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Preface

With the uprising of health monitoring systems, introducing such technologies in and on a horse

is the next logical step. When looking at the financial and emotional aspects of owning a horse,

automatic detection of abnormal behaviours would bring piece of mind for the horse owner since

he would know that his beloved horse is in good condition all the time. Colic is the most common

emergency in equine practise and early identification is critical to obtain a successful outcome in

the healing process.

To ensure early detection of colics, an accurate behaviour recognition algorithm is of greatest

importance. In this master’s dissertation a machine learning algorithm is introduced to classify

horse’s abnormal behaviour based on accelerometer data. Seven types of activities of six horses

are detected and classified. The influence of several parameters that are of importance for both

high classification accuracy and long battery life of a wearable device is investigated. Based on this

investigation optimal measurement settings are proposed. In addition, data is gathered in a variety

of conditions to ensure the realtime evaluation of activity patterns in real world circumstances.
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Summary

In recent years, with a widespread of sensors embedded in all kind of mobile devices, human
activity analysis is occurring more often in several domains like healthcare monitoring and fitness
tracking. This trend did also enter the equestrian world but existing technologies fall short. In this
research, a deep learning-based approach for activity detection of equines is proposed to classify
abnormal behaviours of equines related to colic. We propose using Convolutional Neural Networks
by which features are extracted automatically by using strong computing capabilities. In this way
information about the global form of the time series is preserved. Furthermore, we investigate
the impact of the sampling frequency, the time series length and the type of underground on
which the data is gathered on the recognition accuracy. The model is evaluated on three types
of datasets that are compiled of labeled accelerometer data gathered from six different subjects
performing seven different activities. The results show that the proposed model demonstrates high
performance while requiring low computational cost, low sampling rates and no manual feature
engineering.
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Abstract—In this research a behaviour detection algorithm is proposed
to detect abnormal activities of equines related to colic. The limits of the
trade off between sampling rate, length of measured time and accuracy of
the model are extended and the model is tested in a variety of conditions to
asses the use in real life circumstances.
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I. INTRODUCTION

HORSES have a high value on both a financial and emo-
tional level and therefore it would be a great advantage

for the owner to know that his beloved horse is in good con-
dition all the time. Monitoring behaviours can yield important
information about the health and welfare of horses. For exam-
ple, colic is the most common emergency in equine practice and
early identification and referral of horses with a surgical lesion
is critical to obtain a successful outcome [1].

Today, different technologies exist to detect various parame-
ters such as activity, elevation, heart rate and so on from what
conclusions can be drawn regarding the behaviour of the horse
but they have failed on the level of accuracy in combination with
ease of use and comfort for the horse. The use of small devices
such as accelerometers in combination with an accurate classi-
fication algorithm could provide an excellent solution for this
problem.

In this abstract, we will first propose a classification algorithm
based on a convolutional neural network and solve the problem
for the early detection of abnormal behaviour of equines. The
effect of variations in sampling rate, the length of the measured
time interval and various types of underground on the model
accuracy was studied.

II. MATERIALS AND METHOD

A. Animals and training arena

The study is carried out in Zutendaal and is conducted with
six adult horses of different breeds. All details about the subjects
can be found in Table I. The exercising for data recording is
carried out by the owners or familiar riders at local training arena
with a size of 25 m x 38 m and a track surface of sand mixed
with GEOPAT polyflakes.

B. Data collection procedure

All six subjects, while wearing two single triaxial Axivity
AX3 accelerometers (Axivity Ltd, Newcastle, United Kingdom)
as depicted in Figure 1 are exercised in the different gaits walk,
trot and canter for about 10 min each; exercise is either ridden
or longed. The gait walk is also measured on a field and hard

Fig. 1. Orientation of accelerometer.

Fig. 2. Screenshot of ELAN software with the video and accelerometer data.

underground for horse 2. Horse 2 and 4 performed in addition
other activities like rolling, pawing and flank watching. Ob-
servations on the activities of the horses are made with video
recordings at the same time as data from the sensors is collected.
Table II lists the considered activities in this study with their de-
scriptive definitions and the number of samples taken. All the
data is labelled based on the video recordings since it is diffi-
cult to use direct observation in combination with training of the
horse. ELAN is a tool that allows such type of labelling pro-
cedure and is used by animal scientists for the video analysis
and codification of images [2], [3]. Annotations can be made
by selecting the length of the segment where the behaviour is
performed and typing the annotation as depicted in Figure 2.

C. The Datasets

The annotations together with corresponding time intervals
are exported into a CSV file and merged with the accelerome-
ter dataset. No features are extracted from the data before pre-
senting it to the machine learning model. A convolutional Neu-



Subject number Breed class Height at withers (cm) Gender Age Condition Shoeing
1 Horse 172 Mare 7 Healthy Barefoot
2 Horse 167 Gelding 11 Healthy Barefoot
3 Horse 181 Mare 17 Lame Barefoot
4 Horse 168 Mare 19 Healthy Barefoot
5 Friesian Horse 159 Mare 12 Healthy Shoed
6 Pony 116 Gelding 15 Healthy Barefoot

TABLE I
PARTICIPATING HORSES (N = 6) WITH BREED CLASS, HEIGHT AT WITHERS, GENDER, AGE, CONDITION AND TYPE OF SHOEING.

Observed Description Number
activities of samples
Stand The horse is standing on at least three legs with no movement to another place. 92121
Walk The horse performs a four beat gait with its legs following this sequence: left hind leg, 406939

left front leg, right hind leg, right front leg, leaving three feet on the ground.
Trot The horse performs a two beat diagonal gait where the diagonal pairs of legs move 327015

forward at the same time with a moment of suspension between each beat.
Canter The canter is a three beat gait. This gait starts with the hind leg then leads to the front 110706

in a rocking motion. This gait has a period of suspension after each stride.
Roll The horse starts in a lying position on the side called lateral recumbency and rotates 11884

the body over its back, alternately from one side to another, remaining parallel
to the performing surface.

Paw The horse scrapes the ground with a forelimb. 5948
Flank watching The horse looks at its side or flank. 4462

TABLE II
DESCRIPTION OF THE OBSERVED ACTIVITIES [4], [5].

ral Network (CNN) has the advantage of automatic features ex-
traction by using strong computing capabilities. Deep learning-
based classifiers can learn features and achieve better accuracy
[6]. These sensor data is sampled at five different sampling rates
i.e., 25 Hz, 50 Hz, 100 Hz, 200 Hz and 1600 Hz. Each AX3
was set to record with a range of ± 8g for all the datasets ex-
cept for one high sampling rate measurement at 1600 Hz the
range is increased to ± 16g since this measurement was nec-
essary for another research topic. Table III gives an overview
of the time measured, the number of samples, the number of
subjects and the number of behaviours at each sampling rate.
The class proportions of the seven studied activities are not dis-
tributed evenly. The class walk is mainly present with a share
of 42.43% followed by trot, canter, stand, roll, paw and flank
watching with a proportion of 34.10%, 11.54%, 9.61%, 1.24%,
0.62% and 0.47%, respectively.

III. MACHINE LEARNING MODEL

A multilayer convolutional network, is used with two con-
volutional layers, which are followed by max-pooling layers,
and two fully connected layers. The output of the last fully-
connected layer is fed to a 7-way softmax layer which produces
a distribution over the seven class labels: stand, walk, trot, can-
ter, roll, paw, flank watching.

The first convolutional layer filters the n× 6× 1 input accel-
eration data with 64 kernels of size 3 × 1 and stride 1. The L2
regularization technique is used in this layer with a weight de-

cay coefficient of 0.01 [7]. After the first convolutional layer a
zero-padding is used such that the output has the same length as
the original input. Then a max-pooling operation is done. The
second convolutional layer takes as input the (pooled) output of
the first convolutional layer and filters it with 16 kernels of size
5 × 2 and stride 1. Both layers contain an activation layer us-
ing rectified units (ReLUs) and dropout of 0.55 is used [8]. The
Adam optimizer is used for training the neural network through
back propagation. Training is done for 400 epochs, with an early
stopping criterion of halting training when there is no increase
in accuracy during the last 60 epochs [9]. Table IV shows the
experimental setup.

IV. RESULTS

Figure 3 illustrates exemplar two second data windows of the
four gaits and the other behaviours, from the left and right ac-
celerometer worn on the lateral side of the tendon boot.

To train the convolutional neural network, separate training
and validation sets are needed and can be selected in various
ways. First, a training and validation set are obtained by au-
tomatically splitting the training and the validation data with a
fixed ratio of 66/34 referred to as the ’First dataset’. Secondly,
the 50 Hz dataset, which contains every behaviour, is resam-
pled to 25 Hz, 100 Hz and 200 Hz and merged with the original
dataset at that sampling rate referred to as the ’Second dataset’.
The model can then be assessed for any behaviour at each sam-
pling rate. Again automatic split testing is used to obtain the



25 Hz 50 Hz 100 Hz 200 Hz 1600 Hz
Time measured [s] 2752 5492 3006 2560 417
Number of samples 68800 274580 300640 511920 666952
Number of subjects 3 6 3 3 1
Number of behaviours 4 7 4 5 4

TABLE III
TOTAL TIME OF MOVEMENT DATA, NUMBER OF SAMPLES, NUMBER OF SUBJECTS AND NUMBER OF BEHAVIOURS FOR EACH SAMPLING RATE OF THE

MERGED ACCELEROMETER DATA.

Parameter Value
The size of the input vector n
The number of input channels 6
The number of feature maps 64-16
Filter size 3× 1 - 5× 2
Stride 1
Pooling size 2× 3 - 3× 1
Activation function ReLu and Softmax
Weight decay 0.01 (L2 regularization)
The probability of dropout 0.55
Maximum epochs 400
Optimization (back propagation) Adam optimizer

TABLE IV
EXPERIMENTAL SETUP.

(a)Stand (b)Walk (c)Trot (d)Canter

(e)Roll (f)Paw (g)Flank watch-
ing

Fig. 3. Typical accelerometer patterns of (a) stand, (b) walk, (c) trot, (d) canter,
(e) roll, (f) paw and (g) flank watching in a 2 s window. The blue, yellow,
green lines represent X,Y,Z signals from the left accelerometer and the red,
purple and brown lines represent X,Y,Z signals from the right accelerometer
, respectively.

training and validation set. Finally, the separation of the train-
ing and validation data is attained manually and as a result the
model is not validated on data from a seen horse referred to as
the ’Third dataset’. In this case data from the lame horse is used
to validate our model while it is trained on healthy horses, to
further asses the generalization of the model.

A. Effects of the sampling rate

In Figure 4 the performance of the CNN with increasing sam-
pling rate is depicted for the three datasets. The number be-
tween the brackets indicates the number of behaviours that are
taken into account in the training and validation of the CNN.
For all datasets the accuracy increases when the sampling rate is
increased from 25 Hz to 100 Hz. From 100 Hz to 200 Hz, the
accuracy for two out of three datasets decreases slightly. As can

Fig. 4. Mean performance of convnet with increasing sampling rate presented
on a logarithmic scale for three datasets.

Fig. 5. Mean performance of convnet with increasing time interval for the three
datasets.

be concluded from this graph, for a sampling rate of 25 Hz, the
CNN performs the best when all behaviours and all horses are
taken into account. The CNN validated on the data of the lame
horse performs the least in the sampling rate range from 25 Hz
to 100 Hz. At a sampling rate of 200 Hz, the CNN performs
best when the training and validation data are split up by hand
and the model trained on all behaviours performs the least. In-
creasing the sampling rate to 1600 Hz reduces the overall mean
validation accuracy of the first dataset to 95.74%.

B. Effect of the time interval

In Figure 5 the mean performance of the CNN with increas-
ing time interval is plotted for the three datasets for sampling
rates between 25 Hz and 200 Hz. The mean duration of the be-
haviours are annotated with black striped lines except for the
flank-watching movement since the mean duration of this be-
haviour lies outside the investigated time intervals at 4.866 s. If
the time interval decreases from 1.2 s (a full walk cycle) to 0.6
s, the overall mean validation accuracy of the three datasets de-
creases. In all cases, the largest contributor to a lower accuracy



is the misclassification of ’canter’ and to a lesser extend ’roll’,
’paw’ and ’flank-watching’. As can be noticed the mean accu-
racy plot for the third dataset lies lower than those of the first
and second dataset due to more spread out accuracies at higher
time intervals for sampling rates between 50 Hz and 200 Hz.

C. Combination of the time interval and sampling rate

Figure 6 presents the accuracy surface plots for the three
datasets as function of time interval and sampling rate gener-
ated through the obtained datapoints indicated as blue dots. The
surface plot is obtained by fitting a polynomial of degree two
trough the datapoints. The low predicted accuracies are indi-
cated with the colour blue and the high ones with the colour
red. For the first dataset, the 1600 Hz datapoints are left out of
the interpolation. The combinations that are the least perform-
ing for the three datasets are observed in the region where both
sampling rate and time interval are low.

As can be seen from the contourplots shown in Figure 7 a
100% is reached in the red region. As indicated with yellow
cross markers, the combinations that gain an accuracy of 100%
at the lowest sampling rate and the shortest time interval are for
the first dataset observed in the region where the value of the
sampling rate ranges between 64 Hz at a time interval of 2.05 s
and 170 Hz at a time interval of 0.85 s, for the second dataset in
the region where the value of the sampling rate ranges between
36 Hz at a time interval of 2.4 s and 170 Hz at a time interval
of 1 s, for the third dataset in the region where the value of the
sampling rate ranges between 90 Hz at a time interval of 2.3 s
and 170 Hz at a time interval of 1 s.

D. Effects of the underground

Model accuracy for the class walk is studied for four differ-
ent surfaces: dry sand mixed with polyflakes, wet sand mixed
with polyflakes, meadow and hard underground. The normal-
ized confusion matrices are depicted in Figure 8.

As can be seen from the normalized confusion matrices for
different time intervals, the class walk on a wet underground and
on a dry underground get classified with an accuracy above 98%
for every time interval. The class walk on a hard underground
reaches accuracies higher than 86%. The class walk on a field
swings between 15% and 86% classification accuracy. As can
be concluded from the results presented in the normalized con-
fusion matrices, the data gathered from different undergrounds
is significantly different so that the model could conclude from
which underground the data was gathered for three out of four
undergrounds.

Normalized confusion matrices with all activities included are
shown in Figure 9. As can be concluded from the confusion
matrices, at small time intervals, more misclassification is taking
place than at higher time intervals. ’Walk-F’ is performing the
worst with accuracies swinging between 1% and 74%. The other
’walk classes’ get classified with high accuracies between 93%
and 100% at higher time intervals. All the walk movements
get classified as walk, independent of the underground, at any
time interval. The other movements that are now included get
classified in a few cases as one of the ’walk classes’.

(a)First dataset

(b)Second dataset

(c)Third dataset

Fig. 6. Accuracy surface plot as function of the sampling rate and the length of
the time interval for three datasets.



(a)First dataset

(b)Second dataset

(c)Third dataset

Fig. 7. Accuracy contour plot as function of the sampling rate and the length of
the time interval for three datasets.

(a)n = 0.6 s

(b)n = 1.2 s

(c)n = 2.4 s

Fig. 8. Normalized confusion matrix for training and test set at a sampling rate
of 50 Hz for different time intervals and four types of underground (H= hard,
W = wet, F= field and D = dry).



(a)n = 0.6 s

(b)n = 1.2 s

(c)n = 2.4 s

Fig. 9. Normalized confusion matrix for training and test set at a sampling rate
of 50 Hz for different time intervals and four types of underground (H= hard,
W = wet, F= field and D = dry) including all activities.

V. CONCLUSION

In this research we proposed a solution for a horse activity
recognition problem that is based on Convolutional Neural Net-
works with the use of accelerometer time series. High accura-
cies can already be reached using short recognition intervals and
small sampling rates and requiring no feature engineering. Due
to a relatively shallow architecture, the proposed algorithm has a
small running time and can be efficiently executed on wearable
devices in real time. To evaluate the performance of the con-
sidered approach we tested it on three datasets. The obtained
results demonstrate that the proposed CNN-based model estab-
lishes high accuracies in all cases. The experiment has further
emphasized an architecture that can be applied not only to dif-
ferent subjects, but can be used in different measurement con-
ditions. Future works will include experimenting with more be-
haviours, lower sampling rates and reduction in the number of
accelerometer axes. Moreover, we need further study for the
analysis of the features extracted automatically by the convent
and compare them with the well-known hand-crafted features.
Further study on the characteristics of the used CNN and utiliz-
ing larger dataset should be conducted.
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Chapter 1

Introduction

Horses have a high value on both a financial and emotional level. The purchase price of a horse

depends upon the pedigree, the age, the health condition and the level of training. It can vary be-

tween €3750 for a three-year old riding horse for leisure training and competition up to 15 million €

for a world top show jumping athlete such as Palloubet d’Halong. In addition, maintenance costs

such as (riding) equipment, food, stabling, meadows, blacksmith, veterinarian, competitions and

so on place a financial burden on the owner of the horse. Besides the financial aspect, there is

often a strong emotional bond between owner and horse. It would be a great advantage for the

owner to know that his beloved horse is in good condition all the time.

