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Abstract

Leuven, May, 2019.

This thesis introduces two new methods to reduce the negative effects that are caused by
using randomness as a selection criterion in a centralized allocation problem of students
to schools. The first method, the Waste-Reducing Lottery Design (WRLD) procedure,
reduces the number of available seats that are not assigned to any student due to random
tie-breaking. The second method, the Maximin decomposition, reduces the uncertainty
about the total number of students that will be assigned to a school. Both methods
obtain their objective by determining the probability with which an allocation of students
to schools will be selected as the final allocation. As both methods are applicable to
all mechanisms that adopt random tie-breaking, they provide a general framework for
decision-makers to improve upon the currently used mechanisms. The performance of
the introduced methods is evaluated both on real-world data from Antwerp and Ghent,
and on generated data.
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Chapter 1

Introduction

Today, many aspects of life are already being decided for us by algorithms: the music
we listen to, the movies we watch or how we can get from point A to B in the best
possible way. But in recent years, algorithms have also been used to decide which school
a student can attend if school capacities are insufficient. This approach offers multi-
ple advantages, such as an increase in the levels of transparency and of fairness and
a decrease in segregation. However, as the final allocation that is determined by the
algorithm plays a crucial role in students’ future, it is important that the way in which
this decision is taken and the possibilities in which it could be improved are investigated
thoroughly.

The student allocation problem has received broad attention in recent years, both in
the academic world and in the popular press. In 2012, for example, the Nobel Prize in
Economic Sciences was awarded to Alvin Roth and Lloyd Shapley, two scholars who have
extensively studied the problem of matching different agents in the best possible way
(The Royal Swedish Acadamy of Sciences, 2012). Also in the Flemish political debate,
the centralized allocation system of students to schools has been a widely discussed topic.

The aim of this thesis is twofold. On the one hand, this thesis aims to provide an
overview of the existing literature to evaluate how and to what extent the currently
used mechanisms can be improved upon. On the other hand, this thesis proposes two
new methods to reduce the negative effects that are caused by using randomness as a
selection criterion if schools are indifferent between students. In practice, the allocation
mechanisms that are adopted for secondary education in Flanders rely heavily on ran-
domness because other criteria such as prior grades or the distance between the school
and the student’s house or the parent’s workplace are prohibited. Randomness is also
used for primary education, but to a lesser extent as distance is the main selection cri-
terion in this context. The main argument in favour of using randomness as a selection
criterion is the fairness it implies, as two students who submit the same preference list
will have the same chance of being assigned to the school of their choice. Unfortunately,
randomness also implies uncertainty about the final result, as certain final allocations
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will be more preferred by students than others.

The two methods introduced in this thesis each tackle a different negative implication of
using randomness. The first method, the Waste-Reducing Lottery Design (WRLD) pro-
cedure, aims to reduce the number of available seats that are not assigned to any student
by a mechanism that adopts random tie-breaking. The aim of the second method, the
Maximin decomposition, is to reduce the uncertainty about the final number of assigned
students by an allocation mechanism that adopts random tie-breaking. Both methods
obtain these results by determining the probability with which each possible way of
randomly breaking ties between students will be selected as the final way of breaking
ties, which will then determine which students can go to which schools. Moreover, both
methods can be applied to all allocation mechanisms that use random tie-breaking.

This thesis is structured in the following way. The remainder of Chapter 1 provides a
literature review and an overview of the regulation on school choice in Flanders. Chap-
ter 2 contains a formal problem statement and introduces two methods to reduce the
negative effects of using randomness as a selection criterion, namely the WRLD proce-
dure and the Maximin decomposition. The performance of both methods is evaluated
in Chapter 3, based on real-world data sets of Antwerp and Ghent and on generated
data. Chapter 4 contains some considerations on the implementation of both methods
and Chapter 5 concludes.

1.1 Problem statement

The problem that will be considered in this thesis is how to assign students to schools. A
first input required to make this decision is the submitted preference lists of the students
over the schools. In an example! with four students and three schools, in which each
school has only one available seat, the preferences of the students could be represented
as:

Sei e e o

§1 S3 Sz S3

S9 S1 S9 0

S3 0 0 0

The preference list of student i is represented by >.., in which the element on the first
row represents the first choice of the student, the element on the second row the second
choice, etc. The element 0 in the preference list indicates that a student prefers the out-
side option to being assigned to the schools that are not present in the list. This outside
option could refer to a school that is not included in the centralized allocation sys-
tem or to homeschooling. Student 2, for example, submitted school 3 as the first choice,
school 1 as the second choice and prefers the outside option to being assigned to school 2.

!This example is almost identical to an example from Erdil (2014).
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Secondly, schools can also have priorities over the students. In the same example,
these priorities could be represented as:

g1 sy Tss
C2 C3 C1
C1 C1 C4
C3 C2 C2
C4 C4 C3

Similarly to the preference lists, >, denotes the priority list of school j. For example,
school 1 prefers student 2 to be assigned to the school, rather than student 1, etc. In
this example, it is assumed that schools are never indifferent between students (strict
priorities). In Flanders, however, schools do not have strict priorities as they are not
allowed to prioritize students based on distance or prior grades (Onderwijs Vlaanderen,
2012b). Therefore, this assumption will be relaxed further on.

For this particular example, one possible final matching between students and schools
could be represented as:

student school preference

C1 S1 1
C2 83 1 (1.1)
C3 S92 2
Cq 0 0

Equivalently, a more compact notation of this matching is (s1, s3,s2,0). This match-
ing assigns student 1 to school 1, which is his/her first choice. Student 2 is assigned to
school 3, student 3 to school 2 and student 4 is not assigned to any school in this solution.

In designing a method that obtains such a matching, several desirable criteria related to
the welfare of the students could be aimed for. First of all, a Pareto efficient matching is
a matching in which it is impossible for two or more students to exchange their allocated
schools and all be better off. The matching in (1.1), for example, is Pareto efficient as
no student can be allocated to a school of higher preference without making at least
one student worse off. However, the following matching is not Pareto efficient as it is
possible for students 1 and 2 to exchange their allocated schools and both be better of.

student school preference

a S3 3
c2 s1 2 (1.2)
C3 S92 2
Cq4 0 0

Secondly, a stable matching is a matching in which no justified envy exists. This means
that there is no student who prefers another school to his/her current assignment and
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who has a higher priority on that school than at least one of the admitted students
(Abdulkadiroglu and Sénmez, 2003). It can be noted that the matching in (1.2) is sta-
ble. The matching in (1.1), on the other hand, is not stable as student 4 prefers being
assigned to school 3 to not being assigned at all, while, at the same time, student 4 has
a higher priority on school 3 than the currently assigned student 2.

So far, only the final matchings have been discussed. A method that obtains such a
matching is called a mechanism. If both student preferences and school priorities are
taken into consideration in a mechanism, it is called a two-sided mechanism, whereas
a mechanism that only considers student preferences is called a one-sided mechanism.
A mechanism is called Pareto efficient (stable) if it always results in a Pareto efficient
(stable) matching.

Lastly, a mechanism is strategy-proof if it is a dominant strategy for the students to
submit their true preferences, regardless of the priorities of the schools and the prefer-
ences submitted by the other students.

It has been shown, however, that it is impossible to design a mechanism that satis-
fies all desirable properties and that trade-offs will have to be made. As illustrated in
this example, for instance, Pareto efficiency and stability are generally not compatible
(Roth, 1982; Abdulkadiroglu and Sénmez, 2003). In general terms, the aim of this thesis
is to discuss and propose different mechanisms to realize improvements with respect to
certain desirable properties compared to the allocations found by the traditional algo-
rithms, which will be discussed in Section 1.2.1. These improvements, however, will
generally come at the cost of a decrease in another desirable property. Therefore, in
order to be able to assess the attractiveness of the discussed improvement mechanisms,
the size of these negative implications will be clearly discussed in Chapter 3.

1.2 Literature review

1.2.1 Traditional algorithms

Abdulkadiroglu and Sénmez (2003) were the first to address the shortcomings of widely
used student assignment mechanisms such as the Boston mechanism (described in detail
in Appendix A.1). They showed that this mechanism results in a matching that is Pareto
efficient, but neither stable, nor strategy-proof, as students have a strong incentive to
give a high preference to schools for which they have a high chance of getting accepted.?
In order to tackle these issues, two algorithms were proposed for practical implementa-
tions, namely the Deferred Acceptance (DA) mechanism, developed by Gale and Shapley
(1962), and the Top Trading Cycle (TTC) mechanism, developed by Shapley and Scarf
(1974).

2See also Ergin and Sénmez (2006), Pathak and Sénmez (2008) and Dur et al. (2018).
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Gale and Shapley (1962) originally developed the Deferred Acceptance (DA) mechanism
in the context of the Stable Marriage problem, a one-to-one matching problem where men
and women are matched based on their preferences. Nevertheless, the mechanism can be
easily extended to a many-to-one matching (sometimes called Hospitals/Residents prob-
lem (Manlove, 2013)), in which one student is assigned to at most one school, whereas
each school can potentially be assigned multiple students. Two versions of the Deferred
Acceptance (DA) mechanism were developed, namely the Student-proposing and the
School-proposing DA. The former maximizes the welfare of the students among all sta-
ble matchings, whereas the latter focuses on the welfare of the schools (Gale and Shapley,
1962). In the context of Flanders, however, because school priorities are often created
artificially (see Sections 1.2.2 and 1.3), student welfare is perceived as more important
than school welfare. Therefore, DA will simply refer to the Student-proposing DA in the
remainder of this thesis.?

The Deferred Acceptance (DA) mechanism proceeds in the following way (Kesten, 2010):

— In the first step, each student applies to his/her most preferred school. If the num-
ber of applicants on a certain school is higher than the capacity of that school, the
students with the highest priorities among the applicants are temporarily allocated
to that school and the others are rejected.

In general, in the k-th step, each student who was rejected at step k — 1 applies to
his/her school of next choice. If the number of applicants and temporarily allocated
students on a certain school is higher than the capacity of that school, the students
with the highest priorities among both the applicants and the temporarily allocated
students are temporarily allocated to that school and the others are rejected.

The DA algorithm terminates when no student is rejected in a certain step. This is the
case when all students are either assigned to a school from their preference list, or have
been rejected by all schools on their preference list and have no more schools to apply to.

Example 1.2.1. To illustrate the DA algorithm, consider the example from Section 1.1.
The following table displays the intermediate matchings in every step of the algorithm.
For every step, the first column represents the school to which the corresponding student
has applied and the second column represent the position of that school in his/her
preference list. When a student is temporarily assigned to a school in a certain step,
that school is shown in a box.

student | step 1 | step 2 | step 3 | step 4 | result

c1 1 s1 1| s9 23

@ w1 2|E] 2] 2
o | s 1|[m] 2| 2|[m] 2
1 1 1 1

=[] =] 2]
o NN W

e |Fa] 1] 1|

3The School-Proposing Deferred Acceptance mechanism is described in detail in Appendix A.2.

53
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In the first step, student 4 will be temporarily allocated to school 3 as his/her priority on
that school was the highest of all applying students, and student 1 will be temporarily
allocated to school 1, as (s)he was the only applicant to school 1 and capacities were not
violated. This causes rejected students 2 and 3 to apply to their school of second choice
in the second step, etc. The algorithm terminates after the fourth step as student 4 was
rejected on all schools of his preference list and prefers the outside option to applying
to another school.

The key difference between DA and the Boston mechanism is that in the Boston mecha-
nism, every assignment is permanent. In DA, on the other hand, schools verify in every
step whether there are applicants with a higher priority than one of the temporarily
assigned students. In this example, this difference is present in step 2, as in the Boston
algorithm, student 2 would not have replaced student 1 on school 2.

The DA mechanism is widely used because of its favourable properties. When both
student preferences and school priorities are strict, i.e. no ties exist, the mechanism pro-
duces the unique matching that is Pareto-optimal from the perspective of the students
in the set of stable matchings (Gale and Shapley, 1962). This means that every stu-
dent weakly prefers his/her assigned school under DA to the result of every other stable
matching. Moreover, Dubins and Freedman (1981) and Roth (1982) showed that DA is
strategy-proof as truthful revelation of student preferences is a dominant strategy, even
when ties exist and an arbitrary tie-breaking rule is adopted. However, the matchings
obtained by DA are not Pareto efficient in general, as possibilities may exist for two or
more students to exchange their allocated schools and all be better off.

The Top Trading Cycle (TTC) mechanism, on the other hand, was developed by Shapley
and Scarf (1974) and further studied in the context of student assignment by Abdulka-
diroglu and Sénmez (2003). TTC is a strategy-proof mechanism that produces a Pareto
efficient matching. However, the produced matching is not stable and given the fact that
stability is an important criterion from a juridical point of view, this mechanism is less
often adopted in practice. A detailed description of TTC can be found in Appendix A.3.

1.2.2 Ties and tie-breaking

The strict school priorities, as described in the previous section could be the result of,
for example, previously obtained grades or the distance from the school to the student’s
house or to the parent’s workplace. In general, however, some schools might be indiffer-
ent between certain groups of students. As a consequence, ties between students might
exist and school priorities will no longer be strict. In Flanders, for example, both cri-
teria are prohibited (Onderwijs Vlaanderen, 2012b), as will be discussed in more detail
in Section 1.3. In order to apply mechanisms such as DA or TTC that require strict
school priorities, ties in the priority lists have to be broken by fixing an order of the
students. In practice, this order is often randomly chosen, as this is generally perceived
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as the most fair method (Bogomolnaia and Moulin, 2001). In the context of DA, this
procedure is also referred to as Randomized Deferred Acceptance (RDA) (Erdil, 2014).

As a tie-breaking procedure creates artificial stability constraints that will never be
violated by stable allocation mechanisms (such as DA), it may harm student welfare. It
might be possible that a matching is Pareto-dominated by another matching which is
stable with respect to the true, non-strict priority structure of the schools, but not with
respect to the strict priority structure after randomly breaking the ties.

This loss in student welfare can be illustrated by the example from Section 1.1. Imagine
that school 3 is in fact indifferent between all students. In order to apply DA, pri-
orities have to be strict and, therefore, ties have to be broken (randomly). Suppose
that the resulting priorities of school 3 are >,, as shown in Section 1.1. The matching
(s3,81,52,0), as shown in (1.2) is the result of DA on this artificially created priority
structure. However, the matching (s1, s3, s2,0), as shown in (1.1), Pareto-dominates this
matching while still being stable with respect to the true, non-strict priority structure
before ties were randomly broken. In this example, the loss in student welfare caused by
random tie-breaking is equal to the fact that student 1 and 2 are allocated to their third
and second preference, respectively, instead of being allocated to their most preferred
school.

Several authors have studied the negative effects of tie-breaking and have proposed
attempts to overcome them. First of all, Erdil and Ergin (2008) showed the possibly
significant welfare consequences of tie-breaking and developed a polynomial-time algo-
rithm to find Pareto efficient improvement for stable matchings that preserve stability
by finding so-called stable improvement cycles. In this manner, students are re-allocated
to more preferred schools (based on Gale’s Top Trading Cycle mechanism (Shapley and
Scarf, 1974)) while making sure that, for each school, all re-allocated students have a
priority (after tie-breaking) that is higher than that of the student with the lowest as-
signed priority on that school. A different algorithm to achieve the same objective has
been proposed by Kesten (2010). In his solution, students who block a possible Pareto
efficient exchange of assigned schools among other students because their priority on one
of these schools is higher, can consent to abandon their place on the priority list of that
school. This decision will cause the consenting student no harm, but it may facilitate
Pareto efficient improvements for the other students.

However, Erdil (2014) has proven that if a strategy-proof method to improve the ef-
ficiency of a strategy-proof mechanism (e.g. DA with random tie-breaking) exists, it
must allocate strictly more students. Therefore, a method that relies on re-allocating
students, such as the methods proposed by Erdil and Ergin (2008) or Kesten (2010), can
never be strategy-proof.

In recent years, many articles have appeared on the design of a tie-breaking mecha-
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nism. If the ordering of the students is identical for all schools, it is denoted as Single
Tie-Breaking (STB), whereas a different ordering of the students on each school is called
Multiple Tie-Breaking (MTB). Firstly, both Abdulkadiroglu et al. (2009) and de Haan
et al. (2015) gave empirical evidence, based on real-life data, that STB causes more
students to be assigned to their top choice than MTB, while at the same time STB
causes more students to not be assigned at all. Furthermore, Ashlagi and Nikzad (2016)
argue that the results depend on the market conditions. Their results indicate that in a
market where the number of school seats exceeds the number of students, MTB is more
equitable than STB and efficiency trade-offs exist. In a market where school capacities
are binding, on the other hand, STB outperforms MTB. Ashlagi and Nikzad therefore
suggest to adopt a common ordering of students on popular schools and different stu-
dent orderings on non-popular schools. In the context of TTC, however, Pathak and
Sethuraman (2011) argue that STB is equivalent to MTB, although MTB is perceived
as more fair by the students as the final matching does not depend on one single draw.

All mechanisms that have been discussed above are referred to as two-sided mecha-
nisms, as they take into consideration both student preferences and school priorities.
Another way to deal with indifferences in school priorities that is closely related to ran-
dom tie-breaking, is to apply one-sided matching mechanisms. These mechanisms only
consider the preferences of the students and no longer take into account the priorities of
the schools as they are assumed not to exist or to be of lesser importance than student
preferences. When the schools have fixed capacities, this type of problem is often re-
ferred to in the literature as the Capacitated House Allocation problem (Manlove, 2013).

The most widely used one-sided matching mechanism in the context of student allocation
is the Random Serial Dictatorship (RSD)* mechanism, introduced by Abdulkadiroglu
and Sénmez (1998). This mechanism produces a Pareto efficient and strategy-proof
matching by assigning the randomly ordered students one by one to the first school in
their preference list that still has seats available.

Example 1.2.2. Reconsider, for instance, the example from Section 1.1. Imagine the
random order of the students is ¢; > ¢2 > ¢3 > ¢4. The following table displays every
step of the RSD algorithm for this order. For every step, the first column represents the
school to which the corresponding student was assigned and the second column represent
the position of that school in his/her preference list.

student ‘ step 1 | step 2 | step 3
C1 S1 1 S1 1 S1 1
(&) 0 0 S3 1 S3 1
c3 0O 0|0 0 ]sy 2
cq 0O 00 OO0 O

“Sometimes also referred to as the Random Priority (RP) mechanism (e.g. Bogomolnaia and Moulin
(2001)).
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Firstly, students 1 and 2 will be assigned to their first choices, schools 1 and 3, respec-
tively. Student 3 is the next student in the order, but as school 3, which is his/her first
choice, has no more seats available, (s)he will be assigned to school 2. As all available
seats are assigned, student 4 cannot be assigned to any school.

Pathak and Sethuraman (2011) and Carroll (2014) have proven that RSD is equivalent
to TTC with random tie-breaking (STB or MTB). Moreover, RSD is equivalent to DA
when ties are broken in the same way for all schools (STB).

For further information, Manlove (2013) provides an elaborate overview of the differ-
ent types of matching problems and the possible algorithms to tackle these from a more
computational perspective.

Most mechanisms that are being used in practical student allocation problems are (vari-
ants of ) the mechanisms that have already been described in this thesis, possibly adapt-
ing one of the efficiency improvements mentioned in this section. It has been shown,
however, that these mechanisms are still subject to more subtle efficiency losses than
the ones already mentioned. These alternative efficiency losses, and different ways to
overcome them, will be the topic of the following section.

1.2.3 Probabilistic assignment mechanisms

When ties are broken randomly, students actually face certain probabilities of being
allocated to a school. Therefore, the previously mentioned mechanisms with random
tie-breaking are also referred to as lottery mechanisms, as they induce a probability dis-
tribution over deterministic assignments (Kesten et al., 2017).

