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Preface

In the opening paragraph of his book, The Internal Constitution of the Stars
(Eddington, 1926), Sir Arthur Stanley Eddington asked himself the question:

Our telescopes may probe farther and farther into the depths of space;
but how can we ever obtain certain knowledge of that which is hidden
behind substantial barriers? What appliance can pierce throught the
outer layers of a star and test the conditions within?

The appliance that can be used to probe the deep stellar interior is asteroseis-
mology, the Music of the Stars (Aerts et al., 2010). Indeed, as discussed in great
detail in Aerts et al. (2010), sound waves (otherwise known as ”pressure” or p
modes) propagate inside stars, generating temperature variations at the stellar
surface that are detected through variable light output in time.

However, as was mentioned in Aerts et al. (2010): ”It is not as simple as that!”
Other waves propagate inside stars that are not acoustic. Equally important are
e.g. the ”gravity” or g modes that propagate inside these stars, where the restor-
ing force of the pulsation is not the pressure gradient, but buoyancy. These modes
are the ones that let us explore the deep interior of stars, however, most of these
modes only properly revealed themselves when time series from the National
Aeronautics and Space Administration (NASA) Kepler satellite became available.
Typically, several assumptions and simplifications are made to study wave propa-
gation inside stars. Pulsation models are typically obtained from introducing small
perturbations to the equations that govern the structure of an equilibrium model
of a star. In the earliest models, stars were approximated as being homogeneous
spheres that do not rotate and are not magnetic. The quote ”It is not as simple
as that!” has to be repeated when one considers how rotation and magnetism
affect the equilibrium models and the pulsation models. Earlier work has shown
the (major) importance of rotation on both equilibrium and pulsation models. As
will be shown in this work, the pulsation models are sometimes strongly affected
by the presence of a weak internal magnetic field, whose effects on the equilib-
rium model are thought to be negligible. It remains to be elucidated however, how
strong internal magnetic fields interact with both models.
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The inspiration for this work originated from the findings of Fuller et al. (2015),
who investigated how a potential internal magnetic field interacts with the pulsa-
tion modes inside evolved red giant stars. Observations of these stars indicated
that some of these stars display variability that cannot be explained with con-
ventional models: they exhibit some ‘missing’ modes. As Fuller et al. (2015)
explained in great detail, and as is summarized in the introduction, the stellar
internal magnetic fields can greatly affect pulsation modes, causing some to be-
come trapped in the deep interior. This might be an explanation for the origin of
the ‘missing’ modes, although other authors depict other mechanisms to be the
cause (e.g. Mosser et al., 2017). This standing problem might be resolved by
detecting such internal magnetic fields in their progenitors, the less evolved stars
considered in this work. Therefore, it provided the direct incentive to start our
work.

If it had not been for the presentation given by Prof. Dr. Jim Fuller when
visiting Leuven, I would not have known about this issue, and would not have
proposed this topic to my supervisor Prof. Dr. Conny Aerts. Therefore, I would
like to thank Jim for providing the incentive that sparked this interesting work!

I would like to thank Conny for guiding me through the whole process of writ-
ing this thesis, allowing me to pursue this interesting topic, providing me with
mental support when needed, introducing me to the contacts that have proven to
be invaluable to this work, and for the pleasant atmosphere throughout all of our
discussions. The quote from her book (Aerts et al., 2010) mentioned earlier in
this preface was surely invoked in some of these discussions! Moreover, she also
gave me the opportunity to present a small part of this work on the Nederlandse
Astronomenconferentie (NAC), for which I am grateful.

I would like to thank my two co-supervisors Dr. Dominic Bowman and Dr.
Timothy Van Reeth for also guiding me through the whole process of writing this
thesis. They have always been ready to respond to my (many) questions in an ap-
propriate way, stimulating me to further develop parts of the concepts in this work.
They provided me with the essential viewing point of the observational asteroseis-
mologist/astronomer, allowing me to express potential observational diagnostics
in a way that can easily be verified through observations in the near future. They
provided me with mental support when I discovered yet another flaw in my com-
putational setup. (Although the final setup worked out quite well, as discussed in
our conclusions.) Dominic first introduced me to the GYRE pulsation code, the
pulsation code that has proven of great value to this work, and Timothy further
expanded my knowledge. Finally, Timothy showed me how to deal with some of
my pythonic struggles. For all that, I am indefinitely grateful!
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I would like to thank Prof. Dr. Stéphane Mathis and Dr. Vincent Prat, the co-
developers of the formalism used in this work and co-authors of the publication
that explains the basics of this formalism, developed during the first semester of
academic year 2018-2019. They provided me numerous times with theoretically
oriented advice during the biannual MAMSIE/CEA/Newcastle meetings, and were
always available through e-mail. Especially Vincent has been greatly accessible
and has lightened the mood numerous times during our meetings, for which I am
very grateful. Certainly, they proved to be invaluable in the development of our
formalism, which is explored in greater detail in this work than was done in the
publication. I hope we can convert our mutually beneficial professional relation
into more publications on this endearing topic in the near future!

I would like to thank my office roommates Dr. Dylan Kee, Ana Escorza Santos,
Shreeya Shetye and Karan Dsilva for taking me up as one of their own, showing
me what it means to take part in academic matters as well as less academic
matters. They provided me on several occasions with the necessary feedback,
helped me with my pythonic and less pythonic struggles, made the office look
like a Christmas tree at appropriate times, and in general ensured that I had a
great time whilst writing this thesis and finishing up my coursework. Numerous
interesting discussions were sparked throughout the year, many of which were
not necessarily related to the topic of this work. However, these comments surely
enriched my knowledge and changed my view on the academic world. For that, I
can only be grateful!

I would like to thank Mathias Michielsen, a PhD student that helped with the
onset of the development of my computational setup, providing me with useful
comments related to how to optimally generate a grid of stellar evolution and pul-
sation models. For that, I am very grateful!

I would like to thank my friends/fellow students for providing me with the nec-
essary support throughout the past two academic years. Indeed, my fellow stu-
dents, such as Joris Hermans and Sven Nys, provided me with a further critical
outlook on the results of this work. They further made life enjoyable throughout
the sometimes stressful years, joining me on several endeavours in which we ex-
plored numerous astrophysical problems, providing witty comments when suited.
They (Joris Hermans and Sven Nys) even joined me at the NAC, presenting their
more observationally oriented, interesting work on pulsations in specific types of
stars. I would thus like to thank them for these enjoyable years!

Lastly, I would like to thank my family (especially my parents) for their support
whilst piecing together this thesis throughout the year. I have not always been
the most enjoyable person near the deadlines, for which I can only apologize.
Nevertheless, they always helped me get on track with the numerous projects in
which I was involved. They showed me that life should not always revolve around
the stars, even though our planet revolves around one. I cannot list the numerous
moments for which I am grateful. In short, they made me the person I am today!
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Summary
Stars make up most of the visible baryonic matter in the universe. They signifi-
cantly influence their immediate surroundings by means of their activity and cou-
ple back (chemically) on galactic scales through their winds and explosions. The
physics of these important objects is well-described globally. However, some key
aspects remain to be elucidated, among which their interior magnetic properties.

We will treat magnetic fields inside OBA spectral type main-sequence stars,
which burn hydrogen in their core, providing a framework to derive observational
constraints. In order to characterize these internal fields, we cannot rely on con-
ventional methods, as we need to probe the near-core regions. This can be done
with gravity-mode (g mode) asteroseismology, the study of stellar g mode oscil-
lations. These are detected in long time series obtained with the NASA Kepler
satellite and probe the region of interest. Our method provides a unique way to
infer interior magnetism in stars, not yet available in the scarce literature available
on this topic. We consider a poloidal-toroidal axisymmetric field and derive a gen-
eral formalism, within the Traditional Approximation of Rotation (TAR), that allows
one to describe rapidly rotating magnetic stars. Moreover, we explicitly calculate
the Hough functions, allowing us to describe subinertial modes.

We investigated how the stellar fundamental parameters and some numerical
parameters connected with code implementation affect the main diagnostic in g
mode asteroseismology: period spacing patterns. The effect of the numerical
parameters is found to be negligible, providing us with a robust computational
setup. The rotation rate affects the magnetic influence significantly, reducing it
with increasing rotation rate. Magnetic influence scales with field strength, and
only the strongest field exerts significant influence on the mode frequencies. The
field structure and corresponding effect is widely differing throughout the star’s
evolution on the main sequence. Stars at the end of their main sequence burning
phase are found to be excellent probes of internal magnetic fields. The three con-
sidered parameters that describe internal chemical mixing each exert a slightly
different influence. No clear changes in the mode frequencies were found when
changing metallicity.

Finally, we also investigated the phenomenon of mode bumping, where differ-
ent g modes propagating inside the star interact. This typically did not receive
much attention for the stars considered in the literature so far. However, we show
that both rotation and magnetism can lead to such interaction, potentially confus-
ing the mode identification.

The considered set of stars are the potential progenitors of a specific type of
red giant stars that do not display expected dipole mode variability. One of the
possible explanations of the origin of this missing variability is the presence of a
strong internal magnetic field, that is inherited from their progenitors (the main
sequence stars considered here).

We conclude that moderately strong internal magnetic fields inside OBA spec-
tral type main-sequence stars are detectable with the derived formalism. In the
near future, this formalism will be expanded to include more realistic magnetic
field configurations, looking at ways of generalizing the conclusions drawn here,
and will apply our theoretical predictions in the seismic modelling of stars ob-
served with the NASA Kepler satellite.
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Vulgarizing Summary
Stars make up most of the visible matter in the universe. Effectively, stars are
the efficient nuclear reactors of our universe, processing the elements/nuclides
and shaping their immediate surroundings, e.g. making life possible on earth.
They spend most of their lives fusing hydrogen in their core, the so-called main
sequence life phase. In this work we only consider such (easily observable) stars,
and assume them to be slightly more massive than our Sun.

Their evolution is dictated by the equations of stellar structure and evolution
theory, as clarified in the first chapter. These can describe global aspects quite
well. However, some key aspects remain to be elucidated, among which their
interior magnetic properties. One of the key questions theorists ask themselves
is how strong magnetic fields inside these stars affect stellar structure and evolu-
tion. For simplicity, we investigate weak internal magnetic fields of main sequence
stars, so that the overall effect on the internal structure is negligible.

In order to characterize such internal fields, we cannot rely on conventional
methods which do not probe the deep interior. Instead, we rely on gravity-mode (g
mode) asteroseismology, the study of stellar oscillations or pulsation modes that
are restored by the Archimedes force/buoyancy. These are detected in long time
series observed with the NASA Kepler satellite and indirectly provide information
on the deep stellar interior.

In this work we derived a new formalism that provides a unique way to infer
magnetism inside stars, not yet available in current literature, providing a more
sophisticated magnetic field model and corresponding model of the magnetic in-
fluence on the pulsation mode frequencies. We strongly increased the sample
of stars that could be studied, as the formalism allows one to include the effect
of rapid rotation, a common feature for the considered type of star, allowing us
to derive observational constraints on internal magnetic fields. In addition, we
explored how different stellar and pulsation models are affected by the internal
magnetic field. We found that numerical parameters have negligible influence on
mode frequencies, which provides us with a robust computational setup. In ad-
dition, field structure and magnetic influence on mode frequencies are found to
vary with evolutionary state. Stars at the end of the main sequence are found to
be excellent targets for characterizing internal magnetic fields. Increasing rotation
generally decreases the magnetic influence, whereas other parameters produce
secondary, slightly differing effects.

The characterized magnetic fields inside these stars can be linked to a phe-
nomenon observed in stars that are more evolved (stars that have stopped core
hydrogen fusion). Several of these stars have been observed to display peculiar
variability, the origin of which has been investigated in the literature. One of the
possible origins are strong magnetic fields in the deep interior that have been
inherited from an earlier evolutionary phase (i.e. the main sequence).

We conclude that moderately strong internal magnetic fields inside main se-
quence stars slightly heavier than our Sun are detectable with the derived for-
malism. In the near future, we will apply our formalism in the modelling of stars
observed with the NASA Kepler satellite, and will develop more sophisticated field
models, in order to generalize the conclusions drawn here.
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1 — Introduction

The theory of stellar structure and evolution (SSE) is very important for modern
astronomy and astrophysics research. It explains how stars, which encompass most
of the visible matter in the universe, evolve. Stars significantly influence their sur-
roundings, on largely varying spatial and time scales. For example, stellar gravity
and luminosity dominate planetary motions and act as the primary source of en-
ergy for most planets and are therefore also decisive for habitability, respectively
(see e.g. de Pater and Lissauer, 2015; Gallet et al., 2016). In addition, planetary
systems are formed from the dusty discs created due to angular momentum con-
servation of collapsing molecular clouds around young stellar objects (YSOs) (see
e.g. Ward-Thompson and Whitworth, 2015; Armitage, 2010). Smaller (spatial) scale
phenomena, such as stellar mass loss and the composition of stellar outflows, affect
both star and galaxy formation, e.g. by changing the composition on timescales
shorter than galactic timescales of stars being born (see e.g. Kippenhahn et al.,
2012; Hopkins et al., 2014, and references therein). The ejecta from evolved stars
also chemically enrich the interstellar medium. They contain the products of the
nuclear burning processes inside the star and form (icy) dust grains on which organic
compounds might form (see e.g. Kwok, 2004, 2008).

Global aspects of stellar structure and evolution are currently well-understood.
However, other key aspects of stellar structure remain unclear, such as internal stellar
rotation, deep internal mixing and both external and internal magnetism (see e.g.
Zahn, 1992; Maeder, 2009; Aerts et al., 2014, 2019). In this thesis, we take a closer
look at stellar magnetism, using asteroseismology, the study of stellar structure by
analysis of stellar pulsations (Aerts et al., 2010).

Stellar pulsations cause fluctuations in stellar luminosity, which can be observed.
Thanks to the high-precision long-timebase photometry, obtained with recent space
missions such as the NASA Kepler space telescope (Koch et al., 2010) and the
Transiting Exoplanet Survey Satellite (TESS; Ricker et al., 2015), stellar variability
that is undetectable from the ground, has been observed (Aerts et al., 2010). To
analyse the interior structure of a variable star, the observed pulsations are identified
and used as input for asteroseismic modelling, which consists of comparing the
observed pulsation frequencies with the theoretical frequencies for a grid of stellar
models (for recent examples see e.g. Aerts et al., 2018; Buysschaert et al., 2018;
Hendriks and Aerts, 2018; Mombarg et al., 2019).

Due to a lack of (observational) constraints, the effects of magnetic fields in SSE
are often neglected. We will determine the effect of magnetic fields on stellar pulsa-
tion frequencies, including rotational influence due to the Coriolis force, providing a
new perspective on the origin of the phenomenon of missing dipole modes in about
one quarter of red giant stars observed by Kepler (see Section (1.2)).

1



CHAPTER 1. INTRODUCTION 2

In first instance, we constrain ourselves to intermediate-mass main-sequence (MS)
stars. Recent studies indicate that these stars are typically (quasi-)uniformly rotat-
ing, irrespective of their rotation rate, which covers [0− 80%] of the Roche critical
rotation rate (Van Reeth et al., 2018).

1.1 Structure and evolution of intermediate-mass

main-sequence stars

The equations of stellar structure

For a spherically symmetric star in hydrostatic equilibrium, the following set of
differential equations describe its structure and evolution (Kippenhahn et al., 2012):

∂r

∂m
=

1

4πr2ρ
, (1.1)

∂P

∂m
= − Gm

4πr4
, (1.2)

∂l

∂m
= εn − εν − CP

∂T

∂t
+
δ

ρ

∂P

∂t
, (1.3)

∂T

∂m
= − GmT

4πr4P
∇ = − GmT

4πr4P

(
d lnT

d lnP

)
, (1.4)

∂Xi

∂t
=
mi

ρ

(∑
j

rji −
∑
k

rik

)
, i = 1, . . . , I . (1.5)

Equation (1.1) is the Lagrangian (i.e. in terms of mass coordinates) formulation
of the continuity equation (where r is the radial coordinate, m is the mass coordinate
(r,m = 0 in the stellar centre) and ρ is the density), expressing the conservation of
mass in the different mass shells of the spherically symmetric star. Equation (1.2) is
the equation of hydrostatic equilibrium with G being the gravitational constant, and
P being the gas pressure, where the forces due to the (outward) pressure gradient
and gravity cancel each other. In fact, it is a specific expression that is derived from
the more general conservation of momentum equation − ∂P

∂m
− Gm

4πr4
= 1

4πr2
∂2r
∂t2

, in
which the ‘extra’ term signifies the inertia of mass elements undergoing accelerated
radial motions (Kippenhahn et al., 2012). Equation (1.3) describes the conservation
of energy, where l is the local luminosity of the mass element considered. It can
be derived by looking at the heat per unit mass added to the shell dq in a time
interval dt, which is defined as dq =

(
ε− ∂l

∂m

)
dt, where ε contains two contributions:

εn and εν . Nuclear burning acts as a source, characterized by εn, which is the
nuclear energy released per unit mass per second. In addition, neutrinos, formed
by nuclear fusion processes taking place in the stellar core, present a significant
energy loss, characterized by εν . An expression for dq in the absence of nuclear
burning is given by the first law of thermodynamics: dq = du + Pdv (with u the
internal energy and v = 1/ρ the specific volume), which can be transformed into
dq = CPdT − δ

ρ
dP by making use of several thermodynamic relations (see e.g.

Kippenhahn et al., 2012), where CP =
(

dq
dT

)
P

, dT is the change in temperature of

the mass element, δ = −
(
∂ ln ρ
∂ lnT

)
P

and where dP is the change in pressure of the
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mass element. Combining this with the previously obtained equation for ∂l
∂m

yields
the energy equation defined above (Equation (1.3)).

Equation (1.4) is the energy transport equation, where T is the temperature of
the mass element and where hydrostatic equilibrium is assumed. It will be discussed
in more detail in the next subsection. Finally, Equation (1.5) describes the isotope
abundance changes inside the star (i.e. the nuclear reaction networks), where Xi is
the fraction of a unit mass consisting of nuclei of type i, mi the mass of these nuclei,
and where rij are the reaction rates of nuclear processes that create nuclei of type
i, whereas rji are the reaction rates of nuclear processes that destroy them, for any
of the nuclei i = 1 . . . I which are involved in such reactions. Equation (1.5) does
not account for mixing processes in the interior, although they do induce transport
of nuclei between neighbouring mass shells over time.

During the main sequence, which is the stage of core hydrogen burning, lo-
cal adjustments to mechanical equilibrium and energy transport occur on typical
timescales shorter than the time scale of changes in chemical composition, so that
the first four equations can effectively be decoupled from Equation (1.5), by itself a
set of equations. The given set of four equations can be solved for the relevant quan-
tities if they are coupled with an equation of state (EOS) that describes the variation
of density ρ as a function of P , T and chemical composition Xj (Kippenhahn et al.,
2012).

Stellar convection

If radiation is the sole transporter of energy (i.e. ∇ = ∇rad), Equation (1.4) can be
simplified as (Kippenhahn et al., 2012):

∂T

∂m
= − GmT

4πr4P
∇rad = − 3κ(m)l(m)

64π2ac(r(m))4(T (m))3
, (1.6)

where κ(m) is the Rosseland mean opacity, a is the radiation density constant, and
c is the speed of light. However, if ∇rad becomes very high, transport by means of
radiation becomes ineffective, so that energy transport will mainly be done by means
of convection, where (macroscopic) mass elements with a temperature higher than
their environment will rise, and subsequently dissipate. In addition to transport of
energy, this will also cause these convective regions to be well-mixed chemically. In
order to determine the regions of convective energy transport, the Ledoux criterion
can be used (see e.g. Aerts et al., 2010):

∇ad +
ϕ

δ
∇µ < ∇rad , (1.7)

where

∇ad =

(
d lnT

d lnP

)
S

, ϕ =

(
∂ ln ρ

∂ lnµ

)
P,T

, δ = −
(
∂ ln ρ

∂ lnT

)
P,µ

, ∇µ =

(
∂ lnµ

∂ lnP

)
,

(1.8)

with S the entropy and µ the local mean molecular weight. Here, ∇ad is the adia-
batic temperature variation of the mass elements. The chemical gradient ∇µ has a
stabilising effect on convection.
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M & 2.0 M� 1.2 M� . M . 2.0 M� 0.5 M� . M . 1.2 M� M . 0.5 M�
OBA stars ≈ F stars

Figure 1.1: Representation of the regions of differing energy transport inside stars of differing
masses throughout the main sequence, assuming solar metallicity. Radiative regions are indicated
in red, whereas convective regions are indicated in yellow. The approximate mass and spectral
type is given underneath.

Convective energy transport is often described using the mixing length theory
(MLT). The energy transport is then computed as a function of a typical mean free
path lm of the convective elements:

lm = αMLTHp , (1.9)

where αMLT is the mixing length parameter expressing the efficiency of convec-
tion and Hp is the local pressure scale height, defined as Hp = −dr/d lnP . This
leads to difficulties in describing the boundaries between convective and radiative
zones. Within the mixing length theory such a boundary is sharp and discontinuous,
whereas physically, one would expect a more gradual transition, where convective
elements can penetrate the radiative regions. This is then typically taken into ac-
count by defining so-called overshooting regions, where another parameter (which
also depends on the local pressure scale height), the overshooting parameter fov,
expresses the extent of the overshooting region. The (model-dependent) version of
our overshooting criterion will be covered in Section (3.1).

Stellar evolution of intermediate-mass stars (until the red giant phase)

All stars are born in regions of high-density interstellar dust and gas. They are
dense enough to shield molecular species from the interstellar radiation field, and
hence are referred to as molecular clouds. These regions become unstable to gravi-
tational contraction if the mass contained in the (molecular) clouds is high enough.
A common criterion to determine the required critical mass is the so-called Jeans
criterion (e.g. Ward-Thompson and Whitworth, 2015). The contraction will lead to
the fragmentation of the original cloud, where each fragment will be subject to the
formation of a disk with a massive core. These so-called protostars will heat up due
to mass accretion from their disks. Eventually, most of the mass in the disk will
be accreted onto the protostar. If enough mass was present in the disk, the central
object will become hot enough to start fusing hydrogen and becomes a zero-age
main sequence (ZAMS) star (e.g. Ward-Thompson and Whitworth, 2015).

The class of intermediate-mass main-sequence stars consists of stars with masses
ranging from 1.2 to 8.0 solar masses (M�), if they have solar metallicity (Aerts et al.,
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2019). The typical internal structure of these (main-sequence) stars is indicated in
Figure (1.1), showing that for most intermediate-mass stars a convective core persists
throughout the main sequence. The stellar structure throughout the main sequence
evolution is mainly determined by the stellar mass, although metallicity (i.e. how
many elements are present that are heavier than hydrogen and helium) plays a
secondary role (see e.g. Hirschi et al., 2008). After nearly all hydrogen inside the
core has been exhausted, the terminal age main sequence (TAMS) star loses most
of its outward radiative pressure, previously provided by the photons produced by
the core nuclear hydrogen-burning processes. The core will become isothermal in
the absence of energy sources (see e.g. Kippenhahn et al., 2012). Following the
TAMS phase, hydrogen fusion will take place in the near-core regions (so-called
shell burning), adding more helium to the core. The maximum extent to which
the He-filled core can grow in mass (without shrinkage) is given by the Schönberg-
Chandrasekhar (SC) limit qSC (Schönberg and Chandrasekhar, 1942):

q0 ≡
Mc

M
≤ qSC = 0.37

(
µenv

µcore

)2

≈ 0.09 , (1.10)

where Mc is the core mass, M is the stellar mass, µenv is the molecular weight of
the (H-rich) envelope and where µcore is the molecular weight of the helium core
(µcore ' 4/3). As long as the core mass is lower than the SC limit, the core is in
thermal equilibrium, and the star is called a subgiant.

After reaching the SC limit, the core starts to contract, the characteristic timescale
given by the Kelvin-Helmholtz contraction timescale, which is much shorter than
the nuclear timescale of hydrogen burning (τKH � τnuc). In that stage, the outer
regions expand rapidly, greatly increasing the stellar radius. This phase is called
the red giant phase, where next to a non-burning He core growing in mass, yet
contracting in radius, a burning hydrogen shell is present. In stars more massive
than ≈ 2.3M� hydrogen shell burning will continue until the core temperature is
high enough to start core helium burning in non-degenerate conditions. In stars less
massive than ≈ 2.3M� however, the electrons in the helium core become degenerate
before the temperature for onset of helium burning can be reached. In that case, the
electron degeneracy contributes to the pressure gradient that supports the weight of
the envelope. As a result, the onset of the core helium burning phase is unstable, the
so-called helium flash, a thermal runaway reaction (see e.g. Kippenhahn et al., 2012,
for a detailed description). We will not consider any stars/stellar models beyond
this life phase, instead referring readers to an excellent reference on stellar evolution
theory (Kippenhahn et al., 2012).

1.2 ‘Missing’ dipole mixed modes inside red giant

stars

Red giants are characterized by their expanding convective envelope and contracting
radiative core. p modes, standing acoustic waves where the pressure gradient acts as
the dominant restoring force (see Chapter (2) for a rigorous mathematical definition),
are excited in the envelope due to stochastic energy input from turbulent near-surface
convection. They subsequently propagate inwards as long as their angular frequency
ω is smaller than a critical acoustic frequency Sl. Where ω = Sl a boundary forms,
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Figure 1.2: Illustration of the dipole (l = 1) pulsation mode propagation inside red giants, as
envisaged by Fuller et al. (2015). In the presence of a strong (near-)core magnetic field, gravity
waves are scattered to high angular degree l (see Section (2.1) for a rigorous definition), become
trapped in the core, and eventually dissipate. Figure taken from Fuller et al. (2015).

at which part of the mode flux is reflected, whereas the rest continues its journey
towards the core, as illustrated in Figure (1.2). In the (deep) stellar interior these
modes change behaviour and can couple to so-called gravity modes or g modes,
which are standing waves for which buoyancy acts as the dominant restoring force.
They propagate in the radiative core as long as their frequency is smaller than the
local buoyancy frequency or Brunt-Väisälä frequency N , defined as:

N2 = g

[
1

Γ1 P

dP

dr
− 1

ρ

dρ

dr

]
, (1.11)

where Γ1 = (∂ lnP/∂ ln ρ)ad and where g = GM/R2 is the surface gravity.
For a fully ionized gas, a more conceptual description of N is given by:

N2 ≈
(
g2ρ

P

)
(∇ad −∇+∇µ) , (1.12)

so that in the region of nuclear burning (where µ increases with depth), ∇µ makes a
positive contribution to N2. In between the convective envelope and radiative core,
a small evanescent region exists (as indicated in grey in Figure (1.2)), in which the
mode amplitude decays exponentially. Hence, p modes that want to couple with g
modes (and vice versa) have to ‘tunnel’ through this region. If they have sufficient
amplitude, they can couple and become so-called mixed modes, which display both
g and p mode character.

In ‘normal’ red giant stars, the wave energy that tunnels into the core also
tunnels back out (eventually) to produce the observed mixed oscillation modes at
the surface, where the coefficient for wave transmission for tunneling through the

evanescent zone is given by T = exp
[
−
∫ r2
r1
dr
√
−(S2

l − ω2)(N2 − ω2)/(c2
sω

2)
]
, with
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r1 and r2 the lower and upper bounds of the evanescent zone, and cs the local sound
speed (Cantiello et al., 2016). The fraction of wave energy transmitted through that
zone is then equal to T 2.

However, 20% of red giants (in the Kepler field) exhibit ‘missing’ mixed modes, or
rather, modes whose amplitudes are significantly suppressed (Mosser et al., 2012a).
Most of the modes observed are near the νmax frequency determined by the evo-
lutionary state of the star (generally: the larger νmax, the younger the star). The
visibility of stellar oscillations critically depends on how they are driven and damped.
Two possible origins for the ‘missing’ mixed modes are discussed in literature: either
strong internal magnetic fields suppress/scatter these modes (Fuller et al., 2015), or
a strong yet unknown coupling formalism (where T is modified) needs to be used
(Mosser et al., 2017).

The strong near-core magnetic field mechanism of Fuller et al. (2015) essentially
alters the mixed mode geometry, which leads to the ‘trapping’ of modes in the
near-core region, as these modes can no longer ‘tunnel’ through the evanescent
region. Earlier work showed, when considering the interaction of gravity modes
with a horizontal magnetic field, that sufficiently strong magnetic fields will reflect
these waves, whereas weaker fields partially reflect or refract such waves (Rogers
and MacGregor, 2010; MacGregor and Rogers, 2011). In effect, since the horizontal
motion of the waves distort magnetic field lines, the magnetic tension force, which
is the restoring force for the (magnetic) Alfvén waves, becomes strong enough to
act as a restoring force, in addition to buoyancy. Fuller et al. (2015) were therefore
able to derive a critical magnetic field strength Bc =

√
πρ/2 (ω2r/N): the strength

above which ‘normal’ g modes are converted into Alfvén waves and modified g
modes (differing in mode geometry, described by e.g. the angular degree l, which is
more rigorously defined in Section (2.1)). This was explored in detail with the 2D
simulations performed by Lecoanet et al. (2017), finding results that agree with the
conclusions of Fuller et al. (2015). Hence, if the magnitude of the radial component
of the magnetic field exceeds Bc, mixed mode propagation will stop. Moreover, since
this critical field strength increases with the pulsation frequency, the field strengths
necessary for this mechanism to work vary throughout red giant evolution: more
evolved stars require a lower field strength than less evolved red giants to become
critical. Typical field strengths needed for suppression are Bc ≥ 104 − 106G (Fuller
et al., 2015). In addition, this means that for a given field strength an angular
transition frequency ωc should exist, where modes with angular frequencies below
ωc propagate and modes with angular frequencies greater than ωc do not.

The Mosser et al. (2017) formalism, on the other hand, relies on the results
of Takata (2016a,b), which provide an improved description of the p and g mode
coupling in non-magnetic red giants. A thorough observational study of red giants
that exhibit these ‘missing’ mixed modes then led Mosser et al. (2017) to conclude
that these stars are similar to ‘normal’ red giants, if the modified expression for T
is used. In addition, their damping mechanism does not significantly impact stellar
structure, nor does it change properties of the mode propagation regions. There-
fore, the ‘missing’ mixed modes are not missing but instead are strongly coupled,
implying that these oscillations cannot be fully suppressed in the radiative core, in
contrast with the necessary assumption of the Fuller et al. (2015) formalism. Hence,
they conclude that another damping mechanism must be found, which only partially
damps the dipole (l = 1) mixed modes.
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Figure 1.3: Fraction of red giants showing suppressed dipole mixed modes, in function of stellar
mass. Figure taken from Stello et al. (2016).