Monitoring behaviours can yield important information about the health and welfare of horses.

For example, colic is the most common emergency in equine practice with approximately 4 out of

every 100 horses having an episode of colic each year showing one or a combination of the following

signs of pain [9],[10]:

• Depression: A horse that is quieter than normal, dull, less responsive and disinterested in

the environment, may have ears pulled back or down but ears are not pricked up forward

and do not move readily to surrounding noise. May have lowered head carriage.

• Flank watching: A horse that glances at its side or flank.

• Weight shifting: A horse that moves his weight from one side to the other, usually with the

forelimbs.

• Restlessness: A horse that does not stand quietly but moves, apparently aimlessly, and

appears agitated. Movements may be jerky with wide excursions of the head.

• Kicking abdomen: A horse that kicks in the direction of its abdomen.

• Pawing: Scraping the ground with a forelimb.

• Stretching: Most commonly, taking a stance as a male horse would to urinate, but not

urinating.
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• Sternal recumbency: Lying on ground but on the sternum with the legs tucked under the

body.

• Lateral recumbency: Lying on ground but on the side.

• Attempting to lie down: A horse that buckles the legs (crouches) and looks like it will lie

down, but does not, or lies down but gets up immediately.

• Collapse: Attempting to or succeeding to suddenly drop to the ground, usually as a prelude

to rolling.

From the horses that are evaluated by a veterinarian in private practice, approximately 7% to

10% have a lesion that requires surgical correction [11]. Early identification and referral of horses

with a surgical lesion is critical to obtain a successful outcome [12]. According to a study of 1847

Swedish warmblood horses, diseases of the digestive system dominated by colic of an undefined

nature (seven of ten) are one of the most common causes of death (5–6%) [13]. This time-sensitive

event emphasizes the need for early detection. Changes in activity can also help horse owners in

predicting foaling moments. For instance, a significant increase in the total amount of daily activity

is found on days two and one prenatal compared to day three prenatal [14]. From 30 minutes to

6 hours before foaling the mare is restless, walks around with a raised tail, and urinates small

amounts frequently. She shows signs resembling to those of colic such as alternately lying down

and standing up [15].

Today, different technologies exist to detect various parameters such as activity, elevation, heart

rate and so on from which conclusions can be drawn regarding the behaviour of the horse. The

key requirements for such a device are accuracy, ease of use, comfort for the horse and long range

availability of data. Existing solutions have failed on at least one out of these four key features.

For example, video monitoring with EquiView360 uses cameras that are installed in the stable

to detect changes in the horse’s behaviour. This technology is very accurate but limited to one

location for each camera and data is only available on a short range. Another technology called

Birth alarm, a foaling alarm system, is based on gyroscopes which measure the level of elevation.

An advantage of this measurement device is that a long range is achieved, since the cellular network

is used to communicate but they have a low accuracy and are uncomfortable for the horse to wear

as is depicted in Figure 1.1. A full overview of comparable products and their shortcomings can

be found in Table C.1.
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Figure 1.1: Birth alarm [1].

As in this study, also accelerometers are used already to detect the activity of the horse. For

example, the Equestic saddle clip which is depicted in figure 1.2 detects the activity of the horse

but the accuracy is low since the positioning is inconsistent and the range of the data is short

since it works with bluetooth connection. Another study revealed that accelerometer data allows

the determination of gaits by definition of distinct acceleration value ranges for stand, walk, trot

and gallop [16].

Figure 1.2: Equestic saddle clip [2].

Thus the use of small devices such as accelerometers in combination with an accurate classification

algorithm could provide an excellent solution for accurately detecting the horse’s behaviour in a

comfortable manner. The aim of this study is to automatically classify the horse’s behaviour based

on machine learning algorithms by using accelerometer data. In recent years, convolutional neural

networks (CNNs) have shown excellent performance on classification problems when large-scale
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labelled datasets are available [17]. Studies demonstrated that deep learning models are able to

learn and discriminate among human activities ranging from sitting, walking, climbing upstairs,

walking downstairs and falling, among others [18].

In this study, accelerometer data of seven activities of six different horses is gathered by attaching

the accelerometers to the front legs of the subjects. The horses are exercised under different

conditions, to examine the behaviour event detection algorithms in a variety of settings. After

preprocessing the gathered data, labelling based on video recordings is done. The final data set is

presented to a multilayer convolutional neural network. The model trains itself first by using the

training set and afterwards validates itself by the validation or test set. This apportion of the data

in the training and test set is done both randomly and manually. Different parameters of the CNN

such as filter size, stride and number of layers were fine-tuned to gain high model accuracies. Also

regularization techniques such as dropout, L2 regularization and softmax were added, ensuring

that the algorithm is better at making (correct) classifications and has the ability to generalize.

After optimizing all the model parameters, the effect of variations in sampling frequency, length

of the time interval and underground on the model accuracy was studied.
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Chapter 2

Methodology

2.1 Animals and training arena

The study is carried out in Zutendaal and is conducted with six adult horses of different breeds.

All details about the subjects can be found in Table 2.1. This variety in horses is important for the

generalization of the machine learning model, since the gathered data will differ. For example, the

mean acceleration values per second during the gaits trot and walk are higher for ponies than for

horses [16]. Also, lame horses have asymmetrical gait patterns because they consistently shorten

the cranial (forward) phase of stride [19].

Subject number Breed class Height at withers (cm) Gender Age Condition Shoeing

1 Horse 172 Mare 7 Healthy Barefoot

2 Horse 167 Gelding 11 Healthy Barefoot

3 Horse 181 Mare 17 Lame Barefoot

4 Horse 168 Mare 19 Healthy Barefoot

5 Friesian Horse 159 Mare 12 Healthy Shoed

6 Pony 116 Gelding 15 Healthy Barefoot

Table 2.1: Participating horses (n = 6) with breed class, height at withers, gender, age, condition and

type of shoeing.

The exercising for data recording is carried out by the owners or familiar riders at local training

arena with a size of 25 m x 38 m and a track surface of sand mixed with GEOPAT polyflakes. A

minority of the data is gathered on a field and a hard underground.

2.2 Data collection procedure

All six subjects, while wearing two single triaxial Axivity AX3 accelerometers (Axivity Ltd, New-

castle, United Kingdom) are exercised in the different gaits walk, trot and canter for about 10

min each; exercise is either ridden or longed. The gait walk is also measured on a field and hard
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underground for horse 2. Horse 2 and 4 performed in addition other activities like rolling, pawing

and flank watching.

2.2.1 Activities’ observation

Observations on the activities of the horses are made with video recordings at the same time as

data from the sensors is collected. Table 2.2 lists the considered activities in this study with their

descriptive definitions and the number of samples taken. In Figure 2.1 the expressed activities

occuring during an episode of colic are depicted. All the data is labelled based on the video

recordings since it is difficult to use direct observation in combination with training of the horse.

The number of samples for the gait movements is significantly higher than for the other behaviours

rolling, pawing and flank watching which are not performed on command but by provocation. For

example, the horse starts scraping over the floor with a forelimb when he stands on the grooming

area and becomes inpatient. On the other hand, to stimulate rolling, the horse is left free in the

training arena after a workout. The horse might be itchy due to the sweat on its pelt which can

induce the wanted behaviour. To provoke flank watching, a piece of carrot is held near the flank

of the horse until he grabs it and returns to a forward head position.

Observed Description Number

activities of samples

Stand The horse is standing on at least three legs with no movement to another place. 92121

Walk The horse performs a four beat gait with its legs following this sequence: left hind leg, 406939

left front leg, right hind leg, right front leg, leaving three feet on the ground.

Trot The horse performs a two beat diagonal gait where the diagonal pairs of legs move 327015

forward at the same time with a moment of suspension between each beat.

Canter The canter is a three beat gait. This gait starts with the hind leg then leads to the front 110706

in a rocking motion. This gait has a period of suspension after each stride.

Roll The horse starts in a lying position on the side called “lateral recumbency” and rotates 11884

the body over its back, alternately from one side to another, remaining parallel

to the performing surface.

Paw The horse scrapes the ground with a forelimb. 5948

Flank watching The horse looks at its side or flank. 4462

Table 2.2: Description of the observed activities [20], [9].

(a) Roll (b) Paw (c) Flank watching

Figure 2.1: Observed behaviours (a) roll, (b) paw and (c) flank watching [3], [4], [5].
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2.2.2 Accelerometer data

Each horse wears two single triaxial Axivity AX3 accelerometers, a device for the measurements

of different physical parameters, providing integrated temperature, light and acceleration sensors,

as depicted in Figure 2.2, which are validated for activity recognition. The data sheet of the

accelerometer can be found in Appendix A. Accelerometers fitted to the lateral side of the tendon

boot with a size of 23 x 32.5 x 7.6 mm and a weight of 11 g are used, as shown in figure 2.3 log

data with configurable sampling rates ranging from 12.5 Hz to 3200 Hz.

Figure 2.2: AX3 Axivity 3-Axis Logging Accelerometer [6].

Figure 2.3: Tendon boot with accelerometer [7].

The data logger is powered by a 150 mAh lithium–polymer battery, rechargeable via UBS connec-

tion, which enables measurements over 30 days at 12.5 Hz and 14 days at 100 Hz. Acceleration is

measurable on x-, y-, z-axes with a maximum sensitivity of ±16g [g = m/s2]. Setup and configu-

ration of the AX3 sensors for recording is done with the AX3 OMGUI Configuration and Analysis

Tool, which is an open source application. Data is recorded on an integrated memory with a

capacity of 512 MB. It was transferred to a computer after recording via USB connection and

stored in a CWA-file. An attachment convention for device orientation assists in consistent and

comparable datasets being gathered. The orientation of the accelerometer respected for all horses

is depicted in figure 2.4 with the USB port configured to point towards the ground as is suggested

by the AX3 user manual. For successful data capture the AX3 is securely fastened with the use

of VELCRO stick on circles to the tendon boot with minimal room for vibration, slip or twist;
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this helps preserve only the motions of the horse are captured. The AX3 has a built in, real-time

clock (RTC) and calendar which provides the time base for the recorded acceleration data.

Figure 2.4: Orientation of accelerometer.

2.3 Processing and classification of accelerometer data

Before presenting the accelerometer data to the machine learning model, the raw data needs to be

transformed into an understandable format. The representation and quality of the instance data

is a factor that affects the success of machine learning on a given task. If there is much irrelevant

and redundant information present or noisy and unreliable data, then knowledge discovery during

the training phase of the model is more difficult. The product of data preprocessing is the final

training set. Often, preprocessing can have a significant impact on generalization performance of

a supervised ML algorithm [21].

The AX3 logs data internally in a binary packed format, named Continuous Wave Accelerometer

(CWA) format. To preprocess the obtained data it is necessary to convert this file to a Comma

Separated Value (CSV) format which can be done with the OMGUI software. To combine the

accelerometer data of the two sensors for recognizing motion states, these two datasets are aligned

according to their timestamps. A minor deviation of the timestamps of 300 to 600 ms is noticed

during the preprocessing phase which is corrected based on the video-recordings. In addition, the

actual sampling rate for both the left and right sensor is lower than the configured sampling rate

and is found to have a deviation of 1.25% ± 0.37% and 1.56 % ± 0.35 %, respectively. A full

overview of the configured and actual sampling rate for each dataset can be found in Table C.2. It

therefore becomes necessary to interpolate the values for the intervening timestamps. A segment

of 200 samples of the original and the interpolated signal as a function of time together with the

cross-correlation as a function of lag is depicted in Figure 2.5. The cross-correlation coefficient

gives information about the degree of similarity between two time series while lag can be considered

when time is under investigation. Here cross-correlation, is a dimensionless coefficient that ranges

between -1 and 1. A value of 0 means there is no cross-correlation, a value of 1 means that there
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is perfect cross-correlation, a value of -1 means a perfect anti cross-correlation. For this particular

case a mean cross-correlation coefficient of 0.84 is found when taking 20 segments with a length

of 200 samples into account, which indicates a high similarity between the two time series. Also

the highest cross-correlation is found at zero lag which means that the signals have the highest

similarity without shifting them.

Figure 2.5: Segment of the original and the interpolated signal together with the cross-correlation as a

function of lag.

The experiments require combining the observation of specific behaviours and the identification of

the accelerometer data measured by the sensors attached to those subjects involved in a particular

behavioural pattern. This is the most reliable way to obtain a complete scenario of an event of

interest in order to develop an algorithm.

ELAN is a tool that allows such type of labelling procedure because it is a multimodal and

multipurpose annotation program and is used by animal scientists for the video analysis and

codification of images [22], [23]. It was also proposed as a potential efficient tool for combining

audio and video analysis [24]. ELAN is a highly specialised software that allows downloading of

the video file and the correspondent acceleration data that have to be labelled.

Annotations can be made by selecting the length of the segment where the behaviour is performed

and typing the annotation (Figure 2.6). Mainly, behaviours such as stand, walk, trot and canter

are observed and annotated and to a lesser extend roll, paw and flank watching. Changes of pace,

for example canter-to-trot transitions, get a separate label, to acquire a reliable training set for

the algorithm. A full list of the annotations used to label the data is displayed in Table 2.3.

The annotations together with corresponding the time intervals are exported into a CSV file and

merged with the accelerometer data set.
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Figure 2.6: Screenshot of ELAN software showing the video and accelerometer data.

Annotations for model Other annotations

stand stand-to-walk small-step turn

walk walk-to-stand not-visible various-movements

trot walk-to-trot cross-canter head-movement

canter trot-to-walk contra-canter flank-watching

roll trot-to-canter checking-accelerometers not-defined

paw canter-to-trot step-backwards shake

not-defined walk-to-canter standing-up protest

smelling-ground rider-movement wild-movements kick-backwards

stand-to-trot itching-to-walk shaking-to-walk

Table 2.3: A full list of annotations.

Not only the video-recordings give information about the performed activity but also the variability

can be seen visually in the amplitude and shape of the acceleration signals for some of the activities.

In figure 2.7 different segments of the acceleration in the three directions of the activities are

displayed for the left and right leg.
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(a) x-direction

(b) y-direction

(c) z-direction

Figure 2.7: 2s of observed movements stand, walk, trot, canter, paw, roll and flank watching. The red

and blue lines represent left and right acceleration signals, respectively.
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For both sensors, increasing variations are registered with stand, walk, trot and canter. Due to

gravitation on the vertical axis, AX3 data loggers measured acceleration values of -1 for stand.

Furthermore, during the different gaits and other behaviours, the AX3 data loggers measure

following accelerations in the three directions:

• ax < -1 during upward movement and acceleration ax > -1 during downward movement,

• for the right accelerometer ay < 0 during forward movement and ay > 0 during backward

movement, for the left accelerometer, ay > 0 during forward movement movement and ay <

0 during backward movement,

• az < 0 during outward movement and az > 0 during inward movement.

Not only the variability of the signal but also the shape gives an indication which movement is

performed by the subject. In Figure 2.8 segments of the acceleration in the three directions of the

activities as defined in Table 2.2 are depicted.

Stand appears as a constant signal in every direction.

For the gait walk the acceleration in the x-direction ax shows the alternating movement of the

left and right leg. As the horse walks, the signal of the right accelerometer decreases since the

leg moves upward (in the negative x-direction) as annotated in figure 2.8(a) with (A). Then the

signal increases as the horse accelerates its leg downward (B). The moment the leg touches the

ground, due to action and reaction forces, a small negative acceleration peak can be noticed due

to upward movement of the leg from the impact (C). Ay of the left accelerometer becomes at first

positive during the lifting (D), since the horse accelerates in the forward direction (in the positive

y-direction). Then the horse brings its leg down and the signal becomes negative so acceleration in

the backward direction occurs (E). At the end of the movement a small forward flexion of the lower

limb can be noticed as a small positive acceleration (F). Ay of the right accelerometer is a mirror

image around the horizontal axis since the positive y-axis for the is in the backward direction

in contrast to the positive y-direction of the left accelerometer which is pointing forward. The

z-signal is positive during upward movement, so the leg performs a small inward acceleration (G).

During the downward movement, this signal becomes negative, so a small outward acceleration

happens (H).

The trot signal shows the same characteristics as the walk signal, but the signals from the left

and right leg are more intertwined. Again, during upward movement of the leg, the x-signal is

decreasing below -1 (I) and during downward movement a signal higher than -1 is produced (J).

