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SAMENVATTING

In Vlaanderen zijn er 18 soorten vleermuizen. Al deze soorten zijn beschermd onder Eu-

ropese en lokale wetgeving. Onder deze wetgeving moeten de populaties elke zes jaar ger-

apporteerd worden. Dit is vrij moeilijk gezien vleermuizen nachtdieren zijn en dus moeilijk

visueel te monitoren zijn.

Vleermuizen kunnen vliegen en jagen in complete duisternis. Hiervoor gebruiken ze echolo-

catie: ze zenden geluid uit en luisteren zorgvuldig naar de echo’s die terugkomen. Met deze

techniek kunnen vleermuizen hun omgeving in kaart brengen. Verschillende vleermuis-

soorten gebruiken verschillende geluiden, wat het mogelijk maakt om deze geluiden als

een monitoring techniek te gebruiken. Hiervoor worden hoogfrequente opnames gemaakt

en de resulterende spectrogrammen worden door experts geanalyseerd. Eén enkele nacht

op één locatie kan tot 1500 opnames bevatten, wat manuele labeling moeilijk maakt.

Data van het Instituut voor Natuur en Bos Onderzoek (INBO) wordt gebruikt om een prak-

tische tool te ontwikkelen. Deze tool maakt gebruik van self-organizing maps. Deze maps

maken gebruik van neuronen waarbij elk neuron een groep datapunten beschrijft. Het

resultaat hiervan is dat elke vleermuissoort gelinkt kan worden aan een of meerdere neuro-

nen. Als de geluiden reeds geclassificeerd waren, kan een neuron gelinkt worden met één

of meerdere vleermuissoorten. Als dit niet het geval is, kunnen enkele geluiden manueel

gelabeled worden en op basis hiervan kan een conclusie getrokken worden voor alle gelu-

iden die matchen met ditzelfde neuron. De data wordt dus verdeeld in groepen. De analyse

kan dan op groepsniveau gebeuren in plaats van op het niveau van individuele geluiden,

wat de analysetijd sterk verkort. Het doel van deze tool is dus niet de huidige analyse te

vervangen, maar eerder om deze efficiënter te laten verlopen. Hiermee kan een betere

monitoring van vleermuispopulaties gebeuren.
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SUMMARY

In Flanders there are 18 species of bats. All of these species are protected under European

and local laws. Under these laws, the populations must be reported every six years. Due

to the nocturnal nature of bats, visual monitoring is rather challenging.

Bats can fly and hunt in total darkness. To that end, they use echolocation: they emit

sounds and listen carefully to the echoes that return. Using this technique, bats can map

their surroundings. Different bat species use different sounds, which makes it possible to

use these sounds as a monitoring technique. To that end, high-frequency recordings are

made and the resulting spectrograms are analyzed by experts. For a single night in a single

location, this can result in more than 1500 recordings, which makes full manual labeling

difficult.

Data from the Research Institute for Nature and Forest (INBO) is used to develop a practical

tool. This tool uses self-organizing maps. These maps use neurons that describe a group of

datapoints. The result of this tool is that each bat species is tied to one or more neurons.

If sounds were already classified, a neuron can be tied to one or more bat species. If not,

a few sounds can be classified manually and from this a conclusion can be drawn for all

the sounds matching with this neuron. In other words, the data is divided into groups. The

analysis can then take place at the level of these groups instead of the level of individual

sounds, which shortens the time needed dramatically. The goal of this tool is not to replace

the current analysis, but to make it more efficient. This can lead to a better monitoring of

bat populations.
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GRAPHICAL ABSTRACT

There are six steps in the analysis of bat sounds. A certain bat emits a sound (A). This

sound is then recorded by a bat detector (B). Based upon this sound, a spectrogram is

created and the bat sound is isolated (C). From this spectrogram, features are extracted

(D). These features are numbers that describe certain aspects of the spectrogram. Then,

this datapoint is plotted on a self-organizing map (E). Based upon how similar the datapoint

is to other datapoints, it takes a specific place in the map. Datapoints closer to it are

more similar while those farther away are less similar. An expert then looks at the different

regions in the map and ties them to one or more species (F). (Image source: Noun Project:

rivercon (first bat), andriwidodo (microphone), worker (laptop), maxim kulikov (soundwave),

leona grande (middle bat) and tulpahn (left bat))
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CHAPTER 1

INTRODUCTION

Acoustic bat detectors are one of the most popular monitoring methods used in the study

of bats, mainly to determine their presence, species and activity. The main advantage over

other methods such as telemetry, light traps and winter counting, is their non-invasive

nature and low labor cost. Bat detectors can be left out in the field to passively collect data

for days or even weeks, which is generally not possible with other methods.

1.1 Problem statement

The main bottleneck for bat detectors is the annotation of recordings and the large amounts

of data collected. A single night can lead to hundreds of audio files that need to be an-

notated manually. Because the annotation requires expert knowledge, citizen science is

generally not an option. The Bat Detective project1 uses citizen science, but the main goal

of this project is to separate bat calls from non-bat calls, not to classify individual bats.

Annotation can also be done using software such as SonoBat or BatSound, but the accu-

racy of these packages is limited, they can be quite expensive and they are generally not

adapted to a specific region. Currently, Belgium does not have a practical tool adapted to

the region. All reporting happens with manual annotation. Legislation at the level of the

European Union requires member states to estimate populations of bats and report these

every six years.

1.2 Objectives

The objective of this research was to build a tool that can help with the annotation of bat

sounds. There were not enough labeled data available to build an automated classifier.

However, there were partially labeled data provided by the Research Institute for Nature

and Forest (INBO). Based on these data, a tool was built to assist the manual classification.

1https://www.batdetective.org/



1.3. OUTLINE

1.3 Outline

In Chapters 2 and 3, bats are discussed with a focus on the species, ecology, legisla-

tion, threats and conservation. Furthermore, monitoring methods and echolocation are

discussed. This is important to provide the proper context of the problem. Chapters 2 and

3 make clear why bats need to be monitored, the basis of the monitoring techniques and

the challenges associated with them. Chapter 4 focuses on ecoacoustics, the use of audio

data for monitoring purposes. Ecoacoustics is discussed in general and with a focus on

bat applications. This provides the proper context surrounding audio data and highlights

the potential challenges down the road. Chapter 5 discusses machine learning, a discipline

of computer science that can assist the analysis of the audio data from bats. These tech-

niques are then applied to a dataset provided by INBO (Research Institute for Nature and

Forest). This is discussed in Chapters 6 and 7. Finally, Chapter 8 contains the conclusions

and future perspectives.

All code used is available on Github2.

2https://github.com/ArneDeloose/Masterproef2018Code
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CHAPTER 2

ECOLOGY AND TRAITS OF BATS

This chapter will focus on four subjects. Firstly: what are bats and what are their most

important traits? Secondly: what are the different phylogenetic groups and species of bats

in the world and in Belgium? Thirdly: what is the ecological importance of bats? And lastly,

what is echolocation? Echolocation is one of the most important traits of bats and this will

play a vital role in the way they are monitored (see Chapter 4).

2.1 What are bats?

What are bats exactly? Formally speaking, bats are all mammals that belong to the order

of the Chiroptera. These animals comprise about 20% of all classified mammal species,

making them the second largest order, right after the Rodentia (Wilson, 2005). Bats have

three important traits that distinguish them from other mammals.

The first trait is also their namesake. `Chiro’ comes from the Greek `cheir’ which means

hand and `pteron’ means wing (Merriam-Webster, 2019). In other words: a bat is a mammal

that has transformed its hands into wings by using a membrane (patagium). This is not

unique to bats. Several other species such as flying squirrels have similar membranes.

However, bats are the only mammals that can use their wings for powered flight rather

than simple gliding. Gliding means that an external force is needed to ascend. Powered

flight means the wings provide the necessary lift on their own. Only three other groups of

animals evolved flight: insects, birds and pterosaurs. Pterosaurs are sometimes excluded

because they have been extinct for millions of years and their flight mechanics are not well

understood (Dietz and Kiefer, 2017; Altringham, 2011; Sato et al., 2009).

A second important trait of bats is their nocturnal nature. Most bats are nocturnal animals

flying in twilight and darkness. Most likely, bats are nocturnal to avoid competition for food

from other animals. Other theories are to avoid predators and to avoid overheating during

the day (Speakman, 2001; Mikula et al., 2016; Voigt and Lewanzik, 2011). During the day,

bats roost. Characteristic of bats is that they always hang upside down when roosting. This

allows them to take flight very fast by letting themselves fall down (Dietz and Kiefer, 2017).



2.2. SPECIES AND EVOLUTION

The last important feature is echolocation, the ability to locate and identify objects using

sound. Bats are most notable in using this technique, although not all bats use it and

several other species such as dolphins, shrews and birds use a similar technique (Holland

et al., 2004).

2.2 Species and evolution

2.2.1 Species of bats

Bats come in various sizes. At the highest end, there is the giant golden-crowned flying

fox, which can reach wingspans of 1.7 m and weigh up to 1.6 kg (Nowak, 1999). At the

lowest end there is Kitti’s hog-nosed bat, which has wingspans of only 15 cm and weighs

only 2 g (Nowak, 1999). This size difference comes with a wide range of other differences.

Because of these differences, bats are traditionally divided into two groups: megabats and

microbats (Prothero, 2017).

As their name suggests, megabats are usually larger than microbats, but there are other

differences as well. Some differences are morphological, such as the absence of a tail, tra-

gus and noseleafs and the presence of a claw on the second finger. A tragus and noseleafs

both assist in echolocation, which is discussed in Section 2.4.2. Megabats do not need a

tragus, because they usually do not have echolocation. Notable exceptions are the ten

species of the Rousettus genus that can use tongue clicking noises as a primitive form of

echolocation. Furthermore, research by Boonman et al. (2014) suggests there are mega-

bats that use the sound of their own wings for echolocation. However, true echolocation

is most likely not possible due to their larger body size. This is discussed further in Sec-

tion 2.4. Instead, megabats rely on different senses, mainly smell and sight. This shift in

senses comes with relatively larger eyes compared to microbats. The use of their senses

also matches their diet. The usual diet of megabats consists of fruits and nectar. Since

these are stationary, an advanced system like echolocation is not necessary. Megabats

are a small group. Only 187 species of megabats are listed on the IUCN Red List (Inter-

national Union for Conservation of Nature), compared to 1244 bat species in total. The

IUCN Red List is the standard reference work to assess the current conservation status of

all species. Conservation is discussed in detail in Section 3.5. All megabats belong to one

family: the Pteropodidae. Common synonyms for megabats are flying foxes and Old World

fruit bats. The first name refers to their typical faces and size and the second name refers

to their habitats. Megabats are only found in the tropical and subtropical regions of Eurasia,

Oceania and Africa. Since our research focuses on Belgium, they will not be discussed any

further. For more information on megabats, we refer to Neuweiler (2000).
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Microbats are much smaller. Their diet usually consists of insects, with some bigger bats

hunting frogs, lizards, fish or even other bats. A notable exception are the three vampire

bat species that feed on animal blood instead. Microbats are a larger group with around

1000 species (IUCN). The biggest groups within the microbats are the vespers or evening

bats with around 400 species and the Phyllostomidae or New World leaf-nosed bats with

around 200 species (IUCN). Microbats always have echolocation. They also have relatively

larger ears and smaller eyes than megabats. Most of them have a tail, which is always

absent in megabats. Microbats are found all over the world except for the coldest regions.

While they are found everywhere, biodiversity is centered around tropical and subtropical

areas (Dietz and Kiefer, 2017). An illustration of this is given in Figure 2.1.

Figure 2.1 Distribution of bat species per latitude in America. Cells of 100 km x 100 km
are used. The size of the circles indicates the number of cells with the same number of
species. Tropical areas have the highest biodiversity. Source: Dietz and Kiefer (2017).

The classification in megabats and microbats is based on morphology, diet and behavior.

However, modern classification is increasingly based on genetic data and evolution instead.

New research suggests that there are five microbat families that are genetically much closer

to megabats. Therefore, a new classification was proposed: Yinpterochiroptera and Yan-

gochiroptera. Yangochiroptera contains the remaining microbats. Yinpterochiroptera splits

immediately into Pteropodidae and Rhinolophidae. The first group contains the original

megabats, the second group contains five families that were originally microbats (Springer

et al., 2001). An illustration of this can be found in Figure 2.2.

All of this is part of a wider debate on the monophyletic nature of bats. A monophyletic

group is a group with a single common ancestor. Polyphyletic groups have multiple ances-

tors. Currently, it is not yet clear whether bats are monophylitic. It is entirely possible that

megabats evolved from a different ancestor than microbats. The current theories suggest

that flight developed only once and the two groups split about 60 million years ago. Cer-
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Yangochiroptera
(microbats)

Yinpterochiroptera

Pteropodidae
(megabats)

Rhinolophidae
(microbats)

Figure 2.2 New classification of bats.

Frequencies from: Obrist Martin K. (2007), the value of the Pond bat was missing.

Name (English) Name (Scientific) Frequency call (kHz) IUCN rating

Bechstein’s bat Myotis bechsteinii 27 − 104 NT
Brandt’s bat Myotis brandtii 28 − 104 LC
Pond bat Myotis dasycneme − NT
Daubenton’s bat Myotis daubentonii 27 − 81 LC
Geoffroy’s bat Myotis emarginatus 36 − 113 LC
Greater mouse-eared bat Myotis myotis 22 − 86 LC
Whiskered bat Myotis mystacinus 28 − 100 LC
Natterer’s bat Myotis nattereri 14 − 109 LC
Barbastelle Barbastella barbastellus 26 − 48 NT
Serotine bat Eptesicus serotinus 22 − 47 LC
Lesser noctule Nyctalus leisleri 22 − 49 LC
Common noctule Nyctalus noctula 18 − 34 LC
Nathusius’ Pipistrelle Pipistrellus nathusii 36 − 62 LC
Common pipistrelle Pipistrellus pipistrellus 43 − 74 LC
Brown long-eared bat Plecotus auritus 23 − 56 LC
Grey long-eared bat Plecotus austriacus 18 − 45 LC
Greater horseshoe bat Rhinolophus ferrumequinum 69 − 84 LC
Lesser horseshoe bat Rhinolophus hipposideros 90 − 111 LC

Table 2.1 Overview of the bat species present in Belgium.
IUCN ratings: LC: least concern, NT: near threatened

tain megabats later developed traits of microbats and that is why they were misclassified

(Springer et al., 2001).

This classification issue remains an unsolved problem. The problem relates to fossil data.

All flying animals have brittle skeletons to reduce weight. As such, bones do not fossilize

well. Research by Eiting and Gunnell (2009) estimates that only 12% of bat genera have a

fossil record. This makes accurate classification rather difficult.

2.2.2 Bats in Belgium

The primary focus will be on the bats of Belgium. An overview of species is given in Table

2.1 and the guilds are discussed further in Section 2.4.5. There are a total of eighteen

species in Belgium. This number is based on the species that are reported to the European

Union (EU). However, several sources claim that there are in fact more species (Wilson

(2005), Dietz and Kiefer (2017), Natuurpunt and IUCN data). The largest estimate would be

twenty-four species. We will first discuss the formal eighteen species and then move on to

borderline cases. Of the eighteen species, sixteen belong to the vesper bats. Vespers are

mostly insectivores, with some exceptions eating small birds or fish. They have relatively

large ears and small noses.
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Within Belgium, the Myotis genus has the most representatives with a total of eight species.

Myotis bats are commonly called mouse-eared bats because they have long, narrow ears.

They usually fly in open spaces and have a high-range echolocation. An example of a Myotis

bat is the whiskered bat, shown in Figure 2.3a.