The strong internal magnetic fields proposed by Fuller et al. (2015) can only be
present if they are a remnant of earlier phases of stellar formation and evolution (such
as the main sequence stars considered in this work), assuming that the magnetic field
flux is conserved. This assumption can be justified by considering that the ohmic
timescale tOhm = H2

P/η, i.e. the time a stable magnetic field needs to diffuse across
a pressure scale height HP in a radiative region, is quite large in stellar plasma’s,
where the magnetic diffusivity η is low. Cantiello et al. (2016) therefore assume that
fields present at the end of the main sequence are frozen in their Lagrangian mass
coordinate. If this is the case, the magnetic flux is conserved, so that the TAMS
magnetic field strength can provide an estimate for the red giant field strength:
BRG = BMS (rMS/rRG)2, where BMS is the field strength at the moment when the
convective core has its largest extent, rMS is the radius of the mass shell at TAMS,
and rRG is the radius of the mass shell in which hydrogen shell burning takes place
(Fuller et al., 2015; Cantiello et al., 2016).

A study of 3600 red giant stars by Stello et al. (2016), characterized the mass
range of red giants for which mode suppression with the Fuller et al. (2015) mecha-
nism most likely occurs, shown in Figure (1.3). Moreover, they provided an updated
critical magnetic field strength range required to suppress the mixed modes, ranging
from 104 G for evolved red giants (of widely differing masses) to 3∗106 G for younger
red giants (see figure 4 of Stello et al., 2016). Cantiello et al. (2016) state that these
magnetic fields are likely remnants from main sequence dynamo action, where a
fraction of kinetic energy due to convective motions in the convective core is con-
verted into magnetic energy (see e.g. Brandenburg and Subramanian, 2005). Their
scale and magnitude critically depend on the importance of rotation, as derived in
Cantiello et al. (2016). They find typical field strengths of BMS ∼ 104 − 105 G,
but note that smaller-scale and amplitude magnetic fields can still be generated in
the absence of rapid rotation. Moreover, Augustson et al. (2016) generated mega-
gauss strength fields in their magneto-hydrodynamics (MHD) simulations of core
convection in massive B-type stars.
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None of these studies, however, looked at how to provide observational
constraints to characterize the internal magnetic fields present during the
precursor main-sequence phase of these red giants. This is the aim of this
work. The main sequence internal stellar magnetic field model that will be used in
this work was derived by Duez and Mathis (2010). It represents a dipolar, axisym-
metric field, resembling the typical field geometries observed at stellar surfaces (see
Section (3.2.3)). This field was specifically designed to resemble a so-called fossil
field, which is thought to be a remnant of the pre-main-sequence phase evolution
of a main sequence star. It is suitable to obtain a first glimpse of internal near-
core stellar magnetic fields of (pulsating) intermediate-mass main-sequence stars,
by looking at how these fields affect the pulsation frequencies.

In the near future, more complex field geometries will be considered, opening
up possibilities to further test the Fuller et al. (2015) hypothesis by means of aster-
oseismology of intermediate-mass g-mode pulsators, numerous of which have been
observed by the NASA Kepler satellite.

1.3 Main goals of this thesis

The best way to probe these near-core magnetic fields is by considering their effect
on gravity mode pulsations which probe this very region (see e.g. Aerts et al., 2010).
The main goals of this work therefore consist of:

1. Identifying how internal magnetic fields affect frequencies of stellar gravity
mode pulsations. This will be translated in a criterion for detectability.

2. Identifying how different stellar fundamental parameters affect the Duez and
Mathis (2010) magnetic field structure and determining the corresponding
effect on stellar gravity mode pulsation frequencies.

As will become clear further on, part of this master thesis research was published as:

Period spacings of gravity modes in rapidly rotating magnetic stars I.
Axisymmetric fossil field with poloidal and toroidal components

V. Prat, S. Mathis, B. Buysschaert, J. Van Beeck, D. M. Bowman, C. Aerts, and
C. Neiner

Accepted (in press) for publication in Astronomy & Astrophysics on 14th May 2019
and pre-print available at: https://arxiv.org/abs/1903.05620.

https://arxiv.org/abs/1903.05620
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2 — Theory of gravity-mode os-
cillations

2.1 Non-rotating, non-magnetic stars

Equations (1.1) - (1.5) describe a stellar model in (hydrostatic) equilibrium. Through-
out the evolution of the star, there will often be processes that cause it to oscillate
around its equilibrium state. The impact of these pulsations is typically small, so
that the equilibrium stellar model is only slightly perturbed.

The pulsations are described by the ‘pulsation equations’, which can be obtained
by applying linear perturbations to Equations (1.1) - (1.5). In a non-rotating, non-
magnetic, spherically symmetric star, these pulsations can be described using spher-
ical harmonic functions, so that the components of the Lagrangian displacement ξ
(i.e. displacement of local mass elements) caused by a pulsation with angular fre-
quency ωn and quantum numbers n, l and m, expressed in spherical coordinates
(r, θ, ϕ), where θ denotes the colatitude and ϕ is the longitude, are equal to (e.g.
Smeyers and Van Hoolst, 2010; Aerts et al., 2010):

ξn,r(r, θ, ϕ, t) = An(r)Y m
l (θ, ϕ)e−iωnt ,

ξn,θ(r, θ, ϕ, t) =
Bn(r)

r

∂Y m
l (θ, ϕ)

∂θ
e−iωnt ,

ξn,ϕ(r, θ, ϕ, t) =
Bn(r)

r sin θ

∂Y m
l (θ, ϕ)

∂ϕ
e−iωnt .

(2.1)

An(r) and Bn(r) are the amplitudes of radial and horizontal displacement, respec-
tively. Y m

l (θ, ϕ) is a spherical harmonic function given by:

Y m
l (θ, ϕ) = (−1)m

√
2l + 1

4π

(l −m)!

(l −m)!
Pm
l (cos θ) eimϕ (2.2)

where Pm
l is an associated Legendre function (Abramowitz and Stegun, 1972).

The quantum numbers n, l and m express the pulsation geometry: the radial
order n is related to the number of radial nodes, the spherical degree l expresses the
number of surface nodal lines and the azimuthal order m is equal to the number of
surface nodal lines that pass through the symmetry axis of the star, hence l ≥ |m|.
Traditionally, pulsation modes where l = |m| are referred to as sectoral modes,
pulsations with 0 < |m| < l are referred to as tesseral modes, and pulsations with
m = 0 are labelled zonal modes. In a similar way, pulsations with l = 0 are referred
to as radial modes, whereas nonradial modes have l 6= 0. If l = 1, the pulsation mode
is called a dipole mode, whose radial components are displayed in Figure (2.1). If l =

11
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Figure 2.1: Representation of the radial component of the l = 1 dipole modes in a non-rotating,
non-magnetic star. From left to right: retrograde (m = −1) sectoral mode, zonal mode (m = 0),
and prograde (m = 1) sectoral mode. White bands represent positions of the surface nodes,
whereas the red and blue regions represent sections of the star that are moving in (out) and/or
heating (cooling) at any given time, the behaviour oscillating in time.

2, it is labelled as a quadrupole mode, and so forth. As noted by Van Reeth (2017),
the quantum numbers n, l and m have a strong impact on pulsation characteristics,
so that a correct geometric mode identification in observational studies is essential.

In this work we will only consider linear, adiabatic oscillations, for which the La-
grangian perturbation of the entropy is equal to zero, so that the following pulsation
equations hold for a non-rotating, non-magnetic star (Aerts et al., 2010):

ρ′ =
ρ

Γ1P
P ′ + ρ ξr

(
1

Γ1P

dP

dr
− 1

ρ

dρ

dr

)
, (2.3)

dξr
dr

= −
(

2

r
+

1

Γ1P

dP

dr

)
ξr +

1

ρc2
s

(
S2
l

ω2
− 1

)
P ′ +

l(l + 1)

ω2r2
Φ′ , (2.4)

dP ′

dr
= ρ

(
ω2 −N2

)
ξr +

1

Γ1P

dP

dr
P ′ − ρdΦ′

dr
, (2.5)

1

r2

d

dr

(
r2 dΦ′

dr

)
= 4πG

(
P ′

c2
s

+
ρξr
g
N2

)
+
l(l + 1)

r2
Φ′ , (2.6)

where c2
s = Γ1P/ρ is the local sound speed, S2

l = l(l + 1)c2
s/r

2 = k2
hc

2
s is the Lamb

frequency (with kh the horizontal wavenumber), N is the Brunt-Väisälä or buoyancy
frequency, Φ is the gravitational potential (defined by Poisson’s equation), and where
x′ denotes an Eulerian perturbation of the quantity x (i.e. the perturbation of that
quantity at a given point). In order to close this (complete) system of pulsation
equations, boundary conditions need to be fulfilled (Smeyers and Van Hoolst, 2010).
At the stellar centre, the radial component of the Lagrangian displacement must be
finite. At the stellar surface the Lagrangian perturbation of pressure must be zero:
(P ′ + (ξ · ∇)P )R = 0. However, since PR is considered to be negligible compared
to the central pressure (i.e. PR = 0), the condition imposes that the divergence of
the Lagrangian displacement must be finite at the surface (see e.g. Smeyers and Van
Hoolst, 2010). Finally, the continuity of the gravitational potential and its gradient
at the surface require that

(
dΦ′

dr

)
R

+ Φ′R(l + 1)/R = − (4πGρAn(r))R.
When l or |n| are large, the Eulerian perturbation of the gravitational poten-

tial Φ′ is small (compared to ρ′), allowing one to neglect it, the so-called Cowling
approximation (Cowling, 1941). Even though this changes the properties of some
modes (which we do not consider here), it has computationally been proven to be
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valid for high-order, high-degree modes (Robe, 1968; Christensen-Dalsgaard, 1991).
In this approximation, the pulsation equations reduce to (Aerts et al., 2010):

dξr
dr

= −
(

2

r
− 1

Γ1

H−1
p

)
ξr +

1

ρc2
s

(
S2
l

ω2
− 1

)
P ′ , (2.7)

dP ′

dr
= ρ

(
ω2 −N2

)
ξr −

1

Γ1

H−1
p P ′ , (2.8)

where Hp is the local pressure scale height defined earlier. For high radial order
modes, this system of equations can be approximated by (Aerts et al., 2010):

d2ξr
dr2

=
ω2

c2
s

(
1− N2

ω2

)(
S2
l

ω2
− 1

)
ξr = −Ks(r)ξr . (2.9)

Hence, given the pulsations equations in their crudest form, the pulsation behaviour
is determined by the characteristic frequencies Sl and N . The local behaviour of ξr
depends on the sign of Ks(r): if Ks(r) > 1, ξr is a local oscillating function of r,
whereas if Ks(r) < 0, the function is either exponentially increasing or decreasing
locally. The oscillatory solutions are obtained for the following conditions (Aerts
et al., 2010):

|ω| > |N | and |ω| > Sl , (2.10)

|ω| < |N | and |ω| < Sl . (2.11)

whereas the evanescent solutions inside the star are defined by:

|N | < |ω| < Sl , (2.12)

Sl < |ω| < |N | . (2.13)

In general, one of the oscillating regions is dominant for a given pulsation mode,
with the solution decaying exponentially away from it (Aerts et al., 2010). Nonra-
dial stellar pulsations can then be categorized according to their dominant restoring
force. For non-rotating, non-magnetic stars, two main pulsation types can be dis-
tinguished: pressure/acoustic modes (fulfilling condition (2.10)) and gravity modes
(fulfilling condition (2.11)). Hence, the oscillatory solutions thus define the so-called
pulsation cavities (for a non-rotating, non-magnetic star), which are the regions in-
side the star in which the modes are trapped. The boundaries of this trapping region
can then be found at points where Ks(r) = 0, known as the turning points.

Gravity Modes

Gravity modes or g modes are pulsations with buoyancy as the dominant restoring
force. Therefore, these modes can only propagate in radiative regions inside a star,
since buoyancy is precisely the force driving convection. G modes are most sensitive
to the properties of the deep stellar interior, where ω � N and ω � Sl hold, and
cannot be purely radial. The wave vector k and Lagrangian displacement vector ξ
(assuming ξ ∝ exp{i(k · r − ωt)}) in spherical coordinates (r, θ, ϕ) can be written
as (e.g. Aerts et al., 2010):

k = krer + kθeθ + kϕeϕ = krer + kH , (2.14)

ξ = ξrer + ξθeθ + ξϕeϕ = ξrer + ξH , (2.15)
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so that for these low-frequency waves in stably stratified regions, one obtains: k·ξ =
krξr + kH · ξH ≈ 0 if the anelastic approximation ∇ · (ρξ) ≈ 0, which filters out
high-frequency acoustic waves, is used. Hence, the following holds: ξr/ξh ≈ −kH/kr.
The dispersion relation for internal gravity waves is the following (e.g. Aerts et al.,
2010):

ω2 =
N2

1 + k2
r/k

2
H

. (2.16)

Since ω2 � N2, k2
H � k2

r must hold: the displacement of these modes is predom-
inantly horizontal: ||ξh|| � ξr (i.e. these modes are transversal). Moreover, if
oscillations are locally regarded as plane waves, k2

H = l (l + 1) /r2, so that the radial
component of the wave vector is given by (Aerts et al., 2010):

k2
r =

l(l + 1)

r2

(
N2

ω2
− 1

)
≈ l(l + 1)

r2

(
N2

ω2

)
, (2.17)

where a region of k2
r > 0 is propagative and a region of k2

r < 0 is evanescent.
Shibahashi (1979) and Tassoul (1980) independently showed that for a non-rotating,
chemically homogeneous star, pulsation periods Pnl in the asymptotic regime (where
n� l) are given by:

Pnl =
Π0√
l(l + 1)

(n+ αl,g) , (2.18)

where

Π0 = 2π2

(∫ r2

r1

N
dr

r

)−1

, (2.19)

with αl,g a constant depending on the boundaries r1 and r2 of the mode trapping
region, and Π0 the buoyancy radius. This leads to regular spacings in period between
modes with the same degree l and consecutive radial orders n:

∆Πl =
Π0√
l(l + 1)

. (2.20)

However, stars are not chemically homogeneous. As mentioned in Section (1.1),
a convective core exists in intermediate-mass stars throughout the MS, which can
either grow or shrink. A growing convective core leads to discontinuity in chemical
composition at the boundary, whereas a receding core leaves behind a µ-gradient
zone near the core.
Miglio et al. (2008) showed that varying the local average molecular weight (e.g.
due to a shrinking convective core on the MS) modifies the g mode resonant cavity
and causes mode trapping. This leads to dips in the period spacing patterns, as
can be seen in Figure (2.2) for a typical 3 M� stellar model. A steeper chemical
gradient results in stronger dips, whereas the periodicity of the dips (in the period
spacing pattern) indicates the location of the mode trapping region. If more mixing
is considered, the average period spacing value decreases and the chemical gradient
is washed out, reducing the presence of dips.
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Mode excitation

Stars that are observed to be pulsating, do so in their natural modes of oscillation.
As some stars have been observed to be pulsating for many decades, it seems that
stellar pulsation is a relatively stable phenomenon. However, some of the mode
energy will inevitably be lost as the pulsations propagate throughout the stellar
interior, damping the pulsations. Hence, pulsations can only occur if they are driven
by some mechanism. Two main types of mechanisms that can drive stellar pulsations
can be discerned.

The first, stochastic excitation, is commonly present in stars with a sufficiently
large convective envelope, such as our Sun. In this case, stars resonate stochastically
at their characteristic pulsation frequencies, due to turbulent convective motions in
these envelopes.

The second main pulsation driving mechanism, the κ or heat engine mechanism,
is present in the intermediate-mass stars that will be studied in this work. As (ra-
diative) energy transfer within the star is not efficient enough within a specific mass
shell, periodic heating and cooling of this mass shell ensues, driving the pulsations.
Usually, the κ mechanism is present in a partial ionization layer in the envelope of
the star. In such a layer, the temperature dependence of the ion opacity modifies
the efficiency of energy transfer, providing a driving mechanism for the pulsation.

We will not go further into detail on this subject and instead refer the reader to
e.g. Chapter 3.7 of Aerts et al. (2010) for an in-depth discussion of current mode
excitation theory. The reason we neglect this is that in order to characterize the
internal magnetic field of a target, we will make use of observed oscillation modes,
which are in any case excited, irrespective of whether excitation theory predicts their
excitation or not.

Pulsations in A-F-type stars: γ Doradus stars

γ Doradus (γ Dor) stars are late A- to early F-type main-sequence stars with masses
ranging from 1.3 to 1.9 M� (Mombarg et al., 2019). They present multiperiodic
photometric and spectroscopic variation with periods typically ranging from 0.3 to
5.0 days and amplitudes typically less than 50 mmag (e.g. Aerts et al., 2010). Their
pulsations are multiperiodic high-order nonradial g modes. This makes them a
prime target for our study, as these pulsations probe the near-core region, in which
the magnetic field in the Fuller et al. (2015) model is strongest (see Sections (2.3)
and (3.2.3)). Since they typically exhibit frequencies that are close to their rotation
frequency (e.g. Bouabid et al., 2013), the effects of rotation on the stellar pulsations
are large and have to be considered in detail. The excitation mechanism for these
stars is the convective flux blocking by the HeII partial ionization zone at the bottom
of their convective envelope (see e.g. Grigahcène et al., 2005; Dupret et al., 2005b,a).
They are representative for the lower mass range of the stellar model grid considered
in this work.

Pulsations in B-type stars: Slowly Pulsating B stars

Slowly pulsating B-type stars (SPB stars) (first termed as such by Waelkens (1991))
are mid-B spectral type main-sequence stars that exhibit multiperiodic photometric
and spectroscopic variability, with periods typically ranging from 0.5 to 5.0 days and
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Figure 2.2: Typical period spacing patterns for zonal dipole modes (l = 1,m = 0) in a non-
rotating non-magnetic, chemically inhomogeneous 3 M� main-sequence star (i.e. a low mass
SPB-like star), at different evolutionary stages (left: mid-MS, right: TAMS). The effect of the
shrinking convective core is clearly visible. The asymptotic constant period spacing ∆Πl (defined
in Equation (2.20)) is overplotted, representing the period spacing between g modes in a chemically
homogeneous star.

amplitudes typically less than 50 mmag (e.g. Aerts et al., 2010). Their pulsations
are also (low-degree) high-order nonradial g modes, like those of γ Dor stars (e.g.
Moravveji et al., 2016). SPB stars range in mass from 3M� to 7M�, hence the
lower mass SPB stars are also a prime target for our study (Aerts et al., 2010).
Since they are larger, their buoyancy radius Π0 is different from γ Dor stars. The g
modes of SPB stars are excited by the heat engine mechanism, driven by an opacity
enhancement due to iron-group elements, also called the Z Bump, at a temperature
of approximately 200 000 K (see e.g. Gautschy and Saio, 1993; Dziembowski et al.,
1993; Pamyatnykh, 1999). Moderate to fairly rapid rotation is a well-established
property of SPB stars (Huang et al., 2010). Low-mass SPB stars are representative
for the upper mass range of our stellar model grid.

2.2 Influence of rotation

2.2.1 Influence on stellar evolution models

Generally, the mechanics of rotating stars are studied in the Roche approximation
(Kippenhahn et al., 2012). One then assumes that the gravitational potential Φ
is the same as if the total mass of the star were concentrated at the centre of the
star, so that Φ = −GM/R is spherically symmetric. Assuming solid-body rotation,
one can then derive an expression for the deformation of the star due to centrifugal
force. In fact, an expression can be derived for the so-called critical volume or Roche
lobe, which is the volume at which the centrifugal potential equals the gravitational
potential. The rotation rate at which the star fills its critical volume or Roche lobe
(Ωc) is estimated as (see e.g. Kippenhahn et al., 2012):

Ωc ≈
√

8GM

27R3
P

, (2.21)

where RP is the polar radius, which is not larger than the equatorial radius Req if the
star is rotating. This corresponds approximately to a surface whose equatorial radius
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is 50% larger than its polar radius. Indeed, this can easily be derived by equating the
gravitational acceleration with the centrifugal acceleration at the equator. Taking
Φ = −GM/Req as the gravitational potential and V = −R2

eqΩ2
rot/2 as the centrifugal

potential (i.e. assuming solid body rotation), one needs to ensure that ∇Φ+∇V = 0

holds. Therefore Ωc =
√
GM/R3

eq, which corresponds to Equation (2.21) if Req ≈
1.5RP. The effect of the centrifugal force on the polar radius RP is small, so that RP

in Equation (2.21) is sometimes replaced by the radius of the non-rotating stellar
model.

We assume that in our stellar models the deformation due to centrifugal ac-
celeration is small enough to neglect it. The deformation of the star affects the
low-density outer envelope more significantly than the high-density core, so that
g-modes are less influenced, justifying our approximation (Dintrans and Rieutord,
2000; Reese et al., 2006; Ballot et al., 2010). Nevertheless, rotation has a signifi-
cant influence on the assumptions made for stellar modelling. It induces latitudinal
dependence of the radiative energy transport, temperature, etc. (von Zeipel, 1924;
Maeder et al., 2008; Maeder, 2009). This leads to a myriad of hydrodynamic flows
and instabilities that cause mixing and angular momentum transport inside these
stars (e.g. Maeder, 2009; Aerts et al., 2019). An overview of such hydrodynamic
instabilities is presented in Aerts et al. (2019). Moreover, as the core contracts
whilst the envelope expands during evolution, the rotation profile changes. Even
though extensive theory has been developed to describe these rotationally-induced
instabilities (e.g. Pinsonneault, 1997), implementing these processes in evolution
codes involves free parameters. Therefore, such transport processes are subject to
considerable uncertainties, as they cannot be properly calibrated/constrained with
classical observations and few have been tested against simulations (Aerts et al.,
2019).

2.2.2 Influence on pulsation models

It is well-known that rotation can significantly affect properties of stellar oscillations,
if their frequencies are comparable to or smaller than the rotation frequency (e.g. Lee
and Saio, 1997). The Coriolis force and distortion of the equilibrium star due to the
centrifugal force are complicating factors, making it hard to study the oscillations of
rotating stars. In this work we restrict ourselves to including the rotational effects
for the description of the oscillations, treating the equilibrium models as spherical.
This is appropriate as long as the star rotates slower than about 80% of its critical
rotation rate (Ouazzani et al., 2017).

The latitudinal dependence of a normal mode in a rotating star can e.g. not
be expressed by a single spherical harmonic function, but instead requires a linear
combination of an infinite number of terms proportional to spherical harmonics with
different l and m (Zahn, 1966; Berthomieu et al., 1978). The coupling amongst the
terms with different l becomes significant when the (angular) normal mode frequen-
cies are comparable to or smaller than the (angular) frequency of rotation. In most
parts of stellar radiation zones 2||Ω|| � N , where Ω = Ω (r, θ) ez = ΩV er + ΩHeθ =
Ω cos θer − Ω sin θeθ is the rotation vector (Mathis, 2009). In the general case the
magnitude of the rotation vector depends on both the radius and the latitude (dif-
ferential rotation). In this work, we restrict ourselves to a uniformly rotating star,
with Ω constant, as observations by e.g. Van Reeth et al. (2018) indicated that
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quasi-uniform rotation is a good approximation for describing pulsations in γ Dor
stars. This allows us to adopt the so-called Traditional Approximation of Rotation
(TAR) for low-frequency waves, when ω � N , where ω signifies the angular pulsa-
tion frequency in the co-rotating frame. The TAR assumes that 2 Ω < ω, so that
the latitudinal component of the rotation vector, −Ω sin θeθ, can be neglected in the
equations. This implies that the radial component of the Coriolis force is assumed
to be negligible with respect to buoyancy and that radial displacements are limited
by buoyancy and small compared to horizontal components (like in the non-rotating
g mode case). The star should be a slow to moderately fast rotator, when compared
to its critical angular rotation frequency, reaching up to 80% of Ωc (Ouazzani et al.,
2017), defined within the Roche model (see section 2.2.1), and the Cowling approxi-
mation (Cowling, 1941) should be justified. Moreover, the TAR inherently assumes
that the star is spherically symmetric, i.e. centrifugal deformation is neglected,
allowing for variable separation in radial and horizontal eigenfunctions (as in the
non-rotating case), so that the eigenmodes can be computed efficiently (Eckart and
Gillis, 1961; Longuet-Higgins, 1968; Lee and Saio, 1997; Townsend, 2003; Mathis,
2009; Ouazzani et al., 2017).

We have shown (in the appendix) that, for a uniformly rotating star, and assum-
ing a Lagrangian displacement ξ ∝ e−iωt with ω the angular pulsation frequency in
the corotating frame (and t the time), the linearized momentum equation can be
written as (Prat et al., 2019):

ω2ξ + iωB(ξ) + C(ξ) = 0 , (2.22)

where B(ξ) = 2 Ω× ξ is the Coriolis operator, Ω = Ωez is the rotation vector, and
C(ξ) is an operator describing forces that do not depend on the pulsation frequency.
In the non-magnetic case, the latter describes the effect of pressure and buoyancy
forces: C(ξ0) = −∇P ′/ρ + ρ′∇P/ρ2, where P ′ and ρ′ are the pressure and density
Eulerian perturbations of the equilibrium values P and ρ, respectively. Adopting
the TAR, the Coriolis operator reduces to: B(ξ) = 2 Ω cos θ er × ξ, where θ is
defined as the colatitude and er is the radial unit vector.

The equation of motion perturbed by an additional force that does not depend
on ω is then obtained by applying the following first-order perturbations:

ω = ω0 + ε ω1 , (2.23)

ξ = ξ0 + ε ξ1 , (2.24)

C = C0 + ε C1 , (2.25)

so that one obtains the following (first-order) perturbed and unperturbed equations
of motion:

ω2
0ξ0 + iω0B(ξ0) + C0(ξ0) = 0 , (2.26)

−ω1 [2ω0ξ0 + iB(ξ0)] = C1(ξ0) + ω2
0ξ1 + iω0B(ξ1) + C0(ξ1) . (2.27)

If one then uses the fact that the operators iB and C are Hermitian, the scalar
product of the first-order perturbed equation with ξ0, leads to the following (general)
expression for the (angular) frequency perturbation of the gravito-inertial modes:

ω1 = − 〈ξ0,C1(ξ0)〉
2ω0 〈ξ0, ξ0〉+ 〈ξ0, iB(ξ0)〉 , (2.28)

where the scalar product is defined as 〈ξ, ζ〉 =
∫
V
ρ ξ∗ · ζdV , with * denoting the

complex conjugate.
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Proof. Perturbing Equation (2.22) yields:

(ω0 + ε ω1)2 (ξ0 + ε ξ1) + i (ω0 + ε ω1)B (ξ0 + ε ξ1)

+ (C0 + ε C1) (ξ0 + ε ξ1) = 0 .

The zeroth order contribution is equal to:

ω2
0ξ0 + iωB(ξ0) +C0(ξ0) = 0 ,

the first order (in ε) contribution is:(
2ω0 ω1 ξ0 + ω2

0ξ1

)
+ i (ω0B(ξ1) + ω1B(ξ0)) + (C0(ξ1) +C1(ξ0)) = 0 ,

the second order contribution is:(
ω2

1ξ0 + 2ω0ω1ξ1

)
+ i (ω1B(ξ1)) + (C1(ξ1)) = 0 ,

and the third order ‘contribution’ is ω2
1ξ1 = 0 .

We only consider terms up to first order. Taking into account the fact that
iB and C are Hermitian:

〈ξ, iB(ξ′)〉 = 〈iB(ξ), ξ′〉 ,
〈ξ,C(ξ′)〉 = 〈C(ξ), ξ′〉 ,

one can derive Equation (2.28) by taking the scalar product of the first order
equation with ξ0:〈

ξ0,
(
2ω0ω1ξ0 + ω2

0ξ1

)
+ i (ω0B(ξ1) + ω1B(ξ0)) + (C0(ξ1) +C1(ξ0))

〉
= 0

⇔ ω1 {2ω0 〈ξ0, ξ0〉+ 〈ξ0, iB(ξ0)〉}+ 〈ξ0,C1(ξ0)〉
+
{
ω2

0 〈ξ0, ξ1〉+ iω0 〈ξ0,B(ξ1)〉+ 〈ξ0,C0(ξ1)〉
}

= 0

⇔ ω1 {2ω0 〈ξ0, ξ0〉+ 〈ξ0, iB(ξ0)〉}+ 〈ξ0,C1(ξ0)〉
+
{
ω2

0 〈ξ0, ξ1〉+ iω0 〈B(ξ0), ξ1〉+ 〈C0(ξ0), ξ1〉
}

= 0

⇔ ω1 = − 〈ξ0,C1(ξ0)〉
2ω0 〈ξ0, ξ0〉+ 〈ξ0, iB(ξ0)〉

Furthermore, the unperturbed Lagrangian displacements/eigenfunctions for gravito-
inertial waves in spherical coordinates (r,θ,ϕ) are given by:

ξ0 = [ξr(r)Hr(θ), ξh(r)Hθ(θ), iξh(r)Hϕ(θ)] ei(mϕ−ω0t) , (2.29)

where m is the azimuthal order, and Hr, Hθ, and Hϕ are the radial, latitudinal, and
azimuthal Hough function, respectively, which describe the latitudinal behaviour of
the Lagrangian displacements due to oscillation (as mentioned before). The radial
Hough function Hr is obtained by solving the Laplace tidal equation eigenvalue
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problem (Hough, 1898; Longuet-Higgins, 1968; Lee and Saio, 1997; Townsend, 2003;
Aerts et al., 2010):

LνHr = −λHr , (2.30)

where λ is the eigenvalue (which reduces to l(l + 1) in the non-rotating case, for
modes with degree l), ν = 2Ω/ω is the spin parameter: the inverse of the local
Rossby number, signifying the ratio of the local inertial frequency to the wave’s
local frequency (e.g. Mathis, 2009), and Ls is the (classical) Laplace tidal operator:

Lν ≡
d

dµ

(
1− µ2

1− ν2µ2

d

dµ

)
+

1

1− ν2µ2

[
mν (1 + ν2µ2)

1− ν2µ2
− m2

1− µ2

]
(2.31)

where µ = cos θ is a modified latitudinal variable. The radial Hough function will
reduce to the classical associated Legendre polynomial Pm

l in the non-rotating case.
A representation of the latitudinal and longitudinal variation of the radial component
of Equation (2.29) is given in Figure (2.3) for typical pulsation parameters and
rotation frequencies of γ Dor pulsators (see e.g. Van Reeth, 2017; Ouazzani et al.,
2018). The latitudinal and azimuthal Hough functions are respectively given by
(Prat et al., 2019):

Hθ sin θ =
dHr

dθ
sin θ −mνHr cos θ

1− ν2 cos2 θ
, (2.32)

Hϕ sin θ =
mHr − ν dHr

dθ
sin θ cos θ

1− ν2 cos2 θ
, (2.33)

where dHr

dθ
denotes the total latitudinal derivative of Hr. Hϕ has the same parity as

Hr with respect to θ = π
2
, whereas Hθ has the opposite parity. We provide a full

derivation of the Laplace tidal operator and the lattitudinal and azimuthal Hough
function in the appendix. Even though the validity of the solutions obtained within
the TAR is not guaranteed in the sub-inertial regime, as the spatial structure of the
obtained waves does not include the development of shear layers (see e.g. Dintrans
and Rieutord, 2000; Mathis, 2009), one can, to a fair approximation use it to study
sub-inertial waves (ω < 2Ω), which are often excited in rapidly rotating stars (e.g.
Neiner et al., 2012; Moravveji et al., 2016; Saio et al., 2018). In this case, as noted
by Prat et al. (2019), the full Hough functions need to be used instead of spherical
harmonics (see Section (2.1)), as these waves are trapped in an equatorial belt1.