The x-signal of the left leg is the mirror image of the signal of the right leg. The ay of the left

and right leg lie more or less on top of each other because the moment one leg moves forward, the

other leg moves backward and since the direction of the y-axis is opposite the left leg produces a

positive signal during the forward movement and the right leg produces a positive signal during

the backward movement.
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Canter shows similarity of the signals with the one of the inside leg lagging behind to the other of

the outside leg (in this case the right leg). First the outside leg shows a decreasing signal for the

x-direction as the horse lifts the leg in the upward direction (K), then the leg accelerates downward

which produces a positive signal (L). In the y-direction, the signals are again each others mirror

image, with the positive signal from the left leg and the negative signal from the right leg indicating

forward movement (M). During downward movement of the legs, a backward acceleration occurs

expressed as a negative signal from the left leg and a positive signal from the right leg (N). The

z-signal is first positive indicating an inward movement (O) and then negative due to an outward

movement (P). For the outside right leg, this is more pronounced.

During rolling, the legs of the horse perform a half circular motion in sync with one leg lagging

behind on the other leg. First there is acceleration in the upward direction and afterwards in

the downward direction. Since the horse raises its legs in the air, the upward direction of the

accelerometer is now positive. In the y-direction, almost no acceleration is detected since there

is no forward and backward movement of the legs. The signal in the z-direction for the right leg

is positive due to an outward movement (Q) and is negative for the left accelerometer due to an

inward movement (R).

The act of pawing shows a constant signal for one leg and an alternating signal for the other leg.

First the signal in the x-direction becomes more negative than -1 as the horse lifts its right leg

upward (S). Then the horse brings the leg down, which makes the signal more positive (T). At last,

due to the action and reaction forces, contact with the ground produces a small negative signal

which indicates acceleration in the upward direction (U). The y-signal of the right accelerometer

becomes positive during the leg lift, since the leg accelerates in the forward direction (V). During

downward movement, acceleration in the backward direction occurs and the y-signal becomes

negative (W). Again, the z-signal is positive during upward movement, so the leg performs a small

inward acceleration (X). During downward movement, this signal becomes negative, so a small

outward acceleration happens (Y).

The signal of flank watching appears as a constant signal but compared to the signal measured

for stand some extra vibrations can be noticed. In this particular case, the horse watches his left

flank. This means that the horse rotates mainly over its left front leg. This can be also noticed in

the ayL-signal, since it is a higher than when the horse stands fully still. This means that some

movement in the forward direction is performed. Looking at the azL-signal, increasing variations

can be noticed in the signal compared to the case where the horse stands still.
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(a) x-direction

(b) y-direction

(c) z-direction

Figure 2.8: Observed movements stand, walk, trot, canter, paw, roll and flank watching. The red, blue

lines represent left and right acceleration signals, respectively.
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Feature extraction

Feature selection aims to find the most important information to save computational efforts and

data storage. For threshold-based movement detection algorithms, the classification of behaviours

is achieved by comparing and selecting the optimal threshold from statistical features of the motion

dynamics.

Now, a closer look is taken at the magnitude of the acceleration to see if thresholds can be deduced

from it, since this could reduce the number of parameters taken into account by the model from

three to one. Triaxial accelerometers produce three separated accelerometer data time series, one

time series for acceleration on each axis. From this data, the magnitude of the acceleration can

be calculated, also called the acceleration sum vector. The acceleration sum vector Asum can be

calculated as follows from the accelerations along x, y, and z axes [25]:

Asum =
√
a2x + a2y + a2z (2.1)

where, ax is the acceleration along the x-axis, ay is the acceleration along the y-axis, and az is the

acceleration along the z-axis.

From this acceleration sum vector, eight statistical features are presented in Table 2.4 e.g. min-

imum (outliers excluded), first quartile, median, third quartile, maximum (outliers excluded),

mean, root mean square, and standard deviation are derived directly from the sum vector Asum

of the activities for the 3 breed classes horse (n = 4), Friesian horse (n = 1) and Pony (n = 1),

and given as boxplots in Figure 2.9.
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Features of the acceleration sum vector Asum

Horse

Min Q1 Median Q3 Max Mean Rms Std

Stand 1.00 1.02 1.03 1.04 1.08 1.03 1.03 0.02

Walk 0.62 1.02 1.19 2.00 5.90 1.72 2.07 1.15

Trot 0.65 1.86 2.51 3.73 9.49 3.09 3.62 1.90

Canter 0.55 1.98 3.54 6.06 11.32 4.25 5.07 2.77

Roll 0.34 0.92 1.12 1.90 6.51 1.60 1.99 1.19

Paw 0.26 1.13 1.84 2.72 7.65 2.13 2.55 1.41

Flank watching 0.97 0.99 1.00 1.01 1.05 1.00 1.00 0.02

Friesian horse

Min Q1 Median Q3 Max Mean Rms Std

Stand 1.01 1.02 1.03 1.04 1.06 1.03 1.03 0.01

Walk 0.44 1.01 1.18 2.02 7.12 1.81 2.30 1.42

Trot 0.43 1.68 2.28 3.68 10.07 2.97 3.63 2.09

Canter 0.23 1.67 2.83 6.16 11.26 3.97 4.99 3.03

Pony

Min Q1 Median Q3 Max Mean Rms Std

Stand 1.00 1.02 1.03 1.04 1.06 1.03 1.03 0.01

Walk 0.60 1.03 1.18 1.92 5.26 1.72 2.06 1.13

Trot 0.61 2.00 2.66 4.30 8.81 3.32 3.82 1.89

Canter 0.67 2.03 3.23 6.30 11.31 4.26 5.12 2.84

Table 2.4: Acceleration sum vector features per sample [g] measured by the Axivity AX3 accelerometer

for stand, walk, trot, canter, roll, paw and flank watching; minimum, first quartile, median,

third quartile, maximum, mean, root mean square, and standard deviation out of all mea-

surements.
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(a) Horse

(b) Friesian horse

(c) Pony

Figure 2.9: Boxplot of acceleration sum vector of activities for the 3 breed classes horse (n = 4), Friesian

horse (n = 1) and Pony (n = 1), given as boxplots with medians, interquartile and absolute

ranges.
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Taking breed classes into account, for both sensors, increasing variations, means and medians are

registered with stand, walk, trot and canter. Taking a closer look at the boxplots, as depicted in

Figure 2.9, acceleration value ranges per sample for the different movements show overlaps and,

therefore, no interval limits can be determined. Fixed threshold-based techniques are thus not

suitable for detecting the different types of movements. For that reason, no features are extracted

from the data before presenting it to the machine learning model. Also, a convolutional Neural

Network (CNN) has the advantage of automatic features extraction by using strong computing

capabilities. Deep learning-based classifiers can learn features and achieve better accuracy. For

example, [26] uses the deep CNN features for ground-based cloud image classification. The results

show that the cloud classification accuracy of CNN improved significantly, demonstrating the

superiority of CNN over hand-engineered features. Besides high accuracy and good generalization,

one main advantage of this way of working is that after a deep learning model is designed, it is

trained in an end-to-end fashion, thus completely removing the need of manual feature engineering

[27].

2.4 Machine learning model

In this research, convolutional neural networks, also known as CNNs, are used for behaviour

classification. Amoung deep learning algoirthms, CNNs are a good choice in this setting due to

their specific architecture because CNNs train filters that are applied to small segments of the

data, and therefore they are able to capture local data patterns and their variations. Additionally,

the amount of computations and running time of CNNs is significantly lower compared to other

deep learning algorithms due to a small number of connections and high parallelism of the network

[27]. The gained datasets are further preprocessed and splitted in training and test data, either

automated or manually. The architecture and hyperparameters of the CNN are adjusted to obtain

high accuracies and regularization techniques are applied to acquire model generalization.

2.4.1 The datasets

Accelerometer tri-axial sensor data is collected from six subjects who performed seven different

activities while the accelerometers were attached to their front legs. Each AX3 was set to record

with a range of ± 8g for all the datasets except for one high sampling rate measurement at 1600

Hz the range is increased to ± 16g since this measurement was necessary for another research

topic. These sensor data is sampled at 5 different sampling rates. Table 2.5 gives an overview of

each gathered dataset for each subject number with the number of samples, the type of excercise

and the type of underground.
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Dataset Subject number sampling rate Number of samples Type of exercising Underground

1 1 25 Hz 10899 (29.61% walk, 34.10% trot, 9.27% canter, 9.80% stand ) Longed Dry sand mixed with polyflakes

2 1 25 Hz 13262 (65.61% walk, 25.32% trot, 3.20% canter, 5.53% stand ) Ridden Dry sand mixed with polyflakes

3 1 50 Hz 22725 (41.50% walk, 29.32% trot, 3.60% canter, 16.01% stand ) Longed Wet sand mixed with polyflakes

4 1 50 Hz 35383 (72.16% walk, 21.22% trot, 4.14% stand ) Ridden Wet sand mixed with polyflakes

5 1 100 Hz 101649 (24.47% walk, 39.54% trot, 14.56% canter, 1.72% stand ) Longed Dry sand mixed with polyflakes

6 2 25 Hz 21766 (47.54% walk, 16.77% trot, 3.70% canter, 17.06% stand ) Longed Dry sand mixed with polyflakes

7 2 25 Hz 10658 (44.39% walk, 30.02% trot, 15.0% canter, 4.18% stand ) Ridden Dry sand mixed with polyflakes

8 2 50 Hz 18940 (39.24% walk, 37.47% trot, 5.93% canter, 11.84% stand ) Longed Wet sand mixed with polyflakes

9 2 50 Hz 21559 (38.97% walk, 24.09% trot, 24.49% canter, 5.63% stand ) Ridden Wet sand mixed with polyflakes

10 2 50 Hz 17996 (24.79% flank-watching) None Dry sand mixed with polyflakes

11 2 50 Hz 13201 (79.72% walk, 1.78% stand ) None Hard underground

12 2 50 Hz 15298 (35.27% walk) None Field

13 2 100 Hz 87539 (28.20% walk, 28.99% trot, 13.15% canter, 11.16% stand ) Longed Dry sand mixed with polyflakes

14 2 100 Hz (43.38% walk, 37.22% trot, 9.02% canter, 7.50% stand ) Ridden Dry sand mixed with polyflakes

15 2 200 Hz 93603 (26.90% walk, 23.99% trot, 9.37% canter, 18.69% stand ) Longed Dry sand mixed with polyflakes

16 2 200 Hz 98197 (38.18% walk, 41.47% trot, 9.21% canter, 8.56% stand ) Ridden Dry sand mixed with polyflakes

17 2 1600 Hz 666952 (25.09% walk, 29.06% trot, 17.20 % canter, 9.65% stand ) Longed Dry sand mixed with polyflakes

18 3 25 Hz 12306 (44.77% walk, 24.35% trot, 6.40% canter, 11.36% stand ) Longed Dry sand mixed with polyflakes

19 3 50 Hz 19159 (42.99% walk, 27.30% trot, 6.58% canter, 9.23% stand ) Longed Dry sand mixed with polyflakes

20 3 100 Hz 53769 (25.09% walk, 21.29% trot, 6.93% canter, 2.37% stand ) Longed Dry sand mixed with polyflakes

21 3 200 Hz 75848 (51.02% walk, 25.62% trot, 4.41% canter, 5.08% stand) Longed Dry sand mixed with polyflakes

22 4 50 Hz 32130 (24.04% walk, 23.04% trot, 11.95% canter, 21.34% stand) Longed Dry sand mixed with polyflakes

23 4 50 Hz 29571 (43.08% walk, 31.73% trot, 12.33% canter, 6.86% stand) Ridden Dry sand mixed with polyflakes

24 4 50 Hz 4863 ( 26.97% walk, 4.91% trot, 23.60% stand, 27.20% roll) None Dry sand mixed with polyflakes

25 4 50 Hz 1420 ( 37.18% walk, 6.27% stand, 35.99% roll) None Dry sand mixed with polyflakes

26 4 50 Hz 9080 (32.15 % paw) None Hard underground

27 4 50 Hz 7178 (11.63 % walk, 12.38 % roll, 1.53 % paw) None Dry sand mixed with polyflakes

28 4 200 Hz 90646 (22.45% walk, 33.22 % trot, 14.29% canter, 7.48 % stand) Longed Dry sand mixed with polyflakes

29 4 200 Hz 114264 (43.47% walk, 24.35 % trot, 13.61% canter, 4.83 % stand) Ridden Dry sand mixed with polyflakes

30 4 200 Hz 32998 (15.85 % roll) None Dry sand mixed with polyflakes

31 4 200 Hz 6486 (26.73 % walk, 51.37 % roll) None Dry sand mixed with polyflakes

32 5 50 Hz 114264 (43.64% walk, 38.80 % trot, 7.79% canter, 3.57 % stand) Ridden Dry sand mixed with polyflakes

33 6 50 Hz 44813 (30.90% walk, 15.69 % trot, 4.72% canter, 8.32 % stand) Longed Dry sand mixed with polyflakes

Table 2.5: Datasets with subject number, sampling rate, number of samples as well as exercise type and

track surface at data collection.

As indicated earlier, the class proportions of the seven studied activities are not distributed evenly.

In Figure 2.10 a bar chart of the proportions of the studied movements of all horses is depicted.

The class walk is mainly present with a share of 42.43% followed by trot, canter, stand, roll,

paw and flank watching with a proportion of 34.10%, 11.54%, 9.61%, 1.24%, 0.62% and 0.47%,

respectively.
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Figure 2.10: Bar chart of the movement class proportions of the studied movements of all horses.

2.4.2 Further preprocessing

As illustrated in figure 2.11, sensor data is separated into windows of n values, which can be varied

according to the sampling sampling rate of the dataset. This list with chuncks of data with length

n is then shuffled making sure that the model remains general and overfits less. Afterwards, the

data chuncks are filtered so that the n-real value vector stands for one activity at the time. Finally,

the data is normalized per batch of measurements along every axis.

Figure 2.11: The shuffle and filter step when preprocessing the dataset.

The normalized data is separated in training and test data. First, split testing is used, this means

that the apportion of the data into training and test sets is done at random. In this study, an

66-34 split ratio is used as found in the literature [28]. Secondly, the training and test set are

uploaded separately to the algorithm.
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2.4.3 The architecture

Now the overall architecture of the CNNs is described. CNNs are a specific type of neural networks

that are generally composed of different layers as shown in Figure 2.12.

Figure 2.12: Architecture of a traditional CNN [8].

In machine learning, given an observation of an input, a probability distribution over a set of

classes, is generated as an probability feature vector with dimensions number of classes ×1. During

the training phase, input data with certain dimensions is transformed to a vector with this size

with the help of convolution, pooling and fully connected layers.

Types of layers and hyper parameters

The convolution layer (CONV) uses filters, also called kernels, that execute convolution operations

as it is scanning the input data I with respect to its dimensions. Its hyper parameters include the

filter size F and stride S. The resulting output O is called feature map or activation map.
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Figure 2.13: The convolution step whit input I × I, filter F × F and output O ×O ×K.

An exemplar convolution step is depicted in Figure 2.13. Each filter is a matrix of trainable

weights. As the filter moves over the data, a convolution operation is performed between the

data and each filter. The result is a matrix with the element-wise product and sum of the filter

matrix and the input data. When training data, these weights change, and so when it is time

to evaluate accelerometer data, these weights return high values if it thinks it is seeing a pattern

it has seen before. The combinations of high weights from various filters let the network predict

the behaviour based on accelerometer data. These weights of the kernels are the parameters that

need to be trained and are updated in a step called backpropagation. The goal of backpropagation

is to optimize the weights so that the neural network can learn how to correctly map arbitrary

inputs to outputs. For the convolutional layer, the number of parameters that need to be trained

is calculated as follows:

(F × F + 1) ·K (2.2)

The stride S indicates the number of pixels by which the window moves after each operation.

The pooling layer (POOL) is a downsampling operation as depicted in Figure 2.14 which signifi-

cantly reduces computational complexity, typically applied after a convolution layer. It partitions

the input data I into a set of non-overlapping rectangles and, for each such sub-region, outputs a

value. The idea is that the exact location of a feature is less important than its rough location

relative to other features. The output O is called the pooled feature map. Its hyperparameters

include again the filter size F and stride S. The pooling operation used in this research, max-

pooling, is characterized by outputting the maximum value among a set of nearby inputs. The

max-pooling layers do not have any weight to be updated so there are no parameters trained in

this layer.
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Figure 2.14: The max-pooling step with input I × I, filter F × F and output O ×O.

The convolution layer and the pooling layer can be fine-tuned with respect to the hyperparameters

e.g. the dimensions of the filter and the stride.

The fully connected layer (FC) operates on a flattened input (features from the stacked convolu-

tional and pooling layers are flattened to form feature vectors) where each input is connected to

all neurons. These layers are generally found towards the end of CNN architectures and can be

used to optimize objectives such as class scores.

