important facts: first, it is worth noting that the spatio-
temporal patterns depend on the ratio between inhibition and excitation
in the network; but the presence of inhibitory neurons is not a necessary
condition for synchronization to emerge. Furthermore, it has been shown
experimentally 37 that very young cultures exhibit a random topology,
which over time evolves to a so-called small-world topology (i.e. the
neurons start to form local clusters) 38. This kind of network balances
integration of network areas with segregation of specialized process-
ing units, which increases the network efficiency 39. The fact that this
topology can arise without external stimulation points to the presence of
intrinsic biological mechanisms that drive these developments.

2.4 Qverview of Important Properties

In the next chapter, we will discuss the currently existing mappings be-
tween biological neural networks and artificial neural networks. We will
summarize here the properties of biological neural networks, discussed
above, that will be used in these mappings:

Single Neurons.

e integration and summation of post-synaptic potentials in the dendritic
tree,

¢ the existence of a threshold to initiate action potential generation,

¢ the information about the input can be contained in the average rate of
spikes that make up the output (rate code),

¢ the information about the input can be contained in the exact spike
times (temporal code).

Connected Neurons.

e the output of a single neuron can be transferred to several other neu-
rons through the axonal branches (a one-to-many relationship),

¢ similarly, the input of a single neuron can consist of an integration
and summation of the received signals from several other neurons (a
many-to-one relationship),

e significant transmission delays occur when the outputs of the neurons
travel down the axons, are transmitted over chemical synapses, and
travel as post-synaptic potentials across the dendritic trees.

31 Oscillations, complex spatiotemporal
behavior, and information transport in
networks of excitatory and inhibitory
neurons. Destexhe,1994.

32 The mechanisms of generation and
propagation of synchronized bursting in
developing networks of cortical neurons.
Maeda et al.,1995.

3 Inhibition can disrupt hypersynchrony
in model neuronal networks.. Deyo and
Lytton,1997.

3 Emergent oscillations in a realistic
network: the role of inhibition and the
effect of the spatiotemporal distribution of
the input. Pauluis et al.,1999.

35 Dynamics of sparsely connected net-
works of excitatory and inhibitory spiking
neurons. Brunel,2000.

3% Changing excitation and inhibition

in simulated neural networks: effects

on induced bursting behavior. Kudela
et al.,2003.

37 Emergence of a small-world functional
network in cultured neurons. Downes
et al.,2012.

38 Emergence of a small-world functional
network in cultured neurons. Downes
et al.,2012.

3 Complex networks: Structure and
dynamics. Boccaletti et al.,2006.
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Comparing Biological and Artificial Neural Networks

3.1 Commonly Used Artificial Neural Networks

3.1.1  Summation and Thresholding

In the first artificial neural networks, the artificial neurons were based

on two core properties of biological neurons: the combining of incoming
signals and the subsequent thresholding *. This first artificial neuron was
coined the perceptron *. In modern notation, the perceptron amounts to
the following operation:

1 wlx+b>0
fneuron(x) = (3~1)

0 otherwise.

where x is a vector of scalar inputs, w is a vector of weights, and b is

called the bias term. The operation applied to the expression w”x is
usually called the activation function, denoted ¢; the activation function

of the perceptron is visualized in Fig. 3.1.

The linear weighted sum of the input, wTx forms the abstraction
of the summation of incoming signals in the dendritic tree. Note that
this definition reduces incoming signals to a vector of scalar values that
arrive at exactly the same time. The thresholding, then, is captured by
the fact that the output only equals 1 if the result of the weighted sum is
larger than |b| (if b is taken to be negative). b is thus related to the action
potential initiation threshold, but might as well be set to a value that is
not physically plausible.

As most artificial neural networks, networks of perceptrons are or-
ganized in layers of connected neurons. This is the natural abstraction
of the many-to-many connections and the layered organization often
found in biological neural networks. An example of a network with
an input layer, an output layer, and a single hidden layer in between is
shown schematically in Fig. 3.2. The neurons or nodes in each layer are

* A logical calculus of the ideas immanent
in nervous activity. McCulloch and
Pitts,1943.

* The perceptron: a probabilistic model for
information storage and organization in
the brain.. Rosenblatt,1958.

Figure 3.1: Shape of the perceptron
activation function, shifted from the
origin by the bias term b.
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Figure 3.2: Schematic representation
of an artificial neural network with a
single hidden layer.

Input Layer Hidden Layer Output Layer

A(l) 0(1)

connected to the nodes of the next layer by a matrix of weights W (), con-
sisting of the corresponding weight vectors of each individual neuron
(Eq. 3.1) in the next layer. The output f(x) (a vector-valued function) of
an n-layer network can thus be described as a chain of operations on the
input x:

fx)=cmAam ... o2 AR 1AMy (3.2)

where A() is the affine operation applied to the outputs of layer i — 1
(denoted x(—1):
A — Wiy (=1 4 @) (3.3)

where b(!) is a vector of the bias terms of each neuron in layer i, and ¢!
a vector of operators, i.e., ¢(!) represents the activation function of each
neuron in the layer i.

Multilayer perceptron networks and related models (such as Hop-

field networks 3 and Boltzmann machines 4) by definition only produce 3 Neural networks and physical systems
with emergent collective computational

binary output; and, as we mentioned before, it is implied in the defini- o )
abilities. Hopfield,1982.

tion of the perceptron that all incoming signals arrive at the same time. + A learning algorithm for Boltzmann
However, perceptron networks can still be related to biological networks machines. Ackley et al., 1985.

of spiking neurons in case the biological network exhibits synchronized

behavior. For this we have to make an abstraction of action potentials

with binary values—a value of 1 corresponds to the neuron spiking

within a certain short time window, and a value of o corresponds to it

being silent. If the firing patterns of all neurons that provide the input

for a subsequent neuron are synchronized (up to a few ms), the incom-

ing signals will thus arrive at the same time, and the computations in

the biological network can in that case thus be modeled quite well by a
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perceptron network.

3.1.2 Rate Coding

We can now turn our attention to rate coding, i.e., the cases where infor-
mation is encoded in the spike rate rather than in the actual spike times.
To construct an artificial neural network that computes based on spike
rates, we have to reinterpret the output of the artificial neuron as the in-
stantaneous spike rate of the spike train it produces. In other words, the
activation function ¢ is now a (usually monotonically increasing) func-
tion of the integrated input, outputting the instantaneous spike rate. A
common choice for the activation function is the sigmoid function:

B 1
C l4exp Y’

o(x) (34)
which is a biologically realistic choice if one considers that that biological
neurons, especially in higher cortical areas, have been shown to fire at
various frequencies between their minimum and maximum spike rates.
But other functions, such as the hyperbolic tangent or the so-called ReLu
function, can (and often are) used as well. The latter activation functions
are often better suited for the applied learning algorithms >.