In fact, Townsend (2003) states that the key to deriving asymptotic solutions to
Laplace’s tidal equations lies in noting that the spin parameter ν appears in product
with the modified latitudinal coordinate µ, so that, in order for the Hough functions
to remain finite for large |ν|, the Hough functions can only be appreciably different
from zero in a narrow equatorial region of small |µ| (the equatorial belt/waveguide).
This essentially prevents low-frequency waves from propagating towards high lati-
tudes. Townsend (2003) demonstrated that, when the eigenvalue of Laplace’s tidal
equations is not equal to m2, one can write the Hough functions in terms of Hermite
polynomials of integer ‘meridional order’ s ≥ 0. A rederivation of the governing

1Nevertheless it seems that Hough functions were not calculated explicitly in (most) literature
concerning gravity modes predating Prat et al. (2019), instead resorting to approximate forms.



CHAPTER 2. THEORY OF GRAVITY-MODE OSCILLATIONS 21

(a) fco = 1.5 d−1, frot = 25 µHz, ν = 2.88 (b) fco = 1.5 d−1, frot = 5 µHz, ν = 0.576

(c) fco = 1 d−1, frot = 25 µHz, ν = 4.32 (d) fco = 1 d−1, frot = 5 µHz, ν = 0.864

Figure 2.3: Representation of the radial component of l = 1 dipole modes in rotating stars
(Hr(θ)eimϕ, where Hr is calculated with the method described in Section (3.2.2)). From left
to right in each subfigure: (l,m) = (1,−1); (l,m) = (1, 0); (l,m) = (1, 1). Near-core rotation
frequency bounds (frot) are obtained from figure 5 in Ouazzani et al. (2018), near the start of
the MS. Pulsation frequency bounds in the co-rotating frame (fco) are selected from the ensemble
study by Van Reeth et al. (2016) of 40 γ Dor stars, where we list the approximate lower and mid
values. Observed zonal modes (m = 0) have a frequency of ≈ 1 d−1 (Van Reeth et al., 2016). Spin
parameters ν are listed. The color scheme is the same as in Figure (2.1). For ease of comparison
we list the pulsation frequencies in µHz: 1 d−1 ' 11.57 µHz, 1.5 d−1 ' 17.36 µHz; and the rotation
frequencies in d−1: 5 µHz ' 0.432 d−1 and 25 µHz ' 2.16 d−1.

equations, in which a small error is noted, is shown in the appendix. Utilizing Tay-
lor’s series expansions, he then found an expression for the eigenvalue of Laplace’s
tidal equations for gravito-inertial modes equal to:

λ ≈ ν2(2s+ 1)2 +O(ν) . (2.34)

Moreover, he derived an expression for the loci µ = ± µ1/2 at which the latitudi-
nal Hough function transitions from the oscillatory to the exponential regime (i.e.
where the second derivative with respect to µ vanishes), by taking into account that
Laplace’s tidal equations are satified only if:

2s+ 1 = (
√
λ)νµ2

1/2 ⇔ µ1/2 =

√
2s+ 1

ν
√
λ

. (2.35)

Filling in the approximate eigenvalue solution for gravito-inertial modes then yields
the following waveguide boundary (at which the radial Hough function is maximal):

µ1/2 ≈
1

|ν| . (2.36)

Hence, for rapidly rotating stars (large ν), the modes will be trapped equatorially in
a region defined by |µ| ≤ |ν−1|, as supported by numerical solutions of e.g. Bildsten
et al. (1996). This equatorial mode trapping can readily be observed in Figure (2.3),
where the equatorial belts become narrower for increasing spin parameter ν.

Taking the assumptions of the TAR into account, Mathis (2009) derived the
dispersion relation for gravito-inertial waves (transversal waves restored by both
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Figure 2.4: Typical period spacing patterns for zonal dipole modes (l = 1,m = 0) in rotating
3 M� mid-MS main-sequence stars, with different rotation rates (left: 1% Ωc, right: 50% Ωc,
where Ωc is given by Equation (2.21).), calculated in the TAR. The inherent tilt due to rotation is
clearly visible, increasing with increasing angular rotation frequency. Patterns for other considered
masses in my model grid are similar.

buoyancy and the Coriolis force):

k2
r(r) =

N2

ω2

λl,m(ν)

r2
. (2.37)

For a non-rotating star, ν = 0 and λl,m(0) = l(l + 1), reducing Equation (2.37) to
its non-rotating equivalent (Equation (2.17)), taking into account the assumption
ω � N .

In fact, the more general dispersion relation derived by Unno et al. (1989) leads
one to derive the same conclusion as the one obtained for g modes in section 2.1:
gravito-inertial waves, like g modes, are primarily transversal, with the radial com-
ponent of their wave vector and the horizontal component of their displacement
dominating (i.e. kV = kr � kH and ||ξH || � ξV = ξr).

From Equation (2.37) one can then deduce the following asymptotic expression
for the (high radial order) g mode pulsation periods of rotating stars within the TAR
(e.g. Bouabid et al., 2013; Van Reeth et al., 2016; Ouazzani et al., 2017; Christophe
et al., 2018):

Pco ≈
Π0√
λl,m(ν)

(ng + αg) , (2.38)

where αg is a phase term depending on the stellar structure (cfr. αl,g), Π0 is the
buoyancy radius (see Section (2.1)), and λl,m(ν) is the eigenvalue of Laplace’s tidal
equations. Hence, for a chemically homogeneous, non-magnetic (rotating) star, the
asymptotic period spacing of g modes in the co-rotating frame with the same degree
l is:

∆Pco ≈
Π0√
λl,m(ν)

. (2.39)

In principle, the degree l should be replaced with k = l − |m|, in order to avoid
confusion about mode identification in (rapidly) rotating stars (e.g. Lee and Saio,
1997).
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Rotation tilts asymptotic period spacing patterns, the degree of tilt depending
on the mode geometry and angular rotation frequency, the latter dependence shown
in Figure (2.4). Inherently this can easily be conceptualized by considering that
inertial frequencies are observed. Indeed, finertial = fco+mfrot, so that the obtained
modes should contain a general tilt, that changes with the rotation frequency frot =
Ωrot/2π. By increasing the rotation rate, toroidal modes (and toroidal contributions
to previously spheroidal-only modes) also become important, which can potentially
couple with different spheroidal contributions (due to e.g. the Coriolis force) causing
the period spacing pattern to be modified (see e.g. Saio et al., 2018). Considering the
same modes in the TAR will thus yield some deviations from this tilt estimate. In
the inertial reference frame zonal modes are less affected, prograde modes (m > 0),
which propagate in the direction of rotation, will receive a (strong) downward tilt,
because Pinertial = Pco/(1 − mPco/Prot). Retrograde modes (m < 0), propagating
against the rotation, will receive an ‘overall’ upward tilt.

Hence, a detailed analysis of period spacing patterns is an efficient way of con-
straining the interior stellar structure (Van Reeth, 2017). Multiple such studies
have been performed in the past (e.g. Van Reeth et al., 2016; Moravveji et al., 2016;
Ouazzani et al., 2017; Van Reeth, 2017; Van Reeth et al., 2018; Ouazzani et al.,
2018; Li et al., 2019b,a; Mombarg et al., 2019). A general methodological frame-
work to study the gravity mode frequencies in stars with a convective core has been
constructed (Aerts et al., 2018).

2.3 Influence of magnetic field

2.3.1 Influence on stellar evolution models

If the stellar magnetic field B is strong enough, it will significantly alter parti-
cle motion in the stellar plasma. Particularly, so-called magnetized plasmas are
anisotropic: they respond differently to forces which are parallel and perpendicular
to the direction of B. Hence, the Lorentz force is expected to (greatly) contribute
to small-scale mixing processes and affect stellar evolution.

The so-called plasma β parameter, which is defined as the ratio of the ther-
mal energy density (nkT , with n the number density of all plasma species and T
their temperature, where k is Boltzmann’s constant) to the magnetic energy density
(B2/2µ0, where µ0 is the vacuum permeability), can be used to probe the degree of
magnetization of the plasma. The plasma energy density is conventionally identified
with the pressure p, so that the plasma β for species ‘x’ is defined as (Goedbloed
and Poedts, 2004; Fitzpatrick, 2015):

βx =
2µ0nxkTx

B2
=

2µ0px
B2

(2.40)

yielding a total β:

β =
∑
x

βx (2.41)

In the deep stellar interior, we expect β to be large, given the large central density
and temperature. Hence, we don’t expect the near-core plasma to be magnetized.
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Several magnetohydrodynamic instabilities can occur in (differentially) rotating
stars, which contribute to mixing and angular momentum transport. An overview
of these instabilities is given in Aerts et al. (2019). Angular momentum transport
inside stars throughout their evolution is in dire need of improvement (Aerts et al.,
2019), starting to diverge from theoretical predictions already during main-sequence
evolution (see e.g. Eggenberger et al., 2017; Townsend et al., 2018; Tayar and Pinson-
neault, 2018). The origin of missing angular momentum transport in stellar models
is a current (hot) topic of research, with magnetism and (non-standing) internal
gravity waves (IGWs) being two important considered mechanisms (Aerts et al.,
2019). For the first, magnetic stresses need to be taken into account in the stellar
interior, whereas for the latter direct excitation by convective plumes entering the
radiative zone (i.e. the convective overshoot) is important. Two recent examples of
studies considering these angular momentum transport mechanisms are Fuller et al.
(2019) and Edelmann et al. (2019), for magnetic transport and IGW transport, re-
spectively. Moreover, rotational, magnetic and chemical mixing effects and angular
momentum transport are intrinsically linked. For example, the differential rotation
profile inside radiative zones of rotating magnetic stars is thought to be smoothed
in the presence of magnetic fields (see e.g. Ferraro, 1937; Moss, 1992; Spruit, 1999;
Mathis and Zahn, 2005; Zahn, 2011). This validates our assumption of uniform
rotation in Section (2.2.2). This led Press (1981); Browning et al. (2004) to con-
clude that, in the presence of a magnetic field, matter should lose its inertia quicker
when overshooting the convective core boundary, resulting in smaller convective core
overshooting regions (Buysschaert et al., 2018). In addition, the shear layers that
come to exist in the stellar interior due to the breakup of IGWs contribute to local
chemical mixing, further affecting the stellar structure (Aerts et al., 2019). Finally,
magnetic fields also affect the dissipation and propagation of IGWs in stellar interi-
ors at the convective core boundary: they can be completely blocked (toroidal field),
or trapped along the poloidal field lines (poloidal field), as was discussed in Aerts
et al. (2019).

Hence, these mechanisms affect the mixing in the overshoot region, and thus
change the amount of hydrogen available for the core through convective overshoot,
affecting main-sequence lifetime. Mixing inside rotating magnetic stars is thus ex-
pected to be different from mixing inside rotating and non-rotating (non-magnetic)
stars.

2.3.2 Influence on pulsation models

Previous work

It is a well-known fact that the presence of a magnetic field induces splitting of stellar
oscillation frequencies, as first determined by Ledoux and Simon (1957). Throughout
the years, this effect was modelled using a perturbative approach (see e.g. Shibahashi
and Takata, 1993). However, near the surface the magnetic pressure dominates over
the plasma pressure (i.e. surface plasma is characterized by low plasma β). Hence,
near the surface, the acoustic modes therefore couple with the Alfvén modes and
non-perturbative treatments (see e.g. Bigot et al., 2000) should be used. Hasan and
Christensen-Dalsgaard (1992) analytically determined the frequency shift of p and g
modes in an isothermal plasma due to a homogenous vertical magnetic field (using
the full magneto-hydrodynamics (MHD) equations), and found that even a weak
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field (i.e. β � 1) can produce significant g mode frequency shifts, whereas the effect
on the p-mode spectrum is relatively weak. Therefore, g mode frequency shifts are
thought to be a good diagnostic to probe the internal magnetic field of stars.

A more realistic magnetic field configuration (than the vertical field considered
by Hasan and Christensen-Dalsgaard (1992)) was considered by Hasan et al. (2005),
who investigated how a purely poloidal, axisymmetric field affects the frequencies of
high radial order g modes in a (very) slowly rotating star, resulting in a frequency
perturbation (in the co-rotating frame) determined by:

δω

ω
= ScB

2
0 =

1

8πω2

[
B2

0

ρcR2

]
Cl,mI , (2.42)

where ρc is the central mass density, Sc is the ‘magnetic splitting coefficient’, which
increases rapidly with period because it is proportional to ω−2 and I increases with
period, B0 is the magnetic field amplitude scaling factor,

I =

∫ ∣∣∣∣ 2

x2
d

dx
(xb(x)ξh)

∣∣∣∣2 x2dx

∫
|ξh|2

(
ρ

ρc

)
x2dx

, (2.43)

and

Cl,m =

∫ [∣∣∣∣cos θ
∂Y m

l

∂θ

∣∣∣∣2 +m2

∣∣∣∣cos θ

sin θ
Y m
l

∣∣∣∣2
]

sin θdθ

l(l + 1)
∫
|Y |2 sin θdθ

, (2.44)

where x = r/R is a normalized radial coordinate, b(x) is the radial component of
B, and Y m

l are spherical harmonic functions. As already pointed out by Ledoux
and Simon (1957), the fact that this equation does not depend on the sign of m
indicates that the magnetic field reduces the 2l+ 1 degeneracy of the eigenmodes to
l + 1 (Hasan et al., 2005). Hence, instead of talking about frequency splitting, one
should rather call this phenomenon a magnetic frequency shift.

Although the Hasan et al. (2005) formalism presented a step forwards in the mod-
elling of internal magnetic fields, the authors only considered non-rotating and (very)
slowly rotating stars. Moreover, theoretical and numerical studies show that the
stability of fossil magnetic fields requires a mixed configuration with both poloidal
and toroidal components, extending deep within the radiative stellar envelope (e.g.
Tayler, 1973; Markey and Tayler, 1973; Braithwaite and Spruit, 2004; Braithwaite
and Nordlund, 2006; Braithwaite, 2007, 2008; Featherstone et al., 2009; Braithwaite,
2009; Duez and Mathis, 2010).

Our work

We (Prat et al., 2019) therefore developed a new formalism. My role in this work has
been to derive the governing relations originally developed by Dr. Vincent Prat inde-
pendently, as well as validate the implementation for the numerical computations.
For simplicity, the poloidal-toroidal field configuration is assumed to be axisym-
metric and dipolar, yielding the following analytical magnetic field prescription (in
spherical coordinates (r,θ,ϕ)):

B = B0 [br(r) cos θ, bθ(r) sin θ, bϕ(r) sin θ] , (2.45)
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where B0 is an amplitude scaling factor, and θ is the colatitude. The magnetic field
is assumed to be weak, such that the effect of the unperturbed Lorentz force on
the equilibrium state (of the stellar model) is negligible (as indicated in e.g. Duez
and Mathis, 2010). In order to derive the mode frequency perturbations due to
the magnetic field, the ideal MHD assumptions are made (see e.g. Goedbloed and
Poedts, 2004):

1. Collisionality : the timescale between collisions should be much smaller than
other characteristic timescales, so that Maxwellian velocity distributions (for
the individual plasma species) can be used. This implies that plasma densities
should be high, as expected in a stellar (near-core) plasma, so that only long-
timescale phenomena (i.e. collective plasma behaviour) are relevant.

2. Macroscopic scales : The plasma dynamics described by the non-dissipative
MHD equations still includes phenomena on small length (λ) and time (τ)
scales. Hence, in the ideal MHD assumption only large length and time scales
are considered:

λMHD ∼ a� rc,i , τMHD ∼
a

vA
� ω−1

c,i ,

where a is the typical length scale of the considered plasma system, vA = B√
µ0ρ

is the Alfvén velocity, which characterises the propagation of magnetic waves
(µ0 is the vacuum permeability), rc,i are ion cyclotron radii defined as rc ≈
vth,i/ωc,i, the radius of the circular motion of a charged particle in the presence

of a uniform magnetic field with vth,i =
√
kTi/mi the thermal velocity of ionic

species ‘i’ (Ti and mi are the species temperature and mass, respectively). ωc,i
are the (angular) ion cyclotron frequencies, defined by ωc,i = |qi|B/mi with
qi the ionic species charge. This allows us to consider the plasma as a single
conducting fluid, without distinguishing the individual species. Therefore, we
describe the bulk plasma behaviour.

3. Ideal fluids : Plasma dynamics are only considered on short timescales for
which macroscopic plasma variables can be considered constant:

τMHD � τR ∼
a2

η
,

where τR is the timescale of resistive decay of the magnetic field, and where
η is the magnetic resistivity of the fluid. This assumption can be justified by
a dimensional analysis of the different terms in the resistive MHD induction
equation (Goedbloed and Poedts, 2004; Maeder, 2009):

∂B

∂t
= ∇× (v ×B)− µ−1

0 ∇× (η∇×B) . (2.46)

Taking V , B and L to be characteristic values of velocity, magnetic field and
length scale, the dimensions of the two terms on the right hand side are:

∇× (v ×B) ∝ V B

L
, µ−1

0 ∇× (η∇×B) ∝ η B

µ0 L2
. (2.47)
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The ratio of the dimensions of both terms is a dimensionless number known
as the magnetic Reynolds number (Rm):

Rm =

V B

L
ηB

µ0L2

=
V L µ0

η
. (2.48)

In astrophysical situations, L is expected to be very large, so that the second
term is negligible (Rm is large), hence justifying our approach. Moreover,
Ohmic dissipation is negligible compared to thermal diffusion (Mathis and
de Brye, 2011). In addition, this means that we ought to verify that the
electrons (and ions) in the near-core regions are not (partially) degenerate, as
degenerate matter clearly does not behave as a typical plasma. However, for
the considered mass range and evolutionary stage in our stellar model grid (see
Section (3.1)), electron/ion degeneracy is not important (see e.g. Kippenhahn
et al., 2012).

With the ideal MHD assumptions, the Eulerian perturbation to the magnetic field
(B′) due to the oscillation displacement reads:

B′ = ∇× (ξ0 ×B) . (2.49)

In order to compute the magnetic frequency shifts the perturbed Lorentz force needs
to be used, which is defined as (Prat et al., 2019):

F ′L =
1

µ0

[(∇×B)×B′ + (∇×B′)×B] (2.50)

Proof. Perturbing the induction equation in the ideal MHD approximation:

∂B

∂t
= ∇× (v ×B)

yields (keeping first-order terms):

∂

∂t
(B +B′) = ∇× (v′ ×B) +∇× (v ×B′) ,

so that, if we assume a static equilibrium magnetic field ∂B
∂t

= 0 and if we assume
a equilibrium star without (significant) velocity fields (i.e. v = 0), we obtain:

∂B′

∂t
= ∇× (v′ ×B) ,

⇔ ∂B′

∂t
= ∇×

(
∂ξ0

∂t
×B

)
,

by integrating over time, which is equal to Equation (2.49).
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Proof. The non-perturbed Lorentz force is defined by:

FL = |q|E + J ×B ,

where J is the current density. However, on the astrophysical scales consid-
ered, no large-scale electric fields (E) exist, so that the first term is negligible.
Ampère’s law (in its differential form) relates the (steady) magnetic field to the
current distribution in any region where B and J are differentiable: (Moffatt,
1978; Charbonneau, 2013)

∇×B = µ0 J

Utilizing the above expression yields the following expression for the Lorentz
force:

FL = µ−1
0 (∇×B)×B

Perturbing this equation using an Eulerian perturbation to the magnetic field
then yields:

FL + F ′L = µ−1
0 [(∇× (B0 +B′))× (B0 +B′)] ,

= µ−1
0 [(∇×B0)×B0 + (∇×B0)×B′

+ (∇×B′)×B0 + (∇×B′)×B′] ,
= µ−1

0 [(∇×B0)×B0 + (∇×B0)×B′ + (∇×B′)×B0] ,

where we neglect second-order perturbations in the last equality.

In the magnetic case, the perturbed C(ξ) operator (i.e. C1(ξ0)) in Equation
(2.28) contains the extra Lorentz force term derived above.

The more general equations of motion derived by Unno et al. (1989) for a star
with velocity field v, rotation vector Ω = Ω0ez (i.e. uniform rotation), magnetic
field B, evaluated in the co-rotating frame are quite similar:

∂v

∂t
+ (v ·∇)v + 2 Ω× v + Ω×Ω× r = −∇φ− 1

ρ
∇p+

1

4πρ
(∇×B)×B ,

(2.51)

from which one can obtain the following (Eulerian) perturbed equations (perturb-
ing the velocity field), assuming a static equilibrium velocity and magnetic field
(∂v0
∂t

= 0, ∂B0

∂t
= 0):

∂v′

∂t
+ (v′ ·∇)v0 + (v0 ·∇)v′ + 2Ω× v′ = − 1

ρ0

∇P ′ −∇φ′

+
ρ′

ρ2
0

[
∇p0 −

1

4π
(∇×B0)×B0

]
+

1

4πρ0

[(∇×B0)×B′ + (∇×B′)×B0]

(2.52)
where φ is the gravitational potential, the subscript 0 denotes equilibrium quantities,
and where we do not neglect the centrifugal term (Ω×Ω×r) and do not neglect the
perturbation of the gravitational potential. Making the Cowling approximation (i.e.
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neglecting the Eulerian perturbation of the gravitational potential φ′), assuming the
temporal dependence of the eigenfunctions to be equal to e−iωt, one can show that a
magnetic equivalent to the (perturbed) Equation (2.28) can be derived. As shown in
the appendix, dropping the subscript 0 for the equilibrium quantities for simplicity,
this yields:

ω2ξ + 2iω Ω× ξ +
ρ′

ρ2

[
∇P − 1

4π
(∇×B)×B

]
− ∇P

′

ρ

+
1

4πρ
[(∇×B)×B′ + (∇×B′)×B] = 0

(2.53)

so that, in the magnetic case, the operators of Equation (2.28) are defined as:

B(ξ) = 2 Ω× ξ (2.54)

C(ξ) =
ρ′

ρ2

[
∇P − 1

4π
(∇×B)×B

]
− ∇P

′

ρ

+
1

4πρ
[(∇×B)×B′ + (∇×B′)×B]

(2.55)

However, the second term of Equation (2.55) is neglected in Prat et al. (2019),
because we assume that the (equilibrium) field is not strong enough to significantly
affect the background equilibrium. The first and third term (of Equation (2.55))
belong to the C0 (ξ0) part of the operator, whereas the last two terms of Equation
(2.55) belong to the C1 (ξ0) part of the perturbed operator, if we consider the extra
shift caused by magnetic fields (on top of rotational influence). Therefore, only the
last two terms, which together make up the perturbed Lorentz force (see Equation
(2.50)), are important for calculating magnetic frequency shifts δω = εω1, which are
thus proportional to 〈ξ0,F

′
L/ρ〉 = 〈ξ0, εC1 (ξ0)〉. Hence, the finiteness of F ′L/ρ must

be ensured in any perturbative formalism.
Essentially this shows that magnetic frequency shifts are proportional to the square
of the magnetic field amplitude, as noted in Prat et al. (2019).

The first term in the denominator of Equation (2.28) is equal to (Prat et al.,
2019):

〈ξ0, ξ0〉 = 2π

∫ R

0

∫ π

0

ρr2
[
|ξr|2H2

r + |ξh|2
(
H2
θ +H2

ϕ

)]
dr sin θdθ . (2.56)

The first term in this expression is much smaller than the second one for high radial
order g modes (|ξr|2 � |ξh|2), so that it can be neglected for such modes (as was
done in Hasan et al., 2005). However, for low radial order modes, this can introduce
significant errors. The second term in the denominator of Equation (2.28) is equal
to (Prat et al., 2019):

〈ξ0, iB (ξ0)〉 = 8π Ω

∫ R

0

ρr2|ξh|2dr
∫ π

0

HθHϕ sin θ cos θdθ . (2.57)

Since this term scales with the spin parameter ν = 2Ω/ω, it is negligible for low
radial order modes, but not for high radial order modes. When it is negligible,
Equation (2.28) implies that

δω

ω
∝ B2

0

ω2
0

, (2.58)
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which is equivalent to the non-rotating case, for which Hasan et al. (2005) obtained
Equation (2.42), although I in our case is defined as (Prat et al., 2019):

I =

∫ R
0

∣∣ d
dr

(rbrξh)
∣∣2 dr∫ R

0
|ξh|2

(
ρ

ρc

)
x2dx

, (2.59)

where d
dr

denotes a radial total derivative. Hence, we noted in Prat et al. (2019)
that the magnetic field influence is stronger at lower frequencies, consistent with the
fact that those frequencies are closer to the Alfvén frequency. Obtaining the explicit
form for the term in the numerator 〈ξ0,C (ξ0)〉 involves calculating a large number
of terms, of which several are zero due to symmetry. The explicit expressions for
the non-zero terms can be found in appendix B of Prat et al. (2019).

For high radial order modes (which have a large radial wavenumber), one can per-
form a Jeffreys-Wentzel-Kramers-Brillouin-like small-wavelength analysis (see e.g.
Unno et al., 1989, in the context of stellar oscillations). Doing so, Prat et al.
(2019) note that if the poloidal component of the magnetic field is much larger than
the toroidal component, or of the same order of magnitude, the dominant term of
〈ξ0,C (ξ0)〉 is proportional to:∫ R

0

∣∣∣∣ d

dr
(rbrξh)

∣∣∣∣2 dr ∫ π

0

(
H2
θ +H2

ϕ

)
cos2 θ sin θdθ , (2.60)

consistent with the result obtained by Hasan et al. (2005). However, our (Prat et al.,
2019) formalism can handle waves in the sub-inertial regime (ω < 2Ω) that become
trapped in an equatorial belt. In contrast, for a field with a toroidal component
much greater than its poloidal part, some eight other terms could have significant
impact on the perturbation (Prat et al., 2019).



3 — Parameter Study

We used the Modules for Experiments in Stellar Astrophysics (MESA) code (ver-
sion 10396; Paxton et al., 2011, 2013, 2015, 2016, 2018, 2019), a one-dimensional
stellar evolution code, to obtain non-rotating, non-magnetic (stellar) models for a
range of different fundamental parameters. In addition, we used GYRE (version
5.2; Townsend and Teitler, 2013; Townsend et al., 2018), a stellar oscillation code,
to compute theoretical frequencies of gravito-inertial/gravity modes for these MESA
stellar models, including the effects of rotation in the TAR for g modes. Both the
stellar evolution and pulsation codes make efficient use of computational resources,
were found to be robust and accurate, and are open source. Finally, a python script
(supplied by Dr. Vincent Prat, CEA, and revised by myself) is used to probe the
influence of internal magnetic fields on the frequencies of the gravito-inertial/gravity
modes.

3.1 Constructing a grid of MESA stellar evolution

models: parameter ranges

An overview of the grid parameters is given in Table (3.1). A typical inlist used to
calculate the evolutionary models with MESA can be found in the appendix. The
selection of the individual parameters will be explained in the following subsections.

Composition: initial metallicity Z and core hydrogen mass fraction Xc

All of our MESA models assume the Asplund et al. (2009) metal mixture, with an
initial hydrogen mass fraction Xini = 0.71, taken from the galactic B-star standard
of Nieva and Przybilla (2012). Initial metallicity is varied: Z ∈ [0.010, 0.018], with
the step mentioned in Table (3.1). The initial helium mass fraction Y is then fixed
by: Y = 1−Xini−Z. The core hydrogen content Xc is a proxy for the evolutionary
stage or the age of the model during the main-sequence (e.g. Mombarg et al., 2019).
In our parameter grid we choose to output MESA models when Xc is approximately
equal to 0.675, 0.340 and 0.005, which are taken to represent a star at the ZAMS,
mid-MS and TAMS life phase, respectively. This allows us to obtain a general idea
on how stellar evolution affects the magnetic field structure and thus the effect on
the period spacing patterns. We terminate the evolution once Xc < 0.001.

The envelope mixing coefficient: Dmix

Including mixing processes due to rotational and magnetic instabilities frequently
induces numerical discontinuities in stellar models (Truyaert, 2016). Such disconti-

31
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nuities lead to g mode behaviour that is not observed in Kepler data. Moreover, as
mentioned in Section (2.2.1), these processes have not been well-calibrated using ob-
servations. Therefore, instead of using the explicit (physical) forms of equations de-
scribing the mixing induced by such processes, we approximate the envelope mixing
with one global constant level Dmix. This makes the approach less model-dependent,
and allows us to constrain the diffusive mixing coefficients beyond the fully mixed
convective cores (as noted by e.g. Moravveji et al., 2016). These parameters are not
constrained from first principles, so that the values for Dmix were chosen based on
the grids in Van Reeth et al. (2016, 2018); Mombarg et al. (2019), representative of
observed γ Dor stars.

The extent of convective (core) overshooting: fov

Several prescriptions for the convective overshooting parameter exist. We will only
consider one, the exponential overshoot parameter fov, which results in a mixing
coefficient inside the core overshoot zone defined by Freytag et al. (1996); Herwig
(2000):

Dov = D0 exp

(−2 (r − r0)

fov,simHP,cc

)
, (3.1)

where r0 = rcc− f0HP,cc is the radius at which core overshooting stars with f0 a free
parameter, rcc the radius of the convective core, defined as the position for which
∇ad = ∇ (the Schwarzschild boundary), and HP,cc the pressure scale height at rcc.
D0 is the value of the (convective) mixing coefficient, evaluated from MLT at r0.
Adopting this prescription results in a smooth Brunt-Väisälä frequency transition
from the overshoot region to the radiative envelope region, as was described in e.g.
Moravveji et al. (2016).

In order to account for this ‘step’ inside the convective region in MESA, the fov

parameter should be increased with f0: fov,sim = fov + f0, so that the overshooting
region extends over a distance (fov + f0)HP,cc (Paxton et al., 2011). A detailed
discussion on the different ways of describing core overshooting, constrained with
asteroseismology, can be found in Pedersen et al. (2018).

Typical values obtained for γ Dor stars are used for the parameter grid (repre-
sented in Table (3.1)), which we selected based on Van Reeth et al. (2016, 2018);
Mombarg et al. (2019). Moreover, as was done for the modelling of a known SPB
stars (Buysschaert et al., 2018), one should keep in mind that the extent of core over-
shooting likely is smaller in magnetic stars when compared to their non-magnetic
counterparts (see Section (2.3)). Therefore we select a lower bound of fov = 0.004,
which was picked for the modelling of a known magnetic SPB stars studied by
Buysschaert et al. (2018).