Zero-padding

The zero-padding (ZP) technique as depicted in Figure 2.15, adds symmetrically zeroes to the

input matrix, during the convolution, to keep the size of the convolutional output and input

equal. It helps to maintain desirable volume sizes and to preserve the border data. It is popular

to apply the zero-padding technique for the 2-D CNN, and those models with the zero-padding

can achieve the state-of-art performance in their tasks [29].
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Figure 2.15: The zero-padding technique.

Activation functions

Activation functions are used to introduce non-linear properties to a neural network. It means that

the CNN can successfully predict the class of a function which is divided by a decision boundary

which is not linear. An activation function squashes the output value of a node into a range. In

this study, two types of activation functions are used: Rectified Linear Unit and Softmax.

The ReLu function is defined as follows [30]:

f(x) =

{
0 for x < 0

x for x ≥ 0
(2.3)

The ReLu function takes a input ‘x’ and returns ‘x’ if it is positive, otherwise it returns zero. A

ReLu function is used here because combining deep convolutional neural networks with ReLUs

allows a faster training than for example their equivalents with hyperbolic functions [31].

The Softmax function is defined as follows [32]:
p1

...

pn

 with pi =
exi∑n
1 e

xj
(2.4)

The softmax function does exponentiation and normalization over the feature vector input of

scores x via the sum of exponents and outputs a vector of output probability p at the end of the

architecture. It squashes a vector of size n between 0 and 1. A combination of a fully-connected

layer and a softmax classifier, also called a softmax layer acting as topmost layer, can be utilized

to recognize distinct activities.

An interesting parameter can be calculated from the output of the softmax function i.e., the

negative log-likelihood, also called the cross-entropy loss. The cross-entropy loss is defined as
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follows [33]:

L(pi) = −ln(pi) (2.5)

This is summed for all the correct classes. The loss becomes high at smaller probabilities and

decreases at larger values. Because the loss function is the summation of the probabilities of all

the correct classes, whenever the network assigns a high probability at the correct class, the loss

is low, but when the network assigns a low probability at the correct class, the loss is high.

Regularization techniques

Regularization techniques are used to control the overfitting of data during training because it is a

considerable drawback since generalization of the model is endangered. Overfitting happens when

a model learns the detail and noise in the training data to the extent that it negatively impacts

the performance of the model on new data. In this model, two regularization techniques are used:

dropout and L2 regularization.

Dropout modifies the network itself to avoid overfitting. In this work, different dropout ratios

were tested at different layers of the network to prevent the model from overfitting. It works by

randomly and temporarily deleting a node in the network during the training phase to inhibit the

neurons from adjusting exceedingly well to the training data. As the neurons were dropped out,

the connecting weights will be ruled out from updating. In this way, the dropped out neurons do

not contribute to the forward pass and do not take part in back-propagation. This compels the

network to learn from the flawed patterns and thus improve the generalization of the model [34].

In our proposed CNN architecture, dropout is applied after the max-pooling layers.

L2 regularization, also named weight decay, is a regularization method that adds an extra term

λ
∑

w w
2 into the loss function that penalizes large weights [32]:

L = L0 + λ
∑
w

w2 (2.6)

where L0 is the unregularized cost function, and λ is the weight decay coefficient.

In this study, a multilayer convolutional network, is used with two convolutional layers, which

are followed by max-pooling layers, and two fully connected layers. The output of the last fully-

connected layer is fed to a 7-way softmax layer which produces a distribution over the seven class

labels: stand, walk, trot, canter, roll, paw, flank watching. Features are automatically extracted

from the preprocessed time-series sensor data. A detailed overview of all the layers, with the feature

map input and output size and the number of trainable parameters can be found in Table 2.6.

The first convolutional layer filters the n × 6 × 1 input acceleration data with 64 kernels of size

3 × 1 and stride 1. The L2 regularization technique is used in this layer with a weight decay

coefficient of 0.01 [35]. After the first convolutional layer a zero-padding is used such that the

output has the same length as the original input. Then a max-pooling operation is done. The

second convolutional layer takes as input the (pooled) output of the first convolutional layer and
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filters it with 16 kernels of size 5 × 2 and stride 1. Both layers contain an activation layer using

rectified units (ReLUs) and dropout of 0.55 is used [34]. The Adam optimizer is used for training

the neural network through back propagation. Training is done for 400 epochs, with an early

stopping criterion of halting training when there is no increase in accuracy during the last 60

epochs [32].

Layer Illustration
Input and

output size

Number

of

parame-

ters

CONV

n× 6× 1

(n− 2)× 6× 64

256

ZP

(n− 2)× 6× 64

n× 6× 64

0

POOL

n× 6× 64

n
2 × 2× 64

0
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DROPOUT

n
2 × 2× 64

n
2 × 2× 64

0

CONV

n
2 × 2× 64

(n2 − 4)× 1× 64

10256

POOL

(n2 − 4)× 1× 16

(
n
2 −4)

3 × 1× 16

0

DROPOUT

(n
2 −4)

3 × 1× 16

(n
2 −4)

3 × 1× 16

0

FLATTEN

(n
2 −4)

3 × 1× 16

16
(n
2 −4)

3

0
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FC

16
(n
2 −4)

3

50

(16
(n
2 −4)

3 +

1) · 50

FC

50

10

510

SOFTMAX

10

7

77

Table 2.6: Overview of model architecture.

Table 2.7 shows the experimental setup.
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Parameter Value

The size of the input vector n

The number of input channels 6

The number of feature maps 64-16

Filter size 3× 1 - 5× 2

Stride 1

Pooling size 2× 3 - 3× 1

Activation function ReLu and Softmax

Weight decay 0.01 (L2 regularization)

The probability of dropout 0.55

Maximum epochs 400

Optimization (back propagation) Adam optimizer

Table 2.7: Experimental setup.



RESULTS 30

Chapter 3

Results

The deep network in this work is developed and evaluated in Python language using Keras with

Tensorflow as backend. The experiments are performed on a MacBook Pro with an Intel Core

i5, CPU (2.5 GHz), 4 GB 1600 MHz DDR3 memory and an Intel HD Graphics 4000 1536 MB

graphics card. Each training epoch took between approximately 1 s to 30 s to complete.

Figure 3.1 illustrates exemplar two second data windows of the four gaits and the other behaviours,

from the left and right accelerometer worn on the lateral side of the tendon boot. Standing data

typically appear as constant signals indicating less movement (figure 3.1(a)) while faster gait data

consist of increasing fluctuating movements (figure 3.1(b), 3.1(c) and 3.1(d)).

(a) Stand (b) Walk (c) Trot (d) Canter

(e) Roll (f) Paw (g) Flank watching

Figure 3.1: Typical accelerometer patterns of (a) stand, (b) walk, (c) trot, (d) canter, (e) roll, (f) paw

and (g) flank watching in a 2 s window. The blue, yellow, green lines represent X,Y,Z signals

from the left accelerometer and the red, purple and brown lines represent X,Y,Z signals from

the right accelerometer , respectively.

To train the convolutional neural network, separate training and validation sets are needed and

can be selected in various ways. First, a training and validation set are obtained by automatically
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splitting the training and the validation data with a fixed ratio of 66/34 referred to as the ’First

dataset’. In this case it is very likely that validation data of a particular behaviour of one horse is

already seen by the model during the training phase. If the model then selects the wrong features,

validation accuracies on an unseen horse could be low and the model would lack the ability to

generalise. Secondly, the 50 Hz dataset, which contains every behaviour, is resampled to 25 Hz,

100 Hz and 200 Hz and merged with the original dataset at that sampling rate referred to as the

’Second dataset’. The model can then be assessed for any behaviour at each sampling rate. Again

automatic split testing is used to obtain the training and validation set. Finally, the separation of

the training and validation data is attained manually and as a result the model is not validated on

data from a seen horse referred to as the ’Third dataset’. In this case data from the lame horse is

used to validate our model while it is trained on healthy horses, to further asses the generalization

of the model.

First dataset

The acquired training dataset consists of the merged accelerometer data from the measurements at

equal sampling rate. The number of labelled rows, the total time of movement data and the number

of different subjects in the final dataset is displayed in Table 3.1. 40% of the total measured time

of movement data is measured at a sampling rate of 50 Hz from six different subjects performing

seven different behaviours. Only datasets 11 and 12 as depicted in Table 2.5 are not taken into

account since those were preprocessed at a later stage.

25 Hz 50 Hz 100 Hz 200 Hz 1600 Hz

Time measured [s] 2752 5492 3006 2560 417

Number of samples 68800 274580 300640 511920 666952

Number of subjects 3 6 3 3 1

Number of behaviours 4 7 4 5 4

Table 3.1: Total time of movement data, number of samples, number of subjects and number of be-

haviours for each sampling rate of the merged accelerometer data.

The training data for the CNN is obtained by automatically splitting the dataset in two parts:

two thirds for training and one third for testing. The per class and overall validation accuracy is

presented in Table 3.2 for a time interval ranging from 0.2 s to 3 s. At lower sampling rates i.e.,

25 Hz and 50 Hz, the network cannot be trained at short time segments since the size of the input

vector becomes too small for the designed neural network.

25 Hz 50 Hz 100 Hz 200 Hz 1600 Hz

n = 0.2 s

Stand - - 99.63 100.00 100.00

Walk - - 97.30 98.66 97.78

Trot - - 90.67 98.58 96.11

Canter - - 32.72 96.99 98.18
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Roll - - - 70.83 -

Paw - - - - -

Flank watching - - - - -

Validation accuracy - - 85.00 97.98 97.53

n = 0.4 s

Stand - 100.00 100.00 100.00 100.00

Walk - 99.11 99.58 100.00 100.00

Trot - 91.21 98.30 99.67 100.00

Canter - 24.56 91.64 99.53 96.30

Roll - 37.70 - 82.50 -

Paw - - - - -

Flank watching - 12.86 - - -

Validation accuracy - 87.39 97.82 99.42 99.28

n = 0.6 s

Stand 100.00 98.99 100.00 100.00 100.00

Walk 97.18 99.74 99.81 100.00 100.00

Trot 88.28 97.77 99.81 100.00 100.00

Canter 0.00 93.69 99.36 98.72 100.00

Roll - 85.71 - 96.55 -

Paw - 83.33 - - -

Flank watching - 86.36 - - -

Validation accuracy 89.22 97.94 99.69 99.82 100.00

n = 0.8 s

Stand 100.00 99.42 100.00 100.00 100.00

Walk 99.81 100.00 100.00 100.00 100.00

Trot 98.57 98.82 99.74 100.00 100.00

Canter 0.00 98.91 100.00 100.00 100.00

Roll - 77.41 - 100.00 -

Paw - 0.00 - - -

Flank watching - 94.44 - - -

Validation accuracy 91.20 98.97 99.90 100.00 100.00

n = 1 s

Stand 100.00 98.80 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00 100.00

Trot 97.21 99.33 99.71 100.00 97.78

Canter 0.00 98.63 100.00 100.00 92.00

Roll - 90.48 - 72.22 -

Paw - 95.24 - - -

Flank watching - 88.00 - - -

Validation accuracy 91.37 99.17 99.87 99.24 97.14

n = 1.2 s

Stand 100.00 99.16 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00 100.00

Trot 99.37 100.00 100.00 100.00 100.00

Canter 0.00 99.07 100.00 98.39 100.00
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Roll - 94.12 - 90.00 -

Paw - 94.12 - - -

Flank watching - 100.00 - - -

Validation accuracy 94.00 99.69 100.00 99.63 100.00

n = 1.4 s

Stand 100.00 100.00 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00 100.00

Trot 100.00 100.00 100.00 100.00 100.00

Canter 100.00 100.00 100.00 100.00 100.00

Roll - 84.21 - 92.31 -

Paw - 90.91 - - -

Flank watching - 92.86 - - -

Validation accuracy 100.00 99.49 100.00 99.78 100.00

n = 1.6 s

Stand 100.00 100.00 100.00 100.00 100.00

Walk 100.00 99.79 100.00 100.00 100.00

Trot 100.00 100.00 100.00 100.00 100.00

Canter 0.00 100.00 98.31 100.00 75.00

Roll - 93.33 - 83.33 -

Paw - 100.00 - - -

Flank watching - 84.62 - - -

Validation accuracy 92.05 99.57 99.78 99.75 95.24

n = 1.8 s

Stand 100.00 98.48 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00 100.00

Trot 100.00 100.00 100.00 99.20 100.00

Canter 96.43 100.00 98.28 97.44 90.00

Roll - 81.82 - 83.33 -

Paw - 100.00 - - -

Flank watching - 92.31 - - -

Validation accuracy 99.76 99.46 99.74 99.15 98.21

n = 2 s

Stand 100.00 98.53 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00 100.00

Trot 99.11 100.00 100.00 100.00 100.00

Canter 95.65 100.00 100.00 100.00 71.43

Roll - 90.91 - 88.88 -

Paw - 100.00 - - -

Flank watching - 83.33 - - -

Validation accuracy 99.46 99.46 100.00 99.68 95.83

n = 2.2 s

Stand 100.00 100.00 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00 100.00

Trot 100.00 100.00 99.30 100.00 100.00

Canter 0.00 100.00 100.00 100.00 50.00
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Roll - 71.43 - 50.00 -

Paw - 100.00 - - -

Flank watching - 91.67 - - -

Validation accuracy 89.82 99.55 99.68 98.93 90.70

n = 2.4 s

Stand 100.00 100.00 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00 100.00

Trot 100.00 100.00 100.00 100.00 100.00

Canter 100.00 100.00 100.00 100.00 85.71

Roll - 50.00 - 100.00 -

Paw - 100.00 - - -

Flank watching - 75.00 - - -

Validation accuracy 100.00 99.66 100.00 100.00 97.50

n = 2.6 s

Stand 100.00 100.00 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00 100.00

Trot 100.00 100.00 100.00 100.00 100.00

Canter 100.00 100.00 100.00 89.66 25.00

Roll - 60.00 - 50.00 -

Paw - 75.00 - - -

Flank watching - 75.00 - - -

Validation accuracy 100.00 98.91 100.00 98.26 82.86

n = 2.8 s

Stand 100.00 98.11 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00 100.00

Trot 100.00 100.00 99.06 100.00 100.00

Canter 0.00 100.00 100.00 93.33 40.00

Roll - 100.00 - 100.00 -

Paw - 100.00 - - -

Flank watching - 100.00 - - -

Validation accuracy 94.42 99.80 99.57 99.05 90.63

n = 3 s

Stand 100.00 100.00 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00 100.00

Trot 100.00 100.00 98.91 100.00 100.00

Canter 0.00 97.22 100.00 90.00 66.67

Roll - 100.00 - 100.00 -

Paw - 100.00 - - -

Flank watching - 100.00 - - -

Validation accuracy 94.82 99.79 99.53 98.97 96.55

Table 3.2: Accuracies for each behavioural class and overall accu-

racy for each sampling rate.
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Second dataset

Not all movements are measured at any sampling rate, therefore the resampling method is proposed

to resolve the imbalanced dataset by processing the dataset and producing a balanced dataset.

This technique consists of two implementations: oversampling and undersampling. The 50 Hz

dataset, which contains every behaviour, is resampled to the three different sampling rates i.e.,

25 Hz, 100 Hz and 200 Hz and merged with the original dataset at the same sampling rate. The

total time measured, the original number of samples and the number of samples after resampling

can be found in Table 3.3. The number of subjects is six and the number of behaviours is seven.

25 Hz 50 Hz 100 Hz 200 Hz

Time measured [s] 8244 5492 8498 8052

Original number of samples 343380 274580 575220 786500

Number of samples after resampling 206090 274580 849800 1610240

Number of subjects 6

Number of behaviours 7

Table 3.3: Total time of movement data and number of samples for each sampling rate of the merged

accelerometer data including resampled datasets.

The per class and overall validation accuracy is presented in Table 3.4 for a time interval ranging

from 0.6 s to 3 s.

