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Abstract

Unmanned aerial vehicles (UAV’s) are a subject of great interest in the world of
research, industry and commerce. This thesis contributes to the practical aspects of
automating drone flight and through the development of a live demo setup offers an
interactive view on both recent developments in mechatronics such as Model Predic-
tive Control (MPC) for motion planning purposes and more established basic control
principles. As such it aims for a broad range of audiences, addressing uninformed
enthusiasts up to experienced researchers.

The study goes into the domains of modeling, localization, control and navigation,
and develops a structure to combine all aspects in a framework that is both robust
and flexible regarding demo execution. It makes four contributions to these domains.
Firstly an asynchronous Kalman filter (AKF) is developed and implemented for
position and velocity state estimation with accurate timing handling. Secondly the
design and implementation of an inversion-based feedforward controller with zero
phase filtering for trajectory tracking is established. Thirdly it integrates the OMG-
tools motion planning software and provides an experimental validation. Finally a
Finite State Machine (FSM) is developed to yield situation specific behavior with
integrated monitoring for detection and safe handling of non-nominal events.

The result of the study is an operational demo setup with a set of visually
impressive and interactive tasks, that provides the freedom to execute tasks in any
arbitrary order. It is available as an open-source software package, which together
with a modular design encourages further contributions to the current setup.
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Samenvatting

Onbemande luchtvaartuigen (UAV’s) of drones genieten een grote interesse in zowel
de onderzoekswereld, de industrie als de commerciële wereld. Deze thesis draagt
bij aan de praktische aspecten van automatisatie van drones. De ontwikkelde live
demo biedt een interactieve blik op zowel recente ontwikkelingen in de mechatronica
zoals Model Predictive Control (MPC) voor motion planning als meer ingeburgerde
principes uit de regeltechniek. Hierbij wordt gemikt op een breed publiek, gaande
van geïnteresseerde leken tot gespecialiseerde onderzoekers.

De studie beschouwt de modellering, lokalisatie, controle en navigatie van drones,
en ontwikkelt een structuur om deze aspecten te combineren in een robuust kader
dat flexibiliteit toestaat bij de uitvoering van de demo. Ze stelt vier bijdragen in
deze domeinen voor. Een asynchroon Kalman filter (AKF) voor de schatting van
positie en snelheid met nauwkeurige tijdsregistratie, het ontwerp en de implementatie
van een feedforward controller gebaseerd op modelinversie met zero phase filter voor
trajectory tracking, de integratie van de motion planning software OMG-tools en de
ontwikkeling van een Finite State Machine (FSM) voor situatiespecifiek gedrag met
geïntegreerde monitoring voor het detecteren van en veilig omgaan met niet-nominale
situaties.

Het resultaat van de studie is een operationele demo met een reeks visueel
indrukwekkende en interactieve taken, waarbij de taken in willekeurige volgorde
uitgevoerd kunnen worden. De ontwikkelde software is open-source beschikbaar wat
samen met het modulaire design uitnodigt tot verdere uitbreiding van de huidige
opstelling.
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Chapter 1

Introduction

In recent years unmanned aerial vehicles (UAV’s) have gained great interest. Their
use in both industrial and commercial applications is the subject of many ongoing
research studies. They can be deployed in locations inaccessible to humans, in situa-
tions where human intervention is either difficult or impossible and even when the
environment is harmful to humans. A first example of their use is in the inspection
of industrial plants, where the bird view of a UAV offers possibilities beyond what
human inspection can offer. The Smart Tooling project is one of the initiatives
directed towards the development of such applications [1, 2]. Another application
which has become increasingly important in research is the autonomous delivery of
packages. Nowadays more and more clients place online orders leading to a large
increase in package deliveries. A possible solution to facilitate this delivery scheme
is to replace traditional delivery vans by UAV’s. A third possible use of UAV’s is
to aid in search and rescue parties, in situations where the terrain is inaccessible
or for example to scout a burning building. A common denominator in all of these
applications is the need for both localization of the vehicle, as well as the navigation
through its surrounding environment.

This thesis is commissioned by and made in collaboration with the MECO
research team at KU Leuven (Faculty of Engineering Science, Department of Me-
chanical Engineering). One of MECO’s research domains is the optimal control
and autonomous navigation of mechatronic systems. To this end they develop the
underlying algorithms as well as the higher level software required to steer UAV’s
autonomously from point A to point B. An important part of applied research is
the ability to showcase the practical relevance and potential in real-life situations.
Therefore they wish to develop an indoor drone demo setup, to interactively show
the current possibilities in localization, control and navigation.

In order to address that desire, this thesis proposes to let the demo illustrate three
different levels of autonomous flight. The first one, called setpoint tracking, amounts
to either the drone staying in one particular position as accurately as possible, or
tracking a variable setpoint. The second level is the tracking of a trajectory that is
given in advance. The third and last level is the most advanced one: it requires the
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1. Introduction

drone to fly autonomously through the room, by tracking an automatically generated
trajectory. The demo is available as an open-source software package on GitHub and
a video is available on YouTube [3, 4].

This introduction first considers the state of the art in drone localization, control
and navigation. Next it presents in detail the design problems to which this thesis
proposes solutions and the challenges that are faced when constructing a demo on
autonomously flying drones. It concludes with the outline of the text.

1.1 State of the art

1.1.1 Localization

Indoor localization of drones relies on at least one of three following principles: on-
board camera vision based, external camera vision based or beacon based, possibly
combined with inertial measurement unit (IMU) data. This section introduces
existing systems in all three categories from which the applied system in this thesis
is selected. The selection itself is elaborated in Chapter 2. Also a hybrid solution
can be implemented, which combines measurements of multiple systems. In order to
improve the state estimate obtained through the measurements, a state estimator
can be used to combine the information in the measurements with a model of the
drone.

Measurement systems

On-board camera position tracking of the drone by using computer vision algorithms
is a first option to solve the localization problem. Either the images are processed
on-board as in [5] or the drone sends out a video feed to process the images off-
board as done by [6]. It is difficult to recognize and track arbitrary objects based
on camera images. A smart solution to make visual recognition easier is by using
simple tags, such as Apriltags [7]. These tags, resembling QR-codes, are rapidly
recognized in an image, and based on the projection of the tag on the image plane,
the pose of the camera with respect to the tag can be estimated. The APRIL
Robotics Laboratory at the University of Michigan developed a nice application using
these Apriltags to track the pose of a box at runtime [8, 9], as illustrated in Figure 1.1.

In the category of external camera setups, a similar technique as just described
is applicable: tracking Apriltags or other types of tags attached to the drone using
external camera’s attached to the ceiling. The number of cameras, the spacing
between them and the angular coverage of the lens determine the height up to
which this system can operate successfully [11]. The detection of tags with external
camera’s falls under the denominator of passive camera systems.
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1.1. State of the art

Figure 1.1: Demo of Apriltag localization [9]. Figure 1.2: Reflective markers used
for localization in the Vicon system
depicted by the grey balls [10].

The other subcategory of external camera setups is that of the active camera
systems. These systems emit light and capture the reflection on reflective markers
placed on the tracked object as shown by Figure 1.2. An example of such a system
is the Vicon motion capture system, as used by [12].

Next to on- and off-board computer vision based solutions, beacon based localiza-
tion systems are available. They consist of external modules, one of which is mounted
on the drone. One or several other modules are placed around the operating area.
The latter serve as points of reference to which the former determines its relative
position in case of an intelligent vehicle module. Alternatively the surrounding
system determines the position of a passive drone module. A calibration prior to
using the system allows to convert the relative to an absolute position measurement.
These beacons can use different underlying physical principles to communicate with
each other such as ultrasonic or infrared beams.

An example of such a system is the HTC Vive virtual reality gaming system.
Tracking of the beacons is done using Valve’s lighthouse technology. Two base
stations periodically emit infrared light beams that sweep the room. A series of
sensors on the tracked object register the time at which the light beam sweeps over
them. Through triangulation and combination of this information with measurements
of a built in inertial measurement unit (IMU), the position and orientation of the
object with respect to these base stations is determined. Either HTC’s trackers are
used, or it is also possible to build a custom tracker [13].

State estimation

If only raw data measurements would be used to obtain a state estimate of the drone,
measurement noise would have a direct influence on the computed control actions.
The use of a low pass filter can aid in diminishing this effect by only letting frequencies
pass that adhere to the dynamic capability of the system. A Kalman filter is a very
commonly used algorithm for such a type of filter that uses a model based approach
to measurement filtering. Internally it combines a model of the drone dynamics

3



1. Introduction

with measurements to obtain an accurate state estimate. Moreover the model based
approach allows to estimate states for which no measurements are available. When
the measurements of the localization system are generated at a different rate than
the one at which the controller requests state estimates, an asynchronous version
of the Kalman filter (AKF) is required. This is common practice to a much lesser
extent than the synchronous version. Therefore this thesis develops and implements
a custom AKF algorithm. By considering variable prediction and correction time
intervals, a better state estimate can be acquired than would be the case with a
standard, synchronous Kalman filter [14, 15].

1.1.2 Control

The stabilization and attitude control of quadcopters is a problem that has been
thoroughly investigated for more than a decade. The modeling and control can be
seen as a mature technology [16]. Therefore this thesis only considers higher level
control, at the level of velocity and position control. The combination of feedback and
feedforward control for trajectory tracking is explored, as the addition of feedforward
control shows high potential for improving tracking performance [17].

In order to facilitate a set of different tasks in the demo, each task can rely on a
dedicated controller, or a combination of controllers, eg. only feedback control or a
combination between feedback and feedforward control. This type of state-dependent
hybrid control has already been used in similar projects, for example by switching
between time-based and event-based controllers during execution of a task [12].

1.1.3 Navigation

Navigating efficiently and collision-free from a starting point to a desired goal in
an uncertain environment requires the use of a motion planner. The uncertainty
exists in: the modeled dynamics; the accuracy of tracking; obstacle sizes, locations
and velocities; environmental disturbances such as wind (very limited in an indoor
setting) and turbulence; pose information [18].

A first category of planners solves the motion planning problem by formulating it
as an optimal control problem (OCP). To cope with the uncertainties described above,
the OCP can be solved with a receding horizon approach, known as Model Predictive
Control (MPC). The Optimal Motion Generation tools (OMG-tools) designed by
MECO is such a motion planner. This is the motion planner used in this thesis.
Its possibilities have been experimentally validated on automated guided vehicles
(AGV’s) and machine tools in [19, 20], but never on UAV’s. Two other OCP-based
open source motion planners are discussed next and the possible benefits of using
OMG-tools are described.

The first planner uses a method known as the Dynamic Window Approach (DWA)
to collision avoidance. It searches for a set of admissible vehicle velocities that can be
reached in a short time interval taking into account the vehicle dynamics. A velocity
is considered admissible whenever it allows the vehicle to brake before hitting the
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nearest obstacle present along the trajectory generated by that velocity. In order to
determine this dynamic window of velocities, an adequate dynamic representation of
the vehicle is required. The method then picks from this admissible set the velocity
that minimizes a given objective function. This objective function makes a trade-off
between three terms; one representing the distance to the goal, another the clearance
to the nearest obstacle on the trajectory, and a third the magnitude of the velocity.
The working principle is illustrated in Figure 1.3. Advantages to using this method
are that it allows for fast computations while simultaneously taking into account
the kinematics and dynamics of the vehicle. A downside to this method however
is the tuning of a set of parameters, which largely depend on the situation [21, 22].
Another downside is that it looks only over a very short time horizon in the future.

Figure 1.3: Illustration of the Dynamic Window Approach algorithm for obstacle
avoidance [23]. Black arrows form the admissible set of inputs, red arrows would
cause collision and are not added to the set.

The second planner uses so-called Timed Elastic Bands (TEB) to calculate a time
optimal trajectory. It does so by constructing a trajectory of poses where each pose
is assigned a timestamp, depending on the kinematic constraints. This trajectory is
then optimized by minimizing an objective function penalized with all considered
constraints such as velocity and collision avoidance constraints. The optimization
problem is recalculated at every time instant, including an updated vehicle state
and environment. Even more than the DWA method, this method needs extensive
tuning before it can be used successfully. It also does not allow a trajectory to change
drastically once an initial guess has been calculated. For example when an obstacle
is passed on one side, this cannot be changed, even if it becomes more optimal to
pass it along the other side at a certain point in time [24].

The MECO team developed OMG-tools to tackle some of these previously dis-
cussed issues. It once again solves an optimization problem, but this time the
trajectories are formulated using B-spline basis functions. Manipulation of these
splines allows to introduce the desired constraints. These trajectories are then op-
timized by minimizing either the time required to reach the goal, or the distance
to the goal over a certain time horizon. Obstacles are modeled as simple geometric
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1. Introduction

shapes such as circles and rectangles in 2d or spheres and cuboids in 3d to make
the OCP tractable. One of the main benefits to OMG-tools is its ease of use. It
requires relatively little tuning in order to work properly in a broad range of scenarios
[25, 20]. In contrast to the two previous approaches, OMG-tools does allow the
user to provide a predicted motion trajectory of a moving obstacle. This allows
the vehicle to handle dynamic situations in a more efficient manner, since it can
at any moment predict the best way to pass an obstacle an adapt the path accordingly.

Another important category of motion planners mentioned by [18] is that of the
sampling-based randomized motion planning techniques, such as Rapidly-exploring
Random Trees (RRT). Figure 1.4 shows an example of a motion planning problem
solved with RRT. These techniques work very well in high-dimensional configuration
spaces, but need some extensions to cope with environmental uncertainty. RRT is
quite widespread and successfully applied in driverless car competitions such as the
MIT DARPA Urban Challenge vehicle [26, 27].

Also specifically for drones there are initiatives to stimulate the development of
autonomous navigation algorithms, for example the IROS autonomous drone racing
challenge [28]. Different strategies are used to complete the obstacle course as quick
as possible; some drones solely rely on monocular vision [29] while others combine
prior knowledge of the track in combination with vision and deep neural networks to
navigate successfully [30].

Figure 1.4: Illustration of Rapidly-exploring Random Trees (RRT) algorithm for
motion planning [31].

1.2 Problem statement and challenges
It is important that the demo appeals to all types of audience, in the sense that it
provides value to both researchers and a regular, non-informed audience. Making the
demo visually impressive as well as adding an interactive aspect aids in accomplishing
this goal. Aside from these qualitative specifications, the demo is bound to a space
restriction. The provided indoor flight area where the demo takes place is a room
with dimensions 5.5m x 3.6m x 2.5m (taking into account a safety margin). The
UAV can be any quadrotor drone suitable for indoor flight in the given room which
is displayed in Figure 1.5.

6



1.2. Problem statement and challenges

Figure 1.5: The provided flight area in the Robotics lab.

Five different aspects have to be elaborated in this thesis: modeling, localization,
control, navigation and the combination of these aspects to make them function
together in a demo. A model of the drone dynamics must be derived and identified
to provide the basis for model based localization and control. Existing localization
technology must be fitted into the demo setup, with the possibility for custom recali-
bration. A position and velocity state estimator is required to provide the controller
with state estimates at arbitrary time instances, and to combine the measurements
with model information. Position and velocity controller design is needed in order to
track given trajectories, for example those autonomously calculated by the motion
planner. Low level attitude control is, as said before, not a topic of interest in this
thesis. For navigation the motion planner OMG-tools must be integrated into the
practical setup. Control and navigation is only investigated for one single drone,
not for cooperative drones or drone swarms. The automatic detection of obstacles,
for example computer vision based, is also not considered in this thesis. All the
mentioned aspects need to be combined into a demo, taking into account safety and
robustness considerations.