The mixing length parameter: αMLT

The Cox and Giuli (1968) MLT is used in this work, a variant of the Böhm-Vitense
(1958) MLT. The efficiency of convection is thus parametrized by the mixing length
parameter, as discussed in Section (1.1). The grids of Van Reeth et al. (2016) take a
fixed solar-calibrated value: αMLT = 1.8, because there is considerable uncertainty on
the value needed to model other stars (Viani et al., 2018). Yet Mombarg et al. (2019)
pointed out that this parameter influences the buoyancy radius Π0, the effective
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Table 3.1: Typical values for the parameters varied in the MESA grid: overshoot parameter fov,
Xc, metallicity Z, mixing parameter Dmix, mass M , αMLT and atmosphere model. The unit of
Dmix is cm2 s−1, the mass is given in solar masses, whereas the other quantities are unit-less. More
information on the different parameters can be found in Section (3.1).

MESA Parameter
Values

start end step

Exponential overshoot factor fov 0.004 0.024 0.010

Core hydrogen mass fraction Xc 0.005 0.675 0.335

Envelope mixing level log(Dmix) −1 1 1

MESA Parameter Values

Initial Mass (M�) 1.3 , 2.0 , 3.0

αMLT 1.5 , 1.8 , 2.0

Atmosphere simple photosphere

temperature Teff and the surface gravity log g. Hence, this affects modelling based
on individual g mode pulsation frequencies (Aerts et al., 2018). Therefore, following
Mombarg et al. (2019), we vary the αMLT parameter. Mombarg et al. (2019) selected
their range of αMLT based on an empirical relation derived by Viani et al. (2018). Our
considered range of αMLT to consider is therefore enlarged compared to Mombarg
et al. (2019), as we consider an increased fundamental stellar parameter range.

The stellar atmosphere model

A wide list of atmospheric boundary conditions is available in MESA. We will use
the ‘simple photosphere’ option, which estimates the surface boundary using the
ATLAS 9 tables of Castelli and Kurucz (2003) with surface optical depth τs = 2/3.
We do not include any stellar winds, as they are not expected during the main-
sequence phase in this mass range.

3.2 Constructing a grid of GYRE pulsation mod-

els: parameter ranges

The pulsation code GYRE solves the dimensionless pulsation equations (defined
in appendix B2 of Townsend et al., 2018) numerically on a grid of points that is
user-defined. Note that Townsend et al. (2018) define the full non-adiabatic sys-
tem of equations to be solved, whereas we will only perform adiabatic calculations.
In order to convert this non-adiabatic system of equations to its adiabatic coun-
terpart, the variables y5 and y6 should be ignored (which include heat and radi-
ation transport), so that equations B18 and B19 of Townsend et al. (2018) need
not be solved. Moreover, this simplifies the boundary conditions and reduces the
number of dimensionless stellar structure coefficients that need to be taken into
account. A typical inlist used to calculate mode frequencies with GYRE can be
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found in the appendix. Because we ‘feed’ GYRE with MESA evolutionary mod-
els, it clones the MESA grid. However, using purely this grid would not allow
one to spatially resolve the eigenfunctions of high radial order g modes, which are
rapidly varying. Therefore we oversample the grid in the regions of rapidly varying
kr (i.e. the radial wavenumber), as well as near the core. We direct the reader to
e.g. https://bitbucket.org/rhdtownsend/gyre/wiki/Understanding%20Grids

for a detailed discussion on how to fine-tune grid oversampling in GYRE.

3.2.1 GYRE constraints

An overview of the code input parameters that will be varied is given in Table
(3.2). The selection of the individual code input parameters will be explained in the
following subsections.

The rotation fraction: u

In order to quantify the effect of rotation on the period spacing patterns in the
presence of a magnetic field, we vary the rotation fraction u, defined by:

u =
Ωrot

Ωc,Roche

(3.2)

where Ωrot is the angular rotation frequency of the star, and Ωc,Roche is the Roche
critical angular rotation frequency of the stellar model, estimated with Equation
(2.21), and where u ∈ [0.01, 0.75] (with the step given in Table (3.2)). This param-
eter range is justified because γ Dor and SPB stars are known to be moderately
to fairly rapid rotators, as mentioned in Section (2.1). In addition, rapid rotation
influences the effect of the magnetic field on stellar oscillations, as briefly mentioned
in Prat et al. (2019). The lower bound for u is therefore chosen so as to emulate
slow rotators, in order to obtain an estimate of the magnetic influence in such stars.

The boundary conditions

In order to close the (sub)set of pulsation equations solved by GYRE, normalization
conditions are required. There are three boundary conditions that can be discerned:
the inner boundary condition near the origin, the normalization convention used,
and the outer mechanical boundary condition (e.g. Townsend, 2000; Townsend and
Teitler, 2013).

The normalization convention scales the dimensionless variables yi with li, i.e.
the value of le at the inner boundary of the grid on which the pulsations equations are
solved. le is the effective harmonic degree, which in the non-rotating limit is equal
to l, but in the TAR is given by solving le(le + 1) = λ, where λ is the eigenvalue of
the Laplace tidal equations (Equation (2.30)).

The inner boundary condition is regularity-enforcing: it discards roots of the
characteristic equations that describe the situation at the inner boundary (see e.g.
Townsend and Teitler, 2013).

The outer boundary condition is varied, as this affects the behaviour of the
pulsations near the stellar surface. Two options implemented in GYRE will be
used: ‘VACUUM’ and ‘UNNO’.

https://bitbucket.org/rhdtownsend/gyre/wiki/Understanding%20Grids
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The former enforces the Lagrangian perturbation of the surface pressure to be
exactly equal to zero. If the latter is selected, GYRE instead uses the (possibly-
leaky) outer mechanical boundary described by Unno et al. (1989). This amounts
to performing a local dispersion analysis near the surface, identifying the local wave
conditions (i.e. comparing frequencies of obtained waves with characteristic frequen-
cies, to identify propagating and evanescent solutions). To obtain physical solutions,
GYRE then imposes requirements on the obtained solutions of the local dispersion
analysis. We will not describe these boundary conditions in full detail, instead refer-
ring the reader to Unno et al. (1989) and Townsend (2000), two excellent references.

The solver/difference scheme

As mentioned by Townsend and Teitler (2013), the differential equations and bound-
ary conditions describing the nonradial oscillations constitute a two-point boundary
value problem (BVP) in which the oscillation frequency ω serves as an eigenvalue.
In general this BVP needs to be solved numerically. Different difference schemes/-
solvers that do this are implemented in GYRE. Two classes of solvers are typically
used to calculate adiabatic frequencies in GYRE: the Gauss-Legendre collocation
scheme and the Magnus multiple shooting scheme. These are available in different
orders.

The Gauss-Legendre collocation method approximates the BVP solutions (i.e.
the solutions of the pulsation equations, with the appropriate boundary conditions)
as a superposition of basis functions (e.g. Chebyshev polynomials, see also Sec-
tion (3.2.2)), which satisfy the differential equations exactly at a set of nodes, the
collocation points. The location of these points is obtained from Gauss-Legendre
quadrature.

Schooting schemes on the other hand treat BVPs as a set of initial value problems
(IVPs), where matching conditions are applied where pairs of the IVPs meet (i.e.
at the respective ‘matching’ boundaries). Hence, the interval of x = r/R is divided
up into a grid (i.e. the oversampled grid from the stellar model), so that in each
interval an IVP is solved, requiring continuity at the subinterval edges. For a grid
of N points, there are therefore N − 1 matching conditions, which together with
the two boundary conditions (i.e. at xi and xo) and the system of IVPs form the
system of algebraic equations to be solved. The stellar eigenfrequencies can then
be obtained by looking for the roots of the discriminant function, which is the
determinant of the system matrix (i.e. the matrix describing the system of algebraic
equations). Moreover, this system matrix will also be used for reconstruction of
the mode eigenfunctions. For detailed information on the Magnus multiple shooting
scheme (used in GYRE) we refer the reader to Townsend and Teitler (2013).

As mentioned in Townsend and Teitler (2013), the absolute error in dimensionless
eigenfrequency scales with the order of the solver used. Moreover, it can vary from
scheme to scheme, although this was not explored in Townsend and Teitler (2013),
as this focused only on the Magnus multiple shooting scheme. Therefore, it is
interesting to verify whether or not one of the conclusions of Townsend and Teitler
(2013), namely, that the obtained dimensionless frequencies’ absolute error difference
between different order schemes is near-negligible for typical grid sizes (see their
figure 1 for an example of a polytropic stellar model), still holds in our magnetic
formalism. Thus we want to verify that, for the purpose of adiabatic calculations
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Table 3.2: Values of the parameters varied for the GYRE pulsation grid: the fraction of (Roche)
critical rotation (rotation fraction), the outer boundary condition (outer B.C.) and the difference
schemes. More information on the different parameters can be found in Section (3.2).

GYRE Parameter
Values

start end step

Rotation fraction u 0.01a 0.75 0.25

GYRE Parameter Choice

Outer B.C. Vacuum Unno
Solver/difference scheme Magnus GL2 Colloc GL2

Magnus GL4 Colloc GL4
Magnus GL6 Colloc GL6

a Initial value was chosen to be nonzero, but subsequent cycle

values are calculated using zero as initial value.

(i.e. for the purpose of calculating mode frequencies), it does not matter which type
and order of solver are used.

3.2.2 Computing the Hough functions

In order to solve the Laplace tidal eigenvalue problem, defined by Equation (2.30),
the Hough functions need to be calculated. A method that allows us to solve this
problem in a remarkably simplified way (as noted by Boyd, 2001; Prat et al., 2019)
is Chebyshev collocation, or the pseudospectral method, described by Wang et al.
(2016). The first use of this method in the context of solving the Laplace tidal
equations was described by Boyd (1976). The latitudinal basis function used by
Boyd (1976) replaces associated Legendre functions by cosine functions of colatitude
θ, multiplied by a ‘parity factor’ equal to sin(θ) for odd m, and 1 for even m.
In addition, using the modified latitudinal variable µ ≡ cos(θ) ∈ [−1, 1] we can
replace trigonometric functions by powers of µ in spherical geometry, allowing for
major simplifications (Wang et al., 2016). Furthermore, denoting the Chebyshev
polynomials by Tn(µ), Chebyshev’s identity shows:

Tn(µ) = Tn(cos(θ)) = cos(nθ), n = 0, 1, . . . , (3.3)

so that a Fourier cosine series in colatitude is also a Chebyshev polynomial series in
µ, with the same coefficients. Hence, the radial Hough function Hr can be expanded
in terms of the Chebyshev polynomials Tn(µ):

Hr(µ) = (sin θ)mod(m,2)
N∑
n=0

bnTn(µ) , (3.4)

where bn denote the coefficients, N is the total number of collocation points (in
our case taken to be 200), and where the parity factor is included for odd m (as
indicated in front of the summation). The presence of this parity factor is justified in
the appendix. The Chebyshev collocation points are taken to be the interior points,
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which are defined as (e.g. Boyd, 2001, p. 571):

µi = cos

(
(2i− 1)π

2 N

)
, i = 1, . . . ,N . (3.5)

Hence, Laplace’s tidal equations will be approximated over the interval µ ∈ [−1, 1]
by a weighted sum of N + 1 Chebyshev polynomials (i.e. a polynomial of degree
N ), where the weights are chosen so that the residual is zero at each of the N + 1
collocation (or interpolation) points (Boyd, 2001). In order to construct Hr(µ) one
needs to calculate the (total) derivatives of Tn(µ), with respect to µ, including the
parity factor for uneven m (as they are needed to solve Laplace’s tidal equations: see
Equations (2.30) and (2.31)). The other Hough functions can then be calculated in
a straightforward way from the reconstructed Hr(µ) and its (total) derivative with
respect to µ. The derivatives of Tn(µ) for even m are (see also Boyd, 2001):

Tn(µ) = cos(nθ) , (3.6)

dTn(µ)

dµ
=
n sin(nθ)

sin(θ)
, (3.7)

d2Tn(µ)

dµ2
=

1

sin3 θ

(
−n2 cos(nθ) sin θ + n sin(nθ) cos θ

)
, (3.8)

whereas the derivatives for uneven m are found to be:

sin θ Tn(µ) = cos(nθ) sin θ , (3.9)

d

dµ
(sin θ Tn(µ)) = n sin(nθ)− cos θ

sin θ
cos(nθ) , (3.10)

d2

dµ2
(sin θ Tn(µ)) =

1

sin3 θ

[
−n2 cos(nθ) sin2 θ − n sin(nθ) cos θ sin θ − cos(nθ)

]
.

(3.11)

It is also useful to redefine Hθ(µ) (equation 2.32) and Hϕ(µ) (equation 2.33) in
function of the (total) derivatives of Hr(µ) with respect to µ:

Hθ(µ) =
−(
√

1− µ2)dHr(µ)
dµ
−mν µ√

1−µ2
Hr(µ)

1− ν2µ2
, (3.12)

Hϕ(µ) =

mHr(µ)√
1−µ2

+ νµ(
√

1− µ2)dHr(µ)
dµ

1− ν2µ2
, (3.13)

which is obtained using the definition of µ and d
dµ

, as shown in the appendix. Hence,
all of the above expressions allow us to solve the Laplace tidal eigenvalue problem in
a remarkably simplified way (as noted by Boyd, 2001; Prat et al., 2019), by solving
in Chebyshev space for the coefficients bn, utilizing the modified latitudinal variable
µ.
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Proof. The expressions for the derivatives of the Chebyshev polynomials ob-
tained above can be obtained in the way described below. Let us first note
that d

dµ
= − 1

sin θ
d
dθ

. Applying this to the above expressions yields:

dTn(µ)

dµ
= − 1

sin(θ)

d

dθ
(cos(nθ)) =

n sin(nθ)

sin(θ)
,

d2Tn(µ)

dµ2
= − 1

sin θ

d

dθ

[
n sin(nθ)

sin(θ)

]
= − 1

sin θ

[
n2 cos(nθ)

sin θ
− n sin(nθ) cos θ

sin2 θ

]
=

1

sin3 θ

(
−n2 cos(nθ) sin θ + n sin(nθ) cos θ

)
,

d

dµ
(sin θ Tn(µ)) = − 1

sin θ

d

dθ
(sin θ cos(nθ)) = n sin(nθ)− cos θ

sin θ
cos(nθ) ,

d2

dµ2
(sin θ Tn(µ)) = − 1

sin θ

d

dθ

[
n sin(nθ)− cos θ

sin θ
cos(nθ)

]
= −n2 cos(nθ)

sin θ
− 1

sin θ
cos(nθ)− cos2 θ

sin3 θ
cos(nθ)− n cos θ

sin2 θ
sin(nθ)

=
1

sin3 θ

[
−n2 cos(nθ) sin2 θ − n sin(nθ) cos θ sin θ − cos(nθ)

]
.

3.2.3 Magnetic constraints

Although large-scale magnetic fields are detected at the surface of approximately
10% of stars with spectral types B and A (Shultz et al., 2012, 2018), internal mag-
netic fields are not well-characterized.

Most of the detected large-scale surface fields have simple geometries, often mag-
netic dipoles inclined with respect to the rotation axis (i.e. ‘oblique’), with field
strengths ranging from 300 G to a few tens of kG (Aurière et al., 2007; Buysschaert
et al., 2018; Prat et al., 2019). Charbonneau (2013) computed field decay times for
a variety of field geometries, taking into account magnetic diffusivity (Ohmic dissi-
pation), and showed that complex geometries have markedly lower diffusive decay
times. Hence, if stellar magnetic fields are left to decay long enough, any complex
magnetic field geometry will end up looking dipolar.

Since these (dipole) fields were found to be stable over a time span of several
decades, and because their properties do not scale with stellar parameters, they are
thought to have been created during star formation (and retained when evolving to
the MS), i.e. they have a fossil origin (see e.g. Ferrario et al., 2015; Neiner et al.,
2015, and references therein). As discussed in Section (2.3.2), stable fields have both
poloidal and toroidal components and extend deep into the radiative envelope.

Even though internal magnetic fields are not well-characterized, it might be
expected that their structure is somewhat similar to that of the observed fossil
fields, given their (necessary) deep extension into the radiative envelope. Therefore,
we use an axisymmetric dipole magnetic field model, in order to assess the effects of
such a magnetic field on the g mode frequencies. As described in Section (2.3.2), we
use our general formalism (Prat et al., 2019) to derive the shifted mode frequencies
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(due to the magnetic field). This requires a numerical model of the magnetic field,
which is described below.

Magnetic Field Prescription

For numerical calculations, the magnetic field is defined as:

B =
1

r sin θ

(
∇Ψ× eϕ + λ

Ψ

R
eϕ

)
, (3.14)

where ψ is the stream function, defined as:

Ψ = −µ0 α λ
r

R

[
j1

(
λ
r

R

)∫ R

r

y1

(
λ
x

R

)
ρx3dx+ y1

(
λ
r

R

)∫ R

r

j1

(
λ
x

R

)
ρx3dx

]
sin2 θ ,

(3.15)

where eϕ is the azimuthal unit vector, R is the stellar radius, λ is determined by

solving for the smallest root of
∫ R
r
j1(λx/R)(ρx3/λ2)dx, enforcing a vanishing B

at the stellar surface (see Prat et al., 2019), µ0 is the vacuum permeability, α is
an amplitude scaling factor for the normalized field, and where j1 and y1 are the
first-order spherical Bessel functions of the first and second kind, respectively. The
stream function used in this work is the particular solution for the general stream
function derived in Duez and Mathis (2010). The main assumption made during the
derivation was that the Lorentz volumetric force is a perturbation compared with
gravity, so that a non force-free equilibrium is obtained. Duez and Mathis (2010)
further constrained their focus to so-called (hydrodynamic) barotropic equilibrium
states, where ∇ρ × ∇P = 0 (i.e. their density and pressure gradients are aligned)
in the stellar radiative zone, for which the possible field configurations and stellar
structure are inherently coupled. In fact, Duez and Mathis (2010) derived an ex-
pression for a field geometry for which the star is in magnetohydrostatic equilibrium,
i.e., those states for which the following holds:

−∇ρ×∇P
ρ2

= ∇×
(
FL
ρ

)
= 0 (3.16)

Assuming such a state allowed them to reduce the (axisymmetric) problem to a
Grad-Shafranov-like equation, whose solution can be written in terms of the stream
function shown above, assuming compressibility and conserving several invariants:
the radiation zone mass, the mass in each flux tube, the flux of the toroidal field
and a given helicity (for more details, the reader is referred to Duez and Mathis,
2010). The prescription for this field thus only holds in stellar radiative zones.

The stream function Ψ can also be written as Ψ = A(r) sin2 θ, so that the
different (radial) magnetic field components of Equation (2.45) can be calculated
as:

br = 2
A

r2
, bθ = −

dA
dr

r
, bϕ = λ

A

rR
, (3.17)

where d
dr

denotes a total radial derivative.
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Proof. The different radial components can be derived in the following way:

∇Ψ = sin2 θ
dA

dr
er +

2A

r
sin θ cos θ eθ ,

⇔ B =
1

r sin θ

([
sin2 θ

dA

dr
er +

2A

r
sin θ cos θ eθ

]
× eϕ + λ

A sin2 θ

R
eϕ

)
,

⇔ B = −sin θ

r

dA

dr
eθ +

2A

r2
cos θer + λ

A

rR
sin θeϕ ,

which yields the correct expressions, when comparing to Equation (2.45).

Table 3.3: Magnetic parameter to be varied in the magnetic grid: the (log of the) magnetic field
amplitude scaling factor α (in Gauss).

Magnetic Parameter
Values

start end step

logα 4 6 1

Selection of the magnetic field amplitude scaling factor α

In order to select a range of (reasonable) near-core field strengths over which to
vary, we base ourselves on the estimates of order of magnitude of red giant field
strengths discussed in Section (1.2). As was shown by Stello et al. (2016), a field of
approximately 104−3∗106 G would be expected during the red giant phase. Cantiello
et al. (2016) then estimated field strengths for main-sequence dynamos using the red
giant phase field strengths, and concluded that main sequence dynamos should have
field strengths in the range of 104 − 105 G. Augustson et al. (2016) modelled near-
core dynamos in (massive) main-sequence stars, showing that fields of ∼ 106 G could
also be generated.

Even though these estimates were made for dynamo field strengths, they provide
us with a first estimate of a typical field strength to be expected in the considered
main sequence stars. Moreover, Buysschaert et al. (2018) estimated the (fossil)
near-core field strength of the (5.8M�) SPB star, for which the surface field was
characterized, to be in the range of 26.1 and 82.4 kG, motivated by simulations of
Braithwaite (2008). Prat et al. (2019), which constitutes the basis for and is deeply
integrated in this work, on their turn considered a maximal internal field strength
of 1.5 ∗ 105 G when modelling the same star. Hence, this indicates that fossil field
strengths likely fall in the same field strength range as considered for dynamo fields.

We varied the magnetic field amplitude scaling factor α (i.e. the parameter that
defines the field strength in our formalism) in the range 104− 106 G, as indicated in
Table (3.3). Furthermore, we make the limiting assumption that the axisymmetric
magnetic field described in the previous section is non-oblique, i.e., the magnetic field
vector is not inclined with respect to the rotation axis. Earlier work has shown that
the obliquity β however is not equal to zero, typically attaining values below 20◦ for
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slowly rotating Ap stars (e.g. Landstreet and Mathys, 2000), or larger values (see e.g.
Landstreet, 1970). In future work, the obliquity should be included. Nevertheless,
these non-oblique fields can serve as a useful first test case, in which the effects of
magnetic fields on g mode frequencies are characterized.

Estimating plasma β

A rough estimate of plasma β (see Equations (2.40) and (2.41)) in the near-core
region can be obtained by using estimates of central quantities. Assuming the ideal
gas law to hold in the near-core region:

ρ =
µ

R

P

T
(3.18)

and utilizing hydrostatic equilibrium, we derived simple estimates of the central
pressure and temperature (similar to the estimates of Kippenhahn et al., 2012):

∂P

∂m
= − Gm

4πr4
⇒ P0 − Pc

M
≈ − GM/2

4π(R/2)4
⇔ Pc ≈

2GM2

πR4
(3.19)

T =
µ

R

P

ρ
⇒ Tc ≈

Pc
2Rρc

=
GM2

πRR4ρc
(3.20)

where R is the (ideal) gas constant, ∂P
∂m

is estimated as P0−Pc

M
, m is the Lagrangian

mass coordinate (which we estimate as the rough mean value M/2), r is the local
radius of the Lagrangian mass element (which we estimate as the rough mean R/2),
where the pressure at the surface is deemed to be negligible compared to the central
pressure (P0 � Pc), and where we use the rough value for the mean molecular weight
of µ = 0.5 (i.e. the value for fully ionized H). Further assuming that the species are
thermalized, β can be estimated as:

β =
2µ0kTc(ne + nH)

B2
≈ 4µ0 k Tc ρc

B2 mH

≈ 4µ0 k GM
2

B2 mH π R R4
(3.21)

Assessing the validity of the collisionality assumption

The validity of the collisionality assumption (see Section (2.3.2)) can be probed
using the plasma parameter Λ = 6πε0kT/q

2n1/3 (see e.g. Goedbloed and Poedts,
2004; Fitzpatrick, 2015), where ε0 is the vacuum permittivity, T is the temperature
of the plasma, q is the species charge, n is the number density of plasma species
and k is Boltzmann’s constant. This can be thought of as the ratio of the average
distance between the particles < r > ≡ n−1/3 and the distance of closest approach
between particles in the plasma: rcl ≡ e2/4πε0T . When < r > /rcl is small, charged
particles are dominated by the electrostatic influence (of another particle) and their
kinetic energies are small compared to the interaction potential energies. The cor-
responding plasma is called strongly coupled. On the other hand, when the ratio is
large, strong electrostatic interactions between individual particles are rare, and the
typical particle can be considered to be influenced by all of the other particles ‘x’
for which r < λD,x =

√
ε0kTx/|q|2nx. Yet, only rarely the interactions cause sudden

changes in the particle’s motion.
These are weakly coupled plasma’s. Hence, in order to validate the collisionality

assumption, the plasma parameter should be large (and hence the plasma should be
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weakly coupled). Using the central estimates developed in the previous section the
plasma parameter can be estimated as:

Λ ≈ 6π ε0 k Tc

e2 (ρc/M)1/3
=

6 ε0 k G M7/3

e2 R R4 ρ
4/3
c

(3.22)

where we again assumed thermalized, ionized H to be the only contributing species.
Hence, for near-core conditions, we expect Λ to be large.

In addition, one can estimate the value of the so-called plasma coupling param-
eter Γ, defined by:

Γ =
Ec
kT

, (3.23)

where Ec is the coulomb energy and kT is the thermal energy. Therefore, for a
strongly coupled plasma, we expect that Γ is large, and vice versa for weakly coupled
plasmas.

Assessing the validity of the perturbative approach

Strong internal magnetic fields will affect mode propagation of internal gravity
waves, partially or completely reflecting them if their angular frequency is of the

same magnitude as the magnetogravity frequency ωMG = [2B2
rN

2/πρr2]
1/4

, derived
by Fuller et al. (2015); Cantiello et al. (2016) for red giants without rotation (where
Br signifies the radial component of the magnetic field, as in Section (1.2)). However,
since we assume the magnetic field to only have a perturbative effect on the gravito-
inertial frequencies, we do not consider that the Lorentz force acts as a restoring
force. Therefore, the angular pulsation frequencies (in the corotating frame) ω have
to be compared with the Alfvén frequency ωA, defined by:

ωA =
B · k√
µ0ρ

= vA · k , (3.24)

where B is the magnetic field vector, k is the wave vector, µ0 is the vacuum per-
meability, ρ is the density, and vA = B/

√
µ0ρ is the so-called Alfvén speed. When

ωA � ω a perturbative treatment is justified. In fact, if ω ≈ ωA, one would expect
reflection of the gravity waves due to magnetic field interaction (similar to the re-
flection and refraction of internal gravity waves described in Section (1.2). Hence,
the validity domain of our approximation is defined by:

ωA
ω
� 1 . (3.25)

For high-radial-order modes B ·k ≈ Brkr = br(r)kr cos θ. Hence, the magnitude
of the Alfvén frequency is maximal along the rotation axis (θ = 0◦), however, high-
radial-order modes are sub-inertial (i.e. ω < 2Ω) and trapped in an equatorial
waveguide defined by |cos θ| ≤ ω/2Ω = 1/|ν| (see e.g. Townsend, 2003; Prat et al.,
2016, 2017). The maximal Alfvén frequency that needs to be compared with ω is
then:

ωA =
br(r)kr cos θ√

µ0ρ(r)
⇒ ωAmax =

br(r)krω

2Ω
√
µ0ρ(r)

=
br(r)kr

|ν|
√
µ0ρ(r)

, (3.26)
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so that the validity criterion becomes:

brkr
2Ω
√
µ0ρ
� 1 . (3.27)

In Prat et al. (2019), we then use a rough estimate for the radial wave vector

kr ∼ |n|
R

(R is the stellar radius, n is the mode radial order) in order to provide an
estimate of the field strength range for which the formalism is valid. Furthermore,
even though br/

√
ρ is maximal at the centre of the star, gravity modes are most

sensitive to the near-core region. We can then estimate br/
√
ρ as 0.34 α/

√
ρc, so

that the final validity criterion is:

0.17
α|n|

RΩ
√
µ0ρc

� 1 , (3.28)

yielding the following field strength criterion:

α� ΩR
√
µ0ρc

0.17|n| , (3.29)

where α is the magnetic field scaling factor and ρc is the central density. Similarly,
the Alfvén frequency is then given by:

ωA = 0.34
α|n|

|ν|R√µ0ρc
. (3.30)

Traditionally the pulsation frequency ω is compared to a wide range of char-
acteristic frequencies (i.e. the Brunt-Väisälä frequency, Lamb frequency, Coriolis
frequency), in order to define the pulsation cavities of the different modes (see e.g.
Aerts et al., 2010). The characteristic Alfvén frequency estimate belongs on such a
plot when considering the influence of magnetic fields. It essentially defines a new
pulsation cavity, where for ω < ωA the Lorentz force becomes a restoring force.
Keep in mind however that the above criterion is a global estimate. As the strength
of the magnetic field and density changes locally, I also compute local estimates
of the Alfvén frequency, and compare this Alfvén profile to the unperturbed pul-
sation frequencies. Only first-order perturbations of the magnetic field on gravito-
inertial pulsations are considered. These pulsation modes are transversal, so that
the radial component of the wave vector (still) dominates. Therefore it follows that
B ·k ≈ Br(r, θ)kr(r), justifying the first approximation made by Prat et al. (2019).

Two different, more complete approaches were derived to estimate the Alfvén
frequency, where we take into account the spatial variability of the radial component
of the magnetic field vector as well as the radial density profile. The first approach
uses an estimate of the (radial) wave vector which is similar to the one used in Prat
et al. (2019), resulting in the following definition for the Alfvén frequency profile:

ωA(r, θ) ∼ B(r, θ)|n|
R
√
µ0ρ(r)

, (3.31)

where B(r, θ) is the magnetic field strength profile evaluated at a specific colatitude
θ, and where ρ(r) is the density profile (which does not depend on the colatitude,
as 1D stellar models are used).
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The second approach uses the dispersion relation for gravito-inertial waves de-
rived by Mathis (2009) in order to estimate the radial wave vector:

k2
r(r) =

N(r)2

ω2

λl,m(ν)

r2
, (3.32)

to obtain the following estimate for the Alfvén frequency profile:

ωA(r, θ) ∼ B(r, θ)N(r)
√
λl,m(ν)

ωr
√
µ0ρ(r)

, (3.33)

where N(r) is the local buoyancy frequency or Brunt-Väisälä frequency. Note that
our estimate scales with N(r). This approximation can be justified by noting that
for low-frequency super-inertial waves in a stellar medium permeated by a purely
toroidal field, Mathis and de Brye (2011) estimated the radial wave vector as:

kr(r) ≈
(
N

ωM

) √
λl,m(νM)

r
, (3.34)

where ωM and νM are angular pulsation frequencies in the corotating frame and spin
parameters modified by this toroidal field, respectively. They are given by (Mathis
and de Brye, 2011):

ω2
M = ω2 −m2ω2

A , (3.35)

νM = νFM =
2Ωrot

ω

[
1−mΛE

1−m2νΛE/2

]
, (3.36)

where ΛE is the wave’s Elsasser number defined by:

ΛE =
ω2
A

ω Ωrot

, (3.37)

a measure of the relative importance of the Lorentz force with respect to the Coriolis
acceleration. Thus, when only considering the effect of a purely toroidal field on
zonal modes (m = 0), the expression for the radial wavevector of Mathis and de
Brye (2011) reduces to Equation (3.33), justifying our approximation for this purely
toroidal field. In such a case, waves are only propagating if ω2

M > 0.
If ω2

M < 0, the waves are trapped in the vertical direction, as the toroidal mag-
netic field acts as a filter in this direction (Schatzman, 1993; Barnes et al., 1998).
The Duez and Mathis (2010) field, however, also has a non-negligible poloidal term,
which should be taken into account. Doing so would however require one to re-
derive the equations of Mathis and de Brye (2011) for the more general case of a
poloidal-toroidal field, which, within the time-frame of this thesis, was not feasible.
Therefore we rather stick to the approximation we made above, to estimate the
validity of our approach.