Unlike lottery mechanisms, probabilistic mechanisms® are mechanisms that obtain these
allocation probabilities directly, and not as a weighted average over all deterministic
assignments. A probabilistic mechanism typically consists of three mains steps. Firstly,
a probability matrix is obtained that contains the allocation probabilities for all student-
school pairs. Different methods exist to obtain this probability matrix and they will be
discussed below. In a second step, this probability matrix is rewritten as a weighted sum
of deterministic assignment matrices. This transformation is called a Birkhoff-von Neu-
mann decomposition (Birkhoff (1946); von Neumann (1953)) and their theorem states
that any matrix in which both the sum of each row and the sum of each column are equal
to one (a bistochastic matrix), can be decomposed into a weighted sum of deterministic
assignment matrices in which each row, as well as each column contains at most one
element that is equal to one. Kojima and Manea (2010) showed that this result can be
extended to the context of student assignment where school capacities are larger than
one. Therefore, every allocation probability matrix can be rewritten as a (not neces-
sarily unique) weighted sum of deterministic assignments. In the last step, a lottery is

®Sometimes also referred to as stochastic mechanisms (e.g. Erdil (2014)).
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performed over these deterministic assignments to determine the final matching. In this
lottery, the selection probabilities of the previously obtained deterministic assignments
are equal to the corresponding weights.

Example 1.2.3. To illustrate this procedure, reconsider the example that was intro-
duced in Section 1.1. To obtain the allocation probabilities of RSD, all 4! = 24 pos-
sibilities in which ties can be broken have to be considered. This would result in the
following allocation probability matrix, in which element (i, j) represents the probability
that student ¢ is allocated to school j:

S1 S9 S3
a MOh2 3h2 0
o [312 0 4he
cs| 0 8h2 42
cy \ 0 0 4h2

This allocation probability matrix can be decomposed into the following deterministic
assignments:

100 100 010 100
00 1 00 0 100 00 0

4 . 4 . 3 . 1 .

M2 lg 1 oo T2 g 1 o P2 0 0 1] T2 o 0 1
00 0 00 1 00 0 00 0

As a matter of fact, when ties are broken randomly, the previously mentioned traditional
algorithms such as RDA and RSD could be considered as probabilistic mechanisms in
which no decomposition is required because the initial probability matrix is already
the weighted sum of deterministic assignments. However, Bogomolnaia and Moulin
(2001) noted that, although every matching that is obtained by RSD is Pareto-optimal,
possibilities for efficiency improvements exist when considering the allocation probability
matrix. Consider an example® with four students, two schools with one available seat
each and the following preferences:

>Cl >62 >03 >c4
S1 S1 S9 S92
52 52 S1 S1

When considering all 24 possibilities of breaking ties, the resulting allocation probabili-
ties of RSD are equal to:
S1 S9
a1 /2 2
cy [ 312 /2
es | 112 Sh2
cqg \12 5/12

®Budish et al. (2013)
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It can be noted that, under the RSD mechanism, all students have a positive probability
of being assigned to their school of second choice. If it would be possible to exchange
shares of allocation probabilities, all students would be better off if students 1 and 2
exchanged their Y12 shares of so with the %12 shares of s of students 3 and 4. In that
case, the resulting allocation probabilities would be equal to:

S1 S9
C1 1/2 0
C9 1/2 0
C3 0 1/2
Cq 0 1/2

Bogomolnaia and Moulin (2001) concluded that a probabilistic assignment is ordinally
efficient” if no other probabilistic assignment exists that is preferred by all students.
Although RSD is ex-post Pareto efficient, as it will always produce Pareto efficient
matchings, the example shows that it is not ordinally efficient. To tackle this issue,
they created the Probabilistic Serial (PS) mechanism, which will always produce an or-
dinally efficient allocation probability matrix. In the PS mechanism, all students are
considered to eat fractions of the schools with the same eating speed. This eating speed
is equal to the uniform consumption of one school seat in one time unit. The algorithm
then proceeds in the following way:

Time runs continuously from 0 to 1. At each point in time, every student eats with
a uniform eating speed from his/her most preferred school among those that have
not yet been completely eaten up. At time ¢ = 1, the resulting fractions of the
schools that have been eaten by a student can be interpreted as his/her allocation
probabilities to these schools (Bogomolnaia and Moulin, 2001; Budish et al., 2013).

Example 1.2.4. To illustrate the working of the PS algorithm, reconsider the example
from Section 1.1. Below, the intermediate allocation probability matrices are shown at
the points in time when a school was eaten up entirely and some students had to start
eating from another school. The recently finished school is indicated by a box in the
column title, and the schools from which students have been eating right before the
indicated points in time are displayed in bold in the matrix.

t=0.33 t =0.67 t=1

S1 59 S92 S3 S1 S3
¢ /13 0 0 a /23 0 0 a /23 1z 0
o 0O 0 1/3 co |13 0 173 co (13 0 13
3| 0 0 1/ cs| 0 1/3 173 3| 0 23 1f3
s NO 0 1/ ca \ 0 0 153 ca \O 0 13

"Sometimes referred to as sd-efficiency (e.g. Kesten et al. (2017)). In a more general setting (e.g. with
cardinal instead of ordinal preference structures), this concept is also referred to as ezx-ante efficiency

(e.g. Hylland and Zeckhauser (1979) or Kesten and Unver (2015)).
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At t = 0.33, school 3 is eaten up entirely. This causes students 2 and 3 to start eating
from their school of second choice and student 4 to stop eating as school 3 was the only
school in his/her preference list. The same reasoning can be applied for ¢t = 0.67. The
final allocation probabilities are obtained at ¢ = 1.

The PS mechanism, however, is not entirely strategy-proof, as will be discussed in more
detail in Section 1.2.5. In order to obtain a final matching from these probabilities ob-
tained by PS, a decomposition followed by a lottery, as mentioned in the beginning of
this section, must be performed.

A mechanism that also considers efficiency with respect to the allocation probability
matrix was previously developed by Hylland and Zeckhauser (1979). However, their
proposal was designed for a context in which objects are valued on a certain scale (re-
ferred to as cardinal or von Neumann-Morgenstern preferences), rather than simply
ordered from most to least preferred (ordinal preferences), as is the case in the student
assignment problem.

In contrast to previous results, Erdil (2014) found that it is possible to find strategy-
proof efficiency improvements for the matchings resulting of DA and RSD when ties
are broken randomly. As mentioned in Section 1.2.2, he proved that the only possible
strategy-proof improvement over a strategy-proof mechanism can be made by allocating
strictly more students, in contrast to the non-strategy-proof improvements based on re-
allocating students by Erdil and Ergin (2008) and Kesten (2010). Moreover, he states
that such an improvement can only be realized if a stochastic assignment is wasteful,
namely if the sum of the allocation probabilities for a certain school is smaller than
the available capacity and there exists at least one student who prefers that school to
another school (or the outside option) to which (s)he is assigned with a strictly positive
probability.

Example 1.2.5. This can be illustrated by considering, once again, the initial example
from Section 1.1. The allocation probabilities of RSD, when considering all 24 possible
ways of tie-breaking, are equal to:

S1 59 S3
c; ©0.75 0.167 0
ca [ 0.25 0 0.33
c3 0 0.625 0.33
cy4 0 0 0.33

Note that the sum of the allocation probabilities for school 2 is smaller than one, which
means that with a probability of 20.83% or %4 no student is assigned to school 2. How-
ever, both students 1 and 3 face a positive probability of not being assigned to any
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school, while they both prefer being assigned to school 2 to not being assigned at all.
Therefore, in this example, RSD with random tie-breaking is wasteful. Martini (2016)
showed that non-wastefulness is an ex-ante efficiency concept that is weaker than the
concept of ordinal efficiency from Bogomolnaia and Moulin (2001).

Erdil’s solution consists of replacing certain random orderings of students, and the cor-
responding matchings, by others orderings, in such a way that no student’s allocation
probabilities decrease and that the allocation probabilities of at least one student are
improved. Consider the following ways of tie-breaking and the resulting matchings from
RSD:

Allocation 1 Allocation 3
cg>cg>co>cyp or cy>eg>ez>el cg3>co>cy>cy or cy3>eg>ey>cq
(0731732733) (3273173370)
Allocation 2 Allocation 4
c3>c1>eg>cy or c3>eq>ey>cn cq>c1>eg>eg or cy>eq>ep>cy
(51707 3350) (81707 52783)

If the indicated ways of breaking ties that lead to allocations 1 and 2 would be replaced by
the ones that lead to allocations 3 and 4, then students 2, 3 and 4 would not experience
a difference. Student 3, for example, will be assigned to school 2 in two of the four
considered allocations and to school 3 in the other two, under both scenarios. Student 1,
on the other hand, would experience an improvement, as (s)he will now be assigned to
school 2 in two additional random draws. By replacing the random orders that lead to
allocations 1 and 2 by the ones that lead to allocations 3 and 4, while keeping all other
random orders unchanged, the new allocation probability matrix is:

S1 S9 S3
cp ¢0.75 0.25 0

co | 0.25 0 0.33
c3 0 0.625 0.33
c4 0 0 0.33

Because of this replacement, student 1 will be assigned to school 2 in two additional
random draws compared to the initial situation. As the total number of possible ways
to break ties is equal to 24, the improvement in the allocation probability of student 1
to school 2 is, therefore, 2/24 or 8.33%.

Erdil notes that, in order for this improvement to be strategy-proof, the preference
structure of the other students should be symmetric. In Section 2.2, a method to find ef-
ficiency improvements for wasteful probabilistic assignments will be introduced, but the
constraint of symmetric preferences of the other students will be relaxed for two main
reasons. First of all, Erdil does not provide a formal definition of when the preference
structure of the other students can be considered to be symmetric with respect to a
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student’s preference list. Moreover, regardless of the exact definition, symmetric prefer-
ences of the other students are rare in large instances. As a relaxation of this constraint
implies a loss of strategy-proofness, however, the size of this loss will be evaluated in
Section 3.6.

1.2.4 Trade-offs among properties

Throughout the previous sections, it has become clear that trade-offs among desirable
properties exist. As a matter of fact, a vast collection of articles has been published
on impossibility results for mechanisms with respect to certain desirable properties. In
this section, the most relevant results for the traditional algorithms will be mentioned,
followed by a discussion on the trade-offs that exist for probabilistic mechanisms.

First of all, as could be seen in the introductory example in Section 1.1, ex-post Pareto
efficiency and stability are generally not compatible (Roth (1982); Abdulkadiroglu and
Sonmez (2003)). Nevertheless, as previously mentioned, DA is strategy-proof and results
in the most ex-post Pareto efficient matching among all stable matchings.

However, as schools tend to be indifferent between groups of students or even between all
students, the question can be raised how valuable the concept of stability still is as it will
only protect artificially created stability constraints. Instead, another desirable prop-
erty that could be aimed for is fairness®: a mechanism is fair if students with identical
preferences are treated equally. Zhou (1990) proved that, in a context with cardinal pref-
erence structures, no mechanism exists that satisfies ex-ante Pareto efficiency, fairness
and strategy-proofness. Moreover, Bogomolnaia and Moulin (2001) found a similar re-
sult for the context with ordinal preferences. Recently, Martini (2016) strengthened this
result by proving the impossibility of obtaining non-wastefulness, fairness and strategy-
proofness. Nonetheless, it is possible to design a mechanism that satisfies two of these
desiderata:

— The Random Serial Dictatorship (RSD) mechanism is strategy-proof and fair, but
has been proven to be wasteful (Erdil, 2014). Despite its wastefulness, RSD is
ex-post Pareto efficient.

— The Probabilistic Serial (PS) mechanism is fair and ordinally efficient, which im-
plies non-wastefulness. However, it is not strategy-proof.

— The Serial Dictatorship mechanism, in which students are assigned to their most
preferred school with an available seat in a fixed order (e.g. alphabetically), is
strategy-proof and non-wasteful, as non-wastefulness is equivalent to ex-post Pareto
efficiency in a deterministic mechanism. However, it is clearly not fair.

8Sometimes also referred to as symmetry (e.g. Zhou (1990)) or anonymity (e.g. Bogomolnaia and
Moulin (2001)) or equal treatment of equals (e.g. Martini (2016))
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An additional result was obtained by Liu and Pycia (2016); they showed that all asymp-
totically efficient, symmetric and asymptotically strategy-proof mechanisms are alloca-
tionally equivalent to RSD. This has implications for the possible improvements over
RSD that can be gained by the mechanisms described in Section 1.2.3. The mecha-
nism proposed by Erdil (2014), for example, is asymptotically efficient, symmetric and
strategy-proof. Therefore, for large instances, the final improvements over RSD will be
negligible. The same is true for PS, which is efficient, symmetric and asymptotically
strategy-proof (see Section 1.2.5).° It has to be noted, however, that their result only
holds asymptotically. More specifically, it only holds if the number of seats in the schools
approaches infinity, while maintaining the same ratio of students who have preferences
over these schools. Therefore, despite this result, it is still worth examining possible
improvement mechanisms for real-world applications, as every realised improvement will
have an impact on at least one student’s life.

1.2.5 Strategy-proofness results

In the previous sections, the concept of strategy-proofness has been approached in a
rather binary way: either reporting true preferences is a dominant strategy, or it is not.
However, it might be possible that, in real-world applications, some mechanisms that
are not strategy-proof in theory are less sensitive to manipulation than others.

Kojima and Manea (2010) were the first to show that, although the Probabilistic Serial
mechanism is not strategy-proof, reporting true preferences is a weakly dominant strat-
egy if the instance of the problem is sufficiently large. More specifically, they obtain
this result for a setting in which the number of schools is constant, but the number of
seats on each school is increased according to the same ratio as the number of students
that have preference structures over these schools (also referred to as a replica economy).

Therefore, several proposals have been made to introduce a relaxation of strategy-
proofness that is less stringent than perfect strategy-proofness, but would be perceived
as not manipulable in real-world applications. Mennle and Seuken (2014) introduced
an axiomatic approach that characterizes perfect strategy-proofness by three axioms,
which will be explained in more detail in Section 3.6, and they suggested the notion
of partial strategy-proofness, which is obtained by dropping the least intuitive of the
three axioms. In this way, it is possible to calculate how different the valuations by a
student for different schools should be in order for the mechanism to still be partially
strategy-proof. This measure, referred to by the authors as r-partial strategy-proofness,
can be interpreted as the degree of strategy-proofness of a mechanism, or the extent to
which it can be manipulated. They found that PS is r-partially strategy-proof and they
introduced an r-partially strategy-proof adaptation of the non-partially strategy-proof
Boston mechanism.

9See also: Che and Kojima (2010).
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Other notable relaxations of strategy-proofness are, for example, the concept of strategy-
proofness in the large by Azevedo and Budish (2018) and the concept of vulnerability to
manipulation by Pathak and Sénmez (2013). However, in the remainder of this thesis,
the notion introduced by Mennle and Seuken (2014) will be preferred over these two
concepts, as it also applies to instances that are not large, as opposed to Azevedo and
Budish (2018), and as their axiomatic approach provides insight into which preferences
of the students can benefit from misreporting, in contrast to the concept of Pathak and
Sonmez (2013).

Moreover, a relevant question is whether the designer of a student allocation mecha-
nism should truly aim for a perfectly strategy-proof mechanism. Budish and Cantillon
(2012), for example, empirically showed that, in the context of allocating students to
courses, adopting a non-strategy-proof mechanism may lead to higher student welfare
than using an ex-post Pareto efficient and strategy-proof mechanism such as RSD.

1.2.6 An alternative approach: optimization techniques

Lastly, instead of solving the problem of allocating students to schools with a step-by-
step algorithm, it could also be solved by formulating it as an optimization problem, in
which a certain objective function is optimized while satisfying certain constraints. This
approach is less adopted in practical applications as, in general, the solution method is
less transparent.

In her master’s thesis, D’haeseleer (2016) showed that the same allocations from mech-
anisms like, for instance, DA can be obtained by solving an Integer Programming (IP)
formulation. Moreover, she extended these formulations by evaluating different methods
for obtaining a certain desired level of social mix in the schools. She concluded that the
use of optimization techniques is not beneficial over the traditional methods when school
priorities are determined by one single criterion (e.g. distance or random tie-breaking).
However, when two criteria to determine school priorities are adopted, an improvement
in the objective function can be noted compared to the traditional methods. If, for
example, distance and random tie-breaking would be used, a certain proportion of the
students will be allocated to a school because the distance is small and another propor-
tion because ties were broken in their favor. This method, however, will no longer be
strategy-proof.

1.3 School choice regulation in Flanders

This section will firstly discuss the evolution of the Flemish regulation on school choice
for secondary schools. Furthermore, both the current state of affairs in Flanders and its
implementation in the major Flemish cities will be explained.
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1.3.1 History

In Belgium, the language communities have the authority to regulate the school choice.
In Flanders, the GOK decree of 2002 (“Gelijke Onderwijskansen”) specified the first
regulations with respect to application systems for schools, based on the idea of an
unrestricted school choice and equal education opportunities for all students (Vlaamse
overheid, 2002). This unrestricted school choice implies that schools are legally prohib-
ited from refusing students for any other reason than a lack of available capacity.

Before the introduction of a centralized student allocation mechanism, students were
accepted based on a first-come, first-served principle in schools that could not accept all
applicants. The arrival times in this system were determined by, for example, camping
in front of the school entrance or by trying to call in at a specific moment in time. How-
ever, this first-come, first-served priority criterion might favour students from a better
socio-economic background, as their parents can spare the time to camp and can count
on a broader network. Moreover, the growing queues in front of popular schools caused

many parents to complain. '’

In 2006, the Flemish government decided to create local coordination committees, called
LOPs (“lokale overlegplatforms”), that help to ensure equal education opportunities for
students in a certain region. As the school enrollment procedures impact the social
diversity and the level of segregation in schools, coordinating this student application
process is part of the responsibilities of the LOPs (Cantillon, 2009). LOPs consist of
the representatives of all schools in the area, parents’ associations and key social associ-
ations, such as the CLB (“Centrum voor leerlingenbegeleiding”).

As capacity constraints became tighter over the years, the school choice regulations
became more and more elaborated. For primary education, the LOPs of the major
cities in Flanders decided to adopt an online centralized application system in the aca-
demic years of 2009-2010 (Ghent) and 2010-2011 (Antwerp and Brussels) (Wouters and
Groenez, 2014a). In the context of primary education, schools have priorities over the
students based on distance, combined with random tie-breaking.

For secondary education, on the other hand, a centralized application system was only
introduced several years later. In the academic year of 2013-2014, Leuven was the first
major city in Flanders to adopt a centralized application system (KSLeuven, 2016),
followed in 2018-2019 by Antwerp, Ghent and the Dutch-speaking schools in Brussels
(Stassijns, 2017; Salumu, 2017; Hubo, 2017). Not all schools in these cities took part in
the system, however, as participation was not mandatory. The details of these mecha-
nisms will be clarified in Sections 1.3.2 and 1.3.3.

Throughout the years, camping in front of school entrances has been a widely discussed topic in the
Flemish popular press, e.g. De Herdt (2010) or Debruyne (2016).
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The implementation of a centralized application system entails two main advantages,
namely an increase in transparency and legal security for the parents, and the possibil-
ity to use the application mechanism as a tool to obtain a proportional distribution of
minority and majority students, compared to the school’s surrounding area. In Flan-
ders, students can be distinguished as minority students, called “indicatorieerlingen” , if
either their mother has not obtained a diploma of secondary education or if their family
receives an education allowance (Onderwijs Vlaanderen, 2012b). A majority student is
a student who does not meet any of these two criteria. As several studies have indicated
the positive effects of low school segregation levels,'! the Flemish Government decided
to introduce a double quota system, named “dubbele contingentering”, obligatory for all
schools in a LOP-area in the academic year of 2013-2014 (Wouters and Groenez, 2015).
Wouters and Groenez (2015) showed that the introduction of this system led to a de-
crease in school segregation for the first time in 10 years. The working of the double
quota system will be discussed in Section 1.3.2.