The practical implementation of the demo faces a number of challenges. Firstly,
unlike AGV’s that drive around on solid ground, UAV’s move in thin air. This
causes issues of drift and turbulence. To deal with these issues, this thesis decides
not to try and model nonlinear effects, but rather design the controllers to deal
with these disturbances. The current implementation thus works with a constant
model, without going into learning control. Feedforward control accounts for desired
behavior that falls under the simple model, whereas feedback control copes with
deviations from the ideal simple model. The current implementation works with a
constant model, without going into learning control.

Next, solving motion planning problems at runtime as an OCP provides quite
a computational challenge. Therefore it is of utmost importance that both the
obstacles and drone are modelled as simply as possible without losing valuable
information. The different obstacle types in OMG-tools are investigated and their
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1. Introduction

influence on computation time quantified. The obstacles with lowest computation
cost are selected for the demo. Also many research studies work towards running
computations embedded on the drone hardware itself. This is difficult in practice
however since the on-board computational power is limited. Even when performing
the computations off-board, most motion planners still require quite some time to
solve the optimization problem at each iteration. One way to reduce computation
time is to not try and solve the problem to optimality up to a very low tolerance,
but to solve until a satisfactory outcome is obtained. In practice it is more useful to
receive an updated quasi optimal trajectory with higher tolerance but at a higher
rate, than to receive an optimal trajectory at a rate far too low to cope with any
disturbances present.

A challenge related to the combination aspect is that even if all modules in-
dividually work as desired, it is not guaranteed that the ensemble will function
in a satisfactory manner. Especially timing is a complicating factor. Therefore,
this thesis spends a lot of effort and attention to timing issues. The design of an
asynchronous Kalman filter enables the interaction of the position measurements,
model and controller while accurately holding track of timing information.

Another challenge related to the demo aspect itself is that different types of tasks
need different controllers (or the same controller with different parameters) and some
tasks even require multiple controllers on their own. Also changing from one task to
another should happen flawlessly at any given time, without having to interrupt the
demo. Implementing the demo as a Finite State Machine (FSM) facilitates adaptivity
to the specific situation.

Finally two important features are safety and robustness. Any spectator should
be able to interact, without causing misbehavior or without compromising safety.
Also when non-nominal situations occur, like the loss of measurements or commu-
nication, the demo must detect this deviation from nominal operation and react
in a conservative, safe way. Monitoring is an essential function in the detection of
non-nominal behavior and is therefore integrated in the FSM implementation.

1.3 Text outline
Chapter 2 first discusses the choice of drone and localization system, followed by
an overview of the used software and the implementation structure of the demo.
In Chapter 3 the modeling of the drone as a linear holonomic system is explained.
Chapter 4 describes both the integration of the measurement system in the code
structure to obtain global pose measurements, and the subsequent state estimation
using an asynchronous Kalman filter. The part on navigation with the functioning of
OMG-tools is discussed in Chapter 5. Chapter 6 then focuses on the implementation
of the position and velocity control. The integration of all the previous modules into
a functional and entertaining demo is then presented in Chapter 7 by first describing
all tasks separately followed by a description of the actual demo.
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Chapter 2

Materials & methodology

This chapter first discusses the selection of the hardware used to construct the demo.
The hardware items that must be selected are the drone itself and the localization
system. Viable alternatives with their specifications are proposed and a value analysis
is carried out resulting in the choice of hardware used in this thesis. Mounting of
the chosen hardware onto the drone is shortly mentioned next. This is followed by
a description of the framework in which the software is written, together with a
summary of the used software packages. The chapter concludes with an overview of
the implementation approach of the different modules into a functional demo.

2.1 Hardware selection

The requirements for the combination of drone and localization system are as fol-
lows. Due to the limited size of the flight area and the need for dynamic flying
when avoiding obstacles, a small, agile drone is required. It must either provide
sufficient on-board computational power or alternatively be able to communicate
with an off-board computer with sufficiently low latency. The localization system
ought to be compatible with the drone and with the centralized computer system.
This compatibility concerns the software and communication medium as well as the
possible weight of an external module placed onto the drone. Furthermore a sufficient
update rate of location measurements is required, taking into account that multiple
tracked objects might use the same localization system.

Extra advantages for both hardware items are a low cost and easy interface.
For the drone a longer flight time is a surplus. The localization system is more
attractive when providing 3D position or 6D pose measurements compared to 2D
measurements. It is also beneficial if it can function even with an obstructed line of
sight between the tracked object and some reference in the environment. The need
for line of sight restricts the number and size of physical obstacles that can be placed.
The required working volume could be added to this list of requirements, but all
systems discussed here satisfy the minimum working volume that was specified in the
problem statement of Chapter 1. Therefore it is not a suitable point of comparison.
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The demo is designed to run on a standard laptop with no special computational
capacity or graphics card. Therefore computer selection is not treated.

2.1.1 Localization system candidates

Table 2.1 shows the localization systems that this thesis considers. Different types
of localization are discussed, both on-board as well as off-board systems. In the
introduction the Vicon system was described as a possible localization system
candidate. Without going into detail on the actual price of the system, this system
is ruled out because the price is multiple orders of magnitude larger than that of
the other systems discussed in this text. The accuracy of the other systems is good
enough for the desired application, such that the large cost for the more expensive
system is not justifiable. As mentioned before, systems with high accuracy and a 3D
or 6D pose estimate are preferred. A higher update rate also benefits the tracking
accuracy of the drone. The main features for each type of localization system are
discussed below.

System HTC Vive Games On Track Marvelmind
Price(e) (-/0) 720/400 (-) 600+ (0) 400
Update rate (Hz) (+) >60 (-) 20 (0) <45
Accuracy (mm) (+) 10 (+) 10 (+) 20
Line of sight (0) yes (0) yes (0) yes
Pose estimate (+) 6D (0) 3D (-) 2D
Module weight (g) (-) 89 (0) 10 (-) 59
Ease of use (0) (0) (+)

System Pozyx Apriltag Overhead camera’s
Price(e) (-) 599 (+) 0 (+) 0
Update rate (Hz) (+) 80 (0) 10-50 (0) 10-50
Accuracy (mm) (-) 100 (0) ? (0) ?
Line of sight (+) no (0) yes (0) yes
Pose estimate (+) 6D (+) 6D (+) 6D
Module weight (g) (0) 12 + 25 (+) 0 (+) 0
Ease of use (+) (0) (-)

Table 2.1: Candidate localization systems with their specifications and relative scores
[32, 33, 34, 35, 36].
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The external, beacon based systems are the HTC Vive, Games On Track, Marvel-
mind and Pozyx. The HTC Vive as mentioned in the introduction is a virtual reality
gaming system. Its high accuracy, superior update rate (up to 100 Hz even in case
of multiple tracked objects) and the ability to supply a 6D pose measurement are the
most significant advantages. The cost of e720 mentioned in Table 2.1 is the one for
the entire system with base stations, headset, two controllers and an extra tracker. to
provide a fair comparison with the other systems that don’t provide multiple tracked
beacons, only the strictly necessary components (base stations and a single tracker)
are considered. This lowers the cost to e400. Nevertheless the Vive controllers are
very useful for demo purposes. Compared to most other systems the drawback of the
Vive is its relatively large weight, since a drone has to be able to carry the tracker in
addition to its own weight. For most drones this will not drastically deteriorate the
dynamic behaviour, but the flight time is expected to decrease significantly. This
however poses less of an issue when the demo allows the flexibility to interrupt for
battery replacement.

Games On Track and Marvelmind both work with beacons emitting ultrasound.
Their update rates (20 Hz and 45 Hz respectively, to be divided by the number of
tracked objects) are significantly lower than that of the Vive, without delivering the
advantage of a lower price. Another major disadvantage is that neither can provide a
6D pose measurement, since the Games On Track system is restricted to 3D and the
Marvelmind system even to 2D position measurements. Their modules do however
weigh less than that of the vive, especially in the case of the Games On Track system.

Pozyx calculates the position and orientation of a tag attached to the drone trough
the use of a wireless radio technology called ultra-wideband. The largest advantage
to this technology is that it is the only system discussed, which does not require
line of sight for the system to function properly. The accuracy however is lower
than that of most other systems thus making it less suitable in a small environment.
Furthermore it does not provide orientation info unless multiple antennas are used.

The last two table entries Apriltag and Overhead camera’s use computer vision
based solutions to provide a pose estimate. The Apriltag solution refers to the
situation in which tags are spread out over the environment in which the drone
flies. The on-board camera is used to scan the images before either processing them
on-board, or sending the footage off-board to an external computer. The research
report for an application developed at the University of Michigan states tag detection
times of around 22 ms for a 640 x 480 image [36]. However processing these images
off-board, if the on-board computational power is lacking, introduces extra latency
as an unwanted result. An Overhead camera system uses the opposite approach
tracking a single tag attached to the drone using camera’s attached to the ceiling.
The largest downside in the overhead configuration available at the department is
that the available software can only provide 2D measurements. 6D measurements can
be obtained but this software is not available and the preference goes to ready-to-use
systems.
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Systems using tag tracking also do not inherently provide info based on multiple
sensors, as is the case in for example the Vive which combines IMU and infrared data.
Another downside to such passive systems is the influence of lighting conditions on
the performance, which makes them less robust. Robustness is however important
since any loss of pose info would result in a fail of the demo.

The selected localization system is the HTC Vive, as will explained further in
Section 2.1.3.

2.1.2 Drone candidates

The specifications of the candidate drones are displayed in Table 2.2. Because the
demo takes place in a limited space as mentioned before, the drone is preferably
small and lightweight. Moreover, lightweight drones generally suffer less damage in
case of of a crash. For these reasons the DJI Phantom and drones of similar size
and weight are immediately eliminated from the discussion. The Parrot AR drone,
commonly used in academic drone projects, e.g. [37], is left out of the discussion,
since the Parrot Bebop 2 can be seen as its improved successor. The main features
for each drone are discussed below.

Drone Parrot Bebop 2 Intel Aero
Price(e) (+) ~400 / 0 (-) 1000
Frame size (mm) / Weight (g) (0) 290 / 511 (-) 360 / 865
Camera (0) 1080p, 30fps (0) 1080p
Computational power (-) dual-core Parrot P7 (+) Intel Atom x7
Flight time (min) (+) 20-25 (+) 20-25
Open source (+) yes (+) yes

Drone DJI Mavic DJI Spark
Price(e) (-) ~1000 (+) ~450
Frame size (mm) / Weight (g) (-) 335 / 743 (+) 170 / 300
Camera (0) 4K, 30fps (0) 1080p, 30fps
Computational power (0) Myriad 2 MA2155 (-) Myriad 2 MA2450
Flight time (min) (0) ~20 (-) ~15
Open source (+) yes (-) no

Table 2.2: Candidate drones with their specifications and relative scores [38, 39, 40].

The Parrot Bebop 2 has as a first advantage that there is one available in the
department, such that the purchase price drops to zero. Next to that, its ease
of communication with a PC makes it very attractive, thanks to the open source
interface created by Autonomy Lab called Bebop Autonomy [41]. Finally it is a
visually attractive drone, which is a nice added bonus when used in a demo. A
possible disadvantage is the lower video quality than e.g. the DJI Mavic, but since
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the goal is not to produce high quality footage this drawback becomes irrelevant. The
camera of the Bebop as well as those of the other drones suffice for the localization
systems that use an on-board camera.

The Intel Aero, a more expensive and visually less attractive drone, is aimed more
towards developers than the Bebop. It comes with an open source interface as well.
Its superior computational power makes it more suitable for on-board calculations.
An MIT project implementing full on-board state estimation and control of an
autonomous flying plane proves the potential since the project uses an Intel Atom
X7 processor, the same processor as on the Intel Aero [42]. It is however the largest
an most heavy of the four drones under comparison.

The DJI Mavic’s superior camera quality is not an advantage in this thesis, since
the image resolution is unnecessarily high for localization purposes. It does however
influence the price in a negative way. The other DJI drone called the DJI Spark is
the smallest drone making it suited for flying in tight, indoor spaces. But this is
advantage is outweighed by the downside of it being more commercial and rather
inaccessible compared to the previous three drones.

The Parrot Bebop 2 is chosen to be the most suitable drone for this demo, as
will be clarified in the following section.

2.1.3 Value analysis & final selection

The drone choice partially depends on the choice of localization system and vice
versa. A smaller drone for example will not have the necessary computational power
to perform localization on-board, thus it will have to rely on an off-board type of
localization. A localization system with a heavier tracker module will on the other
hand require a larger drone to be able to carry the additional weight. First a score is
computed for all localization systems and drones to find the most suitable candidates,
after which the combination is evaluated to determine compatibility between the
two.

Localization system

The indications (+),(0) and (-) in Tables 2.1 and 2.2 are relative scores. This means
that a negative score does not necessarily indicate that this alternative is not suited
for the application. In order to calculate a relative score for each system, the (+),(0)
and (-) scores are treated as 1, 0 and -1. Update rate, accuracy and pose estimate are
weighted double, since they are of large interest for the demo. After summation the
HTC Vive receives a relative score of 5, Games On Track scores -1, Marvelmind 0,
Pozyx 3, Apriltags 4 and the Overhead camera system 3. Based on this comparison,
the HTC Vive turns out to be the most suited localization system.
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Drone

When choosing a drone, the most important quality is compactness, since the demo
will take place in an indoor room with limited dimensions. The larger the drone, the
fewer the possible tasks that can be explored in the demo. Therefore this criterion
is weighted double. Computing the scores in the same way as for the localization
systems then gives following results: the Parrot Bebop 2 receives a score of 2, Intel
Aero 0, and the DJI Mavic and Spark a score of -2 and 0 respectively. Therefore the
Parrot Bebop is the preferred drone choice.

Final choice

As mentioned before the choice of localization system has an important influence
on the choice of drone. The relatively large weight of the Vive Tracker (89 g) for
example excludes the DJI Spark (300 g) since it is not able to carry such a large
mass. The Parrot Bebop 2 is the second smallest drone, but it is still capable of
flying with the added mass of the Vive tracker. The Vive is also a system which
makes use of an external computer through which it connects, making it easier to
do most of the computations off-board. This renders large on-board computational
power unnecessary which makes the combination of Vive and Bebop even more fit
since the Bebop does not possess such high computational power. An added benefit
of using choosing the Bebop is that it offers an easy to use interface. The above
considerations confirm the choice of the Parrot Bebop 2 in combination with the
HTC Vive, which is therefore also the hardware used in this thesis. Figure 2.1 shows
the combination of the selected drone and tracker from the Vive localization system.

Figure 2.1: The selected drone with tracker from the Vive localization system
mounted on top.

2.1.4 Tracker mounting

Before the chosen drone and tracker can be used, the tracker has to be mounted
onto the drone. Special care has to be taken when mounting the tracker, since
after purchase a problem became apparent: once the drone takes off, all received
measurements reduce to zero values. The cause is the following. As mentioned
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before, the tracker combines optical measurements with IMU data. The sensitiv-
ity of the IMU to vibrations renders the data useless whenever the vibrational
amplitude becomes too high. Therefore the main hurdle to overcome when using
this system on a drone is to isolate the tracker mechanically from the vibration source.

An ad hoc solution is used here. Two different structures are explored for
mounting the tracker to the drone. In the first, the tracker is mounted on top of the
drone; in the second one, it is mounted at the rear as shown in Figure 2.2. Both
mounting options provide integrated vibration isolation as well as damping through
the use of small rubber bellows and polyurethane foam. Mounting the tracker on
top results in the least amount of false measurements and moreover the balance of
the drone is disturbed less. Hence this is the setup used in this thesis.

Figure 2.2: Two alternatives to tracker mounting: on top or at the rear.

2.2 Software dependencies

As mentioned in the introduction, not all software parts used in this project are
self-written. Several software libraries are available to facilitate the development of
parts of the demo. All code for execution of the demo is written in the programming
language Python. Modeling, controller design and data analysis is performed in
Matlab. This section gives a rundown of the most important external software used.