Almost all artificial neural networks commonly used today are based
on the rate coding interpretation: e.g., the computed values in feed-
forward neural networks, recurrent neural networks and convolutional
neural networks should all be interpreted as instantaneous spike rate val-
ues when comparing them to biological neural networks. They thus have
no intrinsic properties related to the exact timing of spikes, nor do they
incorporate any notion of subsequent transmission delays (the simulta-
neous transmission between layers in an ANN could in some sense also
be seen as a transmission delay, but we mean to describe processes where
the inputs arrive at different lags.)

3.1.3 Expressibility, Efficiency and Learnability

Temporal properties such as transmission delays can give rise to very
interesting and complex dynamical processes °. Still, the artificial neural
networks commonly used today perform extremely well on a wide range
of tasks, without incorporating spike timing or even a notion of trans-
mission delay. Before we continue to describe artificial neural networks
that incorporate temporal properties, it is perhaps a good moment to ask
what we might potentially gain from doing this.

We can discuss the general quality of a neural network using three
important factors:

5 Deep Learning. Goodfellow et al.,2016.

/_

Figure 3.3: Shape of the sigmoid
activation function, shifted from the
origin by a bias term.

¢ Nonlinear dynamics and chaos: with
applications to physics, biology, chemistry,
and engineering. Strogatz,2018.
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* expressibility: what class of functions (in terms of complexity) could
the network possibly express?

¢ learnability: can the neural network learn the parameters of the func-
tions it is meant to express, and if so, how fast does it converge?

¢ efficiency: how many resources does the network require, in terms
of number of neurons and number of parameters, to express those
functions?

The first question (expressibility) yields the same answer for all net-
works: any smooth function. It has been shown that artificial neural
networks with nonlinear activation functions are in fact universal ap-
proximators 7 8, which means that they can approximate any smooth
function (see Eq. 3.2) to any desired accuracy—even with a single hidden
layer. Thus, if the input data (such as a the numerical values correspond-
ing to the pixels in a gray scale picture) can be transformed in a smooth
way to a desired output (e.g., to a value that we can interpret as “this is
a picture of a cat’), there exists a network that implements that approxi-
mates this function. The accuracy of the approximation is related to the
number neurons in the network. This universal approximation prop-
erty is in itself very useful, but it is by no means the end of the artificial
neural network story. The application of ANN can still fail due to inad-
equate learning, an insufficient number of neurons or simply the lack of
a deterministic relationship between input and target. In short, all ANN
are equal in theory, but in practice some are definitely more equal than
others.

In a practical situation we don’t know beforehand the function we
wish to approximate—which is of course exactly why we would want
to use a technique like an ANN in the first place. Let’s assume we at
least know that the function embodies a deterministic relationship. The
challenge of successfully applying ANN then lies in finding an efficient
network architecture, and subsequently in using a suitable learning al-
gorithm, that, starting from a set labeled examples, makes the network
approximate the desired function. Based on the properties of the data we
can usually determine beforehand which general type of network might
be efficient. E.g., a convolutional neural network (CNN) 9 is well suited
for tasks and data with what is called ’spatial translational invariance’:
if we wish to automatically detect a cat in a picture, it should not matter
whether the cat is in the left upper corner or in the lower right one. In
other words, if the object of interest is translated in space, the network
should be able to detect it all the same (hence the term “invariance’). The
architecture of a CNN reflects this invariance and is thus the network of
choice for image classification tasks—this is of course all but incidental,
since its general architecture is inspired by the biological architecture and
cell types in visual cortex of primates *© .

Translational invariance is just one example of a property that can
guide us in the search for efficient networks. In fact, it has been argued

7 Approximation by superpositions of a
sigmoidal function. Cybenko,1989.

8 Multilayer feedforward networks are uni-
versal approximators. Hornik et al., 1989.

9 Convolutional networks for im-
ages, speech, and time series. LeCun
et al., 1995.

1 Mathematical description of the
responses of simple cortical cells.
Mar¢elja,1980.

1t Receptive fields, binocular interaction
and functional architecture in the cat’s
visual cortex. Hubel and Wiesel,1962.



COMPARING BIOLOGICAL AND ARTIFICIAL NEURAL NETWORKS 27

2 that, out of all possible functions, the functions that are of actual prac-
tical interest often exhibit certain properties such that they can be ef-
ficiently approximated by artificial neural networks. Such properties
include symmetry (such as translational or rotational invariance), locality,
and compositionality (i.e., the function describes a hierarchical process).
The latter at least partly explains the success of deep neural networks—
networks with multiple layers in between the input and output layer. A
network reflecting the hierarchy of the process underlying the data needs
less neurons than a network that has to approximate the same process
with a single layer of neurons.

Apart from the efficiency, there is also the learnability: once a partic-
ular network type has been chosen (thus possibly inspired by the nature
and structure of the processes that generated the data), a myriad of un-
known values regarding actual architecture and network parameters
remain to be determined before one arrives at a network that approxi-
mates the desired function well. For artificial neural networks it is usu-
ally the ubiquitous back propagation algorithm '3 '4 that lies at the heart
of this search process. E.g., in the case of the successful CNN developed
by Krizhevsky et al. *5, it guided the search towards a network with 8
layers, 500 0oo neurons, and suitable values for a staggering 60 million
network parameters. The result was a network that could classify the
1.3 million images of the benchmark ImageNet training set in 1000 dif-
ferent categories with a state-of-the-art performance. This example in
particular shows once again the interplay between artificial intelligence
and neuroscience research: the convolutional neural network is a suc-
cessful abstraction of the visual processing systems in biological brains,
and by studying these abstractions we gain insight in why the biological
functions can be performed more efficiently when the visual system is
organized in this ‘deep’, layered structure.

Comparing learnability and training in biological and artificial neural
networks is a very interesting topic, but we will not further discuss it
within the scope of this thesis. Instead, we will concentrate on the gains
in efficiency that might result from using time as a resource for commu-
nication and information in artificial neural network models. Such mod-
els, thus based on exact spike times, are usually simply called networks of
spiking neurons ®. We will describe these models in the next section.

3.2 Temporal Coding and Networks of Spiking Neurons

3.2.1  Networks of Spiking Neurons

We discussed before how the timing of computation steps is "trivialized"
in the commonly used artificial neural networks: in the first models
based on perceptrons, some form of synchrony is assumed; in the more

> Why does deep and cheap learning work
so well?. Lin et al.,2017.

'3 The roots of backpropagation: from
ordered derivatives to neural networks and
political forecasting. Werbos,1994.

4 Artificial Intelligence (A Modern
Approach). Russell and Norvig,2010.

'5 Imagenet classification with deep con-
volutional neural networks. Krizhevsky
et al.,2012.

16 Networks of spiking neurons: the third
generation of neural network models.
Maass,1997b.
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recent models of ANN, asynchronous and stochastic spike timings are
replaced by instantaneous spike rate.

Our goal here is to describe the simplest deterministic model of a
spiking neuron that (a) retains the properties of summation and thresholding—
thus weighted sums and activation functions—but (b) outputs single
spikes and incorporates the notion of transmission delays. We will base

our discussion on the results presented by Maass, 1997b 7. 7 Networks of spiking neurons: the third
generation of neural network models.