As mentioned in Section (2.2.2), for rapid rotators the pulsation become trapped
in a band around the stellar equator, which gets narrower if the Coriolis force con-
tributes more to the restoring force (i.e. for faster rotation). To best estimate
the influence of the magnetic field B(r, θ) on the pulsation frequency, we evaluate
B(r, θ) at the colatitude θ where the eigenfunction of the considered pulsation is
maximal, i.e., the part of the magnetic field to which this pulsation is most sensitive.
The maximum of the radial Hough function gives a good estimate of this colatitude,
because the radial part of the wave vector is much larger than the horizontal part.



4 — Results and discussion

4.1 Coarse grid results

In order to grasp how magnetic fields influence period spacing patterns, the main
diagnostic of gravity-mode asteroseismology, we restrict ourselves to the ‘simplest’
modes: dipole zonal modes (l = 1, m = 0). Typically a so-called mode cavity
diagram (in which the nodes of the eigenfunctions, as well as the mode frequen-
cies are shown and compared to characteristic frequencies) is made to analyze the
propagation of pulsations inside stars (e.g. Aerts et al., 2010). However, since the
eigenfunctions of the magnetically perturbed modes are not calculated in Prat et al.
(2019), because the perturbation of a single eigenfunction in the TAR requires calcu-
lating a sum of infinite terms (e.g. Lee and Saio, 1997), we cannot exactly pinpoint
the nodes of the magnetically altered modes. This is, in principle, needed to fully
characterize the mode in terms of its radial order, and to determine which restoring
forces are relevant for the mode. Therefore, in order to assess this behaviour, in first
instance, we propose to look at our mode propagation or mode cavity diagrams, in
which the characteristic frequencies (N , Sl, 2 Ωrot,ωA) are indicated, as well as the
rotationally modified and magnetically modified eigenfrequency (of specific modes).
This will allow us to evaluate the condition required for describing the magnetic field
influence as a perturbative effect (hereafter referred to as the perturbative criterion):
ω � ωA.

Estimating characteristic parameters of the stellar plasma: β, Λ and Γ

For the specific reference models mentioned in Table (4.1), we estimate the plasma
parameter Λ (using Equation (3.22)) as well as the plasma coupling parameter Γ
to validate the collisionality assumption, and the plasma β of the near-core plasma
(using Equation (3.21)) at the specific evolution phases probed in this coarse grid.
This leads us to assume that in a typical stellar model of the model grid, the as-
sumptions for ideal MHD are valid, because the characteristic parameters adhere
to the following proportionalities: Λ > 0, β � 0 and Γ ≈ 0. An overview of the
evolution of the plasma diagnostic parameters throughout main-sequence evolution,
for the chosen reference model, is given in Figure (4.1). From this, we can extract
that throughout the MS, at least for this reference model, the assumptions for ideal
MHD seem to hold. Bi-particle collisions only begin to become important at the
very end of the MS, as indicated by the plasma interaction and plasma parameter
values. Given the very high values of plasma β, one does not expect the near-core
plasma to be magnetized throughout MS evolution. Although not shown explic-
itly here, electron degeneracy effects can be shown to be negligible throughout MS
evolution.

45
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Table 4.1: Estimated characteristic parameters of the near-core plasma of the reference model
in the grid. The MESA atmospheric boundary condition is ‘simple photosphere’ and the maximal
magnetic field strength α is 106 G.

Reference model parameters Characteristic parameters

Life phase Mass (M�) fov (Hp) Z Dmix (cm2 s−1) αMLT β / 106 Λ Γ

ZAMS 3.00 0.014 0.014 1.0 1.8 4.10 60.2 0.036

mid-MS 3.00 0.014 0.014 1.0 1.8 4.31 64.1 0.042

TAMS 3.00 0.014 0.014 1.0 1.8 11.8 65.5 0.074
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(a) Γ and Λ as a function of age.
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Figure 4.1: Near-core plasma diagnostics for the 3 M� reference stellar model throughout MS
evolution. fov = 0.014, Z = 0.014, Dmix = 1 cm2s−1, αMLT = 1.8, u = 0.25. Reference life phases
are indicated with grey dashed vertical lines: ZAMS (Xc ' 0.675), mid-MS (Xc ' 0.340), TAMS
(Xc ' 0.005).

4.1.1 The effect of magnetic fields on a reference star through-
out the main sequence

In order to assess the magnetic influence on period spacing patterns throughout
main-sequence evolution, we pick a reference model and vary Xc. The reference
model is a 3 M� star with solar metallicity (Z = 0.014), moderate core overshooting
(fov = 0.014), moderate envelope mixing (Dmix = 1.0 cm2 s−1), typical αMLT (= 1.8),
rotating at u = 0.25, and displaying a maximal magnetic field strength α = 106 G.
The results for the ZAMS star are displayed in Figure (4.2), whereas the results for
the mid-MS and TAMS star are displayed in Figure (4.3) and (4.4), respectively.
First, there is a clear difference in normalized magnetic field models at different Xc

(displayed in panel (a) of Figures (4.2), (4.3) and (4.4)). Barotropic ZAMS fields are
more extended than their TAMS counterparts, influencing large parts of the near-
core region. Hence, it might be expected that for these ZAMS stars, ω/ωA typically
is smaller than for their mid-MS and TAMS counterparts in the ‘outer’ near-core
regions.

The Brunt-Väisälä profile of such stars is sharply peaked, because there is only a
small near-core region with significant chemical gradients. Due to this sharp peak,
the perturbative criterion is less easily fulfilled. This is confirmed by the mode cavity
diagrams shown in Figure (4.2). Moreover, both the n = −15 and n = −35 modes
are sub-inertial (i.e. their frequency is lower than the Coriolis frequency), indicating
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that Hough functions are necessary to describe most of the zonal mode pulsations
in these stars.

Figure (4.2) shows that the perturbative criterion seems to hold for every mode, if
ωA is calculated using Equations (3.30) and (3.31). However, as explained in Section
(3.2.3), these estimates of the Alfvén frequency are rather crude, and are therefore
deemed less reliable (especially Equation (3.30), assuming scaled core conditions).
Our improved estimate of the Alfvén frequency, calculated using Equation (3.33),
still is a rather crude estimate of the real local Alfvén frequency, albeit a more
physically motivated one than the previous two.

Lastly, we note the significant difference in period spacing pattern between the
rotating non-magnetic case and the rotating magnetic case. As was shown in Prat
et al. (2019), the magnetic frequency shifts become significantly larger at higher
radial orders. The trapped modes are affected most, as the magnetic field is strongest
in their near-core trapping region.

The mid-MS model, displayed in Figure (4.3), displays similar trends: magnetic
shifts become large and our perturbative approaches has its limitations. The dis-
tinct signature of the receding convective core can be observed in the mode cavity
diagrams, as a widened peak in the Brunt-Väisälä profile. The n = −15 mode is
super-inertial, and its magnetic shift can be well described by our perturbative ap-
proach. The n = −15 mode period spacing is shifted by approximately 100 seconds,
a shift that could be detected observationally (although typical uncertainties on pul-
sation period spacing patterns are of the order of 250 seconds). The perturbative
criteria (3.30) and (3.31) again assess that more modes could be described with the
perturbative formalism, compared to our improved criterion (3.33).

The TAMS model, displayed in Figure (4.4), yields optimal results with respect
to perturbative validity of our approach. It assesses that magnetic shifts of all
modes can be described using our perturbative formalism. Moreover, all frequencies
are super-inertial (at least up until n = −35), so that they could in principle be
described without significant rotational mode trapping (e.g. Section (2.2.2)). Large
deviations from ‘normality’ can be observed in the (simulated) magnetorotationally
influenced period spacing pattern. Therefore, TAMS stars are excellent probes of
internal magnetic fields. However, one should note that the region inside the stellar
model with significant field strength (of the barotropic magnetic field) is very close
to the stellar center. In fact, if the Brunt-Väisälä frequency is used as a probe
of convective core size (N becomes small at the core boundary), a core radius of
approximately 0.025 r/R can be estimated. The strongest part of the magnetic
field therefore seems to be situated inside this core, a region for which the Duez
and Mathis (2010) field is not valid. Obviously this fully convective region is not of
relevance with respect to g mode propagation, however, since the Duez and Mathis
(2010) magnetic field model is only defined within the radiative zone of a stellar
model/star, questions could be raised on the validity of the field strength in the
near-core regions. However, the only necessary input for calculating the Duez and
Mathis (2010) magnetic field is the density profile, from which the corresponding
local field strength is estimated. Hence, we deem it unlikely that the magnetic field
in the regions for which the Duez and Mathis (2010) magnetic field model does not
hold, affects the field in the near-core regions (gravely). This should be investigated
in the near future, by calculating the numerical magnetic field model (described by
Equation (3.14)) in the radiative zone only.
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The apparent loops and negative spacings provide an indication that our per-
turbative theory is lacking a physical process that takes place between pulsations
inside stars: mode interaction. Hence, one can describe the period spacing patterns
of modes up to the radial order for which the characteristic ‘sawtooth’ pattern starts
to appear. Non-perturbative approaches are needed to describe higher radial orders
then. It is expected that if frequencies of two modes approach each other, they un-
dergo an interaction reminiscent of so-called ‘avoided crossings’ that occur between
modes of two coupled (mechanical) oscillators. This can have major implications
for pulsation mode labelling, as modes undergoing avoided crossings, assimilate the
(physical) geometry of the mode with which they interact. This phenomenon has
major implications for the mode classification problem, for which usually the scheme
proposed by Scuflaire (Scuflaire, 1974) and Osaki (Osaki, 1975) is used, so that the
nomenclature (p,f,g-modes) does not always reflect the physical nature of the oscil-
lations (Shibahashi and Osaki, 1976).

4.1.2 Varying field strength and rotation rate for a reference
star throughout the main sequence

A more detailed overview of the magnetic influence on period spacing patterns for
the reference model discussed in the previous section is given in Figures (4.6), (4.7),
and (4.9). As can be noted in Figure (4.6), the magnetic fields with maximal field
strengths of 104 and 105 G do not induce strong magnetic shifts. Only for slowly
rotating models do the period spacing patterns shifted by the α = 105 G field differ
from their purely rotational counterpart, whereas for α = 104 G fields, no marked
differences are observed. A maximal shift ∆P of approximately 150 seconds is
obtained for the α = 105 G patterns. Increasing rotation rates significantly decrease
the amplitude of expected magnetic signatures, as we noted in Prat et al. (2019).
This can be explained by the fact that the Brunt-Väisälä frequency usually is much
larger than the Coriolis frequency, so that the lower frequency bound for gravito-
inertial waves is approximated by: ω− ≈ 2Ω cos θ (e.g. Prat et al., 2016). The
estimated Alfvén frequencies for the 104 G and 105 G fields are (much) lower than
ω− and increasing rotation rate (i.e. increasing Ω) shifts the lower frequency bound
further upwards. Hence, the modes become less sensitive to the magnetic influence
with increasing rotation rate, as is observed here (for the 105 G models). Therefore,
we concluded in Prat et al. (2019) that one should search for the signatures of a
magnetic field in period spacing patterns of slow rotators. With respect to Figure
(4.6), this conclusion obviously holds. We note in this work that, with increasing
rotation rate, the perturbative approach is also valid for higher radial orders, as is
observed from the form of Equation (3.30), derived by Prat et al. (2019). Taking a
look at Figures (4.7) and (4.9), one could thus infer strong magnetic fields in more
rapid rotators as well. This is justified by the fact that the gravito-inertial modes
inside a strongly magnetic, strongly rotating star display significant magnetic shifts
over a large range of orders, which, according to the criterion derived in this work
(Equation (3.33)), are valid in our perturbative approach. If such strong fossil fields
would exist within real MS stars, they should thus readily be detectable from Kepler
photometric light curves, because their induced shifts are (much) larger than the
typical uncertainty on g mode period spacings ∆P (250 seconds).
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4.1.3 Varying Dmix for a reference model

Keeping other parameters constant, the effect ofDmix will be probed for the reference
model: a 3 M� star with solar metallicity (Z = 0.014), moderate core overshooting
(fov = 0.014), typical αMLT (= 1.8), rotating at u = 0.25, and displaying a maximal
magnetic field strength α = 106 G. Mixing can change the stellar model evolution on
a long-term scale, by changing local composition and influencing long-term energy
transport. This might change the local density and thus affect the magnetic field,
pulsation modes, etc. As the mixing parameter Dmix is kept constant throughout the
MS evolution, one would expect the greatest influence for more evolved models. The
influence of the mixing parameter Dmix, kept constant throughout the MS evolution,
can be observed in Figure (4.11). As expected, magneto-rotational shifts are larger
for more evolved models. Interestingly, the high radial order modes of the TAMS
model with a large amount of mixing (Dmix = 10.0 cm2 s−1) are greatly affected.
Although this might be linked to a different density profile, which subsequently
changes the magnetic field model (see Section (3.2.3)), no significant changes can be
observed in Figure (4.13), when compared to the field models shown in the reference
case, depicted in Figure (4.5). No marked changes can be observed in the Alfvén
velocity structure, when comparing the models displayed in Figure (4.14) and Figure
(4.5). The origin of the marked change in slope of the period spacing pattern should
be investigated thoroughly in the near future, as this could affect the derivation
of the near-core rotation rate, although, typically, prograde mode period spacing
patterns are used (see e.g. Van Reeth et al., 2016, 2018). Such a deviation would
be identified easily in observational period spacing patterns. The more equatorially
confined, high radial-order modes are affected more strongly than low radial-order
modes, as was mentioned before. Although there are easily visible features in the
period spacing pattern, no significant/marked features of the magnetic influence are
obtained from the simulated mode frequency spectra (see Figure (4.12)). The TAMS
model with a (very) small degree of mixing (Dmix = 0.1 cm2 s−1) does not seem to
be markedly different from the reference model shown in Figure (4.7), even though
the high radial-order modes show slightly larger shifts in the low-mixing case.

We note the large jump at P ∼ 0.5 d for this TAMS model. This is due to
numerical inaccuracy in obtaining the frequency of the n = −13 mode using GYRE.
GYRE identified two mixed modes: npg = −11, np = 1 and npg = −9, np = 2. We
deem these to be a misidentification with the Osaki-Scuflaire mode labelling system
implemented in GYRE (Osaki, 1975; Scuflaire, 1974). In order to remedy this, we
re-calculated the MESA stellar model with additional resolution, and increased the
resolution of the GYRE frequency search grid. Yet, this did not affect the GYRE
mode labelling. The result of this investigation does not change because of this
numerical inaccuracy.
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4.1.4 Varying αMLT for a reference model

Keeping other parameters constant, the effect of αMLT will be probed for a reference
model: a 3 M� star with solar metallicity (Z = 0.014), moderate core overshooting
(fov = 0.014), moderate mixing strength (Dmix = 1.0 cm2s−1), rotating at u = 0.25,
and displaying a maximal magnetic field strength α = 106 G. The αMLT parameter
constrains the mixing length in the mixing length theory. If it is larger, convective
cells will be able to reach a larger distance before dissolving (see Equation (1.9)),
exchanging chemical information over a larger area inside the star. This effectively
changes the size of the convective zone and thus affects the g mode propagation
in the stellar interior, since they cannot propagate in convective zones. Since we
assume that convective regions are completely mixed, this affects the density profile.
By looking at Figure (4.15), we deduce a small slope change for the small αMLT

(= 1.5) TAMS model, like was observed for a high Dmix TAMS model in Figure
(4.11). Unlike when varying Dmix, the magnetic field model structure (depicted in
Figure (4.17)) is slightly different in the near-core region of the small αMLT TAMS
model (more specifically, the toroidal field structure), as would be expected when
the density profile is adjusted, according to the magnetic field prescription. This
also results in a slightly different (toroidal) Alfvén velocity structure (depicted in
Figure (4.18) for this model, although the poloidal structure in the near-core region
seems to be virtually unaffected. For ZAMS reference models, we cannot distinguish
between rotationally modified g mode pulsations and magneto-rotationally modified
ones. For mid-MS reference models, only deviations in low radial order modes can
be observed, larger for the small αMLT model (max. ∆P deviation ≈ 500 s for the
n = −17 mode). Even though such deviations could possibly be detected, it can
only provide weak constraints on the magnetic field inside the star, as well as the
stellar fundamental parameters.

4.1.5 Varying fov for a reference model

Keeping other parameters constant, the effect of fov will be probed for a reference
model: a 3 M� star with solar metallicity (Z = 0.014), moderate mixing strength
(Dmix = 1.0 cm2s−1), typical αMLT (= 1.8), rotating at u = 0.25, and displaying
a maximal magnetic field strength α = 106 G. Overshooting induces extra mixing
in the convective boundary regions, and therefore locally changes the density pro-
file (see Equation (3.1)). Moreover, as more/less hydrogen is transported to the
convective core for higher/lower overshoot parameters fov, the main sequence life-
time of the stellar model is lengthened/shortened. Therefore, the age of the star
for a given Xc will increase/lower, affecting the radius, Teff profile and the density
profile. Therefore, since the trapped modes, located in such near-core regions, are
most affected, we expect overshooting to modify the period spacing patterns in a
strong way. As is clear by now, more confined, higher radial-order modes are sen-
sitive to a different magnetic field, compared to the less confined, low radial-order
modes, and thus experience different magnetic shifts, as illustrated rather well in
Figure (4.19). Figure (4.19) also reveals a downward trend of the magnetic period
spacing pattern due to extra near-core mixing being induced by fov. The physical
reasoning is a different (local) density profile, affecting the magnetic field structure,
and thus affecting the magnetic frequency shifts of the pulsation modes. The Alfvén
velocity vA is increased throughout the entire stellar model with increasing fov, as
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depicted in Figure (4.23), and is different from the more confined velocity structure
for low overshoot and reference overshoot models. Figure (4.22) reveals that both
the poloidal and toroidal field structure locally is different in the large fov model,
when compared to the low fov model, as well as the reference fov model (depicted
in Figure (4.5)). Indeed, as can be observed in Figure (4.21), for the TAMS models,
the (radial) magnetic field profile is changed, due to a changed density profile. It is
interesting to note the difference in radial field strength evaluated at an arbitrarily
chosen colatitude θ = 5◦ in the overshoot region for models with different fov (see
Figure (4.21)), the region in which modes are trapped (due to a large ∇µ). Hence,
differences in the magnetic field structure as depicted in Figures (4.22), 4.21 and
(4.5) can quite strongly affect period spacing patterns of g modes that probe this
very region. It seems promising that one could in effect probe core overshooting in
the presence of a strong field, a parameter that is typically conflicted with degen-
eracies (see e.g. Pedersen et al., 2018; Aerts et al., 2018), although further work is
needed to provide additional clarification. This probing power might improve with
more sophisticated magnetic field models.

4.1.6 Varying Z for a reference model

Keeping other parameters constant, the effect of Z will be probed for a reference
model: a 3 M� star with moderate core overshooting (fov = 0.014), moderate
mixing strength (Dmix = 1.0 cm2 s−1), typical αMLT (= 1.8), rotating at u = 0.25,
and displaying a maximal magnetic field strength α = 106 G. Changing the initial
metallicity Z affects the stellar opacity. This results in a lower radiative outward
force, causing low-Z stars to be more compact and hotter compared to their higher
Z counterparts (Hirschi et al., 2008). Because these stars have different radii for a
specific stellar mass compared to their different Z counterparts, the critical rotation
velocities (defined in Equation (2.21)) will be different. The rotation rates of low-Z
stars are thus larger, compared to their higher-Z counterparts, if u is kept constant.
Moreover, since nuclear burning processes in the stellar core such as the CNO-cycle
are very sensitive to the metal content, as well as the core temperature, the lifetime
of the stars is changed depending on metallicity, with high-Z stars living longer
(Hirschi et al., 2008).

Figure (4.24) suggest no clear slope deviation. The magnetic field models slightly
differ in their toroidal components, but, unlike the case for fov, this doesn’t induce
the shifts/tilt noticed for those models. Moreover, a tilt due to increasing rotation
rate in low-Z stars is not present. Most changes can be observed in the high radial
order regime, where we stress that the closely packed frequencies might lead to mode
interactions. Therefore, effectively, the change in magnetic shifts induced by varying
metallicity does not seem to greatly affect the shape of the period spacing pattern
for low radial order modes. The TAMS model individual frequency shifts indicate
a stronger magnetic field influence for low-Z stellar models, somewhat contrary to
what one would expect for the faster rotator, based on our conclusions in Prat et al.
(2019). The origin of this phenomenon should be explored in further work.
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4.1.7 Checking the influence of computational parameters
on mode frequencies

One of the questions raised in the previous chapter was how the numerical differ-
ence scheme affects the mode frequencies of the reference model discussed earlier.
It turns out, by looking at the Figures (4.28), (4.29), (4.30), (4.31), (4.32), that
negligible differences in the period spacing patterns occur for all patterns generated
with different numerical choices. The choice of difference scheme does not play a
significant role on the period spacing level.

Another question raised was that of outer boundary conditions: does using the
simplistic VACUUM boundary condition change the frequencies of the pulsation
modes significantly, when compared to frequencies obtained with the UNNO bound-
ary condition? It turns out that this is also not the case, as observed in Figure (4.33),
where both the period spacings and simulated frequency spectra are shown on the
left and the right, respectively. No marked changes in the period spacing pattern
structure are found. Switching boundary conditions can still shift the individual
mode frequencies, but individual frequency fitting will always be accompanied with
matching the ∆P pattern in g-mode asteroseismology, so this is not an issue.

4.2 Mode interaction and mode bumping

4.2.1 ‘Classical’ mode bumping

The phenomenon of ‘mode bumping’ can be observed when looking at the frequen-
cies of nonradial oscillations of gradually changing stellar configurations, i.e. when
following the change in mode frequencies throughout the stellar evolution. When
the frequency of a certain mode approaches the frequency of another, the second
mode subsequently is ‘bumped’ to a different frequency, whereas the original ‘bump-
ing’ mode settles at approximately the frequency of the ‘bumped mode’, no longer
following the asymptotic expression (e.g. Aizenman et al., 1977; Roth and Weigert,
1979; Christensen-Dalsgaard, 1981; Gautschy, 1992; Smeyers and Van Hoolst, 2010).
This is reminiscent of ‘avoided crossings’ between modes of two coupled oscillators,
so that Aizenman et al. (1977) developed a formalism in which they decouple the
coupled oscillators. Mode bumping has mostly been studied for massive stars on
the main sequence (e.g. Aizenman et al., 1977; Roth and Weigert, 1979), or for
more evolved stars such as subgiants and red giants (e.g. Benomar et al., 2012;
Mosser et al., 2012b; Bedding et al., 2011; Benomar et al., 2013), as it typically
involves bumping between a g and a p mode. After mode interaction, both inter-
acting modes gain an extra node, as has been shown in Smeyers and Van Hoolst
(2010) and references therein. It has not received much attention for main sequence
intermediate-mass stars. However, this phenomenon has major implications for the
mode classification (due to the appearance of these extra nodes), for which usually
the scheme proposed by Scuflaire (Scuflaire, 1974) and Osaki (Osaki, 1975) is used,
so that the nomenclature (p,f,g-modes) does not always reflect the physical nature
of the oscillations (Shibahashi and Osaki, 1976).
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The ‘classical’ mode bumping diagram, as first used by Aizenman et al. (1977),
for the reference model in our grid (resampled with a fine Xc step) is shown in Figure
(4.34). Under the influence of rotation, bumping may occur. It clearly shows the
flaws of the Scuflaire-Osaki mode labelling system, as ‘specific’ modes throughout
the main-sequence shift frequency multiple times. Interestingly enough this shifting
already takes place very close to the ZAMS for higher radial order modes (see modes
enclosed in black dashed box), further rendering identification hard.

4.2.2 Magnetic mode bumping

Given the results in Section (4.1), we will consider how mode bumping is affected
by an internal magnetic field, since this might introduce additional complications in
mode identification that were previously not considered. As can be seen in Figure
(4.34), a (moderately) strong internal magnetic field (i.e. 106 G) greatly influences
the mode frequencies and the mode bumping as well, as indicated on Figure (4.34)
with dashed line boxes. The influence is larger for more confined higher radial order
modes, as is expected from the results of Section (4.1), and becomes important at
earlier evolutionary stages. In fact, it is already important for our ZAMS models
for the modes considered in the black dashed box in Figure (4.34). This may cause
additional complications for mode identification. It should be taken into account,
as the effect most certainly does not seem to be negligible. In the near future, we
shall explore in detail how bumping affects the predictions made with the Prat et al.
(2019) formalism.
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Figure 4.2: Pulsation characteristics of a 3 M� ZAMS (Xc ≈ 0.6740) stellar model, fov = 0.014,
Z = 0.014, Dmix = 1 cm2s−1, αMLT = 1.8, frot = Ω/2π = 0.7430 d−1, λ ≈ 26.5. (a): Normalized
B representation. (b): Hr evaluated for µ1/2 of specific modes: (n = −15 : θ ≈ 35◦, ν = 1.226),
(n = −35 : θ ≈ 61◦, ν = 2.056). (c): Period spacing pattern (n ∈ [−10,−50]) for u = 0.25,
including/excluding 106 G magnetic field (red/blue). Black parts of the period spacing pattern
indicate regions where ω < ωA (ωA is estimated using Equation (3.33)). Crosses indicate the
specific modes (n = −15, n = −35) selected for mode cavity analysis. (d): Mode cavity diagrams
(for the specific modes selected) with zoom-in. The dotted line is Sl, N is plotted in green, the
light blue dash-dotted line is the Coriolis frequency (2frot), the red line is the magneto-rotationally
shifted frequency, the blue line is the rotationally modified frequency, the thin black line is the
local ωA calculated with Equation (3.31), the thick black line is the ωA estimate obtained from
Equation (3.30), whereas the shaded grey area is the ωA estimate calculated with Equation (3.33).
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Figure 4.3: Same as Figure (4.2), but for a 3 M� mid-MS (Xc ≈ 0.3398) stellar model. In this
case the specific modes are characterized by (n = −15 : θ = 0◦, ν = 0.708) and (n = −35 : θ ≈
43◦, ν = 1.369). The rotation frequency is frot = 0.4011 d−1, with λ ≈ 55.3.
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Figure 4.4: Same as Figure (4.2), but for a 3 M� TAMS (Xc ≈ 0.005) stellar model. In this case
the specific modes are characterized by (n = −15 : θ = 0◦, ν = 0.255) and (n = −35 : θ = 0◦, ν =
0.567). The rotation frequency is frot = 0.2237 d−1, with λ ≈ 113.2.
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Figure 4.5: From left to right: Normalized Alfvén velocity structure (left), and normalized
magnetic field model structure, as prescribed in Section (3.2.3) (right) for a 3M� stellar model,
fov = 0.014, Z = 0.014, Dmix = 1 cm2s−1, αMLT = 1.8. From top to down: ZAMS model
(Xc ≈ 0.675), mid-MS model (Xc ≈ 0.340), TAMS model (Xc ≈ 0.005).
The normalized Alfvén velocity vA is estimated as vA = Bnorm/

√
ρ (the normalized version of vA

defined in Equation (3.24), converted to cgs units), where Bnorm is the normalized magnetic field
(as depicted on the right hand side).
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(c) From left to right: Period spacing patterns for u = 0.50 and α = 104 G, 105 G.
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Figure 4.6: Period spacing patterns for a 3M� stellar model, fov = 0.014, Z = 0.014, Dmix =
1 cm2s−1, αMLT = 1.8, for the three considered evolutionary stages. All α = 104 G and most
α = 105 G period spacing patterns have next to negligible (magnetic) shifts compared to their fully
rotational counterparts. Black parts of the period spacing patterns indicate regions where ω < ωA

(ωA is estimated using Equation (3.33)).
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Figure 4.7: From left to right: period spacing patterns for a 3M� stellar model at u = 0.01
(left) and u = 0.25 (right). fov = 0.014, Z = 0.014, Dmix = 1 cm2s−1, αMLT = 1.8 and α = 106

G. From top to down: ZAMS model (Xc ≈ 0.675), mid-MS model (Xc ≈ 0.340), TAMS model
(Xc ≈ 0.005). Black parts of the period spacing patterns indicate regions where ω < ωA (ωA is
estimated using Equation (3.33)).
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Figure 4.8: From left to right: simulated frequency spectra for a 3M� stellar model at u = 0.01
(left) and u = 0.25 (right). fov = 0.014, Z = 0.014, Dmix = 1 cm2s−1, αMLT = 1.8, and
α = 106 G. From top to down: ZAMS model (Xc ≈ 0.675), mid-MS model (Xc ≈ 0.340), TAMS
model (Xc ≈ 0.005). Rotationally modified mode frequencies are indicated with solid blue vertical
lines (of arbitrary amplitude), whereas red dashed vertical lines (of arbitrary amplitude) indicate
magnetically shifted modes for strong internal fields. Black dashed vertical lines indicate mode
frequency regions where ω < ωA (ωA is estimated using Equation (3.33)).
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Figure 4.9: From left to right: Period spacing patterns for a 3M� stellar model, at u = 0.50
(left) and u = 0.75 (right). fov = 0.014, Z = 0.014, Dmix = 1 cm2s−1, αMLT = 1.8, α = 106