25 Hz 50 Hz 100 Hz 200 Hz

n = 0.6 s

Stand 100.00 98.99 100.00 93.37

Walk 99.64 99.74 100.00 99.81

Trot 22.29 97.77 100.00 99.35

Canter 0.00 93.69 96.61 99.39

Roll 39.29 85.71 100.00 96.77

Paw 0.00 83.33 100.00 91.11

Flank watching 0.00 86.36 40.00 91.37

Validation accuracy 67.59 97.94 99.28 98.75

n = 0.8 s

Stand 100.00 99.42 98.81 97.13

Walk 100.00 100.00 99.92 99.84

Trot 80.14 98.82 99.48 99.33

Canter 78.02 98.91 98.37 98.82

Roll 0.00 77.41 88.89 98.00

Paw 0.00 0.00 0.00 0.00

Flank watching 0.00 94.44 78.94 58.62

Validation accuracy 89.89 98.97 99.10 98.78

n = 1 s

Stand 100.00 98.80 98.54 97.36

Walk 99.91 100.00 99.90 100.00
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Trot 94.23 99.33 99.48 99.71

Canter 92.17 98.63 99.17 99.55

Roll 60.00 90.48 91.30 87.88

Paw 61.54 95.24 100.00 92.86

Flank watching 61.54 88.00 77.78 90.63

Validation accuracy 96.55 99.17 99.22 99.24

n = 1.2 s

Stand 100.00 99.16 98.81 99.43

Walk 100.00 100.00 100.00 100.00

Trot 98.95 100.00 99.84 99.82

Canter 98.78 99.07 98.96 98.32

Roll 68.42 94.12 86.67 95.00

Paw 88.24 94.12 88.89 92.86

Flank watching 92.31 100.00 83.33 71.43

Validation accuracy 99.12 99.69 99.37 99.23

n = 1.4 s

Stand 100.00 100.00 97.80 95.90

Walk 99.87 100.00 99.86 99.85

Trot 98.73 100.00 99.60 99.57

Canter 97.39 100.00 98.81 99.21

Roll 100.00 84.21 100.00 100.00

Paw 100.00 90.91 90.00 92.31

Flank watching 57.14 92.86 88.89 80.00

Validation accuracy 98.95 99.49 99.33 99.10

n = 1.6 s

Stand 99.25 100.00 100.00 99.22

Walk 100.00 99.79 100.00 100.00

Trot 98.84 100.00 99.58 100.00

Canter 96.49 100.00 99.30 99.07

Roll 92.31 93.33 84.62 95.83

Paw 90.00 100.00 80.00 83.33

Flank watching 83.33 84.62 93.33 84.21

Validation accuracy 99.01 99.57 99.50 99.48

n = 1.8 s

Stand 100.00 98.48 98.61 95.89

Walk 100.00 100.00 100.00 100.00

Trot 99.68 100.00 99.45 99.19

Canter 100.00 100.00 99.00 98.04

Roll 100.00 81.82 50.00 90.48

Paw 100.00 100.00 100.00 100.00

Flank watching 60.00 92.31 100.00 90.91

Validation accuracy 99.40 99.46 99.38 99.00

n = 2 s

Stand 99.03 98.53 100.00 100.00

Walk 100.00 100.00 100.00 100.00
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Trot 99.68 100.00 100.00 99.33

Canter 97.65 100.00 99.07 98.97

Roll 100.00 90.91 80.00 94.44

Paw 100.00 100.00 100.00 100.00

Flank watching 50.00 83.33 92.31 73.68

Validation accuracy 99.10 99.46 99.72 99.06

n = 2.2 s

Stand 100.00 100.00 100.00 98.55

Walk 100.00 100.00 100.00 100.00

Trot 99.66 100.00 100.00 99.63

Canter 100.00 100.00 98.98 100.00

Roll 100.00 71.43 100.00 92.86

Paw 100.00 100.00 100.00 100.00

Flank watching 66.67 91.67 75.00 84.62

Validation accuracy 99.70 99.55 99.69 99.42

n = 2.4 s

Stand 100.00 100.00 98.55 100.00

Walk 100.00 100.00 100.00 100.00

Trot 100.00 100.00 99.65 100.00

Canter 100.00 100.00 98.94 98.67

Roll 90.91 50.00 81.82 100.00

Paw 100.00 100.00 90.00 80.00

Flank watching 33.33 75.00 100.00 62.50

Validation accuracy 99.23 99.66 99.32 99.36

n = 2.6 s

Stand 100.00 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00

Trot 100.00 100.00 98.49 100.00

Canter 100.00 100.00 98.81 100.00

Roll 100.00 60.00 62.50 100.00

Paw 100.00 75.00 100.00 83.33

Flank watching 85.71 75.00 100.00 66.67

Validation accuracy 99.88 98.91 99.00 99.58

n = 2.8 s

Stand 100.00 98.11 98.21 98.53

Walk 100.00 100.00 100.00 100.00

Trot 100.00 100.00 99.19 98.96

Canter 100.00 100.00 100.00 100.00

Roll 100.00 100.00 87.50 92.31

Paw 100.00 100.00 100.00 40.00

Flank watching 71.43 100.00 100.00 40.00

Validation accuracy 99.74 99.80 99.46 98.48

n = 3 s

Stand 100.00 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00
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Trot 100.00 100.00 100.00 100.00

Canter 96.61 97.22 94.29 96.88

Roll 100.00 100.00 100.00 90.91

Paw 100.00 100.00 100.00 100.00

Flank watching 40.00 100.00 100.00 60.00

Validation accuracy 99.28 99.79 99.41 99.17

Table 3.4: Accuracies for each behavioural class and overall accu-

racy for each sampling rate.

Third dataset

The datasets are splitted manually into a training set and a validation set. The model is trained

on all the datasets available at a certain sampling rate except for the lame horse 3, which is used

to validate the CNN. At 1600 Hz, one dataset is available from horse 2 so the algorithm is not

validated for this sampling rate. Furthermore, horse 3 performed only four movements i.e., ’stand’,

’walk’, ’trot’ and ’canter’ and solely those are thus investigated. In Table 3.5 the time measured,

the number of samples and the number of subjects is presented for the training dataset and the

validation dataset.

25 Hz 50 Hz 100 Hz 200 Hz

Training data

Time measured [s] 2261 5623 2469 2180

Number of samples 56525 281130 246880 435960

Number of subjects 2 5 2 2

Validation data

Time measured [s] 492 383 538 379

Number of samples 12306 19159 53769 75848

Number of subjects 1

Number of behaviours 4

Table 3.5: Total time of movement data, number of samples and number of subjects for each sampling

rate of the training dataset and the validation dataset.

The per class and overall validation accuracy is presented in Table 3.6 for a time interval ranging

from 0.6 s to 3 s.

25 Hz 50 Hz 100 Hz 200 Hz

n = 0.6 s

Stand 100.00 100.00 100.00 100.00

Walk 100.00 100.00 99.05 100.00

Trot 75.52 87.95 81.36 99.35

Canter 0.00 76.32 84.91 100.00

Validation accuracy 86.17 94.42 90.63 99.81
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n = 0.8 s

Stand 100.00 100.00 100.00 100.00

Walk 99.25 100.00 99.35 100.00

Trot 95.10 88.52 97.67 100.00

Canter 0.00 89.29 87.50 100.00

Validation accuracy 91.57 95.57 97.32 100.00

n = 1 s

Stand 100.00 100.00 100.00 100.00

Walk 97.20 100.00 100.00 100.00

Trot 97.37 94.90 96.00 100.00

Canter 0.00 91.30 100.00 100.00

Validation accuracy 91.36 97.68 98.47 100.00

n = 1.2 s

Stand 100.00 100.00 100.00 100.00

Walk 98.29 100.00 100.00 100.00

Trot 98.92 97.53 98.80 100.00

Canter 0.00 76.47 100.00 100.00

Validation accuracy 92.47 97.56 99.52 100.00

n = 1.4 s

Stand 100.00 100.00 100.00 100.00

Walk 99.32 100.00 100.00 100.00

Trot 98.72 95.65 98.53 100.00

Canter 0.00 100.00 100.00 100.00

Validation accuracy 93.53 98.56 99.43 100.00

n = 1.6 s

Stand 100.00 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00

Trot 100.00 96.42 98.28 100.00

Canter 0.00 100.00 100.00 100.00

Validation accuracy 93.87 98.86 99.32 100.00

n = 1.8 s

Stand 100.00 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00

Trot 98.28 94.00 97.87 100.00

Canter 0.00 90.91 100.00 100.00

Validation accuracy 92.92 97.40 99.18 100.00

n = 2 s

Stand 100.00 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00

Trot 98.15 95.65 97.67 100.00

Canter 0.00 100.00 100.00 75.00

Validation accuracy 94.24 98.58 99.10 99.22

n = 2.2 s

Stand 100.00 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00

Trot 97.67 97.56 100.00 100.00

Canter 0.00 100.00 100.00 100.00
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Validation accuracy 94.16 99.17 100.00 100.00

n = 2.4 s

Stand 100.00 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00

Trot 100.00 97.30 96.97 100.00

Canter 0.00 100.00 100.00 100.00

Validation accuracy 94.89 99.10 98.84 100.00

n = 2.6 s

Stand 100.00 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00

Trot 100.00 93.94 96.55 100.00

Canter 0.00 100.00 100.00 100.00

Validation accuracy 94.89 97.94 98.72 100.00

n = 2.8 s

Stand 100.00 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00

Trot 100.00 100.00 96.30 100.00

Canter 0.00 100.00 100.00 100.00

Validation accuracy 96.09 100.00 98.57 100.00

n = 3 s

Stand 100.00 100.00 100.00 100.00

Walk 100.00 100.00 100.00 100.00

Trot 100.00 100.00 100.00 100.00

Canter 0.00 80.00 100.00 100.00

Validation accuracy 95.08 98.73 100.00 100.00

Table 3.6: Accuracies for each behavioural class and overall accu-

racy for each sampling rate.

In Figure 3.2 validation and training data is depicted for four sampling rates i.e., 25 Hz, 50 Hz,

100 Hz and 200 Hz of the three datasets.
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Figure 3.2: Training and validation data for three datasets at sampling rate 25 Hz, 50 Hz, 100 Hz and

200 Hz.

In Section 3.1 the effects of the sampling rate on the model accuracy is discussed, Section 3.2

takes a closer look at the effects of the length of the time interval and in Section 3.3 the effect of

the combination of the time interval and sampling rate is examined for the validation accuracies

obtained in Table 3.2, 3.4 and 3.6. In the last Section 3.4 the effect of the underground on the

classification accuracy of the class walk is studied.

3.1 Effects of the sampling rate of the accelerometer

A lower sampling rate could extend the battery lifetime by reducing storage load and minimizing

both sensing and transmitting energies. For this purpose, it is important to investigate the relation

between the sampling rate and the performance of the algorithm.

First dataset

In Figure 3.3 the overall validation accuracy as function of the sampling rate is depicted for time

intervals ranging from 0.2 s to 3 s.
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Figure 3.3: Performance of convnet with increasing sampling rate.

At lower sampling rates, for smaller time intervals, the accuracy decreases except for the following

time intervals (1.4 s, 1.8 s, 2 s, 2.4 s, 2.6 s) for which the accuracy remains more or less constant

from 25 Hz to 200 Hz. When taking a closer look at the class accuracies which can be found in

Table 3.2, the main cause of the lower accuracies at a sampling rate of 25 Hz is due to the poor

classification of the gait canter which is at 8 out of 13 time intervals zero. When looking at the

8 confusion matrices as partially depicted in Figure 3.4 for this poorly classified canter instances,

one can see that the class canter is in all the matrices primarily classified as trot and to a lesser

extend as walk. The class canter has a share of (7%) of the total dataset of 25 Hz and is thus the

least present so fewer instances are available for training.
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(a) n = 0.8 s (b) n = 1 s

(c) n = 1.6 s (d) n = 3 s

Figure 3.4: Confusion matrix for training and test set at a sampling rate of 25 Hz for different time

intervals.

For the other 5 of the 13 time intervals, the class canter reaches an accuracy of 95% or above. In

Figure 3.5 the training and validation accuracy plots for two high scoring (1.4 s and 2.4 s) and

two low scoring (0.8 s and 1.6 s) time intervals are depicted. The validation accuracy for n=0.8 s

highly fluctuates and for n=1.6 s reaches a plateau. For the latter time interval the validation

curve intersects the training accuracy curve. For the two high performing time intervals, the

accuracy of the training and validation set gradually increase which means that the algorithm

learns generalizable features. In Figure 3.6 the loss plots are depicted for the two high scoring

and two low scoring time intervals. Again, high fluctuations can be noticed in the validation loss

plot for the time interval of 0.8 s. The loss plot of the low accuracy time interval of 1.6 s shows a

gradually decrease together with the training loss. The same applies for the high accuracy time

intervals.
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(a) n = 0.8 s, low accuracy (b) n = 1.6 s, low accuracy

(c) n = 1.4 s, high accuracy (d) n = 2.4 s, high accuracy

Figure 3.5: The training accuracy and validation accuracy results for a sampling rate of 25 Hz at low

accuracy and high accuracy time intervals.

(a) n = 0.8 s, low accuracy (b) n = 1.6 s, low accuracy

(c) n = 1.4 s, high accuracy (d) n = 2.4 s, high accuracy

Figure 3.6: The training loss and validation loss results for a sampling rate of 25 Hz at low accuracy and

high accuracy time intervals.

From 25 Hz to 50 Hz the overall accuracy increases or remains constant for most of the time
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intervals as is depicted in Figure 3.7. For time intervals greater than 0.6 s accuracies of 98.91%

and above are reached.

Figure 3.7: Performance of convnet with increasing sampling rate from 25 Hz to 50 Hz.

In the 50 Hz dataset, all behaviours are present. The classes ’roll’, ’paw’ and ’flank watching’

perform the least, while the classes stand, walk, trot and canter for most of the time intervals reach

accuracies of 100%. In Figure 3.8 the confusion matrix of a time interval of 0.6 s is presented.

The classes ’roll’ (1.3%), ’paw’ (1.3%) and ’flank watching’ (2%) are least present in the merged

dataset of 50 Hz. If the true label of an instance is flank watching, it is partially predicted as stand

at this time interval. This is as expected, since the data of flank watching appears as a more or

less constant signal such as the signal from the class stand. The class roll gets in some instances

the label canter and the paw movement is mixed in some instances with walk.

(a) n = 0.6 s

Figure 3.8: Confusion matrix for training and test set at a sampling rate of 50 Hz for a time interval of

0.6 s.

When increasing the sampling rate to 100 Hz, the accuracies increase for most of the time intervals

as is depicted in Figure 3.9.
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Figure 3.9: Performance of convnet with increasing sampling rate from 50 Hz to 100 Hz.

In the 100 Hz dataset, four classes are present i.e, ’stand’, ’walk’, ’trot’ and ’canter’. The overall

accuracy is greater than 99.53 % at time intervals above 0.4 s. The classes stand, walk, trot and

canter get classified with an accuracy of 100% in 14 out of 15, 12 out of 15, 7 out of 15 and 10 out

of 15 cases, respectively.

If the sampling rate increases from 100 Hz to 200 Hz, the overall validation accuracy decreases in

11 of the 15 cases on average with 0.47%.

Figure 3.10: Performance of convnet with increasing sampling rate from 100 Hz to 200 Hz.

In the 200 Hz dataset, the movement ’roll’ is present with a share of 2.1% in contrast to the 100

Hz dataset which does not contain this movement. The least performing classes are ’roll’ and

’canter’. When taking a closer look at the confusion matrices, as partially depicted in Figure 3.11

the class ’canter’ gets in some cases wrongly predicted as the class ’trot’. If the class roll gets

wrongly predicted, then in most cases it is as ’canter’ and ’trot’.
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(a) n = 2.2 s (b) n = 2.6 s

Figure 3.11: Confusion matrix for training and test set at a sampling rate of 200 Hz for different time

intervals.

The validation accuracy decreases in 11 out of 15 cases when increasing the sampling rate from

200 Hz to 1600 Hz as is depicted in Figure 3.12.

Figure 3.12: Performance of convnet with increasing sampling rate from 200 Hz to 1600 Hz.

The dataset of 1600 Hz contains four behaviours i.e., stand, walk, trot and canter of one horse.

The classification accuracy of ’canter’ is the lowest performing and is misclassified as trot as one

can see from the confusion matrices depicted in Figure 3.13.
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(a) n = 1.6 s (b) n = 2.2 s

Figure 3.13: Confusion matrix for training and test set at a sampling rate of 1600 Hz for different time

intervals.

The mean performance of the convolutional neural network is depicted in Figure 3.14 as a thick

line.

Figure 3.14: Mean overall accuracy of convnet with increasing sampling rate.

The sampling rate of 200 Hz gained the highest on average accuracy of 99.31%. The worst

performing sampling rate is 25 Hz with an average accuracy of 95.08%. However, the classification

accuracy was still over 82.86% for all sampling rates and all time intervals.

Second dataset

In Figure 3.15 the overall validation accuracy as function of the sampling rate is depicted for time

intervals ranging from 0.6 s to 3 s. The thick line represents the mean overall accuracy.
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Figure 3.15: Performance of convnet with increasing sampling rate.

The sampling rate of 100 Hz gained the highest on average accuracy of 99.37%. The worst

performing sampling rate is 25 Hz with a mean on average accuracy of 95.96%. The lowest

measured classification accuracy is 67.59%.

At 25 Hz, the worst performing classes at low time intervals are ’canter’, ’roll’, ’paw’ and ’flank

watching’. At higher time intervals (n > 1.4 s) the classification of flank watching stays unstable

with validation accuracies swinging between 33.33% and 85.71%. When taking a closer look at the

confusion matrices as depicted in Figure 3.16 it can be seen that ’flank watching’ gets classified

as ’stand’.

(a) n = 2.2 s (b) n = 3 s

Figure 3.16: Confusion matrix for training and test set at a sampling rate of 25 Hz for different time

intervals.