. . . . Maass,1997b.
(a) can in this case be achieved by keeping track of a value P; for each

neuron i. This value symbolizes the membrane potential at the axon ini-
tial segment. We will say the neuron i spikes whenever its potential value
P; reaches a certain threshold value 6;. (So far, this is entirely equivalent
to the assumptions made in the perceptron model.) The potential value
P; is still a weighted sum of incoming signals , but instead of represent-
ing these incoming signals by scalar values, we will now represent them
by so-called response functions (which achieves (b)). These response
functions will be denoted with k(7); in essence, they embody the change
in the potential value of the considered neuron resulting from a spike
generated by another neuron at some time in the past.

Suppose we are at a time ¢, and we wish to obtain the contribution
to P; of a incoming signal resulting from another neuron j (connected
to our currently considered neuron i) spiking at a time s in the past.
This contribution can be modeled by the term w;;k;;(t — s) (with t > s).
Biologically plausible response functions for excitatory and inhibitory
connections are shown in Fig.3.4. The shape of these functions can be
interpreted in the following way: for times t shortly after the spike time
s, the action potential initiated at neuron j is still being transferred across
the axon, synapse and post-synaptic structures; until a signal arrives at
the axon initial segment of neuron i, the response function is thus zero.
The onset of the response function corresponds to the moment the signal
arrives at the axon initial segment and starts contributing to a change
in the membrane voltage, potentially leading up to the initiation of a
new action potential, or spike, at neuron i (see Fig. 2.4). The sharp rise
and slower decline of the response functions correspond to the shape of
post-synaptic action potentials in real biological neurons.

The weight w;; corresponds as before to the strength of the synaptic
connection. In the context of learning, this weight can be replaced by a
function w;; = w;;(t), but for this discussion we will use only constant
values w;;. When considering both inhibitory and excitatory connections,
we can take the values of w;; to be always positive (or, equivalently, we
can only consider excitatory connections and use real values for the
weights).

To obtain the output of a neuron i, we thus need to consider the past
spike times of all its presynaptic neurons. These values need not be
saved indefinitely, however; naturally, only the spikes that happened up
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to some time T in the past should be taken into account, and T roughly
corresponds to the interval over which the response function is non-zero.
We will denote this collection of past spike times s;; (where j the number
of the neuron and / the number of a spike) simply as STpgst. We can now
rewrite the equation for the perceptron (Eq. 3.1) to describe the building
blocks of networks of spiking neurons with transmission delays:

1 Z]- Y wijk,-j(t — Sj,l) +6; >0

(3-5)
0 otherwise.

fi(t,STpast) =
where the summations run over the number of other neurons in the net-
work (3;) and the number of spikes for each of this neuron up to a time
T in the past (};). Note that this equation actually models more than just
transmission delays: a transmission delay in itself could be modeled by
a response function with a single sharp peak at a time ¢ corresponding
to the delay. These response functions would hardly overlap, however,
and the threshold would thus never be crossed due to a combination of
signals of different presynaptic neurons. The finite extent of the response
function thus makes sure that the weighted sum is actually a meaningful

Figure 3.4: Schematic representation of
biologically plausible response func-
tions for excitatory connections (upper
graph) and inhibitory connections
(lower graph). Adapted from Maass,

1997.
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operation. Another aspect is the actual shape of the response functions:
to model merely transmission delays, we could use the same response
function for each connection, just shifted on the time-axis according to
the typical transmission delay for the given connection.

Finally, these abstract spiking neurons can again be connected in lay-
ered structures with an input, an output, and a number of hidden layers
in between. The input (output) of the network is then encoded in the
spike times of the input (output) neurons. E.g., one could use a lin-
ear temporal encoding scheme: one can pick a reference time T and a
constant ¢, and the encoding of a real value a is then given by a spike

occurring at T — ac¢ *8.

3.2.2  Expressibility and Efficiency

We will now summarize the theoretical results on the expressibility and
efficiency of the networks of spiking neurons as described in the previ-
ous section. As an aside, these theoretical results are derived with the
assumption that the response functions are continuous and piece-wise
linear—but a biologically plausible form can be well approximated, how-
ever, by 4 to 5 of such linear segments.

A useful measure of the expressibility of a neural network model with
a finite and fixed number of neurons is its corresponding VC dimension
9. The definition of this measure is based on the concept of “shattering”:
a model is said to shatter a set of labeled data points, if, for all assign-
ments of labels to those points, there exists a parameter value for the
model such that the model correctly evaluates the data. To give a con-
crete example: a linear function will always be able to solve a problem
involving just two data points, whatever the assigned labels; however,
depending on the labels, it might not be able to correctly solve a task
with three data points. The VC dimension of a model is the maximum
number of points that the model can shatter (for a linear function, the
VC dimension is thus 2). A first theoretical result compares the expres-
sive power of an artificial spiking neuron with n variable weights to the
same neuron using # variable time delays: variable weights yield a VC
dimension of O(n), while variable time delays achieve a VC dimension
of O(nlog(n)) 2°. In the context of spiking neurons and temporal cod-
ing, it can also be shown ' that the weights of the connections are able to
play the same role as those of computational units in conventional neural
networks.

An important result is that all networks of spiking neurons are uni-
versal approximators *2. They turn out to be at least as computationally
powerful as conventional artificial neural networks of the same or sim-
ilar size, provided the excitatory (inhibitory) response functions have a
small linearly increasing (decreasing) segment. The proof of this prop-

8 Pattern recognition computation using
action potential timing for stimulus
representation. Hopfield,1995.

9 An overview of statistical learning
theory. Vapnik,1999.

2 On the complexity of learning for
spiking neurons with temporal coding.
Maass and Schmitt,1999.

2t Networks of spiking neurons: the third
generation of neural network models.
Maass,1997b.

> An efficient implementation of sigmoidal
neural nets in temporal coding with noisy
spiking neurons. Maass,1995.
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erty relies on a correspondence between these linear segments and the
approximately linear segment also found in a sigmoid activation function

23. For some specific example tasks, such as coincidence detection and 2 Bounds for the computational power and
checking element distinctness, networks of spiking neurons are proven ﬁ’mmg complexity of analog neural nets.
aass,1997a.

to be far more powerful (or at least efficient) than their conventional rate
coding counterparts: where a single spiking neuron can compute element
distinctness over its n different inputs, a sigmoidal neural net needs at

least %74 — 1 hidden units for this task 4. 2 Networks of spiking neurons: the third
generation of neural network models.
Maass,1997b.






4
Spike Sorting Algorithms

4.1 Multi Electrode Array Recordings at High Resolution

Details of the recording device can be found in [Miiller et al., 2015]. Here
we summarize some if the important properties: the complete sensor
array covers a region of 3.85x2.10sq — mm with 26400 electrodes, each
covering a region of 9.35.45sq — um. Due to constraints in the electronics
implementation, we can only read out from 1024 electrodes at once.
However, we can determine which electrodes to record from, and the
configuration is changed in a matter of seconds. The data at a rate of 20K
Hz; recordings of several minutes thus have a considerable size in terms
of data (a couple of Gb per file).