First of all a software framework is needed, which allows different parts of code to
communicate and function in parallel. Robot Operating System (ROS) is chosen since
it consists of such a modular structure [43]. ROS offers the ability to simultaneously
run multiple pieces of code corresponding to multiple functionalities, while providing
two-way communication between them. Moreover it allows for easy integration of
distributed systems over Wi-Fi and the ROS-community is a vast supplier of plug-and
play implementations of interfaces with UAV’s and localization systems. Previous
experience with similar projects supports this choice since it has proven to work well.

15



2. Materials & methodology

Within this framework three different parts of the demo make use of external
software packages. The communication between software and drone hardware relies
on a package called Bebop Autonomy. It provides an interface between the software
running on the computer and the drone itself over a Wi-Fi connection. In addition a
range of parameters allows the user to fine-tune the flying behavior as desired [41].

Since this is a demo commissioned by MECO, the navigational part relies on the
OMG-toolbox as it is developed in-house. The demo can therefore serve as a tool to
show on the one hand the potential of this software while exploring its limitations
on the other hand. This is elaborated further in Chapter 5.

The third and last part that requires additional software is the localization. In
order to extract pose measurements from the HTC Vive, the open-source package
Triad OpenVR [44] is used. It serves as a wrapper for the PyopenVR package which
in turn depends on SteamVR, an application developed to use the Vive system for
virtual reality gaming [45, 46]. This however only allows to read out the poses of
multiple tracked objects. Since two additional controllers are used as well, an extra
piece of code provides the ability to read out the controller buttons [47]. This way the
demo can to a great extent be carried out without having to sit behind a computer,
thereby benefiting its interactive aspect.

2.3 Implementation approach

This section introduces the implementation structure of the demo. It starts from a
functional decomposition and gives an overview of the main functionality of all the
parts, together with the interfacing between these parts. It concludes with a note on
how this structure is implemented in software.

Figure 2.3 schematically represents the different functions: perception, world
model, control, monitoring and navigation (motion planner).

The perception is the link between the measurement hardware and the control
system. It involves reading in raw data and representing it with respect to a known,
calibrated world reference frame. The world model contains three different parts.
The first one is a mathematical model of the drone’s dynamics. Next to this it
includes all details about the environment, both the placement of obstacles as well as
the location of all room edges. And thirdly it contains a state estimator to compute
and store a pose and velocity estimate of the drone based on the combination of
measurements coming from the perception, the inputs coming from the controller and
the drone model stored in the world model itself. The perception and the estimator
together form the localization. The main goal of a centralized world model is to
make sure that all components in the system use the same information at all times.
They all contribute to this single representation instead of each relying on a separate
and different version of world information.

The monitor is vital to ensure safe and correct execution of the demo. It detects
non-nominal situations, as well as nominal events that ask for a change in behavior
of the system in order to perform a desired task. In case of each of these events, it
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Figure 2.3: Implementation structure based on functional decomposition. The
large dotted frame indicates the distinction between software (inside) and hardware
(outside). Terms inside full frames are components developed in this thesis. Terms
inside dotted frames are adopted components. Arrows indicate information flow.

triggers the rest of the system to adapt its behavior. The controller is responsible for
all actions that generate input directly to the drone. It computes input commands
based on drone state information and desired behavior as defined by the task. The
motion planner is in charge of the navigation. It generates trajectories from the
drone’s position to a desired goal given physical limitations, such as drone dynamics,
obstacles and flight area size. It is inactive during standby or tasks where only lower
level control is required.

Characteristic to the implementation of the demo in this thesis, is the approach
to cope with situation specific behavior of the control system. The demo provides
five different tasks, each meant to illustrate a different level of autonomous flight.
Tasks are divided into states, where every state uniquely defines the behavior of
each component in the entire system. The state-specific behavior for each functional
component is embodied by a Finite State Machine (FSM). The FSM presents itself
implicitly in the structure depicted by Figure 2.3, since the monitor is the component
that triggers necessary state transitions in the FSM. Other components adapt their
behavior according to the current state. This structure also provides the ability to
switch between tasks and states at any given moment which is valuable in emergency
situations. Details on the specific tasks will be discussed in Chapter 7.
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In the software implementation, the functional decomposition adheres to the
nodular structure of ROS. The perception is handled by a node called Vive Local-
ization. The world model is integrated together with the main functionality of the
FSM in the node Bebop Core. This node is the heart of the demo and drives the rest
of the system. The controller has its own ROS node Controller, in order to allow
it to run at its own controller update rate different from the rate of other nodes.
The motion planner consists of a separate node Motion Planner as well, because the
computation of trajectories takes a relatively long time. Running it isolated from the
other functionalities assures that it does not block other operations. The monitor is
integrated into the controller and core nodes.
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Chapter 3

Modeling of drone dynamics

The state estimator and autonomous control from Chapters 4 and 6 rely on linear
time-invariant (LTI) continuous-time models of the drone’s position and velocity
response with respect to the control inputs. This chapter elaborates on how these
dynamic models are obtained and how the parameters are estimated. The identified
models are stored in the world model cf. Section 2.3 allowing other components of
the implementation to access them when necessary.

The first section provides a qualitative derivation of the model based on physical
insight, resulting in a set of linear time-invariant transfer functions with unknown
parameters. In a second section, these unknown parameters are identified by conduct-
ing a least squares discrete-time domain identification. The final section concludes
with an explanation on how the derived models are then used by the other system
components.

3.1 Mathematical model derivation

The nomenclature and orientation of the axes on the Bebop drone are clarified by
Figure 3.1. The drone possesses four degrees of freedom: rotation along the x-, y-
and z-axis as well as translation along the z-axis. Each of these has a corresponding
normalized input ranging from -1 to 1: for the x- and y-direction the inputs are
proportional to the roll and pitch angle, whereas for the z-axis the translational and
rotational input are proportional to the respective translational and rotational velocity
along this axis. The flight control interface designed by the drone manufacturer
Parrot is intended to be intuitive for a human navigator; it decouples the inputs in
such a way, that the frame indicated in Figure 3.1 in which the inputs are valid, does
not roll or pitch along with the drone body. This frame does however rotate along
with the yaw of the body. Yaw is further on designated with the symbol θ and its
time derivative with ω.

The dynamical model now describes the response of the closed loop system
comprising the internal flight controller and drone dynamics to the different inputs.
Since the inputs are decoupled in the manner described above, in theory an input
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along one axis only influences the output along that same axis. Therefore the models
are set up accordingly as single-input single-output (SISO) systems for each direction.

Figure 3.1: The x-, y- and z-axis with the corresponding roll, pitch and yaw angle
indicated on a Parrot Bebop 2 drone.

3.1.1 X and Y model

Figure 3.2 schematically shows an idealized 1D model in the Laplace domain (with s
as Laplace variable) for both the x- and y-direction. In this model, j is the normalized
input command sent to the drone. It is equal to the desired reference angle divided
by the maximum attainable angle αmax. The applied reference for the pitch and roll
angle leads to a linear movement along x and y respectively.

The proposed model originates from the reasoning that the real angle α reaches
the desired reference angle after some delay expressed by τ . Next the model assumes
that the roll and pitch angles are proportional to the acceleration along the respective
axes. Velocity and position then follow through integration.

αmax
1+τs aα 1

s
1
s

j α a v p

Figure 3.2: Idealized continuous-time model. j represents the normalized input
command. α is the pitch or roll angle for an input over x or y respectively. τ is a
time delay constant. a, v, p correspond to the acceleration, velocity and position.

Adding damping (which is ignored in the idealized model), the proposed general
1D input-output model from input to velocity becomes:

HV J(s) = V (s)
J(s) = b0

s2 + a1s+ a0
(3.1)

20



3.2. Least squares discrete-time domain identification

The position model follows through integration:

HPJ(s) = P (s)
J(s) = 1

s
HV J(s) = b0

s3 + a1s2 + a0s
(3.2)

3.1.2 Z and θ model

Both for the linear and angular z-direction a transfer function of one order lower
than for x and y suffices, since the input for this direction is proportional to velocity
instead of acceleration.

The general velocity transfer functions in the z-direction then become:

HV J,z(s) = Vz(s)
Jz(s)

= b0
s+ a0

(3.3)

HΩJ(s) = Ω(s)
Jθ(s)

= b0
s+ a0

(3.4)

Integrating to obtain the position along the z-axis and yaw angle then gives:

HPJ,z(s) = Pz(s)
Jz(s)

= b0
s2 + a0s

(3.5)

HΘJ(s) = Θ(s)
Jθ(s)

= b0
s2 + a0s

(3.6)

3.2 Least squares discrete-time domain identification
The identification consists in finding the parameters b0, ai in equations (3.1) - (3.6)
for which the simulated dynamic response best resembles the real drone behavior.
The ’best’ fit is quantified in terms of the least square error on the difference equation
representation of the corresponding transfer function.

In order to perform an identification of the unknown parameters in these transfer
functions, the continuous time representations must be discretized first. The ’pole-
zero matching’ method is selected as discretization scheme, in order to guarantee
preservation of the minimum phase property of transfer functions (3.1) - (3.6) [48].
Minimum phase for a linear model means that all continuous-time zeros of the transfer
function are located in the left half of the complex plane (real part smaller than
zero). For a discrete time transfer function this is equivalent to all zeros lying inside
the unit circle. In contrast to a minimum phase SISO model, the step response of a
non-minimum phase model first deviates in the opposite direction to the reference.
This is illustrated qualitatively in Figure 3.3 for a general minimum phase and a
non-minimum phase system. In practice the drone does not show this behavior, such
that we want to avoid introducing it into the model artificially. The discrete-time
transfer function equivalent to the continuous-time variant in Equation 3.1 is given
by

HV J(z) = b0,d
z2 + a1,dz + a0,d

(3.7)
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Figure 3.3: Step response of a general minimum phase and a non-minimum phase
SISO model. The minimum phase variant sets off in the direction of the reference,
while the non-minimum phase variant sets off in the opposite direction.

In a following step, four separate experiments are set up to gather the data
required to perform the identification. In each of these experiments, a block pulse
is applied to one of the four degrees of freedom x, y, z and θ in order to excite
a broad range of frequencies. Figure 3.4 shows the applied block pulse input, the
position measurement and the velocity which is obtained as numerical derivative of
the position. The length of the pulses is limited by the size of the flight area where
the demo is held. The height of the block pulses varies to obtain an average model
over a range of inputs. Each experiment is conducted for a duration of ten periods
to provide a sufficient amount of data for averaging out unwanted variations.

Both inputs and outputs are low pass filtered with a Butterworth filter before
identification in order to eliminate higher frequency noise. The cutoff frequency of
the filter is chosen to be five times higher (as a rule of thumb) than the highest
frequency contained in the identified system. The crossover frequency (iteratively
determined) is taken as a measure for this highest frequency.

Now the discrete time parameters b0,d, ai,d can be determined using a least-squares
fit based on an ARX model structure [49]. Elaborating this for the discrete-time
velocity model in the x-direction given by equation (3.7) gives the following difference
equation:

b0,dJ(z) = z2V (z) + a1,dz
2V (z) + a0,dV (z)

⇔ b0,dj[k] = v[k + 2] + a1,dv[k + 1] + a0,dv[k]
⇔ v[k + 2] = −a1,dv[k + 1]− a0,dv[k] + b0,dj[k]
⇔ v[k] = −a1,dv[k − 1]− a0,dv[k − 2] + b0,dj[k − 2]
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3.2. Least squares discrete-time domain identification

where k = 0, 1, 2, ... is the discrete time variable. The last equation can then be
rewritten as

V = Φ ·Θ (3.8)

with

V =
[
v[2], v[3], . . . v[N ]

]T

Φ =


−v[1] −v[0] j[0]
−v[2] −v[1] j[1]

...
...

...
−v[N − 1] −v[N − 2] j[N − 2]



Θ =
[
a1,d a0,d b0,d

]T

and N the size of the data set. v is the velocity data obtained in the experiment
in Figure 3.4.

The unknown parameters are then determined as the least-squares solution for
Θ of the over-determined system of equations (3.8). In Matlab this can easily be
done using the backslash command: Θ = Φ\V . The procedure is fully analogous for
the models in the y- and z-directions.

Since the measurement data received from the Vive localization system is sampled
at a sampling time interval Ts,meas, this is also the sampling time used to convert
the discretized transfer function into a continuous representation. Numerically
the resulting continuous time transfer functions then become (after transforming
the discrete-time transfer functions back to the continuous-time domain using the
pole-zero matching method):

HV J,x(s) = 22.51
s2 + 6.167s+ 1.532 (m/s)

HV J,y(s) = 18.96
s2 + 5.147s+ 2.116 (m/s)

HV J,z(s) = 6.066
s+ 6.26 (m/s)

HΩJ(s) = 5.66
s+ 3.262 (rad/s)

HPJ,x(s) = 22.51
s3 + 6.167s2 + 1.532s (m)

HPJ,y(s) = 18.96
s3 + 5.147s2 + 2.116s (m)

HPJ,z(s) = 6.066
s2 + 6.26s (m)

HΘJ(s) = 5.66
s2 + 3.262s (rad)
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3. Modeling of drone dynamics

(a) Input, position and velocity.

(b) Zoom on the position measurement.

Figure 3.4: Excerpt from the identification experiment for the x-direction. (a) From
top to bottom: the input, position response and velocity response (numeric difference)
together with their filtered counterpart. (b) Zoom on the position measurement to
illustrate the quality of the measurement system.
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3.3. Further use of the identified models

The quality of the identified models is validated against the measurement data
by feeding the model the same input as applied to the drone during the experiment.
Figure 3.5 displays this comparison for the x-direction. The velocity model fits the
measurement data rather accurately. However, from the position fit it becomes clear
that there is a drift effect present which is not accounted for in the linear model.
The error on the position grows, since the small velocity error is integrated over time.
Nevertheless the model is adequate for the intended use, as it is only extrapolated
over very short time intervals (in the order of 10 ms).

Figure 3.5: Result of the model fit for the x-direction. Comparison between simulation
of identified transfer function and experiment measurement data for the same block
pulse input signal.

3.3 Further use of the identified models

The state estimator that will be described in the following chapter requires a dis-
cretized version of the continuous-time position and velocity models. Before discretiza-
tion the transfer function representation is converted to a state space representation,
according to the controllable canonical form:
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3. Modeling of drone dynamics

ẋ1
ẋ2
ẋ3


︸ ︷︷ ︸
ẋ

=

0 1 0
0 0 1
0 −a0 −a1


︸ ︷︷ ︸

A

x1
x2
x3


︸ ︷︷ ︸
x

+

0
0
1


︸︷︷︸
B

j

[
p
v

]
︸︷︷︸
y

=
[
b0 0 0
0 b0 0

]
︸ ︷︷ ︸

C

x1
x2
x3

+
[
0
0

]
︸︷︷︸
D

j

(3.9)

where p is the position and v the velocity in the x-, y- or z-direction. The discrete-
time state space model is then calculated using a Forward Euler discretization
scheme:

ẋ(t) ≈ x(t+ Ts)− x(t)
Ts

(3.10)

=⇒ x(t+ Ts) ≈ (I + TsA)︸ ︷︷ ︸
Ad

x(t) + TsB︸︷︷︸
Bd

j(t) (3.11)

Cd = C, Dd = D (3.12)

The matrices with subscript ’d’ are the state space representation matrices
for discrete time. This discretization is however not calculated in advance since
the discretization sample time is variable due to the asynchronicity in the control
system. It is therefore calculated at every time step, using the variable sample time Ts.

The controller also uses the velocity model to compute the required inputs to
reach a desired velocity set point. It therefore has to invert this model, as described
in more detail in Chapter 6.