G. From top to down: ZAMS model (Xc ≈ 0.675), mid-MS model (Xc ≈ 0.340), TAMS model
(Xc ≈ 0.005). Black parts in the period spacing patterns indicate the same as in Figure (4.7).
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Figure 4.10: From left to right: simulated frequency spectra for a 3M� stellar model, at u = 0.50
and u = 0.75. fov = 0.014, Z = 0.014, Dmix = 1 cm2s−1, αMLT = 1.8 and α = 106 G. From top
to down: ZAMS model (Xc ≈ 0.005), mid-MS model (Xc ≈ 0.340), TAMS model (Xc ≈ 0.675).
Colour code is the same as in Figure (4.8).
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Figure 4.11: From left to right: Period spacing patterns for a 3M� stellar model, at u = 0.25,
where Dmix = 0.1 cm2 s−1 (left) and Dmix = 10.0 cm2 s−1 (right). fov = 0.014, Z = 0.014,
αMLT = 1.8, and α = 106 G. From top to down: ZAMS model (Xc ≈ 0.675), mid-MS model
(Xc ≈ 0.340), TAMS model (Xc ≈ 0.005). Black parts in the period spacing patterns indicate the
same as in Figure (4.7).
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Figure 4.12: From left to right: Simulated frequency spectra for a 3M� stellar model, at u = 0.25,
with Dmix = 0.1 cm2 s−1 (left) and Dmix = 10.0 cm2 s−1 (right). fov = 0.014, Z = 0.014,
αMLT = 1.8, and α = 106 G. From top to down: ZAMS model (Xc ≈ 0.675), mid-MS model
(Xc ≈ 0.340), TAMS model(Xc ≈ 0.005). Colour code is the same as in Figure (4.8).
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Figure 4.13: From left to right: Representation of the normalized magnetic field structure for a
3M� stellar model, with Dmix = 0.1 cm2 s−1 (left) and Dmix = 10.0 cm2 s−1 (right). fov = 0.014,
Z = 0.014, αMLT = 1.8. From top to down: ZAMS model (Xc ≈ 0.675), mid-MS model (Xc ≈
0.340), TAMS model (Xc ≈ 0.005).
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Figure 4.14: From left to right: Representation of the normalized Alfvén velocity structure for a
3M� stellar model, with Dmix = 0.1 cm2s−1 (left) and Dmix = 10.0 cm2s−1 (right). fov = 0.014,
Z = 0.014, αMLT = 1.8. From top to down: ZAMS model (Xc ≈ 0.675), mid-MS model (Xc ≈
0.340), TAMS model (Xc ≈ 0.005).
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Figure 4.15: From left to right: Period spacing patterns for a 3M� stellar model, at u = 0.25,
with αMLT = 1.5 (left) and αMLT = 2.0 (right). fov = 0.014, Z = 0.014, Dmix = 1 cm2s−1, and
α = 106 G. From top to down: ZAMS model (Xc ≈ 0.675), mid-MS model (Xc ≈ 0.340), TAMS
model (Xc ≈ 0.005). Black parts in the period spacing patterns indicate the same as in Figure
(4.7).
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Figure 4.16: From left to right: Simulated frequency spectra for a 3M� star, at u = 0.25, with
αMLT = 1.5 (left) and αMLT = 2.0 (right). fov = 0.014, Z = 0.014, Dmix = 1 cm2s−1, and α = 106

G. From top to down: ZAMS model (Xc ≈ 0.675), mid-MS model (Xc ≈ 0.340), TAMS model
(Xc ≈ 0.005). Colour code is the same as in Figure (4.8).
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Figure 4.17: From left to right: Representation of the normalized magnetic field structure of
a 3M� stellar model, with αMLT = 1.5 (left) and αMLT = 2.0 (right). fov = 0.014, Z = 0.014,
Dmix = 1 cm2s−1. From top to down: ZAMS model (Xc ≈ 0.675), mid-MS model (Xc ≈ 0.340),
TAMS model (Xc ≈ 0.005).
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Figure 4.18: From left to right: Representation of the normalized Alfvén velocity structure of
a 3M� stellar model, with αMLT = 1.5 (left) and αMLT = 2.0 (right). fov = 0.014, Z = 0.014,
Dmix = 1 cm2s−1. From top to down: ZAMS model (Xc ≈ 0.675), mid-MS model (Xc ≈ 0.340),
TAMS model (Xc ≈ 0.005).
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Figure 4.19: From left to right: period spacing patterns for a 3M� stellar model, at u = 0.25,
with fov = 0.004 (left) and fov = 0.024 (right). Z = 0.014, Dmix = 1 cm2 s−1, αMLT = 1.8. From
top to down: ZAMS model (Xc ≈ 0.675), mid-MS model (Xc ≈ 0.340), TAMS model (Xc ≈ 0.005).
α = 106 G. Black parts in the period spacing patterns indicate the same as in Figure (4.7).
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Figure 4.20: From left to right: Simulated frequency spectra for a 3M� stellar model, at u = 0.25,
with fov = 0.004 (left) and fov = 0.024 (right). Z = 0.014, Dmix = 1 cm2 s−1, αMLT = 1.8, and
α = 106 G. From top to down: ZAMS model (Xc ≈ 0.675), mid-MS model (Xc ≈ 0.340), TAMS
model (Xc ≈ 0.005). Colour code is the same as in Figure (4.8).
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Figure 4.21: Top: Density (dotted lines) and radial magnetic field component at θ = 5◦ (full
line) profile in function of normalized stellar radius for different overshoot parameters fov, for
α = 106 G at u = 0.25, in a 3.00 M� TAMS stellar model with the following fundamental
parameters: Dmix = 1.0 cm2 s−1, Z = 0.014, αMLT = 1.8. The dashed vertical lines indicate the
locations of the convective core boundary, obtained from the condition ∇ = ∇ad, i.e. the so-called
Schwarzschild core boundary (Kippenhahn et al., 2012). Bottom: Mixing coefficient profiles (full
lines) in function of normalized radius at different values of the overshoot parameter fov for the
same stellar model considered above. Dashed lines indicate the same as in the figure above.
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Figure 4.22: From left to right: Representation of the normalized magnetic field structure of
3M� stellar model, with fov = 0.004 (left) and fov = 0.024 (right). Z = 0.014, Dmix = 1 cm2 s−1,
αMLT = 1.8. From top to down: ZAMS model (Xc ≈ 0.675), mid-MS model (Xc ≈ 0.340), TAMS
model (Xc ≈ 0.005).
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Figure 4.23: From left to right: Representation of the normalized Alfvén velocity structure of a
3M� stellar model, with fov = 0.004 (left) and fov = 0.024 (right). Z = 0.014, Dmix = 1 cm2s−1,
αMLT = 1.8. From top to down: ZAMS model (Xc ≈ 0.675), mid-MS model (Xc ≈ 0.340), TAMS
model (Xc ≈ 0.005).
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Figure 4.24: From left to right: period spacing patterns of a 3M� stellar model, at u = 0.25,
with Z = 0.010 (left) and Z = 0.018 (right). fov = 0.014, Dmix = 1 cm2s−1, αMLT = 1.8, α = 106

G. From top to down: ZAMS model (Xc ≈ 0.675), mid-MS model (Xc ≈ 0.340), TAMS model
(Xc ≈ 0.005). Black parts in the period spacing patterns indicate the same as in Figure (4.7).
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Figure 4.25: From left to right: Simulated frequency spectra of a 3M� stellar model, at u = 0.25,
with Z = 0.010 (left) and Z = 0.018 (right). fov = 0.014, Dmix = 1 cm2s−1, αMLT = 1.8, and
α = 106 G. From top to down: ZAMS model (Xc ≈ 0.675), mid-MS model (Xc ≈ 0.340), TAMS
model (Xc ≈ 0.005). Colour code is the same as in Figure (4.8).
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Figure 4.26: From left to right: Representation of the normalized magnetic field structure of a
3M� stellar model, with Z = 0.010 (left) and Z = 0.018 (right). fov = 0.014, Dmix = 1 cm2 s−1,
αMLT = 1.8. From top to down: ZAMS model (Xc ≈ 0.675), mid-MS model (Xc ≈ 0.340), TAMS
model (Xc ≈ 0.005).
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Figure 4.27: From left to right: Representation of the normalized Alfvén velocity structure of a
3M� stellar model, with Z = 0.010 (left) and Z = 0.018 (right). fov = 0.014, Dmix = 1 cm2 s−1,
αMLT = 1.8. From top to down: ZAMS model (Xc ≈ 0.675), mid-MS model (Xc ≈ 0.340), TAMS
model (Xc ≈ 0.005).
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Figure 4.28: Period spacing patterns of a 3M� stellar model, at u = 0.25, with Z = 0.014,
fov = 0.014, Dmix = 1 cm2s−1, αMLT = 1.8, α = 104 G. ZAMS model (Xc ≈ 0.675), mid-MS
model (Xc ≈ 0.340), TAMS model (Xc ≈ 0.005) are all included. Black parts in the period spacing
patterns indicate the same as in Figure (4.7). From top to down and left to right: COLLOC GL2,
COLLOC GL4, COLLOC GL6, COLLOC GL2, COLLOC GL4 (standard setting for this work),
and COLLOC GL6.
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Figure 4.29: Period spacing patterns of a 3M� stellar model, at u = 0.25, with Z = 0.014,
fov = 0.014, Dmix = 1 cm2s−1, αMLT = 1.8, α = 105 G. ZAMS model (Xc ≈ 0.675), mid-MS
model (Xc ≈ 0.340), TAMS model (Xc ≈ 0.005) are all included. Black parts in the period spacing
patterns indicate the same as in Figure (4.7). From top to down and left to right: COLLOC GL2,
COLLOC GL4, COLLOC GL6, COLLOC GL2, COLLOC GL4 (standard setting for this work),
and COLLOC GL6.
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Figure 4.30: Period spacing patterns of a 3M� stellar model, at u = 0.25, with Z = 0.014,
fov = 0.014, Dmix = 1 cm2s−1, αMLT = 1.8, α = 106 G. ZAMS model (Xc ≈ 0.675). Black parts
in the period spacing patterns indicate the same as in Figure (4.7). From top to down and left to
right: COLLOC GL2, COLLOC GL4, COLLOC GL6, COLLOC GL2, COLLOC GL4 (standard
setting for this work), and COLLOC GL6.
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Figure 4.31: Period spacing patterns of a 3M� stellar model, at u = 0.25, with Z = 0.014,
fov = 0.014, Dmix = 1 cm2s−1, αMLT = 1.8, α = 106 G. mid-MS model (Xc ≈ 0.3). Black parts
in the period spacing patterns indicate the same as in Figure (4.7). From top to down and left to
right: COLLOC GL2, COLLOC GL4, COLLOC GL6, COLLOC GL2, COLLOC GL4 (standard
setting for this work), and COLLOC GL6.
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Figure 4.32: Period spacing patterns of a 3M� stellar model, at u = 0.25, with Z = 0.014,
fov = 0.014, Dmix = 1 cm2s−1, αMLT = 1.8, α = 106 G. TAMS model (Xc ≈ 0.005). Black parts
in the period spacing patterns indicate the same as in Figure (4.7). From top to down and left to
right: COLLOC GL2, COLLOC GL4, COLLOC GL6, COLLOC GL2, COLLOC GL4 (standard
setting for this work), and COLLOC GL6.
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Figure 4.33: Period spacing patterns obtained with the VACUUM outer boundary condition for
a 3M� stellar model, at u = 0.25, with Z = 0.014, fov = 0.014, Dmix = 1 cm2s−1, αMLT = 1.8,
α = 106 G. Black parts in the period spacing patterns indicate the same as in Figure (4.7). From
left to right: Period spacing pattern (left), frequency spacing pattern (right). From top to down:
ZAMS model (Xc ≈ 0.675), mid-MS model (Xc ≈ 0.340), TAMS model (Xc ≈ 0.005)
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Figure 4.34: ‘Classical’ mode bumping plot (left) and ‘magnetic’ mode bumping plot (right) for the n = −15 to n = −29 g-modes in a 3 M� stellar model, with
solar metallicity (Z = 0.014), where fov = 0.014, Dmix = 1.0 cm2 s−1, αMLT = 1.8, α = 106 G and u = 0.25. Black lines denote the evolution of the lower radial
order modes, whereas purple lines indicate the evolution of the higher radial order modes considered (as indicated on the ‘magnetic’ bumping plot). For ease of
reference, the red dashed vertical line on the ‘magnetic’ bumping plot indicates Xc = 0.675, the models taken to be indicative of ZAMS stars in the previous
section. Since we held u constant, and because the radius of the star evolves throughout the main sequence, the near-core rotation rate Ω considered in GYRE
changes. How Ω varies with Xc is shown in the insert on the ‘classical’ mode bumping plot. The dashed-line boxes indicate specific regions in which the changes
in mode interaction due to the magnetic field are clearly visible.



5 — Conclusions and outlook

5.1 Characterizing internal magnetic fields

Internal magnetic fields of stars are poorly characterized, as there is no direct way to
observe them. Moreover, the extreme conditions in the near-core region further con-
tribute to the difficulties in characterizing such fields. As shown in Figure (4.1), the
assumptions for our formalism hold throughout the entire main-sequence evolution.

We have investigated how the Duez and Mathis (2010) magnetic field model,
a poloidal-toroidal, axisymmetric, internal large-scale magnetic fossil field model,
affects g mode pulsation frequencies for a rotating (magnetic) star in our formalism
(see e.g. Prat et al., 2019) that relies on the Traditional Approximation of Rotation
(TAR). From our parameter study, the following conclusions can be drawn:

1. Period spacing patterns of g modes provide an excellent probe of near-core
magnetic fields, yielding telltale signs of its presence: a ‘sawtooth’-like pattern
at higher radial orders, as was already discovered and announced by us in Prat
et al. (2019). This contrasts the typical dips that occur due to mode trapping
caused by a µ-gradient left behind in the near-core region by the shrinking
convective core throughout the main-sequence evolution (Miglio et al., 2008).
Some observed stars do exhibit gravity modes with appropriate radial orders
down to -50 (see Van Reeth et al. (2015) for examples of F-type stars, which
can exhibit detected patterns up to radial orders −100, and see Pápics et al.
(2017) for examples of B-type stars). In the future, we plan to investigate
how more sophisticated magnetic field models will fare in explaining pulsation
mode frequencies.

2. No magnetic influence on period spacing patterns is observed for field models
with maximum field strengths α = 104 G. Only slight shifts are obtained for
α = 105 G, whereas large shifts can be observed for models for which α = 106

G.

3. Increasing the near-core rotation rate decreases magnetic signatures, as was
already found by Prat et al. (2019). Therefore it is crucial to take into account
rotation when calculating magnetic shifts. If the shifts are small, rotation can
be problematic for detection. However, for the large strength magnetic field,
it can aid our cause, as it will allow more modes to be well described by our
perturbative formalism.

4. Both ‘classical’ and ‘magnetic’ mode bumping can affect mode identification
of g modes throughout the main sequence, as depicted in Figure (4.34).
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5. The size of the strongly magnetic patch in the magnetic field structure, where
the normalized field strengthBnorm ' 1, changes in terms of evolutionary stage
for the reference model: rB,ZAMS > rB,TAMS, where rB,i denotes the radius of
the strongly magnetic patch in a specific evolution stage i.

6. In order to conceptualize the effect of the magnetic field on the pulsations, the
effect of the different stellar parameters on the density profile was analyzed.
This density profile is the only necessary input for the Duez and Mathis (2010)
field. Most striking are the deviations from the rotational period spacing
pattern slope in case of high mixing levels.

7. Many of the ZAMS pulsation frequencies do not adhere to our newly derived
validity criterion (Equation (3.33)), although more valid modes become ‘avail-
able’ when considering higher rotation rates. Small frequency shifts may be
visible in Kepler data of g-mode pulsators. All of the frequencies of the TAMS
star pulsation modes are valid according to our criterion.

8. Trapped modes (in the near-core region) are predominantly affected by the
magnetic field, causing the signature µ-gradient dips to drastically change. In
ZAMS stars, such dips should (almost) not be present. However, Mombarg
et al. (2019) found such dips in their patterns. Our model grid seems to be in
agreement with Mombarg et al. (2019), since we also observe (a few) µ-gradient
dips for our ZAMS models.

9. In line with Townsend and Teitler (2013) the different solvers do not change the
period spacing pattern. They might result in slightly different frequencies, but
the effect is minimal. Changing the outer boundary condition to VACUUM
in GYRE does not yield appreciable changes when compared to our standard
boundary condition: UNNO.

5.2 Revisiting the Fuller et al. (2015) model

Fuller et al. (2015) conjectured that so-called ‘missing’ mixed modes observed in
approximately one quarter of Kepler red giants could be attributed to the presence
of a strong internal magnetic field (see Section (1.2) and Mosser et al. (2012a)).

This work provides the basis of future work that will assess the viability of the
Fuller et al. (2015) origin. It provides us with a first outlook on the detectability of
the magnetic fields deep inside the red giant progenitors: intermediate-mass main-
sequence stars that should harbour strong internal magnetic fields. As depicted
by Stello et al. (2016), the range of magnetic field strengths inside red giants is
104 − 3 ∗ 106 G. Cantiello et al. (2016) translated such field strengths to dynamo
field strengths on the main sequence, ranging from 104 − 105 G for F-type stars.
It is clear from our results that it will be (very) difficult to characterize internal
fields of such field strength from period spacing patterns of g modes in γ Dor stars.
Note, however, that Augustson et al. (2016) managed to reach field strengths up to
106 G within their 3D simulations of core convection in massive B-type stars. This
issues hope, as mega-Gauss fields can potentially be used to constrain the internal
field of a B-type star from its period spacing patterns, if its fundamental parameters
and rotation rate are known from asteroseismology. To achieve this, we will have



CHAPTER 5. CONCLUSIONS AND OUTLOOK 89

to await more general modelling of the magnetic field in terms of magnetic field
geometry and perturbation.

5.3 Outlook

Several near-future projects are planned to further strengthen (or disprove) the
results obtained in this work. A more sophisticated axisymmetric, oblique (i.e.
inclined with respect to the rotation axis) magnetic field model will become available
soon (Prat et al., in preparation). Fields that are not confined to the stellar interior
should follow later, taking into account that density becomes small at the surface,
invalidating the perturbative formalism locally (Bigot et al., 2000). This could be
remedied by a non-perturbative treatment of the magnetic field, which would allow
us to better describe very strong internal fields as well (Morsink and Rezania, 2002).
Ultimately, this should be extended to a fully non-axisymmetric, 3D magnetic field
model, which can then be used to provide accurate constraints on fundamental
stellar parameters and model fields generated by dynamos (e.g. Augustson et al.,
2016). As we found in Chapter (4), such a model might help us constrain the degree
of core boundary mixing, which can lengthen the lifetime of stellar models efficiently
(Pedersen et al., 2018).

The extension of this formalism to more commonly observed prograde g modes,
seems promising, as it will possibly allow us to use multiple detected (prograde)
patterns to characterize the magnetic field. We (Prat et al., 2019) already showed
that the magnetic shift for prograde modes is smaller than the shift for zonal modes.
However, if these shifts are detectable for multiple patterns, they will provide a
strong diagnostic. Moreover, as noted by Saio et al. (2018), some intermediate-mass
main-sequence stars rotate rapidly enough to generate Rossby modes. The influence
of an internal magnetic field on such modes has not yet been thoroughly studied.

We only consider a fixed u when investigating mode bumping in Figure (4.34),
leading to a near-core rotation rate of the stellar (pulsation) model that varies
throughout the MS evolution in a specific way. It should be investigated (in the
near future) how a different near-core rotation rate profile affects mode bumping,
e.g. the profile obtained if one assumes constant stellar angular momentum, defined
by M Ω R2 (Aerts et al., 2019), throughout main-sequence evolution.

Verifying the validity of the TAR in the considered regime and the inherent
assumption of a weak field can further be tested by two-dimensional computations
of modes in oscillation codes such as TOP (Reese et al., 2006) or ACOR (Ouazzani
et al., 2012). However, such codes do not currently take into account the magnetic
field. Another application of such codes would be to apply our perturbative theory
to g modes computed in centrifugally deformed stars.

Another way to further generalize this work is to include the effects of differential
rotation. A full treatment of differential rotation would likely render the present for-
malism unusable, as noted by Prat et al. (2019). However, because non-axisymmetric
magnetic fields are known to inhibit differential rotation (e.g. Moss, 1992; Spruit,
1999), a perturbative treatment of differential rotation could be sufficient.
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P. F. Hopkins, D. Kereš, J. Oñorbe, C.-A. Faucher-Giguère, E. Quataert, N. Murray,
and J. S. Bullock. Galaxies on FIRE (Feedback In Realistic Environments): stellar
feedback explains cosmologically inefficient star formation. MNRAS, 445:581–603,
Nov. 2014. doi: 10.1093/mnras/stu1738.

S. S. Hough. On the Application of Harmonic Analysis to the Dynamical Theory of
the Tides. Part II: On the General Integration of Laplace’s Dynamical Equations.
Philosophical Transactions of the Royal Society of London Series A, 191:139–185,
1898. doi: 10.1098/rsta.1898.0005.

W. Huang, D. R. Gies, and M. V. McSwain. A Stellar Rotation Census of B Stars:
From ZAMS to TAMS. The Astrophysical Journal, 722(1):605–619, Oct 2010.
doi: 10.1088/0004-637X/722/1/605.

R. Kippenhahn, A. Weigert, and A. Weiss. Stellar Structure and Evolution. Springer,
2012. doi: 10.1007/978-3-642-30304-3.

D. G. Koch, W. J. Borucki, G. Basri, N. M. Batalha, T. M. Brown, D. Caldwell,
J. Christensen-Dalsgaard, W. D. Cochran, E. DeVore, E. W. Dunham, T. N.
Gautier, III, J. C. Geary, R. L. Gilliland, A. Gould, J. Jenkins, Y. Kondo, D. W.
Latham, J. J. Lissauer, G. Marcy, D. Monet, D. Sasselov, A. Boss, D. Brownlee,
J. Caldwell, A. K. Dupree, S. B. Howell, H. Kjeldsen, S. Meibom, D. Morri-
son, T. Owen, H. Reitsema, J. Tarter, S. T. Bryson, J. L. Dotson, P. Gazis,
M. R. Haas, J. Kolodziejczak, J. F. Rowe, J. E. Van Cleve, C. Allen, H. Chan-
drasekaran, B. D. Clarke, J. Li, E. V. Quintana, P. Tenenbaum, J. D. Twicken,
and H. Wu. Kepler Mission Design, Realized Photometric Performance, and
Early Science. The Astrophysical Journal Letters, 713:L79–L86, Apr. 2010. doi:
10.1088/2041-8205/713/2/L79.

S. Kwok. The synthesis of organic and inorganic compounds in evolved stars. Nature,
430:985–991, Aug. 2004. doi: 10.1038/nature02862.

S. Kwok. Synthesis of organic compounds in the circumstellar environment. In
S. Kwok and S. Sanford, editors, Organic Matter in Space, volume 251 of IAU
Symposium, pages 175–184, Oct. 2008. doi: 10.1017/S1743921308021510.

J. D. Landstreet. The Orientation of Magnetic Axes in the Magnetic Variables.
Astrophysical Journal, 159:1001, Mar 1970. doi: 10.1086/150377.

J. D. Landstreet and G. Mathys. Magnetic models of slowly rotating magnetic Ap
stars: aligned magnetic and rotation axes. Astronomy and Astrophysics, 359:
213–226, Jul 2000.

D. Lecoanet, G. M. Vasil, J. Fuller, M. Cantiello, and K. J. Burns. Conversion
of internal gravity waves into magnetic waves. MNRAS, 466(2):2181–2193, Apr
2017. doi: 10.1093/mnras/stw3273.



BIBLIOGRAPHY 97

P. Ledoux and R. Simon. Sur les oscillations d’une étoile gazeuse possédant un
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Appendices

Connecting our equations of motion with literature

Purely rotating case

The general equations of motion for a rotating star with velocity field v, rotation
vector Ω = Ωez (i.e. uniformly rotating), evaluated in the co-rotating frame are
given by (Unno et al., 1989):

dv

dt
+ (v ·∇)v + 2 Ω× v + Ω×Ω× r = −∇φ− 1

ρ
∇P ,

from which one can obtain the following (Eulerian) perturbed equations (perturb-
ing the velocity field), assuming a static equilibrium velocity and magnetic field
(∂v0
∂t

= 0, ∂B0

∂t
= 0):

∂v′

∂t
+ (v′ ·∇)v0 + (v0 ·∇)v′ + 2Ω× v′ = − 1

ρ0

∇P ′ + ρ′

ρ2
0

∇P −∇φ′

where φ is the gravitational potential, the subscript 0 denotes equilibrium quantities,
and where we do not neglect the centrifugal term (Ω ×Ω × r) and do not neglect
the perturbation of the gravitational potential. Making the Cowling approximation
(i.e. neglecting the Eulerian perturbation of the gravitational potential φ′; Cowling,
1941), assuming the temporal dependence of the eigenfunctions to be equal to e−iωt

and an equilibrium star at rest: ||v0|| = v0 = 0, one can obtain the linearized
equations of motion used in the main text (Equation (2.22)). In order to do so, we
need to exploit the relation between the Eulerian perturbation of the velocity field
v′, the Lagrangian displacement vector ξ and the Lagrangian perturbation of the
velocity field δv (e.g. Smeyers and Van Hoolst, 2010):

v′ = δv − (ξ · ∇)v0 .

The Lagrangian perturbation of v is also given by:

δv = v (r0 + ξ)− v0 (r0) =
dξ

dt
,

⇔ δv =
∂ξ

∂t
+ (v · ∇) ξ ,

⇔ δv ' ∂ξ

∂t
+ (v0 · ∇) ξ ,

resulting in the following expression for the Eulerian perturbation of the velocity:

v′ =
∂ξ

∂t
+ (v0 · ∇) ξ − (ξ · ∇)v0 .
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Since we assume the temporal dependence of ξ to be e−iωt, we can derive the follow-
ing expressions (taking into account the assumptions above) for the different terms
in the Unno et al. (1989) equation:

∂v′

∂t
= −ω2ξ + iω (ξ · ∇)v0 − iω (v0 · ∇) ξ = −ω2ξ ,

2Ω× v′ = 2Ω× (−iωξ + (v0 · ∇) ξ − (ξ · ∇)v0) = −2iω (Ω× ξ) ,

(v′ ·∇)v ' (v′ ·∇)v0 = 0 ,

(v0 ·∇)v′ = 0 ,

∇φ′ = 0 .

In the purely rotating case, the equations of motion then simplify to:

−ω2ξ − 2iω (Ω× ξ) =
ρ′

ρ2
∇P − ∇P

′

ρ
,

⇔ ω2ξ + 2iω (Ω× ξ) +
ρ′

ρ2
∇P − ∇P

′

ρ
= 0 ,

from which, using the operators are the ones defined in Section (2.2.2):

B(ξ) = 2 Ω× ξ ,

C(ξ) =
ρ′

ρ2
∇P − ∇P

′

ρ
,

one obtains Equation (2.22).

Magnetorotational case

Starting from the general perturbed equations of motion derived by Unno et al.
(1989) (Equation (2.52)), one can derive Equation (2.53). Making the same as-
sumptions as in the purely rotating case, taking into account the same temporal
dependence of ξ, but instead starting from Equation (2.52), one arrives at

−ω2ξ − 2iω (Ω× ξ) =
ρ′

ρ2

[
∇P − 1

4π
(∇×B)×B

]
− ∇P

′

ρ

+
1

4πρ
[(∇×B)×B′ + (∇×B′)×B] ,

⇔ ω2ξ + 2iω (Ω× ξ) +
ρ′

ρ2

[
∇P − 1

4π
(∇×B)×B

]
− ∇P

′

ρ

+
1

4πρ
[(∇×B)×B′ + (∇×B′)×B] = 0 ,

where the magnetic terms in Equation (2.52) stay the same.
We can clearly distinguish the operators defined in Equation (2.22), where:

B(ξ) = 2 Ω× ξ ,

C(ξ) =
ρ′

ρ2

[
∇P − 1

4π
(∇×B)×B

]
− ∇P

′

ρ

+
1

4πρ
[(∇×B)×B′ + (∇×B′)×B] .
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The last operator can be subdivided into two constituents:

C0(ξ0) =
ρ′

ρ2
∇P − ∇P

′

ρ
,

C1(ξ0) =
ρ′

4πρ2
(∇×B)×B

+
1

4πρ
[(∇×B)×B′ + (∇×B′)×B] ,

since B′ ∝ ξ0 and B′ ∝ B (see Equation (2.49)).

Deriving the Hough functions

In order to derive the expression for the Hough functions we need to derive the
components of the linearized equation of motion (Equation (2.22)):

ω2ξ + 2iω (Ω× ξ) +
ρ′

ρ2
∇P − ∇P

′

ρ
= 0 .

This amounts to calculating the different components of Ω× ξ, where the Ω and ξ
are decomposed in the following components (in spherical coordinates):

Ω = Ω cos θer − Ω sin θeθ ,

ξ = ξrer + ξθeθ + ξϕeϕ ,

as already defined in the main text. The components of the vector product are then:

(Ω× ξ)r = −Ω sin θξϕ ,

(Ω× ξ)θ = −Ω cos θξϕ ,

(Ω× ξ)ϕ = Ω sin θξr + Ω cos θξθ .

In the TAR however, the components with Ω sin θ are neglected. Doing so, results
in the following component equations:

ω2ξr − 2iωΩ sin θξϕ +
ρ′

ρ2

dP

dr
−

∂P ′

∂r

ρ
= 0 ,

⇔ ρω2ξr − ρ′g −
∂P ′

∂r
= 0 ,

ω2ξθ − 2iωΩ cos θξϕ −
∂P ′

∂θ

r ρ
= 0 ,

⇔ ρω2ξθ − 2iρωΩ cos θξϕ −
1

r

∂P ′

∂θ
= 0 ,

ω2ξϕ + 2iω (Ω sin θξr + Ω cos θξθ)−
∂P ′

∂ϕ

r sin θ ρ
= 0 ,

⇔ ρω2ξϕ + 2iρωΩ cos θξθ −
1

r sin θ

∂P ′

∂ϕ
= 0 .
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From the last two equations we obtain an expression for ξθ and ξϕ, after some
manipulations. In order to derive the expression for ξϕ we start by rewriting the
second equation:

ρω2ξθ − 2iρωΩ cos θξϕ −
1

r

∂P ′

∂θ
= 0⇔ ξθ =

1

ρω2r

∂P ′

∂θ
+

2iΩ cos θ

ω
ξϕ .

Subsequently filling this in in the third equation, we obtain the expression for ξϕ:

ρω2ξϕ +
2iΩ cos θ

r ω

∂P ′

∂θ
− 4ρΩ2 cos2 θξϕ −

1

r sin θ

∂P ′

∂ϕ
= 0 ,

⇔ ξϕ =
1

ρ ω2 r

√
1− µ2

1− ν2µ2

[
iνµ

∂P ′

∂µ
+

1

1− µ2

∂P ′

∂ϕ

]
,

where we used the definitions of the modified latitudinal variable µ = cos θ and the
spin parameter ν = 2Ω/ω.

Similarly, we rewrite the third equation as:

ρω2ξϕ + 2iρωΩ cos θξθ −
1

r sin θ

∂P ′

∂ϕ
= 0⇔ ξϕ =

1

ρω2r sin θ

∂P ′

∂ϕ
− 2iΩ cos θ

ω
ξθ .

Subsequently filling this in in the second equation, we obtain the expression for ξθ:

ρω2ξθ − 2iρωΩ cos θ

[
1

ρω2r sin θ

∂P ′

∂ϕ
− 2iΩ cos θ

ω
ξθ

]
− 1

r

∂P ′

∂θ
= 0

⇔ ξθ =
1

ρ ω2 r

1

1− ν2µ2

[
iνµ√
1− µ2

∂P ′

∂ϕ
−
√

1− µ2
∂P ′

∂µ

]
The linearized continuity equation is given by (Aerts et al., 2010):

ρ′ +∇ · (ρξ) = 0 ,

which, in spherical coordinates, is given by:

ρ′ +
1

r2

∂

∂r

(
r2ρξr

)
+

1

r sin θ

∂

∂θ
(sin θρξθ) +

1

r sin θ

∂

∂ϕ
(ρξϕ) = 0 .