4.2 Identifying Neuronal Structures

In order to compare our biological network with networks of artificial
spiking neurons, we first have to reconstruct the biological neural net-
work from its recorded activity. The data we start from is a multivari-
ate time series: it consists of the changing voltages recorded by 1024
electrodes located in the grid of the multi-electrode array (MEA). The
neuronal structures naturally do not adhere to the grid structure of the
MEA. The first step in thus to 'disentangle’ the data: each sensor might
receive signals from different neurons, and each neuron might be induc-
ing signals in different sensors. Our final goal is to extract from this time
series for each sensor a time series for each neuron, the latter consisting
of the series of action potentials the neuron produced at its axon initial
segment.

This process, which goes by the name of spike sorting, has been the
focus of many research efforts in computational neuroscience * 2 3. Feasi-
ble due to the low dimensionality of the recorded data, this process was
for a long time mainly performed manually. But recently the advent of

* A review of methods for spike sorting: the
detection and classification of neural action
potentials. Lewicki,1998.

2 Past, present and future of spike sorting
techniques. Rey et al.,2015.

3 Spike sorting for large, dense electrode
arrays. Rossant et al.,2016.



34 CONNECTING NEURONS.

recording devices with up to hundreds of electrodes has urged the de-
velopment of semi-automated to fully automated algorithms to tackle
this problem. Below, we will first discuss the general approach of spike
sorting algorithms. We will subsequently provide some more detailed
information on the specific algorithm we used.

Let’s start by considering a single neuron. The axon initial segment
and soma usually produce spikes with a high amplitude, with resulting
signals being recorded in the sensors directly covering these structures,
as well as in other sensors nearby. But an action potential could travel
through the other parts of the axon and all its branches as well, and the
activity of a single neuron might thus potentially leave traces across a
large part of the sensor array. We can also switch perspectives, and look
at the problem from the viewpoint of a single sensor: the same sensor
might receive signals from different nearby neurons. This is of course
especially the case when the sensor covers an area where neuronal struc-
tures are dense.

Spike sorting is usually performed in a setting with relatively low
recording resolution, i.e., each sensor or electrode records signals from
multiple neurons, and it is very likely that only the high amplitude sig-
nals are recorded (i.e., those originating from the action initial segment).
In case the spacing between the electrodes is large, such that the proba-
bility of one neuron being detected by more than one electrode is very
small, the spike sorting problem simplifies further: the detected spikes
on each electrode can be assigned to the neuron that produced them
based on the spike shape. This is illustrated in Fig. 4.1.
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Figure 4.1: Illustration of the spike
sorting process used for an in-vivo
experiment, where the ratio of elec-
trodes to neurons is usually relatively
small. A schematic representation of
the spikes in the neighborhood of the
considered electrode is given on the
left. In this setup, only the spikes from
neurons in zone I are close enough to
the electrode to be reliably discerned,
the other neural activity contributes to
the local field potential (an effect not
present in our in vitro setup). Once
the spikes have been detected in the
signal, a classification based on the
shape reveals which spike times are
associated to each neuron (shown at
the bottom trace of the figure.) Source:
Rey et al, 2015.



Once all the spikes in the signal have been detected, the (usually cor-
rect 4) assumption is that the different neurons produce spikes with a
shape and amplitude typical to that neuron (the latter being only partly
due to their difference in distance to the electrode). They can thus either
be manually assigned to a neuron; or the shape of the spike or action
potential can be used as input to a classification algorithm.

In a next step, we can consider the fact that the high amplitude sig-
nals originating from the AIS could possibly be recorded in multiple
electrodes. This is due to the electrical signal spreading from where it
originated; it is thus not always the case that the signal will be recorded
at exactly the same instant in each of the neighboring electrodes. The
goal can be, perhaps somewhat vaguely, formulated in this way: when
a neuron spikes, we want to be able to say what the resulting measure-

ment typically "looks like” in space and time, i.e., we want to determine a

spatio-temportal footprint for each neuron. These spatio-temporal foot-

prints can then be matched to the original data in order to determine the

spike times for each neuron.

o
*
3

EEEN
SR

L L L L L L L L |
1310 1320 1330 1340 1350 1360 1370 1380 1390 1400
pm

Due to the very high resolution of our recordings, we are, unlike in
other spike sorting settings, able to pick up signals from different struc-
tures of the same neuron. We deliberately lowered the spike detection
threshold to also detect these signals, because the location of the axons
provides us valuable information that we could potentially use to vali-
date our results on the effective connectivity of the network. This lower
threshold unfortunately also yields a multitude of false detections (i.e.,
detection of noise).

4.3 Automated Spike Sorting Algorithms

We will now discuss the specific, fully automated algorithm we applied
to obtain the spike sorted results. The complete spike sorting toolbox is
called Spyking Circus and is developed by Yger et al.5; an open source
python implementation is available on GitHub ©. Given the large-scale
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4 Axon physiology. Debanne et al.,2011.

Figure 4.2: Example of a spatio-
temporal neuron footprint: the same
action potential is detected in multiple
neighboring electrodes.

5 A spike sorting toolbox for up to thou-
sands of electrodes validated with ground
truth recordings in vitro and in vivo. Yger
et al.,2018.

® https:/ / github.com/spyking-circus
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data, it was important to choose an algorithm that could execute the
spike sorting in a fully automatic and efficient way; spyking circus is
such an algorithm, and its core parts have moreover been designed such
that they can be executed in parallel.

Data and Filtering

The input data consist of up to 1024 time series of voltage values sam-
pled at 20 oooHz. Each time series has an associated location, namely the
coordinates of the corresponding electrode in the grid. In the first step of
the algorithm we want to determine the spike times, where a spike time
is defined as the time at which the action potential reaches its maximum
(see the typical shape of an action potential, 2.2). The time series data not
only consists of action potentials though: there are both low- and high
frequency noise components presents, stemming from the electronics and
background neuronal processes. Our task of sorting the spikes is made
much easier if we apply a bandpass filter to the data first. We choose

the filter such that only the frequency components between 500Hz to
7oooHz remain (this is an approximation, in reality the used filter ap-
plies a smoother threshold 7). This filtering removes the mean and the
slow wave components in the signal, such that the signal is in essence
"flattened out"; in this way, the amplitude of the spikes is no longer in-
fluenced by the slow wave components. An example snippet of half a
second of bandpass filtered data is shown in Fig.4.3.

Original Data, bandpass filtered 500Hz - T000Hz
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Zooming in to one of the larger peaks (in terms of minima) for one of
the channels in Fig.4.3, we can see the typical shape of an extra-cellular
recorded action potential (shown in Fig. 4.4). Since we are recording out-
side the cells (so-called extracellular recordings), the measured potential
differences across the cell membrane during an action potential are in
fact of the opposite sign as compared to the standard description of the

7 Introduction to digital signal processing
and filter design. Shenoi,2005.

Figure 4.3: Example snippet of the
time series data. All channels are
displayed on top of each other with
different colors.



potential values (which are defined with respect to voltages inside the
cell). Spike times in our case thus correspond to local minimal values of
the time series data.
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Spike Detection

Not all local minima are spikes, however; in order to separate the spikes
from what remains of the noise after filtering, a threshold needs to be
applied. Since the signal-to-noise ratio in each channel is different due to
the different qualities of the used electrodes, a different threshold value
should be calculated per channel. Usually the median absolute value is
used:

MAD(x) = median(| x; — median(x) |) (4.1)

which is a measure similar to the variance. The use of the median makes
it more robust, however, for time series data with large outliers—and in
our case, we naturally have a lot of outliers in the form of spikes.