Despite the overall improvement in the number of allocated students and the decrease
in the waiting lines because of the introduction of a centralized application system for
secondary schools in 2018-2019, the parents’ reactions after the announcement of the as-
signments were, overall, rather negative. The main complaints were about students who
were not assigned to any school at all, the existence of Pareto-improving exchanges and
twins who submitted the same preference list, but were assigned to different schools.?
Caused by the increased attention in the press, a proposal of decree was approved by the
Flemish Parliament in October 2018 (Vlaams Parlement, 2018). This proposal of decree
made the use of an online application system mandatory for all schools with capac-
ity constraints, introduced one common application date for all schools in Flanders and
removed the requirement to adopt the double quota system for secondary schools. More-
over, the proposal states that all LOPs in Flanders would make use of the same standard
algorithm, but the specific properties of this algorithm were not discussed (Vlaams Par-
lement, 2018).

In December 2018, however, the French Community Commission (COCOF), who are
responsible for the French-speaking community in the Brussels-Capital Region, submit-
ted a conflict of interest against the proposal of decree (Belga, 2018). Their claim was
that the proposed 10% increase in the percentage of seats in Brussels schools for which
Dutch-speaking students were prioritized, would cause an increase in the proportion of
students who speak neither Dutch nor French in the French-speaking schools.

However, when the conflict of interest expired in April 2019, the Flemish Parliament
nevertheless approved the proposal of decree, but due to the conflict of interest, the im-
plementation has been delayed from academic year 2019-2020 to 2020-2021 (Onderwijs

HSee, for example, Thrupp et al. (2002) or Sacerdote (2011) for an overview of studies on the effects
of school composition and peer effects.
123ee, for example, newspaper articles such as Cools (2018) or Gordts (2018).
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Vlaanderen, 2019). In some major cities, such as Antwerp, Ghent and Leuven, however,
all secondary schools accepted to already participate in the central allocation system in
2019-2020 (Braeckman, 2019; Mouchalleh, 2019).

1.3.2 Current regulation for enrollment in secondary education in Flan-
ders

The discussion of the current regulations on enrollment procedures for secondary schools
in this section will be mainly based on the circular that was initially distributed in 2012
by the Flemish administration in charge of Education (Onderwijs Vlaanderen, 2012b).
The circular has been updated ever since and is still applicable at the time of writing. As
the legislation is written in Dutch, the Dutch terminology will be added in parentheses
in this section.

The principles of enrollment (“inschrijvingsrecht”) are a set of rules to ensure that
students can enroll in a school of their choice in a transparent and legally secure way.
The main objectives of the Flemish principles of enrollment are (Onderwijs Vlaanderen,
2012b):

— The realisation of optimal study and development opportunities for all students;

— The avoidance of exclusion, segregation and discrimination;

The stimulation of cohesion and of a good social mix;

— Additionally for Brussels, the protection of equal education and enrollment oppor-
tunities for Dutch-speaking students.

One of the measures to obtain these objectives is the definition of priority groups (“voor-
rangsgroepen” ). Students who belong to one of these priority groups can apply to the
school of their preference before all other students, and experience, therefore, a signif-
icant increase in enrollment probabilities. Each priority group has an entitled priority
period (“voorrangsperiode”), during which the students can benefit from their priority
on the school. In order to be able to benefit from this measure, students must fulfill
at least one of the following criteria, listed in chronological order of the corresponding
priority periods:

— The student is the brother or sister (same living group) of a student who is already
enrolled in the school;

— The student is the child of an employee at the school;
— Only for Brussels, the student has at least one Dutch-speaking parent.

In order to obtain a proportional distribution of minority and majority students in com-
parison to the school’s environment (as defined in Section 1.3.1), a double quota system
is adopted. In this system, each school divides all places that are still available after
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the assignment of the priority groups into two contingents of predefined size that will
be used for the simultaneous enrollment of minority and majority students. In both of
these contingents, the available places are filled according to the adapted priority crite-
rion (see below). The places that have not been filled in this way will be made available
to the other group of students. The size of each contingent can be determined based on,
for instance, the relative presence of each group in the school’s surroundings or on other
criteria, as long as it helps to obtain the objective of the double quota system, namely to
improve the social mix in the school and to reduce segregation (Onderwijs Vlaanderen,
2012b).

After the assignment of the priority groups, the remaining places have to be allocated.
In order to do this in a legally transparent way, this will be done based on the priori-
ties of the schools. As the prioritized students are already enrolled at this stage of the
procedure, in general, schools are indifferent between large groups of students and ties
will have to be broken within these groups. According to the principles of enrollment,
the only criteria that can be adapted to determine the priorities of secondary schools in
Flanders and Brussels, are (Onderwijs Vlaanderen, 2012b):

(i) The chronology of application, without considering the moment of physical appli-
cation;

(ii) Randomness, only to be used in combination with (i) or (iii);

(iii) The position of the school in the preference list of the student, only to be used in
combination with (i) or (ii).

Note that the use of distance as a priority criterion is not allowed in secondary education,
as opposed to the context of primary education (Onderwijs Vlaanderen, 2012a). It can
be argued that, in the short-run, using distance as a priority criterion would naturally
lead to a better correspondence between the school composition and the neighborhood
composition. In the long-run, however, people will take this regulation into account
when making housing decisions, which would lead to a rise in the housing prices in the
area around the schools that are perceived as good. In this scenario, neighborhood seg-
regation will increase as only families from a higher socio-economic background will be
able to live in the surroundings of good schools, which, in turn, would mean that school
segration will increase as well.!3

Normally, the introduction of a central application mechanism is the result of a local
consensus, but in the case of severe capacity constraints, the government can impose the
introduction of a centralized application mechanism on a group of schools or an LOP
(Onderwijs Vlaanderen, 2012b). In the context of primary education, this obligation
already exists for Antwerp, Brussels and Ghent, but, at the time of writing, no such
obligation exists for secondary education.

13Black and Machin (2011) provided an overview of the studies on the effect of school quality on housing
prices. Wouters and Groenez (2014b) discussed the relevance of this issue for the Flemish context.
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1.3.3 Implementation in Flemish cities

The Flemish regulation at the time of writing leaves some authority to the LOPs on the
implementation of the centralized application system, for example with respect to the
choice of the allocation mechanism. In this section, the particularities of the application
systems for secondary education in Antwerp, Brussels, Leuven and Ghent will be briefly
discussed. All four cities use randomness as a priority criterion, in combination with the
position of the schools in the preference lists of the students.

Firstly, in Leuven and in the Dutch-speaking schools in Brussels, the Boston mecha-
nism (described in detail in Appendix A.1) with Single Tie-Breaking (STB) is used, but
it is adapted in such a way that it can comply with the double quota system mentioned
in Section 1.3.2 (KSLeuven, 2019; Quartier, 2017; Inschrijven in Brussel, 2019). The
advantages of the Boston mechanism are the ex-post Pareto efficient matching, the rela-
tively simple procedure and the fact that it assigns the maximum number of students to
their first choice, given a certain random draw. However, as discussed in Section 1.2.1,
the Boston mechanism is not stable nor strategy-proof as students have an incentive to
give a high preference to schools on which they have a high chance of getting accepted
(Abdulkadiroglu and Sénmez, 2003). The only difference between the systems of the
two cities is the way in which the mechanism is presented to the parents. In Leuven,
the mechanism is presented as described in Appendix A.1, but with Single Tie-Breaking
(STB). In Brussels, on the other hand, each school is said to have its own priority list,
on which students are ranked based on the position of the school in their preference lists.
This means that all students who listed a certain school as their first choice appear at the
top of the list of that school, followed by the students who submitted that school as their
second choice, etc. Within these groups, ties are broken by the unique random number
that is assigned to each student (STB). Afterwards, the first iteration of the allocation
algorithm assigns students to their school of first choice in correspondence with their
randomly generated unique numbers and the available capacities. In the second round,
it is checked whether the students who have not been assigned to their first choice can
be assigned to their school of second choice, based on the priority lists and the remaining
capacities, etc. (Quartier, 2017). This iteration procedure essentially boils down to the
Boston algorithm as described in Appendix A.1. Therefore, it could be argued that the
mechanism in Brussels is presented in a slightly more complicated way than in Leuven,
although they are equivalent.

Secondly, Antwerp and Ghent have adopted the School-proposing Deferred Acceptance
mechanism with Multiple Tie-Breaking (MTB) (described in detail in Appendix A.2),
and it is adapted in such a way that it allows for the use of the double quota system
(Meld je aan Antwerpen, 2019; Meld je aan Gent, 2019). The School-proposing DA
results in a matching that is stable with respect to the randomly drawn school priorities,
but that is not ex-post Pareto efficient (see the discussion on Student-proposing DA in
Section 1.2.1). In contrast to the Student-proposing DA, however, the School-proposing
DA is not entirely strategy-proof (Balinski and Sénmez, 1999), but the possibilities for
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manipulation are less obvious than in the Boston mechanism (discussed in more detail
in Section 3.6.2). Moreover, the School-proposing DA finds the stable matching that
is preferred to any other stable matching from the perspective of the schools, but it
is possible that this matching is ex-post Pareto dominated from the perspective of the
students by the matching from the Student-proposing DA. Two differences between the
application procedures in Antwerp and Ghent exist for the academic year of 2019-2020.
Firstly, in Ghent, the schools with insufficient capacity were contacted to increase their
capacity after a simulation (Salumu, 2019). Secondly, Ghent adapted the final matching
by removing improvement cycles in order to obtain an ex-post Pareto efficient matching.
As discussed in Section 1.2.2, however, this second measure implies an additional loss of
strategy-proofness.



Chapter 2

Models

Section 2.1 defines the problem and the concepts that have been introduced in the intro-
duction in a more formal way. In Section 2.2, an alternative method using optimization
techniques is proposed to reduce the negative effects on student welfare caused by ran-
dom tie-breaking. Section 2.3 introduces a new method using optimization techniques to
reduce the uncertainty about the final number of allocated students caused by random
tie-breaking. Lastly, Sections 2.4 and 2.5 discuss possible solutions for improving the
performance and the computation time of both proposed methods.

2.1 Formalized problem statement

2.1.1 General terminology

Let C' = {c1,c,...,cn} denote a set of n students, and S = {s1, 2, ..., Sm} a set of m
schools. The capacity of school s; is denoted by q; € N. The preference list >, of stu-
dent ¢; is a strict ranking of the elements in SU{0}, in which student ¢; is said to prefer
school s; to school sy if s; >, s and to prefer the outside option, which is not being
assigned to any school in the system, to being assigned to school s, if 0 >, s,. The set
of all student preferences is denoted by >¢. Student preferences are assumed to always
be strict, which means that a student will never be indifferent between two schools.!
Despite the fact that, in practical applications, students only report such preference lists
(ordinal preferences), it is convenient to assume that all students in C' actually experience
a specific utility of being assigned to a school (cardinal or von Neumann-Morgenstern
preferences). Let u;(s;) € RT denote the normalized utility for student ¢; of being
assigned to school s;. These underlying utilities are unknown, but are assumed to be
compatible with the preference profiles, meaning that (u;(s;) > u;(si)) = (55 >¢; sk) for
all ¢; € C and sj,s, € S.

Similarly to student preferences, all schools in S have a priority list of the students

LThis is a reasonable assumption as only the schools that are preferred to the outside option will be
taken into consideration in assignment mechanisms and the remaining schools can be ranked arbitrarily.

23
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in C. If school s; is not indifferent between any two students, the strict priorities are
denoted by >g,. In practice, however, there might be ties in school priorities if schools
are indifferent between students. In that case, the weak priorities of school s; are de-
noted by >, . If strict priorities are required, ties have to be broken by a tie-breaking
rule 7. Consider T to be the set of all possible tie-breaking rules, given the weak pri-
ority structures of the schools >g= {>,,...,>5,}. Each tie-breaking rule 7 € T will
transform >g into a strict priority structure >%= {>7 ,...,>] }.

The student allocation problem can be considered as finding a deterministic assign-
ment? from the students in C to the schools in S. Such a deterministic assignment
can be represented by an (n x m) matrix M = [my;], in which m;; = 1 if student ¢; is
assigned to school s; and m;; = 0 otherwise. A matching is feasible if each student is
assigned to at most one school and the capacities of the schools are not violated:

(i) >° my; <1 for all students ¢; € C;
SjES

(i) >° mi; <gq; for all schools s; € S.
c,eC

In a feasible matching, M(c;) denotes the school to which student ¢; is assigned, and
M (c;) = 0 if student ¢; is not assigned to any school (outside option). Similarly, M (s;)
is the set of students that are assigned to school s;. A matching is individually rational
if students are never assigned to a school that they prefer less than the outside option:
M(c;) >¢, 0 for all ¢; € C': M(c¢;) # 0. Let M represent the set of all feasible and
individually rational matchings.

A probabilistic assignment generalizes the idea of a deterministic assignment and speci-
fies the allocation probabilities for all student-school pairs. It can be represented by an
(n x m) matrix P = [p;;], in which p;; € [0,1] indicates the probability that student ¢;
is assigned to school s;. In order for a probabilistic assignment to be feasible, the same
feasibility criteria apply as for a deterministic assignment, namely Zj pij < 1 for all
¢ € Cand ) pij < g; for all s; € S. A probabilistic assignment P is individually ra-
tional if no student has a strictly positive probability of being assigned to a school that
they prefer less than the outside option: p;; > 0 = s; >, 0 for all ¢; € C,s; € S. Let P
represent the set of all feasible and individually rational probabilistic assignments. As
discussed in Section 1.2.3, a generalized version of the Birkhoff-von Neumann theorem
(Birkhoff, 1946; von Neumann, 1953; Budish et al., 2013) guarantees that this proba-
bilistic assignment can be rewritten as a (generally not unique) weighted sum of feasible
deterministic assignments, in which the weight of matching M; € M is equal to A

P= > X-M; where Y XN=1X2>0.
MieM MieM

2In the remainder of this thesis, the term matching will be refer to a deterministic assignment, whereas
the term assignment will refer to a probabilistic assignment.
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In such a decomposition, matching M; € M is said to be selected if \; > 0. This leads to
the following link between probabilistic and deterministic assignments: when students
are allocated to schools using a probabilistic assignment method, the final assignment
can then be determined by executing a lottery over the deterministic assignments in M
in which each matching M; € M is selected as the final matching with probability A;.

In order to differentiate between the final matching and the method that is used to
obtain this matching, the concept of a mechanism is used. More specifically, a mech-
anism is a method to obtain a final matching of students to schools. A deterministic
mechanism obtains this allocation directly, whereas the final matching in a probabilistic
mechanism is only obtained after generating a probabilistic assignment, followed by a lot-
tery over the decomposed deterministic assignments. Moreover, a two-sided mechanism
considers both student preferences and school priorities, whereas a one-sided mechanism
only takes the preferences of the students into account.

2.1.2 Properties

Since not every matching in M is equally desirable, a mechanism should be designed in
such a way that it always results in a matching satisfying certain desirable properties.
This section defines a selection of the most important assignment properties with respect
to the welfare of the students.

Firstly, the extent to which the priorities of the schools for the students have been
respected in two-sided matchings can be evaluated. A student-school pair (¢, s;) is
called a blocking pair in a deterministic assignment M € M if student ¢; prefers school
s; to his/her current assignment M (c;) and school s; has assigned a seat to another
student ¢ who has a lower priority for that school than student ¢;. A matching is stable
if no blocking pairs exist. In a stable matching, all school priorities have been respected.

Secondly, a mechanism is strategy-proof if truthful preference reporting maximizes the
expected utility for every student. Students experience uncertainty over their final as-
signed school because of random tie-breaking when school priorities are not strict, or
because they might have limited information about the preferences of the other students.
Denote the expected utility for student ¢; € C of reporting preference list >.,, under
the considered mechanism, by E(u;(>.,)). This mechanism is then strategy-proof if, for
each student ¢; € C, reporting an alternative preference list >{. results in an expected
utility that is not higher than that from reporting truthfully, ceteris paribus:

E(ui(>,)) > E(ui(>,)) V>, and V¢ eC.

As students only submit their ordinal preferences, and not their utility functions, these
utility functions are generally unknown. This means that a mechanism based on ordinal
preferences is only strategy-proof if it is strategy-proof for all utility functions that are
compatible with the true preference list.
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Thirdly, concepts related to efficiency will be discussed. A matching M € M ez-post
Pareto dominates another matching M’ € M if it assigns all students to a school that is
at least as preferred as their assigned school in M’, and at least one student to a more
preferred school than in M’: M(c¢;) >., M'(¢;) for all ¢; € C and M(cg) >, M'(cy) for
some ¢, € C. A matching M € M is ex-post Pareto efficient if no matching M’ € M
exists such that M’ ex-post Pareto dominates M. A probabilistic assignment is consid-
ered to be ex-post Pareto efficient if it can be decomposed into ex-post Pareto efficient
matchings.

As mentioned in Section 1.2.3, Bogomolnaia and Moulin (2001) introduced a stronger
notion of efficiency. Let 9§ = Wfp] denote the cumulative preference profile of student c;
for assignment P € P, in which 15, 1s the expected probability for student ¢; of being
assigned to one of his/her first p choices. If ordinal preferences are submitted, a prob-
abilistic assignment P € P stochastically dominates another probabilistic assignment
P’ € P if, given preferences >¢, for each student, the probability of being assigned to
one of his/her first p € {1,...,m} choices is at least as large in P as in P’, and strictly
larger for at least one student and some value of p. Denoting the cumulative preference
profiles of student ¢; in P and P’ by 9§ and /¢, respectively, these two criteria can be
rewritten as:

(i) ¥5, > v, for all ¢; € C, p € {1,...,m};

(ii) ¥y, > ¥, for some ¢ € C'p € {1,...,m}.

A probabilistic assignment P € P is ordinally efficient if no probabilistic assignment
P’ € P exists such that P’ stochastically dominates P. Note that ordinal efficiency
implies ex-post Pareto efficiency as it will always be possible to decompose an ordinally
efficient probabilistic assignment into a weighted sum of ex-post Pareto efficient deter-
ministic assignments (Bogomolnaia and Moulin, 2001). As M C P, ordinal efficiency
can also be defined for deterministic assignments, but making the distinction between
ordinal efficiency and ex-post Pareto efficiency in this context is not relevant as both
concepts will be equivalent.

As ordinal efficiency is a very strong notion of efficiency, intermediate concepts have
been proposed, such as wastefulness, that are weaker than ordinal efficiency but still
stronger than ex-post Pareto efficiency (Erdil, 2014). A probabilistic assignment P € P
is wasteful if there exists a school s; € S for which the sum of the allocation probabilities
is smaller than the available capacity ¢; and there exists at least one student ¢; € C' who
prefers that school to another school (or the outside option) s; € S U {0} to which it is
assigned with a positive probability p;rz > 0. More formally,

85 >¢; SkyPik > 0, Z P < gj-
qeC
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Using the notation of this definition, student ¢; and school s; are said to experience waste,
and an assignment in which no student or school experiences waste is called non-wasteful.
Moreover, ordinal efficiency implies non-wastefulness, but the reverse is not true in gen-
eral (Martini, 2016). For deterministic assignments, however, non-wastefulness is equiv-
alent to both ordinal efficiency and ex-post Pareto efficiency.

Lastly, a probabilistic mechanism is fair if it treats students with the same preference
lists in an identical way. Consider students ¢;, ¢, € C' with >, = >, , then a mechanism
that results in a certain probabilistic assignment P € P is fair if p;; = pg; for all s; € S.