Continuing, there is one species of the Barbastella genus: Barbastella barbastellus. This

species is shown in Figure 2.3b. It is a rare species, so rare it was considered extinct

in Belgium until 2014, when Natuurpunt reported new sightings. They roost in damaged

trees, which become increasingly rare due to forest management. Barbastella species have

small eyes, a small nose and large, broad ears.

The next genus is the Eptiscus genus with only the serotine bat, shown in Figure 2.3c. While

this is an abundant species, populations are declining in many areas due to construction

works and better isolation. Eptiscus bats have buildings as their habitat. The serotine

bat has black ears and nose and is quite large, with wingspans of up to 38 cm. It shows

morphological similarities with the common noctule, but distinguishes itself rather easily

by flying out after sundown, while the common noctule flies out before sundown.

The next species are the common noctule and lesser noctule of the Nyctalus genus. The

common noctule is shown in Figure 2.3d. As was already mentioned, morphologically speak-

ing, these bats are similar to the Eptiscus genus, but they show different behavior. Apart

from the difference in emergence, they also have different winter tactics. Rather excep-

tionally, the common noctule shows female bias migration. The females migrate south in

winter, while the males hibernate.

Next, there is the Pipestrellus genus with two species. The common pipestrelle is the most

abundant species of Belgium (according to Natuurpunt). Pipestrellus species are commonly

urban species. They hunt in parks or gardens and live in buildings. A picture of a common

pipestrelle is shown in Figure 2.3e.

Lastly, there are the Plecotus or long-eared bats. Two species of this genus are present in

Belgium. As the name suggests, these bats have very long ears. They use relatively low

frequencies for echolocation, which have a long range. These species are not threatened

now, but there are concerns that climate change could affect that. They are known for their

long lifespans, low reproduction rates and small population, so their ability to adapt to rapid

changes is low. An example of the Plecotus genus is the Plecotus auritus, depicted in Figure

2.3f.

This leaves only two species that are not vespers. These last two are the Rhinolophus

ferrumequinum and Rhinolophus hipposideros from the Rhinolophidae family, commonly

called the horseshoe-bats. This is one of the families that was added to the Yinpterochi-

roptera, which means that these two species probably evolved from megabats. Character-
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istic of these species are their horseshoe-shaped noseleaves that help with echolocation.

As we can see in Table 2.1, the two Rhinopholus species have a much higher echolocation

frequency. The Rhinolophus ferrumequinum is depicted in Figure 2.3g.

Apart from these bats, there are other bats that have an unclear status. It is not always

straightforward to determine whether a bat is present in a certain country. As an example,

the Alcathoe bat will be discussed (Myotis alcathoe). This species is morphologically almost

indistinguishable from the whiskered bat, but was recognized as a separate species based

on genetic data in 2001. Confirmed recordings show a patchy distribution with many iso-

lated records (Niermann et al., 2007). As such the IUCN lists its status as data deficient.

In Belgium, there are only thirteen recordings in the Walloon region (Nyssen et al., 2015).

All of this makes it difficult to conclude unambiguously whether the Alcathoe bat is perma-

nently present in Belgium or not. Apart from the Alcathoe bat, there are three other rare

bats in a similar situation. The greater noctule (Nyctalus lasiopterus), the parti-coloured bat

(Vespertillio murinus, shown in Figure 2.3h) and Kuhl’s pipistrelle (Pipistrellus kuhlii) are all

examples of rare bats with only a handful of isolated recordings.

This leaves two more bats: the soprano pipestrelle and the northern bat. Both of these

species are widespread in Eurasia, but do not have colonies in Belgium. However these

bats are present in parts of Germany and France that are very close to the border. Bats can

cover large distances in a single night. This makes it possible that while these bats do not

have permanent colonies in Belgium, they occasionally pass through and are detected this

way.

2.3 Ecological and economical importance

Bats have several important ecological and economic functions. For a full overview we refer

to Kasso and Balakrishnan (2013). The four most important ones will be discussed here.

In tropical climates, megabats play a vital role in flower pollination and seed dispersal. With

motion cameras, the main pollinator of the Australian baobab was shown to be the black

flying fox (Groffen et al., 2016). According to Hodgkison et al. (2006), 13.7% of trees in

Malaysia relies at least partially on bats for pollination and seed dispersal.

Microbats on the other hand are important for the control of insect populations. In research

by Boyles et al. (2011), it is estimated that the loss of bats would cost agriculture 3.7 to 53

billion dollars per year in extra pesticides and yield losses in the Unites States alone.

The excrement of bats can be collected as a fertilizer, called guano. Due to their short

digestion process, faeces from bats are rich in nitrates, phosphates and salts. Today, this

is still used in organic farming. In the past, it was also used to make gunpowder as a
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(a) Myotis mystacinus (Whiskered bat). (b) Barbastella barbastellus (Barbastelle).

(c) Eptiscus serotinus (Serotine bat). (d) Nyctalus noctula (Common noctule).

(e) Pipistrellus pipistrellus (Common pipistrelle). (f) Plecotus auritus (Brown long-eared bat).

(g) Rhinopholus ferrumequinum (Greater horse-
shoe bat).

(h) Vespertillio murinus (Parti-colored bat).

Figure 2.3 Bat genera in Belgium. All eight genera are represented by one species from
that genus. Source: Natuurpunt (Hugo Willocx and Yves Adams).

9



2.4. ECHOLOCATION

source of saltpeter. Around 1850, the US imported 760 000 tonnes of guano per year from

various islands in the tropics (Smil, 2004). In 1856, the US wrote the Guano Islands Act, a

federal law that allowed any US citizen to claim islands with guano (as long as they were

not occupied or claimed by a different country). It even empowered the president to use

the military to protect these islands. Roughly a hundred islands were claimed this way

in the past, with ten islands still being part of the US today (although several claims are

being disputed by Colombia and Haiti). Guano also plays a role in soil fertility and nutrient

transfer within an ecosystem.

Lastly, bats can be used as a bioindicator. Bioindicators are organisms whose population

or activity is indicative of the state of the environment. The pollution state of a river for

example can be assessed through the absence or presence of certain invertebrates. Jones

et al. (2009) report several stress factors that can lead to a change in population or ac-

tivity of bats. These stress factors are: extremes of drought, heat, cold and precipitation,

cyclones and sea level rise, deterioration of water quality, agricultural intensification, loss

and fragmentation of forests and pesticide use. This way, the presence of bats can be used

as a proxy for other problems, mainly climate change. de Oliveira et al. (2017) used this

technique successfully as a proxy for habitat destruction through deforestation in Brazil.

For countries in temperate climates such as Belgium, insect control is the most important

service that bats provide. The other three ecological functions are more important in tropi-

cal climates (Kasso and Balakrishnan, 2013).

2.4 Echolocation

The word sonar is short for sound navigation ranging, the use of sound to detect objects

(Encyclopaedia Britannica 2019). It is a technique that is mainly used in submarines. When

an animal uses this technique, it is called bio-sonar or animal echolocation. Microbats

are one of the most notable groups that use this technique. Most megabats do not use

echolocation at all. A notable exception is the genus Rousettus which uses a primitive form

of echolocation (Holland et al., 2004).

2.4.1 Overlap with other senses

Echolocation is the main sense microbats rely on for hunting, communicating and naviga-

tion. However, it is not the only sense they have. Despite popular belief, all bats have vi-

sion. This vision is usually mesopic (light/dark), but some bats can see in UV as well (Müller

et al., 2009). Bats also have magnetoreception. Contrary to birds, bats have polarity-based

reception. Birds estimate their latitude based on the strength of the magnetic field, bats
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differentiate north and south. Research by Tian et al. (2015) shows that bats can use their

magnetoreception even at only one fifth of the normal magnetic field strength. These other

senses can provide extra information that is combined with information from echolocation.

Apart from the overlap between senses, there is also a physical overlap. The muscles used

in flight, breathing and echolocation can overlap. Because of this, echolocation is much

more common in flying animals (Speakman et al., 1989). Altringham (2011) suggests that

this coupling is more difficult for larger animals. This would make echolocation less interest-

ing for larger bats in terms of energy. However, research by Speakman and Racey (1991)

has found that the energy costs for flight are so high that echolocation is not significant in

comparison. It is possible that the main reason why megabats do not have echolocation is

simply because their diet does not require them to.

2.4.2 Mechanism

Echolocation works by emitting sounds from the larynx (voicebox) and analyzing the return-

ing echoes. From these echoes, three things can be determined. The first metric is distance

to the object. This is determined from the time delay between pulse and echo. The speed of

sound is around 340 metres per second. If the time between a call and the echo is one sec-

ond, the object is around 170 metres away. This 170 metres is then corrected for the speed

of the bat itself. If a bat is flying towards the object, the echo will return slightly faster. The

faster they fly, the bigger this effect becomes (Jones, 2009). The elevation of the object can

also be estimated. This is determined from interference patterns on the tragus. The tragus

is a circular bump that partly covers the ear canal (Figure 2.4). Horseshoe bats are able to

move their ears vertically independent of one another. This results in different intensities at

each ear which can be used to calculate elevation (Müller, 2004; Jones, 2009). Lastly, the

direction of the sound can be estimated. This is determined from the intensity difference

between both ears. When the object is to the left, the intensity at the left ear will be higher

(Jones, 2009).

Figure 2.4 Tragus of a bat ear. Source: Chiu and Moss (2005).

11



2.4. ECHOLOCATION

The intensity of the sounds can be a problem. Bat calls can have intensities of up to 140

decibels, louder than a military jet aircraft (Surlykke and Kalko, 2008). This means that in

theory, bats would damage their own hearing. However, they have developed two systems

to counter this. Firstly, bats are capable of contracting the muscles in their middle ear which

makes them temporarily deaf (Teeling, 2009). In low-duty echolocation, the time delay in

call and echo is large enough to allow for contraction and relaxation of these muscles.

However, in high-duty mode, bats emit continuous calls which make this impossible. High-

duty mode is mostly used when chasing an insect. This mode requires even more advanced

systems. In high-duty mode, bats use the Doppler effect (Jones and Holderied, 2007). They

know exactly how fast they are flying and adapt the frequency of their calls to this flight

speed. However, their ears are tuned to a different frequency range. Due to the Doppler

effect, returning echoes will have a higher frequency.

Apart from the echoes of their own sounds, bats can also detect the noises produced by

certain insects. Certain moth species take advantage of this. They have a tympanum

(hearing organ) that detects bat calls. When they hear calls, they produce sounds designed

to interfere with echolocation (Hoy and Fay, 1998). Other common responses for insects

are twitching of wings to produce random evasive movements. Butterflies are known to

use this technique. For a full overview of insect defensive mechanisms to bats, we refer to

Miller and Surlykke (2001).

The frequency range of microbat calls in Belgium is between 14 kHz and 113 kHz (see Table

2.1). It is possible bats go even higher, but as we will see later (Section 4.4), most detection

devices do not measure above 120 kHz. The range of human hearing is 20 Hz to 20 kHz,

so most calls cannot be heard by humans. This is referred to as ultrasound (Cutnell and

Johnson, 1997).

2.4.3 Limitations of echolocation

There are several limitations to echolocation. The most important ones will be summarized

here. A full overview is given in Schnitzler and Kalko (2001).

Firstly, there are clutter echoes. These are noise signals that come from the surroundings.

A classic example would be a butterfly flying between the leaves of a tree. Those leaves

will also create echoes. If those echoes interfere with the echoes of the butterfly, it is called

backwards masking (Schnitzler and Kalko, 2001).

Secondly, there is forward masking. Here, the cause is internal. The brain of bats needs

to do two things: send out calls and interpret the echoes. As long as these two activities

are separated well enough in time, there is no problem. But if the prey gets closer and

closer, these activities can start to overlap. This is similar to how it is difficult for humans
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to talk and listen at the same time. It is also possible that the call overlaps with the echo

creating interference. Both make analysis difficult. We call this forward masking, because

the interference happened before the echo returned. In backwards masking, the interfer-

ence happens after the echo has returned. According to Kober and Schnitzler (1990), the

minimum detection distance is about 17 cm for every ms of signal. If the distance gets

smaller, forward masking is too strong to properly detect an object (Schnitzler and Kalko,

2001).

Thirdly, echolocation has a limited range. As sound waves travel through air, they get

absorbed. At some point, they will be too quiet to properly detect. Kober and Schnitzler

(1990) calculated that the maximum range of echolocation is on average about 10 m. This

range is dependent on many factors such as signal frequency, prey size, humidity and

temperature.

2.4.4 Evolution of echolocation

Echolocation plays a vital role in hunting preys. However, it also assists in flight and commu-

nication between bats (Schnitzler et al., 2003). Because of this, there are different theories

on the initial function of echolocation and its evolution.

The first theory is the flight first theory. Under this theory, flight developed only once in

bats. A primitive system of echolocation evolved later to help with orientation. Bats who

relied solely on sight would have trouble hunting at night, bats who use echolocation can

hunt whenever they want to. At night, there is less competition for food, hence bats with

echolocation could take this niche easily. Another possible reason to become nocturnal

could be to avoid predators. This theory can explain the differences between megabats

and microbats rather well. After flight was developed, several bats started to feed on fruits

and nectar. These bats developed better sight and smell. Other bats kept feeding on insects

and developed echolocation (Simmons et al., 2008; Speakman, 2001).

A different theory suggests the initial function of echolocation was communication between

bats. Here, flight would have developed after echolocation. Primitive echolocation found in

megabats such as clicking of the tongue supports this theory. Under this theory, megabats

would have lost their echolocation abilities later (Speakman, 2001).

Lastly, there are theories that suggest bats relied on sounds to locate prey from the very

beginning. These would be passive sounds from the prey itself. Hence their hearing im-

proved over time and it was only a small step to start using the reflection of their own

sounds to better locate preys. If an animal uses sounds made by a different animal, we

call it passive mode hearing. If they use the reflection of their own sounds, we call it active
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mode hearing. Megabats either split off before the transition from passive to active mode,

or they lost their echolocation later (Speakman, 2001).

2.4.5 Classification of echolocation

Parameters of echolocation

A bat call has three important parameters: frequency, bandwidth and length. Each pa-

rameter can be varied resulting in different advantages and disadvantages (Denzinger and

Schnitzler, 2013). These parameters are graphically shown in Figure 2.5

Figure 2.5 Different parameters of a bat sound.

As mentioned before, frequency ranges between 20 and 120 kHz with most calls being

around 50 kHz. High frequencies create a high resolution of the environment. However,

these frequencies also get absorbed better into the air, meaning the range becomes smaller

(Lawrence and Simmons, 1982).

Bandwidth is the range of different frequencies present in a signal. A high bandwidth will

make it easier to determine direction, size and distance of an object. However, it does not

allow bats to use the Doppler effect or to tune their hearing to specific frequencies. As

mentioned before, this is important in high-duty mode (Denzinger and Schnitzler, 2013).

Lastly, length (signal time) is important. A long signal will increase the signal to noise ratio

which makes it easier to detect preys. However, echoes and calls can start to overlap,

which is difficult to deal with (forward masking). Only long calls can detect the wings of

insects (Denzinger and Schnitzler, 2013).

Guilds

Bats show some flexibility in adapting these parameters depending on the situation. Even

so, most bats prefer sticking to a certain type of signal and have evolved to use this signal

very effectively. Based upon this, they can be classified in different groups. One way to

define these groups is in terms of guilds. A guild was defined by Root (1967) as a group of

species that exploits the same class of environmental resources in a similar way. If animals
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feed in a similar way, they belong to the same guild. We will discuss the five guilds from

Denzinger and Schnitzler (2013), which are also used in the field guide of Dietz and Kiefer

(2017). As an illustration, Figure 2.6 shows the signal of a representative of each guild.

Figure 2.6 Signals of a representative of each guild. Source: Denzinger and Schnitzler
(2013).