The threshold for timeseries i, 8;, above which local minima are con-
sidered spikes is then given by:

91' = /\MAD,’ (4.2)

where the scalar A is a fixed parameter used for all channels. Usually a
value between 6 and 7 is chosen. Once the thresholds have been calcu-
lated for each channel, it is straightforward to determine the spike times
as the local minima that are below the threshold values.

SPIKE SORTING ALGORITHMS

Figure 4.4: Example of an action
potential recorded with a very high
signal-to-noise ratio.
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Clustering

Not all detected spikes stem from different spiking ‘events’. As we noted
before, when a part of a neuron produces an action potential, a spike is
usually detected in different electrodes covering the neighborhood of the
neuronal structure (see Fig. 4.2). Given a maximal radius in space and

a maximal period in time, the algorithm will determine the electrode
where the spiking amplitude was maximal (in absolute value). For the
time being only the spike time on this electrode will be used.

After this first step, we obtained for each electrode thus a list of spike
times for spike events that were found to be maximal on this electrode.
The next step is the application of a clustering algorithm based on the
shape of the spikes: this will reveal the different groups of spikes, puta-
tively stemming from different neurons.

First, a snippet of data centered on each saved spike time is extracted
to obtain the shape of the spike. We set the length of this snippet to 20
samples, or 1ms (the length of a typical action potential). Examples of
such waveforms are shown in gray in Fig. ??. The dotted lines show the
obtained threshold values for the electrode at hand.

Figure 4.5: Distinctive groups of wave-
forms collected on a single electrode.
In gray the original waveforms, in red
the average waveform per group, in
blue the standard deviations, and the
dotted lines represent the threshold
associated to the electrode.

Cluster 0 Cluster 1

These 20 values for each waveform could be considered as the fea-
tures for the clustering algorithm; however, it pays of in terms of both
computational resources and algorithm performance to apply a feature
selection method first. The implemented method is a straightforward
principle component analysis (PCA) 8 where the first 5 components are 8 Principal component analysis. Jol-
retained. The clustering algorithm is then applied, for each electrode, in liffe,2011.
the resulting 5 dimensional space where each data point consists of the 5

first principle components of a waveform associated to that electrode.

The clustering algorithm in itself is based on the idea that the cluster



centers are characterized by a higher density than their neighboring
points, and that they at the same time are at a relatively large distance
from points with higher densities 9. In the first phase of the clustering
algorithm, for each data point x;, the average distance p; to the S nearest
neighboring data points is calculated. % is then used as a proxy for

the density. Then, again for each data point x;, the minimal distance

to any other point with a higher density is calculated. This distance is
denoted ¢;. The data points can then be ranked based on the ratio %,
i.e., the ratio of their minimal distance to a point of higher density (for
a center, this should be a large value) to their own density (for a center,
this should also be a large value, thus a small value p;). The highest
ranked points are putative cluster centers. The number of such putative
centers selected is a parameter of the algorithm, naturally related to the
maximum number of neurons that could potentially have their maximal
amplitude spikes on the same electrode. Given the large electrodes to
neurons ratio in our experimental setup, this number of putative cluster
centers can be chosen relatively low. Finally, the remaining points can
be assigned iteratively to the clusters: starting from points with a lower
value p;, each point is assigned to the same cluster as the closest point
with a lower value p;.

The clustering is thus always performed with a fixed number of clus-
ters. An additional step is added to the process to alleviate this con-
straint: when the normalized distance *® between two resulting clusters
is smaller than a predefined threshold value o, the clusters are merged.
Example results of this clustering process are shown in Fig.??.

Centroids

[ 20 4 60 80 -400 -200 o -400 -200 o -200 -100 o 100
» Dim o Dim o Dim 1

Putative Centroids e 5

Template Extraction and Template Matching

The maximal amplitude spikes have now been assigned to a cluster rep-
resenting a putative neuron (or, in fact, a neuronal structure). This is a

computationally very expensive procedure, depending on the number of
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9 Clustering by fast search and find of
density peaks. Rodriguez and Laio,2014.

10 A spike sorting toolbox for up to thou-
sands of electrodes validated with ground
truth recordings in vitro and in vivo. Yger
et al.,2018.

Figure 4.6: Example of the clusters
corresponding to the waveforms in Fig.
4.5. The subfigures on the left show
the putative centroids (second row)
and the finally selected centroids after
the merging (upper row). The clusters
are shown in PCA for combinations
of the first three dimensions in the
colored subfigures of the upper row.
Finally, the colored subfigures on the
second row encode the p and J values
for each data point.
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detected spikes. But, one might argue that only a subset of these spikes

will be needed to make up a discernible cluster. The spyking circus algo-

rithm takes exactly this approach: it reduces the needed computational

power by using only a fraction of all spikes for the clustering phase. Of

course, our final goal is still to obtain an list of all spike times for each

putative neuron (or neuronal structure). This goal can still be achieved

by using the extraction of so-called templates for each cluster/neuron,

and by subsequently matching these to the original time series data.

A spatio-temporal template for a neuron can be constructed in the

following way: at all the spike times associated to the waveforms belong-

ing to a single cluster, we extract a snippet of the data centered on this

spike time for all the channels. Averaging these snippets over all spike

times associated to the cluster yields a spatio-temporal template of what

a spike event of this neuron typically looks like” in space and time, i.e.,

what the typical voltage patterns are in all channels in a short period

before, during and after the spike of this neuron. An example is given in

Fig. 4.2, where we have shown the template for all electrodes in the sen-

sor array where it is non-zero. Finally, these templates can be matched to

the original data by computing the scalar products of these (normalized)

templates and windows of the data centered at all the detected spike

times. The spike time is then attributed to the best matching template.