3.4 Conclusion
In this chapter a linear time-invariant continuous-time dynamic model of the drone
was derived, together with its discretized counterpart. First a set of general transfer
functions with unknown coefficients was defined based on physical insight in the
system, and this for each of the four degrees of freedom. Next a linear least squares
discrete-time domain identification was conducted to determine these unknown
coefficients. Since this is a linear model, nonlinear effects such as drift were not taken
into account. The model does however perform considerably well as shown in the
following chapters.
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Chapter 4

Localization

To control and navigate the drone successfully, the corresponding components require
good estimates of the position, orientation and velocity of the drone, i.e. the
drone’s state. This chapter discusses how these estimates are obtained by combining
measurements and drone model information.

First it describes the implementation that obtains position measurements from
the HTC Vive. This corresponds to the perception part of the implementation
structure proposed in Section 2.3. Coordinate reference frames are defined to ensure
that each component refers to a commonly known reference. To initialize the relations
between these frames, a calibration procedure is proposed and implemented.

Next an algorithm for a state estimator is proposed which combines these mea-
surements with the model derived in the previous chapter. This algorithm, called an
asynchronous Kalman filter (AKF), estimates the states based on the inputs sent
by the controller and taking into account the asynchronicity of the system. Even
though this project only uses a single localization system, the implementation aims
for generality and therefore provides the possibility to use different measurement
systems or expand the localization system to combine measurements from multiple
measurement systems.

4.1 Perception

As mentioned in Chapter 2, raw position readouts are retrieved using the Triad
OpenVR Python package, which is built upon the PyopenVR library [44, 45]. A
minor adaptation with large consequences this thesis makes to Triad OpenVR is the
use of Python’s atan2() function instead of atan() when calculating Euler angles, to
enable four quadrant operation.

Five reference frames are defined in order to relate all pose measurements, as
shown in Figure 4.2. The World frame is the global reference frame to which drone
pose estimates, trajectories and obstacle locations are referred. The raw pose readouts
are expressed in the Vive frame, which is fixed to the Vive’s base stations. They
represent the pose of the tracker, depicted by the green axes in Figure 4.1, with
respect to the Vive frame. The tracker and the drone are assumed to be rigidly
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4. Localization

connected, despite minimal deformations of the flexible suspension presented in
Chapter 2. Therefore the Drone frame represented by the red axes in Figure 4.1 has
a fixed rotation and translation with respect to the Tracker frame. The addition
of the World yaw frame is a direct consequence of the model derived in Chapter 3.
Recall that drone inputs are valid in a frame that does not pitch or roll along with
the body of the drone, but only yaws along with it. The World Yaw frame embodies
exactly this. Its origin coincides with that of the World frame.

x y

z

x

y

z

Figure 4.1: Orientation of drone and tracker coordinate frames. The origin of the
tracker frame lies in the center of the mounting plane [50]. The origin of the drone
frame lies in the geometric center between the four propellers.

Figure 4.2: Transformation tree with all coordinate reference frames and indication
of fixed or variable transforms.

28



4.1. Perception

4.1.1 Coordinate transformations in ROS

Practical implementation of coordinate reference frames and the coordinate trans-
formations between them in ROS is handled by the tf2 library [51]. tf2 defines
coordinate transformations as ROS geometry_msgs/TransformStamped messages,
meaning they contain the following information:

• time stamp

• child frame and reference frame

• translation (x, y ,z)

• rotation as quaternions (x, y, z, w)

The time stamp of each frame corresponds to the last time at which the new pose
of the frame is computed and broadcasted. It ensures that only transforms defined at
equal time instances are used. This is the main advantage of using tf2 over another
method such as explicitly storing the transformation matrices and communicating
these via messages. For times at which no transform was broadcasted, the mod-
ule automatically interpolates in time between the known coordinate transformations.

The three last bullets contain information equivalent to the well known homoge-
neous transformation matrix or pose matrix ref

childT between a reference frame and a
child frame:

ref
childT =

[
ref
childR

ref tchild
0 1

]

where ref
childR and ref tchild are the 3x3 rotation matrix and the translation vector

respectively of the child frame expressed in the reference frame. This matrix can be
interpreted either as a transformation from the child frame to the reference frame,
or alternatively as the pose of the child frame expressed in the reference frame. Its
inverse gives the transformation from reference frame to child frame.

4.1.2 Calibration procedure

The fixed transforms indicated in Figure 4.2 are defined as follows. dtT follows directly
from the tracker mounting on the drone and can be derived from the setup in Figure
4.1.

w
v T is defined by calibration. First the user places the drone at the desired World

frame origin location, with the axes of the Drone frame aligned to the desired axes
of the World frame. Next the calibration fixes the World frame as the frame that at
the instant of calibration coincides with the Drone frame: wv T = d

vT = d
tT

t
vT . From

that moment on, any pose of the drone with respect to the global reference frame is
uniquely defined as:

d
wT = d

tT
t
vT

v
wT
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4. Localization

4.2 State estimation: asynchronous Kalman filter

The raw measurement data from the HTC Vive is not used directly by the controller
to calculate the control inputs. It is first processed by a state estimator to combine
the measurements with model information to ensure that a good estimate is available
at arbitrary time instances. The state estimator discussed in this section estimates
the drone’s position and velocity in 3D, as well as the yaw angle. The type of
estimator used for this application is the asynchronous Kalman filter. To explain the
choice for an asynchronous variant of the Kalman filter, following paragraphs first
summarize the more generally used synchronous Kalman filter and then motivate
the asynchronous character of the estimator used in this project.

A synchronous Kalman filter consists of two subsequent calculation steps. First
there is the prediction step. Based on the last state estimate and the current input
that is applied to the system, a prediction is made of where the system will be at
the next point in time using a model of this system.

Next there is the correction step. The estimate predicted in the first step is
updated using the measurement of (a linear combination of some of) these states.
These measurements can come from a single sensor, or measurements of multiple
sensors can be combined. The combination of model and measurements is weighted
according to their relative uncertainty. This uncertainty is represented by the mea-
surement and process noise covariance matrices, assuming a Gaussian distribution
for the measurement and process noise. The total uncertainty on the estimate is
expressed by the estimation error covariance. One way to look at the Kalman filter
as an algorithm that minimizes this estimation error covariance [52].

The synchronous approach poses two issues in the context of the modular struc-
ture that this thesis implements. Firstly, the estimator must cope with asynchronicity
between the controller and the perception part. Measurements are received at a
rate different from the rate at which the controller generates inputs. Moreover, the
implementation aims for generality in the use of different measurement systems, or
in using multiple systems simultaneously. Therefore the rate at which new mea-
surements become available is not known beforehand. Secondly, communication
time delay between the ROS nodes must be taken into account when processing the
measurement and state data.

To cope with the asynchronicity a synchronous Kalman filter using the latest
measurement and input at each iteration data could be used. However this is not
such an accurate approach since timing differences between measurement and input
are ignored. Also it cannot obtain a state estimate at every arbitrary time instant.
The loss of timing information also hinders solving the second issue.

Using an asynchronous version of the Kalman filter allows to solve both these
issues. It allows the controller to run at an update rate different from the localization
system, by applying prediction steps whenever a new input is available and by
applying correction steps whenever a new measurement becomes available. An
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4.2. State estimation: asynchronous Kalman filter

additional benefit to this approach is that the current measurement system can be
replaced by any other system running at another rate, without affecting its operation.
This increases the modularity of the demo and enables the possibility of comparison
between measurement systems. This last feature is not further elaborated in this
thesis, as the current measurement system suffices for demo purposes. Now a more
detailed explanation of the working principle of the asynchronous Kalman filter
follows.

4.2.1 General working principles

Since the identified drone model of Chapter 3 is not identical in the x- and y-direction,
it is valid only in the World Yaw frame that was introduced in Section 4.1. Therefore
this is also the frame in which all asynchronous Kalman filter operations are computed.

The execution of the prediction and correction step do not occur at a synchronous
rate, rendering it essential to keep track of the different time instants at which
the input and localization data is acquired. Also any delay introduced due to the
communication between the different parts of code can be taken into account this
way. Therefore each measurement, input and state estimate is assigned a time stamp
at the time when it is generated by perception, controller or world model respectively.
All time stamps are referred to a time reference which is common to all nodes because
of the ROS time primitive.

Figure 4.3 shows a sketch of the interaction between perception, world model
and controller along the time axis (oriented downwards). The arrows on the right of
the controller timeline denote the times ti (i = 1, 2, ...) at which the controller sends
out input commands to the drone. The arrows coming from perception indicate the
times tmeas at which a new measurement comes in. The AKF stores the last input
that was applied before the latest measurement as well as all inputs from the latest
measurement up to the current time.

The two distinct operations that are performed are the same as in the synchronous
Kalman filter. One is the prediction step, which estimates the state at time ti+1
given the input and state at time ti by using the identified model. The second one is
the correction step. The latter differs from the synchronous variant in the sense that
it involves several prediction steps up to the new measurement before the actual
correction step. The reason for this is that in order to execute the correction step,
a state estimate must be available at time tmeas. In contrast to the synchronous
Kalman filter where this is always the case, this is usually not the case in an asyn-
chronous one as the red and blue lines do not coincide.
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4. Localization

Figure 4.3: Timing diagram of the interaction between perception, world model and
controller. Indicated time instances are the times at which measurements (tmeas)
and drone inputs (ti, i = 1, 2, ..) take place, together with their respective sample
times (Ts,meas, Ts,ctrl). All in- and outputs to and from the world model, including
communication delay, are represented by the shifted arrows. Calculation times for
corrections, predictions and input commands are illustratively shown (not up to
scale), as well as transform broadcast delay.
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4.2. State estimation: asynchronous Kalman filter

As time goes by, the controller sends out input commands at times ti, and in
return requests a position estimate at time ti+1 from the AKF as illustrated in Figure
4.3. Since this time ti+1 is at a point in the future, the AKF will perform a prediction
step to compute a state estimate for that future time instance. The controller then
uses this state estimate to calculate the set of inputs that will be applied at time
ti+1. Note that over these predictions, the estimation error covariance grows.

In practice, the time ti+1 for which the input command is computed does not
exactly coincide with the actual time at which the input command is sent, due
to delay and imperfections on the rate at which the code runs. However, at the
time of a correction, the actual times ti at which the input commands were sent
are known, since they are assigned a time stamp in the controller when applied.
Hence at the correction step, the predictions starting from the previous measurement
time tmeas up to the current measurement time t′

meas can be recomputed with more
accurate timing information to obtain a better estimate. Note that because of this,
the time step over which the prediction is made becomes variable and unique for
every prediction step. This motivates the use of a continuous-time model that is
discretized at every prediction, as introduced in Section 3.3. After recomputing the
predictions, the AKF performs a correction step, thereby shrinking the estimation
error covariance again.

After such a cycle of predictions and a correction, the time of the latest measure-
ment t′

meas is made the new tmeas, and the procedure repeats itself.

The following part first discusses the mathematics of the prediction and correction
step. Next it elaborates on deviations from the ideal situation of Figure 4.3. This
ideal situation is not always satisfied due to lag in the communication between nodes
or because of the loss of a signal. It explains how the implementation proposed in
this thesis deals with these cases.

Prediction step

Whenever the controller needs an estimate of the states at the next point in time, it
sends out the latest input command along with the request for the estimate. This
input is then used to perform a prediction step over the required time step Ts,ctrl.

Recall from Chapter 3 that the discretized Ad and Bd state space representation
matrices are given by the following formulas:{

Ad = TsA+ I

Bd = TsB
(4.1)

with A and B the continuous time state space matrices, I the identity matrix and
Ts the time over which the prediction will be performed. The C and D matrices remain
unchanged after discretization. Although this is a very simple Euler approximation,
the section on the AKF performance further on will prove that the approximation
suffices since the linear extrapolation is only made over a short time interval in the
order of 0.01 s.
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4. Localization

The prediction step is then represented by:

x̂ti+1|ti = Adx̂ti|ti +Bdjti (4.2)
ŷti+1 = Cx̂ti+1|ti +Djti (4.3)

where x̂ti+1|ti is the a priori state estimate, jti represents the vector of input
commands and ŷti+1 is the vector containing the position and velocity estimate.

The a priori update of the error covariance matrix is found as:

P̂ti+1|ti = AdP̂ti|tiA
T
d +Q (4.4)

where Q is the process noise covariance matrix, which is assumed to be constant over
time.

Correction step

During the correction step, when predictions have been performed up to t′
meas, the

Kalman filter incorporates the new measurement. The correction is applied using
the following formulas:

νt′meas
= zt′meas

− Cx̂t′meas|ti
(4.5)

St′meas
= CP̂t′meas|ti

CT +R (4.6)

Lt′meas
= P̂t′meas|ti

CTS−1
t′meas

(4.7)

x̂t′meas|t
′
meas

= x̂t′meas|ti
+ Lt′meas

νt′meas
(4.8)

where νt′meas
is the innovation, zt′meas

is the measurement, St′meas
is the innovation

covariance matrix and Lt′meas
represents the Kalman gain. R is the measurement

noise covariance matrix, which is also assumed to be constant over time. x̂t′meas|t
′
meas

finally represents the a posteriori state estimate.
The a posteriori update of the error covariance matrix is then calculated as:

P̂t′meas|t
′
meas

= (I − Lt′meas
C)P̂t′meas|ti

(4.9)

The Q and R matrices used in the prediction and correction step can be seen
as tuning parameters. The ratio between the elements in the Q matrix on the one
hand and the R matrix on the other hand determines the extent to which the state
estimate is corrected towards the measurement. This can be seen in formula 4.7
since R has a direct influence on the size of the Kalman gain through the innovation
covariance matrix [52].
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4.2. State estimation: asynchronous Kalman filter

4.2.2 Timing practicalities

The following part concerns the approach taken to cope with practical timing
imperfections of the operating system.

The timeline during nominal operation is depicted in Figure 4.3. Depending on
the relative size of the measurement update rate and the controller update rate,
more or less inputs are received in between two consecutive measurements. This
does however not alter the principle of predictions and corrections.

In practice three deviations from this ideal scheme occur due to communication
delay and finite computational time of arithmetic operations. Either a measurement
or input command is received ’too late’, or a transformation between two coordinate
reference frames is already broadcasted but not yet available to be read.

Measurement received too late

Figure 4.4 illustrates the first timing deviation. In real time t′
meas falls before t3, but

the communication delay on the measurement at t′
meas causes the AKF to receive it

later than the input command at t3. The input command is therefore already stored
in the AKF before the processing of the measurement starts. However, this latest
input command mustn’t be used yet for prediction up to t′

meas.

Figure 4.4: Illustration of measurement with large delay causing it to be received
after an input command that falls later in time. Solid lines are the real times of
measurements and inputs, the dotted line is when the AKF receives the measurement
(with delay).

The suggested solution to this problem consists of checking whether the time
stamp of the last input in the list of past input commands is situated later in time
than t′

meas. If this is the case, this input command is removed from the current list
of commands, until after the correction step is finished. Then it is re-added to be
used in the next correction step.
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4. Localization

Input received too late

Figure 4.5 shows the second deviation. In this case the AKF has not yet received the
latest input command at t3 before the new measurement at t′

meas arrives. Therefore
a single prediction step from t2 up to t′

meas has to be made when recomputing the
predicted state at t′

meas. This input is then stored however so it can be used in the
upcoming correction when a new measurement arrives.

Figure 4.5: Illustration of input with large delay causing it to be received after a
measurement that falls later in time. Solid lines are the real times of measurements
and inputs, the dotted line is when the AKF receives the input (with delay).

Transform broadcast delayed

The transforms, introduced in Section 4.1, are broadcasted by the ROS nodes for
other ROS nodes to be read. Again there is a delay between broadcasting the
transform and the availability for reading the transform.

