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SUMMARY

In geophysics, electromagnetic induction (EMI) methods are commonly used to explore
the near subsurface non-invasively (i.e. without digging). That subsurface consists of
earth layers with di↵erent electrical conductivities. A geologist can interpret these con-
ductivities via Archie’s empirical law, which maps the soil characteristics (e.g. porosity,
water content, the electrical conductivity of the brine) to the electrical conductivity. The
goal of this thesis is to study the state-of-the-art models of the EMI problem and to
develop an inversion scheme that allows determining the electrical conductivities from
EMI measurements. The focus is on EMI surveys in a coastal regions, where saltwater
intrusion can be monitored (salt water is more conductive than fresh water).

A typical electromagnetic induction survey is performed in the frequency domain, where
an alternating magnetic dipole with constant frequency (the primary magnetic field) is
placed above the soil. The dipole induces eddy currents in the earth that in return generate
the measured secondary magnetic field. The response is inverted such that the conductiv-
ity profile of the subsurface is obtained. This inverse problem requires a reliable forward
model that quickly computes the response of any conductivity profile. Furthermore, it
requires a fast optimization technique in order to minimize the data misfit between the
response of an initial guess of the conductivity profile (calculated via the forward model)
and the response from EMI measurements.

In this thesis, three forward models are discussed: an exact model, the LIN approximation
and the damped model. The first model is by [Wait, 1951] and solves the Maxwell equa-
tions in the quasi-stationary field regime (where displacement currents can be neglected
for su�ciently low frequencies). The conductivity profile consists of horizontally stratified
earth layers (and thus no lateral variation); this is a justified assumption in coastal regions,
where sedimentary layers are approximately horizontally stratified. The model takes into
account both the electromagnetic dampening in conductive media (skin e↵ect) and the
electromagnetic couplings between eddy currents. The relations include integration over
Bessel functions and a recursive formula; therefore it has a large computational burden.
Since in our optimization method, the response needs to be calculated at every iteration,
other simplified forward models are studied. The first approximation [Wait, 1962] is a
linear model that slices the subsurface in infinitesimal layers and sums the contributions
to the secondary magnetic field from each independent sheet. The model does not take
into account any couplings between the layers or any the electromagnetic dampening.
This model is known as the LIN approximation and is only valid under the Low Induction
Numbers (LIN) condition. This LIN assumption breaks down in conductive environments,
such as coastal regions; therefore a recently developed model is examined. The damped
model by [Maveau et al., 2017] is similar to the LIN approximation but embeds the inde-
pendent sheets in a conductive background. This e↵ectively models the electromagnetic
dampening of the electromagnetic fields. It slightly complexifies the model; depending on
the choice of the conductive background, the model is linear or non-linear. Both the LIN
and damped model allow to calculate the response rather quickly, at the cost of unmod-
elled e↵ects. The damped model approximates the exact model more accurately.
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The inverse problem is solved by the minimization of an objective function. For a properly
defined objective function, that minimum corresponds to the true conductivity profile that
describes the data. Starting from an initial guess of the conductivity profile, the minimum
of the objective function is obtained iteratively via the L-BFGS-B algorithm [Byrd et al.,
1995], a quasi-Newton method. The objective function has two terms: the data misfit
and the model misfit. The data misfit measures the discrepancy between the measured
response and the response generated via the forward model and some conductivity pro-
file. The ill-posedness of the inverse problem (ill-conditioned and non-unique), however,
requires to add a model misfit term that regularizes (or stabilizes) the problem. The
model misfit term in our inversion scheme is based on Occam’s principle, which states
that simpler solutions are more likely than complex ones. In the case of horizontally strat-
ified earth structures, this likely solution corresponds to blocky structures. Consider a
basis transformation in which likely solutions can be represented in a sparse form. Such a
basis transform in combination with a sparsity promoting measure would impose that the
solution is simple or blocky. Such a basis transformation is available under the discrete
wavelet transform. The `1-norm is the traditional sparsity promoting measure. However,
the optimization algorithm uses gradient information and the `1-norm is non-di↵erentiable
at zero. Therefore, other measures must be used (which are di↵erentiable), such as the
perturbed `p-norm measure of Ekblom [Ekblom, 1987].