Overview of the Used Parameters

[detection]

radius = 50

N_t =1
spike_thresh =4

peaks = negative

matched-filter = False
matched_thresh = 4

alignment = True
[filtering]

cut_off = 500, 7000
filter = True
remove_median = False
[whitening]

chunk_size = 10

0.5

safety_time

#

H W W K R

H#*

# Radius [in um] (if auto, read from the prb file)

Width of the templates [in ms]

Threshold for spike detection

Can be negative (default), positive or both

If True, we perform spike detection with matched filters
Threshold for detection if matched filter is True
Realign the waveforms by oversampling

Min and Max (auto=nyquist) cut off frequencies for the band pass butterwo
If True, then a low-pass filtering is performed
If True, median over all channels is substracted to each channels (moveme

Size of the data chunks [in s]
# Temporal zone around which templates are isolated [in ms, or auto]



temporal
spatial
max_elts
nb_elts
output_dim

[clustering]
extraction
safety_space
safety_time
max_elts
nb_elts
nclus_min
max_clusters
nb_repeats
smart_search
smart_select
sim_same_elec
cc_merge
dispersion
noise_thr

remove_mixture

make_plots

[fitting]
chunk_size
gpu_only
amp_limits
amp_auto
max_chunk
collect_all

[extracting]
safety_time
max_elts
output_dim
cc_merge
noise_thr

False
False
1000
0.8

#
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Perform temporal whitening

# Perform spatial whitening

# Max number of events per electrode (should be compatible with nb_elts)

#
#

Fraction of max_elts that should be obtained per electrode [0-1]
Can be in percent of variance explain, or num of dimensions for PCA on wa

median-raw # Can be either median-raw (default), median-pca, mean-pca, mean-raw

True
0.5
5000
0.02
0.01
4

3
True
False

0.90
(5, 5)
0.8
True

png

False
(0.3, 5)
True
inf
False

1000

0.975
0.8

#

If True, we exclude spikes in the vicinity of a selected spikes

# Temporal zone around which templates are isolated [in ms, or auto]

# Max number of events per electrode (should be compatible with nb_elts)

# Fraction of max_elts that should be obtained per electrode [0-1]

# Min number of elements in a cluster (given in percentage) [0-1]

# Maximal number of clusters for every electrodes

#
#
#
#

Number of passes used for the clustering

Activate the smart search mode

Experimental: activate the smart selection of centroids (max_clusters is
Distance within clusters under which they are re-merged

# If CC between two templates is higher, they are merged

#
#
#

Min and Max dispersion allowed for amplitudes [in MAD]
Minimal amplitudes are such than ampxmin(templates) < noise_thrxthreshold
At the end of the clustering, we remove mixtures of templates

# Generate sanity plots of the clustering [Nothing or None if no plots]

H W W K K B

H*H OB W K R

Size of chunks used during fitting [in second]

Use GPU for computation of b’s AND fitting [not optimized yet]

Amplitudes for the templates during spike detection [if not auto]

True if amplitudes are adjusted automatically for every templates

Fit only up to max_chunk

If True, one garbage template per electrode is created, to store unfitted

Temporal zone around which spikes are isolated [in ms]

Max number of collected events per templates

Percentage of variance explained while performing PCA

If CC between two templates is higher, they are merged

Minimal amplitudes are such than ampxmin(templates) < noise_thrxthreshold
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Effective Connectivity

Eventually, we wish to obtain insight in the effective connectivity of the
network: which connections are used, their transmission delays, and
finally the direction of information flow between the active neuronal
structures in the network. So far, we explained how to identify these
neuronal structures from the data through a spike sorting process. In this
chapter we discuss how we can use a time series prediction technique
that goes by the name of autoregressive modeling to obtain the properties
of the effective connectivity.

In section 5.1, we will first discuss a general framework to model the
causal relationships between a set of coupled time series. We will then
show how, based on a general assumption of gaussianity, we can obtain
the parameters of this framework from the computed auto- and cross-
correlation functions. Finally, we will explain how these parameters can
be converted into a directed graph; and we will also discuss how this
graph might deviate from the actual flow of information in the network.

5.1 Autoregressive Kernels

5.1.1  Autoregressive Processes

A multivariate, higher order autoregressive process is a process that can

be written in the form *: t An introduction to multivariate statisti-

cal analysis. Anderson,1958.
4

x(t) = Z A(k)x(t —k)+ E(t), (5.1)
k=1
where x(t) is a vector of size n that represents the values of the n time-
series at time f; p is the order of the model; A(k) is the matrix of size nxn
with entries that relate x(f) to the values of x at distance k in the past,
and E(t) is a diagonal matrix adding Gaussian noise at step ¢. Note that
AW is a constant matrix that does not depend explicitly on time.
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The elements A" tell us how the values xj(t — k) influence the value

ij
x;(t). In words, Eq. 5.1 tells us that the current value of a timeseries in
the network can be obtained as a linear combination of the past values of
(k)
ij
causal relationship in the sense that they reveal which events in the past

all the timeseries, including its own past. The coefficients A’ capture a
are relevant for predicting the current state, given all relevant informa-
tion (i.e., given the past values of all the timeseries up to p timesteps in
the past).

(k
ij
sive kernel which we will denote Afjt

) for each time k, we obtain a so-called autoregres-

)

If we consider A

. Convolving this function with the
past of x;(t) gives the contribution of this j timeseries to the present
value of the i timeseries, x;(t)—hence the name kernel. The concept
slightly differs from the more conventional Volterra or Wiener kernels,
however. First of all it is an extension to the multivariate case; and more-
over, the considered input consists not only of the signals received from
the other elements in the network, but also the timeseries” own past.
How these kernels can be estimated, then, is the topic of the next section.

5.1.2  Gaussian Processes

The assumption of Gaussianity often yields an effective and practical ap-
proach to modeling, and this is not different in the problem we are trying
to solve. In this section, we will discuss this assumption of Gaussianity
using a one-dimensional time series. More precisely, we will model this
timeseries as a Gaussian Process (GP):

A Gaussian Process is a collection of random variables, any finite number of
which has a joint Gaussian distribution.

Loosely speaking, we will consider an (in our case ordered) collection
of random variables {Xj,..., X, }, one variable for each time f; moreover,
we will take the joint distributions between any number of variables to
be Gaussian. The Gaussian Process in this way defines a distribution over
sample functions, where a function is considered the (possibly infinite)
vector of particular instances of these ordered random variables. (The
latter definition is not entirely rigorous, but sufficient for the current
discussion.) This distribution is completely characterized by a mean
function m(t) and a covariance function k(t,t'):

F(£) ~ GP (m(t), k(1)) (5-2)

We will first review some properties of the classical Gaussian probabil-
ity distribution. Some notational conventions: x and y symbolize vectors
of any number of random variables that are jointly Gaussian distributed,



px and py, the vectors of their respective means. Thus, e.g.,

_ _ 1 _
p(x | px, Zy) ~ (277) b/ | Zy | 12 exp ( - i(x _Fx)Tle(x_F‘x))

(5:3)
where D is the length of the vector x, and X, is the DxD, symmetric,
positive definite covariance matrix. Using shorthand notation:

x ~ N(pe, Zy ). (5-4)

If x and y are also jointly Gaussian with covariance matrix K,

-0l (5 & e
then the marginal distribution of x is
X~ N(p, C), (5-6)
and the conditional distribution of y given x is:
y | %~ Ny +BCy ' (¥ —pua), €y — BC, 'BT). (57)

There’s an important point to emphasize here: these equations are
entirely linear. Let

A=BC. !, (5.8)
and conditional covariance matrix >
¥~ =C,— BC,'B". (5.9)

Then we can see that X is independent of x, which allows us to interpret
y as an affine function of x plus a random noise vector # that is indepen-
dent of x. In other words,

y=py+A(x—px) +n, (5.10)
with the noise vector n satisfying:
(n) =0, (nx)=0, (nn)=2=x. (5.11)