2.2 Improving wasteful mechanisms

2.2.1 Intuition and procedure

As has been illustrated in Section 1.2.3, a mechanism that results in a Pareto efficient
deterministic assignment (ex-post Pareto efficient), can actually be wasteful when ran-
dom tie-breaking rules are adopted (ex-ante inefficient). Erdil (2014) showed that this
is the case for, amongst others, the Randomized Deferred Acceptance (RDA) and Ran-
dom Serial Dictatorship (RSD) mechanisms. The method he proposed to reduce this
waste in a strategy-proof way is to replace certain tie-breaking rules and corresponding
matchings by others, in order to obtain a probabilistic assignment that stochastically
dominates the initial assignment (see Example 1.2.5 in Section 1.2.3). This means that,
for all student-school pairs, the allocation probabilities after the improvements will be
at least as high as before, and strictly higher for at least one student-school pair.

The improvements he proposed, however, are only strategy-proof under very specific con-
ditions, namely if for each student ¢; € C that experiences an improvement in his/her al-
location probabilities, the preferences of the other students, >c_,= {>¢;, ..., >¢, 15 >ei s
, .oy ¢, ), are symmetric with respect to the preference list >, of student ¢;. Erdil claims
that this symmetry ensures that, for each alternative submitted preference list >’CI, stu-
dent 1 would benefit from an increase in the allocation probabilities that is never larger
than the increase when true preferences are submitted. Although >¢ , from Example
1.2.5 appears to be symmetric with respect to >.,, Erdil does not formally specify when
an arbitrary set of preference lists >¢_, can be considered to be symmetric with respect
to >¢,. Moreover, Erdil does not specify a general and computationally efficient method
to find strategy-proof improvements.

Therefore, in order to be able to find improvements for wasteful mechanisms in real-world
problem instances, Erdil’s proposal will be adapted in two ways. First of all, the con-
straint that other students’ preference structures have to be symmetric will be dropped.
As a consequence, the guarantee that the found improvements are strategy-proof is no
longer valid, but the extent to which the strategy-proofness of the mechanism is harmed
will be discussed extensively in Section 3.6. Secondly, instead of simply exchanging



28 CHAPTER 2. MODELS

certain tie-breaking rules and corresponding matchings by others to find a lottery that
stochastically dominates the wasteful mechanism, each matching M, € M will be as-
signed a certain weight A € [0, 1], which represents the probability that tie-breaking
rule 7 and the corresponding matching M, € M are selected as the final matching.

The adjusted procedure, which will be referred to as Waste-Reducing Lottery Design
(WRLD), consists of the following four steps:

1. In large instances, the number of possible tie-breaking rules can become very large.
Therefore, only a subset of the tie-breaking rules 7 C T will be considered, with
\7~d| = N. For a certain mechanism, the matching that results from tie-breaking
rule 7 € T is denoted by M,, and the set of all matchings resulting from the
tie-breaking rules in 7 is denoted by M C M.

2. Based on the matchings in M, the initial allocation probabilities for the students
are calculated, denoted by P0 [ng] Initially, each matching M, € M has the
same weight, namely \) = N' Therefore, the probability that student ¢; € C' will
be allocated to school s; € S can be calculated as: p?j = Zivzl A7

3. For each matching M, € 7, we want to obtain new welghts AL in such a way

that the probabilistic assignment P! = Zj], in which pij = Z )\1 mj;, stochas-
tically dominates the initial probabilistic assignment P?. These Welghts are found
by solving a Linear Programming (LP) formulation that maximizes the expected
number of assigned students under the constraint that, for all student-school pairs,
the new allocation probabilities are not smaller than the initial allocation proba-
bilities: p}j > p?j for all ¢; € C,s; € S. This LP-formulation will be described in
detail in Section 2.2.2.

4. Lastly, a final matching is obtained by performing a lottery over the matchings
in M. In this lottery, the probability that matching M, € M is selected as the
final matching is equal to the weight that has been assigned to it by solving the
LP-formulation, namely L.

Note that Step 3 is actually a combination of finding a new probabilistic assignment,
and of finding the weights for a Birkhoff-von Neumann (Birkhoff, 1946; von Neumann,
1953; Budish et al., 2013) decomposition of that assignment.

Moreover, this procedure is compatible with any type of deterministic mechanism in
which ties are broken randomly. A discussion on whether or not some mechanisms expe-
rience more improvements from this procedure than others, will be held in Section 3.3.1.

2.2.2 Linear Programming model

By determining the weights of each matching in M directly, instead of replacing certain
matchings by others as proposed by Erdil (2014), the optimization problem in Step 3
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can be formulated as an LP-formulation, rather than as an Integer Programming (IP)
formulation. This advantage of this approach is that the running time to solve an LP is
generally significantly smaller than the one to solve an IP.

In the following LP-formulation, the decision variable z represents the weight AL that
is assigned to matching M, € M in the new probabilistic assignment P! (WRLD-LP

formulation):
max Z(Z Zm%) - Ty
reF c€C s eS
Subject to:
> mpar > pl Ve €C,sj€S; (2.1)
TET
>z =1 (2.2)
TeT
x>0 VreT. (2.3)

The objective function maximizes the expected total number of students that is assigned
to a school in the new probabilistic assignment P!. Constraint (2.1) states that the new
probability of student c¢; being assigned to school s; is at least as large as the initial
probability p?j, for all student-school pairs. Constraint (2.2) ensures that the weights
of all matchings M, € M sum up to one, and constraint (2.3) ensures that all those
weights are non-negative.

2.2.3 Example

To illustrate the working of the Waste-Reducing Lottery Design (WRLD) procedure,
reconsider the initial example from Section 1.2.3. It will be checked whether improve-
ments upon the RSD solution can be realized. RSD requires a tie-breaking rule to be
a simple order of the students. Therefore, the total number of tie-breaking rules is lim-
ited (4! = 24), which makes it possible to consider the entire set of tie-breaking rules
and corresponding matchings: 7 = 7 and M = M.3 The preferences of the students
and the initial allocation probabilities P° of RSD when all tie-breaking rules in 7 are
considered, are equal to:

S1 52 53
>c1 >62 >53 >C4 C1 0.75 0.167 0
S1 83 53 53 po— €2 0.25 0 0.33
s2 st s2 0 cs| 0 0625 0.33
S3 0 0 0 Cq 0 0 0.33

3Equivalently, the improvements for DA with Multiple Tie-Breaking (MTB) could be considered, but
as each tie-breaking rule for DA-MTB contains a different order of the students for each school, the total
number of tie-breaking rules is significantly larger ((4!)® = 13,824). This would cause the working of the
procedure to become less clear in the example.
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As observed in Section 1.2.3, PY is wasteful as students 1 and 3 experience waste on
school 2. The solution of Erdil (2014) was to replace the two tie-breaking rules that
lead to matching (0, s1, s2, s3) by two that lead to (s1,0, s2,s3), and by replacing two
of the tie-breaking rules that lead to (s1,0, s3,0) by two that lead to (s2,s1,s3,0). The
resulting allocation probabilities are:

S1 S9 S3
c1 /0.75 0.25 0

pE_ ¢ 0.25 0 0.33
c3 0 0.625 0.33
cq 0 0 0.33

Despite the fact that the probability of student 1 being assigned to school 2 has increased
by Y2 or 8.33%, PF is still wasteful as student 3 still experiences waste on school 2.
Therefore, the WRLD procedure will be applied to the initial allocation probabilities P°.
Below, the resulting probabilistic assignment P! is shown, together with the subset of the
matchings M, C M that have received a strictly positive weight, and the corresponding
weights Al:

51 52 53 €1 C2 c3 4
C1 0.75 0.25 0 S1 S3 S92 0 8/24
pl_ 0.25 0 0.33 M, =] 51 0 s9 s3 AL — 8 /24
C3 0 0.67 0.33 S2 S1 S3 0 6/24
cs \ 0 0 0.3 s1 0 s3 0 2/24

Compared to PF the probability with which student 3 is assigned to school 2 has in-
creased with 1/24 (4.17%) in P!. Note that probabilistic assignment P! is non-wasteful,
as both students 1 and 3 are now assigned to a school in each matching in M,, whereas
this was not the case in P? and PF.

To summarize, Table 2.2.3 displays the resulting weights A\l of the LP-formulation, for
each matching M, € M, together with the weights A that were used in P° and the
weights A\Z that were used in P¥. Compared to the initial allocation probabilities of
the RSD mechanism, the WRLD procedure is expected to assign 0.125 students more,
which is equivalent to one supplementary student in eight final matchings. This increase
is caused solely by the decrease of 1/8 (12.5%) in the weight of matching (si,0, s3,0),
which is the only matching in M that assigns only two students to a school. The changes
in the weights of the other matchings make sure that, while the allocation probabilities
on school 2 for both students 1 and 3 increase, all other allocation probabilities remain
unchanged.
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Table 2.1: Weights assigned to the matchings in M by the initial decomposition (A\?),
by Erdil’s procedure (AL) and by the WRLD procedure (\})

M, A0 AE AL
(s1,s3,52,0) 8/24 8/24 8 /24
(81,0, 82, 53) 5 /24 7/24 8/24
(s2, 51, 53,0) 3/24 5/24 6/24
(s1,0,s3,0) 5/24 3/24 2/24
(0, s1, S2, 83) 2/24 0 0
(s2,51,0,s3) 1/24 1/24 0

Expected number of
2.7917 2.8750 2.9167

assigned students

2.3 Maximin decomposition

2.3.1 Intuition and procedure

Because the Birkhoff-von Neumann decomposition of a probabilistic assignment into a
weighted sum of deterministic assignments is generally not unique, the selection of the
final set of deterministic assignments with strictly positive weights, or the selected match-
ings in the decomposition, can be partly decided upon. From an individual student’s
point of view, all possible decompositions are equally preferred, as each decomposition
will perfectly respect the allocation probabilities of the probabilistic assignment. From
the perspective of overall student welfare, on the other hand, some decompositions might
be preferred to others. One of the elements that determine overall student welfare, is
the total number of assigned students in a matching. Therefore, this could be one pos-
sible criterion to take into account while selecting a decomposition of a probabilistic
assignment. Although the average number of assigned students will be equal in each
decomposition of a probabilistic assignment, a mechanism designer might be risk-averse
and might prefer to maximize the lowest number of students that is assigned in any
matching of the decomposition.* This decomposition will be referred to as the Mazimin
decomposition.

The idea behind the Maximin decomposition is closely related to the original position
theory of Rawls (1971). This is a thought experiment to find a fair way of allocating

4Although the non-uniqueness of the Birkhoff-von Neumann decomposition has been studied exten-
sively, most of the research has focused on algorithms to find the minimum number of different matchings
with a strictly positive weight (e.g. Brualdi (1982) or Dufossé and Ugar (2016)). I am not aware, how-
ever, of any article that investigates the problem of finding a decomposition that maximizes the lowest
number of elements equal to one in any matching that is selected in the decomposition.
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certain resources, such as money, in which an individual has to decide on a distribution
mechanism from behind a veil of ignorance. This veil of ignorance hides from the decision
maker which share of the resources (s)he will receive and will only be removed after the
decision has been taken. Rawls argued that, in this case, the decision maker would allo-
cate the resources in such a way that the smallest of all shares will be as large as possible.

The Maximin decomposition proceeds in a way that is similar to the WRLD procedure.
Based on a subset of tie-breaking rules 7 C 7T, with |T] = N, and the corresponding
matchings M C M, the initial allocation probabilities P are calculated for a certain
mechanism. P is then decomposed into a weighted sum of deterministic assignments
in such a way that the minimum number of assigned students in any selected matching
is maximized. In this decomposition, the weight of matching M, € M is equal to AL
These weights are obtained by the Mixed Integer Linear Programming (MILP) formu-
lation that is described in detail in Section 2.3.2. Lastly, to obtain the final matching, a
lottery over the matchings in M is performed, in which the probability that matching
M, € M is selected as the final matching is equal to AL.

Note that the Maximin decomposition can be performed for every mechanism that ob-
tains a probabilistic assignment. For mechanisms such as RDA, RSD or the WRLD
procedure, in which the allocation probabilities P are already a weighted sum of deter-
ministic assignments (lottery mechanisms), the set of considered matchings M is iden-
tical to the set of matchings that is used to obtain P. For mechanisms such as PS, on
the other hand, which obtain the allocation probabilities P directly (probabilistic mech-
anisms), the set M has to be obtained separately by simulating different tie-breaking
rules in mechanisms such as RDA or RSD. The selection of the set M will be discussed
in more detail in Section 2.4.

Moreover, the Maximin decomposition does not harm strategy-proofness in any way,
as the allocation probabilities of P are perfectly respected.

2.3.2 Mixed Integer Linear Programming model

Consider an arbitrary probabilistic assignment P = [p;;], that is a weighted sum of the
deterministic assignments M, € M, with Dij = Zf;l )\Qm[j. Imagine we want to find
an alternative decomposition for P that maximizes the minimum number of assigned
students in any matching that is selected in the decomposition.

This decomposition will be found by the Mixed Integer Linear Programming (MILP)
formulation that is described below, in which the following decision variables are used:

— 27 is a decision variable that represents the weight that will be assigned to matching
M; € M in the Maximin decomposition.

— y, is a binary decision variable that is equal to one if matching M, € M has a
strictly positive weight in the Maximin decomposition, and zero otherwise.
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— z is a decision variable that represents the lowest number of students that is as-
signed in any of the matchings in M with a strictly positive weight.

The Maximin problem can then be formulated as (MILP-formulation):

max z
Subject to:
reT
Z Tr = 1; (25>
reT
z, >0 V7 e T; (2.6)
zr <y, V1 € 72;
S S wmi D -y > vreT: o (28)
c;eCs;es
yr € {0;1) vreT. (2.9)

The objective function in this model maximizes the minimum number of students as-
signed in all matchings that are selected in the Maximin decomposition. Constraint
(2.4) states that the new probability of student ¢; being assigned to school s; should
be equal to the initial probability p;;. Constraint (2.5) ensures that the weights of all
matchings M, € M sum up to one, and constraint (2.6) ensures that all those weights
are non-negative. Decision variable y. is set equal to one for all matchings M, € M for
which z, > 0 by constraint (2.7). In constraint (2.8), the value of z is set equal to the
lowest number of assigned students among all selected matchings. In this constraint,
D € N represents a big number, and it will be set equal to the difference in the number
of assigned students between the matching M, € M that assigns the largest number
of students and the matching M, € M that assigns the smallest number of students.
Lastly, constraint (2.9) ensures that all decision variables y, are binary.

2.3.3 Example

In this subsection, the working of the Maximin decomposition will be visually illustrated.
Consider an arbitrary example with 50 students and 5 schools, generated by the data-
generator that will be discussed in Section 3.1.2. In the context of the RSD mechanism,
the set of all possible tie-breaking rules 7 contains all possible orders of the students.
As it is not possible to consider all 50! ~ 3 - 104 possible orders, a randomly selected
subset 7 C 7 and the corresponding set of matchings M C M will be considered,
with [7] = 1000. The blue curve in Figure 2.1 displays the distribution of the number
of allocated students and the purple line represents the expected number of allocated
students over all tie-breaking rules in 7.
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When using RSD, on average 46.94 out of the 50 students are allocated. In one of
the matchings in M, however, only 44 students are allocated. To verify whether the
expected number of allocated students can be increased, the WRLD procedure from
Section 2.2 can be applied to the results of RSD. In Figure 2.1, the resulting distribu-
tion of the number of allocated students of WRLD is shown in red, and the green line
represents the expected number of allocated students after applying WRLD to RSD.
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Figure 2.1: Distribution of the number of allocated students RSD & WRLD (/N = 1000)

The WRLD procedure causes the expected number of allocated students to rise to 47.13,
which is an increase of 0.19 student compared to RSD, or approximately one student in
every five random draws. Moreover, at least 46 students will be allocated in any of the
resulting matchings of WRLD, compared to the worst-case scenario of 44 students for
RSD.

As the decomposition to obtain the allocation probabilities of the WRLD procedure
is not unique, the Maximin decomposition will verify whether it is possible to increase
the number of allocated students in the worst-case scenario. Figure 2.2 shows the result-
ing distribution of the number of allocated students after the Maximin decomposition,
while respecting the allocation probabilities of the WRLD procedure.

The Maximin decomposition guarantees that, in every final matching, at least 47 stu-
dents will be assigned. Due to risk-aversion, however, the drawback of this decomposition
is that no matching will assign 49 students to a school, whereas this was possible in RSD
or WRLD. This shows that the Maximin decomposition will reduce the uncertainty
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Figure 2.2: Distribution of the number of allocated students RSD & WRLD-Maximin
(N =1000)

on the final number of allocated students that is caused by random tie-breaking. An
evaluation of the performance of the Maximin decomposition is included in Section 3.4.

2.3.4 Binary search method

As the computation times of the MILP-formulation in the previous section increase
strongly for larger problem instances, this section proposes an alternative model to
obtain the Maximin decomposition. The binary search method iteratively checks for
different values of k& € N whether it is possible to decompose a probabilistic assignment
P € P by only using matchings that assign at least k students to a school.

Similarly to the previous sections, only a sample set of all matchings M C M is con-
sidered. Denote the set of matchings in M that assign at least k students by M C M
and the set of the corresponding tie-breaking rules by 7, € 7. To find the Maximin
decomposition of a probabilistic assignment P € P, the binary search method will find
the largest value of k for which a feasible decomposition of P with the matchings in M;,
can be found by verifying feasibility iteratively for different values of k.

A feasible decomposition of a probabilistic assignment P = [p;;] with the matchings
in My, exists if a feasible solution for the weights z, € Ti can be found for the following
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system of equations and inequalities:

S mf -z =py Ve, € C,s5 € S; (2.10)
TETE
S e =1 (2.11)
€Tk
2 >0 vr € Tk (2.12)

These constraints are identical to constraints (2.4) - (2.6), with the small difference that
they are only considered for T; C 7. One possible way to check the feasibility of this
system of linear equations is defining an LP-model with an arbitrary objective function
(e.g. a constant) and constraints (2.10) - (2.12).

The total computation time of this method depends partly on the order in which the
feasibility for different values of k is checked. A lower bound (LB) for the optimal value
of k, given a sample set of matchings M, is simply be the minimum number of assigned
students over all matchings in M, whereas an upper bound (UB) can be defined by
the expected number of assigned students in P, rounded down to the closest integer.
This is a valid upper bound as a decomposition of a probabilistic assignment P in which
each matching assigns strictly more students to a school than the expected number of
assigned students in P does not exist.

Based on this lower and upper bound, an initial interval for the possible optimal values
of k can be defined. Consecutively, the binary search method will first check whether a
feasible solution exists when the value of k is set equal to the middle value in this inter-
val. If a feasible decomposition with the matchings in M), exists, the new lower bound
is set to k. Otherwise, if no feasible decomposition exists, the new upper bound is set to
k—1. Given the new interval of smaller size, the next value of k for which feasibility will
be checked is again set equal to the middle value in this new interval. This procedure
continues until the lower and the upper bound coincide and the maximum value of k for
which it is possible to decompose a probabilistic assignment P such that all matchings
in the decomposition assign at least k students has been found. The maximum number
of iterations for the binary search method is equal to

[1og2(UB - LB)W 41

2.4 Smart selection of the matchings in M

In the previous sections, the sample of tie-breaking rules T was simply determined by
randomly selecting tie-breaking rules in 7. However, some matchings M, € M, that
are the result of the tie-breaking rules 7 € T, are more likely to enable a better result
by the WRLD procedure or the Maximin decomposition than others. Additionally, it
might be possible that matchings that would have made it possible to achieve a better
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result are not included in M.