The first guild are the open-space aerial foragers. These bats hunt in open spaces and

hence face a significant problem. Preys will be distributed over large areas which makes

them difficult to locate. Hence, these bats will need long-range echolocation, which results

in long calls at low frequencies (around 30 kHz) with a narrow bandwidth. Their morphology

is adapted to this as well, with characteristic narrow wings to trade off extra speed for lower

agility. Typical examples of these bats are Nyctalus and Eptiscus species.

The second guild are edge-space aerial foragers. These bats hunt in edge spaces, which

are line-shaped structures such as hedges or the treeline of a forest. They face a chal-

lenge because there is a constant background of the edge structure (backwards masking).

To counter this, these bats use mixed signals. They have a shallowly modulated narrow-

band component which is either preceded or followed by a broadband, steeply downward

frequency-modulated component. The first one is used for insect detection, the second

one to fill in the surroundings (to avoid collisions). The first component (shallow one) is

species specific and can be used for determination. The second component (steep one)

is more general for this group. Typical members of this group are Pipistrellus species and

Barbastella species.

Next are the edge-space trawling foragers. Trawling is a word for fishing with a net and

this is reasonably accurate for this group. Trawling species will fish for signals by flying low

above water surfaces while emitting calls. The smooth water will make the calls echo away

from the bat except for the ones hitting the surface perpendicular. This is used to determine
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the height above the water surface. The bat can easily detect objects on or above the water

surface. Their signals are usually similar to the second guild because the shores work as an

edge-space. A key difference is that trawlers tend to put a shallow modulated component

in between two steeply modulated components, which makes it possible to distinguish

between the two. However, when trawlers hunt above lakes, their signals are more similar

to open-space aerial foragers. Examples of this guild are Myotis species such as Myotis

daubentonii (Daubenton’s bat).

The fourth guild are the narrow space flutter detecting foragers. Narrow space is sometimes

changed to confined space instead. A confined space refers to an area which creates large

amounts of echoes from all sides. The middle of a forest is a simple example, but urban

areas can also serve as confined spaces. Backwards masking will be a significant problem

here. To overcome this, these bats tune their calls to specifically detect the beating of

insect wings. Insect wings are in constant motion which will create glints (rapidly changing

echoes). These bats will have long calls at a constant high frequency. Morphologically

they will have short, broad wings to increase their agility. An example of this guild are the

Rhinopholus species.

Lastly, there is the guild of the narrow space passive gleaning foragers. Gleaning is a

synonym for collecting. These bats will `collect’ insects from a surface. Rather uniquely,

these bats do not use echolocation to locate their prey. Instead, they listen to the sounds of

the insect itself (passive) along with sight and smell. As mentioned before, there is a theory

that suggests that all bats were originally passive gleaners. Echolocation can be present

for spatial orientation, however. In that case, their signals are similar to the first component

of open-space aerial foragers. Examples of these bats are Bechstein species and Plectocus

species. Bats that use a similar collecting technique with echolocation instead are called

narrow space active gleaning foragers, but this is a very rare guild.

Finally, there is one more guild that is often ignored. Some frugivorous and nectarivorous

bats use smell as their primary sense, but use echolocation to find the exact position of

fruit or nectar once they are close. This guild is often called narrow space active/passive

gleaning foragers, because they use both active methods (echolocation) and passive meth-

ods (smell). However, bats like this do not appear in moderate climates, so they will not be

relevant to our research.
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CHAPTER 3

CONSERVATION AND

MONITORING OF BATS

In this chapter we will focus on the conservation of bats. First, we discuss the threats that

bats face. This is followed by a section about possible conservation measures. Next, we

delve into legislation to conserve bats, with a primary focus on the European Union and

Belgium. Non-governmental organizations are also discussed briefly. Then, the current

state of bats is discussed, starting worldwide and then zooming in on the European Union

and Belgium. Lastly, possible monitoring methods are discussed.

3.1 Threats

Bats face many threats. Not all of them are unique to bats though. Habitat destruction

for example is a threat to all animals, not just bats. In this section, both general threats

and specific threats will be discussed. However, it is important to point out that even if

a threat is general, it does not always hit species the same way. Bats in particular have

certain properties that make them vulnerable. Most importantly, bats have a very low birth

rate. Females usually only get one juvenile per year. Furthermore, it can take several

years before a juvenile becomes sexually mature and starts to reproduce. This means

that population growth is low, which makes recovery from events more difficult. Under

normal circumstances, this low population growth is compensated by an exceptionally long

lifespan. Wilkinson and South (2002) reports individuals of five bat species that lived for

at least 30 years. This is about 3.5 times longer that the lifespan of a non-flying placental

mammal of the same size. Additionally, bats have advanced systems to control time of

birth. Some species store sperm during winter or freeze development of the embryo in the

initial stages. Births happen in a narrow window around May or June in temperate climates.

Normally this is an advantage, since food supply is optimal around this point. But if there

is a disturbance during this narrow window, this can have disastrous consequences for a

population (Dietz and Kiefer, 2017).
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The first threat bats face are diseases and parasites. The most important example is the

white-nose syndrome (WNS), a fungal growth. In the United Status, this is monitored by the

United States Geological Survey agency (USGS). They estimate that since 2008, millions

of bats have died in the US and Canada from WNS. The disease was first seen in North

America around 2006 and later on in Europe as well. However, in Europe there were no

casualties. Current theories suggest the disease developed in Europe and hence European

bats developed immunity against it. American bats did not have this evolutionary immunity,

which caused mass casualties. Whether increased globalization caused WNS to spread

from Europe to America is not clear (Fenton, 2012). Recent genetics research by Palmer

et al. (2018) has found that the alternate excision repair pathway in the fungus is not

functional. This means that the fungus can be killed easily by ultraviolet light or certain

DNA alkylating agents such as methyl methanesulfonate. In the future, this could lead to a

potential treatment of WNS.

Bats also contain a wide variety of other pathogens. Usually these do not pose a threat

to the bat itself, but they can infect humans. Indirectly, this poses a threat to bats since

they could be killed on purpose to prevent certain diseases from spreading. Viruses like

Ebola have been reported in bats, as well as the Corona virus, which causes severe acute

respiratory syndrome (SARS) in humans. The Henipa virus can be found as well. Lastly,

there are also five variants of the Lyssa virus found in bats: EBLV 1, EBLV 2, WCBV, BBLV

and LLEBV. Lyssa is known to cause rabies in humans, but so far, there are only three

confirmed and two unconfirmed human deaths of bat rabies, all of which related to EBLV 1

and 2. Even so, it is recommended to wear gloves and use a vaccine when handling bats

(Dietz and Kiefer, 2017).

Bats are also vulnerable to extreme temperatures. The most notable cases are the heat-

waves in Queensland, Australia. In 2014, an estimated 45 500 flying foxes, roughly half of

the population, died in a single day when temperatures reached up to 44.6 degrees Celsius

(Welbergen et al., 2014). Another day in 2018 killed 23 000 individuals (Kim and Stephen,

2018).

Changes in natural predators are quite limited. Only owls, snakes, hawks, minks and

racoons can catch a bat and eat it. However, house cats are a big threat to bats. Cats

find a roost, catch bats as they emerge, and then play with their prey. They never eat a

bat. The Bat Conservation Trust in the UK reports that 30% of rescued bats were attacked

by house cats. Other research in Italy has found a very similar number (Ancillotto et al.,

2013).

Apart from these somewhat natural causes, there are many direct anthropogenic threats.

Roads and railroads are a common problem. Echolocation only works over short distances,

so bats will never detect a fast moving train or car in time. In Greece, an entire population
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was exterminated because a road crossed the route between their hunting grounds and

roosting cave. Some species do not cross roads at all and fly around them or get stuck in

one area. It is estimated that roads kill about the same number of bats as house cats, but

exact numbers are difficult to estimate (Dietz and Kiefer, 2017).

Pesticides and chemicals can also pose a threat. Chlorinated components (HCHCs, DDTs,

PCBs, CHLs,...) can accumulate through the food chain. Therefore, the highest levels are

found in birds and bats (Senthilkumar et al., 2001). Pesticides can also have an indirect

effect. If a pesticide is used to kill insects, the food supply of bats is reduced. Apart from

pesticides, land transformation can also reduce insect populations (Matteson et al., 2013).

Changes in housing also affect bats. Many bats live in attics or other crevices in houses,

but due to renovations, demolishing and better isolation, these habitats are destroyed.

The most vulnerable of these habitats are winter resorts. These are places that are used by

thousands of bats to hibernate. A famous example are the basalt mines of Mayen in western

Germany. These old mines house between thirty and fifty thousand bats of sixteen different

species according to the German Federal Agency for Nature Conservation (Bundesamt für

Naturschutz). Around five million euro was spend on a conservation project. This project

included extensive surveys of the populations and restoration of the mines. Entrances were

barred with gates or sealed off and hazardous corridors were reinforced (Dietz and Kiefer,

2017).

Disturbance can be a problem as well. During the day bats go into a lethargic state and

some bats hibernate in northern climates (others migrate). Both are vital to energy conser-

vation. If bats are disturbed during lethargy or hibernation, it can have a significant effect

on their health (Dietz and Kiefer, 2017). Disturbance can also come in the form of light.

Apart from other effects, artificial light can delay the emergence from a roost, which gives

bats less time to hunt (Stone et al., 2015).

Poaching can also pose a threat. In some South-American cultures, the blood of bats is

believed to have healing properties. Lizarro et al. (2010) studied four major cities in Bolivia

(Cochabamba, La Paz, Santa Cruz and Oruro) and found that over 3 000 bats were sold per

month. But bats can also be hunted as a source of food. Goodman (2006) reports that in

Madagascar, the Hipposideros commersoni is hunted during periods of food shortage.

Bats are also threatened by wind turbines. Turbines can cause barotrauma (lung rupture

due to high pressure changes) or bats can hit the rotors. Exact statistics are limited, but

wind turbines are estimated to be a bigger threat than cats and traffic (Baerwald et al.,

2008; Dietz and Kiefer, 2017).
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3.2 Conservation measures

There are several measures that can be taken to protect bats. A few of them will be dis-

cussed here.

Firstly, there is the conservation of known bat homes. If a cave is known to be a winter home

for bats, cave gates can be placed to prevent people from entering and disturbing the bats.

Bridges and houses can be checked for the presence of bats before being demolished or

renovated. Of course, this is not always possible. Often demolishing is needed for safety

reasons (Dietz and Kiefer, 2017).

If conservation is not possible, an artificial home can be constructed. These are called bat

houses. They are commonly made from wood and provide space for roosting. The largest

one was build by the University of Florida. They report a population between 450 000

and 500 000 bats (Florida Museum of Natural History, University of Florida, 2018). For the

effectiveness of artificial bat houses we refer to Mering and Chambers (2014).

In Flanders, Natuurpunt and INBO measured the temperature and humidity of old ruins and

bunkers around the city of Antwerp. Coupled with data about the preferences of different

bat species and a heating model, management options can be evaluated. Usually man-

agement options are very simple measures such as the blocking of one or more openings

(Vanheuverbeke et al., 2018).

3.3 Legislation

3.3.1 European Union

The main legislation in the European Union related to bats is the Habitats Directive (Council

of European Union, 1992). This directive protects certain species of plants and animals. In

annex IV, we find a list of protected species that mentions: microchiroptera: all species.

The only other mammals with a similar high-level protection are the Cetacea (whales and

dolphins). Other mammals are protected at the level of a family, genus or species.

Article 12 of this directive prohibits the following: deliberate capture or killing in the wild;

deliberate disturbance (particularly during the period of breeding, rearing, hibernation and

migration); deliberate destruction or taking of eggs from the wild; deterioration or destruc-

tion of breeding sites or resting places; keeping, transport and sale or exchange, and offer-

ing for sale or exchange, of specimens taken from the wild.
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However, article 16 states that deviations from article 12 are allowed as long as there is no

satisfactory alternative and the population can be maintained at a favorable conservation

status in their natural range. The following reasons allow deviations: protecting wild fauna

and flora and conserving natural habitats; prevent serious damage; for public health, public

safety or public interest; research and educational purposes or re-introduction of species;

limited taking in numbers specified by the competent national authorities (mainly related

to monitoring). Article 16 was cited by the Commission during a dispute between the EU

and the Church of England. The spokesperson for the Church claimed that church artifacts

and wall paintings were being damaged by bats and the Habitat Directive did not allow

them to do anything about this. In response to this, the Commission pointed out article 16

(Soady, 2013). However, the tension remained and several bills were introduced later to

limit protection of bats in churches (Drake, 2015; Davies, 2016).

Lastly, article 17 states that all member states must report every six years on protected

species. This report must include which conservation measures were taken and the effec-

tiveness of them as well as the current status of the species. These results are published

within two years in a report that is made publicly available. For the conservation status

there are four classes: favorable, unfavorable-inadequate, unfavorable-bad and unknown.

The trend is reported as: improving, stable, deteriorating or unknown. For meaningful com-

parison, the EU is divided into fourteen biogeographical regions. Every country needs to

report on these regions separately. The regions are shown in Figure 3.1.

Since the adoption of article 17, there have been two reports. The first one published in

2007 for the period 2001-2006 and the second one published in 2014 for the period 2007-

2012. The report for the period 2013-2018 is expected in 2020. The period 1992-2000

was used for the implementation of the directive and does not have any formal reporting.

3.3.2 Belgium

In Belgium, the protection of bats falls under environment and nature, which is a regional

jurisdiction. This means that the three regions (Flanders, Brussels and Wallonia) work sep-

arately. Technically Belgium needs to report as a whole, but because Flanders and Wallonia

are in different biogeographical regions, they can report separately. Flanders reports on the

Atlantic region, along with Brussels. Wallonia reports on the continental region.

In Flanders, bat protection falls under the Department of Environment and Spatial Devel-

opment. Within this department, the main relevant division is the Research Institute for

Nature and Forest (INBO). They are responsible for the scientific research and monitoring of

bat populations.
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Figure 3.1 Biogeographical regions within the EU for the period 2007 − 2012. Note that
Croatia is not yet included in the regions because they only joined the EU in 2013. The
regions for 2013 − 2018 are given in the next report, which comes out in 2020. Source:
Eionet, European Environment Agency (2013)

In Brussels, bats fall under Environment Brussels. Due to the small size of this region, actual

monitoring of bats is very limited here.

In Wallonia, bats fall under the operational department for agriculture, natural resources

and environment (DGARNE).

3.4 Non-governmental organizations

Various non-governmental groups also try to protect bats and raise awareness. There are

international nonprofit organizations such as Bat Conservation International1. This organi-

zation works on general conservation, education and research. Other organizations focus

on more specific issues, such as Lubee Bat Conservancy2 that works on the conservation of

plants for fruit bats.

There are local organizations as well, such as the National Wildlife Federation (US)3, Florida

Bat Conservancy4, BatLife Europe5 and Natuurpunt (in Flanders and Brussels)6. These

organizations often work together, as they do on the international bat night held in the last

weekend of August. During this weekend, presentations and bat walks are held in over

thirty countries. In Flanders and Brussels this is organized by Natuurpunt.

1http://www.batcon.org/
2https://www.lubee.org/
3https://www.nwf.org/
4https://www.floridabats.org/
5https://www.batlife-europe.info/
6https://www.natuurpunt.be/

22



CHAPTER 3. CONSERVATION AND MONITORING OF BATS

Table 3.1 Overview of the current IUCN ratings of bats and birds (retrieved January 2019).