If y is the system output and x is the system input, then (Eq. 5.10) de-
scribes the linearity of the system. However, within the framework of
Gaussian Processes, x is not the input of the system but rather the output
in the past. Predictions of the future output are thus obtained as a linear
combination of outputs in the past (Eq. 5.10)—but the described system
itself may not be linear in the sense of the output being a linear combina-
tion of the input. The latter would only be the case when the covariance
function k is a linear function.
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5.1.3 Estimating the Autoregressive Kernels

Now the groundworks are laid to switch viewpoints: from generating
sample functions from a known Gaussian process, to estimating the
properties of a Gaussian process given a sample function. We will as-
sume the process is stationary, in which case it is convenient to define
zero-mean variables: x — py — x. We can then rewrite Eq. 5.10:

y=Ax+n. (5.12)

The weight matrix A can be estimated from basic linear regression: if the
noise is white or can be whitened, the solution is simply given by Eq. 5.8.
From comparing Eq. 5.12 with the structure of Eq. 5.1, we can see that A
corresponds to the coefficients of univariate autoregressive process.

We can easily extend this linear regression problem ( Eq. 5.8 ) to the
multi-variate, higher order case ?, and we finally arrive at the Yule-
Walker equations 3 :

Co G G Gi... Cpq] [ AW G
i C C G... Cpof | A® C
Cc C G C... Cosl|| AB | = |G

Cp1 Cpz Cpz ... Co | 1APD Cp

where C; is the covariance matrix between all variables at lag i.

5.2 Computing the Correlations and the Kernels

To compute the correlations, we did not bin the data, but instead con-
volved the detected spike times with a waveform which has a substantial
width over o.5ms (corresponding to the natural temporal resolution im-
plied by the spike sorting algorithm.) The used function is furthermore
Lorentzian, because its longer tails will increase the smoothness.

Due to the high computational resources needed to compute the cor-
relation functions up to lags of several hundreds of time steps, we imple-
mented the computations using a map-reduce procedure 4.

Finally, we can note that the matrix involved in the Yule-Walker equa-
tions has a block Toeplitz structure; we can make good use of this struc-
ture to efficiently solve the system of equations through applying the
Levinson algorithm 5.

* Estimation of parameters and eigenmodes
of multivariate autoregressive models.
Neumaier and Schneider,2001.

3 On periodicity in series of related terms.
Walker,1931.

4 MapReduce: simplified data process-
ing on large clusters. Dean and Ghe-
mawat,2008.

5 Efficient inversion of Toeplitz-block
Toeplitz matrix. Wax and Kailath,1983.
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5.3 A Directed Graph of Information Flow

Once the full matrix A—and thus each autoregressive kernel—has been
estimated, obtaining a directed graph boils down to computing a value
from the kernel that captures the connectivity. In general words one
could say there is a directed connection between two neuronal struc-
tures in the network if the kernel for that direction is not uniformly zero,
that is, non-zero in a statistically significant way. A significance test is
not easy to obtain, however: the estimation of the kernels is a highly
nonlinear function of the original data, and the distributions of their esti-
mators are not well established ®. A good approach would be to generate
new datasets that retain the underlying stochastic properties but discard
the causal connections. An example procedure could be to sample new
spike trains using the inter spike interval distributions obtained from

the original dataset. Once a surrogate dataset is created, we can again
compute the correlations and the kernels; a large collection of surrogate
datasets would then yield an estimator of the variance of the kernels.
The drawback of this procedure is that it is extremely costly in terms of
computational resources: despite the measures taken to speed up the
computations and to handle the large datasets, a reasonable significance
test would take hours to days to compute.

For the time being, we thus resorted to a much simpler significance
test. We computed the median absolute deviation (the median because
this is more robust to outliers) of the absolute values of each kernels,
and considered it an effective connection if a values was found above a
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Figure 5.1: Waveform function used to
construct the spike trains.

¢ Evaluating causal relations in neural
systems: Granger causality, directed
transfer function and statistical assessment
of significance. Kaminski et al.,2001.
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threshold value vyye51014 defined by:

t
Z)threshold,ij = 9MAD(| Ag]‘) |)

(5.13)
where 6 was taken to be § = 5.
Figure 5.2: Example situations that
are ‘equivalent’ in terms of correlation
1ms / functions and resulting kernels. Only
[} .

structural information can discern the
\ . true from the spurious connectivity.
1
|
| 3ms \
, 2ms \

N\

Finally, we should mention that this method of determining the di-
rected flow of signals is not always able to capture the real directed flow
of information. Consider, e.g., the situation as depicted in Fig. 5.2. On
the right hand side, the information flows from the bottom and splits
after the second node, such that it arrives with a certain time delay in
each of the upper nodes; the signals arrive at the same times, however,
in the situation on the right. The correlation functions will thus be ex-

actly the same, and since the kernels are derived from nothing else but
the correlation functions, there is no way to discern the true path from
the spuriously derived path. This could be resolved by using structural
information however; to do this, knowledge about the actual underlying
structure could be used as a Bayesian prior. This is outside the scope of
this project however (but might be added to the analysis in future work).



6

Results and Conclusion

In this analysis, we will restrict ourselves to a single set of recordings
from a low density network at day 34 in vitro. The network consisted
solely of excitatory neurons and was not stimulated during its devel-
opment. The whole sensor array is covered by a set of 6 configuration
recordings, each of which make up a simultaneous recording of half
the electrodes of their respective sensor regions. In other words, at each
recording time one sixth of the whole sensor array is recorded simulta-
neously by a checkerboard pattern of 1024 electrodes, and this for two
minutes at a sampling rate of 20 oooHz.

6.1 Summary of the obtained Biological Network Properties

In previous work ' we analyzed the relationship between the spike trains
of the neurons (obtained through spike sorting) and their effective con-
nectivity properties (obtained from the calculated autoregressive ker-
nels). Below, we summarize the conclusions in a qualitative way.

Spontaneous Activity

All the neurons exhibit spontaneous activity, i.e., the neurons sponta-
neously produce action potentials, typically at a relatively low average
rate (10 or less spikes per second). This spontaneous activity is very ir-
regular, but not entirely random either: if the neuron produced a spike,
the probability of a new spike spontaneously occurring shortly after this
previous spike is highly reduced. This ‘generalized’ refractory period
presumably corresponds to the recovery period of the stochastic mecha-
nisms underlying the spontaneous action potential generation.

It is insightful to visualize this type of activity in a raster plot, i.e., a
plot where each spike for each neuron is represented as a dot in function
of time. Figure 6.1 shows such a raster plot, obtained from spike sorted
recordings covering a region where the neurons are not significantly

* Connecting Neurons: A Stochastic
Model of Information Flow in Cultured
Networks of Human Neurons, master
thesis physics (unpublished).
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connected (the latter is important, since, as we will explain in the next
section, the firing pattern changes when the neurons are connected.)