A regularization parameter balances the importance of the model misfit w.r.t. the data
misfit. A large regularization parameter filters out much small-scale e↵ects. Selecting
an optimal value is challenging. Common techniques such as the discrepancy principle
and the L-curve criterion are examined. The combination of both principles can result
in a good selection of the regularization parameter. Other regularization strategies were
also developed and tested in which the regularization parameter is no longer held constant.

Simple, two or three-layered conductivity profiles have a sparse representation with Haar
wavelets (block and step functions with compact support). For complex conductivity pro-
files (e.g. with soft boundaries), we must resort to other wavelets, such a as Daubechies
wavelets with di↵erent properties (e.g. with more regularity). Choosing the right wavelet
is an essential part of the inversion scheme and allows to apply the scheme on a wide
variety of conductivity profiles.

We have developed an e↵ective inversion scheme that significantly alleviates the ill-
posedness of the inverse problem. The scheme can be tailored to the context of the
survey and the needs of the geologist.
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Summary for the General Audience

De waterspiegel in Vlaanderen staat onder druk. Recente droogtes leiden tot dalende
waterspiegels. Dit kan tot verzilting in de kuststreek leiden, door zout zeewater dat in de
ondergrondse lagen dringt. In De Panne wordt dit versterkt door de aanwezigheid van een
inham in de duinen, die zeewater tot enkele keren per jaar tot in de duinen laat vloeien.
Dit bevordert de zoutwaterfauna en -flora, maar bedreigt anderzijds het evenwicht tussen
zoet- en zoutwater. Dat zoetwaterreservoir in de duinen wordt bovendien ook gebruikt
voor onze drinkwatervoorziening. Er mag dus niet te veel worden opgepompt.

Er bestaat een geofysische methode om dit evenwicht te monitoren, gebaseerd op het
principe van elektromagnetische inductie. Een wisselend magnetisch veld wordt boven
de aarde geplaatst. Dit zal verschillende wervelstroompjes in de aardlagen opwekken,
waarvan de respons terug wordt opgemeten. Dit is vergelijkbaar met de werking van een
metaaldetector.

Via deze opgemeten respons trachten we kenmerkende parameters van de aardlagen te
achterhalen. Als we daarin slagen, kennen we de elektrische geleidbaarheid van elke aard-
laag op elke diepte. Deze combinatie van parameters noemen we een conductiviteitsprofiel.
Een sterke geleidbaarheid van een aardlaag komt dan typisch overeen met een aardlaag
waar veel zoutwater in aanwezig is.

Een eerste uitdaging is om een goed model te hebben die de respons van een conduc-
tiviteitsprofiel berekent. Met andere woorden, stel dat je de ondergrondse parameters
kent, dan kan je met zo’n model berekenen wat je zou opmeten. Dit noemen we een
voorwaarts model. Een exact voorwaarts model bestaat al sinds 1951, maar rekent op
de computer heel traag. Daarom wordt in de thesis onderzocht welke vereenvoudigin-
gen van het model voldoende accuraat zijn, maar sneller kunnen worden berekend. Dit
is vooral belangrijk voor het omgekeerde probleem, waar we uit de opgemeten respons
de ondergrondse parameters willen bepalen. Dit wordt het invers probleem genoemd.
In dat probleem zullen we een gok doen naar het ondergrondse conductiviteitsprofiel.
Daarna vergelijken we of de respons, berekend via een voorwaarts model, overeenkomt
met de opgemeten respons. Bij een sterke overeenkomst komt onze gok heel waarschijnlijk
overeen met de echte aardstructuur. Vermits we in de praktijk veel gokken zullen moeten
doen, is een snelle computationele berekening zeker noodzakelijk.