When the sampling rate is increased to 50 Hz also the overall mean validation accuracy increases

from 95.96% to 99.34%. At this sampling rate, the gait classes perform well at any time interval.

Also the other behaviours ’roll’, ’paw’ and ’flank-watching’ reach high accuracies in most time

intervals with a few exceptions.
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Increasing the sampling rate from 50 Hz to 100 Hz means a small increase in accuracy from 99.34%

to 99.37%. Again, the gait classes are validated with high accuracies and the other behaviours

reach high accuracies with a few exceptions.

Increasing the sampling rate from 100 Hz to 200 Hz leads to a minor decrease in the mean validation

accuracy from 99.37% to 99.13%. Again, the gait classes are performing well for any time interval,

the other behaviours reach also high accuracies for most time intervals with a few exceptions.

Third dataset

In Figure 3.17 the overall validation accuracy as function of the sampling rate is depicted for time

intervals ranging from 0.6 s to 3 s. The thick line represents the mean overall accuracy.

Figure 3.17: Performance of convnet with increasing sampling rate.

The sampling rate of 200 Hz gained the highest on average accuracy of 99.93% .The worst per-

forming sampling rate is 25 Hz with an average accuracy of 93.17%. However, the classification

accuracy was still over 86.17% for all sampling rates and all time intervals.

When taking a closer look at the behaviour class accuracies at the sampling rate of 25 Hz it

becomes clear that the canter gait performs the worst. In all time intervals, canter did not get

classified right on one occasion and thus has an accuracy of 0%. If a closer look is taken at the

confusion matrices as some of them depicted in Figure 3.18, it can be seen that the class canter

gets classified in any case as trot.
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(a) n = 0.6 s (b) n = 1.2 s (c) n = 1.8 s

Figure 3.18: Confusion matrix for training and test set at a sampling rate of 25 Hz for different time

intervals.

Since this misclassification occurred throughout the whole dataset, another look at the original

trot and canter signal was taken from horse 1 (one of the horses on which the model was trained)

and at the original canter signal from horse 3 (the horse on which the model was validated) since

it is possible that something went wrong during the preprocessing. Segments of those signals are

depicted in Figure 3.19.

(a) Trot training data (b) Canter training data (c) Canter validation data

Figure 3.19: Trot training data, canter training data and canter validation data.

After inspecting these segments visually, it is clear that the classifcation done during the pre-

processing phase is correct since the shape of the signal is resembling this of a canter signal as

discussed in Section 2.3. The model trained itself on the wrong features for this sampling rate.

When the sampling rate is increased to 50 Hz, the mean overall validation accuracy is 97.97%.

Stand and walk get on any instance classified right. The class trot and canter reach overall

validation accuracies between 87.95% to 100% and between 76.32% and 100%, respectively.

At sampling rate of 100 Hz, the overall mean classification accuracy gets at 98.39%. Again, stand

gets classified right on every occasion. On most instances, 11 out of 13, the class walk and canter

achieve an accuracy of 100%. The class trot has an accuracy between 81.36% and 100%.

At 200 Hz the overall classification accuracy is 99.93%. In 11 of the 13 time intervals, all data is

classified 100% correct by the algorithm.
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Comparison of performance of CNN for the three datasets

In Figure 3.20 the mean performance of the CNN with increasing sampling rate is depicted on for

the three datasets for a time interval from 0.6 s to 3 s. The scale used for the sampling rate is

logaritmic. The number between the brackets indicates the number of behaviours that are taken

into account in the training and validation of the CNN.

Figure 3.20: Performance of convnet with increasing sampling rate presented on a logarithmic scale for

three datasets.

For all datasets the accuracy increases when the sampling rate is increased from 25 Hz to 100 Hz.

However, the increase in performance from 50 Hz to 100 Hz is much smaller. From 100 Hz to

200 Hz, the accuracy for two out of three datasets decreases. For the third dataset an increase in

accuracy can be noticed.

As can be concluded from this graph, for a sampling rate of 25 Hz, the CNN performs the best

when all behaviours and all horses are taken into account. At a sampling rate of 100 Hz, the dataset

with a lower number of behaviours and horses outperforms the dataset with seven behaviours and

six horses. The CNN validated on the data of the lame horse performs the least in the range of

25 Hz to 100 Hz. At a sampling rate of 200 Hz, the CNN performs best when the training and

validation data are split up by hand. The model trained on all behaviours performs the least.

3.2 Effects of the time interval of the accelerometer data

In this Section the influence of the length of the time interval on the model accuracy is investigated

since a lower time interval and thus a lower number of samples can reduce the computational efforts

of the convolutional neural network. It is important to take the mean duration of each behaviour

in consideration since this could affect the performance of the model. From the videofiles combined

with the accelerometer data, the mean duration of each gait was calculated by taking 10 samples

according to their description in Table 2.2.
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Subject number Walk [s] Trot [s] Canter [s] Roll [s] Paw [s] Flank watching [s]

1 1.2731 0.7736 0.5783

2 1.270 0.8346 0.643 4.866

3 1.2430 0.7998 0.5362

4 1.2295 0.7218 0.604 2.206 0.5369

5 1.179 0.8095 0.592

6 1.183 0.669 0.5405

Mean 1.2296 0.76805 0.5823 2.206 0.5369 4.866

Table 3.7: Mean duration of behaviour for the participating horses.

First dataset

In Figure 3.21 the performance of the convnet as a function of the time interval for different

sampling rates is depicted. The mean duration of the behaviours are annotated with black striped

lines except for the flank-watching movement since the mean duration of this behaviour lies outside

the investigated time intervals at 4.866 s.

Figure 3.21: Performance of convnet with increasing time interval.

From the figure it can be seen that the performance of the model is lower with decreasing time

intervals in particular for sampling rates between 25 Hz and 100 Hz. If we take a closer look at

the confusion matrices of these time intervals and these sampling rates as depicted in Figure 3.22

it becomes clear that at a lower time interval, the gaits trot and canter are the worst performing

classes but when the time interval is increased, and thus the number of samples, the classification

of trot and canter improves. For the dataset of 50 Hz also other movements like roll, paw and

flank watching are present. Their classification scores are improving with increasing the time

interval from 0.4 s to 0.6 s. The sampling rates of 200 Hz and 1600 Hz reach already accuracies of

97.53% at the time interval of 0.2 s. For sampling rates between 50 Hz and 200 Hz the accuracies
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fluctuate between 97.94% and 100.00% after time intervals greater than 0.6 s while the accuracies

for sampling rates of 25 Hz and 1600 Hz fluctuate between 82.86% and 100% so the model seems

to be less stable for these sampling rates. The maximum number of epochs was not adjusted for

the sampling rate of 1600 Hz and since the input vector has a larger dimension it could be possible

that longer training was needed to converge to an optimum and reach higher accuracies.

(a) n = 0.4 s, f = 50 Hz (b) n = 0.6 s, f = 50 Hz

(c) n = 0.2 s, f = 100 Hz (d) n = 0.4 s, f = 100 Hz

Figure 3.22: Confusion matrix for training and test set at a sampling rate of 50 Hz for time intervals of

0.4 s and 0.6 s and 100 Hz for time intervals of 0.2 s and 0.4 s.

Second dataset

In Figure 3.23 the performance of the convnet as a function of the time interval for different

sampling rates is depicted.
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Figure 3.23: Performance of convnet with increasing time interval.

Most sampling rates reach already high accuracies (> 97.94) at small time intervals (n = 0.6 s).

However, the lowest sampling rate of 25 Hz reaches higher accuracies when the time interval is

greater than a full walk cycle (n = 1.2 s).

Third dataset

In Figure 3.24 the performance of the convnet as a function of the time interval for different

sampling rates is depicted.

Figure 3.24: Performance of convnet with increasing time interval.

If the time intervals decrease, for sampling rates between 25 Hz and 100 Hz, it can be seen that

the overall validation accuracies also decrease. The accuracy at 25 Hz increases from 0.6 s to 3

s but still stays significantly lower than the accuracies reached at sampling rates between 50 Hz

and 200 Hz. At sampling rates of 50 Hz and 100 Hz, the accuracy increases between 0.6 s and 1.2
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s. After 1.2 s when the time interval is greater than a full walk cycle, the accuracies stay more or

less constant. At a sampling rate of 200 Hz, the accuracy stays high and more or less constant at

time intervals ranging between 0.6 s and 3 s.

Comparison of performance of CNN for the three datasets

In Figure 3.25 the mean performance of the CNN is plotted for the three datasets for sampling

rates between 25 Hz and 200 Hz.

Figure 3.25: Mean performance of convnet with increasing time interval for the three datasets.

If the time interval decreases from 1.2 s (a full walk cycle) to 0.6 s, the overall mean validation

accuracy of the three datasets decreases. In all cases, the largest contributor to a lower accuracy is

the misclassification of ’canter’ and to a lesser extend ’roll’, ’paw’ and ’flank-watching’. As can be

noticed the mean accuracy plot for the third dataset lies lower than those of the first and second

dataset due to more spread out accuracies at higher time intervals for sampling rates between 50

Hz and 200 Hz as is shown in Figure 3.26. The fluctuations in the mean accuracy of the first

dataset are due to the fluctuations of the validation accuracy when the sampling rate is 25 Hz.

(a) First dataset (b) Second dataset (c) Third dataset

Figure 3.26: Performance of convnet with increasing time interval for three datasets for different sam-

pling rates.
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3.2.1 Model complexity

Every time interval corresponds to a number of samples depending on the sampling rate. The size

of the input vector and thus the number of samples presented to the model influences the number

of trainable parameters and thus the computational cost. The number of trainable parameters for

each layer can be found in Table 2.6. The total number of trainable parameters Npar is calculated

by summing all the trainable parameters for each layer [36]:

Npar = 11099 + (16
(n2 − 4)

3
+ 1) · 50 (3.1)

with n the number of samples.

The minimum number of samples for each dataset necessary to obtain an accuracy higher than

98% is shown in Figure 3.27 for sampling rates between 25 Hz and 100 Hz. The sampling rate of

200 Hz is not taken into account, since the minimum accuracy is already reached at the start of

the measured time interval for the three datasets and thus this would give a distorted image. For

the third dataset an accuracy above 98% is not reached at 25 Hz.

Figure 3.27: Minimum number of samples necessary to reach an overall validation accuracy higher than

98% for the three datasets.

It can be concluded, when increasing the sampling rate, the minimum number of samples necessary

to obtain an accuracy higher than 98% also needs to be increased and thus the number of trainable

parameters increases since their is a linear relationship between the number of trainable parameters

Npar and number of samples n. For the third dataset, the minimum number of samples is higher

than for the first and second dataset. For the first and second dataset, the minimum number

of samples is more or less equal at each sampling rate. The analysis of the experimental results

brings out that the first and second dataset and a lower sampling rate reduce the complexity of

the function by decreasing the quantity of trainable parameters while retaining high accuracy.
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First dataset

The accuracy of the model is depicted in function of the number of samples in Figure 3.28. It

becomes clear that the accuracy increases with increasing number of samples for sampling rates

ranging from 50 Hz to 200 Hz. At the sampling rates of 25 Hz and 1600 Hz, the accuracy is

fluctuating.

Figure 3.28: Performance of convnet with increasing number of samples for sampling rates from 25 Hz

to 1600 Hz presented on a logarithmic scale.

Second dataset

In Figure 3.29 the overall model validation accuracies of the second dataset as function of the

number of samples are plotted.

Figure 3.29: Performance of convnet with increasing number of samples for sampling rates from 25 Hz

to 200 Hz.

The accuracy at a sampling rates between 50 Hz and 200 Hz are high and more or less constant
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for each number of samples on which the model is trained. For a sampling rate of 25 Hz, the

accuracy increases as function of the number of samples.

Third dataset

In Figure 3.30 the overall model validation accuracies are plotted in function of the number of

samples.

Figure 3.30: Performance of convnet with increasing number of samples for sampling rates from 25 Hz

to 200 Hz.

As the number of samples increases, the overall model accuracy increases for sampling rates

between 25 Hz and 100 Hz. The accuracy at a sampling rate of 200 Hz is high and more or less

constant for each number of samples on which the model is trained.

3.3 Combination of time interval and sampling rate

Figure 3.31 presents the accuracy surface plots for the three datasets as function of time interval

and sampling rate generated through the obtained datapoints indicated as blue dots. The surface

plot is obtained by fitting a polynomial of degree two trough the datapoints. The low predicted

accuracies are indicated with the colour blue and the high ones with the colour red. For the first

dataset, the 1600 Hz datapoints are left out of the interpolation. The combinations that are the

least performing for the three datasets are observed in the region where both sampling rate and

time interval are low.
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(a) First dataset (b) Second dataset

(c) Third dataset

Figure 3.31: Accuracy surface plot as function of the sampling rate and the length of the time interval

for three datasets.

As can be seen from the contourplots shown in Figure 3.32 a 100% is reached in the dark red

region. As indicated with yellow cross markers, the combinations that gain an accuracy of 100%

at the lowest sampling rate and the shortest time interval are for the first dataset observed in the

region where the value of the sampling rate ranges between 64 Hz at a time interval of 2.05 s and

170 Hz at a time interval of 0.85 s, for the second dataset in the region where the value of the

sampling rate ranges between 36 Hz at a time interval of 2.4 s and 170 Hz at a time interval of 1

s, for the third dataset in the region where the value of the sampling rate ranges between 90 Hz

at a time interval of 2.3 s and 170 Hz at a time interval of 1 s.



3.3 Combination of time interval and sampling rate 61

(a) First dataset (b) Second dataset (c) Third dataset

Figure 3.32: Accuracy contour plot as function of the sampling rate and the length of the time interval

for three datasets.

Depending on the wanted level of accuracy, the behaviour detected from a seen or unseen horse and

the wanted number of behaviours to be recognized different optimal time interval and sampling

rates can be recommended. To investigate this the contour plots for three levels of accuracy for

the different datasets are placed on top of each other as is depicted in Figure

Figure 3.33: Contour plots for three datasets with accuracy levels of 98%, 99% and 100%.

If the accelerometers would be placed on an unseen horse by a model trained by dataset three,

then the recommended time interval and sampling rate for different levels of accuracy are depicted

in Table 3.8. If the accelerometers would be placed on a seen horse or the movement of an unseen

horse would resemble the data in the training set, even lower sampling rates and smaller time

intervals could be reached and more behaviours can be predicted as is depicted in Table 3.8. For

the recommendations only sampling rates are taken into account bigger than or equal to those

used in the experiments. Also, the lowest sampling rate is selected before reducing the length of

time interval and thus model complexity.
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Seen (seven behaviours) Unseen (four behaviours)

98% 99% 100% 98% 99% 100%

f (Hz) 25 25 36.5 52.5 69 90

n (s) 1.8 2.1 2.4 2.5 2.4 2.3

Table 3.8: Time interval and sampling rate recommendations for a seen horse and an unseen horse for

three levels of accuracies.

3.4 Effects of the underground

Model accuracy for the class walk is studied for four different surfaces: dry sand mixed with

polyflakes, wet sand mixed with polyflakes, meadow and hard underground. To draw straight-

forward conclusions, at first only one horse is taken in to consideration. Secondly, four other

movement classes are taken into account, to see if the model still predicts the walk classes right.

Thirdly, the movements of horse 1 are added to the dataset which also performs movements on

wet and dry underground. At last, the movements of all subjects are added. The movement walk

is labelled for all datasets acccording to the underground, with a separate character, ’H’, ’W’, ’D’

and ’F’ for hard underground, wet underground, dry underground and field, respectively.

The datasets from horse 2 with numbers 8, 9, 11, 12 and 13 as displayed in Table 2.5 are selected

for the first experiment. Horse 2 performed the gait walk on all four types of underground. The

total time of movement data and the number of samples for each underground can be found in

Table 3.9. The configured sample rate is for three out of the four undergrounds 50 Hz. For the

dry underground, a measurement at 100 Hz is resampled to 50 Hz.

Time measured [s] Original number of samples

Hard underground 264 13201

Field 306 15298

Wet underground 810 40499

Dry underground 875 87539

Table 3.9: Total time of movement data and number of samples for each underground.

The normalized confusion matrices for five different time intervals are depicted in Figure 3.34.
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(a) n = 0.6 s (b) n = 1.2 s (c) n = 1.8 s

(d) n = 2.4 s (e) n = 3 s

Figure 3.34: Normalized confusion matrix for training and test set at a sampling rate of 50 Hz for

different time intervals and four types of underground (H= hard, W = wet, F= field and

D = dry).

As can be concluded from the results presented in the normalized confusion matrices, the data

gathered from different undergrounds is significantly different so that the model could conclude

from which underground the data was gathered for three out of four undergrounds. Otherwise, the

walk data from every class with a different underground would have to be more mixed up. Only

the data gathered from the field gets often classified as data gathered from a hard underground

and visa versa. The class walk on a wet underground and on a dry underground get classified with

an accuracy above 98% for every time interval. The class walk on a hard underground reaches

accuracies higher than 86%. The class walk on a field swings between 15% and 86% classification

accuracy.