Neuron ID
w
T
H

0 1 1 1 1 1 L L 1 1 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Spike time (s)

Synchronization

The typical values for the transmission delays between the signals we
found are much smaller (= 0.001s) than the typical timescales of the
spontaneous activity (= 0.1s). This means that the activity in highly con-
nected regions will appear synchronized: whenever one of the neurons
in such a region spontaneously produces a spike, the action potential is
transferred within a couple of ms to the post-synaptic neurons, which in
their turn can produce a spike. If one bins the data over a couple of ms
(e.g., a binning of 10ms), it will thus appear as if the connected neurons
spiked at the same time. Given the much slower rate of the spontaneous
spike generation, it might then again take a relatively long time before
the next ‘synchronized spike” appears. Characteristic firing patterns for
neurons in a significantly connected region are shown in Fig. 6.2.

Effective Connectivity

We will discuss a single, distinctive example of connectivity properties
we derived from two significantly connected neurons in our recordings.
Figure 6.3 shows a snippet of their spike trains. A close inspection of
(a) shows that the spike train of the second neuron (bottom trace) cor-
respond to the sum of its own spontaneous activity plus the spikes of
the first neuron. When we zoom in on the spike trains ( Fig. 6.3 (b)), it
seems to be the case that the spikes of the first neuron always precede
the spikes of the second neuron. Upon inspecting the computed kernels
(shown in Fig. 6.4), we can see that this information is exactly captured
by the kernels: the first neuron sends spikes to the second neuron (direc-
tion of the transfer) with a transmission delay of around 0.5ms (which
might indicate a transfer via a chemical synapse).

Figure 6.1: Raster plots showing 5s of
spontaneous activity for 6 different
neurons, each producing spikes at a
different but relatively slow average
rate.
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Finally, we show the complete graphs of information flow as derived
from the significant kernels in Fig. 6.5, for the two earlier considered
regions of low and high effective connectivity. (a) corresponds to the
region of much larger effective connectivity, with even a local cluster of
super high connectivity visible; (b) on the other hand is a region where
connectivity has not developed beyond some sparse connections.

-0.100
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Figure 6.2: Raster plots showing 5s

of activity for 13 different neurons,
each producing spontaneous spikes
and receiving post-synaptic potentials
induced by the neurons to which they
are connected.

Figure 6.3: Spike train snippets of two
closely connected neurons. (b) is a
zoomed in version of (a).

Figure 6.4: Resulting kernels. (a) a sig-
nificant contribution from neuron 1 to
neuron 2; (b) the kernel corresponding
to the other direction is not significant.
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6.2 Relating the Results to a Network of Spiking Neurons

Spontaneous activity. Without spontaneous activity, a network with-
out external input would be completely silent. But given a certain input,
spontaneous activity might not seem too important—were it not for the
fact that a certain level of background spontaneous activity is needed to
sustain the computations on the input (which has been shown both in
biological neural networks ? as in simulated models thereof 3). From our
analysis of the spike trains of unconnected neurons 4, we can estimate
all the properties of the typical spontaneous activity: we showed that it
can be modeled by a stochastic process characterized by a higher order
gamma function with a given average spike rate. We can also estimate
the distribution of those average spike rates over all unconnected neu-
rons. An SNN where the neurons have a realistic spontaneous activity
profile could then be constructed from using these estimated statistics:
assign to each artificial neuron an average spike rate sampled from the
estimated distribution of spike rates, and let the neurons subsequently
emit spikes spontaneously with a probability given by the corresponding
gamma process.

Network parameters. In spiking neuron networks, both the synaptic
weights and the transmission delays make up the parameters of the
network; however, computations can be performed by only using one of

Figure 6.5: Graphs of the significant
information flows. (a) shows the
significant connections for a region
of dense effective connectivity. (b)
shows the significant connections in
a much sparser connected region.
The small, gray nodes correspond to
axonal structures, the gray lines to
significant connections. The somatic
structures are colored according to
their degree of connectivity (yellow for
low connectivity, green for interme-
diate connectivity, and blue for large
connectivity.)

2 Resonance or integration? Self-sustained
dynamics and excitability of neural
microcircuits. Muresan and Savin,2007.
3 Large-scale model of mammalian tha-
lamocortical systems. Izhikevich and
Edelman,2008.

+ Connecting Neurons: A Stochastic
Model of Information Flow in Cultured
Networks of Human Neurons, master
thesis Physics
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these two different parameter types, and by reducing the other one to
trivial values.

As we have noted before, using variable transmission delays is the
most efficient approach in terms of needed computational units. In that
case we can very straightforwardly translate our results to SNN model
parameters: significant connections become weights with a value of 1,
and 0 otherwise; and we can use the same canonical response function
for each neuron, only shifted according to the time delays obtained from
the computed kernels.

Another option is to trivialize the time delays. This means that we
assume the input signals all arrive simultaneously—this is in general not
a very biologically plausible assumption, but since our network exhibits
synchronization, it is not a bad mapping of the biological model to an
ANN model in this particular case. We can, e.g., bin the timesteps over
10 ms (thus 200 samples per bin). It is interesting to note that if we treat
the output of each neuron as binary (1 when a spike is emitted in a pe-
riod of 10ms, and o when there is no spike in this period), the biological
network is in fact equivalent to a perceptron network.

The question then remains how the weights for this perceptron net-
work relate to the effective connectivity measure we computed. The
effective connectivity measure is in fact a measure of the directed infor-
mation flow between two neurons; it is as such influenced by the spike
rate of the neurons it connects. This is merely a reflection of the fact that
we assume the information is encoded in the spike times, and the more
transferred spikes, the more information is exchanged—thus the higher
the measure of effective connectivity (this property can be mathemati-

cally derived ). It is not only a function of the spike rates, however, but 5 Connecting Neurons: A Stochastic
Model of Information Flow in Cultured

. . Networks of Human Neurons, master
and the transferral probability. Intuitively, one would say that the de- thesis physics (unpublished).

also contains factors related to the actual biological synaptic strength

pendence on spike rate is an “artifact” of the chosen method, and one
should therefore appropriately normalize the measure to retain only the
factors related to the actual synaptic parameters (this could be done by
normalizing the correlation functions by the average spike rates before
calculating the kernels). However, it is also quite interesting to note that
in this way an encoding of the spike rate could be introduced, next to the
temporal code. We noted before that in case of SNN, it has been shown
that the synaptic weights can take the same role as computational units
in more conventional ANN using rate codes. We leave the further insight
and development of these ideas to future work.

6.3 Conclusion

In this thesis, we have implemented a suite of methods to analyze large
amounts of high-resolution neuronal activity recordings. These methods
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allowed us to compute the detailed activity and connectivity properties
of a cultured network of human cortical neurons. We then went on to de-
scribe how these computed properties can be translated into parameters
of artificial networks of spiking neurons.

Our general results are meant to be a starting point for future research
exploring the relation between biological and artificial neural networks.
Through developing these methods, we hope to be able to—at some
point in the future—increase insight in the computational properties of
biological neural networks, as well as in the biologically inspired princi-
ples that could further advance the field of artificial neural networks.
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