Writing P ′, ρ′ and ξr as (as was done in Lee and Saio, 1997):

ρ′ = ρ′(r)Hr(µ; ν)ei(mϕ−ωt) ,

P ′ = p′(r)Hr(µ; ν)ei(mϕ−ωt) ,

ξr = ξr(r)Hr(µ; ν)ei(mϕ−ωt) ,

the first two components of the linearized continuity equation become:

ρ′ +
1

r2

∂

∂r

(
r2ρξr

)
= ρ′(r)Hr(µ; ν)ei(mϕ−ωt) +

1

r2

∂

∂r

(
r2ρξr(r)

)
Hr(µ; ν)ei(mϕ−ωt)

The latter two components can be rewritten using the expressions for ξθ and ξϕ:

1

r sin θ

∂

∂θ
(sin θρξθ) =

p′(r)

r sin θ

∂

∂θ

[
sin θ

ω2r

(
ei(mϕ−ωt)

1− ν2 cos2 θ

)
{
iν cos θ

sin θ
Hr(im) +

1

r

∂Hr

∂θ

}]
,

⇔ 1

r sin θ

∂

∂θ
(sin θρξθ) =

p′(r)ei(mϕ−ωt)

ω2r2 sin θ

∂

∂θ

[(
1

1− ν2 cos2 θ

)(
−mν cos θHr +

sin θ

r

∂Hr

∂θ

)]
,
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1

r sin θ

∂

∂ϕ
(ρξϕ) =

p′(r)

r sin θ

∂

∂ϕ

[
1

ω2r

(
ei(mϕ−ωt)

1− ν2 cos2 θ

)(
−iν cos θ

∂Hr

∂θ
+

im

sin θ
Hr

)]
,

⇔ 1

r sin θ

∂

∂ϕ
(ρξϕ) =

p′(r)ei(mϕ−ωt)

r2ω2 sin θ

(
1

1− ν2 cos2 θ

)(
mν cos θ

∂Hr

∂θ
− m2

sin θ
Hr

)
.

where we dropped the latitudinal dependence of the Hough function, in order to
ease the notation (i.e. Hr(µ; ν) = Hr). Combining the obtained expressions yields
(after some manipulations):

1

r sin θ

∂

∂ϕ
(ρξϕ) +

1

r sin θ

∂

∂θ
(sin θρξθ) =

p′(r)ei(mϕ−ωt)

r2ω2[
− m2

sin2 θ

(
1

1− ν2 cos2 θ
Hr

)
+

Hr

sin θ

∂

∂θ

(
− ν cos θm

1− ν2 cos2 θ

)
+

1

sin θ

∂

∂θ

(
sin θ

1− ν2 cos2 θ

∂Hr

∂θ

)]
,

⇔ 1

r sin θ

∂

∂ϕ
(ρξϕ) +

1

r sin θ

∂

∂θ
(sin θρξθ) =

p′(r)ei(mϕ−ωt)

r2ω2[(
1

1− ν2µ2

)( −m2

1− µ2
+
νm (1 + ν2µ2)

1− ν2µ2

)
Hr +

∂

∂µ

(
1− µ2

1− ν2µ2

∂Hr

∂µ

)]
,

which is the Laplace tidal operator defined in Equation (2.31). Writing ξθ and ξϕ
in a similar way allows one to reconstruct the expressions for the latitudinal and
azimuthal Hough functions (basing ourselves on Lee and Saio, 1997):

ξθ =
1

rω2ρ
p′(r)Hθe

i(mϕ−ωt) ,

ξϕ =
i

rω2ρ
p′(r)Hϕe

i(mϕ−ωt) ,

so that we obtain:

ξθ =
p′(r)

ρ ω2 r

ei(mϕ−ωt)

1− ν2µ2

[
− mνµ√

1− µ2
Hr −

√
1− µ2

∂Hr

∂µ

]
,

⇔ ξθ =
p′(r)

ρ ω2 r

ei(mϕ−ωt)

1− ν2 cos2 θ

1

sin θ

[
−mν cos θHr + sin θ

∂Hr

∂θ

]
,

ξϕ =
p′(r)ei(mϕ−ωt)

ρ ω2 r

√
1− µ2

1− ν2µ2

[
iνµ

∂Hr

∂µ
+

im

1− µ2
Hr

]
,

⇔ ξϕ =
1

ρ ω2 r

sin θ

1− ν2 cos2 θ

[
−iν cos θ

sin θ

∂Hr

∂θ
+

im

sin2 θ
Hr

]
.

Therefore, the latitudinal and azimuthal Hough functions are given by:

Hθ sin θ =
1

1− ν2 cos2 θ

[
−mν cos θHr + sin θ

∂Hr

∂θ

]
,

Hϕ sin θ =
1

1− ν2 cos2 θ

[
−ν cos θ sin θ

∂Hr

∂θ
+mHr

]
,

the expressions given in the main text (and in Prat et al. (2019)).
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The Townsend (2003) approximation

In a uniformly rotating star, assuming the Cowling approximation (Cowling, 1941),
assuming a temporal dependence ξ ∝ eiωt for adiabatic oscillations in the corotating
frame, the pulsation equations are given by (Lee and Saio, 1997):

− ρω2ξr − 2iρωΩ sin θξθ = −∂p
′

∂r
− gρ′ ,

− ρω2ξθ − 2iρωΩ cos θξφ = −1

r

∂p′

∂θ
,

− ρω2ξφ + 2iρωΩ sin θξr + 2iρωΩ cos θξθ = − 1

r sin θ

∂p′

∂φ
,

ρ′ +
1

r2

∂

∂r

(
ρr2ξr

)
+

ρ

r sin θ

∂

∂θ
(sin θ ξθ) +

ρ

r sin θ

∂ξφ
∂φ

= 0 ,

ρ′

ρ
=

1

Γ1

p′

p
+ ξr

N2

g
.

In the TAR it reduces to (Townsend, 2003):

− ρω2ξr = −∂p
′

∂r
− gρ′ ,

− ρω2ξθ − 2iρωΩ cos θξφ = −1

r

∂p′

∂θ
,

− ρω2ξφ + 2iρωΩ cos θξθ = − 1

r sin θ

∂p′

∂φ
,

ρ′ +
1

r2

∂

∂r

(
ρr2ξr

)
+

ρ

r sin θ

∂

∂θ
(sin θ ξθ) +

ρ

r sin θ

∂ξφ
∂φ

= 0 ,

ρ′

ρ
=

1

Γ1

p′

p
+ ξr

N2

g
.

ξr, p
′, and ρ′ share the same polar dependence, whereas ξθ and ξφ share the same ra-

dial dependence. All equations are homogeneous and first order in φ, yielding a eimφ

azimuthal dependence, where the azimuthal order m is constrained to integral values
in order to preserve the single-valuedness of the solutions under a transformation
φ→ φ+ 2π. Hence, the following general solutions are found:

ξr = Yr(r) Θ(θ) eimφ+iωt ,

p′ = Yp(r) Θ(θ) eimφ+iωt ,

ρ′ = Yρ(r) Θ(θ) eimφ+iωt ,

sin θξθ = Y⊥(r) Θ̂(θ) eimφ+iωt ,

i sin θξφ = Y⊥(r) Θ̃(θ) eimφ+iωt ,

where sin θ is introduced for convenience in the last two expressions. Θ(θ), Θ̂(θ)
and Θ̃(θ) are equivalent to Hr, Hθ and Hϕ, respectively (the Hough func-
tions defined in the main text). These general solutions can then be substituted
into the pulsation equations, making use of the following (defined) differential oper-
ator: (wrongly defined in Townsend (2003))

D ≡ − sin θ
d

dθ
≡ (1− µ2)

d

dµ
,
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where µ is the modified latitudinal variable defined before, yielding the following
radial pulsation equations:

− ρω2Yr = −dYp
dr
− gYρ ,

Y⊥ =
1

ρω2r
Yp ,

Yρ +
1

r2

d

dr

(
ρr2Yr

)
− ρλY⊥

r
= 0 ,

Yρ
ρ

=
1

Γ1

Yp
p

+ Yr
N2

g
,

and the following polar pulsation equations:

− Θ̂(θ)− νµΘ̃(θ) = DΘ(θ) ,

− Θ̃(θ)− νµΘ̂(θ) = mΘ(θ) ,

λ
(
1− µ2

)
Θ(θ)−DΘ̂(θ) +mΘ̃(θ) = 0 ,

where the eigenvalue λ has been introduced as a separation constant.

Proof. Three of these pulsations equations are obtained in the following way:

− ρω2ξr = −∂p
′

∂r
− gρ′ ,

⇔− ρω2 Yr(r) Θ(θ) eimφ+iωt = −∂
(
Yp(r) Θ(θ) eimφ+iωt

)
∂r

− gYρ(r) Θ(θ) eimφ+iωt ,

⇔
(
−ρω2

)
Yr(r) (Θ(θ)) =

(
−dYp

dr
− gYρ

)
(Θ(θ)) ,

⇔− ρω2 Yr(r) = −dYp
dr
− gYρ ,

− ρω2ξθ − 2iρωΩ cos θξφ = −1

r

∂p′

∂θ
,

⇔− ρω2Y⊥(r)

(
Θ̂(θ)

sin θ

)
− 2ρωΩY⊥(r)

(
cos θ

sin θ
Θ̃(θ)

)
= −1

r
Yp(r)

(
∂Θ(θ)

∂θ

)
,

⇔
(
ρω2
)

(Y⊥(r))

[
Θ̂(θ)

sin θ
− µν Θ̃(θ)

sin θ

]
=

1

r
Yp(r)

(
∂Θ(θ)

∂θ

)
,

⇔ Y⊥(r) =
1

r ρω2
Yp(r) ,

⇔ Θ̂(θ) + µν Θ̃(θ) = sin θ
∂Θ(θ)

∂θ
,

⇔ − Θ̂(θ)− µν Θ̃(θ) = DΘ(θ) .
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Proof. The other pulsation equations are obtained in the following way:

− ρω2ξφ + 2iρωΩ cos θξθ = − 1

r sin θ

∂p′

∂φ
,

⇔ iρω2 (Y⊥(r))

(
Θ̃(θ)

sin θ

)
+ iρω2(Y⊥(r))

(
ν

cos θ

sin θ
Θ̂(θ)

)
= −im

(
1

r
Yp(r)

)(
Θ(θ)

sin θ

)
,

⇔ Y⊥(r) =
1

r ρω2
Yp(r) ,

⇔ Θ̃(θ) + µν Θ̂(θ) = −m Θ(θ) ,

ρ′ +
1

r2

∂

∂r

(
ρr2ξr

)
+

ρ

r sin θ

∂

∂θ
(sin θ ξθ) +

ρ

r sin θ

∂ξφ
∂φ

= 0 ,

⇔ Yρ(r) Θ(θ) +
1

r2

∂

∂r

(
ρr2Yr(r) Θ(θ)

)
+

ρ

r sin θ

∂

∂θ

(
Y⊥(r) Θ̂(θ)

)
+

ρ

r sin θ

∂

∂φ

(
−iΘ̃(θ)

sin θ
Y⊥(r)

)
= 0 ,

⇔ Θ(θ)

[
Yρ(r) +

1

r2

∂

∂r

(
ρr2Yr(r)

)]
+
Y⊥(r)ρ

r

[
1

sin θ

dΘ̂(θ)

dθ

+
m Θ̃(θ)

sin2 θ

]
−Θ(θ)

(
ρλY⊥(r)

r

)
+ Θ(θ)

(
ρλY⊥(r)

r

)
= 0 ,

⇔ Yρ(r) +
1

r2

∂

∂r

(
ρr2Yr(r)

)
− ρλY⊥(r)

r
= 0 ,

⇔ 1

sin θ

dΘ̂(θ)

dθ
+
m Θ̃(θ)

sin2 θ
+ λΘ(θ) = 0 ,

⇔ λ
(
1− µ2

)
Θ(θ)−DΘ̂(θ) +mΘ̃(θ) = 0 ,

ρ′

ρ
=

1

Γ1

p′

p
+ ξr

N2

g
,

⇔ Yρ(r) Θ(θ)

ρ
=

1

Γ1

Yp(r) Θ(θ)

p
+
N2

g
Yr(r) Θ(θ) ,

⇔ Yρ
ρ

=
1

Γ1

Yp
p

+ Yr
N2

g
.

Laplace’s tidal equations in a first order form are obtained when the second polar
equation is used to eliminate Θ̃(θ) in equations the first and third polar equations:

(D −mνµ) Θ(θ) =
(
ν2µ2 − 1

)
Θ̂(θ) ,

(D +mνµ) Θ̂(θ) =
[
λ
(
1− µ2

)
−m2

]
Θ(θ) ,

− Θ̃(θ)− νµΘ̂(θ) = mΘ(θ) .
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Proof. This can be proven in the following way:

− Θ̃(θ)− νµΘ̂(θ) = mΘ(θ) ,

⇔ Θ̃(θ) = −νµΘ̂(θ)−mΘ(θ)− Θ̂(θ)− νµΘ̃(θ) = DΘ(θ) ,

⇔ − Θ̂(θ) + νµ
(
νµΘ̂(θ) +mΘ(θ)

)
= DΘ(θ) ,

⇔ (D −mνµ) Θ(θ) =
(
ν2µ2 − 1

)
Θ̂(θ)

λ
(
1− µ2

)
Θ(θ)−DΘ̂(θ) +mΘ̃(θ) = 0 ,

⇔ λ
(
1− µ2

)
Θ(θ)−DΘ̂(θ)−m

(
νµΘ̂(θ) +mΘ(θ)

)
= 0 ,

⇔ (D +mνµ) Θ̂(θ) =
[
λ
(
1− µ2

)
−m2

]
Θ(θ) .

Solving these analytically needs appropriate boundary conditions: for non-axisymmetric
modes the solutions should decay to zero when points where µ = ±1 are approached
(ensuring single-valuedness at the stellar poles), whereas for axisymmetric modes
the polar gradient should decay to zero (ensuring the smoothness of solutions at
the poles). Note that ν always appears in product with µ (a latitudinal coordi-
nate), so that (by intuition) for large values of ν, the Hough functions can only
differ appreciably from zero in a narrow equatorial region of small |µ|, forming a
so-called Coriolis-force originated ‘equatorial waveguide’, preventing low-frequency
waves from propagating to high latitudes (Townsend, 2003). For such equatorially
trapped waves µ is small, so that terms of the order of µ2 in the tidal equations can
be neglected (‘the equatorial beta-plane approximation’, as dubbed in geophysical
literature), and the differential operator D can be approximated by (Matsuno, 1966;
Lindzen, 1967):

D ≈ d

dµ
.

Two cases should in general be considered, those where λ ≈ m2 and those where
it does not. However, in order to describe g modes we only need to consider the
case when λ 6= m2 (Townsend, 2003), so that the tidal equations become (neglecting
terms in µ2): (

d

dµ
−mνµ

)
Θ(θ) =

(
ν2µ2 − 1

)
Θ̂(θ) ,(

d

dµ
+mνµ

)
Θ̂(θ) =

[
λ−m2

]
Θ(θ) .

Θ(θ) can be eliminated from the system of equations defined above, yielding the
following second-order differential equation for Θ̂(θ):

d2Θ̂(θ)

dµ2
+
(
mν −m2 + λ− λν2µ2

)
Θ̂(θ) = 0 .
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Proof. The second-order approximate version of Laplace’s tidal equations is
obtained in the following way:(

d

dµ
+mνµ

)
Θ̂(θ) =

[
λ−m2

]
Θ(θ) ,

⇔ Θ(θ) =

(
d

dµ
+mνµ

)
Θ̂(θ)

λ−m2(
d

dµ
−mνµ

)
Θ(θ) =

(
ν2µ2 − 1

)
Θ̂(θ) ,

⇔
(

d

dµ
−mνµ

)[(
d

dµ
+mνµ

)
Θ̂(θ)

]
=
(
ν2µ2 − 1

) (
λ−m2

)
Θ̂(θ)(

d

dµ
−mνµ

)
Θ(θ) =

(
ν2µ2 − 1

)
Θ̂(θ) ,

⇔
(

dµ+mν +mνµ
d

dµ
−mνµ d

dµ
−m2ν2µ2

)
Θ̂(θ) =(

ν2µ2λ−m2ν2µ2 − λ+m2
)

Θ̂(θ) ,

⇔ d2Θ̂(θ)

dµ2
+
(
mν −m2 + λ− λν2µ2

)
Θ̂(θ) = 0 .

Changing parameters:

σ ≡ (Lν)1/2µ ,

L2 ≡ λ ,

S ≡ mν −m2 + L2

Lν
,

allows one to simplify the equation:

d2Θ̂(θ)

dσ2
+
(
S − σ2

)
Θ̂(θ) = 0 .
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Proof. This simplification is obtained in the following way:

d2Θ̂(θ)

dµ2
+
(
mν −m2 + λ− λν2µ2

)
Θ̂(θ) = 0 ,

⇔ (Lν)
d2Θ̂(θ)

dσ2
+
(
mν −m2 + λ− Lνσ2

)
Θ̂(θ) = 0 ,

⇔ (Lν)
d2Θ̂(θ)

dσ2
+ (Lν)

(
mν −m2 + L2

Lν
− σ2

)
Θ̂(θ) = 0 ,

⇔d2Θ̂(θ)

dσ2
+
(
S − σ2

)
Θ̂(θ) = 0 .

This resembles the time-independent Schrödinger equation for a quantum harmonic
oscillator, which can only solved when S = 2s + 1 for an integer ’meridional order’
s ≥ 0, yielding the following solutions (Griffiths, 2017):

Θ̂(σ) = Hs(σ) e−σ
2/2 ,

where Hs is the Hermite polynomial of order s, defined in the following way:

Hs(σ) = (−1)s eσ
2 dse−σ

2

dσs
.

Proof. The time-independent Schrödinger-like equation can be solved using
the Frobenius method (Griffiths, 2017). Rewriting the equation in the follow-
ing way:

d2Θ̂(θ)

dσ2
+
(
S − σ2

)
Θ̂(θ) = 0 ,

⇔d2Θ̂(θ)

dσ2
=
(
σ2 − S

)
Θ̂(θ) ,

one obtains for large σ:

d2Θ̂(θ)

dσ2
−
(
σ2
)

Θ̂(θ) ≈ 0 ,

which can trivially be solved by:

Θ̂(θ) ≈ A e−σ
2/2 +B eσ

2/2 .

However, keeping in mind that the solution needs to be normalizable (for all
σ), one should discard the B term, so that the following asymptotic form is
obtained for large σ:

Θ̂(θ)→ A e−σ
2/2 ⇔ σ = large .
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Therefore, one can separate the following asymptotic term from the general
solution:

Θ̂(θ) = h(σ) e−σ
2/2.

Differentiating this equation with respect to σ, one obtains:

dΘ̂(θ)

dσ
=

(
dh(σ)

dσ
− σh(σ)

)
e−σ

2/2 ,

d2Θ̂(θ)

dσ2
=

(
d2h(σ)

dσ2
− 2σ

dh(σ)

dσ
+ (σ2 − 1)h(σ)

)
e−σ

2/2 ,

which, when filled in in the time-independent Schrödinger-like equation, yields:(
d2h(σ)

dσ2
− 2σ

dh(σ)

dσ
+ (σ2 − 1)h(σ)

)
e−σ

2/2

=
(
σ2 − S

)
h(σ) e−σ

2/2 ,

⇔ d2h(σ)

dσ2
− 2σ

dh(σ)

dσ
+ (S − 1) h(σ) = 0 .

By now looking for a solution in the form of a power series (Frobenius method)
in σ, one obtains:

h(σ) = a0 + a1σ + a2σ
2 + a3σ

3 + . . . =
∞∑
j=0

aj σ
j ,

which, when differentiated term by term, yields:

dh(σ)

dσ
= a1 + 2a2σ + 3a3σ

2 + . . . =
∞∑
j=0

j aj σ
j−1 ,

d2h(σ)

dσ2
= 2a2 + (2 ∗ 3) a3σ + . . .

=
∞∑
j=0

(j + 1)(j + 2) aj+2 σ
j ,

which can now be put in the previously obtained equation:

∞∑
j=0

[(j + 1)(j + 2) aj+2 − 2 j aj + (S − 1) aj]σ
j = 0 .

Therefore, since the coefficient of each power of σ must vanish, the following
equation must vanish:

(j + 1)(j + 2) aj+2 − 2 j aj + (S − 1) aj = 0 ,

⇔ aj+2 =

(
2 j + 1− S

(j + 1)(j + 2)

)
aj ,
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which is the recursion formula equivalent to the time-independent Schrödinger-
like equation. If one starts with a0, it will generate all even-numbered coeffi-
cients:

a2 =
(1− S)

2
a0, a4 =

(5− S)

12
a2, . . . ,

whereas if one starts with a1, it will generate all odd-numbered coefficients:

a3 =
(3− S)

6
a1, a5 =

(7− S)

20
a3, . . . .

The complete solution can thus be written as being comprised of these even-
and odd-numbered coefficient parts:

h(σ) = heven(σ) + hodd(σ) ,

heven(σ) ≡ a0 + a2σ
2 + a4σ

4 + . . . ,

hodd(σ) ≡ a1σ + a3σ
3 + a5σ

5 + . . . .

Hence, the equation is determined by two arbitrary constants a0 and a1.
However, not all the solutions obtained in such a way are normalizable: at
very large j the recursion formula can be approximated by:

aj+2 ≈
2

j
aj ,

with the approximate solution:

aj ≈
C

(j/2)!
,

for some constant C, which yields (at large σ, so that only the highest powers
contribute significantly):

h(σ) ≈ C
∞∑
j=0

1

(j/2)!
σj ≈ C

∞∑
j=0

1

j!
σ2j ≈ Ceσ

2

,

which yields the following asymptotic behaviour for Θ̂(θ):

Θ̂(θ) = h(σ) e−σ
2/2 ≈ Ceσ

2/2 ,

which is the non-normalizable asymptotic behaviour. Therefore, the power
series needs to terminate, in order for solutions to be normalizable: there
must be some ‘highest’ j (which we will call s) for which the recursion formula
becomes aj+2 = 0. This truncates either the series heven or hodd, as the other
one needs to be zero from the start: a1 = 0 if s is even, a0 = 0 if s is odd. For
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physically acceptable solutions the recursion formula thus requires solutions
for which S = 2s+ 1, so that it becomes:

aj+2 =

( −2(s− j)
(j + 1)(j + 2)

)
aj .

If s = 0 there is only 1 term in the series:

h0(σ) = a0 ,

Θ̂0(θ) = a0e
−σ2/2 ,

For s = 1 one obtains:

h1(σ) = a1σ ,

Θ̂1(θ) = a1σe
−σ2/2 .

For s = 2, the following holds:

h2(σ) = a0

(
1− 2σ2

)
,

Θ̂2(θ) = a0

(
1− 2σ2

)
e−σ

2/2 ,

and so on . . .
In general hs(σ) is a polynomial of degree s in σ, involving odd powers only if
s is odd, and even powers only if s is even. Apart from the factors a0 and a1,
these polynomials can be shown to be equivalent to the Hermite polynomials,
so that one obtains the following equation for Θ̂s(θ):

Θ̂s(θ) = Hs(σ)e−σ
2/2 ,

which is the time-indepedent Schrödinger-like equation.

Using the recurrence relation of these Hermite polynomials (σHs(σ) = sHs−1(σ) +
1
2
Hs+1(σ)) and previously defined equations, one obtains the approximative expres-

sions for the other Hough functions:

Θ(σ) =
(Lν)1/2

L2 −m2

[
s
(m
L

+ 1
)
Hs−1(σ) +

1

2

(m
L
− 1
)
Hs+1(σ)

]
e−σ

2/2 ,

Θ̃(σ) = m
(Lν)1/2

m2 − L2

[
s

(
L

m
+ 1

)
Hs−1(σ) +

1

2

(
L

m
− 1

)
Hs+1(σ)

]
e−σ

2/2 .
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Proof. The expressions for Θ(σ) and Θ̃(σ) are obtained in the following way:(
d

dµ
+mνµ

)
Θ̂(σ) =

[
λ−m2

]
Θ(σ) ,

⇔ (Lν)1/2

L2 −m2

[
d

dσ
+
mσ

L

]
Hs(σ) e−σ

2/2 = Θ(σ) ,

Hs+1(σ) = − (−1)s eσ
2 ds

dσs

d
(
e−σ

2
)

dσ

 ,

d

dσ

[
(−1)s e

σ2

2
dse−σ

2

dσs

]
= (−1)s e

σ2

2
dse−σ

2

dσs

[
σ +

de−σ
2

dσ

]
,

⇔ d

dσ

[
(−1)s e

σ2

2
dse−σ

2

dσs

]
= [σHs(σ)−Hs+1(σ)] e−

σ2

2 ,

⇔ d

dσ
Θ̂(σ) =

[
sHs−1(σ)− 1

2
Hs+1(σ)

]
e−

σ2

2 ,

⇔ (Lν)1/2

L2 −m2

[
d

dσ
+
mσ

L

]
Hs(σ) e−σ

2/2 =

(Lν)1/2

L2 −m2

[
s
(m
L

+ 1
)
Hs−1(σ) +

1

2

(m
L
− 1
)
Hs+1(σ)

]
e−σ

2/2 = Θ(θ) ,

mΘ(σ) = m
(Lν)1/2

m2 − L2

[
s
(m
L

+ 1
)
Hs−1(σ) +

1

2

(m
L
− 1
)
Hs+1(σ)

]
e−σ

2/2 ,

νµΘ̂(σ) =

(
L

ν

)1/2

σ
[
Hs(σ)e−σ

2/2
]
,

⇔ νµΘ̂(σ) = (Lν)1/2
[σ
L
Hs(σ)e−σ

2/2
]
,

⇔ νµΘ̂(σ) = m
(Lν)1/2

m2 − L2

[(
σm

L
− σL

m

)
Hs(σ)e−σ

2/2

]
,

Θ̃(σ) = −νµΘ̂(σ)−mΘ(σ) ,

⇔ Θ̃(σ) = −m(Lν)1/2 e−σ
2/2

m2 − L2

[
s
(m
L

+ 1
)
Hs−1(σ) +

1

2

(m
L
− 1
)
Hs+1(σ)

+

(
σm

L
− σL

m

)
Hs(σ)

]
,

⇔ Θ̃(σ) = m
(Lν)1/2

m2 − L2

[
s

(
L

m
+ 1

)
Hs−1(σ) +

1

2

(
L

m
− 1

)
Hs+1(σ)

]
e−σ

2/2 .
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Equating the two expressions for the parameter S, one can obtain a characteristic
equation for L, which appears explicitly in the definitions of Θ(σ) and Θ̃(σ):

L2 − ν(2s+ 1)L+ (mν −m2) = 0 .

Proof. This is proven in the following way:

S = 2s− 1 =
mν −m2 + L2

Lν
,

⇔ ν(2s− 1)L = mν −m2 + L2 ,

⇔ L2 − ν(2s+ 1)L+ (mν −m2) = 0 .

The roots of this equation are given by:

L =
1

2
ν(2s+ 1)± 1

2

[
ν2(2s+ 1)2 − 4(mν −m2)

]1/2
.

The eigenvalue λ can therefore be found using the following equation:

λ± ≡ L2 = −(mν −m2) +
1

2
ν2(2s+ 1)2

{
1±

[
1− 4(mν −m2)

ν2(2s+ 1)2

]1/2
}

.

Proof. This can be proven in the following way:

L =
1

2
ν(2s+ 1)± 1

2

[
ν2(2s+ 1)2 − 4(mν −m2)

]1/2
,

⇔ L =
1

2
ν(2s+ 1)

[
1±

[
1− 4(mν −m2)

ν2(2s+ 1)2

]1/2
]
,

L2 − ν(2s+ 1)L+ (mν −m2) = 0 ,

⇔ L2 = −(mν −m2) +
1

2
ν2(2s+ 1)2

{
1±

[
1− 4(mν −m2)

ν2(2s+ 1)2

]1/2
}

.

This can be approximated using a (non-vanishing, lowest-order) Taylor’s series ex-
pansion in ν−1 around ν−1 = 0 (i.e. for infinitely large ν), yielding:

λ+ ≈ ν2(2s+ 1)2 +O(ν) ,

λ− ≈
(mν −m2)2

ν2(2s+ 1)2
+O(ν−1) ,

where each of the two branches is associated with a class of equatorially trapped
waves/modes. The λ+ branch corresponds to gravito-inertial (g) modes, and hence
we only consider this branch.
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Proof. Since we only consider g modes in this work, I will only derive the λ+

expression, noting that, in order to derive the λ− expression, one ought to
expand to fourth order in the parameter ν−1. First, we rewrite the fraction
in the square root in function of the parameter X = ν−1:

4(mν −m2)

ν2(2s+ 1)2
=

4m

(2s+ 1)2

[
ν−1 −mν−2

]
,

=
4m

(2s+ 1)2

[
X −mX2

]
,

so that the function f(X) needs to be Taylor-approximated is the following:

f(X) =

{
1− 4m

(2s+ 1)2

[
X −mX2

]}1/2

.

Let us also further trim down the notation by introducing a new constant
A = 4m

(2s+1)2
, so that the function f(X) becomes:

f(X) =
{

1− A
[
X −mX2

]}1/2
.

The derivative with respect to X is then the following:

df(X)

dX
=

1

2

{
1− A

[
X −mX2

]}−1/2
(−A+ 2AmX) .

Evaluating these in the point X = 0 (Maclaurin approximation), one obtains:

f(0) = 1 ,

f ′(0) = −A
2
.

Hence for the λ+ branch, one obtains approximately:

λ+ = −(mν −m2) +
1

2
ν2(2s+ 1)2 {1 + f(X)} ,

f(X) ≈ f(0) + f ′(0)X ,

⇔ λ+ ≈ −(mν −m2) +
1

2
ν2(2s+ 1)2

{
1 + 1− A

2ν

}
,

⇔ λ+ ≈ −mν +m2 +
1

2
ν2(2s+ 1)2

{
1 + 1− 2m

(2s+ 1)2ν

}
,

⇔ λ+ ≈ −mν +m2 + ν2(2s+ 1)2 −mν ,
⇔ λ+ ≈ ν2(2s+ 1)2 +O (ν) .

The solutions hold for g modes of meridional order s ≥ 1, and any solutions λ = m2

should be ruled out, as they violate our initial assumption. The s = 0 solutions
comprise a special case, as the eigenvalues of the λ+ branches reduces to the following
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exact form:

λ+ =

{
m2 when 0 < mν < 2m2

(ν −m)2 otherwise
.