The orientation of the World Yaw reference frame in which the drone model
and drone inputs are defined is characterized by the drone yaw estimate θ̂. Each
position estimate x̂ti+1|ti is defined in the rotated frame based on the yaw θ̂ti+1|ti at
the same time instance ti+1. However, it can happen that when the controller starts
to compute the next input based on the state estimate x̂ti+1|ti , that the corresponding
World Yaw frame is not yet available due to the delay on the broadcast. This leads
to an incorrect transformation of x̂ti+1|ti which in turn influences the computation
of the inputs. Although this is a small error per discrete iteration, its effect is not
negligible as the error integrates over time.

The practical solution to this problem exists in the world model delaying the return
of the new state estimate until the new transform has become available as depicted
in Figure 4.3. Then it is guaranteed that the controller uses adequate information to
calculate its input commands. The delay is in the order of a millisecond, such that
waiting does not cause time shortage for computations during a controller update
cycle.
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4.2. State estimation: asynchronous Kalman filter

4.2.3 AKF performance

The performance of the AKF is compared to the most basic way of using the
measurement system: always returning the last available measurement as position
estimate. This is equivalent to a zero order hold (ZOH) approximation of the drone
state. The velocity in that case is retrieved through finite difference of the position
measurement.

Due to the high quality of the measurements, a good approximation of the exact
position state of the drone can be obtained by linear interpolation of the measurements
followed by low pass filtering. The filtering improves the approximation since it
removes high frequency noise caused by the measurement system. The deviation
of the estimate from the approximately perfect position is then taken to be the
estimation error in the following analysis.

Figure 4.6 illustrates the performance of the AKF compared to ZOH for two
different ranges of acceleration values, indicated by the peak and root mean square
(RMS) values of the acceleration over the range. From the figure it is clear that both
for lower and higher accelerations the estimation errors for the AKF are significantly
below that of the ZOH approximation. The figure also mentions the mean and
peak error over the displayed time range for both AKF and ZOH. These results
are obtained with following tuning values for the measurement noise covariance and
process noise covariance matrices

R = 1 (m2), Q =

1 (s6) 0 0
0 10 (s4) 0
0 0 1 (s2)


Adding noise to the measurements and lowering the update rate simulates the

use of a measurement system of lower quality than the HTC Vive. Figure 4.7 proves
that for a system with less than half of the current measurement update rate and
significantly more noise, the AKF estimates are still of high quality.

The performance could be improved by more elaborate tuning of the measurement
and process noise covariance matrices. However, because the quality of the estimates
is currently more than sufficient for this application, the rough tuning given above is
maintained.
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4. Localization

(a) Lower accelerations

(b) Higher accelerations

Figure 4.6: AKF performance test in x-direction for varying acceleration ranges.
Both images display a short subset of the time window of 15 s in which the mentioned
range of accelerations is reached. Errors are calculated based on the vertical distance
between ZOH or AKF and Reference.
(a) Lower accelerations (peak 0.35 m/s2, RMS 0.16 m/s2).
AKF: mean error = 1.2 mm, peak error = 10.9 mm
ZOH: mean error = 3.2 mm, peak error = 15.1 mm
(b) Higher accelerations (peak 1.7 m/s2, RMS 0.93 m/s2).
AKF: mean error = 3.2 mm, peak error = 26.5 mm
ZOH: mean error = 8.1 mm, peak error = 37.1 mm
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4.3. Conclusion

Figure 4.7: Performance illustration of the AKF in the x-direction on a position
measurement with added Gaussian noise (mean µ = 0 m, standard deviation σ =
0.005 m) and lowered rate (20 Hz). Kalman filter tuning: Q = 10−5 · I3, R = 1m2.

4.3 Conclusion
This chapter discussed the localization, which is split up in perception and state
estimation. For the former the software to handle the HTC Vive hardware was
introduced, coordinate reference frames were defined and a calibration procedure
for a global world reference frame was developed. The latter involved the design
of a state estimator that deals with the asynchronous character of the operating
system; the asynchronous Kalman filter holds track of timing information and as
such copes with communication delay in the system and imperfect controller and
measurement system rates. The validation showed that despite the high quality of
the Vive localization system, the AKF offers a noticeable improvement with respect
to a zero order hold approach where the latest available measurement is directly
returned as position estimate. Moreover it proved that for measurements of lower
quality, i.e. at a lower rate and suffering from higher noise content, the added value
of the AKF is even more significant. The current implementation would therefore
produce satisfactory state estimates even with a measurement system of lower quality
than the HTC Vive.
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Chapter 5

Optimal autonomous navigation

Navigation consists of the autonomous planning of trajectories and the control in-
volved to track them afterwards. This chapter considers the motion planning part
of navigation. The control is discussed in the following chapter. Motion planning
comprises the generation of trajectories through the world between a starting point
and an end goal, given physical constraints such as available space, obstacles and
dynamic limitations of the vehicle. A trajectory is defined as a series of positions with
a corresponding time at which the position is reached and a corresponding velocity
which is attained at that time. It is not to be confused with a path, which is merely
a series of positions. In motion planning often the distinction is made between global
and local planning. Global planning amounts to finding a rough route from start
to end goal, e.g. between all static obstacles. Local planning then comes down to
finding the optimal trajectory along parts of that route, avoiding the static as well
as potential dynamic obstacles that are encountered. Dynamic obstacle avoidance
is briefly covered in this thesis, and the implications of a moving obstacle on the
parameters of the optimization solver are discussed. Only a very simple dynamic
obstacle avoidance problem is presented, but it already shows a valuable incentive
towards autonomous drone navigation through dynamic environments.

The Optimal Motion Generation-tools (OMG-tools) developed by the MECO
research team provide a toolbox to solve motion planning problems in a receding
horizon fashion. It requires modeling of the environment as simple geometrical
shapes. The dynamic model of the drone is also simplified, which means it doesn’t
take into account the model derived in Chapter 3. The following sections discuss how
OMG-tools is used as a motion planner in the control system, how the drone and
obstacles are modeled and how the configuration settings of OMG-tools influence
the performance. After a note on how the solver handles infeasible problems, A set
of experiments is conducted to compare computation times of the different obstacles.
The chapter concludes with a note on how to successfully incorporate dynamic
obstacles.
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5. Optimal autonomous navigation

5.1 Motion planning using OMG-tools

OMG-tools formulates the motion planning problem as an optimal control problem
(OCP) with either the total travel time or the distance to the goal as the objective.
The constraints are the initial position, the terminal position, the flight area, the
avoidance of obstacles and the drone dynamics represented by a maximum velocity
and maximum acceleration. Internally, trajectories are represented through the use
of a B-spline formulation. Obstacle avoidance is based on the separating hyperplanes
theorem [53]. The mathematical optimization problem is formulated in CasADi and
this problem is solved with IPOPT, which uses an interior point algorithm. Details
about the implementation of OMG-tools are found in [54].

These trajectories are iteratively computed in an MPC manner: every iteration
the optimization problem is solved and a trajectory is returned. Only the first few
terms of the solution are actually applied before a new trajectory becomes available
which is more up-to-date.

The type of optimization problem solved by OMG-tools in our context is the
most basic motion planning problem: a point-to-point problem. This amounts to
calculating a complete path from starting point to endpoint at once. Extension
to more complicated algorithms that divide the flight area into subsets and locally
compute an optimal trajectory is not necessary in this demo, due to the restricted
flight area and the limited amount of obstacles. As a consequence there is no
distinction between the global and local planner when working with this problem
type. Only the local planner is active.

Figure 5.1: Example of the solution to a 2D point-to-point problem solved by OMG-
tools. The blue circle is the vehicle avoiding the grey beam-shaped obstacle. It is
moving from left (initial position) to right (goal).
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5.1. Motion planning using OMG-tools

An example of a trajectory generated by OMG-tools as a solution to this type
of problem is shown in Figure 5.1. The light blue circle represents the drone, the
curved line emerging from it is the calculated trajectory that avoids the dark grey
obstacle. The figure also illustrates the use of simple shapes for modeling the vehicle
and obstacles.

5.1.1 Vehicle and obstacle modeling

vehicles and obstacles are represented by simple geometric shapes to make the mathe-
matical formulation in the optimization problem tractable. The shape chosen for the
drone is a sphere. The advantage is that a sphere is computationally efficient to work
with. The cost is that at the top and the bottom of the drone, a lot of unoccupied
space is attributed to the drone. This limits the height of openings the drone can
navigate through. The vehicle dynamics model is taken to be holonomic 3D. This
model is selected because it works with dynamics that are independent in three
orthogonal directions x, y and z, which corresponds well with the dynamic model
derived in Chapter 3. A holonomic vehicle model does not consider orientation of the
vehicle, meaning the generated trajectories also contain no orientation information.

Obstacles are modeled as cylinders of infinite height, prisms, plates or beams of
infinite height. Cylinders of infinite height are circles that are extended infinitely
in the z-direction. Mathematically this means the constraint they generate is only
expressed in the xy-plane. As will be illustrated experimentally this reduction in
dimension is beneficial for the computation time of the optimization. Moreover,
circle constraints are, just like spherical ones, computationally more efficient than
plates and polyhedrons. This is due to the separating hyperplanes algorithm that is
more expensive for obstacles with more vertices. A beam is a rounded rectangular
shape, as depicted by the grey obstacle in Figure 5.1. The semicircles at the two
ends make it more suited for hyperplane separation than rectangles. Since a beam
also consists of a 2D shape which is infinitely extended in the z-direction for 3D
navigation purposes, the same computational benefit as described above applies.

5.1.2 OMG-tools configuration settings

The use of OMG-tools entails a number of configuration settings. The ones with
largest influence on performance are discussed here and the chosen values are ex-
plained.

Fixed or variable time Two different optimization objectives exist for point-to-
point problems. The first option is to minimize the distance to the goal at every
time step, taking the time horizon as a fixed value. The second option is to take the
time itself as the optimization objective. These two formulations lead to different
trajectories. In the first formulation, the calculated trajectory results in an optimal
solution only for the first part of the trajectory. While the drone flies along the
trajectory, the parts further on get updated and become more optimal as well. This
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5. Optimal autonomous navigation

does make for shorter computational times, which is beneficial when using OMG-tools
in an MPC manner. The solution to the second formulation immediately gives a more
optimal trajectory over the whole time horizon, at the expense of longer computation
times. This increase in time is mainly due to an increase in optimization variables as
well as the highly non-convex nature of the problem. This second option is preferable
in situations where trajectories can be computed offline. For real time demo purposes
however, the first option is preferred. The time is therefore set to fixed.

2-norm or ∞-norm constraints The holonomic vehicle dynamics model implies
that the drone’s maximum velocity and acceleration can be imposed as a constraint
in the optimization problem in two ways: either separately for each direction, or
coupled. Mathematically this corresponds to limiting the ∞-norm or alternatively
the 2-norm respectively of the velocity and acceleration vectors.

Figure 5.2 depicts the difference in obtained trajectories. Intuitively, the trajectory
obtained by limiting the 2-norm of the vectors strikes as ’more optimal’. The other
solution is in fact optimal as well since the drone will reach the target in the same
time window, but while the separate velocity components do not exceed the imposed
velocity constraints, the size of the resulting velocity vector does. Therefore a limit
on the 2-norm is selected as constraint.

Figure 5.2: Difference in calculated trajectory depending on the type of velocity
constraint. The red dotted line represents the use of the infinity norm, the full blue
line represents that of the 2-norm.
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5.1. Motion planning using OMG-tools

Hard vs soft terminal constraint Setting a hard terminal constraint requires
the goal to be reached at the end of the horizon time. This reduces the region of
attraction for the MPC control, but guarantees that the drone does not set off and
finds itself stuck at the wrong side of an obstacle halfway before reaching the goal.
Given the small flight area and the limited number of obstacles, setting the terminal
constraint to a hard constraint and combining this with a sufficiently long horizon
time provides success in most practical use cases. 30 s proves to be more than
sufficient for demo purposes without increasing the computational load significantly.

The drone finding itself stuck halfway can occur due to the non-convexity of the
optimization problem in combination with a soft terminal constraint. Initially, the
trajectory does not yet reach up to the final goal, but in time it is shifted further in
a receding horizon fashion. In some cases this can lead to the drone ending up at a
position where staying in place and not moving towards the end goal corresponds
to a local minimum of the optimization cost. This situation cannot occur with a
hard terminal constraint, because not reaching the end goal then corresponds to an
infinite cost.

When dynamic obstacles are involved however, using a hard terminal constraint
might lead to infeasibility of the optimization problem. At a certain point along the
trajectory it can happen that an obstacle is temporarily blocking the end goal. This
would result in the solver not finding a solution to the problem, thereby failing to
compute the rest of the path. In this case it is thus best to only use a soft terminal
constraint to avoid infeasibility.

Amount of knots The amount of knots is a design parameter for the spline basis
in which trajectories are represented. The higher this number, the more complex the
trajectories that can be formulated and thus the more complex the environment that
can be navigated through. The downside to using more knots is a significant rise in
computation time due to the increase in optimization variables. In practice ten up
to twenty knots are used, depending on the complexity of the obstacle configuration.

Safety margin The OMG-tools obstacle avoidance allows for a safety margin,
implemented as a soft constraint with a safety weight that trades off extra safety
distance to obstacles against the original motion planning objective [54]. Without
this safety margin, the planned trajectory passes the active obstacles at exactly the
drone radius, meaning that in practice, any deviation from the desired trajectory
causes a collision between drone and obstacle. An alternative solution would be
to make the drone model radius larger than the real drone, hence imposing a hard
constraint. However, in case of deviation from the trajectory towards the obstacle
due to tracking errors, the virtual drone and obstacle overlap even though the real
drone does not collide with the obstacle. This results in an infeasible situation for
the solver. Therefore the soft safety margin is preferred over this second solution.

The size of the safety margin and the safety weight are selected according to the
difficulty of the obstacles and are tuned experimentally. In practice the size of the
safety margin lies between the drone radius and twice that radius.
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5. Optimal autonomous navigation

5.2 Static obstacle experiments
In order to compare the computational efficiency of different shapes that can be used
to model obstacles, eleven experiments are carried out with the actual demo setup. In
each experiment, a varying number of obstacles obstructs the path between starting
and endpoint, forcing OMG-tools to plan a trajectory around or between them. For
each MPC iteration the computation time is stored. Figure 5.3 shows the average
and peak computation times for the performed experiments1. The first experiment
is carried out without obstacles present to provide a reference for comparison.

0 0.2 0.4 0.6 0.8 1

Window small
Window medium

Window large - curve
Window large - straight

3 beams easy
2 beams hard
2 beams easy

2 hexagonal prisms
4 inf cylinders
2 inf cylinders

No obstacle

Computation time (s)

Average
Peak

Figure 5.3: Average and peak computation times for different obstacle configurations.

5.2.1 Computation time comparison

The computation times for infinite cylinders are compared to those for hexagonal
prisms, since a finite cylinder does not exist in OMG-tools. Figure 5.3 shows that
avoiding 2D obstacles which are extended infinitely in the z-direction performs better
than 3D prism obstacles, especially when considering peak times.

The beams experiments represent a slalom movement as displayed in Figure 5.4
on the left. In the easy variants, there is almost no overlap between the beams and
the curvature of the trajectory is limited. In the hard variant, the plates overlap
strongly and the trajectory requires a high curvature to reach the goal without
collision. For three beams, the limitations of using OMG-tools in the configuration
described above become clear, as the hard variant is termed infeasible by the solver.

1All computations are performed on a laptop with Intel Core i5-4210M CPU @ 2.60 GHz x 4
processor and 8 GB of memory.
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5.2. Static obstacle experiments

Figure 5.4: Simulation equivalent of the ’3 beams easy’ experiment (left) and the
window experiment with curved trajectory (right).