Now extra movements of horse 2 are taken into account, i.e. ’stand’, ’trot’, ’canter’ and ’flank-

watching’. The first three movements were already present in the used dataset. To add the last

movement an extra dataset needs to be included, dataset number 10 as depicted in Table 2.5 which

is measured on a dry underground. In Table 3.10 the number of samples and the measured time

is depicted.
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Time measured [s] Original number of samples

Hard underground 264 13201

Field 306 15298

Wet underground 810 40499

Dry underground 1235 105535

Table 3.10: Total time of movement data and number of samples for each underground including extra

behaviours.

The normalized confusion matrices are shown in Figure 3.35.
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(a) n = 0.6 s (b) n = 1.2 s

(c) n = 1.8 s (d) n = 2.4 s

(e) n = 3 s

Figure 3.35: Normalized confusion matrix for training and test set at a sampling rate of 50 Hz for

different time intervals and four types of underground (H= hard, W = wet, F= field and

D = dry) including four other behaviours.

As can be seen from the normalized confusion matrices, the class walk on a wet underground and

on a dry underground again reaches high accuracies above 94% for every time interval. The class

walk on a hard underground reaches accuracies higher than 70%. The class walk on a field swings

between 0% and 81% classification accuracy. But walk on every type of underground gets in any

case classified as walk for any time interval. So the type of underground does not affect the overall

classification accuracy of the behaviour walk. At lower time intervals, the behaviour trot gets

classified as walk on wet underground for 10% of the instances. But as discussed in the previous
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Section, small time intervals gain lower accuracies for sampling rates between 25 Hz and 100 Hz.

At higher time intervals, none of the other behaviours get classified in one of the ’walk’ classes.

So adding the extra behaviours does not influence our model accuracy.

Now, extra movement data of horse 1 is added to our dataset. Two datasets where horse 1

performed movements on a wet underground (datasets 3 and 4 as depicted in Table 2.5), measured

at a sampling rate of 50 Hz and another dataset where the same horse was longed on a dry

underground (dataset 5 as depicted in Table 2.5), measured at a sampling rate of 100 Hz. This

dataset is resampled to a sampling rate of 50 Hz. The total number of samples and the time

measured can be found in Table 3.11.

Time measured [s] Original number of samples

Hard underground 264 13201

Field 306 15298

Wet underground 1972 98607

Dry underground 2251 207184

Table 3.11: Total time of movement data and number of samples for each underground including two

subjects.

The normalized confusion matrices are depicted in Figure 3.36.
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(a) n = 0.6 s (b) n = 1.2 s

(c) n = 1.8 s (d) n = 2.4 s

(e) n = 3 s

Figure 3.36: Normalized confusion matrix for training and test set at a sampling rate of 50 Hz for

different time intervals and four types of underground (H= hard, W = wet, F= field and

D = dry) including an extra horse.

As can be seen from the normalized confusion matrices, now the class walk on a wet underground

and on a hard underground reaches high accuracies above 87% for every time interval. The class

walk on an dry underground and field are misclassified at the smallest time interval of 0.6 s.

But when the time interval is increased, the class ’walk-H’, ’walk-W’ and ’walk-D’ reach high

accuracies. The class ’walk-H’ is even performing better at higher time intervals than when only

one horse was present in the dataset. The class ’walk-F’ performs the worst at all time intervals.

This label mostly gets swapped with the label ’walk-H’. Again walk on any type of underground
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gets in any case classified as walk for any time interval. So the type of underground does not

affect the overall classification accuracy of the behaviour walk. Also other movements, do not

get classified as the behaviour walk, so adding the extra behaviours and the extra horse does not

decrease our overall model accuracy for other behaviours and even increases the accuracy for the

class ’walk-H’.

Extra datasets (24-27 as depicted in Table 2.5) of horse 4 are added, so that all the behaviours

are available in the final dataset. Three out of four datasets are measured on a dry underground.

One dataset (26) is measured on a hard underground. The total number of samples and the time

measured can be found in Table 3.12.

Time measured [s] Original number of samples

Hard underground 446 22281

Field 306 15298

Wet underground 810 40499

Dry underground 1504 118996

Table 3.12: Total time of movement data and number of samples for each underground including extra

behaviours.

The normalized confusion matrices are depicted in Figure 3.37.
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(a) n = 0.6 s (b) n = 1.2 s

(c) n = 1.8 s (d) n = 2.4 s

(e) n = 3 s

Figure 3.37: Normalized confusion matrix for training and test set at a sampling rate of 50 Hz for

different time intervals and four types of underground (H= hard, W = wet, F= field and

D = dry) including extra behaviours of horse 4.

As can be concluded from the confusion matrices, at small time intervals, more misclassification

is taking place than at higher time intervals. ’Walk-F’ is performing the worst with accuracies

swinging between 1% and 74%. The other ’walk classes’ get classified with high accuracies between

93% and 100% at higher time intervals. All the walk movements get classified as walk, independent

of the underground, at any time interval. The other movements that are now included get classified

in a few cases as one of the ’walk classes’.
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From the obtained results, it can be concluded that the walk gait on any underground gets classified

as walk independent from the number of horses and the number of movements present in the

training dataset. Data from three of the four undergrounds get classified at the right underground

in many cases if the time interval is above 1.2 s. This means that a difference in accelerometer data

is measured from different undergrounds and is also recognized by the algorithm. When adding

extra movements, those get in a few cases classified in one of the ’walk classes’.
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Chapter 4

Discussion

The aim of this study was to automatically classify horse’s abnormal behaviours based on machine

learning algorithms by using the wearable sensor data. The challenging classification task is suc-

cessfully tackled using a multilayer convolutional network with two convolutional layers, which are

followed by max-pooling layers, two fully connected layers and a softmax layer. Since convolutional

neural networks are flexible to extend to more behaviours, first gait data was gathered since gaits

are performed by a horse on command in contrast to other behaviours. Afterwards, three extra

behaviours were added to the training and validation datasets, which horses are performing during

an episode of colic, i.e. rolling, pawing and flank watching. Due to limited data availability of the

extra behaviours, validation of the algorithm could be done on seen data for all the behaviours

and on unseen data for the gaits.

A good wearable device would have an optimum of both high classification accuracy and long

battery lifetime. Battery life time is dependent on the sampling rate and the length of the time

interval since a reduction of both parameters would reduce storage load, calculation cost and

minimizing both sensing and transmitting energies. Also, decreasing the time interval and the

sampling rate within applicable measurement settings (25 Hz - 100 Hz) reduces the classification

accuracy. If the sampling rate is decreased from 100 Hz to 25 Hz, the overall mean validation

accuracy decreases for the first, second and third dataset from 99.82% to 95.08%, from 99.37% to

95.96% and from 98.39% to 93.17%, respectively. If the time interval is decreased from 1.2 s to

0.6 s, the mean validation accuracy decreases for the first, second and third dataset from 98.33%

to 96.67%, 99.35% to 90.89% and 97.39% to 92.76%, respectively.

As wearable technology allows for gait analyses amoung unseen horses, the use of automated

accelerometer-based behaviour event detection methods may be helpful in the real-time evaluation

of behaviour patterns on a variety of horses without the necessity to calibrate them when applied

to an unseen horse. The algorithm was validated on gait data of an unseen lame horse which

is a challenging task because lame horses have asymmetrical gait patterns. Overall validation

accuracies of 100% are no exception. A sampling rate of 52.5 Hz and time interval of 2.5 s is



DISCUSSION 72

recommended to reach an accuracy of 98 %. Also, the presented model could be used to validate

seven behaviours of seen horses or an unseen horse with resembling movements of those in the

training set with an accuracy of 98% when the sampling rate is set to 25 Hz and the time interval

is 1.8 s.

To test real life circumstances the model is validated on data gathered in a variety of conditions.

The results show that the classification accuracy of the walk gait is independent of the type of

underground. The classification was consistent across several walk conditions, suggesting that the

behaviour event detection algorithms can be used in a variety of settings. Not only was the walk

gait classified at every instance as walk, but also three out of four undergrounds reached high

classification accuracies specific for their type of underground proving that the model recognized

the type of underground the horse was walking on. As wearable technology allows for walk

gait analyses amoung different types of underground, the use of automated accelerometer-based

behaviour event detection methods may be helpful in the real-time evaluation of behaviour patterns

in a variety of conditions.

Adding the extra behaviours changes the performance of the gait classes due to the presence of

similar data features between classes that can trigger false positives. For example, in the first

dataset, stand gets classified with an accuracy of 100% at higher time intervals for most sampling

rates if only the gaits are present in the validation dataset. If the three extra behaviours are

added, the classification accuracy of stand decreases. Stand events get classified as flank-watching

and visa versa.
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Chapter 5

Conclusion and Future work

In this research we proposed a solution for a horse activity recognition problem that is based on

Convolutional Neural Networks with the use of accelerometer time series. It has the benefits of

using short recognition intervals of size up to 1.8 s and small sampling rates up to 25 Hz and

requiring no feature engineering. Due to a relatively shallow architecture, the proposed algorithm

has a small running time and can be efficiently executed on wearable devices in real time.

To evaluate the performance of the considered approach we tested it on three datasets. The

obtained results demonstrate that the proposed CNN-based model establishes high accuracies at

a lot of time intervals and sampling rates. A reduction in the sampling rate and time interval

length did reduce the overall classification accuracy of the model. The experiment has further

emphasized an architecture that can be applied not only to different subjects, but can be used in

different measurement conditions.

Future work will include capturing and analyzing more behaviours related to horses experiencing

an episode of colic like: kicking the abdomen, stretching and attempting to lie down. Also, further

investigation needs to be done concerning the eating behaviour since this could give extra infor-

mation about the well-being of the horse. In addition, activity measurements could be performed

to conclude if a horse is agitated or depressed.

In this study, sampling rates up to 25 Hz were used. The predicted contour accuracy plots indicated

that high accuracies could be reached at even lower sampling rates up to 12.5 Hz. Those were

not investigated yet so no conclusions could be drawn. Therefore, further study at lower sampling

rates is needed. Available datasets can be resampled and re-analyzed.

In this masters’s dissertation, three the axis of the two accelerometers were taken into account.

A reduction in the number of accelerometer axes could reduce computational cost, storage load

and energy use. To study the effects of reducing the number of the accelerometer axes on the

classification accuracy, we could use one axis or two axes instead of three axes and use this as an

input for the classification algorithm.
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Also, we need further study for the analysis of the features extracted automatically by the convent

and compare them with the well-known hand-crafted features. Further study on the characteristics

of the used CNN and utilizing larger dataset should be conducted.
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Appendix A

AX3 data sheet
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3-Axis Logging Accelerometer

Version: 1.3 
Date: 05/02/2015
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Description

The AX3 is a low cost logging 3-axis 
accelerometer. At the heart of the sensor is 
a non-volatile fl ash memory chip linked by a 
USB enabled microcontroller. A temperature 
sensor, ambient light sensor, real time clock 
(RTC) and lithium polymer battery are also 
integrated into the sealed polycarbonate 
puck. The charge time is approximately 90 
minutes and the sensor will record for up to 
21 days of continuous data. The device is 
suitable for use in a variety of environments, 
is water resistant up to 1.5 meters and is CE 
safety mark approved.

Summary

• 3-axis accelerometer
• Light sensor
• Temperature sensor
• 512MB memory
• 14 days recording at 100Hz
• Rechargeable lithium polymer battery
• Water resistant and CE marked
• Confi gurable logging options

AX3
3-Axis Logging Accelerometer

Applications

• Human movement science
• Sports research
• Instrumented environments 
• Digital interaction
• Activity recognition



2 www.axivity.com                             info@axivity.com

Specifi cation: AX3

PARAMETER VALUE NOTES
Puck Size 23x32.5x8.9 mm
Puck Weight 11g
Enclosure Material Polycarbonate
Battery Capacity 150mAh Rechargeable lithium polymer
Battery Charge Current 150mA
Connectivity Micro USB
ENVIRONMENTAL
Moisture Ingress Water-resistant to 1.5m IPx8
Dust Ingress Dust tight IP6x
Operating Temperature 0 - 65˚C (not charging) 40˚C if charging
TYPICAL CAPABILITIES
Memory 512MB NAND fl ash non-volatile
Logging Frequencies Confi gurable 12.5Hz - 3200Hz
Maximum Logging Periods 30 days at 12.5 Hz or 14 days at 100Hz
REAL TIME CLOCK
Type Quartz real time clock
Frequency 32.768KHz
Precision ± 50ppm (typical)
ACCELEROMETER
Sensor Type MEMS
Range ±2/4/8/16g Confi gurable
Resolution upto 13-bit Confi gurable
LIGHT
Sensor Type APDS9007 Logarithmic light sensor
Wave Length 470-650 nm Matched to human eye
Range 3-1000 LUX At sensor
Digital format 10 bit
TEMPERATURE
Sensor Type MCP9700 Linear thermistor
Range 0 - 40˚C
Resolution 0.3˚C
Accuracy 1˚C typical (4˚C max)
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Certifi cation Test
� e product is compliant with the Directive 2004/108/
EC; the relevant Declaration of Conformity is available 
from Axivity
� e product has been tested to BS EN 61000-6-1 
:2007 and BS EN 61000-6-3 :2007 (Electromagnetic 
compatibility (EMC), Generic standards, Immunity 
for residential, commercial and light-industrial 
environments).
� e product has an ingress protection rating as de� ned 
in IEC 60529 to level 68. Due to the nature of the 
housing (potted enclosure) the device was passed on 
the basis that it was fully functional both before and 
a� er each testing criterion.
In accordance with the European Directive 2002/96/
EC on Waste Electrical and Electronic Equipment 
(WEEE), the product must not be disposed of in the 
normal unsorted municipal waste stream. Instead, it is 
the user’s responsibility to dispose of this product by 
returning it to a collection point or directly to Axivity. 
Separate collection of this waste helps optimize the 
recovery and recycling of any reclaimable materials 
and also reduces the impact on human health and the 
environment. For more information concerning the 
correct disposal of this product, please contact your 
local authority or our issuing authority
� e lithium polymer cell has met the acceptance 
criterion for the UN Recommendations on the 
Transport or Dangerous Goods relating to lithium 
batteries, reference Para 38.3 of Manual tests and 
Criteria document No. ST/SG/AC.10.11/Rev.4:2003

Certifi cation:

The AX3 is certifi ed to the following:
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Disclaimer:

Information in this document is believed to be accurate and reliable. However, the manufacturer does not 
give any representations or warranties, expressed or implied, as to the accuracy or completeness of such 
information and shall have no liability for the consequences of use of such information. The manufacturer 
reserves the right to make changes to information published in this document, including without limitation, 
specifi cations and product descriptions, at any time and without notice. This document supersedes and 
replaces all information supplied prior to the publication hereof. The manufacturer’s products are not 
designed, authorized or warranted to be suitable for use in applications where failure or malfunction can 
reasonably be expected to result in personal injury, death or severe property or environmental damage. 
The manufacturer accepts no liability for inclusion and/or use of its products in such equipment or 
applications and therefore such inclusion and/or use is at the customer’s own risk.

Copyright (c) 2009-2015, Newcastle University, UK.
All rights reserved.
Licensed under Creative Commons 3.0 Attribution License (BY), 
http://creativecommons.org/licenses/by/3.0/
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Appendix B

Manual

B.1 Introduction
In this manual an overview is given on how to setup and configure the AX3 sensors for record-
ing. Secondly, an explanation is given on how to extract gathered data from the Axivity AX3
accelerometer. Thirdly, the data of two accelerometers is preprocessed so that it can be uploaded
to a video annotation tool named ELAN. Then, it is explained how the data file is annotated using
ELAN. Afterwards, it is shown how the obtained annotations are exported to label the gathered
data. And finally, it is explained how the data can be uploaded to the algorithm with split testing
and without split testing. Also, a brief discussion is given on which parameters can be adjusted
to fine tune the model.

B.2 Setup and configure AX3 sensors for recording
To setup and configure AX3 sensors for recording it is necessary to download the OMGUI software.
The OMGUI software is available from the open source GitHub repository and can be down-
loaded here at the following link: https://github.com/digitalinteraction/openmovement/
blob/master/Downloads/AX3/AX3-GUI-37.zip?raw=true. Connect the device and ensure it ap-
pears in the Device Browser Pane. To remove any existing data that may be stored on the device,
ensure the device is highlighted in the Device Browser Pane and left click the Clear button in
the Device Toolbar. Then click the record button. This button is used to configure the device to
record. The button brings up the recording window.

https://github.com/digitalinteraction/openmovement/blob/master/Downloads/AX3/AX3-GUI-37.zip?raw=true
https://github.com/digitalinteraction/openmovement/blob/master/Downloads/AX3/AX3-GUI-37.zip?raw=true
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Set the desired sampling frequency and the sampling range. Set the record time to "immediately
on disconnect". In this configuration the sensor will start recording as soon as it is unplugged
from the computer.