Consider, for example, the situation in which two different tie-breaking rules 71,7 € T
would result in the same matching M, = M,,. As the same final solution can be at-
tained if only one of these matchings is included in M, in the remainder of this thesis, all
duplicate matchings in M will be removed. Other methods that improve upon randomly
sampling the tie-breaking rules in T exist. It might, for example, be possible to catego-
rize matchings according to different properties and to observe whether matchings with
certain properties are more likely to obtain good results than others for either the WRLD
procedure or the Maximin decomposition. Consecutively, a stratified sampling method
could be adopted in which the matchings in M are sampled from the sets of matchings
that satisfy certain of these properties (see, for example, the structured random sampling
method by van Campen et al. (2017)). Which properties would be important for the
WRLD procedure or for the Maximin decomposition remains an open question and is
left as a direction for further research.

2.5 A column generation approach

Next to sampling, another option to tackle the issue of the very large number of match-
ings in M would be to adopt a column generation approach. This section discusses how
column generation could be applied to the WRLD-LP formulation from Section 2.2.2 or
to the binary search formulation for the Maximin decomposition from Section 2.3.4 and
which difficulties will be faced in designing such an approach.

Denote the problem that has to be solved for the set of all matchings M as the master
problem. The main idea behind column generation is to restrict the set of the matchings
for which the master problem is solved by only considering a subset of the matchings
M, C M. This reduced problem is called the restricted master problem. Starting from
a feasible solution, in an iterative manner it is verified whether or not the found solu-
tion of the restricted master problem is optimal by checking the existence of a matching
M, € M that violates a constraint in the dual of the restricted master problem. If
such a matching M, exists, the found solution is not optimal and the restricted master
problem will be solved again for the subset of matchings M,, U {M,+}. The problem of
finding which matching should be added to the subset M, is called the pricing problem.
This process continues until the pricing problem can find no matching that violates a
constraint in the dual. In this case, the optimal solution for the master problem over all
matchings in M has been found (Bertsimas and Tsitsiklis, 1997).

The working of a column generation approach will be illustrated for the WRLD-LP
formulation from Section 2.2.2. Note that the application of column generation to the
binary search formulation for the Maximin decomposition from Section 2.3.4 will be very
similar since that formulation can be reformulated in such a way that the constraints are
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identical to the constraints in the WRLD-LP formulation.® Denoting the dual variables
of constraints (2.1) and (2.2) by the variables y;; and z, the dual formulation of the
WRLD-LP formulation is:

min Z—Z Zp?j'yij

c,eC Sj es

Subject to:

z—ZZm%-yUZZZij; VM, eM (2.13)

c;eC SjES ceC SjES
Yij = 0. Ve e, sj € S (2.14)

Suppose z* is an optimal solution to the restricted WRLD-LP formulation with cor-
responding solutions y* and z* for the dual variables. By strong duality, this solution
is only optimal if it is feasible in the dual, i.e. no matching M, € M exists that vio-
lates constraints (2.13) and (2.14). More formally, no M,, € M should exist for which
Y eeC Zsjes(l +y55) - mZT], > z*. To verify this, a pricing problem can be defined with
decision variables m;; and with the following objective function:

max Z Z(l +y55) - M-

ceC Sj es

However, this pricing problem differs from a regular weighted matching problem, which
can be solved efficiently, as the resulting matching should satisfy certain properties,
depending on the desired matching mechanism. If, for example, the RSD mechanism is
used, the resulting matching should be ex-post Pareto efficient. A solution for how this
difficulty could be overcome and how the pricing problem could be solved remains an
open question and is left as a direction for further research.

5This is done by changing the equality sign in Equation (2.10) to a greater than or equal to sign and
by changing the objective function to minimizing Zci Zsj > (mj; - xr — piz). If the objective function
equals zero, a feasible decomposition has been found.



Chapter 3

Results

This chapter evaluates the performance of the methods described in the previous chapter
with respect to several desirable criteria. Section 3.1 introduces the real-world data from
Antwerp and Ghent, as well as the working of the created data generator. Section 3.2
provides an overview of the performance of the different mechanisms for the data sets
of Antwerp and Ghent. Sections 3.3 and 3.4 discuss the performance of the WRLD
procedure and the Maximin decomposition. Section 3.5 compares the performances of
the PS mechanism and the WRLD procedure and explores the possible application of
the Maximin decomposition to the PS mechanism. Lastly, Section 3.6 evaluates the
strategy-proofness of the WRLD procedure and of the PS mechanism.

3.1 Data

In order to compare the relative performance of the methods introduced in Chapter 2
to traditional mechanisms such as RDA or RSD, data on student preferences and school
capacities are required. Both real-life data (described in Section 3.1.1) and generated
data (described in Section 3.1.2) will be evaluated. In this chapter, all students will be
considered to have the same priorities in the schools. This is in correspondence with the
Flemish context for secondary education, in which the priority groups, such as brothers
and sisters from students who are already enrolled or children of school employees, are
enrolled in a period prior to the main application period (see Section 1.3.2). Moreover,
in this chapter, mechanisms that aim to obtain a better social mix will not be taken into
consideration; this issue will be the topic of Section 4.1.

3.1.1 Data of Antwerp and Ghent

Two real-world data sets will be considered in this thesis. The first data set is from
LOP Antwerp and contains the applications for the primary schools in the academic
year of 2014-2015. Due to privacy considerations, the preferences in the data set are
not identical to the true preferences that were submitted by the students, but they
are nevertheless similar. Secondly, the submitted preferences from LOP Ghent for the
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secondary schools in the academic year of 2018-2019 will be considered. In the remainder
of this section, the submitted preferences will be assumed to be the true preferences of
the students.! The main characteristics of both data sets are summarized in Table 3.1
and the distribution of the capacities and the lengths of the submitted preference lists
can be found in Appendices B.1 and B.2.

Table 3.1: Main characteristics of the data sets of Antwerp and Ghent (standard devia-
tion in parentheses)

Antwerp Ghent
Number of students 4236 3081
Number of schools 186 64
Ratio students/schools 22,77 48.14
Total capacity 4653 3687
Average capacity 25.02 (12.31) 57.61 (45.88)
Average length preference list 4.18 (2.66) 2.42 (1.05)

The data set of Antwerp is larger, but the number of available places on each school
in Antwerp is smaller. This, in turn, causes the number of submitted preferences by
the students to be higher in Antwerp than in Ghent (see Appendix B.2). Furthermore,
the total capacity exceeds the number of students in both data sets. Nevertheless, it
is not possible to assign all students to their school of first choice as in both data sets
approximately 10% more seats would be required (see Appendix B.3).

With respect to the popularity of the submitted preferences, several observations can
be made. The popularity of school s; € § will be measured by the popularity ratio
pop;, which is defined as the total number of times school s; appears in a preference
list, divided by the capacity g; of school s;:

‘{Ci € C:Sj >e; 0}‘
aj '

pop; =

The distribution of the popularity ratios in Antwerp and Ghent can be found in Ap-
pendix B.4. Unless stated differently, the 10% schools with the highest popularity ratio
will be considered as popular schools. On average, students who submit a shorter pref-
erence list have a lower probability of listing a popular school as their first choice. In
Figure 3.1, for each possible number of submitted preferences, the proportion of the

!The mechanism that is used in both cities is the School-proposing DA. As discussed in Sections 1.3.3
and 3.6.2, this mechanism is not entirely strategy-proof, but the possibilities for manipulation are not
straightforward (in contrast to e.g. the Boston mechanism), which means that the assumption that the
submitted preferences correspond to the true preferences is reasonable.
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students who submitted a popular school as their first choice is plotted. As a refer-
ence, the dashed lines represent the number of times a preference list of that length
is submitted (these numbers are identical to the histograms in Appendix B.2). This
observation could be explained by the fact that students who submit a popular school
as their first choice are, in general, aware of the popularity of that school and therefore
submit supplementary choices to decrease the probability of not being assigned to any
school.
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Figure 3.1: Probability of popular first choice with respect to the length of the preference
list

Secondly, whereas in the data set of Antwerp, schools with a lower capacity clearly have
a higher popularity ratio, this is not the case for the data set of Ghent. In Figure 3.2, the
schools are sorted in 10 groups of increasing capacity and the average popularity ratio
for each group of schools is plotted.? This observation is confirmed by the correlation
between the capacity and the popularity, which is equal to -0.33 in Antwerp and to 0.21
in Ghent.

Lastly, it seems plausible that students who submit a popular school as their first choice
would have a higher probability of submitting popular schools for their other choices
as well. However, as shown in Appendix B.5, this effect is not large for Antwerp and
Ghent.

2If schools with the same capacity had to be assigned to different groups, this selection was made
randomly.
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Figure 3.2: Popularity in function of increasing capacity

3.1.2 Data generation

If the effects of different methods would only be evaluated on the data sets of Antwerp and
Ghent, it is possible that the resulting observations are not valid in general, but are only
present for data sets with very specific characteristics. To check which characteristics
influence the final results, the methods will be evaluated on generated data, as this allows
us to parameterize certain properties. The selection of the set of parameters that can be
controlled is motivated by the observations from Section 3.1.1, and is described in detail
in Table 3.2. The values of these parameters for the data sets of Antwerp and Ghent are
included in Appendix B.5.

Table 3.2: Data generation parameters

Parameter Description

Nstudents The number of students.
Nschools The number of schools.

Capacity ratio The ratio of the total capacity over the number of students.

Pep The correlation between the capacity and the popularity ratio.
Hpref The mean length of the preference lists.
Opref The standard deviation of the length of the preference lists.
CV, The ratio of the standard deviation of the capacities over the mean

capacity.
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CV, The ratio of the standard deviation of the popularity ratio over the mean
popularity ratio.

Ay The difference in the popularity of the school of someone who submitted
a preference list of average length, calculated as the mean of one and
the maximum length of a preference list, compared to someone who
submitted a preference list with only one school (see Figure 3.1).

Ao The difference between the probability of submitting a popular school if
the first choice was a popular school, compared to when the first choice
was an unpopular school.

Popularity %  The percentage of the schools with the highest popularity ratio that will
be defined to be popular.

The data generation process consists of five steps:

1. In the first step, correlated capacities and popularity ratios have to be generated.
This is done by firstly generating independent capacities and popularity ratios
from the standard normal distribution. These variables are then transformed by
multiplying them with the upper triangle matrix that is obtained after the Cholesky
decomposition of the predefined covariance matrix (Golub and Van Loan, 1996,
p. 143). This procedure is described in detail in Appendix B.6.

2. Secondly, the lengths of the preference lists are generated from a normal distri-
bution with the desired mean and standard deviation. The lengths are rounded
to the closest integer. If this integer is smaller than one, it is set equal to one.
Similarly, if it is larger than the number of schools, it is set equal to the number
of schools.

3. In the next step, the capacities are transformed such that they correspond with the
desired mean and standard deviation. Because of the use of the normal distribution
in the first step, however, it is possible that some schools have a negative or very
small capacity after this transformation. In that case, for each of these schools, the
capacity is re-sampled, together with a new correlated popularity ratio, until all
school capacities are feasible. After the re-sampling, the capacities are transformed
once again to have the desired mean, and will be rounded to the closest integer.

4. Once the capacities and the lengths of the preference lists have been determined,
the popularity ratios of all schools are transformed to correspond with the desired
mean, namely the total number of expressed preferences over the number of schools.
Similarly to the second step, if the popularity ratio of a school is negative or very
small, it is re-sampled and transformed to have the desired correlation with the
corresponding capacity of the school. After the re-sampling, the popularity ratios
are transformed once more to meet the desired mean.
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5. Lastly, the preference lists of the students are filled. This is done by determining,
for each student and for each place in his/her preference list, the probability of
choosing a popular school. Consequently, in the group of popular (unpopular)
schools, each school is selected with a probability that is equal to the capacity of
that school compared to the capacity of all popular (unpopular) schools. For the
first choice, this probability is only determined by the difference in the probability
of selecting a popular school that is caused by the length of the preference list (Aq,
see Table 3.2) and by the proportion of seats in popular schools with respect to
the total number of seats. For the other choices, the probability also depends on
whether or not the first choice was popular (Ag, see Table 3.2).

Because of the re-sampling of both the capacities and the popularity ratios in the third
and the fourth step, the final distributions of these two variables will no longer be per-
fectly normally distributed and the final correlation p., between the capacities and the
popularity ratios will not be as requested.

To check the effect on the distribution of the capacities and the popularity ratios, it
suffices to evaluate the standard deviations of both variables, as the means have been
fixed to the desired values after the re-sampling. As shown in Appendix B.7, however,
although the coefficient of variation is lower than the desired value for both the capacity
and the popularity ratio due to the re-sampling, the difference is rather limited in size
and is approximately constant, regardless of the number of students and schools. More-
over, Appendix B.8 shows that the proportion of the schools for which the capacity or
the popularity ratio has to be re-sampled is rather limited as well, but that the percent-
age is slightly higher when the average number of students per school is low.

To check the effects of re-sampling on the final correlation, a Monte-Carlo simulation
is performed to calculate, for different requested correlations p.,, the average observed
correlation p., over 5,000 generated data sets with the same properties as the one from
Ghent.? As illustrated in Figure 3.3, the observed correlation Pep is less strong than the
requested correlation p.y,, regardless of the sign. Similar results are true for other choices
of the parameters.

3.2 General comparison of mechanisms for Antwerp and
Ghent

Before evaluating the effects of the WRLD procedure and the Maximin decomposition,
the traditional mechanisms will be compared, together with the PS, on the data sets
of Antwerp and Ghent to benchmark the performance of the current mechanisms in
Flanders. Figure 3.4 shows the cumulative proportion of the students that are assigned

3 As only the capacities, the lengths of the preference lists and the popularity ratios of the schools have
to be generated to check the correlation between the capacities and the popularity ratios, all parameters
except pep, A1 and As are set equal to the values in Ghent, which are mentioned in Appendix B.5.
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Figure 3.3: Monte-Carlo simulation (N = 5000) to obtain the average observed correla-
tion p, for different values of p.,

to one of their p most preferred schools for the different mechanisms, both in Antwerp
and in Ghent. The exact percentages can be found in Appendices B.9 and B.10. As
the School-proposing DA performs only slightly worse than the Student-proposing DA,
both curves would practically coincide in Figure 3.4. Therefore, only the curve of the
Student-proposing DA is shown in Figure 3.4 and only the Student-proposing DA will
be discussed in the remainder of this chapter.

The expected total number of assigned students in Antwerp is approximately the same
for all mechanisms, whereas the difference in the number of students that is assigned
to their school of first choice is smaller for the DA(MTB) compared to the RSD or the
Boston mechanism. Nevertheless, DA(MTB) is not ex-post Pareto dominated by any of
these mechanisms, as it assigns more students to one of their top p choices for p > 3. In
Ghent, on the other hand, there is a clear trade-off between the proportion of students
that are assigned to their first choice and the total number of assigned students. More-
over, as can be seen in Appendices B.9 and B.10, both in Antwerp and in Ghent, the PS
mechanism will always assign more students to their top p choices than the RSD for any
p. However, as the difference is small, the curves of both mechanisms almost coincide in
Figure 3.4.

Next to the cumulative profiles, another relevant criterion to judge the desirability of a
mechanism is whether or not students face the possibility to exchange their allocated
school with a student or a group of students in such a way that all students who are
involved in an exchange are better off. These exchanges are also called improvement
cycles (ICs). In this context, the distinction should be made between all possible ICs
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Figure 3.4: Cumulative proportion of the students that is assigned to one of their p most
preferred schools (average of 2000 tie-breaking rules)

that are experienced by the students and the stable improvement cycles (SICs), in which
all involved students will still have a higher priority on their new school than all other
students who prefer that school to their current assignment. In the context of Flanders,
however, schools do not prioritize over the students (Section 1.3.2), and, therefore, all
improvement cycles will be stable.

In order to quantify the degree to which stable improvement cycles are present in a
given matching, the total number of students that face the possibility of benefiting from
a SIC will be calculated. This number will serve as an upper bound for the final num-
ber of students that will be involved in an SIC. This upper bound can be found by
firstly constructing an enwvy graph. The envy graph to find all SICs is a directed graph
with one node for each student and an edge from student ¢; € C to student ¢ € C' if
M(Ck) >e; M(Cz)

Once the envy graph is constructed, it will be decomposed into strongly connected com-
ponents (SCCs). * For each student who is part of an SCC with more than one element,
there exists at least one stable improvement cycle. The average number of students who

4A set of nodes G is strongly connected if for each node g € G it is possible to reach any other node
h € G by following a sequence of directed edges, or a path (Tarjan, 1972). The decomposition of a graph
into SCCs is the process of finding all SCCs. In this thesis, this decomposition will be obtained by the
algorithm that was proposed by Tarjan (1972).
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are part of at least one possible SIC in Antwerp and Ghent for the DA with MTB are
shown in Table 3.3. Both for Antwerp and for Ghent there is a lot of variance in the
number of students who could benefit from an SIC. Moreover, it is remarkable that the
proportion, and even the absolute number, of the students who are part of at least one
SIC is lower in Antwerp than in Ghent.

As the RSD and the Boston mechanisms are ex-post Pareto efficient, the number of
SICs is, by definition, equal to zero in both mechanisms.

Table 3.3: Upper bound on the number of student (proportion of the students) that are
involved in an SIC in Ghent and Antwerp (average over 2,000 tie-breaking rules)

Antwerp Ghent
. Students Students
Mechanism in SIC MIN MAX in SIC MIN MAX
224.5 115 325 258.1 166 324

DA(MTB) (5.30%)  (2.71%) (7.67%)  (8.38%)  (5.39%) (10.52%)

3.3 Waste-Reducing Lottery Design (WRLD)

To check the size of the improvements of the Waste-Reducing Lottery Design (WRLD)
procedure, an upper bound on the waste that can be captured will be defined. As defined
in Section 2.1.2, an assignment is wasteful if the sum of the allocation probabilities for
a certain school is smaller than the available capacity and if there exists at least one
student who prefers that school to another school (or the outside option) to which
(s)he is assigned with a strictly positive probability. Consider a probabilistic assignment
P = [p;j] and denote the set of students that experience waste on school s; € S by
W; c C. For each school s; € S, the upper bound UB; on the waste that can be
captured by the WRLD procedure is the minimum of the expected number of seats that
is left unassigned on s; and of the sum of the waste that is experienced by all students

ci € Wyt
UBj:min{qj— Zpkﬁ Z (1_ Zp”)}'

cLeC c;EW; s1€S

The total possible waste reduction UB is the sum of the possible waste reductions on
each school, and the relative UB is the ratio of the upper bound over the number of stu-
dents. It can be noted that, if a student experiences waste on multiple schools, double
counting might occur in this definition of the upper bound. Nevertheless, the size of the
double counting is limited as it will be possible to reduce the waste by an amount that is
approximately equal to the upper bound if the number of considered tie-breaking rules
in the sample 7T is sufficiently large, as will be shown in Section 3.3.3.
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Given this observation and given the fact that obtaining the result of the WRLD pro-
cedure is a computationally intensive task, in the remainder of this section, the upper
bound will be used as a proxy for the size of the waste reduction by the WRLD procedure
in generated data sets with different parameters. The basic parameters will be set equal
to the values in Ghent (see Appendix B.5). To evaluate the effect of one parameter, only
the value of that parameter will be changed while keeping all others constant.