In the last four experiments the drone has to navigate past four plates as de-
picted in Figure 5.4. The plates are arranged in such a way that they represent
a wall reaching from floor to ceiling and from one side of the flight area to the
opposing side, leaving only a hole or window for the drone to fly through. As
for the slalom, the vertical plates can again be modeled either as beams or plates.
Currently, OMG-tools only supports the extension of 2D shapes in the z-direction,
and not in the other two directions. Therefore only the right and left obstacle can
be modeled as beam obstacles, whereas the remaining two consist of plate objects.
Computation times for this obstacle setup are largely dependent on the size of
the window. Shrinking the size of the window results in a large increase in both
average as well as peak times. Whenever starting and endpoint lie in such a way
that the path has to curve considerably through the window, especially when the
window becomes smaller, OMG-tools is no longer able to solve the problem. This
once again illustrates the limits of the obstacle avoidance for the current configuration.

Peak times are much higher than average computation times because the opti-
mization solver uses so called warm starting of the optimization; it takes the solution
from the previous iteration as an initial guess for the current iteration. Since there
are no dynamic obstacles present in these experiments, the optimal solution remains
nearly the same, except for variations due to tracking errors and refinement of the
solution with the receding horizon as mentioned in Subsection 5.1.2. The peak time
therefore mostly occurs in the very first iteration, when no good initial guess is
available yet.

5.2.2 Handling of infeasible problems

During execution of these experiments, an important pitfall became clear. Whenever
a problem is assessed as infeasible, the solver still returns the last guess for the
solution of the optimization problem. Since it is infeasible however, that solution
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does not satisfy the constraints, e.g. the trajectory runs through obstacles or falls
outside the room. Hence a very important monitoring function, cf. Section 2.3, is to
detect infeasibility of the solution and to prevent the controller from tracking the
provided erroneous trajectory.

5.3 Dynamic obstacle avoidance
When dynamic obstacles are involved, not only the state of the drone has to be
updated at each iteration, but also the position and velocity of all dynamic obstacles.
Since now not only the drone position changes, but the environment changes as well,
the new solution to the problem will differ more from the previous one than in the
case when only static obstacles are present. Therefore warm starting will not provide
the same benefit as before, which has a negative impact on computation time. It is
thus even more essential to use obstacle types that provide a low computational cost
such as infinite cylinders or extended beams.

Further on in Chapter 7, a single dynamic obstacle scenario is presented. No static
obstacles are present and the dynamic obstacle is modeled as an infinite cylinder.
Instead of flying towards an end goal, the drone has to remain at a desired location
(both starting and endpoint of the optimization problem). Whenever a dynamic
obstacle passes this position, the drone has to move aside to avoid collision and wait
until the dynamic obstacle has moved on to return to its original position. In order
to accomplish this, the terminal constraint has to be adapted as discussed in Section
5.1.

5.4 Conclusion
In this chapter OMG-tools is proposed as a motionplanner to autonomously compute
trajectories from starting to endpoint. It takes into account all constraints to the
problem: vehicles dynamics, obstacles and the room dimensions. The computation
times and feasibility are optimized by modeling the obstacles and vehicles in an
efficient way, and by adapting the parameters which have a large computational
influence.

Despite this, navigating in small spaces still leads to a dramatic increase in
computation time which was illustrated in the window experiments. Nex to large
computation times, there still are several scenario’s in which the optimization solver
does not succeed in finding a viable trajectory at all. When the curvature along
the trajectory becomes too high, especially in the case of computationally heavy
obstacles, the problem is declared infeasible. A possible solution would be to use a
more complex method, for example the multiframe approach, to solve these types of
problems.

Finally an approach to dynamic obstacle avoidance was introduced.
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Chapter 6

Position and velocity control

This chapter concerns the controller, cf. the structure in Section 2.3, which decides
on the actuation of the mechatronic system. In Chapter 3, the drone’s dynamics
were analyzed and shaped into an input-output model. Based on this model and
state information, the controller computes which input it has to apply to the drone,
in order to reach a desired output.

The shape of this output depends on the task and required level of tracking. The
most basic level of tracking is a constant or variable setpoint (setpoint tracking), both
controlled with proportional-derivative-integrative (PID) feedback. Tracking of a
fully predefined trajectory is the next level, which uses a combination of feedback and
feedforward control implemented as a zero phase error tracking controller (ZPETC).
The final level is the control involved in autonomous navigation, which currently
combines feedback control with a Model Predictive Control (MPC) approach. Ideally
these autonomously computed trajectories would be tracked by the full combination
of MPC, feedback and ZPETC since this would significantly improve tracking perfor-
mance. This is however not yet attained in the current implementation, but it is
touched upon in the text.

First the chapter motivates why a combination of feedback and feedforward
control is preferred in trajectory tracking. It then elaborates on the design of each of
these two components separately. The feedback controller used in setpoint tracking is
(despite small differences in tuning) the same as the one used in trajectory tracking and
is therefore not discussed separately. Next a trajectory tracking experiment follows
to demonstrate the performance of the combined feedforward-feedback controller.
Finally the interaction between the feedback control on one side and MPC on the
other is considered, and a possible future extension of MPC combined with ZPETC
is discussed.
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6. Position and velocity control

6.1 Combined feedforward-feedback control in
trajectory tracking

The trajectory tracking controller consists of a combination of feedforward and feed-
back control because they are complementary in their advantages and disadvantages.
Pure feedforward control requires a near-perfect model, which is not available, in
order not to drift away from the reference trajectory. A feedback controller on the
other hand corrects for these modelling imperfections because it reacts to errors on
the desired behavior. The downside to this principle is that a pure feedback controller
by definition requires this tracking error to function. A feedforward controller does
not rely on an error and can thus act more swiftly.

Figure 6.1: Control diagram for combined feedforward and feedback control for
tracking a reference trajectory. The drone dynamics H(s) receive as input the
combined feedforward (~jFF ) and feedback (~jFB) commands. ~vref and ~pref together
form the reference trajectory. K is the matrix of feedback gains. ZP LPF is a
zero-phase low pass filter applied to the data fed to the inverted drone dynamics
H−1(s).

Figure 6.1 depicts the control diagram for the combined feedforward and feedback
control in trajectory tracking. New input commands are sent to the drone at a rate
of 100 Hz. The drone dynamics, represented by H(s) were derived in Chapter 3.
The localization block consists of the perception and state estimation from Chapter
4. Relating this scheme to the coordinate reference frames defined in Chapter 4, it is
important to note that the positions and velocities in the reference trajectory are
expressed in the World frame, whereas the position and velocity error as well as the
drone input commands are expressed in the World Yaw frame. This way the input
commands are computed in the reference frame in which the derived model is valid.

6.1.1 Feedback controller design

For the third order system from input to position (x- and y-direction), the chosen
feedback controller is a proportional-integrative-derivative (PID) controller. As will
be described in Chapter 7, pure proportional control results in behavior similar
to an undamped spring: the drone oscillates around the goal without reaching
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6.1. Combined feedforward-feedback control in trajectory tracking

standstill. Pure derivative control results in movement like in a viscous fluid: the
controller only reduces the velocity to zero, but does not drive the drone to the desired
position. The combination of the two yields a desirable behavior for positioning
and trajectory tracking. An integrator is added in order to eliminate steady state
errors and to improve tracking performance. The following describes the design of
the PID-compensator and evaluates its performance.

The linear and angular z-directions are treated separately, because of their lower
order model. Here a P- or PI-controller suffices.

PID-compensator design

Generally, a PID-compensator has the following continuous time transfer function:

D(s) = K(1 + 1
Tis

)(1 + Tds)

= K(1 + Td
Ti

)︸ ︷︷ ︸
P

+ K

Ti

1
s︸︷︷︸

I

+KTds︸ ︷︷ ︸
D

= Kp + Ki

s
+Kds (6.1)

The design comprises the choice of the parameters Kp, Ki and Kd in expression
(6.1). Following the approach of [55], the design of a PID-compensator consists of
the combined design of a PD- and a PI-compensator. Figure 6.2 qualitatively shows
the bode diagrams for PD- and PI-compensators and the design philosophy for the
latter.

(a) PD-compensator.
(b) PI-compensator.

Figure 6.2: Qualitative bode diagrams of PD- and PI-compensators. The design
philosophy for the PI-compensator is indicated [56].

The approach is a frequency response based procedure, in which the objective
is to maximize the closed loop bandwidth, under the constraint of a desired phase
margin (PM). The size of the desired phase margin depends on the task at hand. E.g.
positioning allows for more aggressive feedback than in the case of trajectory tracking

51



6. Position and velocity control

with or without MPC. Further details on this are discussed later. For the analysis
here it suffices to state that the lower the phase margin, the more aggressive the
resulting controller, but also the larger the maximum overshoot in the step response
of the closed loop system becomes [55].

The design approach consists of the following steps. First choose the new crossover
frequency ωc of the compensated system as the frequency at which the phase of
the uncompensated system is equal to φ = −180 + PM − lead + lag + c. PM is
the desired phase margin, lead is an anticipated lead addition of 90° due to the
derivative term, lag is an anticipated lag of 10° to 15° added by the integrator, and c
is a correction term because the derivative and integrative terms do not add exactly
90° of lead and 10° - 15° of phase lag.

Next take the derivative time Td equal to Td = 10/ωc to place the high phase
lead at the desired frequency (see phase in Figure 6.2a). Select the integration time
Ti such that the contribution of the integrative part to the phase at ωc equals the
anticipated lag of 15°. To this end, take the integration time between Ti = 3.73/ωc
and Ti = 6/ωc depending on whether a strong or more moderate integrative action
is desired. Same as with the choice of PM, the size of the integrative action depends
on the desired behavior during a specific task.

Finally select K such that the crossover frequency of the compensated system is
indeed located at ωc. In other words, K must be such that

|D(jωc)H(jωc)| = 1

|K(1 + 1
Tijωc

)(1 + Tdjωc)H(jωc)| = 1

=⇒ K = 1
|(1 + 1

Tijωc
)(1 + Tdjωc)H(jωc)|

During positioning (hovering in place), PM is taken equal to 30° with high
integrative action. The obtained design parameters in this case for the x-direction
are

K = 0.9456 m−1, Td = 1.8930 s, Ti = 0.7061 s
=⇒ Kp = 3.4806 m−1, Ki = 1.3391 (ms)−1, Kd = 1.7900 m−1s

Figure 6.3 shows the resulting frequency response of the open loop compensated
system for the x-direction. The y-direction is fully analogous. The linear and angular
z-directions follow an analogous design procedure, but omit the derivative term.

Because in trajectory tracking the velocity reference is defined together with the
position reference, this thesis uses a slightly different implementation than the classic
PID implementation. In the traditional expression, the drone input command in the
continuous-time Laplace domain J(s) is given by

J(s) = D(s)Ep(s) = KpEp(s) + Ki

s
Ep(s) +KdsEp(s)
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Figure 6.3: Bode diagram of the open loop uncompensated and PID-compensated
system, with indication of corresponding gain and phase margin of the closed loop
system.

where Ep(s) represents the position tracking error and D(s) is the continuous-
time transfer function as in Equation (6.1). In this expression, the velocity error
Ev(s) is not used directly but is computed as a function of the position error Ep(s):
Ev(s) = sEp(s). In this thesis however the error on the velocity can be directly
computed as the difference between the reference velocity and the estimate of the
velocity produced by the state estimator discussed in Chapter 4. This is preferable
because the estimator returns a smoothed velocity estimate that is corrected by
measurements. Therefore the expression above can be replaced by:

J(s) = KpEp(s) + Ki

s
Ep(s) +KdEv(s)

The discrete-time domain controller after discretization with a Tustin discretiza-
tion scheme is:

j[k + 1] = j[k] +
(
Kp + KiTs,ctrl

2

)
ep[k + 1]

+
(
−Kp + KiTs,ctrl

2

)
ep[k]

+Kd(ev[k + 1]− ev[k])

where j[k + 1] is the input command that will be applied as the next control
input and j[k] is the control input that was sent at the beginning of the current
controller cycle. Kp, Ki and Kd are the control parameters that were computed
above. Ts,ctrl is the controller update time, with a value of 0.01 s. ep[k] and ev[k]
are the position and velocity tracking errors respectively at time k.
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Figure 4.3 in Chapter 4 contains detailed timing information on when control
inputs are computed and sent out. The input command for the next cycle is computed
as soon as the position and velocity estimate come in from the estimator. It is possible
to do this in advance since the computed estimates are valid at the next controller
time instance in the future. The inputs are then applied at the very beginning of the
next controller cycle, to ensure that the rate at which they are sent is as constant as
possible. The Kalman estimates benefit from a more constant rate of the controller,
as they assume a fixed controller update rate for the prediction estimates.

PID closed loop performance

The position error on which the feedback controller acts usually lies in the range of a
few centimetres since the position setpoints lie close to the drone, both for positioning
and (MPC) trajectory tracking. Therefore a relevant measure of performance for the
PID controller is its response to a small position reference step input of 10 cm.

Figure 6.4: Step response of the closed loop PID-compensated system (x-direction)
for a step reference input of 10 cm.

Figure 6.4 depicts the result of an experiment to validate this position reference
step response of the closed loop PID-compensated system. The figure also shows
the simulated closed loop response for comparison. There clearly is a discrepancy
between the response of the idealized linear model and the real behavior of the drone;
the measured response starts of with a small bump in the opposite direction to
the step reference and the shape and amplitude of the remainder of the response
also differ from that of the simulated response. The first discrepancy, the bump, is
most likely caused by the flexibility of the tracker suspension that was presented in
Chapter 2. The sudden shock of the step response shakes the suspension and distorts
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the position measurements of the drone, which was assumed to be rigidly fixed to
the Vive tracker.

The second discrepancy, the difference in amplitude and shape of the response, is
explained by nonlinearity of the real dynamic system which is not captured in the
derived linear time invariant model.

Despite the discrepancy between modeled and real behavior, the performance is
adequate for the use in positioning and tracking.

6.1.2 Feedforward controller design

The feedforward control converts reference velocities from the reference trajectory to
drone input commands.

As a first method to control the drone with feedforward velocities, it was opted
to use a software package developed by Autonomy Lab which changes the drone
interface to a velocity controlled interface [57]. After testing this package turned
out not to work properly. The velocity tracking exhibits erratic behavior, and the
desired velocity is often not attained. Therefore the package is replaced by a second,
self-implemented method based on the inversion of the identified velocity model.

The top line in Figure 6.1 with ZP LPF and H−1(s) forms the feedforward
control in this implementation. Because the velocity model returns a velocity as
output for a given drone input, the inverse model yields a required drone input
command for a desired velocity output. Inverting the model for the x-direction gives
the frequency response in blue in Figure 6.5.

Figure 6.5: Bode plot of filtered vs non-filtered inverse transfer function.
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In practice, simply inverting the model is not an adequate way of computing
input commands. Since the magnitude of the velocity frequency response descends
at high frequencies (recall from Chapter 3 that the velocity model in the x- and
y-direction is a second order system with no zeros), the inverted system rises. As an
unintended consequence, high frequency components in the input signal are amplified.
Furthermore, the model itself is not at all accurate for these higher frequencies,
as can be seen in Figure 6.6. There the relative difference between the identified
frequency response and the empirical frequency response is plotted in blue. The
latter is obtained as the fast fourier transform (FFT) of the output divided by the
FFT of the input. The frequency response function (FRF) of the relative difference
FRFdiff is given by

FRFdiff = Hidentified −Hempirical

Hidentified

and is a measure for the uncertainty on the model. This is discussed more in depth
in [17, 58], where an approach for inversion-based controller design is provided. The
design presented below is based on this approach.