IUCN rating Number of bat species Percentage of bat species Number of bird species Percentage of bird species

Extinct (E) 5 4.02 156 1.40
Extinct In The Wild (EW) 0 0 5 0.04
Critically Endangered (CR) 23 1.85 224 2.01
Endangered (EN) 56 4.50 469 4.22
Vulnerable (VU) 106 8.52 799 7.18
Near Threatened (NT) 82 6.59 1012 9.10
Least Concern (LC) 745 59.89 8405 75.54
Data Deficient (DD) 227 18.25 56 0.5
Total 1244 100 11126 100

Apart from these organizations, there are also organizations that do not have the main goal

of protecting bats or nature, but still do a lot of conservation work or research. Universities

are an example of this. Universities mainly do research, but actual conservation is possible

as well. The University of Florida and their artificial bat house was already mentioned.

Lastly, individuals can take action as well. Many organizations have webpages about first

aid for wounded bats and the construction of bat houses.

3.5 Current status

3.5.1 Worldwide

The International Union for Conservation of Nature (IUCN) monitors the state of animals and

plants. This is published in the Red List. There are nine categories: Not Evaluated (NE), Data

Deficient (DD), Least Concern (LC), Near Threatened (NT), Vulnerable (VU), Endangered

(EN), Critically Endangered (CE), Extinct in the Wild (EW) and Extinct (E). For the last seven

categories, a list of criteria is evaluated. If the species does not qualify for these criteria,

it is labeled LC. If it does not qualify, but is likely to do so in the future, it is labeled NT. If

it qualifies, it is labeled VU, EN or CE depending on how high the risk is. Animals in these

three categories are considered to be threatened with extinction. The last two categories

are reserved for animals that are extinct in the wild already (EW) and animals that are

completely extinct (E).

The current status of bat species according to the IUCN is shown in Table 3.1. As a com-

parison, birds are also shown. We can see that roughly 15% of bat species are at risk for

extinction (CE, EN and VU). Birds show a very similar number. In terms of already extinct

species, bats are clearly higher with around 4% compared to only 1.4% for birds. However,

the biggest difference is in the Data Deficiency category. Relatively speaking, for every bird

species without sufficient data, there are 36 bat species in the same situation. This clearly

illustrates that a large challenge lies in the monitoring of bats. There are more bat species

without sufficient data than there are actual threatened bat species.
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3.5.2 European Union

As mentioned before (Section 3.3.1), article 17 of the habitat directive requires member

states to report to the EU every six years. The specific entity they report to is the European

Environment Agency (EEA). This agency then has two years to compile the information.

Detailed information is published on Eionet (Eionet, European Environment Agency, 2014).

Both assessments for habitats and species are published. We will only focus on the species

assessments.

A species assessment needs to be done per member state for all species that are present

in a specific biogeographical region. This means that if a country has two biogeographical

regions and a certain species is present in both, two separate assessments must be made.

A full species assessment contains three elements: range, population and suitable habitat.

The population part contains an estimate of the number of individuals present in the area

as well as the trend. A trend can be stable, increasing, decreasing or unknown. There is

also a favorable reference value, which is an estimate of a `good’ number of individuals

to be present in this specific area. Based on the population compared to the reference

value and the current trend, the status can be favorable (`green’), unfavorable-inadequate

(`amber’), unfavorable-bad (`red’) or unknown (`gray’). Range and suitable habitat follow

a similar procedure to get to a status. These three statuses are then combined into a single

overall assessment.

For every member state, there is a national summary which publishes several graphs based

on the overall assessments. In general, this makes things easier to analyze. However, in

this summary, bats are grouped together with other mammals, which makes it difficult to

draw a conclusion for bats alone.

3.5.3 Belgium

The status of bats in Belgium is shown in Figure 3.2. This figure is created based on the data

on overall assessments for Belgium in the periods 2001-2006 and 2007-2012 in the regions

continental (CON) and Atlantic (ATL). As is clear from the figure, there are no changes

between the two periods. Furthermore, the status is significantly better in the Atlantic

region. It is also notable that a significant number of species have an unknown status.

Clearly, the monitoring programs have room for improvement.
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Figure 3.2 Overall assessments on Bats in Belgium. ATL: Atlantic region (Flanders and
Brussels), CON: Continental region (Wallonia). Source: Eionet, European Environment
Agency (2014).

3.6 Monitoring

A big problem in bat conservation is the monitoring of bat populations. It is difficult to deter-

mine whether measures have any effect unless the populations are carefully monitored and

mapped so that changes can be detected. This is rather challenging since, as discussed,

bats are nocturnal flying animals, which makes them difficult to track. Nevertheless, several

methods have been developed.

3.6.1 Non-audio methods

We will briefly discuss a few common non-audio monitoring techniques: marking, transpon-

ders, telemetry, light traps and winter counting.

Marking and transponders are two methods that are related to one another. The bat is

caught with a net and then a device is attached to it. In the case of marking this is a

simple iron ring with a serial number on it. Transponders use a microchip that can be read

by a scanner. Transponders have the advantage that the animal only needs to be caught

once. By attaching a detector to a known roosting area, incoming bats can be scanned

automatically. These two methods are commonly used to map migration patterns (Dietz

and Kiefer, 2017).

Telemetry is related to marking as well. However, instead of a microchip or ring, a trans-

mitter is used. With a receiver, the location of the bat can be determined. Transmitters are

attached with a collar with a degradable link or with medical glue. In the case of glue, they

stay on for about nine days (O’Mara et al., 2014). An important limitation here is that the

weight of the transmitter cannot be too high. In theory, the guideline is less than 5% of the
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total bodyweight. However, research by O’Mara et al. (2014) reports that 54% of the stud-

ies do not report individual body mass or forearm length (which is a proxy for body mass).

Of the studies that did, 51% followed the guideline, while 47% exceeded the guideline but

stayed below 10%.

Light traps are another method. This technique uses two light curtains of infrared rays and

detectors placed at the entrance of a roosting area. When a bat flies through this opening,

the signal is interrupted, which allows us to detect a passing bat. The order of the two

signals determines whether the bat comes in or goes out. This can be expanded with a

camera trap that snaps a picture of the bat for determination (Dietz and Kiefer, 2017).

Lastly, there are counting techniques. Mainly winter counting is important here. Because

most bats hibernate, it is possible to simply go inside a winter home and count the hiber-

nating bats. Determination can be difficult because most features are hidden. However,

bat species are known to have a different preference in terms of temperature (Webb et al.,

1996). This can sometimes help with determination. The bats emerging from a roost can

also be counted. The scale of these studies can be quite large. The National Bat Monitoring

Programme of Great Britain took place between 1997 and 2012 and had 3 500 volunteers

counting individuals of ten bat species. With this data, the evolution of the bat populations

could be followed (Barlow et al., 2015). In Wales, winter counting was used to estimate the

size and evolution of the lesser horseshoe bat population (Warren and Witter, 2002).

3.6.2 Audio methods

Apart from non-audio methods, there are also audio methods. Audio methods use record-

ings of echolocation calls and try to identify species based on this audio. Different species

will have different calls. These techniques are part of the field of ecoacoustics that is dis-

cussed in Chapter 4.
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CHAPTER 4

ECOACOUSTICS

The most common methods to monitor bats are audio methods. Audio methods are part of

the field of ecoacoustics. In this chapter, a brief history of ecoacoustics will be given along

with the most important applications. Then, two key hypotheses within ecoacoustics will be

explained. Lastly, we will focus on bats. First, the hardware and software of bat recorders

will be discussed, followed by a discussion of the technical problems and challenges related

to the recording of bat sounds.

4.1 What is ecoacoustics?

Ecoacoustics is a recent field of research that uses environmental sounds for ecological

purposes. Common synonyms are soundscape studies and acoustic ecology. Soundscape

refers to the World Soundscape Project, which is usually considered the first research team

that studied ecoacoustics. Their first study was done in Vancouver in 1973 (Schafer et al.,

1973). This study mainly focused on the sources of urban noise and the reaction of humans

to this noise. Later on, ecoacoustics was expanded to other applications. We will focus on

ecoacoustics within the context of ecological monitoring.

4.2 Acoustic niche hypothesis and acoustic adaptation

hypothesis

There are two important hypotheses in ecoacoustics: the acoustic niche hypothesis (ANH)

and the acoustic adaptation hypothesis (AAH).

ANH was first formulated by Krause (1993). He observed during a monitoring program that

`The bird, mammal and frog vocalizations we recorded all seemed to fit neatly into their

respective niches’. In other words, there is a partitioning of the acoustic space. Different

species will make different sounds. This sounds trivial, but it is an important underlying

assumption. If different animals made the same sounds, it would not be possible to tell

them apart using those sounds.
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AAH says that the habitat itself will shape the sounds created by animals to maximize

propagation. Sound will propagate differently in a wide open field compared to a forest.

Therefore, animals who live in a forest will develop sounds that work best in a forest. It also

means that the same species in a different habitat can make a different sound. For bats

this will be very important to keep in mind. This idea was put forward in multiple studies.

A review of these studies can be found in Ey and Fischer (2009). For every study, it is

important to think about these two hypotheses. If two sounds are different, this could be

due to the species (ANH) or the environment (AAH).

4.3 Applications of ecoacoustics

Ecoacoustics is commonly used in monitoring problems that do not provide easy access

for other methods. Underwater animals for example are difficult to monitor due to their

habitat. S̃irović and Hildebrand (2011) and McCauley et al. (2018) studied whales using

underwater acoustic sensors. Other applications are in fields where sound is very strongly

linked to species. Bird studies are a classic example of this. Farina et al. (2011) suggested

a methodology for long-term bird monitoring using ecoacoustics.

But applications can go far beyond the study of individual animals. Research by Krause

and Farina (2016) found a relationship between the sounds of animals and climate change.

Small changes to fundamental aspects of the environment such as temperature, humidity,

pH or vegetation cover can result in different sounds. Through time series analysis, the

impact of climate change can be estimated.

Ecoacoustics can be used in various disciplines that are closely related. Some studies focus

more on biodiversity, while others might focus more on habitat or conservation. For an

overview of the research in these various fields, we refer to Sueur and Farina (2015).

Ecoacoustics is used widely in bat studies for the reasons mentioned above. A lot of mon-

itoring methods, such as camera traps, do not work well on nocturnal flying animals. Fur-

thermore, the sound a bat makes shows a strong link with the species. However, care must

be taken. Bat calls are sometimes compared with bird calls, but there is a very important

difference. Birds communicate their identity to the receiver and therefore, it is evolution-

ary advantageous for their calls to be species specific. Bats on the other hand use their

calls to interact with their environment, so there is no pressure for different bats in similar

environments to have different calls (Barclay, 1999).
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4.4 Bat detectors

A bat detector is a device that uses the echolocating calls to detect and/or classify bats.

Simple bat detectors convert ultrasound to audible frequencies. As mentioned before, bats

emit calls roughly in the range 20-120 kHz. It is possible that the upper limit is actually

higher, however, bat detectors usually do not measure above 120 kHz. Furthermore, high

frequencies are absorbed more quickly into the air and are hence more difficult to detect.

When the frequency is changed or modulated people can learn to recognize specific sounds

and associate them with certain bat species. Simple bat detectors use this manual method.

More advanced bat detectors record the calls and store them so they can be analyzed

with a computer later on (Dietz and Kiefer, 2017). Figure 4.1 shows a simple handheld bat

detector. Figure 4.2 shows a more advanced passive detector that can be left out in the

field. Table 4.1 shows a summary of the main types of bat detectors with their advantages

and disadvantages.

Figure 4.1 Example of a heterodyne bat detector. (Magenta bat 4 bat detector, Magenta
Electronics Ltd.)

Figure 4.2 Example of a full spectrum passive bat detector. (Anabat Swift bat detector,
Titley Scientific.)
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4.4.1 Heterodyne detectors

The simplest type of bat detector is a heterodyne. `Hetero’ means different and `dyne’

means power. Different refers to the two different frequencies used. First, there is the

external frequency from the bat itself. Let us say this is a call of about 50 kHz. Secondly,

there is an internal frequency that is set by the user. Let us assume we put this at 45 kHz.

The bat detector will now play a constant tone at 45 kHz. This creates interference. There

is constructive interference, which will add up the frequencies to 95 kHz. Then there is also

destructive interference, which subtracts the frequencies. This gives us 5 kHz, a frequency

that is audible by humans. Interference is illustrated in Figure 4.3. Whenever a bat flies

by, clicking noises can be heard from the heterodyne (Cutnell and Johnson, 1997; Boonman

et al., 2000). When this device is used, the standard method is to set it to 45 kHz and

then manually adjust the dial until the sound is most audible. Actual classification is rather

difficult as only the average frequency is available. Because of this, heterodynes are usually

used in the field or for bat walks. However, classification is possible. In a study in Cuba a

simple heterodyne was enough to classify five bat species (Moreno et al., 2016).

Figure 4.3 Illustration of constructive and destructive interference. This principle is used
in a heterodyne. Source: HyperPhysics (R. Nave)

Heterodynes can be expanded in several ways. A common expansion is a scanning circuit.

This adds a microprocessor that automatically adjusts the internal frequency in fixed steps.

When a bat call is detected, it stops. This avoids constant manual adjustments. It is also

possible to use a comb generator. Comb generators create harmonic inputs, which results

in multiple internal frequencies being present in the same signal, effectively tuning it to a

much wider range of frequencies (Dietz and Kiefer, 2017).
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4.4.2 Frequency division detectors

Frequency division (FD) bat detectors work differently compared to a heterodyne, but have

the same goal. Just like a heterodyne, they will try to generate an audible signal. An FD

device does not transform the real signal, but generates a new signal based on it. To that

end, it counts the number of pulses within the original signal. Then, it will send out a pulse

for each n pulses it detects, where n is usually 10. If a bat call has a constant frequency

of 50 kHz or 50 000 pulses per second, then for every ten pulses the detector counts, it

sends out one pulse, resulting in a new signal of 5 kHz. This signal is audible. Just like

heterodynes, FDs are mostly used in the field (Boonman et al., 2000).

4.4.3 Digital detectors

There are also digital detectors. These are different from the previous type, because they

actually record the sounds. A digital detector will always have a microphone combined with

a converter. The sound is recorded with the microphone and transformed into an analog

signal, which is then converted further into a digital signal (Boonman et al., 2000).

The microphone is not a normal microphone as might be found on a smartphone. This is

because the sampling rate will not be high enough. All sounds are waves. The only thing

a microphone does is measure the height of this wave at a number of points in time. The

number of measurements per second is called the sampling rate. The higher the frequency

of the waves, the higher the sampling rate needs to be to accurately reconstruct them.

The Nyquist-Shannon sampling theorem states that the minimum sampling rate is twice

the frequency of the sound that is recorded (Shannon, 1949). A 50 kHz signal requires at

least 100 kHz sampling rate. Normal microphones do not need to go much above 40 kHz,

because audible sounds will not go above 20 kHz. But bat calls can go up to 120 kHz,

which means a special microphone is necessary that can measure six times faster than a

normal microphone. In practice, the practical limit of a microphone can be lower than the

theoretical limit based on the Nyquist-Shannon theorem. Most professional microphones

will mention their practical limit in the technical specifications. Usually this is about 120

kHz (Boonman et al., 2000).

Once the sound is converted into a digital format, there are two main options: playback

and storage. Based upon this, there are four subtypes: time expansion, full spectrum,

zero-crossing and time domain signal coding.
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Time expansion detectors

Time expansion (TE) detectors use playback. These are digital detectors with a very low

memory that only serves as working memory. The signal is stored temporarily and then

played back at a slower speed. Usually a factor ten is used (Boonman et al., 2000).

This may sound like a FD detector, but there are two important differences. First, no new

signal is generated, the original signal is simply played at a slower speed. Secondly, TE

detectors have a delay, because they record the full call first and then play it back. FD

detectors work in real time (Boonman et al., 2000).