Furthermore λ = (ν−m)2 solutions should be disallowed over the interval 0 < mν <
m2, as they arise as L = (ν − m) solutions from the characteristic equation of L,
leading to imaginary values of σ. Therefore, at most one valid solution is possible
for the s = 0 case, which has g mode (λ = λ+ , mν > 2m2 or mν ≤ 0) character,
and is known as the Yanai wave/ are known as Yanai modes (Yanai and Maruyama,
1966). We did not consider such modes in this work and therefore we do not expand
on this topic.

Since we neglect terms in µ2, the error introduced by asymptotic analysis, should
be of the order of µ2

1/2, the half-width of the equatorial waveguide, so that the Θ̂(θ)
Hough function transitions from a oscillatory behaviour to an exponential behaviour
at points ±µ1/2, hence representing the points where the latitudinally propagating
waves become evanescent. The second derivative with respect to µ in these points

should vanish, so that, in order to solve the equation d2Θ̂(θ)
dσ2 + (S − σ2) Θ̂(θ) = 0, σ2

needs to be equal to S, resulting in the following expression for the half-width:

µ1/2 =

(
2s+ 1

Lν

)1/2

.

For g modes, using the Taylor approximation obtained above, taking into account
that L = λ

1/2
+ , this becomes:

µ1/2 ≈
1

|ν| .

The g mode solutions will converge approximately quadratically (in ν) towards the
exact solutions (the relative error ∝ µ2

1/2) of the full tidal equations (Townsend,

2003). Hence, for modest values of mν (> m2), the solutions will show poor con-
vergence towards the exact solutions. In addition, it can be seen that µ1/2 must be
smaller than 1 in order to have a physical meaning, so that g-mode solutions are
only valid for |ν| ≥ 1 (Townsend, 2003).

Justifying the parity factor in Hough function es-

timation

When expanding (scalar) functions on a sphere, the following Fourier series can be
used (see chapter 18.8 of Boyd, 2001):

f(λ, θ) =
∞∑
m=0

fm(θ) cos(mλ) +
∞∑
m=1

gm(θ) sin(mλ) .

When m is odd, the component gm(θ) sin(mλ) changes sign as the pole is crossed.
Hence, gm(θ) sin(mλ) must have a discontinuity at the poles unless for odd m the
following holds:

gm(0) = gm(π) = 0 .
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The colatitude cosine coefficients can be shown to be always zero when the longitudi-
nal wavenumber m is odd (see Boyd, 2001), so that f(λ, θ) is void of discontinuities
if fm(θ) and gm(θ) are the sums of Fourier sine series in θ.

When m is even, sin(mλ) = sin(m[λ+ π]), so that:

gm(δ) sin(mλ) = gm(δ) sin(m[λ+ π]) ∀δ, λ [m = 0, 2, 4, . . .] .

This is thus symmetric around the pole, so that the following must hold for its
derivative:

dgm(θ)

dθ
=

dgm(θ)

dθ
= 0 .

Hence, Boyd (2001) concluded that all sine coefficients must be zero when m is even,
if this argument is extended to higher derivatives.

Taking into account the previous limitations, a scalar function f(λ, θ) void of
singularities on the sphere can thus be expanded as the following Fourier series:

f(λ, θ) =
∞∑

m=0,2,4,...;n=0

{acmn cos(mλ) + asmn sin(mλ)} cos(nθ)

+
∞∑

m=1,3,5,...;n=1

{bcmn cos(mλ) + bsmn sin(mλ)} sin(nθ)

Finally, note the following trigonometric identity (wrong in Boyd (2001)):

sin θ cos(nθ) = 1
2
{sin([1− n]θ) + sin([n+ 1]θ)} = 1

2
{− sin([n− 1]θ) + sin([n+ 1]θ)} ,

which can be derived from one of Simpson’s identities (e.g. Abramowitz and Stegun,
1972):

sinα + sin β = 2 sin ([α + β]/2) cos ([α− β]/2)

Proof. Filling in Simpson’s identity given above, where α = [1 − n]θ and
β = [1 + n]θ, yields the wanted trigonometric identity:

sin([1− n]θ) + sin([n+ 1]θ) = 2 sin

(
1

2
[[1− n]θ + [n+ 1]θ]

)
cos

(
1

2
[[1− n]θ − [n+ 1]θ]

)
,

⇔ sin([1− n]θ) + sin([n+ 1]θ) = 2 sin θ cos (−nθ) = 2 sin θ cos (nθ) .

Similarly, the second equivalence is proven with sin(−θ) = − sin θ.

It shows that one can replace the sin(nθ) term for odd m in the Fourier series with
a basis whose elements are sin θ cos(nθ), so that the parity factor sin θ appears in
the equation.

These Fourier series can then be transformed into Chebyshev series (using Equa-
tion (3.3)) if the modified latitudinal variable µ is used, justifying the approach
Wang et al. (2016) take to calculate the Hough functions.
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Exemplary MESA inlist

1 &s t a r j o b
2

3 ! Avoid p r i n t i n g a l o t o f s t u f f in the te rmina l to begin with . We don
’ t need t h i s .

4 s h o w l o g d e s c r i p t i o n a t s t a r t = . f a l s e .
5

6 ! We do not want to load from a saved model or use PMS model
7 l oad saved mode l = . f a l s e . ! no s t e l l a r model saved f o r memory

conse rva t i on
8 c reate pre ma in sequence mode l = . t rue . ! s t a r t evo lv ing from the

pre−main−sequence
9

10 ! Set metal f r a c t i o n s c o n s i s t e n t l y with the opac i ty
11 k a p p a f i l e p r e f i x = ’ OP a09 p13 ’
12 kappa lowT pre f ix = ’ lowT fa05 a09p ’
13 kappa CO pref ix = ’ a09 p13 co ’
14

15 ! a09+Prz metal f r a c t i o n s
16 i n i t i a l z f r a c s = 8
17

18 ! Nuclear Network
19 ! We use the extended i s o t o p e network f o r s u r f a c e abundances
20 change net = . t rue .
21 new net name = ’ p p c n o e x t r a s o 1 8 n e 2 2 e x t r a i s o . net ’
22 c h a n g e i n i t i a l n e t = . t rue .
23

24 ! Custom h i s t o r y f i l e
25 h i s t o r y c o l u m n s f i l e = ’ . / history columns changed JVB . l i s t ’ !

custom s e l e c t i o n o f output parameters in h i s t o r y f i l e s
26

27 ! Custom p r o f i l e f i l e
28 p r o f i l e c o l u m n s f i l e = ’ . / pro f i l e co lumns changed JVB . l i s t ’ !

custom s e l e c t i o n o f output parameters in p r o f i l e s
29

30 ! f o r pgs tar s e t to True −−> no v i s u a l output during the s imu la t i on
31 ! p g s t a r f l a g = . t rue .
32 ! s a v e p g s t a r f i l e s w h e n t e r m i n a t e = . f a l s e .
33

34 paus e be f o r e t e rm ina t e = . f a l s e . ! no pause be f o r e the MESA
s imu la t i on i s terminated

35

36 ! Some terminate opt ions to he lp c o n t r o l the output generated by mesa
37 save photo when terminate = . f a l s e .
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38 save model when terminate = . f a l s e .
39 w r i t e p r o f i l e w h e n t e r m i n a t e = . f a l s e .
40 save pu l s e data when te rminate = . f a l s e .
41

42 ! s ave mode l f i l ename = ’ terminated model . model ’ ! name o f model
saved at end o f the evo lu t i on −−> not used

43

44 ! Rotation f l a g s
45 ! We choose to c a l c u l a t e non−r o t a t i n g non−magnetic equ i l i b r i um models
46 n e w r o t a t i o n f l a g = . f a l s e .
47 c h a n g e r o t a t i o n f l a g = . f a l s e .
48 c h a n g e i n i t i a l r o t a t i o n f l a g = . f a l s e .
49

50 new omega = 0
51 set omega = . f a l s e .
52 s e t i n i t i a l o m e g a = . f a l s e .
53

54 ! c o l o r in fo rmat ion
55 c o l o r n u m f i l e s=2
56 c o l o r f i l e n a m e s (1 ) =’ l cb98co r . dat ’
57 co l o r num co l o r s (1 )=11
58 c o l o r f i l e n a m e s (2 ) =’ H S T f i l t e r s . dat ’
59 co l o r num co l o r s (2 )=12
60

61

62 / ! end o f s t a r j o b name l i s t
63

64

65 &c o n t r o l s
66

67 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
68 ! ! THINGS TO VARY
69 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
70

71 i n i t i a l m a s s = 2 .1 ! var i ed by s c r i p t
72 mix ing l ength a lpha = 1 .8 ! var i ed by s c r i p t
73 o v e r s h o o t f a b o v e b u r n h c o r e = 0.010 ! var i ed by s c r i p t
74

75 min D mix = 10 .0 ! enve lope mixing parameter in cmˆ2/ sec
76

77 i n i t i a l y = 0.2795 ! i n i t i a l helium content : he ld constant
78 i n i t i a l z = 0.0002 ! i n i t i a l m e t a l l i c i t y : var i ed by s c r i p t
79

80

81 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
82 ! ! TIMESTEP CONTROLS
83 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
84

85 v a r c o n t r o l t a r g e t = 5d−5 ! parameter determining s i z e o f s imu la t i on
t imestep

86

87 ! ext ra t imestep c o n t r o l s
88 de l ta lg XH cntr max = −1 ! Ignore changes in lg XH cntr i f va lue

i s more than t h i s .
89 d e l t a l g X H c n t r l i m i t = 0 .05 ! i f max de l t a i s g r e a t e r than th i s ,

reduce t imestep
90

91 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
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92 ! ! OUTPUT CONTROLS
93 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
94

95 ! S e t t i ng up LOG d i r e c t o r y
96 l o g d i r e c t o r y = ’ . /LOGS’
97 s t a r h i s t o ry name = ’ Zini00140 MLT180 Mini0210 fov00100 logDext100 .

h i s to ry ’ ! name o f h i s t o r y output f i l e
98 h i s t o r y i n t e r v a l = 1 ! h i s t o r y f i l e r e co rd s every time step
99

100 ! Spe c i f y how o f t en to wr i t e i n f o to the te rmina l
101 t e r m i n a l i n t e r v a l = 20 ! every 20 t imes teps
102

103 ! Spe c i f y when to wr i t e out photos
104 p h o t o i n t e r v a l = 1000000 ! never wr i t e photos
105 p ho to d i r e c t o r y = ’ . / photos ’
106

107 ! We choose not to save the p r o f i l e s us ing these parameters because
we developed a way to s p e c i f y i t in r u n s t a r e x t r a s , sav ing at
s p e c i f i c Xc

108 w r i t e p r o f i l e s f l a g = . f a l s e .
109 p r o f i l e i n t e r v a l = 10000
110 p r o f i l e d a t a p r e f i x = ’ M3 test ’ !−−−> changing p r o f i l e names
111 max num prof i le models = 5 ! only keep 5 p r o f i l e s in order to ease

on data s to rage
112

113 ! Save output f i l e s to be used f o r GYRE c a l c u l a t i o n s
114 w r i t e p u l s e d a t a w i t h p r o f i l e = . t rue .
115 pu l s e data fo rmat = ’GYRE’
116 add atmosphere to pu l se data = . t rue .
117 a d d c e n t e r p o i n t t o p u l s e d a t a = . t rue .
118 k e e p s u r f a c e p o i n t f o r p u l s e d a t a = . t rue .
119 a d d d o u b l e p o i n t s t o p u l s e d a t a = . t rue .
120 i n t e r p o l a t e r h o f o r p u l s e d a t a = . t rue .
121 th r e sho ld g rad mu fo r doub l e po in t = 5d0
122

123 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
124 ! ! CORE BOUNDARY CONTROLS
125 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
126 a lpha bdy co r e ove r shoo t ing = 5 ! standard s e t t i n g
127 h e c o r e b ou nd a r y h 1 f r a c t i o n = 1d−2 ! standard s e t t i n g
128

129 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
130 ! ! STOPPING CONTROLS
131 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
132

133 ! s top when the cente r mass f r a c t i o n o f h1 drops below t h i s l i m i t
134 x a c e n t r a l l o w e r l i m i t s p e c i e s (1 ) = ’ h1 ’
135 x a c e n t r a l l o w e r l i m i t (1 ) = 1d−12 ! This i s end core−

H burning
136

137

138 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
139 ! ! MIXING CONTROLS
140 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
141

142 r emove smal l D l imi t = 1d−6 ! I f MLT d i f f u s i o n c o e f f i e n t D (cmˆ2/
sec ) i s l e s s than t h i s l im i t ,

143 ! s e t D to zero and change the po int to mixing type == no mixing .
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144 u s e L e d o u x c r i t e r i o n = . t rue . ! The Ledoux c r i t e r i o n f o r i s used to
determine convect ion zones

145

146 ! i f > 0 , Nˆ2 i s smoothed , in t roduc ing no i s e in the per iod spac ing
pat t e rns : we do not want t h i s !

147 num ce l l s f o r smooth gradL compos i t i on te rm = 0
148

149 ! no semiconvect ion or thermohal ine convect ion cons ide red
150 a lpha semiconvect ion = 0d0
151 s emiconvec t i on opt ion = ’ Langer 85 mixing ; gradT = gradr ’
152 t h e r m o h a l i n e c o e f f = 0d0
153

154 ! Set Mixing l ength theory opt ions
155 a l t s c a l e h e i g h t f l a g = . t rue .
156 MLT option = ’Cox ’ ! G iu l i and Cox (1968)
157 mlt g radT f rac t i on = −1
158 okay to reduce gradT exce s s = . f a l s e .
159

160 ! Def ine a minimum d i f f u s i v e mixing ( a p p l i c a b l e in the r a d i a t i v e
zones )

161 set min D mix = . t rue .
162

163 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
164 ! ! OVERSHOOTING/CONVECTION CONTROLS
165 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
166

167 D mix ov l imit = 0d0 ! We do not wish to shut o f f ove r shoot ing at
a l l !

168 max brunt B for overshoot = 0
169 l i m i t o v e r s h o o t H p u s i n g s i z e o f c o n v e c t i o n z o n e = . t rue .
170 over shoot a lpha = −1 ! −−> We don ’ t want to change t h i s
171

172 p r e d i c t i v e m i x (1 ) = . t rue .
173 p r e d i c t i v e z o n e t y p e (1 ) = ’ burn H ’
174 p r e d i c t i v e z o n e l o c (1 ) = ’ core ’
175 p r e d i c t i v e b d y l o c (1 ) = ’ any ’
176

177 p r e d i c t i v e m i x (2 ) = . t rue .
178 p r e d i c t i v e z o n e t y p e (2 ) = ’ burn He ’
179 p r e d i c t i v e z o n e l o c (2 ) = ’ core ’
180 p r e d i c t i v e b d y l o c (2 ) = ’ any ’
181

182 p r e d i c t i v e m i x (3 ) = . t rue .
183 p r e d i c t i v e z o n e t y p e (3 ) = ’ nonburn ’
184 p r e d i c t i v e z o n e l o c (3 ) = ’ s h e l l ’
185 p r e d i c t i v e b d y l o c (3 ) = ’ any ’
186

187 p r e d i c t i v e m i x (4 ) = . t rue .
188 p r e d i c t i v e z o n e t y p e (4 ) = ’ burn H ’
189 p r e d i c t i v e z o n e l o c (4 ) = ’ s h e l l ’
190 p r e d i c t i v e b d y l o c (4 ) = ’ any ’
191

192 conv bdy mix so f t en ing f 0 = 0.002
193 conv bdy mix so f t en ing f = 0.001
194 conv bdy mix softening min D mix = 1d−1
195

196 ! Set over shoot ing parameters f o r the d i f f e r e n t types o f over shoot ing
cons ide red
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197 ove r shoo t f 0 above burn h co r e = 0.002
198

199 o v e r s h o o t f 0 a b o v e b u r n h s h e l l = 0.002
200 o v e r s h o o t f a b o v e b u r n h s h e l l = 0.005
201 o v e r s h o o t f 0 b e l o w b u r n h s h e l l = 0 .002
202 o v e r s h o o t f b e l o w b u r n h s h e l l = 0.005
203

204 ov e r sh oo t f 0 ab ove bu rn he co r e = 0.002
205

206 o v e r s h o o t f 0 a b o v e n o n b u r n s h e l l = 0 .002
207 o v e r s h o o t f a b o v e n o n b u r n s h e l l = 0 .005
208 o v e r s h o o t f 0 b e l o w n o n b u r n s h e l l = 0 .002
209 o v e r s h o o t f b e l o w n o n b u r n s h e l l = 0.005
210

211

212 smooth convect ive bdy = . f a l s e .
213

214 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
215 ! ! ELEMENTAL DIFFUSION CONTROLS
216 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
217

218 d o e l e m e n t d i f f u s i o n = . f a l s e . ! no element d i f f u s i o n cons ide red
219

220 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
221 ! ! ATMOSPHERE CONTROLS
222 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
223

224 which atm option = ’ s imple photosphere ’ ! s imple atmosphere
s e l e c t e d

225

226 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
227 ! ! OPACITY CONTROLS
228 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
229

230 c u b i c i n t e r p o l a t i o n i n X = . f a l s e .
231 c u b i c i n t e r p o l a t i o n i n Z = . f a l s e .
232

233 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
234 ! ! ASTEROSEISMOLOGY CONTROLS
235 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
236

237 ca l cu la te Brunt N2 = . true . ! c a l c u l a t e the Buoyancy f requency
238 num ce l l s f o r smooth brunt B = 0 ! no smoothing
239 i n t e r p o l a t e r h o f o r p u l s a t i o n i n f o = . t rue . ! dens i ty at f a c e o f

c e l l s i s i n t e r p o l a t e d
240

241 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
242 ! ! MESH & RESOLUTION CONTROLS
243 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
244

245 ! This i s important to proper ly r e s o l v e the g rav i ty modes near the
convec t i ve core boundary

246 max allowed nz = 60000 ! number o f zones maximally a l lowed
247

248 ! g l o b a l mesh r e s o l u t i o n f a c t o r
249 m e s h d e l t a c o e f f = 0 .4 ! lower va lue de c r e a s e s max al lowed d e l t a s

and i n c r e a s e s number o f g r id po in t s : lowered to 0 .2 f o r bumping
s imu la t i on s
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250 mesh ad ju s t u s e quadra t i c = . t rue . ! quadrat i c r e c o n s t r u c t i o n
polynomia l s f o r mesh adjustments

251 mesh adjust get T from E = . true . ! use i n t e r n a l energy
conse rva t i on to s e t new temperature

252

253 ! Add i t iona l r e s o l u t i o n based on the pr e s su r e and temperature
p r o f i l e s

254 P funct i on we ight = 40
255 T funct ion1 we ight = 110
256

257 T funct ion2 we ight = 0
258 T function2 param = 2d4
259

260 gradT funct ion we ight = 0
261

262 x t r a c o e f o s a b o v e b u r n h = 0 .1 d0
263 x t r a d i s t o s a b o v e b u r n h = 2d0
264

265 mesh dlogX dlogP extra = 0.15 ! r e s o l c o e f f f o r
chemical g r a d i e n t s

266 mesh d logX dlogP fu l l on = 1d−6 ! a d d i t i o n a l r e s o l
on f o r g rad i ent l a r g e r than t h i s

267 m e s h d l o g X d l o g P f u l l o f f = 1d−12 ! a d d i t i o n a l r e s o l
o f f f o r g rad i en t sma l l e r than t h i s

268

269 mesh logX spec i e s (1 ) = ’ he4 ’ ! tak ing in to
account abundance o f He4

270

271

272 ! Add i t iona l r e s o l u t i o n near the boundar ies o f the convec t ive r e g i o n s
273 x t r a c o e f c z b f u l l o n = 1 .0 d0 ! Always on
274 x t r a c o e f c z b f u l l o f f = 1 .0 d0 ! Always on
275

276 x t r a c o e f a l h b c z b = 0 .5 d0 ! r e s o l c o e f f
above lower nonburn convec t ive boundary

277 x t r a d i s t a l h b c z b = 1d0 ! d i s t anc e above
lower nonburn convec t ive boundary

278 x t r a c o e f b l h b c z b = 0 .5 d0 ! r e s o l c o e f f
below lower nonburn convec t ive boundary

279 x t r a d i s t b l h b c z b = 1d0 ! d i s t anc e below
lower nonburn convec t ive boundary

280

281 x t r a c o e f a l h b c z b = 0 .5 d0 ! r e s o l c o e f f
above lower nonburn convec t ive boundary

282 x t r a d i s t a l h b c z b = 1d0 ! d i s t anc e above
lower nonburn convec t ive boundary

283 x t r a c o e f b l h b c z b = 0 .5 d0 ! r e s o l c o e f f
below lower nonburn convec t ive boundary

284 x t r a d i s t b l h b c z b = 1d0 ! d i s t anc e below
lower nonburn convec t ive boundary

285

286 ! non−burning zone
287 x t r a c o e f a l n b c z b = 0 .5 d0 ! r e s o l c o e f f

above lower nonburn convec t ive boundary
288 x t r a d i s t a l n b c z b = 1d0 ! d i s t anc e above

lower nonburn convec t ive boundary
289 x t r a c o e f b l n b c z b = 0 .5 d0 ! r e s o l c o e f f

below lower nonburn convec t ive boundary
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290 x t r a d i s t b l n b c z b = 1d0 ! d i s t anc e below
lower nonburn convec t ive boundary

291

292 x t r a c o e f a l n b c z b = 0 .5 d0 ! r e s o l c o e f f
above lower nonburn convec t ive boundary

293 x t r a d i s t a l n b c z b = 1d0 ! d i s t anc e above
lower nonburn convec t ive boundary

294 x t r a c o e f b l n b c z b = 0 .5 d0 ! r e s o l c o e f f
below lower nonburn convec t ive boundary

295 x t r a d i s t b l n b c z b = 1d0 ! d i s t anc e below
lower nonburn convec t ive boundary

296

297 ! He burning zone
298 x t r a c o e f a l h e b c z b = 0 .5 d0 ! r e s o l c o e f f

above lower nonburn convec t ive boundary
299 x t r a d i s t a l h e b c z b = 1d0 ! d i s t anc e above

lower nonburn convec t ive boundary
300 x t r a c o e f b l h e b c z b = 0 .5 d0 ! r e s o l c o e f f

below lower nonburn convec t ive boundary
301 x t r a d i s t b l h e b c z b = 1d0 ! d i s t ance below

lower nonburn convec t ive boundary
302

303 x t r a c o e f a l h e b c z b = 0 .5 d0 ! r e s o l c o e f f
above lower nonburn convec t ive boundary

304 x t r a d i s t a l h e b c z b = 1d0 ! d i s t anc e above
lower nonburn convec t ive boundary

305 x t r a c o e f b l h e b c z b = 0 .5 d0 ! r e s o l c o e f f
below lower nonburn convec t ive boundary

306 x t r a d i s t b l h e b c z b = 1d0 ! d i s t ance below
lower nonburn convec t ive boundary

307

308

309 ! Add i t iona l Reso lut ion in over shoot ing r eg i on
310 x t r a c o e f o s f u l l o n = 1 .0 d0
311 x t r a c o e f o s f u l l o f f = 1 .0 d0
312

313 x t r a c o e f o s a b o v e b u r n h = 0 .5 d0
314 x t r a d i s t o s a b o v e b u r n h = 0 .5 d0
315 x t r a c o e f o s b e l o w b u r n h = 0 .5 d0
316 x t r a d i s t o s b e l o w b u r n h = 0 .5 d0
317

318 xt ra coe f o s above nonburn = 0 .5 d0
319 xt ra d i s t o s above nonburn = 0 .5 d0
320 xt ra coe f o s be l ow nonburn = 0 .5 d0
321 xt ra d i s t o s be l ow nonburn = 0 .5 d0
322

323 x t r a c o e f o s a b o v e b u r n h e = 0 .5 d0
324 x t r a d i s t o s a b o v e b u r n h e = 0 .5 d0
325 x t r a c o e f o s b e l o w b u r n h e = 0 .5 d0
326 x t r a d i s t o s b e l o w b u r n h e = 0 .5 d0
327

328

329 / ! end o f c o n t r o l s name l i s t

Listing 1: Exemplary MESA inlist. Several parameters were varied automatically by making use
of scripts that change the corresponding variables such as the initial metallicity.
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Exemplary GYRE inlist

1 &constant s
2 /
3

4 &model
5 model type = ’EVOL’
6 f i l e = ! name f i l l e d in by s c r i p t
7 f i l e f o r m a t = ’MESA’ ! MESA evo lu t i ona ry model w i l l be used
8 r epa i r As = . Fa l se . ! Use the Brunt−Vaisa la f requency p r o f i l e

computed by MESA
9 un i fo rm rot = . True . ! impose uniform r o t a t i o n

10 Omega rot = ! r o t a t i o n f i l l e d in by s c r i p t : t y p i c a l l y 0 .25
11 Omega units = ’CRITICAL’ ! r o t a t i o n ra t e in percent c r i t i c a l r o t a t i o n
12 /
13

14 &mode
15 l = 1
16 m = 0
17 tag = ’ l1 ’ ! Tag f o r name l i s t matching
18 n pg min = −50 ! minimal r a d i a l order o f g modes
19 n pg max = −1 ! maximal r a d i a l order o f g modes
20 rossby = .FALSE.
21 /
22

23

24 &osc
25 nonadiabat i c = . Fa l se . ! Adiabat ic f requency c a l c u l a t i o n !
26 rotat ion method = ’TAR’
27 outer bound = ! Outer B.C. f i l l e d in by s c r i p t : t y p i c a l l y UNNO
28 /
29

30 &num
31 d i f f s c h e m e = ! So lve r / d i f f e r e n c e scheme f i l l e d in by s c r i p t
32 n i te r max = 50
33 /
34

35 &scan
36 g r i d t y p e = ’INVERSE’ ! g r id i s spaced evenly in per iod
37 gr id f rame = ’COROT I’ ! co−r o t a t i n g frame at inner boundary
38

39 f r eq min = ! f req min f i l l e d in by s c r i p t
40 freq max = ! freq max f i l l e d in by s c r i p t
41 f r eq max un i t s = ’CYC PER DAY’ ! f r e q u e n c i e s expres sed in c y c l e s per

day
42 f r e q m i n u n i t s = ’CYC PER DAY’
43 n f r e q = ! n to be f i l l e d in by s c r i p t : t y p i c a l l y n f r e q = 400
44 t a g l i s t = ’ l1 ’ ! Comma−separated l i s t o f tags to match
45 /
46

47

48 &gr id
49 n inne r = 5
50 a lpha osc = 10 ! At l e a s t 10 po in t s per o s c i l l a t o r y wavelength
51 alpha exp = 2 ! At l e a s t 2 po in t s per exponent i a l ’ wavelength ’
52

53 /
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54

55 &ad output
56 summary f i l e = ! a d i a b a t i c summary name f i l l e d in by s c r i p t
57 f r e q u n i t s = ’CYC PER DAY’ ! f r e q u e n c i e s outputted in c y c l e s per day

( in the i n e r t i a l frame )
58 summary f i l e format = ’HDF’
59 summary i tem l i s t = ’ M star , R star , L star , l ,m, j , n p , n g , n pg , omega ,

f req , E norm , Delta g , beta ’ ! Items to appear in summary f i l e
60

61 mode template = ! a d i a b a t i c mode f i l e name f i l l e d in by s c r i p t
62 mode f i l e f o rmat = ’HDF’
63 mode i t em l i s t = ’ M star , R star , L star , lambda , l ,m, n , j , n p , n g , n pg ,

f req , f r e q u n i t s , x i h , x i r , x , dW dx , Gamma 1 ,P, rho ,T, dE dx , Omega rot ,
Yt 1 , Yt 2 , prop type , dbeta dx ’

64

65 /
66

67 &nad output
68

69 ! NO NONADIABATIC OUTPUT
70

71 ! summary f i l e = ’ summary nad . h5 ’
72 ! f r e q u n i t s = ’CYC PER DAY’
73 ! summary f i l e format = ’HDF’
74 ! summary i tem l i s t = ’ M star , R star , L star , l ,m, n p , n g , n pg , omega , f req

, E norm ,W’ ! Items to appear in summary f i l e
75

76 ! mode template = ’ nad mode l%L n%N j%J . h5 ’
77 ! mode i t em l i s t = ’ M star , R star , L star , l ,m, n , n p , n g , n pg , f req , x i h ,

x i r , x , dW dx ,W, Gamma 1 ,P, rho ,T, dE dx ’
78

79 /
80 /

Listing 2: Exemplary GYRE inlist. Several parameters were varied automatically by making
use of scripts that fill the corresponding ‘commented’ variables such as ‘Omega rot’. The
frequency bounds of the frequency search grid were automatically calculated by making use of
the corresponding asymptotic expressions in the TAR.
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Acronyms

γ Dor γ Doradus. 15, 16, 18, 20, 21, 32, 34, 88

BVP boundary value problem. 35

CEA Le Commissariat à l’énergie atomique et aux énergies alternatives. iv, 31

COLLOC GL2 Second order collocation scheme to solve GYRE pulsation equa-
tions. 80–84

COLLOC GL2 Second order Magnus shooting scheme to solve GYRE pulsation
equations. 80–84

COLLOC GL4 Fourth order collocation scheme to solve GYRE pulsation equa-
tions. 80–84

COLLOC GL4 Fourth order Magnus shooting scheme to solve GYRE pulsation
equations. 80–84

COLLOC GL6 Sixth order collocation scheme to solve GYRE pulsation equa-
tions. 80–84

COLLOC GL6 Sixth order Magnus shooting scheme to solve GYRE pulsation
equations. 80–84

EOS equation of state. 3

IGW (non-standing) internal gravity wave. 24

IVP initial value problem. 35

MAMSIE Mixing and Angular Momentum tranSport of massIvE stars. iv

MESA Modules for Experiments in Stellar Astrophysics. x, 31–34, 46, 49, 125

MHD magneto-hydrodynamics. 8, 24, 26, 27, 45

MLT mixing length theory. 4, 32, 50

MS main-sequence. 2, 14, 21, 31, 38, 45, 46

NAC Nederlandse Astronomenconferentie. iii, iv

NASA the National Aeronautics and Space Administration. ii, vi, viii, 1, 9
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SC Schönberg-Chandrasekhar. 5

SPB stars Slowly pulsating B-type stars. 15, 16, 32, 34

SSE stellar structure and evolution. 1

TAMS terminal age main sequence. 5, 8, 16, 31, 46, 47, 49–51, 56, 57, 59–81, 84,
85, 88

TAR Traditional Approximation of Rotation. vi, 18, 20–23, 34, 45, 87, 89, 107,
110, 133

TESS Transiting Exoplanet Survey Satellite. 1

YSO young stellar object. 1

ZAMS zero-age main sequence. 4, 31, 46, 50, 54, 57, 59–72, 74–82, 85, 88
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