The proposed solution is to low pass filter the inverted system with a Butterworth
filter, such that high frequency amplification is inhibited. The cutoff frequency of
this LPF is chosen such as to weaken the amplification at frequencies with high
model uncertainty. As depicted in Figure 6.6 this boils down to making a trade-off;
the cutoff frequency has to be placed low enough such that it falls before the point
where the FRFdiff and the phase difference start rising drastically, but high enough
to prevent useful model information from being discarded. For the x-direction this is
taken to be at a frequency of 0.6 Hz. The resulting low pass filtered inverted system
is displayed in Figure 6.5 in red.

Figure 6.6: Relative difference between identified and empirical transfer function
(FRFdiff ) and low pass filter inverse (LPF−1).
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Whenever a given velocity trajectory is sent through this model, the Butterworth
filter introduces a frequency dependent phase lag, which adds delay to the generated
feedforward inputs. This makes for a mismatch in timing between the position and
velocity trajectory reference since the former is not delayed. If these feedforward
inputs are applied in combination with the inputs from a feedback controller acting
on the position trajectory, this mismatch of inputs will deteriorate the tracking
performance.

The proposed solution is to implement the LPF as a zero phase low pass filter
(ZP LPF). Figure 6.7 illustrates how to achieve this zero phase shift by sequentially
applying two LPF’s: first an LPF is applied in reverse direction on the predefined
trajectory, in order to create phase lead on the signal [58]. This action treats the
entire trajectory at once before the actual flight. Next a second LPF is applied, equal
to the previous filter, but this time in the forward direction and at runtime since
it is combined with the inverse model. The consecutive phase lead and lag of both
filters compensate each other, such that the resulting feedforward input command
corresponds with the feedback command at the same time. Note that this approach
implies that the zero phase filter is non-causal, and it is only possible to apply it
when the trajectory is known in advance, as is the case in the current application of
trajectory tracking. This non-causal way of eliminating phase lag in the feedforward
control is a solution to the zero phase error tracking control (ZPETC) problem [59].

Figure 6.7: Schematic representation of zero phase low pass filter (ZP LPF) required
for zero phase error tracking control (ZPETC). The two LPF’s consist of the same
low pass filter but the first applied in reverse direction on the velocity trajectory (←)
and the second in forward direction (→). The reverse filter is executed in advance as
soon as the reference trajectory becomes available. The forward filter is included in
the state space representation of the inverse velocity model.

For practical application, the continous-time LTI transfer function of the inverted
velocity model together with the forward LPF is discretized with a Tustin discretiza-
tion scheme and expressed in a state space representation. The backward LPF is
implemented as a digital filter and is applied directly on the data representing the
trajectory.
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6.1.3 Trajectory tracking experiments

Now a number of experiments is conducted to quantify the performance of the
combined feedforward-feedback (FF-FB) controller with respect to the feedback
controller on its own. The drone has to track the same reference trajectory for a
range of increasing maximum velocities. Each time the entire reference trajectory
is scaled in time such that the maximum velocity over the trajectory corresponds
with the maximum specified value. Figure 6.8 depicts this reference trajectory and
corresponding tracking errors for a maximum velocity of 1.2 m/s and in the case of
the combined FF-FB controller. This velocity is also the default maximum velocity
for the tracking of arbitrary trajectories in the demo.

Figure 6.8: Experiment for performance quantification of trajectory tracking with
combined feedforward-feedback control. Result for the ’medium’ experiment (maxi-
mum velocity of 1.2 m/s).

Figure 6.9 shows the results as average and peak position tracking errors for
four different maximum velocities ranging from 0.6 m/s up to 2.4 m/s, both for
combined feedforward-feedback tracking as well as feedback only tracking. The figure
shows that for medium to (very) high velocities (1.2 m/s, 1.8 m/s and 2.4 m/s),
the addition of the feedforward controller provides a major benefit. The fastest
experiment cannot be safely conducted in the Robotics lab with feedback only,
because the peak error becomes excessively large. This high velocity is however
completed by the feedforward-feedback controller with a tracking error lower than
that of feedback only in the medium velocity experiment.

For the lowest velocity, feedback alone is better than combined feedforward and
feedback. This is because of practicalities in the programming of the filtering of
trajectories. The current implementation involves meticulous padding to prevent
data from being cut off by the filtering operation, as well as shifting of the data to
prevent a time shift between the feedback and the feedforward signal. This shifting
time is however taken as an average value over all velocities. At low speed, the
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Figure 6.9: Average and peak position tracking errors for varying velocities, both
feedforward (FF) and feedback (FB) combined and FB only. The experiments are
slow (0.6 m/s), medium (1.2 m/s), fast (1.8 m/s) and very fast (2.4 m/s).

imperfection on the shifting time results in a small mismatch between the feedback
and feedforward signal, thus resulting in a larger tracking error. Since the total error
at this speed is lower, the effect of this mismatch is more outspoken. At higher
speeds, the benefits of feedforward strongly outweigh this small disadvantage of the
implementation. Moreover, in practice the tracking error at low velocity turns out
to be mostly due to leading of the drone with respect to the trajectory. This means
that the error normal to the trajectory is a lot smaller than the data in Figure 6.9
suggests. Visually, the FF+FB combination strongly outperforms the FB only. For
the demo this visual effect is most important, and as such the FF+FB tracking
is successful, even at low speeds. But in the absolute quantification of trajectory
tracking, where the timing of the position is also important besides the staying on
the given path, there is room for improvement.

6.2 Model Predictive Control with feedback control
for autonomous navigation

Chapter 5 already mentioned that the motion planner OMG-tools is used in an MPC
fashion. It periodically provides reference trajectories with a receding horizon that
allow the drone to autonomously navigate in an obstructed environment. Figure 6.10
shows the control diagram involved in autonomous navigation. During autonomous
flight the velocities are limited to the ’medium’ velocity (1.2 m/s) setting. This
maximum velocity is a trade-off between having a small tracking error while still
flying at a sufficiently high velocity.

Because of the periodic updates of the MPC controller, feedback of the changes
in the environment and drone state is inherently present. Ideally, only the first input
of the reference trajectory is applied before a new trajectory is calculated which
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incorporates the latest changes. However, the MPC updates occur at a relatively low
rate of 2-5 Hz, due to the relatively large computation times (in the order of 0.2 s to
0.4 s on average, recall from Section 5.2). In order to navigate safely, the drone must
make corrective actions more frequently. Therefore, the actual position and velocity
controller that tracks the reference trajectories in between OMG-tools updates runs
at a higher rate of 100 Hz. This means that the latest reference trajectory is tracked
for a range of inputs, until a new one becomes available.

Figure 6.10: Control diagram for feedback control combined with OMG-tools.

Subsection 6.1.3 showed that the feedback-feedforward controller provided a large
improvement in tracking accuracy compared to the feedback only controller, especially
when moving to higher velocities. However, in the current implementation the entire
trajectory must be known in advance in order to execute all filtering and padding that
was described in Subsection 6.1.2. When working with OMG-tools which periodically
updates the trajectory, this is not the case. The current implementation does not
guarantee that the old trajectory smoothly connects to the new trajectory. This
would result the drone ’jumping’ between subsequent parts of the path. Therefore
the trajectory is tracked by solely using the feedback controller.

An improved implementation could overcome this problem by treating the pre-
viously calculated trajectory simultaneously with the newly calculated trajectory
by connecting them before filtering to assure continuous, smooth flight. This would
strongly improve the accuracy of the tracking in autonomous flight, and thus allow
for more dynamic flying.

Note that for an environment where all obstacles are static, the MPC approach
is not strictly necessary for optimal autonomous navigation. The optimal trajectory
could also be computed entirely in advance, and subsequently tracked with high
accuracy using the combined feedforward-feedback control described in the previous
section. However, this thesis also aims to show an incentive towards dynamic obstacle
avoidance, where the feedback on the environment is crucial. Therefore the more
general approach with receding horizon is retained.
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6.3 Conclusion
In this chapter a feedback and feedforward controller have been developed to generate
the desired inputs for steering the drone. The feedback controller consists of a PID
controller where the P and I term are based on the position error, whereas the D
term is based on the velocity error taking into account the desired velocity. This last
addition really boosts the performance in practice and makes the controller more
responsive. The feedforward controller comes down to a zero phase error tracking
controller which uses forward and reverse filtering combined with an inverse model of
the drone to generate lag-free drone inputs. In all possible tasks that the drone can
execute, the feedback part is used as the basic controller. Addition of the feedforward
part does provide large benefits for tracking accuracy, especially at higher velocities.
However because of the current implementation, feedforward can only be used when
the full trajectory is known beforehand which is not the case when using OMG-tools
in an MPC manner. Therefore an adaptation to this part to incorporate processing
of trajectories at runtime would certainly benefit the speed and accuracy at which
the drone can fly between obstacles. Another aspect that would improve performance
is a higher update rate of the MPC controller since this increases responsiveness
towards disturbances and modelling errors. Due to hardware limitations this was
not possible in this thesis.
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Chapter 7

Demo

This chapter elaborates on how all building blocks presented in the previous chapters
are combined into an illustrative demo. It explains how the demo is implemented
as a Finite State Machine (FSM) to allow the flexibility to freely pass from one
task to the other, depending on the audience’s wishes and which tasks are available
to choose from. Aside from the possibility to choose the order of tasks, a default
scenario is suggested. Necessary safety measures are discussed as well.

7.1 Finite State Machine definition

Since an important part of the demo is the interactive aspect, one of the Vive
controllers is reserved for the audience to use, while the other one is used by the
operator. The audience Vive controller has limited functionality in the sense that it
is only active during part of the demo, when interaction is desired and safe. The
operator Vive controller on the other hand grants the operator the freedom to adapt
the demo scenario to the wishes of the audience present, while still maintaining full
control. At all times, he can select which control principle to illustrate as well as
repeat the same illustration whenever the audience desires without re-initializing the
software. In order to facilitate this flexibility, the demo is implemented as an FSM.
This concept was already touched upon in Chapter 2, but now a more elaborate
discussion is in place.

An FSM in this context is a programming structure where the state of the system
is uniquely defined at all times as one out of a finite number of predefined states.
Each state in turn uniquely specifies the behavior of all entities in the system in
the form of predefined actions. For safety reasons and fluent operation it is crucial
that the drone is in the state expected by the operator, such that no undesirable
behavior occurs. Therefore, state information is always displayed on the output
screen. Transitions between states are triggered by specific events, either internally
monitored or externally imposed by operator actions. Finally tasks are composed
as a fixed sequence of states. This is to ensure that during execution of a task, all
actions are performed in the correct order without accidentally skipping some actions.
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Grouping sequences of states in tasks is an elegant way to use the same actions (e.g.
performing position feedback, autonomous navigation, etc.) in varying contexts. For
example, flying autonomously to an arbitrary goal can either occur as illustration
itself when avoiding a set of obstacles, or alternatively as a tool for positioning the
drone in the desired spot before the actual illustration begins. Yet they rely on the
exact same building blocks that were described in Chapters 5 and 6. The structure
of the FSM will be schematically illustrated for one task.

7.2 Available tasks

The tasks that are available in the current version of the demo are undamped
spring and viscous fluid, drag drone, track drawn trajectory, point-to-point and dodge
dynamic obstacle. Following section describes what these tasks do, which principles
they illustrate and the modeling that is involved. The main idea is that different
tasks illustrate subsequent levels of autonomous flight. Three levels are explored
starting from basic constant setpoint tracking (’stay where you are’), to trajectory
tracking (’track where you want to be’) up to automatic trajectory generation and
tracking (’navigate through the world’). They illustrate the control principles of
setpoint tracking and disturbance rejection, feedforward and PID-feedback control,
trajectory tracking and navigation using MPC. In this regard the use of an FSM has
the advantage that the appropriate tuning is selected depending on the task and
state at hand. More difficult obstacles for example require more prudent parameters,
whereas less challenging tasks allow for more aggressive settings. This adaptivity to
each situation is part of what makes the control system advanced.

7.2.1 Undamped spring and viscous fluid

These two very similar tasks illustrate the equivalence of the terms in a PID-controller
with their mechanical counterparts using simple feedback control. More specifically,
it illustrates the effect of the proportional and derivative components of this feedback
controller. In the first of the two tasks, only the proportional component is retained.
Looking back at the physical reasoning which lead to the drone model in Chapter 3,
it can be seen that the for the x- and y-direction, the input command is proportional
to a force. The mechanical equivalent of a component yielding a force proportional
to a displacement is a spring. This means that when pulling or pushing the drone
away from its setpoint, it will behave similarly to an undamped spring that oscillates
around its center point.

In the second task, the derivative component is retained. The output generated
by the controller can now be seen as a force which is proportional to the velocity
of the drone. The mechanical component corresponding to this behavior is a linear
damper or dashpot. Pulling or pushing the drone around, one will notice that the
higher the velocity, the fiercer the drone fights the disturbance. It does not return to
its original position however once the disturbance disappears.
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7.2.2 Drag drone

This task extends the static setpoint tracking to a variable setpoint using a PID-
feedback controller. The variable setpoint is adjusted by holding the trigger button
on the audience Vive controller and moving the controller around. The audience can
intuitively and visually identify closed loop dynamics, and the concept of closed loop
bandwidth and resonance is nicely clarified by gradually increasing the frequency at
which the controller is displaced. For the sake of interactivity, the spectators can
take the controller and play around with the drone while standing in a safe, shielded
area. A virtual room boundary prevents anyone from choosing a setpoint that lies
too close to the room edge, thereby avoiding a crash of the drone.

The performance of the PID-feedback on a step reference input has been discussed
in Section 6.1.

7.2.3 Track drawn trajectory

The next step is to track an arbitrary trajectory. Again to introduce interactivity,
the trajectory can be drawn by a spectator. Drawing the trajectory works as follows:
while holding the trigger on the audience Vive controller, the location of that con-
troller is sampled at the localization rate and stored in a list. Taking the numerical
derivative of that list results in the corresponding velocity trajectory. Together the
position and velocity trajectory form the reference trajectory to be tracked. It can
happen that a spectator draws part of the trajectory too close to the wall of the room.
In order to remedy this, it is mapped onto the feasible set of positions inside the room.
After drawing, the drone takes off, flies to the starting point of the trajectory, and
executes the tracking of the trajectory. Figure 7.1 shows this sequence represented
as part of the FSM.

Track Drawn Trajectory

land
draw
 traj

Landed
take
 off

fly to
start

track
 traj

Trackpad
   press

Airborne
Traj too
  short

 Trackpad
    press

Trackpad
   press

End of
   traj

   Not
Airborne

standby standby

emergency

Airborne

standby

Trackpad
   press

Figure 7.1: FSM representation of the ’Track drawn trajectory’ task. Labels inside
full frames are states. Other labels are events, triggered by the monitor. At any time
a state can be interrupted when the emergency state is evoked.

The drawn trajectory can be intractable because of two reasons: high velocities
that safety precautions don’t allow, or sharp corners and thus high accelerations that
the drone’s dynamics don’t allow. The first problem is overcome by checking the
maximum velocity along the drawn trajectory, and scaling the reference trajectory
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such that the highest velocity along the trajectory corresponds to the highest allowable
velocity. This scaling is obtained by first linearly interpolating the list of positions
according to the desired maximum velocity. Afterwards the new velocities are derived
from the position trajectory. The second problem is solved with low pass filtering of
the position trajectory. A Butterworth low pass filter with a cutoff frequency equal
to the bandwidth of the identified drone model filters out frequencies that the drone
dynamics physically cannot attain.

An example of a drawn trajectory is shown as the orange line in the lower left
corner of Figure 7.2. The actual flight trajectory of the drone is represented by the
green line. The performance of the tracking of an arbitrary drawn trajectory has
been discussed at the end of Section 6.1.