3.3.1 Possible improvements for different mechanisms

In general, the possibilities for waste reduction are the smallest for the DA mechanism
with MTB and are comparable for the RSD and the Boston mechanisms. Table 3.4
shows the average upper bound on 100 data sets with the parameter values of Ghent,
together with the standard deviations. Moreover, also the upper bounds for the waste
improvements in Antwerp and Ghent are included. If, for example, the RSD mechanism
would be used in Antwerp, the WRLD procedure will not be able to assign more than
4.64 extra students to a school. In the remainder of this section, the WRLD procedure

Table 3.4: Comparison of the average upper bound on the waste (and the standard
deviation o) that can be reduced by the WRLD procedure in generated data (average
over 100 generated data sets, 200 considered tie-breaking rules each) and in Antwerp
and Ghent (200 considered tie-breaking rules)

Mechanism UB OUB UBaAanT UBGHE

DA(MTB) 104 043 3.32 0.36
RSD 153 0.64 4.64 1.72
BOSTON 1.62  0.68 3.49 2.31

will be applied to the probabilistic assignments that result from the RSD mechanism, as
its small computation time will facilitate the execution of a larger number of iterations.

3.3.2 Impact of data generation parameters

To get a better idea of the drivers behind the size of the waste reduction possibilities
by the WRLD procedure, the effects of several data properties will be evaluated in this
subsection.

First of all, as shown in the left panel of Figure 3.5, the relative waste reduction possi-
bilities with respect to the number of students are larger when the average number of
students per school is low, which is equivalent to a relatively large number of schools.
This can be explained by the fact that, in each school, the relative size of the possible
waste, with respect to the capacity, is independent from, or even negatively correlated
with the school’s capacity (this correlation is equal to -0.02 in Antwerp and to -0.26
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in Ghent). Therefore, a larger relative number of schools implies a higher total waste.®
Moreover, the relative waste reduction possibilities seem to be slightly higher for a larger
number of students.

Secondly, the possibilities for waste reduction are the largest when the total capac-
ity is approximately equal to the number of students, as shown in the right panel of
Figure 3.5. The logic behind this observation is that, when the overall capacity is very
small (large), the degree of wastefulness will be small as most seats in schools (resp.
most students) are assigned.
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Figure 3.5: Average relative waste reduction possibilities with respect to the problem
instance size (left panel) and to the ratio of all students over the total capacity (right
panel) (average over 200 data sets, each with |7| = 200)

Lastly, as shown in Appendix B.11, both the effect of the preference lists’ length on the
popularity of the submitted schools (A1) and the correlation between the capacity and
the popularity of the schools (pcp) have no clear impact on the size of the possible waste
reductions.

5 Another explanation might be that the upper bound on the relative waste is analysed, in which
double counting of waste is more likely if a student experiences waste on different schools, rather than
the actual reduction by the WRLD procedure. However, as discussed in Section 3.3.3, the size of this
double counting will not be large as for a sufficiently large sample of tie-breaking rules T, the waste can
be reduced by an amount that is approximately equal to the upper bound.
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3.3.3 Impact of number of considered tie-breaking rules

So far, only the upper bound on the waste that can be captured has been considered. As
the set of all tie-breaking rules 7 and corresponding matchings M is very large, how-
ever, it is only possible to consider a subset of tie breaking rules T and corresponding
matchings M for the WRLD procedure. Therefore, the final proportion of the waste
that can be captured depends on the properties of the matchings in M. As, in this
thesis, the matchings in M are simply a random sample of M, the size of the sample
will determine the proportion of waste that is captured, as a larger sample implies a

larger number of possible decompositions.

As can be seen in the left panel of Figure 3.6, the marginal increase in the propor-
tion of captured waste by adding more matchings to the sample is very small when the
size of the sample is approximately equal to five times the number of students. Of course,
a larger sample size will always lead to better results, but, as shown in the right panel
of Figure 3.6, larger samples require a longer computation time.® Therefore, a sample
size of five times the number of students can serve as a rule of thumb that balances the
trade-off between the proportion of waste captured and the computation time.

With respect to the number of students, the left panel of Figure 3.6 shows that, when
the number of students increases, a larger relative number of considered tie-breaking
rules is needed to capture the same proportion of waste. At the same time, a larger
number of students implies a strong increase in the computation times, as shown in the
right panel of Figure 3.6.

100 T T T ; . 250

200 students
500 students
1000 students

90 +

80 + 200 +
70+

60 +

% of captured waste

50 +

200 students
500 students

1000 students //
, , 0

0 2 4 [§ 8 10 12 0 2 4 6 8 10 12
Ratio of |7 over number of students Ratio of |T| over number of students

Figure 3.6: Proportion of captured waste (left panel) and time (right panel) for the
WRLD procedure (average over 10 data sets)

5The model was implemented using CPLEX for MATLAB and was run on a Dell Latitude E6530 PC
with an Intel(R) Core(TM) i5-3340M 2.7GHz processor and 8 GB RAM, equipped with Windows 10.
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3.3.4 Profile of WRLD assignment for Antwerp and Ghent

Because of the way in which the WRLD procedure is defined, it will always result in
a probabilistic assignment that stochastically dominates the probabilistic assignment to
which the procedure was applied. Table 3.5 displays the expected number of students
the WRLD procedure assigns additionally to each preference in comparison to the RSD
mechanism, together with the required time to obtain the improvements and the number
of tie-breaking rules in the sample set T. For Ghent, the number of tie-breaking rules
in 7 is set equal to 15,000, following the observations from Section 3.3.3. For Antwerp,
however, the results could not be obtained for two reasons. First of all, a smaller number
of samples has to be used, because the memory needed to store the binary variable mj;,
which equals one if in matching M, € M student ¢; € C is assigned to school s; € 5,
exceeds the available RAM memory.” Secondly, even for a smaller sample size of 8,000
tie-breaking rules, the CPLEX solver could not find an optimal solution in a period of
18 hours because of the large size of the problem instance.

Table 3.5: Expected number of additionally assigned students by the WRLD procedure
in comparison to the RSD mechanism in Ghent (with |7| = 15,000)

Preference Ghent

1 0.630

2 0.760

3 0.008

4 0.089
UNASSIGNED -1.485

Waste captured % 83.68%
time (in min) 79.9

Number of beneficial students 367 (11.91%)

In Ghent, the majority of the efficiency gains are students who are extra assigned to
their school of first or second choice. Moreover, approximately 12% of the students
would experience an expected increase in their overall allocation probabilities, but these
increases are very small on average.

"Defining this variable as a sparse matrix would solve this issue, but this has not been done because
MATLAB does not support three-dimensional sparse matrices.
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3.4 Maximin decomposition

The main performance measure for the Maximin decomposition will be the worst-case
difference (WCD), which equals the difference between the minimum number of assigned
students in any of the decomposition’s matchings between the Maximin decomposition
and the initial decomposition. Consider a probabilistic assignment P € P that can be
decomposed into a weighted sum of the matchings in M. Denote the set of matchings
M, € M that have a strictly positive weight in the decomposition by M, C M, and
let ¥ be the minimum number of assigned students in all matchings in M,:

X = min {ZZm;}

MreMs c;eC SjGS

The worst-case difference of an alternative decomposition of P, in which the set of
matchings with a strictly positive weight is denoted by M/, and the minimum number
of assigned students in M/, by X/, is defined as:

WCD(M,, M) = X' — x.

The relative worst-case difference between decompositions is the ratio of the worst-case
difference over the number of students.

In any probabilistic assignment P € P, x will never be larger than the expected number
of assigned students in P, rounded down to the closest integer. Let xo be the minimum
number of assigned students in an initial decomposition of P with the matchings in M,
then an upper bound on the improvements in the worst-case difference by the Maximin
decomposition can be defined as:

UBwep (M) = LZ > pijJ — Xo-

c,ieC SjES

An upper bound that is equal to 20, for example, would mean that it is not possi-
ble to find a decomposition in which each matching will assign at least 21 students
more than the matching of the original decomposition that assigns the least students.
In Section 3.4.3, the extent to which this improvement can be captured will be discussed.

Similarly to Section 3.3, the data to evaluate the performance of the Maximin decom-
position will be generated by using the parameters of the data set of Ghent.

3.4.1 Possible improvements in WCD for different mechanisms

Table 3.6 shows that, as expected from the comparisons of the mechanisms on the data
of Antwerp and Ghent (Appendices B.9 and B.10), the minimum number of assigned stu-
dents is the highest among the traditional mechanisms for the DA with MTB. Moreover,
a clear increase in the minimum number of assigned students y is present because of
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the WRLD procedure, although the increase in the average number of assigned students
by the WRLD procedure is rather small. This implies that the possible improvements
in the worst-case differences are the largest for the traditional mechanisms. Moreover,
Table 3.6 shows the possible improvements in Antwerp and Ghent.® The upper bound
for the increase in y by the Maximin decomposition when the DA with MTB is used in
Ghent, for example, is equal to 23 students.

Table 3.6: Average minimum (x) and expected number of assigned students, upper
bound for Maximin decomposition (UB) for different mechanisms (average over 20 gen-
erated data sets with 500 students and 15 schools, each with |7] = 2,000) and the upper
bounds for Antwerp and Ghent (|7 = 15,000)

. Average

Mechanism assigngd UB JUB UBANT UBGHE
DA(MTB) 468.0 477.8 9.35 2.28 25 23
WRLD(DA(MTB)) 469.0 4780 830 2.10 - 23
RSD 464.6 474.8 9.70 2.15 33 25
WRLD(RSD) 466.1 475.0 8.35 2.13 - 25
BOSTON 463.6 473.5 9.35 2.35 33 23
WRLD(BOSTON) 465.0 473.7 8.20 2.02 - 20

Similarly to Section 3.3, in the remainder of this section, the Maximin decomposition
will be applied to the probabilistic assignments that result from the RSD mechanism.

3.4.2 Impact of data generation parameters

The effects of the number of students and schools on the maximum relative improvements
by the Maximin decomposition differs from the WRLD procedure (Section 3.3.2) in two
respects. Firstly, the upper bound on the relative improvements is lower for a larger
number of students, as shown in the left panel of Figure 3.7. This could be explained
by the fact that the relative difference between the smallest and the largest number of
assigned students, over all matchings in the decomposition, decreases with the number
of students (illustrated in Appendix B.12). Secondly, the average number of students
on each school seems to have a small negative impact on the relative WCD when the
number of students is small, but not for a larger number of students.

The effect of a change in overall capacity, on the other hand, is similar to the effect

8 As mentioned in Section 3.3.4, obtaining the improvements by the WRLD procedure for Antwerp
with a large enough set of samples is computationally intensive. Therefore, the results for the WRLD
procedure could not be obtained.
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for the WRLD procedure: the possibilities for improvements in relative WCD are the
largest when the number of students is slightly larger than the total capacity (right panel
Figure 3.7). In a problem instance with a very small (large) overall capacity, most seats
in schools (resp. most students) will be assigned, regardless of the random tie-breaking
rules in 7. This causes a decrease in the variability of the number of assigned students
over all matchings, which in turn decreases the upper bound on the relative worst-case
difference.

0.02 . . T 0.02

500 students
2000 students

0.015 M

0.01 +

200 students
500 students

0.015

0.01 +

0.005

UB relative worst-case difference
UB relative worst-case difference

0 n L L n n
20 30 40 50 60 ).5 1 1.5 2
Average number of students per school Ratio of all students over total capacity

Figure 3.7: Average relative worst-case difference with respect to the problem instance
size (left panel) and to the ratio of all students over the total capacity (right panel)
(average over 200 data sets, each with |7 = 200)

Lastly, as displayed in Appendix B.13, the upper bound for the relative WCD is slightly
lower when the popularity of the submitted schools is more dependent on the length of
the preference list (A1). The correlation between a school’s capacity and its popularity,
on the other hand, has no clear impact on the relative WCD.

3.4.3 Impact of number of considered tie-breaking rules

Similarly to the WLRD procedure, the quality of the Maximin decomposition depends
on the sample of considered tie-breaking rules 7 and corresponding matchings M. To
illustrate this, consider the Maximin decomposition of an arbitrary probabilistic assign-
ment P € P for two sets of considered tie-breaking rules of different sizes, as shown in
Figure 3.8. This example clearly illustrates that the Maximin decomposition also causes
a strong decrease in the proportion of the final matchings that assign many students to
a school, as it would otherwise not be possible to assign the same expected number of
students as in P.

The left panel in Figure 3.9 shows that, in comparison to the WRLD procedure, a larger
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sample size is required to obtain a relative worst-case difference that is close to the upper
bound. Moreover, increasing the number of students strongly affects the gap between
the upper bound and relative worst-case difference of the found solution. This implies
that larger instances require a larger sample size. Unfortunately, the computation times
increase with the ratio of the sample size over the
clear rule of thumb can be defined on the sample size.
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3.4.4 MILP-formulation vs. binary search

In Sections 2.3.2 and 2.3.4, two different models to obtain the Maximin decomposition
of a probabilistic assignment P have been discussed. The first method uses a Mixed
Integer Linear Programming (MILP) model and the second a binary search method.
Both methods obtain the same result, but, as shown in Figure 3.10, the computation
time of the binary search method increase at a slower pace than the one of the MILP-
model. Therefore, it is advisable to obtain the Maximin decomposition of a probabilistic
assignment with the binary search method.

If the binary search method would be applied to the data set of Ghent and for a sample
set of 20,000 tie-breaking rules, an improvement in the worst-case difference of eight
students can be realised. As each of the five iterations of the binary search method
requires approximately one hour of computation time, the overall time to find the opti-
mal solution in Ghent for the given 7 is about 4.5 hours. For the reasons explained in
Section 3.3.4, the Maximin decomposition for the data set of Antwerp for a sufficiently
large sample of tie-breaking rules could not be found within a reasonable time period.
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Figure 3.10: Time for different methods to obtain Maximin decomposition with respect
to number of students (left panel, with |7] = 2,000) and sample size (right panel, with
500 students) (average over 10 data sets)

3.5 Probabilistic Serial mechanism

This section will discuss the performance of the PS mechanism introduced by Bogo-
molnaia and Moulin (2001). Whereas the WRLD procedure reduces as much waste as
possible, the PS mechanism always results in an ordinally efficient assignment, which
implies non-wastefulness. Therefore, no improvement can be realised by applying the
WRLD procedure to the assignment of the PS mechanism. Section 3.5.1 compares the
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profiles of both methods and Section 3.5.2 discusses the possibilities for applying the
Maximin decomposition to the assignment of the PS mechanism.

3.5.1 WRLD vs. PS

The left panel of Figure 3.11 contains the average difference in the number of assigned
students between (i) the PS and the WRLD procedure, (ii) the PS and the RSD and
(iii) the WRLD procedure and the RSD. The PS mechanism does not stochastically
dominate the assignment from the WRLD procedure on average: slightly more students
will be assigned to their first choice under the PS, but the overall number of assigned
students is slightly larger for the WRLD procedure. The reasoning behind this is that,
by construction, the WRLD procedure reduces waste in a given wasteful assignment by
maximizing the expected number of students, whereas the PS makes sure that no stu-
dents would want to exchange allocation probabilities for different schools, which implies
non-wastefulness.

The right panel of Figure 3.11, in turn, shows in how many of the 50 data sets a
mechanism’s assignment stochastically dominated another mechanism’s assignment. By
construction, the WRLD procedure stochastically dominated the RSD in all data sets.
The PS mechanism, however, only stochastically dominated the RSD in almost half of
the data sets and was even dominated once. Although this seems counter-intuitive at
first sight, this observation can be explained by the fact that only a sample set of 5,000
tie-breaking rules has been considered and not the entire set of all tie-breaking rules 7T .
Imagine, for example, that only one tie-breaking rule 7 € 7 would be considered for
the RSD mechanism. In that case, if the resulting matching M, € M assigns more stu-
dents to a school than the expected number of assigned students by the PS mechanism,
that assignment is not stochastically dominated by the PS. In fact, as shown in Ap-
pendix B.14, regardless of the sample size, PS will dominate the RSD in approximately
half of the data sets.

Lastly, the PS stochastically dominated the WRLD procedure in four data sets, whereas
the assignment of the WRLD procedure dominated the PS once. Given these observa-
tions, it cannot be concluded that one of the two mechanisms outperforms the other, as
both mechanisms have their merits.

3.5.2 Maximin decomposition of PS

The Maximin decomposition can be applied to any probabilistic assignment, including
the resulting assignment Ppg € P from the PS mechanism. However, in contrast to
the RSD or the RDA mechanism, Ppg is not an equally weighted average of the match-
ings in M C M that are related to the sample of tie-breaking rules in 7 C 7.9 Hence, a
feasible decomposition of the assignment Ppg with the matchings in M might not exist

9 Assuming that duplicate matchings in /\;l7 as discussed in Section 2.4, have not been removed.
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another mechanism (right panel) (over 50 data sets with 500 students and |7| = 5,000)

if the matchings in M are simply determined by random sampling, although a (generally
not unique) decomposition with the set of all matchings in M is proven to exist by the
Birkhoff-von Neumann theorem that has been described in Section 2.1.1. As shown in
Appendix B.15, the proportion of the data sets in which a feasible decomposition of the
probabilistic assignment by the PS mechanism can be found, decreases with the number
of students. For a problem instance of only 1,000 students, for example, and a large
sample of 20,000 tie-breaking rules a feasible decomposition only exists in half of the
generated data sets.

To tackle this issue, an alternative approach, next to the possibility of column generation
that has been discussed in Section 2.5, is to construct a feasible decomposition of the
probabilistic assignment Ppg. Kesten et al. (2017), for example, proposed a method to
construct an equal-weight decomposition of Ppg in which all individual matchings of
the decomposition can be obtained by the RSD mechanism. After constructing such a
feasible decomposition, the Maximin decomposition can be applied to this set of match-
ings, which could optionally be supplemented by other matchings in M. A possible
direction for further research consists of implementing this approach and investigating
its performance.
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3.6 Strategy-proofness

As has been mentioned in previous sections, the RSD and the DA are strategy-proof
mechanisms and the Maximin decomposition does not affect strategy-proofness. The
WRLD procedure, the School-proposing DA, the PS and the Boston mechanism, on
the other hand, are not strategy-proof. Nevertheless, some mechanisms that are not
strategy-proof might be more vulnerable to manipulation than others. This section will
evaluate the size of the incentives to misreport for these non-strategy-proof mechanisms.

3.6.1 Strategy-proofness axioms

As discussed in Section 1.2.5, several relaxations and measurements of strategy-proofness
have been proposed, but in this thesis, the axiomatic approach of Mennle and Seuken
(2014) will be adopted because it can be applied to data sets that are not large (in the
sense of Kojima and Manea (2010), see Section 1.2.5) and because the authors define
strategy-proofness by three intuitive axioms that can be verified for a certain mechanism
on a given data set.

Mennle and Seuken (2014) stated that a mechanism is strategy-proof if swapping the
positions in the preference list of two adjacent schools sj, sy € S with s; >, s, does
not affect the allocation probabilities of the other schools and will either leave the al-
location probabilities of the swapped schools s; and s; unchanged, or will cause both
a strict increase in the allocation probability of school s; that is given a higher prefer-
ence after the swap and a strict decrease in the allocation probability of school s; that
is given a lower preference. Appendix B.16 contains a detailed description of their theory.

They showed that, although the PS mechanism is not strategy-proof, swapping the
positions in the preference list of two adjacent schools can only affect the allocation
probabilities of less preferred schools in the PS and not of the swapped schools them-
selves or of more preferred schools. For the WRLD procedure, on the other hand, no
such guarantee can be given as swapping two adjacent schools in the preference list might
change the allocation probability of any school in the preference list (see Table B.5 for a
comparison of all mechanisms), but the extent to which this affects students’ incentives
and their benefits of misreporting will be evaluated in the next subsection.

3.6.2 Incentives for misreporting in different mechanisms

Unlike for the Boston mechanism, the ways in which a student can benefit by misre-
porting are not clear in the PS, the School-proposing DA and in the WRLD procedure.
To check whether or not it is beneficial for a student to submit their best possible al-
ternative preference list >:?i’ assuming that student ¢; knows his/her best alternative,
an assumption has to be made about the underlying utility function u; of ¢;. Con-
sidering a survey about the utility function in Ghent in 2013-2014, as shown in Ap-
pendix B.17 (D’haeseleer, 2016), a conservative assumption would be a utility function
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u; = (1,0.9,0.81,...,0) for all students ¢; € C, in which the schools are ranked in or-
der of decreasing preference. This is a conservative assumption since the incentives to
misreport are higher when students are more indifferent between schools (see Exam-
ple B.16.1). In u;, the utility for the school of k-th choice is equal to 90% of the utility
for the school of (k—1)-th choice and the utility for the outside option and for all schools
that are less preferred than the outside option equals zero.