Full spectrum detectors

It is possible to simply store the full digitally converted signal. These devices are called

full spectrum bat detectors. Active full spectrum bat detectors are handheld devices that

display a spectrogram. Passive devices have higher storage and are left in the field. A big

problem here is that due to the high frequency sampling rates, the files become quite big.

A single night can easily lead to several gigabytes of data (Boonman et al., 2000).

Zero-crossing analyzer

The zero-crossing analyzer (ZCA) is designed to combat the memory problem. Instead of

storing the whole spectrum, a ZCA only stores the zero crossings. Zero crossings are the

points where the spectrum intersects the -axis. In other words, we only store information

about the frequency, not the amplitude. While this saves memory space and reduces power

consumption, it is not ideal. Amplitude can also contain information about the bat species.

Furthermore, if two different sounds are present at the same time, the ZCA method does

not work properly. Either it will only store one of them, or it will mix both sounds together,

which makes identification difficult (Boonman et al., 2000).

Time domain signal coding

The time domain signal coding (TDSC) detector is an expansion of the zero-crossing ana-

lyzer. Instead of saving only the zero crossings, it also saves extra information about the

signal between crossings. This information is extracted and mapped to a specific code. For

example: the number of local minima and maxima between two crossings and the time

between the crossings can be extracted. A simple table then transforms these parame-

ters into a single code. If there are three local minima and the duration is between five

and seven ms, this could correspond to code number seven. With this system, every set
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Type Advantages Disadvantages Price range (euro)

Heterodyne -Cheap -Manual adjustment 30 − 4000
-Real-time -Narrow bandwidth

-No harmonics
Frequency division -Cheap -Limited accuracy 80 − 4000

-Real-time -No harmonics
-High bandwidth

Time expansion -Almost real-time -No storage 1000 − 4000
-More information -Expensive

-No harmonics
Full spectrum -Highest information -High storage space 1000 − 4000

-Harmonics detectable -Power consumption
-Lowest interference -Expensive

-Analysis time
Zero crossing -Accurate -High interference 500 − 4000

-Analysis time
-No harmonics

Table 4.1 Summary of bat detectors. Source: Brigham et al. (2004) and Boonman et al.
(2000). Price ranges derived from the nhbs wildlife store (retrieved: 2019-03-05). Upper
price range includes devices that have multiple detection methods.

of parameters is mapped to one specific code. This will transform the signal into a list of

numbers, which can be analyzed (Chesmore, 2001).

Combinatorial devices

Many modern bat detectors can function as multiple types. For many of these detectors,

the same hardware or very similar hardware is required. Full spectrum detectors for ex-

ample commonly have software inside to convert the spectra to zero crossings. Some full

spectrum detectors also have an audio jack which allows them to function as time expan-

sion devices. It is also common to combine an FD detector with a heterodyne. But there are

other expansions possible as well. Some devices have a GPS function to save the location

of the recorded calls. In passive detectors, it is possible that an expansion is installed to let

it operate remotely using SMS commands.

4.5 Commercial software for classification of bats

Digital signals can be analyzed using specific software. Several packages are available.

As a general example, SonoBat1 will be discussed to highlight the disadvantages of the

available software.

Firstly, there is a localization problem. Different bats live in different areas, so a high

performance will require the software to be trained for the specific region one is interested

1https://sonobat.com/, accessed: 2019-03-03
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in. SonoBat has fifteen versions. Thirteen versions are for regions in the US, one for Alaska

and Canada and another one for the rest of the world. Furthermore, the international

version does not actually classify bats, it only extracts certain parameters from the data

that can be used to build a classifier. Only the US versions actually classify species. This

makes the software almost unusable in most of the world.

Secondly, SonoBat is commercial software. The regular software cost $1526 for the US ver-

sions and $680 for the international version (January 2019). This is a significant hurdle to

use the software. It also makes the exchange of results rather difficult. If a third party wants

to repeat an analysis of audio data, they need to buy a license as well. Like most software

packages, SonoBat uses an internal reference library and custom feature extraction which

are not available to third parties due to copyright.

Thirdly, there is customization. Since the source code of SonoBat is not available to the

user, there is no room for any kind of improvement. This is a severe limitation, because

specific recordings are likely to have specific problems. For example, there might be a

known source of ultrasound present near the recorder. When software is adaptable, a

simple piece of code can be written to filter this out. If the source cannot be adapted, the

code is likely to make the same mistakes over and over again.

4.6 Technical problems with bat detectors

Various technical problems can arise when a bat detector is used. Three main types are

defined: problems inherent to recording sound, variation between different sensors and

failure of the sensor called anomalies.

4.6.1 Recording

Regardless of the sensor, bat calls are almost never recorded perfectly. When the distance

to the bat increases, the higher frequencies are absorbed first. As such, a part of the

spectrum will sometimes be missing, making determination very difficult. Spectra are also

not cleanly separated. Often, multiple bat calls are recorded at the same time and their

spectra overlap significantly. Frequencies also change due to the Doppler effect. Lastly,

a call is often recorded multiple times. First, the call itself, but then shortly after also the

reflection from the ground and the echoes of the call. These echoes can overlap with the

call itself making it difficult to extract a full call (Adams et al., 2012). Figure 4.4 shows an

example of an overlap. The second pulse shows a lower intensity, which means this is most

likely an echo caused by sound reflecting off the ground. But it could also be a second

bat that is farther away. Figure 4.5 shows two examples of multiple calls that are too close
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together to separate. There is no intensity difference here, so these are most likely two

bats passing by at the same time.

Figure 4.4 Calls from a Pipestrellus pipestrellus. The left figure shows a normal call, the
right figure shows an overlapping call. Calls are from domain Huizingen. Data provided by
INBO.

Figure 4.5 Calls from a Miniopterus schreibersii (left) and a Pipistrellus nathusii (right).
Data from Barataud (Barataud, 2015).

4.6.2 Variation in detectors

Different detectors might record the same call differently. The general microphone sensi-

tivity could be different, but there could also be an influence of direction and/or frequency

on the sensitivity of the microphone. The algorithm to start recording could be different

as well. Many bat detectors do not record continually, but only start when they detect ul-

trasound. This detection algorithm can be different for different instruments (Adams et al.,

2012).

4.6.3 Anomalies

Lastly, there are anomalies or sensor failures. In Dauwe et al. (2014) city noise is being

analyzed. The authors define three types of anomalies related to sensor failure. Firstly,

abrupt failure. This is a permanent deviating behavior of the sensor. Usual causes are bro-

ken microphones or water that makes contact with electronics. Secondly, incipient faults.

These are small continuous faults. Sensor drift is the most common form. It is for exam-

ple possible that a sensor will consistently overestimate the frequency of all sounds. To

prevent this, instruments need to be calibrated periodically. Lastly, there are intermittent

faults. Intermittent faults are temporary wrong measurements. Common causes of this

are extremes in temperature, precipitation or other weather conditions. In general, the

operator will check for anomalies and remove them before the data is analyzed.
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4.7 Challenges with bat sounds

Sometimes, problems can arise due to the nature of bat calls and not because of the detec-

tor. In general, there are three main challenges with bat sounds: two different species can

have similar calls (convergence), two individuals of the same species can have different

calls (variation) and a different source of ultrasound could look like a bat call (interference).

4.7.1 Convergence

It is possible that two different bat species have very similar calls. This is not so common

in birds, because bird calls play a role in communication and breeding, so it would be a

disadvantage if two birds had the same call. But bats use echolocation for orientation and

hunting, so it is entirely possible for two different species to have a similar call. In fact, it

is even quite likely to happen. As mentioned before, bats have to take into account the

range of their own hearing, the Doppler effect and the absorption of frequencies in air. As

such, it is likely that two different bats in a similar environment would develop similar calls,

because those calls are the most efficient in that specific environment. This can happen

through convergent evolution, where species independently find a similar solution to the

same problem, or because multiple species retain the calls of a common ancestor. This

makes it challenging to draw general conclusions about bat sounds and species without

considering local variation (Barclay, 1999).

4.7.2 Variation in calls

As mentioned before in the AAH, animals evolve different sounds for different environ-

ments. Bats take this several steps further. They do not have a single call, but rather a

range of calls they use for different environments. In open land, bats can afford to use long

pulses because they take a long time to return. In denser environments such as forests,

bats tend to shorten their calls because the echoes return faster. The function also changes

the pulses. Bats have different modes such as low-duty cycle and high-duty depending

on whether they are mapping their environment or trying to catch an insect. When they

are flying towards an insect, their calls can also change depending on the distance to their

prey. Bats also have social calls to communicate with each other which tend to have a much

lower frequency. Between bats of the same species there can also be differences based on

properties such as age, sex and reproductive state. As such, it is rarely possible to tie one

call to one specific species (Dietz and Kiefer, 2017). Figure 4.6 shows three calls, all from

the same location and the same species (Pipestrellus pipestrellus). It is clear that even

for bats of the same species in the same environment, there is some variation present. In
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different environments, this difference is even larger. As an illustration, Figure 4.7 shows

two calls from a Myotis daubentonii: one in an open region along a river (left), another one

in a mountain range (right). The calls become much longer in the mountain range, most

likely to increase the range and fill in more information about the environment.

Figure 4.6 Three calls from a Pipestrellus pipestrellus. Individual pulses were extracted
from spectrograms. These calls are from the same day in the same location (Huizingen),
but still show some variation. Data provided by INBO.

Figure 4.7 Calls from a Myotis daubentonii. The left figure shows this bat in Haute-Vienne,
a department in the center of France along the Vienne river. The right figure shows the
same bat species in the Alpes-de-Haute-Provence department. This department is located
in the southeast of France and is part of the Alpes mountain range. Data from Barataud
(Barataud, 2015).

4.7.3 Interference

Bat detectors record ultrasound, but bats are not the only source of ultrasounds. Insects,

traffic, rain, pressing the button of the detector, clothes and many more things can be

sources of ultrasound (Adams et al., 2012). Sometimes, interference can be very subtle. In

research by Surlykke and Kalko (2008), researchers found that bats flying above low water

recorded their peak frequency up to six decibels higher due to the reflection on the water

surface. However, the main source of interference are jamming signals produces by tiger

moths and hawkmoths (Corcoran and Moss, 2017). For an extensive discussion of tiger

moths jamming bat echolocation, we refer to Corcoran et al. (2009).
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CHAPTER 5

MACHINE LEARNING FOR DATA

ANALYSIS, CLASSIFICATION AND

CLUSTERING

In this chapter, we will discuss computational tools to automatically analyze, cluster and

classify data. We will first discuss what machine learning is and what the different types

are. Then, we will discuss unsupervised learning in detail. Lastly, we will talk about data

transformation techniques and unbalanced datasets.

5.1 What is machine learning?

Machine learning refers to the scientific field that uses computers to perform specific tasks

without explicitly programming them to do so (Chollet, 2017). The computer does not follow

a specific set of instructions, but rather learns the instructions from the data itself. This is

very different from classical explicit programming. A graphical representation of this new

paradigm is given in Figure 5.1. In machine learning, after a specific model is selected, the

model is trained using a training dataset. This dataset contains examples relevant to the

problem at hand. Based on these examples, the model will search for rules that solve this

problem (Chollet, 2017).

Figure 5.1 Illustration of the paradigm in machine learning versus regular programming
(Chollet, 2017).
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5.2 Types of machine learning

Based on the type of the training dataset, there are five types of machine learning: su-

pervised, unsupervised, self-supervised, semi-supervised and reinforcement learning. Only

supervised, unsupervised and semi-supervised will be discussed, as these are the most

relevant to this work.

5.2.1 Supervised learning

Supervised methods are the most common by far. Here, the training dataset consists of

labeled data, data where every sample has been given one or more labels. The goal of the

model is to predict the output or labels solely based on the input, usually called the features.

These features can be defined by the user or extracted by the model itself. Because a

labeled dataset is already available, there is a way to get the labels without actually using

the model. The true value of supervised learning lies not in solving new problems but

solving problems much faster. It is possible to find the output manually, but the process is

slow or expensive. Facial recognition is an example of supervised learning. Humans can

recognize faces on pictures easily, but a computer can do it much faster (Chollet, 2017).

One form of supervised learning is distance metric learning, which will be discussed in

Section 5.4

5.2.2 Unsupervised learning

In unsupervised learning, the training data has no labels. In this case, supervised methods

cannot be used, since performance cannot be measured and optimized. But not everything

is lost in this case. We would still expect similar labels to show similar features, even if we do

not have those labels available. For example, consider the problem to classify bat calls. We

know that these signals belong to several species of bats. However, we do not know which

call belongs to which bat. However, if we can define a metric to compute the similarity

between two bat calls, we would expect that two calls of the same bat species would have

high similarity and two calls of different bat species would have low similarity. Based on

this, it is possible to try to separate the data into different groups (clusters). This technique

is called clustering. Most unsupervised learning methods are not used for prediction, but

rather for exploration, visualization, compression, denoising or understanding correlations

between variables (Chollet, 2017).
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5.2.3 Semi-supervised learning

Semi-supervised learning is a special class of machine learning that uses both unlabeled

and labeled data. This is common in situations where the cost to label data dramatically

outweighs the cost to collect data. Typical examples are data that require experts for label-

ing or data that requires physical experiments to label. Audio calls from bats can sometimes

fall into this category since they generally need to be labeled by experts. However, this is

not always the case. If an audio call is labeled at the level of a full call, that might not be

useful if the model works with individual pulses. Semi-supervised learning is based on an

important assumption: the continuity assumption. The continuity assumption states that

points that are closer together are more likely to share the same label. Therefore if one dat-

apoint has a known label, it is likely datapoints close to it share this label (Chapelle et al.,

2006).

5.3 Clustering methods

Because the data is only partly labeled, we will mainly focus on unsupervised learning

methods. A few of the most common clustering methods will be discussed. First a cluster

needs to be formally defined. The general definition of a cluster is a group of datapoints

that are more similar to each other than they are to datapoints in a different cluster (Estivill-

Castro, 2002). Similarity can be defined in many different ways. Based upon how this is

done, there are different clustering methods. Two important ones will be discussed: K-

means clustering and self-organizing maps.

5.3.1 K-means clustering

K-means clustering is one of the most basic algorithms in clustering. It makes use of cen-

troids. The centroid of a group of datapoints is defined as the center of mass of a set of

feature vectors. This is the average value in each dimension. For example: the centroid of

the points A (1,3), B (1,2), C (2,2) is (4/3,7/3).

The concept of centroids can be used to define similarity in a single metric. This metric is

the within cluster sum of squares (WCSS). Every cluster has a centroid. For every feature,

the squared difference with the corresponding centroid is calculated and all of these num-

bers are added up. This is done for every datapoint and all these numbers are summed up.

This gives the following equation:
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WCSS =
k
∑

=1

∑

εS

|| − μ||2 . (5.1)

In this equation, different clusters are denoted as S and μ is the centroid of cluster . 

refers to a datapoint and there are k datapoints in total. Using this technique, the total

variance within all the clusters combined can be described with a single number. For the

same datapoints and number of clusters, a lower value indicates a better clustering, since

the points are closer to their corresponding centroid. This metric is then minimized by

changing which datapoints () belong to which cluster (S). This method is called the K-

means clustering, sometimes referred to as Lloyd’s algorthitm (Lloyd, 1982; MacQueen,

1967).

In practice, this method works iteratively. An initial set of centroids is defined first. Then,

every datapoint is assigned to the nearest centroid. Based on these new clusters, the

centroids are calculated again. In general, this algorithm keeps going until the centroids

stop moving around. This does not guarantee that the global optimum is reached (Hartigan

and Wong, 1979). Depending on the initial conditions, it is possible to get stuck in a local

optimum. As such, it is common to run the algorithm multiple times with different initial

conditions.