Figure 7.2: Illustration of the track drawn trajectory task. The drone tracks an
arbitrary trajectory drawn by one of the spectators. Lower left corner: virtual
representation of the task. The yellow ball represents the drone, the orange line is
the drawn trajectory, the green line is the actual path flown by the drone.

7.2.4 Point-to-point

This task is the collection of all sub-tasks involving static obstacle avoidance. It
comprises the computation of an optimal trajectory through the obstructed flight
area by OMG-tools and the tracking of that trajectory as discussed in Chapters 5
and 6. First a set of physical obstacles is placed by the audience. They can position
the obstacles at arbitrary locations to avoid suspicion of hard-coded, fine-tuned
environments. Subsequently this task is invoked to specify the desired end goal, to
which the drone must navigate while avoiding the obstacles present. This end goal is
indicated by the operator through the use of the operator Vive controller.
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As the automatic detection of obstacle poses is not a subject of investigation in
this thesis, the obstacles are converted to a software representation by locating them
with the audience Vive controller. Each physical obstacle has a specific representation
in OMG-tools which is limited by the set of available shapes discussed in Section 5.1.
The different obstacle types and there effect on computation time have been discussed
in Section 5.2. Modeling each obstacle as one of these types requires a trade-off
between the most efficient representation and the best resemblance of the actual
situation. The following paragraphs explain the definition of the different obstacles
and the relation between the physical obstacles and the OMG-tools representations.

Cylindrical obstacles

A cylinder reaching from floor to ceiling is best represented in OMG-tools by a 2D
circle object that is extended infinitely in the vertical direction. For this type of
obstacle the lowest computation times have been recorded. Therefore it allows the
largest number of distinct obstacles to be placed while still providing a sufficiently
high MPC update time. Figure 7.3 shows the drone navigating between several
cylinders that obstruct the path from start to endpoint.

Figure 7.3: Illustration of autonomous navigation between cylindrical obstacles. The
drone autonomously navigates between a set of cylinders obstructing the room. The
virtual representation now also contains the cylindrical obstacles. The red line is
the computed reference trajectory from the motion planner, the yellow arrow is the
estimated velocity of the drone.
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Slalom obstacles

The drone must slalom between poles placed on a line. The operator indicates which
side of the pole may be passed. In OMG-tools, the slalom is represented by the
’beam’ obstacle class. The beam extends from the location of the pole up to the edge
of the room. An example of a drone slalom between two poles is given by Figure 7.4.

Figure 7.4: Illustration of the autonomous navigation between slalom obstacles. The
drone autonomously slaloms between two pillars since it is only allowed to pass on
the green side of each pillar.

Hexagonal obstacles

OMG-tools does not provide cylindrical obstacles with finite height. A good approxi-
mation that does exist is a prismatic regular hexagon. Recall however from Section
5.2 that hexagonal obstacles are computationally more expensive than (infinite)
cylinders.

Window obstacles

The most challenging obstacle to model and navigate through is the window. Section
5.2 presented it as four plates surrounding the hole, or alternatively as a combination
of two beams and two plates. Physically this obstacle is visualized by only retaining
the edges of the window, thereby keeping the plate approach ’behind the scenes’.
This is once again to obtain a visually more attractive demo. During the demo a
narrow window is used as illustrated in Figure 7.5.
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Figure 7.5: Illustration of the autonomous navigation with a window obstacle.

7.2.5 Dodge dynamic obstacle

Finally there is one last task which involves a dynamic instead of a static obstacle.
After the drone has taken off and hovers in place, a dynamic obstacle passes through
the room. The operator fulfills the role of dynamic obstacle by holding the operator
Vive controller and walking towards the drone. From this Vive controller the position
and velocity of the obstacle are derived, therefore allowing OMG-tools to predict
the expected trajectory. It then computes a trajectory for the drone to evade the
moving obstacle, after which it quickly returns to its original position. Figure 7.6
depicts the drone dodging a dynamic obstacle (a walking person).

Figure 7.6: Illustration of the dodge dynamic obstacle task. The drone autonomously
flies aside to let a moving obstacle (person holding a Vive controller) pass before
returning to its original position. The white ball in the virtual representation is
the obstacle. The red line, again the reference trajectory computed by the motion
planner, plans to return to the initial position at the center of the room when the
obstacle has passed.
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7.3 Demo execution
An extensive user manual is found in the ’Readme’ document accompanying the
program code. Here a brief summary is provided. First the default scenario is
discussed, followed by a number of safety measures to prevent accidents in the case
of non-nominal events.

7.3.1 Default scenario

As mentioned before, the demo intends to show the autonomous capabilities of the
drone in a fashion of increasing difficulty. It starts by illustrating the simplest type
of feedback control in the undamped spring and viscous fluid tasks. Next it proceeds
to the more challenging tasks of drag drone and tracking a drawn trajectory. In
a subsequent step the level of autonomy is increased by letting the drone plan its
path autonomously, thereby increasing the difficulty from a few cylinders, plates and
hexagonal prisms up to more challenging obstacles like the slalom or a tight window.
Finally the demo finishes with an example of dynamic obstacle avoidance through
the task of dodge dynamic obstacle.

The order of tasks presented here is a default sequence that is certainly not
strictly imposed. The FSM implementation grants the flexibility to change the order
arbitrarily whenever the operator or audience desires without having to reboot the
program.

Each task is separately requested by the operator via the ROS graphical user
interface rqt after which the desired sequence of states initiates. A virtual version of
the drone and its surroundings is displayed in the ROS visualization environment
rviz. It shows the contours of the flight area, the current location of the drone,
the placement of the obstacles and the location of the Vive controllers as well as
trajectories generated by the motion planner or by drawing.

7.3.2 Safety measures

Since part of the demo requires an operator to be present inside the flight area, and
some tasks involve spectators entering the flight area, strict safety measures must be
taken.

Firstly, to ensure safety of the audience, the flight area is shielded by a safety
net. While the drone is in the air, no spectator is allowed to enter the flight area.
Whenever a spectator wants to place an obstacle or draw a trajectory, the drone
automatically lands and stays on the ground until the operator triggers the event
that all obstacles are placed, after which the drones takes off again. During the drag
drone task, the spectators can manipulate the drone while safely standing outside
the flight area.
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Secondly, to ensure that no spectator accidentally sends an unintended instruction
to the drone when pressing a wrong button on the Vive controller, the controller
reserved for the operator has different functionality compared to the one for the
audience. The operator’s controller can trigger events in the FSM, indicate OMG-
tools goals and make the drone take off or land. The audience controller has limited
functionality and is only active in FSM tasks and states where its input is explicitly
required.

Thirdly, anticipating possible accidents due to improper use of the drag drone or
trajectory drawing task, the physical limits of the room are taken into account as
mentioned in Section 7.2 by establishing virtual room boundaries inside the physical
room. If a setpoint is placed outside these virtual limits, it is automatically projected
back onto the edges of the virtual room, thereby preventing the drone from hitting the
physical room edges. This means the drone can be dragged freely through the flight
area as long as it remains far enough from the edges of the room. The same happens
for a drawn trajectory; all points drawn outside the virtual room are projected back
onto the edges of this room.

Finally, to increase the operator’s safety, the FSM is developed such that in case
of emergency, the drone automatically brakes. This is possible thanks to the built-in
brake function of the Parrot Bebop 2, which operates based on the internal IMU and
optical flow sensors. The emergency state is invoked when an invalid measurement is
detected (when the vibration problem discussed in Section 2.1 causes malfunctioning
of the localization system), or when an infeasible problem is detected. The problem
with the latter has been mentioned in Section 5.2; the optimization solver returns its
last guess of the solution, even when the computation of an optimal trajectory was
not successful, meaning that the returned solution is nonsense. The reasoning is that
it is better to do nothing (brake) than to act based on unreliable or completely wrong
information. Performing feedback based on an invalid measurement or tracking a
trajectory that is nonsense is very dangerous and is therefore strictly avoided.
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7.4 Results and conclusion
This chapter explained how the demo is implemented in an FSM structure to allow
for flexibility during the demo, and presented the different tasks that are available
to display the concepts of localization, control and navigation. Next follows an
evaluation of the functioning of the demo.

The FSM is robust, and allows tasks and states to be interrupted at any instant.
Invalid measurements and infeasible problems are correctly detected by the monitor,
such that the drone can be guaranteed not to follow infeasible trajectories or perform
control actions based on erroneous measurements. The invalid measurements do
however still occur sometimes, causing the demo to be interrupted. Moreover the
fluent execution of the demo is still very dependent on how well the Vive controllers
function; the button presses are sometimes not detected when the Vive controllers
have been idle for a couple of seconds. This problem is most probably due to a
software issue in PyopenVR or SteamVR.

The interactivity is strongly appreciated by most audiences, especially in the drag
drone task and the drawing of arbitrary trajectories. Even under erratic inputs, the
drag drone task remains functional, and arbitrary trajectories are tracked with similar
quality as observed in the experiment of Section 6.1. Cylinder obstacle placement by
the audience often causes challenging navigation problems, which are successfully
executed by the drone. Slaloming works robustly and navigation through a narrow
window is successful as long as the required curvature of the path through the window
is limited. The lack of feedforward control during autonomous navigation restricts
the velocities and accelerations reached during point-to-point tasks, due to limited
tracking accuracy. The dodge dynamic obstacle task functions well, and excites
the audience since failing to evade the human would result in a human-drone collision.
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Chapter 8

Conclusion

Previous chapters presented practical designs, implementations and integrations of
results of existing research for the modeling, localization, control and navigation of
drones. The last chapter concluded on how to unify these features in an appealing
and interactive demo, which is made available as an open-source software package.
This concluding chapter provides a summary of the contributions made in this text
and relates the presented work to the initially set goals. It also provides suggestions
for future research related to the thesis.

8.1 Summary of research

The research objective is to produce an interactive demo on the indoor localization,
control and navigation of drones. This demo intends to illustrate MECO’s activities
in the field of optimal control and autonomous navigation of UAV’s, with a broad
target audience of both researchers and non-informed spectators. Chapter 2 presents
the selection of the hardware used to accomplish this goal, and the approach taken
for implementation. A functional decomposition consisting of perception, world
model, control, monitoring and navigation forms the basis of the software developed
in this thesis.

More concretely, the successful construction of such a demo in summary requires
following efforts. The model that describes the drone dynamics must be both as
simple as possible, yet as complex as necessary. Chapter 3 builds towards a SISO
linear time-invariant model in each direction, which is proven to be adequate both
for localization as for controller purposes. Chapter 4 explains the integration of the
Vive localization system into the demo setup and presents the implementation of an
asynchronous Kalman filter that performs position and velocity state estimation. The
algorithm meticulously holds track of timing information, in order to appropriately
deal with timing issues such as communication delay and imperfect controller and
measurement rates. Its performance is validated and its added value also illustrated
in a scenario with added noise and lowered update rate. MECO’s motion planner
OMG-tools and its use in a practical setting is presented in Chapter 5. Adequate
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modeling of obstacles as simple shapes and proper choice of configuration parameters
of the optimizer for a given task are crucial for successful navigation. The influence of
the choice of obstacle type on computation times is analysed. Chapter 6 discusses the
design of suitable controllers for the subsequent levels of autonomous flight: setpoint
tracking, trajectory tracking and optimal autonomous navigation. The considerable
added value of inversion-based feedforward control with zero phase filtering super-
posed on feedback control is proven in a trajectory tracking experiment. This thesis
does not yet reach a full implementation of combined feedforward-feedback control
in the context of receding horizon autonomous navigation, but the possible benefit of
extending the current implementation is made clear. Finally Chapter 7 explained the
highest level of advanced control in the thesis; a Finite State Machine incorporates
adaptivity to situation changes, arbitrary task selection at any time and safety
measures through monitoring. This flexible structure allows for reconfiguration of
control parameters and motion planner settings at runtime, meaning the demo can op-
erate continuously without rebooting between different tasks or emergency situations.

The interactive aspect is met with the use of Vive controllers and specifically
designed tasks that allow the audience to interact with the drone in a safe way. The
audience can drag the drone around to illustrate variable setpoint tracking, they can
creatively draw trajectories to be tracked by the drone and they can arbitrarily place
obstacles to make the navigation as challenging as desired.

The resulting demo is fully operational and accessible to audiences of any kind.
However some struggles with hardware malfunctioning remain. The Vive tracker still
sometimes refuses to function properly due to excessive vibrations. The presented
ad hoc solution of flexible suspension with additional damping solves the problem
up to an acceptable level, but it is not flawless. Also the Vive controllers that tend
to suspend remain a problem as this interrupts fluent workflow during the demo.

In summary, the main contributions of this thesis to the autonomy of mechatronic
systems are the development and practical implementation of an asynchronous
Kalman filter and a model inversion-based feedforward controller, the integration
of the Model Predictive Control-based motion planner OMG-tools, and the design
and implementation of a Finite State Machine for high level discrete control. These
contributions are useful in the sense that they illustrate how practical applications
can be developed starting from the theoretical concepts of modeling, state estimation,
feedforward control and Model Predictive Control. The demo shows the research and
industrial world an experimental validation of OMG-tools, with its potential, but
also limitations as a motion planner. A high number of obstacles or complex obstacle
types drastically increase the computation time of the optimizations or worse, renders
the problem infeasible for the solver. Next to that, the demo is useful as it intends to
inspire future generations of researchers with an impressive, fun-to-watch illustration
of what the research domains of mechatronics have to offer.
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8.2 Suggestions for future research
The modular structure of the implementation allows for and even encourages future
extensions of the currently available demo. Some suggestions are made here.

The first and most obvious extension that should be made to the demo is extending
the OMG-tools navigation with a feedforward controller, as this would significantly
improve tracking performance, leading to faster and more accurate flying. For even
more dynamic flight, reaching higher accelerations and velocities, efforts should go
out to modeling (e.g. the introduction of a nonlinear model) and controller design
(incorporating the new model, or alternative advanced control techniques entailing
for example iterative learning control) as well as improvements in the computation
time of optimal trajectories.

The demo could also be extended with more involved navigation tasks, such as
finding an exit in a maze, or completing a sort of racetrack with waypoints. More
extensive navigation could also include division of the world into smaller areas, in
order to split the large navigation problem into smaller, more tractable problems.
The distinction between global and local planner that was omitted in this thesis could
be added in that regard. OMG-tools also provides techniques for these more involved
navigation problems, such as the multiframe approach. Another OMG-tools feature
which is not yet elaborated is motion planning for vehicle fleets. Very impressive
visual results could be obtained by flying multiple drones in formation through an
obstructed area, while simultaneously offering an experimental validation of another
set of OMG-tools’ capabilities.

In the implementation framework, the motion planner operates independently
from the controller (apart from the exchange of necessary information), such that
it is rather straightforward to replace the current motion planner with another
one. Given the limitations of the OMG-tools motion planner, the integration of a
different motion planner would be interesting for comparison. In the same fashion
the localization system could easily be replaced by another one without drastically
affecting the functioning of the other components. The other localization systems
discussed in the introduction of this text or even a combination of some of them
could be tested. This could serve as a solution for the loss of measurements from
one system, as the other system could take over.

Automatic obstacle detection was not treated in this thesis. The extension of
the framework with obstacle detection either via the on-board camera, off-board
cameras or tracking devices on the obstacles would increase the autonomy of the
current setup.

Lastly the combination of the track drawn trajectory task and navigation with
MPC offers interesting possibilities; instead of blindly tracking the drawn trajectory
with the presented feedforward-feedback controller, future research could extend
this task to tracking via MPC. This way the drone could track the trajectory in an
optimal way, while taking into account constraints such as obstacles obstructing the
reference path.
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