As considering all alternative preference lists is computationally intensive, only a subset
of all preference lists will be considered. To determine the useful subset of alternative
preference lists, the schools are firstly ordered according to the following rules:

— The school of first choice in the truthful preference list >., will be among the first
three choices in >, ;

— Only the positions of the five most preferred schools in >, are exchanged in >/,
and the order of the other schools remains unchanged;

— To consider a selection of the preference lists that contain a school that is not in >,
the most popular school that is not in >, is selected and different permutations
of this school and the two most preferred schools in >, are created. The other
places in >/, are filled with the remaining schools of >, without changing their
order.

These ordered lists of schools are then truncated to obtain preference lists of different
lengths. Denote the set of students who experience a gain in utility by submitting their
best alternative preference list >/, , instead of their true preference list >, by C, C C.

As shown in Table 3.7, the average gains in utility that can be made by misreport-
ing are very small for the PS mechanism and the WRLD procedure. Although the
number of students that could possibly experience a gain in the WRLD procedure is
relatively large, the size of all gains is limited and the maximum gain in utility that can
be made by misreporting is even smaller than for the PS. It is clear, however, that the
Boston mechanism is more vulnerable to manipulation by misreporting, as both the size
and the number of gains are large. For the School-proposing DA, on the other hand, the
possibilities for manipulation are extremely small.

Furthermore, Figure 3.12 shows that, for the PS mechanism, the incentives for misre-
porting decrease strongly when the relative number of schools decreases (i.e. when the
average number of students per school increases).!’ In Antwerp and in Ghent, the aver-
age number of students per school is equal to 23 and 48 (Table 3.1), which shows that

0The graph is obtained for the PS mechanism, as the PS is computationally more efficient than the
WRLD procedure or the Boston mechanism. Moreover, the number of students for which the graph
is obtained is rather small as for each alternative preference list, a probabilistic assignment has to be
calculated. As there are many possible alternative preference lists, this is a computationally intensive
task.
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Table 3.7: Utility gains by misreporting best alternative preference list (average over 10
data sets with 50 students and 10 schools)
School-prop.

PS WRLD BOSTON DA(MTB)
Average gain over C 0.0004 0.0005 0.0087 0.0000
Average gain over C 0.0294 0.0025 0.0803 0.0002
Students with gain 0.6 (1.20%) 5.8 (11.60%) 5.4 (10.80%) 0.5 (1.00%)
Maximum gain 0.0817 0.0347 0.3364 0.0008
Average utility 0.9135 0.9137 0.9106 0.9122

the incentives for misreporting in the PS will be very low in both cities. This observation
is in correspondence with the result by Kojima and Manea (2010) that it is a dominant
strategy to report truthfully for the PS if the problem instance is sufficiently large.

x10~*
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Gain in utility by misreporting
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Average number of students per school

Figure 3.12: Average gain in utility by misreporting for PS for different problem instance
sizes (average over 10 data sets)

In conclusion, it can be said that although the PS mechanism and the WRLD procedure
are not strategy-proof, they are not highly vulnerable to manipulation by students, in
contrast to the Boston mechanism. For the PS mechanism, submitting a false preference
list in which two schools are swapped might only be beneficial for the schools that are less
preferred than the swapped schools. For the WRLD procedure, on the other hand, this
guarantee is not valid, but as shown in Table 3.7, the gains of submitting an alternative
preference list are limited in size.
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Chapter 4

Considerations on implementation

In real-life student assignment problems, several additional complications are present
that have not been discussed in the previous chapters. This chapter briefly discusses
how the proposed methods could be combined with measures to improve the social mix
(Section 4.1), how the separation of twins could be avoided (Section 4.2) and to what
extent the proposed methods will be perceived as transparent (Section 4.3).

4.1 Social mix

This thesis did not investigate which mechanism should be applied if the mechanism
designer has the objective to reduce the level of school segregation between minority
and majority students, also called affirmative action (see Section 1.3). Designing such
a mechanism is not straightforward; it has been shown that in several mechanisms that
involve affirmative action, some students might actually be worse off in comparison to
the situation without affirmative action. If this is the case, the mechanism is said to
violate the property of minimal responsiveness (Kojima, 2012). For the system with
magjority quota, in which no school can assign more majority students than its majority
quota, these detrimental effects for minority student have been illustrated by Kojima
(2012). In response to these results, Hafalir et al. (2013) proposed a system with mi-
nority reserves, in which each school reserves a certain number of seats for minority
students, although majority students can also be assigned to those seats provided that
no minority student prefers that schools to his/her assigned school. However, Dogan
(2016) found that their proposal also violates minimal responsiveness, and he proposed
a method that is minimally responsive, but not strategy-proof.

As the WRLD procedure and the Maximin decomposition that have been introduced in
Chapter 2 can both be applied to all mechanisms that result in a probabilistic assign-
ment, they can be applied to any mechanism that involves affirmative action. However,
depending on the specific mechanism, some improvements can be made to the perfor-
mance of the WRLD procedure with respect to the social mix. Suppose, for example,
that school s; € S with a capacity of ¢; and a minority reserve of ri" < g; experiences
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a waste of w; € [0,1] and that both a minority student ¢™ € C' and a majority student
M ¢ C prefer school sj to the outside option and experience a waste w > w;. If the
expected number of assigned minority students to s; is smaller than the minority reserve,
and the difference is larger than the waste w; on school s;, then the waste of minority
student ¢™ on school s; would ideally be reduced by w;. The WRLD procedure, however,
will make no distinction between reducing the waste of student ¢™ or of student ¢™. A
possible direction for further research consists of developing a method to implement this
in the WRLD procedure.

4.2 Avoiding twin separation

Twins who submitted the same preference lists but are not assigned to the same school
are an often heard critique in the popular press.! One possible method to avoid this
issue is to submit one single preference list for both twins, but to reduce the capacity of
a school by two if the twins are assigned to that school. However, by doing this, twins
will have a slightly lower chance of being assigned to a school than an individual student
with the same preference list, as the twins will be rejected on a school if only one seat
remains. Alternatively, a system could be put in place in which schools can increase
their capacity by one if twins have the highest priority when only one seat remains. This
system, in turn, would cause the allocation probabilities for twins to be slightly better
than for an individual student with the same preferences. To illustrate the underlying
intuition, consider an example with two available school seats for one individual student
and one pair of twins. Whereas the individual student will only be assigned to the school
if (s)he is selected for the first seat, the twins will always be assigned to this school by
this alternative method, regardless of the tie-breaking rule.

As shown in Appendix B.18, which shows the difference in allocation probability to
the school of first choice between twins and an individual student with the same prefer-
ences, the size of the difference becomes extremely small when the number of students
per school increases for both methods. Further research might explore the existence of a
general method to assign twins to schools without affecting the allocation probabilities
compared to individual students and without violating the school capacities.

4.3 Transparency

A crucial element for the acceptance of any centralized application system is that parents
perceive the system to be fair and transparent; parents should understand the allocation
mechanism itself. Both the WRLD procedure and the Maximin decomposition, however,
make abstraction of the specifics of the allocation mechanism and add an extra level of
complexity. Moreover, both methods make use of a Linear Programming model, which
is a technique that most parents are not familiar with.

!See, for example, Snoekx (2018).
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Nevertheless, one could argue that as long as parent clearly understand the objective of
a certain method and trust the method to achieve this objective, an understanding of
the internal working of the method is not essential. The main idea behind both methods
that have been introduced in this thesis could be explained as making a selection of
the “best” final allocations of students to schools and assign weights to them. For the
Maximin decomposition, the “best” final allocations are the ones in which the number of
students that have not been assigned to a school are limited. For the WRLD procedure,
on the other hand, explaining which are the “best” final allocations is less straightfor-
ward, as the presence of waste in the probabilistic assignments of, for example, the RSD
or RDA mechanism is not intuitive.

Finally, in the case of the Maximin decomposition, a strong emphasis should be put
on the fact that submitting true preferences is still a dominant strategy and that the
Maximin decomposition will only make sure that the “bad” allocations, in which many
students are not assigned to any school, can no longer be selected to determine the final
matching.
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Chapter 5

Conclusion

In this thesis, I investigated how student welfare can be improved in a central alloca-
tion system of students to schools when schools are indifferent between large groups of
students and ties between students are broken randomly, as is the case for secondary
education in Flanders. In the literature review, it has been shown that using randomness
as a criterion to create artificial school priorities (random tie-breaking) in the traditional
mechanisms such as the Random Serial Dictatorship (RSD) or the Randomized Deferred
Acceptance (RDA) mechanism implies both a loss of efficiency and uncertainty about
the final number of students that are assigned to a school. Two new methods to tackle
these issues were introduced in this thesis. Both methods obtain their specific objective
by assigning weights to all possible ways of randomly breaking ties between students
(tie-breaking rules). These weights represent the probability with which a tie-breaking
rule will be selected to obtain the final allocation of students to schools.

Firstly, it is possible that, because of the use of random tie-breaking, not all available
seats on a school are assigned, whereas there are students who have a positive probability
of not being assigned to any school and who would prefer being assigned to that school to
not being assigned at all (waste). To tackle this issue, the Waste-Reducing Lottery De-
sign (WRLD) procedure will increase the allocation probabilities of these student-school
pairs by assigning specific weights to all tie-breaking rules. The WRLD procedure is
an alternative to the Probabilistic Serial (PS) mechanism by Bogomolnaia and Moulin
(2001) and, overall, it will generally assign a slightly higher number of students to a
school, whereas the PS will assign slightly more students to their school of first choice.
Both the WRLD procedure and the PS mechanism are not perfectly strategy-proof, but
the possibilities for manipulation are very limited.

Secondly, the use of random tie-breaking implies uncertainty about the final number
of assigned students. To reduce this uncertainty, the Maximin decomposition will maxi-
mize the total number of students that are assigned to a school in the worst-case scenario.
In doing so, the Maximin decomposition does not harm strategy-proofness as it respects
the allocation probabilities that were obtained by the mechanism to which it is applied.
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Several possible directions for further research can be explored to improve the per-
formance and to reduce the computation time of both the WRLD procedure and the
Maximin decomposition. Firstly, as the total number of ways in which ties can be ran-
domly broken is extremely large, in this thesis only a subset of these tie-breaking rules is
considered for both methods. A possible direction for further research is to explore other
methods of sampling that improve upon random sampling, as discussed in Section 2.4,
and to examine the possibility of column generation, as discussed in Section 2.5. More-
over, it could be examined to what extent it is possible to geographically partition the
student allocation problem by considering clusters of schools.

Lastly, I would like to emphasize the importance of the student allocation problem,
as the effect of the attended school on the development of a student cannot be underes-
timated. Therefore, a further investigation of this problem is essential, in the hope that
the obtained results will impact the implementation by well-informed decision makers.



Appendix A

Allocation mechanisms

A.1 Boston mechanism

The Boston mechanism proceeds in the following way:

— In the first step, each student applies to his/her most preferred school. If the
number of applicants on a certain school is higher than the capacity of that school,
the students with the highest priorities among the applicants are allocated to that
school and the others are rejected.

— In general, in the k-th step, each student who was rejected at step k — 1 applies
to his/her school of next choice. If the number of applicants and temporarily
allocated students on a certain school is higher than the capacity of that school,
the students with the highest priorities among the applicants are allocated to that
school and the others are rejected.

The Boston algorithm terminates when no student is rejected in a certain step. This is
the case when all students are either assigned to a school from their preference list, or
have been rejected by all schools on their preference list and have no more schools to

apply to.

Example A.1.1. To illustrate the Boston algorithm, consider the example from Section
1.1. The following table displays the intermediate matchings in every step of the algo-
rithm. For every step, the first column represents the school to which the corresponding
student has applied and the second column represent the position of that school in
his/her preference list. When a student is assigned to a school, that school is shown in
a box.
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student ‘ step 1 ‘ step 2 ‘ result

e |[sa) T[] 1|[s1) 1

c2 s 1| s1 2 0 0
C3 S3 1 @ 2 2
1

cs s 1][s) 1

In the first step, all students apply to their most preferred school, but only students 1
and 4 are allocated. Rejected students 2 and 3, therefore, apply to their school of second
choice and student 3 is allocated to school 2. Despite having a higher priority on school 1
than the allocated student 1, student 2 is rejected a second time as the available seat
had already been assigned to student 1 in the first step. Because student 2 has been

rejected on all schools of his/her preference list and has no more school to apply to, the
algorithm terminates.
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A.2 School-proposing Deferred Acceptance mechanism

The School-proposing Deferred Acceptance mechanism proceeds in the following way
(Hafalir et al., 2013):

— In the first step, each school proposes all of their available seats to the students
who have the highest priority in that school and who have included that school in
their preference list. Consecutively, each student will only retain the proposed seat
of the school (s)he prefers most among all proposing schools, and (s)he will reject
the other proposals. If a student rejects a proposed seat, that student is removed
from the priority list of that school.

— In general, in the k-th step, each school proposes all of the seats that have been
rejected in the previous step to the students with the highest priority who are still
present in the school’s priority list and who are not temporarily accepted on that
school. Consecutively, each student will only retain the proposed seat of the school
(s)he prefers most among the seat (s)he temporarily accepted in the previous step
and all proposing schools in this step. All other proposed seats are rejected. If a
student rejects a proposed seat (or the seat that was temporarily accepted in the
previous step), that student is removed from the priority list of that school.

The School-proposing Deferred Acceptance mechanism terminates when no school can
propose to a student or when no proposed seats are rejected.

Example A.2.1. To illustrate the School-proposing Deferred Acceptance, consider the
example from Section 1.1. As all schools only have one available seat, in the first step,
each school proposes to the student with the highest priority. As no student is proposed
to more than once, no seats are rejected and the algorithm terminates. The resulting
matching is:

student school preference

a S3 3
C2 S1 2
C3 S92 2
cq 0 0
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A.3 Top Trading Cycle (TTC)

The Top Trading Cycle (TTC) mechanism proceeds in the following way (Abdulkadiroglu
and Soénmez, 2003):

— In the first step, assign a counter to each school to keep track of the number of
seats that is still available on that school. This counter is initially set equal to the
capacities of the schools. Create a graph that contains one node for every student
and for every school. For each student, draw a directed edge from the student to
his/her most preferred school. Similarly, for each school, draw a directed edge from
the school to the student with the highest priority on that school. Since the number
of students and schools are finite, there is at least one cycle constructed by these
directed edges (Abdulkadiroglu and Sénmez, 2003). As each node has at most one
departing edge, each school and each student can be part of at most one cycle.
All students that are part of a cycle are assigned to their most preferred school,
i.e. the school to which the edge departing from that student’s node pointed. The
nodes corresponding to these students are removed from the graph. Moreover, the
counter of each school in a cycle is reduced by one. If this causes the counter of a
school to become zero, the node corresponding to this school is removed from the
graph.

— In general, in the k-th step, draw a directed edge from each of the remaining stu-
dents to their most preferred school among the remaining schools. Similarly, draw
a directed edge from each of the remaining schools to the student with the highest
priority among the remaining students. If no cycle exists, the algorithm termi-
nates. Otherwise, all students in a cycle are assigned to the school to which their
departing edge points, and the nodes corresponding to these students are removed
from the graph. Moreover, the counter of each school in a cycle is reduced by one.
If this causes the counter of a school to become zero, the node corresponding to
this school is removed from the graph.

Example A.3.1. To illustrate the TTC mechanism, consider the example from Section
1.1. Both required steps to obtain a final allocation for this example, are represented
in Figure A.1 as a graph in which a cycle is indicated by bold nodes and edges. As the
capacities of each school are equal to one, the counters of the schools are not displayed.

In the first step, the graph contains one cycle, namely (c1,s1,c2,s3). Student 1 is,
therefore, assigned to school 1 and student 2 is assigned to school 3. As this causes
the number of available seats on both school 1 and school 3 to be equal to zero, the
corresponding nodes are removed from the graph, as well as the nodes corresponding to
the assigned students 1 and 2. In the second step, as school 3 has no more available
seats, students 3 and 4 can no longer opt for their school of first choice. An edge is thus
created from student 3 to his/her second choice, namely school 2. Student 4, however,
has no school of second choice, which means that no edge departing from student 4
can be created. One cycle can be found, namely (cs, s2), and student 3 is assigned to
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Step 1 Step 2

e

Figure A.1: Steps of TTC mechanism for Example from Section 1.1

P

school 2. The nodes corresponding to student 3 and school 2 will be removed and no
further cycles can be found as no school has any available seats left.

To summarize, the following table displays the intermediate matchings in every step
of the algorithm. For every step, the first column represents the school to which the
corresponding student is assigned and the second column represent the position of that
school in his/her preference list.

student | step 1 | step 2
C1 S1 1 S1 1
Co s3 1 |s3 1
C3 0 0 S92 2
cy 0O 0|0 O
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Appendix B

Data and results

B.1 Distribution capacities of Antwerp and Ghent
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Figure B.1: Distribution of the capacities in Antwerp and Ghent
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B.2 Distribution number of submitted preferences of Antwerp

and Ghent
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Figure B.2: Distribution of the number of submitted preferences per student in Antwerp
and Ghent
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B.3 Shortage of seats

Table B.1: Shortage of seats to assign all students to their school of first choice

Antwerp Ghent
Number of schools with shortage 66 (35.5%) 17 (26.6%)
Average shortage compared to capacity 41.5% 42.5%
Total shortage 508 (10.9%) 366 (9.9%)

B.4 Distribution popularity ratios of Antwerp and Ghent

Antwerp Ghent

50 30

Occurrences
Occurrences

0 5 10 0 2 4 6
Popularity ratio Popularity ratio

Figure B.3: Distribution of the popularity ratios in Antwerp and Ghent
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B.5 Data generation: parameter benchmarks

Table B.2: Values of the parameters in the data sets of Antwerp and Ghent (for popu-
larity % = 0.10)

Parameter Antwerp Ghent

Nstudents 4236 3081
Nschools 186 64

Capacity ratio 1.10 1.20
Pep -0.33 0.21

Ppref 4.18 2.42
Opref 2.66 1.05
CV, 0.49 0.80
CV, 0.52 0.60

Aq 5.2% 14.0%

Ag -5.6% 0.9%

B.6 Data generation: Cholesky factorization

Consider the matrix Sy € R™*? with randomly generated values from the standard nor-
mal distribution. Imagine we want to obtain two variables C'; R € R™ that have a certain
correlation p.., for example p.. = —0.5. These variables can represent, for instance, the
capacities and the priority ratios of the schools. Denote the desired covariance matrix by
Kcor € R?*2. As Kcg is a symmetric positive definite matrix, there exists a unique lower
triangular G € R™*™ with positive diagonal entries such that Kor = GGT (Cholesky
factorization) (Golub and Van Loan, 1996, p. 143):

1 —05 1 0 1 —05 .
Kep = = o ee
05 1 —0.5 0.8660/ \0 0.8660

Now define the matrix S; € R™*2 : §; = SoGT. If we set C equal to the first column
of S71 and R to the second column, then the variables C' and R will have an expected
correlation of -0.5. This approach can be generalized for a larger number of variables.
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B.7 Data generation: effect of re-sampling on standard
deviations

Consider a setting in which, for both the capacity and the popularity ratio, the param-
eters of the coefficients of variation (CV. and CV)) are initially set to 0.5. Figure B.4
displays the size of both parameters after re-sampling for different numbers of students
and schools, in which each data point is the average ratio in 5000 generated data sets.