5.3.2 Self-organizing maps

Self-organizing maps (SOM), also called Kohonen maps or self-organizing feature maps

(SOFM) are a form of unsupervised learning. SOMs consist of neurons that each have a

weight vector. These weight vectors have a dimension that is equal to the number of fea-

tures in the dataset. SOMs use competitive learning, meaning each neuron will compete

for the right to react to a specific subset of inputs. Maps are updated until the datapoints

are optimally connected to the neurons (Kohonen, 1982).

Let us clarify this with an example. Consider four datapoints with two features that are

measured: A (1,2), B (2,1), C (3,4) and D (4,3). We will try to classify these points

using two neurons, each with their own weight vectors: W1 and W2. Initially, the weight

vectors are set randomly. Let us say the initial settings are: W1 (0,0) and W2 (5,5).

This is illustrated in Figure 5.2a. Note that a weight vector always has the same number

of dimensions as the input data and can be plotted like a hypothetical datapoint. Now,

an iterative process starts. First, a random datapoint is selected, say datapoint C. The

Euclidean distance from this point to each neuron is calculated. In this case, this would

be 13 for W1 and 3 for W2. The neuron with the smallest distance is called the best

matching unit (BMU) or winning neuron. Competitive learning means there can only be
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(a) Initial setting. (b) End setting.

Figure 5.2 Illustration of a self-organizing map. Red dots are datapoints, blue triangles are
weight vectors. The weight vectors move towards the datapoints. In the end setting, points
A and B can be represented by weight vector W1 and points C and D can be represented
by weight vector W2. Two clusters have formed.

one winning neuron. This winning neuron will now update its weight vector towards the

datapoint according to the following equation:

W(s + 1) =W(s) + α(s).(D(t) −W(s)) . (5.2)

In this equation, s is the index of the timestep, which goes up with every iteration, W(s)

is the weight vector of the best matching unit at timestep s. D(t) are the features of the

randomly selected datapoint t. α is a learning coefficient that always lies between zero

and one. When it is zero, weight vectors will never move around and nothing is learned. If

the learning rate is one, the updated weight vector coincides with the selected datapoint.

This would cause the neurons to jump around constantly between datapoints and the map

would never converge. To find a balance between these two extremes, the learning rate

is decreased monotonically after each iteration. We call this shrinkage. Shrinkage causes

the map to converge as the algorithm runs. The easiest way to implement this is to pick an

initial learning rate and a decay coefficient. If the decay coefficient is 0.9, then our learning

rate at step s + 1 is 0.9 times the learning rate at step s. More complicated functions are

possible as well (Kohonen, 1982).

If this is applied, it is clear what will happen. If A or B is selected, the BMU will be W1. If

C or D is selected, the BMU is W2. This will cause W1 to move towards A and B and W2

to move towards C and D (Figure 5.2b). Because all points have the same chance of being

selected, the neurons will move to the exact midpoint between their two datapoints. The

weight vectors will move less in each step because the learning rate decreases. In the final

configuration, the average distance of every datapoint to the nearest neuron is as small as

possible. In this case, it is 0.5. There are other configurations that have the same average

distance in this case, but not a single configuration has a lower average distance. This

43



5.4. DISTANCE METRIC LEARNING

means that this is effectively a clustering method. Points that are close together, will have

the same BMU, while points that are farther apart will have a different BMU. This can be

expanded even further by connecting the neurons. This updated equation becomes:

W(s + 1) =W(s) + θ(,, s).α(s).(D(t) −W(s)) . (5.3)

There are two differences here. Firstly, we consider the neuron  because all neurons can

move around, not just the BMU. The second difference is the addition of the neighborhood

function θ(,, s). This is a factor between zero and one. There are different ways to define

this neighborhood. For example, the neurons could be ordered in a rectangular grid. The

BMU and the eight surrounding points get a value of one, while the other points get zero.

This means that every neuron will move together with its eight neighbors. This implies that

two datapoints that have BMUs that are far apart in the grid are less similar than datapoints

that are closer together in the grid. The neurons will effectively map the distribution of the

data (Kohonen, 1982).

The neighborhood function follows a similar pattern as the learning rate. As the iterations

continue, it starts to shrink, which causes neurons to be affected less by their neighbors.

This allows for convergence of the map. There are many possible shapes of the neigh-

borhood function. A neighborhood function can be Gaussian as well, or the grid can be

hexagonal instead of rectangular.

5.4 Distance metric learning

Until now, we used Euclidean distance as a proxy for dissimilarity. But this is not the only

way. It is possible to transform, weigh and combine different features to find a distance

that separates classes as best as possible. Some features might be more predictive than

others to separate classes, so it would make sense to weigh them more. The learning of this

optimal transformation is called distance metric learning. There are countless techniques

to learn a distance metric. For a general overview, we refer to Bellet et al. (2013). Here, we

will only discuss one specific technique: distance metric learning through maximization of

the Jeffrey divergence (DMLMJ). This technique was proposed by Nguyen et al. (2017) and

yields Mahalanobis distance (Mahalanobis, 1936). Mahalanobis distance is given by:

dM(, y) =
q

( − y)TS−1( − y) , (5.4)

where  and y are two vectors of a specific distribution and S is the covariance matrix.

These vectors are not the original datapoints. With this method, we assume that the fea-
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tures follow a multivariate Gaussian distribution that is different for each class. The distance

can then be mapped as a standard deviation away from the centroid (a vector). As an ex-

ample, consider a dataset with two dimensions: X and Y. We have a cluster C1 with a

number of points and we want to know if a new point P1 belongs to this group. Then, we

will check which points already belong to the cluster C1 and then we model the distances

in the two dimensions as a multivariate normal distribution. Then, we can evaluate how

likely it is that P1 follows this distribution. Graphically, this can be seen as ellipses of prob-

ability around the centroid of the cluster. The further out a point is, the less likely it is that

it belongs to the cluster. If all points of the cluster are closer together, the ellipses grow

closer together and a point far out becomes less likely to belong to the cluster. If the points

grow farther apart, the ellipses also grow farther apart and a point that is far out is still

likely to belong to the cluster, since we expect points to be this far out. If the features are

correlated, the ellipses will start to rotate. This makes it possible that a point far away in

either X or Y is unlikely to be in a cluster, but a point far away in both X and Y is more likely.

This is shown visually in Figure 5.3.

Figure 5.3 Three different multivariate normal distributions. The more inwards the ellipse,
the higher the chance a datapoint on this ellipse belongs to the cluster. The two figures
on the left show negative correlation, a high value on one axis can be compensated by a
low value on the other one. The right plot shows positive correlation. The right plot shows
the circles further apart, which indicates the points show a higher variation around their
centroid. Source: Andrew Ng, lecture notes CS229.

The previous two methods can be updated with distance metric learning. At the point

where the distance to the centroid or neuron is calculated, the formula is updated to use

the Mahalanobis distance instead of the Euclidean distance. Mahalanobis distance is usually

saved in a weighing matrix. If this weighing matrix is the identity matrix, the Mahalanobis

distance becomes equal to the Euclidean distance. Important to note is that DML is a

supervised method, i.e. a labeled dataset will be needed for this method. Therefore, DML

is only an expansion to the previous method of self-organizing maps. If there is no labeled

dataset available, this expansion is not possible and we will have to revert to an Euclidean

distance instead. When a DML is used, the method becomes semi-supervised.
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5.5 Data transformation

All of the methods discussed before require the data to be numerical features where the

concepts of distance have a clear meaning. This means sound data will need to be de-

scribed with vectors of a fixed size. In this section two most common ways to do this will

be discussed: spectrograms and scaleograms.

5.5.1 Spectrograms and Fourier transformation

A common way to visualize sounds is to represent them as a spectrogram. This is a graph

that shows the frequencies in function of time. An example is given in Figure 5.4.

Figure 5.4 Example of a spectrogram. Species: pipestrellus pipestrellus. Data provided by
INBO.

Spectrograms are usually created using a Fourier transformation. This is a transformation

that decomposes a wave into the frequencies it is made up from. The method assumes

that every sound is a combination of different sinusoidal curves with different frequencies.

It has two parts: a real part and an imaginary part. The real part expresses how much

a certain frequency is present in a sound and the complex argument describes the phase

offset. Phase offset is the shift of a wave. A regular sinewave starts at zero amplitude, goes

up to a maximum, then goes down to a minimum and then goes back to zero. If a wave has

the same shape, but first goes down and then up, it has a 180 degree phase offset (Fourier,

1822). This is illustrated in Figure 5.5.

Fourier transformations can cause spectral leakage. This phenomenon is caused by the

finiteness of both signal and frequency. A Fourier transformation will test out a finite number

of sine waves. As long as the signal itself is an exact integer of periods long, this will work.

But if this is not the case, sharp transitions are created and this causes the spectrum to

smear out. Frequencies that are not in the signal will start to show up. Energy from one

frequency leaks into the others, hence the name spectral leakage. Explained simply, if a

signal contains exactly five waves, there is no problem. If a signal contains 5.2 waves,

the Fourier transformation will try to fit in the extra one fifth of a wave somewhere, which

causes frequencies to show up that are not actually there. The method does not know
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Figure 5.5 Illustration of a phase shift. The phase shift is noted as θ and is 30 degrees in
this case.

beforehand there are 5.2 waves because determining the number of waves is part of what

the Fourier transformation does. Figure 5.5 illustrates the finiteness. Both signals have one

full wave followed by a small portion of a second wave. This portion is about 30 degrees or

one twelfth of a full wave. So the signal has roughly 1.08 waves, which makes it difficult

to decompose properly. The use of windowing can lower the influence of spectral leakage.

Under windowing, the amplitude along the edges of every waveform is artificially lowered,

which prevents sharp transitions. There are different window functions. The most widely

used ones are Hanning and Hamming windows (Harris, 1978).

5.5.2 Scaleograms: wavelet transformation

A special variant of this principle is the wavelet transform. A wavelet is a function in two

variables. Similar to a sinewave, the amplitude is defined at every point in time. However,

contrary to sinewaves, which can only differ in frequency, wavelets can also differ in shape

and symmetry. This means that a wavelet can be crafted for a specific application. If music

is analyzed, a wavelet can be crafted to respond to a specific note. Wavelets are combined

using convolution (a mathematical operation used to combine different functions into one).

A wavelet transformation produces a scaleogram instead of a spectrogram. Scaleograms

have coefficients that state which wavelets need to be combined at which time. In a spec-

trogram, only the frequency is given, because all components are standard sinus functions

(Addison, 2002). An illustration of a wavelet is given in Figure 5.6. In general, wavelets

require more knowledge about the data involved.

Both wavelets and Fourier transforms are limited by the uncertainty principle. This puts

a limit on the time and frequency resolution. To increase the time resolution, one must

decrease the frequency resolution. If the resolutions are expressed as standard deviations,

then their product cannot be smaller than π/4 (the Gabor limit, Benedicks (1985)). Stan-

dard deviation is a different way to express resolution, since both refer to uncertainty on
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Figure 5.6 The Meyer wavelet (Meyer, 1990).

a specific value. Fourier transforms have both resolutions at a fixed value. However, a

wavelet will increase time resolution as the frequency increases. This tends to work better

for certain systems because actual hearing of animals works logarithmically. The difference

between 50 and 51 Hz is easier to detect than the difference between 50 000 Hz and 50

001 Hz. This is not just for hearing, every sense works this way. Seeing the difference be-

tween one lion and two lions is very simple. Seeing the difference between a 100 and 101

lions is incredibly difficult even though we are talking about one extra lion in both cases.

Due to this principle of nature, we can assume that bats will not be able to hear the differ-

ence between high frequencies as well as low frequencies. Hence, it would make sense to

decrease the frequency resolution for higher frequencies.

5.6 Unbalanced data

When the distribution of the datapoints over the different classes is not uniform, a dataset

is called unbalanced. This means that certain classes have a higher a priori probability of

occurring. In the context of animal monitoring, this would mean that certain species are

much more common than others. This comes with a few challenges, which we will discuss

briefly. Our discussion is based on López et al. (2013).

The main problem with unbalanced data is that it can create bias towards majority classes.

If 95% of the data belongs to species A and the rest belongs to twenty other species, a

model could predict A for every datapoint and have an accuracy of 95%. This accuracy is

not wrong, but it gives the wrong idea, because the mistakes all happen in the same area.

Class A has a misclassification rate of zero, since every A is classified as A, while the other
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classes have a misclassification rate of 100%. When the misclassification rates over the

classes are not equal, the model is called biased towards one or more classes. This can be

especially problematic if the small classes are the most interesting cases. In the context

of conservation of species, it makes sense that the species that need conservation would

be much rarer than other species. So the accuracy needs to be high in this area and not

in the area of the common species. Medical research generally has this problem as well.

The people who have a disease are usually a very small class, but classifying someone with

a disease as healthy has disastrous consequences. In the reverse case, a second test can

usually fix the mistake. In general, the rare datapoints carry more information than the

common ones. So it will be important to focus more on these cases.

In some cases, different performance for different classes can arise due to lack of clear

boundaries on a minority class. This is illustrated in Figure 5.7. This data has two features:

horizontal and vertical axis and two classes: purple stars and blue dots. For both classes,

we can draw a rectangle that contains all datapoints of one specific class. These are the

class boundaries. It is clear that when extra data is added, the class boundaries of the

minority class change dramatically, while those of the majority class change only slightly.

In other words: the full range of variability is not captured for the minority class. If a new

datapoint comes in that lies outside the initial narrow class boundaries, the model is very

unlikely to classify it correctly. This will lower the performance for the minority class.

Figure 5.7 An illustration of the boundary problem in unbalanced data. The minority class
is represented by purple stars and the majority class by blue dots. The left side shows
10% of the dataset and the right side shows the full dataset. Horizontal and vertical axis
represent the two features of the dataset. The red rectangle represents the minority class
boundaries, the black rectangle the majority class boundaries. Adapted from López et al.
(2013).

These problems are inherent to all datasets, regardless of whether they are explicitly la-

beled or not. However, all potential solutions require data to be labeled. If the distribution

of the classes is not known, it is not possible to take that distribution into account. There-

fore, this subject will not be discussed any further. But it is an important detail to keep in

mind when evaluating a model. If a bat species is more common, a higher performance is

expected.
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CHAPTER 6

PRE-PROCESSING AND

CLUSTERING

In this chapter, the tool used to analyze the data is described. First the data used is de-

scribed, followed by a discussion of pre-processing methods. Then, the analysis is dis-

cussed, which consists of two steps: exploration and clustering. A flowchart of all of these

steps is given in Figure 6.1.

6.1 Data description

The data used in the case-study is provided by INBO (Research Institute for Nature and

Forest). Most of these data come from domain Huizingen (a domain southeast of Brussels,

Belgium). The data are collected using three different devices (IP-66, D-240X, RPA-03) over

six different days ranging from May to September 2017. A portion of the data are labeled

at the level of an individual audio file. These files have a size of a few megabytes, which

corresponds to a few seconds of audio. A file may contain bats of different species. From

these recordings, individual pulses are extracted manually. The field guide of Dietz (Dietz

and Kiefer, 2017) is used as a guide to label individual pulses. There are a total of 634 audio

files in this Huizingen dataset with 150 files unlabeled, 257 files labeled with certainty about

the label and 227 files labeled with uncertainty about the label. Certain or confirmed means

an independent expert verified the label. Unconfirmed means this is the label the operator

gave, without any verification by a third party. Apart from this dataset, there are also data

recorded along the shores of the Oevel channel (Antwerp). These data are recorded with

the SM4BAT-FS detector (Wildlife Acoustics). This data is not labeled. Table 6.1 shows how

common each species is in the labeled portion of the Huizingen dataset (both confirmed

and unconfirmed labels).