B.3 Datamarkers
When capturing experimental data it is often useful to place markers in the data. Such markers
can retroactively be used to identify certain event start and stops and make it easier to preprocess
the datafile. A popular choice for creating a data marker is to subject the device to a short impulse
force. Such forces can be generated through clapping with the device held in the hand. The graph
below is a graphical representation of a data marker generated by five short claps [37].

B.4 Extracting data from Axivity AX3 accelerometer
The AX3 logs data internally in a binary packed format. This format is named Continuous Wave
Accelerometer (CWA) format. This format is very efficient for storing large amounts of data but
is not natively supported by many applications. Therefore it is necessary to convert the CWA
file to a Comma Separated Value (CSV) format. The OMGUI software supplied with the sensors
provides provision to convert the raw CWA files into either of these formats with a variety data
interpolation and timestamp formatting options [38].
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B.4.1 Connect accelerometer and download data
Connect the device and ensure it appears in the device browser pane. Any connected devices
will appear in the device browser pane marked as having data. When highlighted, data on these
devices can be previewed in the data preview window. There is a zoom tool and highlight tool in
the selection tools section. In the preview filters section, a number of checkboxes exist to help the
user visualize the data. On mousing over the data, the user is able to get a precise data preview
at any given instant in the recording.

Recorded data stored on the sensor can be downloaded to the working folder by clicking the
download button. Firstly, stop the data capturing by clicking on the stop button.

In order to use the raw data with a third-party software package, such as Excel, it must first be
converted into a suitable format. This can be done using the export window. To investigate this,
select the file in the files tab within the local files pane and click export button.

The following window will appear. Set the configuration as shown below and click the OK button
to generate the file.
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B.5 Preprocessing data for Elan

B.5.1 Import the CSV file in Excel
Start Excel with a blank workbook open. Select ’File’ from the menu, and then ’Import’. (If the
menu options are greyed out this could be because there is no workbook open).

Browse for the *.csv file you want to open, and click ’Import’.

In the Text import wizard, ensure the ’Delimited’ option is selected. Click Next.
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In the delimiters section, set the configuration as shown below and click next.

In the data format section, set the configuration as shown below. The first column is highlighted
and will be skipped. Click Finish.

The following question will appear ’Where do you want to put the data?’. Any cell on the blank
worksheet can be clicked to determine where the data should go. Click ’OK’ to proceed.
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B.5.2 Preprocess data of two accelerometers
Format a column to display the time by right-clicking on the selected column and selecting "Format
Cells".

On the "Number" tab, under "Category" select "Time". On the right hand side under "Type",
choose the format hh:mm:ss and format it as hh:mm:ss.000, then click "OK".

Do the same for the second accelerometer data and place the data next to the first accelerometer
data.

The accelerometer times need to be aligned. Look at the start time of the video and search for
this time in the file.
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Select the cells above this start time you want to delete. Right click and select delete cells.

The delete dialog box opens, showing several options for filling in the gaps. Choose shift cells up.

Do the same for the second accelerometer.

Insert a column and substract the start time from the time cells.
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Apply this to the whole column and do the same for the right accelerometer.

Save the file in the CSV file format.

B.6 Video annotation
Video annotation is done with the open source software ELAN. It can be downloaded from this
link: https://tla.mpi.nl/tools/tla-tools/elan/download/. ELAN is a highly specialized
software that allows downloading of the video file and the correspondent acceleration data that
have to be labelled. Annotations can be made by selecting the length of the segment where the
behaviour is performed and typing the annotation. Once the CSV file is obtained in the right
format, the video and the data stream can then be aligned.

B.6.1 Add files to Elan
Open Elan, select File from the menu bar and then click New.

Then click in the dialogbox on add Media File and select the right videofile.

https://tla.mpi.nl/tools/tla-tools/elan/download/
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Click on Edit and choose linked files.

Click on Linked Secondary Files and add the CSV file with the accelerometer data.

On the track view, right click and select Configure tracks.

A dialogbox opens and configure it as displayed in the figure below. Here axL is displayed. Choose
as time column index for the left accelerometer 1. When configuring the right accelerometer data,
you should adjust this to 6. The data of axL is in column 3. Do the same for track ayL (in column
4) and azL (in column 5). And repeat this process with adjusted column numbers for the right
accelerometer data. Also select for each of the data an other color. For this experiment it was
only necessary to use the axL and axR data to annotate the file. Click close.
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Now only ax is displayed. Right click on the track view and select Trackpanel and then Add track.

Look for the datamarker in accelerometer data and on the video. Look if they are appearing on
the same moment for both accelerometers. Sometimes there is still a time difference between the
video file and the data. Then some extra preproccesing might be done to cut off the right amount
of time from the data file. If the accelerometer data and video file are aligned then the annotation
process can be started.

Select the data to annotate, right click on the annotation panel and select new annotation.

When all annotations are done, those need to be exported as a CSV file. Click on file, export as
Tab-delimited text.
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B.7 Annotate file in Excel
First cut of the data at the end of the file in Excel when the video recording was stopped. Then
you will notice that there is probably a difference in length for each accelerometer.

This is because the actual sampling rates differ from the configured sampling rates. Some extra
preprocessing is necessary. Insert an extra cell next to the time cells. The function MROUND is
used. This function returns a number rounded to the desired multiple. The values of the time
column can be brought to the closest multiple of the sampling rate. In this file a sampling rate of
50Hz was used, so the multiple was "00:00:00.020".

Do the same for the other time column.
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Then the shortest rounded column should be copied.

And also the acceleration data, which belongs to this column.

Now the VLOOKUP function needs to be used to retrieve data from a specific column in a table.
Apply the VLOOKUP function as displayed in the next image.

Do the same for the other 2 columns, adjusting the third argument to 4 and 5.
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Import the CSV file with annotations in Excel.

Delete all the columns as shown in the figure below.

Format the first 2 columns to display the time by right-clicking on the selected column and selecting
"Format Cells".
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Use the VLOOKUP function in excel to annotate the rows as is displayed in the next image.

Apply this to the whole column.

Check the end of the columns since sometimes to much cells are labeled as is displayed in this
figure.
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Delete these rows.

Copy paste the columns with the accelerometer data and labels to another sheet.

Insert a row with the names of the columns as is indicated in the next figure.
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Save this file as a CSV file format.

B.8 Uploading data to algorithm and adjusting parameters
Install Anaconda using the following url: https://www.anaconda.com/. Open Anaconda and
launch the notebook.

Upload the python code "Simple movements with split testing" and "Simple movements without
split testing" together with the CSV file.

B.8.1 Reading the CSV file of the code with split testing
Open the code and insert the name of the CSV file that is uploaded.

# reading csv file
df = pd.read_csv(’csv file with labeled data.csv’, encoding=’utf8’)
rows = df.shape[0]
columns = df.shape[1]
print("Read data with {} rows and {} columns".format(rows, columns))

B.8.2 Reading the CSV file of the code without split testing
If there are two CSV files, it is also possible to split the testing and validation data based on these
two files. Insert the name of the CSV files that are uploaded. Insert the name of the CSV file that
contains the training data in the training part of the algorithm and the name of the CSV file that
contains the validation data in the validation part of the algorithm.

# reading training csv file
df_train = pd.read_csv(’file1_with_training_data.csv’, encoding=’utf8’)
rows = df_train.shape[0]

https://www.anaconda.com/
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columns = df_train.shape[1]
print("Read training data with {} rows and {} columns".format(rows, columns))

# reading validation csv file
df_val = pd.read_csv(’file2_with_validation_data.csv’, encoding=’utf8’)
rows = df_val.shape[0]
columns = df_val.shape[1]
print("Read validation data with {} rows and {} columns".format(rows, columns))

B.8.3 Adjusting parameters
Dropout

Dropout consists of setting to zero the output of each hidden neuron with probability a certain
probability dr. The neurons which are “dropped out” in this way do not contribute to the forward
pass and do not participate in back-propagation. The dropout parameter can be set as any number
between 0 and 1. In this dissertation a dropout of 0.55 is used.

# Variables
dr = 0.55

# Fixed random seed
np.random.seed(1024)

Filter size, Pool size, ...

In the model a number of parameters can be adjusted such as filter size, pool size, zero-padding
and type of regularization. Also, the number of layers can be adjusted. A detailed overview of all
the parameters that can be adjusted can be found in Section 2.4.3.

# building model
model = tf.keras.models.Sequential()

model.add(layers.Conv2D(64,(3,1), name="conv1", padding=’valid’, activation=’relu’,
kernel_regularizer= tf.keras.regularizers.l2(0.01), input_shape=(n,columns−1,1,)))

model.add(layers.ZeroPadding2D((1,0)))
model.add(layers.MaxPooling2D(pool_size=(2,3)))
model.add(layers.Dropout(dr))

model.add(layers.Conv2D(16,(5,2), name="conv2", padding=’valid’, activation=’relu’))
model.add(layers.MaxPooling2D(pool_size=(3,1)))
model.add(layers.Dropout(dr))

model.add(layers.Flatten())
model.add(layers.Dense(50,activation=tf.nn.relu))
model.add(layers.Dense(10,activation=tf.nn.relu))
model.add(layers.Dense(len_unique_classes, activation=tf.nn.softmax))

# compiling model
model.compile(optimizer=’adam’, loss=’categorical_crossentropy’, metrics=[’accuracy’])

callback = []
early_stop = tf.keras. callbacks .EarlyStopping(monitor=’val_acc’, min_delta=0, patience=60,

verbose=0, mode=’auto’)
callback .append(early_stop)
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callback .append(tf.keras. callbacks .ModelCheckpoint(’weightsfile.weight.h5’, monitor=’val_acc’,
verbose=0, save_best_only=True, mode=’max’))

model.summary()

# train model
history = model.fit(x=X_train, y=Y_train, validation_data=(X_val,Y_val), epochs = 400,

batch_size=64, callbacks=callback)
model.save(’simple_model.h5’)
model.load_weights(’weightsfile.weight.h5’)

Split input into measurements of n samples

In this step the input is split into measurements of n samples. Depending on the measurement
sampling rate, the number of seconds that each sample presents can be calculated. This parameter
can be adjusted and depends on the duration of a movement.

# split input into measurements of n samples
n = 200 # number of rows for t = n/f [s] measurements
list_df = [df[ i : i+n] for i in range(0, df .shape [0], n)] # slipt into n chuncks
list_df = list_df[:−1] # remove last measurement that probably is not divided by n
np.random.shuffle(list_df) # shuffle data
print("Read {} measurements with dimensions {}".format(len(list_df[:]), list_df[0].shape))

Filtering data

Adjust the names under filter_movements to the labels used to describe the movements specified
in the uploaded CSV file.

# filtering data
arr_Y_r = []
filter_movements = [’stand’, ’walk’, ’canter’, ’trot’] # if empty, take every class
selected_dfs = []
for i in range(0,len( list_df)) :

classes = list_df[ i ][ ’label’].unique()
if ( classes . size == 1 and (len(filter_movements)==0 or classes[0] in filter_movements)):

selected_dfs.append(list_df[i ]. values [:,0:6]) # X values
arr_Y_r.append(list_df[i].values [0,6]) # Y values

unique_classes = np.unique(arr_Y_r)
len_unique_classes = len(unique_classes)
arr_Y_r = np.array(arr_Y_r[:])
print("Using {} of measurements".format(len(selected_dfs)))
print("Using {} classes {}".format(len_unique_classes, unique_classes))

Splitting training and validation data

In this step, the experimental data is split into two sets randomly. In this case the training set
took 66% of the data, and the testing set took the remaining 34% of the data.

X_train, X_val, Y_train, Y_val = train_test_split(arr_X, arr_Y, test_size=0.34,
random_state=1024)
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Overall validation accuracy and per class accuracy

The overall validation accuracy and per class accuracy is printed after the shown piece of code.

cat_Y = np.argmax(Y_val, axis=1)
arr_Y_val = le.inverse_transform(cat_Y)
for movement in unique_classes:

indexes = np.where(arr_Y_val == movement)[0]
if (indexes. size > 0): # of len(indexes) > 0 als het geen numpy array is

loss , acc = model.evaluate(X_val[indexes], Y_val[indexes], verbose=0)
print("Class {} ({} instances) has an unseen accuracy of {:f}%".format(movement,

len(indexes), acc∗100))
else :

print("The movement {} is not present in the validation set".format(movement))

loss , acc = model.evaluate(X_val, Y_val, verbose=0)
print("Best classification accuracy {:f}%".format( acc∗100))

Accuracy and loss plots

Validation accuracy of the CNN model for the training and validation dataset is displayed. The
plots can provide an indication of useful things about the training of the model, such as: speed of
convergence over epochs, indication if the model may have already converged, over/under learning
of the model.

# list all data in history
print(history . history .keys())
# summarize history for accuracy
plt .plot(history . history [’acc’])
plt .plot(history . history [’val_acc’])
plt . title (’model accuracy’)
plt . ylabel(’accuracy’)
plt . xlabel(’epoch’)
plt .legend([’train’, ’validation’], loc=’upper left’)
plt .show()
# summarize history for loss
plt .plot(history . history [’loss’])
plt .plot(history . history [’val_loss’])
plt . title (’model loss’)
plt . ylabel(’loss’)
plt . xlabel(’epoch’)
plt .legend([’train’, ’validation’], loc=’upper left’)
plt .show()

B.9 Conclusion
In this manual an overview was given on how to use the AX3 accelerometers to detect activities
of horses fitted to the lateral side of the tendon boot, preprocess the captured data and using
the designed algorithm. When using the accelerometers in different settings different adjustments
might be necessary.
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Appendix C

Tables

Categorie Product Health parameters Accuracy Practical use Comfort horse Range
Sport watches Polar equine series 1 (Heart rate) -/+ + - Short
Birth Alarm Birth Alarm 1 (Elevation) -/+ + -/+ Long

Breeder Alert, Equipage, EquiFone 1 (Position head) -/+ + + Long
Foal-Alert, Keros Sigloo 1 (Opening birth canal) + - + Long
Birth Alert 1 (Temperature) -/+ - + Unknown
Wyke Foaling Alarm 1 (Perspiration) -/+ + -/+ Long

Wearable Trackener None (Distance, time, speed) + + -/+ Short
Nightwatch 5 (Heart rate, respiration, activity, motion, posture) - + + Long
EquiSense Motion 1 (Activity) - + + Short
Equestic 1 (Activity) - + + Short
Arioneo performance 2 (Heart rate, activity) -/+ + -/+ Short
EquiSense Care 6 ( Heart rate, respiration, perspiration, temperature, activity, sleep) Unknown (prototype only) + - Long
SeeHorse 4 (Heart rate, respiration, temperature, activity) - + + Short
Etrakka 1 (Heart rate) + + + Short
Fourganza blanket 1 (Temperature) - + - Short
Arioneo care 1 (Temperature) + + -/+ Short

Video GesEq 1 ( Behaviour) + + ++ Short
EquiView360

Medical PillCam (Endoscopy) + - ++ Very short
GIPill 1 (Temperature) + - ++ Very Short

Table C.1: Comparable products and their shortcomings.
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Subject Type Configured Actual Actual
number of sample rate [Hz] sample rate sample rate

exercising left right
accelerometer [Hz] accelerometer [Hz]

1 Longed 25 24.68 24.62
1 Ridden 25 24.69 24.65
1 Longed 50 49.60 49.39
1 Ridden 50 49.77 49.47
1 Longed 100 98.90 98.53
2 Longed 25 24.75 24.69
2 Ridden 25 24.74 24.66
2 Longed 50 49.68 49.53
2 Ridden 50 49.73 49.60
2 None (flank-watching) 50 49.08 48.97
2 Longed 100 99.12 98.74
2 Ridden 100 98.77 98.33
2 Longed 200 197.15 196.36
2 Ridden 200 196.77 196.15
2 Longed 1600 1587.46 1584.91
3 Longed 25 24.65 24.58
3 Longed 50 49.37 49.22
3 Longed 100 98.81 98.43
3 Longed 200 197.93 197.27
4 Longed 50 49.39 49.18
4 Ridden 50 49.31 49.13
4 None (roll) 50 49.29 49.11
4 None (roll) 50 49.32 49.13
4 None (roll) 50 49.00 48.80
4 None (paw) 50 49.27 49.09
4 Longed 200 197.22 196.43
4 Ridden 200 196.64 196.23
4 None (roll) 200 196.40 196.17
4 None (roll) 200 196.38 196.11
5 Ridden 50 49.41 49.24
6 Longed 50 49.43 49.29

Table C.2: Configured sampling rate and actual sampling rate for each dataset.
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