For the capacities, the observed coefficient of variation is about 0.05 smaller than the
desired value of 0.5, but the observed value seems to be approximately constant with
respect to the number of students. When the average number of students per school is
very low, the deviation from the desired value is slightly higher.

Capacit, Popularity ratio
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Figure B.4: Monte-Carlo simulation (N = 5,000) to obtain the average observed coeffi-
cients of variation CV, and CV,, after re-sampling for different numbers of students and
schools
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B.8 Data generation: re-sampling frequency

In the same setting as in Appendix B.7, also the proportion of the schools for which
the capacity or the popularity ratio has to be re-sampled can be considered. These
proportions are displayed in Figure B.5. It can be seen that the proportion of the
schools for which the capacity or the popularity ratio have to be re-sampled is slightly
higher when the average number of students per school is lower (i.e. when there are
relatively many schools). However, the overall frequencies are rather small.
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Figure B.5: Monte-Carlo simulation (N = 5,000) to obtain the proportion of the schools
for which the capacity/popularity ratio has to be re-sampled
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B.9 Profile of Antwerp

Table B.3: Number of students (proportion) that is assigned to their school of p-th choice
in Antwerp (average of 2,000 tie-breaking rules)

School-prop.

Preference DA(MTB) DA (MTB) RSD PS BOSTON

1 3333 3329 3595 3598 3728
(78.70%) (78.58%)  (84.87%) (84.95%)  (88.00%)

9 527.3 531.0 275.1 278.1 160.9
(12.45%) (12.54%)  (6.49%)  (6.56%)  (3.80%)

3 134.8 135.8 91.1 90.2 67.6
(3.18%) (3.21%) (2.15%)  (2.13%) (1.59%)

4 36.4 36.8 46.6 46.1 42.1
(0.86%) (0.87%) (1.10%)  (1.09%) (1.00%)

5 8.62 8.78 20.6 19.6 17.6
(0.20%) (0.21%) (0.49%)  (0.46%) (0.42%)

6 1.42 1.45 7.83 7.59 11.5
(0.03%) (0.03%) (0.18%)  (0.18%)  (0.27%)

" 0.27 0.27 2.82 2.66 4.05
(0.01%) (0.01%) (0.07%)  (0.06%)  (0.10%)

8 0.07 0.06 2.04 2.03 4.95
(0.00%) (0.00%) (0.05%)  (0.05%)  (0.12%)

9 0.01 0.01 0.76 0.67 1.12
(0.00%) (0.00%) (0.02%)  (0.02%)  (0.03%)

10 0.00 0.01 0.41 0.40 1.30
(0.00%) (0.00%) (0.01%)  (0.01%)  (0.03%)

193.5 193.2 193.7 190.3 197.0
UNASSIGNED , oo (4.56%)  (457%)  (449%)  (4.65%)
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B.10 Profile of Ghent

Table B.4: Number of students (proportion) that is assigned to their school of p-th choice
in Ghent (average of 2,000 tie-breaking rules)

School-prop.

Preference DA (MTB) DA (MTB) RSD PS BOSTON

1 2405 2403 2645 2646 2715
(78.05%) (78.00%)  (85.86%) (85.80%)  (88.12%)

5 417.2 418.1 175.9 176.7 124.6
(13.54%) (13.57%) (5.71%)  (5.73%)  (4.05%)

3 79.3 79.8 54.6 54.3 30.6
(2.57%) (2.59%) (1.77%)  (1.76%)  (0.99%)

4 3.88 3.93 5.67 5.72 3.28
(0.13%) (0.13%) (0.18%)  (0.19%) (0.11%)

5 0.30 0.31 0.94 0.92 0.56
(0.01%) (0.01%) (0.03%)  (0.03%)  (0.02%)

6 0.01 0.01 0.06 0.07 0.11
(0.00%) (0.00%) (0.00%)  (0.00%)  (0.00%)

- 0.00 0.00 0.09 0.08 0.09
(0.00%) (0.00%) (0.00%)  (0.00%)  (0.00%)

8 0.00 0.00 0.01 0.01 0.06
(0.00%) (0.00%) (0.00%)  (0.00%)  (0.00%)

175.63 175.63 198.4 196.9 206.7
UNASSIGNED 7507 (5.70%)  (6.44%)  (6.39%)  (6.71%)
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B.11 Effects of A; and p., on waste reduction possibilities
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Figure B.6: Average relative waste reduction possibilities with respect to A; and pep

(average over 200 data sets with 500 students, each with 200 considered tie-breaking
rules)
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B.12 Relative difference between the minimum and the
maximum number of assigned students

Spread (in %)
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Figure B.7: Relative difference between the maximum and the minimum number of
assigned students (spread) over all matchings, with respect to the number of students
(average over 20 data sets, each with 1,000 considered tie-breaking rules)
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B.13 Effects of A; and p., on worst-case difference
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Figure B.8: Average relative worst-case difference with respect to A; (left panel) and
pep (right panel) (average over 200 data sets with 500 students, each with 200 considered
tie-breaking rules)

B.14 Illustration stochastic dominance PS and RSD
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Figure B.9: Proportion of the data sets in which PS stochastically dominates RSD, and
vice versa, with respect to the sample size (20 data sets with 500 students)
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B.15 Feasible decomposi:cion PS with randomly sample of
tie-breaking rules 7T
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Figure B.10: Proportion of the data sets for which a feasible decomposition of the
PS assignment exists, with respect to the number of students and the sample size |T|
(average over 10 data sets)
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B.16 r-partial strategy-proofness

B.16.1 Axioms and r-partial strategy-proofness

Mennle and Seuken (2014) stated that a mechanism is strategy-proof if it meets the
following three axioms: swap monotonicity, upper invariance and lower invariance. De-
fine the neighborhood N> of a preference list >, as the set of all possible preference
lists >’Ci that can be obtained by swapping the order of two adjacent schools (or the
outside option) in >.,. Imagine, for example, three preference lists >,: s1 > s2 > s3,
>pi 81 > 83 > s and > s3 > s3 > s1, then only >y is part of the neighborhood N~ of
preference list >,, and not >..

First of all, a mechanism is swap monotonic if submitting a preference list >/Ci that
is part of the neighborhood N of preference list >.,, with s; >, si and sy >, sj for
sj, s, € SU{0}, will either leave the allocation probabilities of both schools unchanged,
or will cause both a strict increase in the allocation probability of school s, and a strict
decrease in the allocation probability of s;. To illustrate the intuition behind this ax-
iom, consider a simplified example with one student ¢; and two schools s1 and sy. A
mechanism that would assign student c; to school sy for the preference list s; >., s2 and
to s1 for preference list so >, s1 is not swap monotonic and not strategy-proof (Mennle
and Seuken, 2014).

Furthermore, a mechanism is upper invariant if a student cannot influence the allo-
cation probabilities of one of his/her most preferred schools by swapping the order of
two less preferred schools in the preference list. More formally, a mechanism is upper
invariant if for preference lists >, and > € N>, with s; > s, and s > s; for
sj, s, € SU{0}, the allocation probabilities for all schools s; € S, with s; >, s;, do not
change by submitting >, instead of >.,.

Lastly, the concept of lower invariance is very similar to upper invariance. A mech-
anism is lower invariant if a student cannot influence the allocation probabilities of one
of his/her least preferred schools by swapping the order of two more preferred schools
in the preference list, i.e. if for preference lists >, and >/Ci€ N>Ci, with s; >, s and
sk >¢, s for 55,5, € S U {0}, the allocation probabilities for all schools s; € S, with
Sk >¢,; 51, do not change by submitting >f:i instead of >,.

As a strategy-proof mechanism satisfies all three axioms, swapping two adjacent schools
in the preference list can only cause a change in the allocation probabilities of both
schools and not in the allocation probabilities of other schools. According to Mennle
and Seuken (2014), lower invariance is the least intuitive of the three axioms and they
call a mechanism that is only swap monotonic and upper invariant but not lower in-
variant partially strategy-proof. Clearly, partially strategy-proof mechanisms will not be
strategy-proof, but Mennle and Seuken (2014) nevertheless show that partially strategy-
proof mechanisms are still strategy-proof for a large subset of all utility functions.
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Example B.16.1. To illustrate for which utility functions partially strategy-proof mech-
anisms will be strategy-proof, consider the PS mechanism in a setting! with three stu-
dents and three schools with unit capacity, in which the true student preferences are:

e Zes Zes
51 52 52
52 51 53
83 53 S1

Suppose student co and cg report truthfully. If student c¢; reports truthfully as well,
(s)he will be allocated to school (s1, s, s3) with probability (2,0, 1). If ¢; submits pref-
erence list >, : s > s1 > s3, the allocation probabilities are (%, %, %) Suppose that
the utility wu;(s3) of ¢; of being assigned to s3 equals zero. In this case, whether or
not reporting truthfully is a dominant strategy for ¢; depends on the relative value
of ui(s1) and wji(s2). More specifically, reporting truthfully is a dominant strategy if
sui(s1) + 2ui(s2) < 2uq(sy), ie. if ug(s2) < 2uq(sy). This illustrates that the incentive
for a student to misreport is larger when a student is closer to being indifferent between
being assigned to one of both schools.

In correspondence to the observation in Example B.16.1, Mennle and Seuken (2014)
introduced a new property for utility functions. A utility function u; for student ¢;
satisfies uniformly relatively bounded indifference (URBI(r)) if ¢; experiences a utility of
being assigned to school s, € S U {0} that is at least a factor r € [0, 1] smaller than the
utility ¢; experiences of being assigned to a more preferred school s; € S:

u(sg) < r-u(sj), assuming min(u) = 0.

Denote by U(r) the set of all utility functions that satisfy URBI(r). Consider, for ex-
ample, two utility functions v = (1, %, i,O) and v’ = (1, %, i,O), in which the schools
are ranked in order of decreasing utility. While both « and u’ belong to the set U (%),
only u is an element of U(5). In general, U(r1) C U(rs) for any r1,75 € [0, 1] with r < ro.

If, for a given problem instance, a mechanism is strategy-proof for all utility functions
in U(r), this mechanism is called r-partially strategy-proof (r-PSP) for the given prob-
lem instance. An intuitive measure for the degree of strategy-proofness of a certain
mechanism for a given problem instance could then be defined as the maximum value
of r € [0,1] for which the mechanism is r-partially strategy-proof. For an r-partially
strategy-proof mechanism, the only honest advice that a mechanism designer can give
to the students is that truthful reporting is a dominant strategy if the student’s utility
function lies within U(r).

!Example from Mennle and Seuken (2014)
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B.16.2 Axioms and r-PSP for different mechanisms

First of all, Table B.5 shows that the PS mechanism is r-partially strategy-proof, whereas
the Boston mechanism is not as it is not swap monotonic. The proofs for these results
have been given by Mennle and Seuken (2014) and the intuition behind the proofs are
shown in Appendix B.16.3. Furthermore, the WRLD procedure is not guaranteed to
satisfy any of the axioms for an arbitrary problem instance. An illustration of a problem
instance in which none of the three axioms is satisfied by the WRLD procedure is given in
Appendix B.16.3. Lastly, the School-proposing DA with MTB is neither swap monotonic
nor upper invariant, as shown by an example in Appendix B.16.3. No problem instance
could be identified for which the School-proposing DA is not lower invariant, but a formal
proof could not be found.

Table B.5: Comparison strategy-proofness axioms for different mechanism (Mennle and
Seuken, 2014)
Swap Upper Lower Strategy-

Mechanism monotonicity invariance invariance proofness r-bSP
DA (MTB) v v v v v
RSD v v v v v
PS v v X X v
BOSTON X v X X X
WRLD X X X X X
e A A R

B.16.3 Examples axioms and r-PSP for different mechanisms
Probabilistic Serial (PS) mechanism

Intuitively, the PS mechanism is upper invariant as a student’s school of k-th choice will
not influence the probability of being assigned to a school of higher choice, because that
school will only be taken into consideration by the PS mechanism if a student has been
rejected on all schools of higher choice.

Moreover, the proof of the swap monotonicity of the PS mechanism has been given
by Mennle and Seuken (2014). To state the outline of the proof, consider the moments
in time on which a school has been completely eaten up. Imagine that student ¢; would
swap two schools in his preference order, e.g. from s; >, s3 to s >(. s;. If anything
changes to the allocation probabilities of ¢; at all, the student would spend strictly more
time on consuming s;. Hence, when s; has been completely eaten up, there will be
strictly less of s; available or there will be strictly more students eating from s; (in
comparison to submitting s; >, si).
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To illustrate that the PS mechanism is not lower invariant, consider the following ex-
ample with three students and three schools with unit capacity in which the students
preferences are given by:
Zei Py e
S1 S1 S9
0 S9 S1
0 S3 S3

Applying the PS mechanism to this problem instance results in the probabilistic assign-
ment Pp.

S1 S9 S3
c1 70.50 0 0

Pp= ¢ <0.50 0.25 0.25)
c3 0 0.75 0.25

Imagine that student co would submit an alternative preference list >’C2: So > S1 > S3.
The resulting probabilistic assignment by the PS mechanism is then equal to Pp.

S1 59 S3
¢ 70.667 0 0
Pp= ¢, (0.167 0.50 0.333)

c3 \0.167 0.50 0.333

By swapping the order of schools s; and sg in ¢,’s preference list, student co can increase
the probability of being assigned to school s3 by 0.083, which is in violation with the
axiom of lower invariance.

Boston mechanism

Intuitively, the Boston mechanism is upper invariant as a student’s school of k-th choice
will not influence the probability of being assigned to a school of higher choice, because
that school will only be taken into consideration by the Boston mechanism if a student
has been rejected on all schools of higher choice. However, the Boston mechanism is
neither swap monotonic nor lower invariant, as shown in the following example (Mennle

and Seuken, 2014).

Consider a problem instance with four students and four schools with unit capacity
in which the true preferences of the students are:

>e1 s ey e
S1 S1 59 59
0 S92 S3 S3
0 S3  S4 S1
0 0 0 84
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For this example, the allocation probabilities Pg of the Boston mechanism when all
4! = 24 tie-breaking rules in 7 are considered, are equal to:

S1 S9 S3 S84
c1 70.50 0 0
ca [ 0.50 0 0
c3 0 0.50 0.50
c4 0 0.50 0.50

0
0

j2
B 0
0

If instead of truthful reporting, student ¢4 would submit preference list >/, : so > 51 >
$3 > s4, the resulting probabilistic assignment would be Pj:

S1 S9 S3 S4
c1 70.50 0 0 0

P! co | 0.50 0 0.25 0
c3 0 0.50 0.375 0.125
cq 0 0.50 0.375 0.125

This example is in violation with swap monotonicity as listing s; higher in the preference
list does not increase the allocation probability to that school, whereas the allocation
probability to s3 decreased by 0.125. Moreover, lower invariance is violated as the
allocation probability to school sy increases by 0.125 by misreporting >/, instead of >.,.

Waste-Reducing Lottery Design (WRLD) procedure

Consider an example with six students and four schools in which the student preferences
>., and the school capacities ) are equal to:

>c1 ey Zes Tey e e

1
Sy S4 S4 Sq S3 53 1
0 so s2 51 S92 84 Q= 1
0 0 S1 S3 S4 S1 2
0 0 S3 59 0 0
Denote the probabilistic assignment from the RSD mechanism over all 6! = 720 tie-

breaking rules in 7 by Pr and the probabilistic assignment that is obtained by applying
the WRLD procedure to Pr by Pyy. Students c3, ¢5 and cg experience a waste reduction
of 0.20 in total, which is equal to the upper bound on the waste that can be captured.
This means that for every five random tie-breaking rules, on average one extra student
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will be assigned to a school.

S1 59 S3 S4 S1 59 S3 S4
c1 0 0 0 0475 c1 0 0 0 0475
co[ 0 031 0 0475 c2 0 0.31 0 0475
Py = 0.15 0.31 0 0475 Py = €3 0.18 0.31 0 0475
cs | 042 0.04 0 0475 cg | 042 0.04 0 0475
Cs 0 029 0.50 0 Cs 0 0.33 0.50 0
ce \0.27 0 050 0.10 ce \0.40 0 0.50 0.10

For this example, the WRLD procedure does not satisfy any of the three strategy-
proofness axioms that were introduced in Section B.16.

First of all, the WRLD procedure is not swap monotonic for this example. Imagine
that student c¢g would submit a shortened preference list >'CG: 83 > 81 > 84 > 0. In
that case, the probability of being assigned to school s4 would decrease by 0.10, which
is intuitive, but the probability of being assigned to s; would also decrease by 0.03. By
submitting s; as the school of second choice, cg would have a probability of 0.37 of being
assigned to s; by the RSD mechanism. School s; would still be wasteful, but the WRLD
procedure would now increase the allocation probabilities of ¢ and ¢4 to s; each by 0.07
and cg would not benefit from the WRLD procedure. Therefore, overall, cg would have a
smaller allocation probability to school s; by putting the school higher in his preference
list.

Secondly, the WRLD procedure is not upper invariant for this example. Consider the
case in which student c3 submits preference list >/ : 4 > 2 > 0. This would increase
the allocation probability of c3 to school s by 0.04, which is equal to the increase in
allocation probability to so for ¢35 by the WRLD procedure when >'c3 is submitted.

Lastly, the WRLD procedure also violates lower invariance for student c3 in this ex-
ample. If student c3 would submit preference list >’C’3: So > s4 > S1 > S3, the allocation
probability of c3 to s; would decrease by 0.03, because (s)he would no longer benefit
from the WRLD procedure.

School-proposing Deferred Acceptance mechanism

Consider an example with three students and three schools with unit capacity in which
the true preferences of the students are:

>c1 Zea Zes
S1 52 83
0 S3 59
0 0 S1
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For this example, the allocation probabilities Pp of the School-proposing DA with MTB
when all (3!)® = 216 possible tie-breaking rules in 7 are considered, are equal to:

S1 S9 S3
c /1 0 0

Pp = ¢ <0 0.72 0.28)
c3 \0 0.28 0.72

The School-proposing DA with MTB is lower invariant, in this example, but not swap
monotonic or upper invariant. Consider the situation in which student ¢35 would submit
preference list >/ .: s3 > s1 > s2. The resulting probabilistic assignment Py, is equal to:

S1 59 S3
¢ /10 0
Ph= ¢ (0 0.80 0.20)

c3 \0 0.20 0.80

First of all, this would harm the upper invariance of the mechanism as this would result
in an increase of the allocation probability of c3 to s3 by 0.08. Secondly, this would harm
the swap monotonicity of the mechanism as submitting a preference list in which s; and
so are swapped results in an assignment in which the allocation probability to s; remains
equal to zero, whereas the allocation probability to so decreases by 0.08. Moreover, both
students co and c3 could increase the probability of being assigned to their school of
first choice with 0.28 by only submitting that school, which implies a violation of upper
invariance.
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B.17 Survey utility function Ghent 2013-2014

Table B.6: Results survey on utility function in Ghent in 2013-2014 (D’haeseleer, 2016)
Preference

allocated school Utility

9.8
7.8
6.6
5.7
5.3

>5 5.0
UNASSIGNED N/A

[SLE NV V)

B.18 Difference in allocation probabilities for twins

0.01 ‘ ‘ ‘
0.005 /\/\/

-0.005

-0.01 +

-0.015 +

-0.02 +

-0.025

Advantage individual students vs. twins

Fixed capacities |
Variable capacity

-0.03

10 20 30 40 50
Average number of students per school

Figure B.11: Advantage in allocation probability to the school of first choice for indi-
vidual students, in comparison to twins, with respect to the average number of students
per school for the methods described in Section 4.2 (Average over 100 data sets with
500 students and |7 = 1,000)
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