From the table, it is clear that 94% of the recordings with one bat species are from a

Pipistrellus pipistrellus. Other species only have a handful of recordings available and most

species are missing entirely. As mentioned in Section 2.2.2, there are eighteen species that



6.1. DATA DESCRIPTION

Raw data

Fast Fourier transform

Spectrogram

Boundary detection

Regions of interest

Feature extraction

Features

Exploration

Adjusted features

Self-organizing map

Clusters

Figure 6.1 Flowchart of the different steps in clustering audio data.

Species Number

Multiple species 107
Noise 25
Unknown Myotis species 3
Eptesicus serotinus (eser) 3
Myotis daubentonii (mdau) 5
Nyctalus leisleri (nlei) 1
Nyctalus noctula (nnoc) 3
Pipistrellus nathusii (pnat) 8
Pipistrellus pipistrellus (ppip) 337

Table 6.1 Species in the labeled portion of the Huizingen dataset.
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are reported to the EU, and only six of those are present in our dataset, five of which have

less than ten recordings. Because of this, an unsupervised method is preferred.

6.2 Pre-processing

6.2.1 Transformation

First, the data will be transformed. To that end, a spectrogram is used. This spectrogram

is created with a fast Fourier transformation with a 1024 Hamming window. The same

window is used in several papers about bat calls such as Mac Aodha et al. (2017). It is

also commonly used for eco-acoustics in general. An example can be seen in Ulloa et al.

(2018). This window results in a spectrogram with a frequency resolution of 375 Hz and a

time resolution of 0.33 ms. An example of such a spectrogram is given in Figure 6.2a.
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(b) Without subtraction.

Figure 6.2 Example of a spectrogram. Calls are from a Pipestrellus pipestrellus.

The intensity is transformed into grayscale values between 0 and 255 (8 bits). A sliding

window is used with a width of 200 ms and a 50 ms overlap. This is necessary because oth-

erwise a loud noise in a recording could drown out all other sounds in the same recording.

Especially in longer recordings, this could be a problem. Using trial and error, 200 ms was

found to be a suitable value. Next, a subtraction method is used. The mean of all grayscale

values within a window is taken and this value is subtracted from every value. If an image

is very noisy, this mean value will be large, and hence a lot of noise will be removed. If the

image is not noisy, the mean is basically zero and this will make no difference. Figure 6.2b

shows what would happen if subtraction was not used. Clearly, there is more background

noise here.

53



6.2. PRE-PROCESSING

6.2.2 Region of interest extraction

Next, regions of interest (ROIs) are extracted from the spectrograms. In order to do this,

images are converted to a binary form. To that end, a threshold of 25 is used, or 10% of the

maximum intensity. This value was determined by trial and error. Our previous subtraction

method will be important here to clear away noise. After the image is converted to binary,

the boundary detection algorithm from Suzuki and Abe (1985) is applied. This algorithm

will detect ROIs in spectrograms. These ROIs will be restricted to have a minimum size of

5 kHz (4875 Hz or 13 pixels) and 1 ms (3 pixels). This will allow us to extract real signals

from noise efficiently since the vast majority of noise will not reach a range of 5 kHz. These

boundaries were determined empirically. An illustration of the boundary detection is shown

in Figures 6.3a and 6.3b.
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(a) Binary spectrogram.
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(b) Extracted regions.

Figure 6.3 Example of a binary spectrogram. Calls are from a Pipestrellus pipestrellus.

Every region will now be rescaled individually to a range between 0 and 255. This ensures

that there is no substantial difference between a loud call and a quieter call of the same

bat.

6.2.3 Feature extraction

In the final pre-processing step, features will be extracted. In this context, a feature is a

number that describes an aspect of the region. There are two kinds of features: positional

and shape features.

Positional

The x-coordinates and y-coordinates in a spectrogram relate to time and frequency. This

means that the lowest y-value is also the lowest frequency in a certain bat call. This fre-

quency will be informative about the species that made the call. Apart from minimum fre-

quency, we can also compute: maximum frequency, average frequency, frequency range
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and duration. Lastly, there is the peak frequency. The peak is the loudest part of the region.

The relative timing and frequency of this peak can be informative about the bat species as

well. This is illustrated in Figure 6.4.

Figure 6.4 Illustration of the different frequency features that can be extracted from a
region of interest.

Shape information

Shape information is always relative to something. So images will have to be compared

with each other. The simplest metric to compare images is called the Mean Squared Error

(MSE).

If both images have the same size, then every pixel has a matching pixel in the other image.

The pixel at position (3,2) in image A will match with the pixel at position (3,2) in image B.

We can now take the grayscale values of these pixels and compare them. For every pixel,

we take the squared difference of the grayscale values. Then we take the average of all

these values. This is called the MSE. For grayscale images, this will be a number between

0 and 255, but in general this number will be divided by the maximum pixel value to result

in a standard value between zero and one. For color images, the MSE can be calculated

separately for each color channel and averaged. The higher the MSE, the less similar two

images are. For two images A and B, this is given by the following equation:

MSE(A,B) =
n
∑

=1

(μA − μB)2

n
, (6.1)

where μA is the value of pixel  in image A and n is the total number of pixels (Dosselmann

and Yang, 2011). This method can be expanded further. Instead of one pixel at a time, a

neighborhood of pixels can be considered. If this neighborhood is a simple square, then a

neighborhood with radius 1 would be a central pixel and the 8 pixels surrounding it. If the

radius is 2, we have 24 pixels around our central pixel. The average of these pixels can
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be taken and these averages can be compared. If the neighborhood becomes larger, small

differences in individual pixels will have less impact, while small differences in a group of

close pixels will have more impact. A larger neighborhood will look at the general picture

and focus less on tiny details. This gives us the following expanded equation:

MSE(A,B) =
m
∑

j=1

(μAj − μBj)2

m
, (6.2)

where μAj is average value of the pixels in window j of image A and m is the number of

different windows. The strongest criticism of this method is the response to distortions

and luminance shifting (Dosselmann and Yang, 2011). Above, we claimed that a higher

MSE implies less similarity between two images. But this is not entirely true. Distortions

can result in images that look very similar to the human eye, but still have a high MSE.

The other way around, some images have a low MSE even though they are clearly very

different. This is because different situations can result in the same MSE. For example,

shifting every pixel in the same direction by 10% will result in an MSE of 0.1. Shifting every

pixel in a random direction by a random number that averages to 10% will give the same

MSE. In the second case, it is clear that the perceived change will be larger even though

the MSE is the same. This is illustrated in Figure 6.5 where various distortions are applied to

an image. Some distortions only have a narrow effect on the perception while others have

a very big effect. However, all images have the same MSE compared to the original.

Figure 6.5 MSE and SSIM of a picture with various distortions applied. (a) Reference image.
(b) Mean contrast stretch. (c) Luminance shift. (d) Gaussian noise. (e) Impulsive noise. (f)
JPEG compression. (g) Blurring. (h) Spatial scaling (Wang and Bovik, 2009).

To combat this problem, the structural similarity index or SSIM was proposed (Wang et al.,

2004). SSIM uses two values: the MSE and the covariance. Covariance is a joint variability

in two variables. If we take an area in one image that consists of a high pixel surrounded
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by low pixels and we compare this with another area with a high pixel surrounded by low

pixels, we will find a high covariance. Even if the absolute values of both regions are very

different, the covariance will still be high. Covariance measures whether the relationship

between a pixel and its surroundings is similar in two areas. A uniform shift in values will

result in a different MSE, but will keep the covariance identical. The formula to calculate

covariance is given by:

cov(A,B) =
m
∑

j=1

σABj

m
, (6.3)

where σABj is the covariance between image A and B in window j and m is the number of

windows. To get to the SSIM, these two values will be combined. However, this will require

a transformation. Right now, both values have a different scale and direction. Higher

covariance indicates a better match, while higher MSE indicates a worse match. As such,

we will have to invert MSE. Both values will also need to be normalized so they can be

compared properly. This results in the following equation:

SSIM(A,B) =
m
∑

j=1

(2μAjμBj)(2σABj)

m(μ2Aj + μ
2
Bj)(σ

2
Aj + σ

2
Bj)

, (6.4)

where σBj is the pixel variance in window j of image A, σABj is the covariance between

image A and B in window j , μAj is the average pixel value in window j of image A and m is

the number of windows. This equation has two components. The MSE value lies between

zero and one. One means that every window in both images shows an identical mean.

Zero would indicate the mean could not be more different. One image would be completely

black and the other image completely white. The covariance value lies between minus one

and one. Minus one indicates an inverse correlation: one region shows a high pixel value

surrounded by lower pixel value and the other region shows a low pixel value surrounded

by higher pixel values. One indicates perfect correlation. Under perfect correlation, the

second image can be constructed from the first image using the same operation on every

window of pixels. If one image is black and the other one white, we would have perfect

correlation. While they could not be more different in terms of absolute error, in terms of

structure they are identical. This way, the SSIM balances structure and absolute error.

There is one detail that needs to be fixed. During the normalization, we divided by μ2Aj + μ
2
Bj

and σ2Aj + σ
2
Bj. In certain cases, these values could become zero. For two pure white images

for example, both of these values would be zero. To prevent dividing by zero, a constant is

usually added to both nominator and denominator. This results in the final equation:
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SSIM(A,B) =
m
∑

j=1

(2μAjμBj + c1)(2σABj + c2)

m(μ2Aj + μ
2
Bj + c1)(σ

2
Aj + σ

2
Bj + c2)

, (6.5)

with c1 and c2 small arbitrary positive numbers (e.g. 0.01). This final metric is called the

structural similarity index (SSIM). SSIM was developed by Wang et al. (2004) and is a widely

used method in image processing. Compared to other methods like MSE and peak to noise

signal ratio (PSNR), SSIM focuses more on perception and less on absolute errors. For more

information on the mathematical properties of the SSIM, we refer to Brunet et al. (2012).

6.2.4 Reference library

To work with shape information, a reference library of bat calls is defined. These are regions

that are extracted from audio files that were manually classified. Some examples of these

references are given in Figure 6.6. Figures are saved using a 19 digit hash code. Folders

contain the species code such as eser or ppip. We expect that when a new call comes in

from the same bat, it will show a large SSIM with the reference image. This library can be

expanded and adapted when necessary.

(a) Eser. (b) Eser.

(c) Ppip. (d) Ppip.

Figure 6.6 Examples of references.

6.3 Analysis

When all these steps are executed, the final result is that each region within a spectrogram

is described by a list of numbers (features). These numbers contain information about

the frequency and relative shape of the region. It is expected that similar bat calls will

show similar features and thus these features can be used to classify sounds. As features,
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we use seven frequency parameters plus the number of templates that are used from the

reference library as shape factors. In the next sections, we will discuss exploration methods

and classification methods. Exploration methods are methods to visualize and adapt the

features. Classification methods connect a specific region to a species.

6.3.1 Exploration methods

Exploration methods are used to visualize the data. These can be used to test different

features such as parameter settings, devices or locations. They can also be used to obtain

an estimate of the expected performance of a classification method.

Multi-dimensional scaling

A multi-dimensional scaling (MDS) is a low-dimensional representation of high-dimensional

data. The distance between different datapoints is calculated and approximated as good as

possible in two dimensions. Using an MDS, we can represent how similar certain points are.

The distance can be defined in different ways. In the case of a metric MDS (mMDS), the

Euclidean distance is used. But if more information is known, certain important features can

be weighed differently. Under the Euclidean distance metric, MDS is equivalent to principal

coordinates analysis (PCoA) (Borg and Groenen, 2005). An example of an MDS is given in

Figure 6.7a.

t-distribution stochastic neighboring embedding

t-distribution stochastic neighboring embedding (t-SNE) is analogous to an MDS, but uses

a different principle (Maaten and Hinton, 2008). Instead of distance, this method fits a

probability distribution. It can be useful to compare a TSNE to an MDS to make sure there

is no influence of the visualization method. An example of a t-SNE is given in Figure 6.7b.

From the figures, it is clear that the general picture is the same, but some details are

different. In the example shown, TSNE trades smaller variability within a species (such as

nlei) in favor of a larger distance between two big groups of species (ppip and pnat versus

others). Note that neither method had access to these labels. The labels were only used to

color the markers in the end.

6.3.2 Classification method: self-organizing map

As a classification method, a self-organizing map is used in combination with a DML matrix

(Sections 5.3.2 and 5.4). Both the map and the DML-matrix will need to be fitted first. The
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Figure 6.7 Example of an MDS/t-SNE applied on six species of bats. Data provided by INBO.
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DML matrix is fitted on labeled pulses. These labeled pulses can either come from a small

dataset, or from the reference library. Because the references defined for the shape factors

are also datapoints, they can be used to fit the DML. If this is done, a portion of these

references cannot be used for shape factors anymore, because the number of datapoints

used to fit the DML-matrix needs to outweigh the number of features. If this is not the case,

the DML can start to overfit. To fit a DLM, the Jeffrey divergence is calculated (Nguyen et al.,

2017).

The SOM is fitted on unlabeled data. These data can be the same data as the user wants

to analyze, or come from a different but similar dataset. To find the BMU at each step, the

Mahalanobis distance is used. This is given by the DML-matrix that was fitted before. Since

a performance cannot be calculated with unlabeled data, a tuning set or cross-validation

approach cannot be used to fit the parameters. Therefore, we will use trial and error to

set the different parameters. Neurons are saved in a three dimensional matrix. The rows

and columns are set by the user and determine how many neurons there are. The number

of pages is the same as the number of features. The number of iterations nter is set to

10 000. The initial learning rate is set to 0.01 and decays using an exponential function

with the exponent −
nter

where  is the current iteration and nter are the total number of

iterations. For the neighborhood, the radius r is used. Every neuron within a distance r2

is considered part of the neighborhood. These neighboring neurons update their weight

according to the influence factor, where influence is given by an exponential function with

exponent −D
2r2

. D is the distance to the BMU. If D goes up, the influence factor goes down.

If the radius is higher, the influence factors also become higher. Initially the radius is the

highest dimension of the map divided by two. So a five by seven map would have 35

neurons and a radius of 7/2. A six by six map would have 36 neurons and a radius of

6/2, while a thirty-five by one map would have a very high radius of 35/2. This allows

the user to influence the radius by changing the configuration of the neurons. The radius

decays exponentially with the exponent −
tconst

, where tconst is the time constant, given by

the number of iterations divided by the log of the initial radius. If there are more iterations,

the time constant becomes higher and the radius decays more slowly. If the initial radius

is higher, the time constant decreases and the radius decays faster. Finally, there are

the number of neurons. As mentioned before, number of neurons is defined as rows and

columns of the matrix. More neurons will give a more detailed map, but will take much

longer to fit.

6.3.3 Visualization tool

After a SOM is fitted, data can be analyzed using a visualization tool. This tool will group the

datapoints together according to their BMU and order them according to the distance to this
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neuron. An expert can now go through the pulses in each neuron and label them. Because

of the clustering, it is likely that only a limited number of datapoints will need to be labeled

manually to draw a conclusion for all datapoints matching with a neuron. Furthermore, if

maps are reused, specific neurons can be tied to one or more species. Because datapoints

are ordered according to distance, an outlier is likely to show a large distance to their BMU,

which can make it easier to detect rare species. Neurons and datapoints can also be plotted

in an MDS format, which makes it possible to visually inspect how well the neurons cluster

the datapoints together. This is further illustrated in Chapter 7.
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RESULTS AND DISCUSSION

In this chapter, the previous methods will be evaluated to determine their performance.

Due to the low amount of labeled data available, a formal evaluation is not possible. There-

fore, two informal evaluations will be done. The first evaluation will walk through an analysis

of a few real files that are unlabeled. The second evaluation will set up a few experiments

to test several hypotheses. To test these hypotheses, a K-nearest neighbors method is used

along with the Cohen’s kappa.

7.1 Application of the tool

To apply the visualization tool, six unlabeled recordings are randomly selected. A standard

reference library was defined before. This reference library contains five common species.

We used 17 Eptesicus serotinus (eser), 6 Myotis daubentonii (mdau), 21 Nyctalus leisleri

(nlei), 18 Pipistrellus nathusii (pnat) and 38 Pipistrellus pipistrellus (ppip) pulses. These

are pulses, not entire recordings. Some pulses might come from the same recording, but

to ensure a minimum variability, every species has pulses that come from at least two

different locations, two different devices and two different days. There are also 10 eser and

11 ppip references extra to fit the DML (the DML matrix is fitted on the reference library).

Then, a ten by ten map is fitted on the unlabeled recordings.

In total, there are 726 pulses over these six recordings. These pulses are divided over the

100 neurons. The neuron with the highest number of matches is neuron (9,5) with 28

matches. The lowest number of matches is zero for several neurons.

Now, we can go through every neuron and see what is inside. Figure 7.1 shows datapoints

0, 5, 15 and 25 of neuron (9,5). Remember that points are ordered according to distance to

the neuron and the number shows their rank, 0 is the closest, 27 is the farthest away. From

these points, it is clear that neuron (9,5) contains noisy pulses of one or more bat species

around 25-30 kHz. It is no longer necessary to study each of the 28 pulses individually.

From a handful of pulses, the general story can be easily seen since all of these pulses are

quite similar.



7.1. APPLICATION OF THE TOOL

(a) 0 (b) 5

(c) 15 (d) 25

Figure 7.1 Points 0, 5, 15 and 25 from neuron (9,5). This neuron contains noisy pulses of
one or more bat species around 25-30 kHz.

64



CHAPTER 7. RESULTS AND DISCUSSION

This process can be repeated for every neuron. Neuron (2,0) for example has 9 matches.

Figure 7.2 shows matches 0, 2, 6 and 8. These pulses are cleaner. Given the shape and the

frequency of the pulses, this is likely a Pipestrellus species, but this should be confirmed

by an expert to be certain. Once an expert has labeled these pulses, this neuron is labeled

too. If the same map is used, future matches with different data are likely to be the same

species as before or a similar species.

(a) 0 (b) 2

(c) 6 (d) 8

Figure 7.2 Points 0, 2, 6 and 8 from neuron (2,0). Given the shape and the frequency of
the pulses, this is likely a Pipestrellus species, but this should be confirmed by an expert to
be certain.

The distance between neurons can also be studied. If there is a different neuron that is

very close to neuron (2,0), this could contain the same species or a similar species. This

principle can be taken further. On a sufficiently large map, regions of species or genera

will start to emerge. We will not try to make a large map like this, because as mentioned

before (Section 6.1), there is not enough good data of specific species available to do this.
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Furthermore, this is something that should be done by an expert due to the complexity of

bat pulses.

7.2 Evaluation experiments

7.2.1 Description of the datasets

For the evaluation experiments, two datasets will be used. The first dataset is provided

by INBO and contains sounds from various locations in Flanders. This dataset is used to

build the model. Templates are defined for shape features (Sections 6.2.3 and 6.2.4) and

the Mahalanobis distance (Section 5.4). The second dataset is a completely independent

dataset from Barataud (Barataud, 2015). This dataset contains bat sounds from Europe.

The second dataset contains bats that are not present in Flanders or the same bats in very

different environments. With this dataset, we can try to evaluate how the method responds

to entirely new data.

7.2.2 Method: K-nearest neighbors and Kappa statistic

As an evaluation method, the K-nearest neighbors method is used. First, the features are

calculated for every pulse. If we have the features, we can calculate the distance between

datapoints. In this case, Mahalanobis distance is used. Then, for every point, the K-nearest

neighbors are considered. So if K is set to 3 and we consider a datapoint belonging to

species A, we will check if the three datapoints closest to this point (the nearest neighbors)

belong to the same species. The more neighbors belong to the same species, the better

the clustering is. If this is repeated for every point, a global score can be calculated for

every species. If we do this, we may for example find a score of 66% for species A. This

means that on average, two of the three nearest neighbors belong to the same species.

This is called the relative observed agreement, indicated with P(A).

This value has one problem, however. It does not say anything about the a priori chance. If

there are 100 points belonging to species A and only 10 points belonging to species B, then

there would be a very high chance that three neighbors belong to species A, even if the

points are randomly distributed. So in this situation, two out of three neighbors for species

A would actually be a very bad score. But for species B, two out of three would be a very

good score. To capture this, the Cohen’s kappa statistic can be used (Smeeton, 1985). The

Cohen’s kappa is computed as:

κ(A) =
P(A) − P(E)

1 − P(E)
. (7.1)
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In this equation κ(A) is Cohen’s kappa for species A, P(A) is the relative observed agree-

ment for species A and P(E) is the expected agreement by chance. At the end, we divide

by 1 − P(E). This sets the highest possible κ equal to one and makes it possible to com-

pare different values in different settings. Note that κ is calculated per species. Multiple

kpp-values will be needed to draw a conclusion about the clustering as a whole.

To understand κ further, the equation can be applied to the previous example. In our

example, P(E) would be 99/109 for species A, since there are a total of 109 neighboring

points and 99 of those belong to species A, therefore the chance that a random neighbor

belongs to species A is 99/109 or about 91%. κ now has a clear meaning. If more than

91 points out of every 100 neighbors belong to species A, κ is positive and the method

does better than would be expected based on the distribution of the datapoints. There is

a clustering effect. For a random point, the chance that it belongs to species A becomes

higher if it has neighbors that belong to species A. If exactly 91 neighbors belong to class A,

κ is zero. This is the value that would be expected if all points were distributed randomly. If

there are less than 91 neighbors, κ becomes negative. This value would indicate a `reverse

clustering effect’. The fact that a datapoint is a neighbor of a different datapoint of species

A now decreases the chance this point also belongs to species A.

7.2.3 Self-organizing maps

Self-organizing maps are not used in the evaluation experiments because the performance

will be different depending on the size. If there are more neurons available, a better clus-

tering is possible. Furthermore, self-organizing maps are an unsupervised method. Some

species might be represented by more neurons than others, which would give them a better

performance. If ten datapoints of species A and ten datapoints of species B are clustered by

three neurons, there is a reasonable chance some neurons will contain datapoints of both

species A and B. If twenty neurons are used, every datapoint can have their own neuron

resulting in no neurons with multiple species. Because of this, self-organizing maps are

more difficult to evaluate. Instead, the K-nearest neighbors method is used. But both of

these methods are related. High κs would indicate a good clustering and therefore, a good

self-organizing map.
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Dataset Species Number P Cohen’s kappa

Training eser 12 0.58 0.44
Training nlei 10 0.7 0.62
Training ppip 24 0.97 0.94

Validation eser 12 0.61 0.47
Validation nlei 10 0.73 0.66
Validation ppip 24 1.0 1.0

Table 7.1 Results of experiment 1. Top half shows the training dataset, bottom half shows
the validation dataset. The bat species are: Eptesicus serotinus (eser), Nyctalus leisleri
(nlei) and Pipistrellus pipistrellus (ppip). P is the relative observed agreement. K is selected
as 3 in this experiment.

7.3 Experiments

7.3.1 Experiment one: generalization within species

In the first experiment three species are evaluated. For the species Eptesicus serotinus

(eser), Nyctalus leisleri (nlei) and Pipistrellus pipistrellus (ppip), three common species in

Flanders, pulses are extracted from the INBO dataset. In total, we have 24 eser pulses,

20 nlei pulses and 48 ppip pulses. Variability is somewhat limited due to the low number

of labeled audio data available, but every species has pulses from at least two different

locations, two different devices and two different days. These pulses are then split in two

sets. The first set is the training set, used to compute the features (Section 6.2.3) and fit

the DML-matrix (Section 5.4). The second set is the validation set, which is not used for

any fitting. The training set is split again. The first half is used for the features. In total, we

have 30 features, 7 standard frequency factors and 23 shape factors from the 23 templates

in the first half of the training dataset (6 eser, 5 nlei and 12 ppip). The second half of the

training dataset is used along with the first half to fit a DML-matrix. This ensures that the

number of datapoints to fit the DML-matrix (46) outweighs the number of features (30),

which is very important. If there are only slightly more datapoints, the DML-matrix tends to

overfit on those datapoints.

Now, the K-nearest neighbors method is used with three neighbors. First on the training

dataset then on the independent validation dataset. The results are summarized in Table

7.1.

As is clear from the table, the performance does not drop from the training dataset to the

validation dataset. In fact, it even goes up slightly for all three species. We can conclude

that it is possible to extrapolate between different recordings in Flanders. The features and

DML matrix defined in one recording are still valid for different recordings on other days in

other locations within Flanders. The performance on all three species is also quite large.

The model predicts the label with a higher accuracy than would be expected just based on
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how many datapoints each species has. The ppip species shows maximum performance

on the validation dataset and almost maximum performance on the training dataset. This

can be explained rather easily. The average frequency of the ppip bat lies around 45 kHz

while both the nlei and the eser lie around 25 kHz. Therefore, the pulses of the ppip can

be easily separated on frequency alone. Nlei and eser bats are quite similar in both shape

of the pulse and frequency, so these will be more difficult to separate. However, the κs are

still positive.

7.3.2 Experiment two: influence of K and DML

For the second experiment, the same data is used as in experiment 1. But now, the influ-

ence of certain parameters will be tested. Firstly, the numbers of neighbors K considered

in the KNN. For the data we used, K can vary between 1 and 9, since nlei has 10 datapoints

and can therefore only have 9 neighbors of the same class. Figure 7.3 shows Cohen’s

kappas for all values of K. From this figure, it is clear the influence of K varies. For the train-

ing eser datapoints there does not seem to be a large influence, but the evaluation eser

dataset shows a clear maximum performance around 3 and 4. What is happening here is

that there are two points of the eser cluster that lie very close to the nlei cluster. So close

that their first few neighbors are nlei datapoints. Therefore, with only 1 or 2 neighbors con-

sidered, these points have a very low score and pull down kappa substantially. More distant

neighbors are eser points again, so if more neighbors are considered, the influence of these

initial outliers is reduced. Near the end, kappa goes slightly down again because the 7th,

8th and 9th datapoints are less likely to be correct given there are only 9 datapoints of the

same class to start with. To reduce these two edge effects, it is best to pick a K somewhere

around the middle. For future experiments, a K of 5 will be chosen.

Secondly, the influence of the DML-matrix will be evaluated. The validation dataset will be

analyzed twice. Once with the DML-matrix learned from the training dataset and a second

time using the identity matrix, which results in the usual Euclidean distance. A K of 5 is

used. The results of this experiment are shown in Table 7.2.

The table shows no effect for ppip and eser, but a substantial drop in performance for

nlei. As mentioned before, in comparison, ppip is relatively easy to classify because the

frequency is substantially different from the other two bats. Therefore, a DML-matrix will

not be needed to separate these points. But for nlei, there is higher similarity and without

a DML-matrix, they become much more difficult to cluster together.
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Figure 7.3 Influence of K on Cohen’s kappa. Val refers to the validation dataset. The bat
species are: Eptesicus serotinus (eser), Nyctalus leisleri (nlei) and Pipistrellus pipistrellus
(ppip).

Distance Species Number P Cohen’s kappa

Mahalanobis eser 12 0.68 0.57
Mahalanobis nlei 10 0.68 0.59
Mahalanobis ppip 12 1.0 1.0

Euclidean eser 12 0.68 0.57
Euclidean nlei 10 0.48 0.34
Euclidean ppip 12 1.0 1.0

Table 7.2 Results of experiment 2. Top half shows the validation dataset using Mahalanobis
distance between the features, bottom half shows the validation dataset using Euclidean
distance. The bat species are: Eptesicus serotinus (eser), Nyctalus leisleri (nlei) and Pip-
istrellus pipistrellus (ppip). P is the relative observed agreement. The number of neighbors
(K) is five.

70



CHAPTER 7. RESULTS AND DISCUSSION

Dataset Species Number P Cohen’s kappa

Training eser 12 0.67 0.55
Training nlei 10 0.58 0.46
Training ppip 12 0.98 0.95

Validation hsav 13 0.94 0.93
Validation msch 52 0.73 0.42
Validation ppyg 17 0.06 −0.19

Table 7.3 Results of experiment 3. Top half shows the training dataset (INBO), bottom
half shows the validation dataset (Barataud). The bat species are: Eptesicus serotinus
(eser), Nyctalus leisleri (nlei), Pipistrellus pipistrellus (ppip) Hypsugo savii (hsav), Myotis
schreibersii (msch) and Pipistrellus pygmaeus (ppip). P is the relative observed agreement.
The number of neighbours (K) is five.

7.3.3 Experiment three: generalization to different species

For the final experiment, we will test whether the model can recognize new species it has

never seen before. The Barataud dataset is used (Barataud, 2015). From this dataset,

pulses are extracted for three common bats: Hypsugo savii (hsav), Myotis schreibersii

(msch) and Pipistrellus pygmaeus (ppip). The features and DML-matrix are computed using

the original dataset from experiment one. Then, a KNN is calculated using five neighbors.

The results of this experiment are summarized in Table 7.3. As is clear from the table, hsav

shows a very high performance, msch shows a moderate performance and ppyg shows a

very bad performance. So even though the features and DML-matrix were computed with

different bat species, it is still possible to cluster new bat species to some extent.
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CHAPTER 8

CONCLUSIONS AND FUTURE

PERSPECTIVES

The goal of this research was to create a tool that can cluster bat pulses together to allow

for easier labeling. Due to the lack of labeled data, a formal evaluation cannot be done.

However, the ad hoc application of the visualization tool showed promising results. Clearly,

the pulses that are clustered together are very similar. The evaluation experiments con-

firmed this too. Within the same species, very high performances were found. For new

species, the results were mixed. Cohen’s kappas were 0.93 and 0.42 for hsav and msch,

but ppyg showed a negative kappa. The large differences between these species indicate

that care must be taken when generalizing to completely new species. There were only

three species tested, so it is not clear how widely these principles can be applied to other

species. Further testing with labeled data could highlight which species are easy and which

ones are harder to classify. While we should not generalize too much from this rather lim-

ited experiment, it does indicate that clustering of pulses in different species is possible.

Furthermore, this can also work if no examples are given from a certain species.

The use of SOM, DML and reference libraries allows for flexibility in the method. Depending

on the application, the SOM can be expanded or reduced and the number of references

can be adapted. It is also possible to use a multi-stage SOM. In this case, several neurons

could be labeled as a group of closely related species. These pulses could then be clus-

tered further with a second SOM. Due to the lack of labeled data, this was not done in this

research. However, because there is still manual labeling involved with this tool, more and

more labeled data is created during use. This data can then be used to further improve

the model. Perhaps in the future, a fully supervised tool could be created that no longer

requires expert input, or at least very minimal input.

Further pre-processing could also improve the model. A simple tree-based method could

discard pulses that are likely to be noise. This is not done right now, because there is no

sufficiently large labeled dataset of noise and bats available, so the risk of discarding a rare

bat is too large. But if more labeled data is collected, this could become possible in the

future. The use of specific wavelets that optimally separate certain bat species could also



improve the model. Lastly, metadata can be added to the model. Right now, the model

uses individual pulses, but far more data can be extracted from bat detectors. The exact

time related to sundown can be interesting, because some bats come out earlier in the

night than other bats. There may be seasonal effects as well. Weather data could also

influence which bats come out during a night. Furthermore, the timing between different

pulses of the same individual can be useful to take into account for identification. Lastly,

information about the habitat can be useful as well. Right now, data is analyzed blindly, but

we know that some species are far more likely to be present in specific habitats.
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