Een tweede uitdaging is om dit invers probleem op te lossen. Er zijn namelijk verschillende
conductiviteitsprofielen die ongeveer dezelfde respons genereren. Dit probleem wordt
gestabiliseerd door een extra voorwaarde op te leggen voor het profiel. Deze voorwaarde
komt erop neer dat we de eenvoudige profielen verkiezen boven ingewikkelde. Als een
opgegeven respons zowel correspondeert met een tweelagige structuur als een veertiglagige
structuur, zal de tweelagige structuur fysisch waarschijnlijker zijn. Wavelettheorie is een
wiskundige theorie die toelaat om de complexiteit van zo’n profiel te kwantificeren. Dit
gebruiken we om betere gokken van het conductiviteitsprofiel te kunnen doen en om een
realistischere uitkomst te bekomen.
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Deze masterthesis introduceert een geavanceerdere procedure om vanuit een meting de
ondergrondse aardstructuur te achterhalen, zonder dat hiervoor dure boorgaten moeten
gegraven worden. Deze ontwikkelingen dragen bij tot een betere monitoring van heden-
daagse uitdagingen, zoals zoutwaterintrusie in de kuststreek.
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List of Abbreviations

EM electromagnetic
EMI electromagnetic induction
DOI depth of investigation
HCP horizontal coplanar coil set-up
VCP vertical coplanar coil set-up
VCA vertical co-axial coil set-up
PERP perpendicular coil set-up
LIN low induction numbers
TDEM time domain electromagnetic
FDEM frequency domain electromagnetic
DWT discrete wavelet transform
FWT fast wavelet transform
FFT fast Fourier transform
MRA multiresolution analysis
PR perfect reconstruction
L-BFGS-B-method limited-memory Broyden–Fletcher–Goldfarb–Shanno method

for bound constraints
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List of Symbols

Table 1: List of physical quantities and units.

SYMBOL UNIT MEANING
� [Siemens/meter] electrical conductivity
�a [Siemens/meter] apparent conductivity
s [meter] intercoil distance
h0 [meter] height above the surface of the earth
h [meter] depth, measured from the surface of the soil
E [Volt/meter] electric field strength
H [Ampere/meter] magnetic field strength
Hp [Ampere/meter] primary magnetic field
Hs [Ampere/meter] secondary magnetic field
A [Volt⇥seconds/meter] magnetic vector potential
Jd [Ampere/(meter)2] displacement current density
! [radians/second] angular frequency
B [1] low induction number
⌘ [Ampere/meter] measurement error
 [Ampere/meter] total error (measurement error + unmodelled

e↵ects)

Table 2: List of the most important symbols.

SYMBOL MEANING
m vector of model parameters, the parametrization of the conductivity

profile
x vector of model parameters in wavelet domain
d data vector with magnetic field ratio
K functional that maps the conductivity profile on the magnetic field

ratio
� objective function
�d data misfit functional
�m model misfit functional
µ(x) a measure (assigns non-negative real numbers to subsets)
� regularization parameter
W wavelet transformation in matrix expression
' scaling function
vnk scaling coe�cient at level of resolution n and translation k
 wavelet function
wnk wavelet coe�cient at level of resolution n and translation k
N level of the discrete wavelet transform
nm number of model parameters in space domain, length of m
nx number of model parameters in wavelet domain, length of x
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Chapter 1

Geophysics

1.1 Motivation

1.1.1 Geophysics

A geophysicist is concerned with the physical processes and properties of the Earth, such
as the Earth’s gravitational and magnetic fields, the Earth’s internal structure and the
dynamics in plate tectonics. He will utilize quantitative methods based on physical laws.
For example, the laws of electricity and magnetism are used to better understand the
ionosphere and magnetosphere.

When one tries to determine the geology of the subsurface, one can drill expensive bore-
holes in order to prospect the subsurface locally, however this technique is slow. In explo-
ration geophysics, other non-invasive techniques will be used to determine the physical
properties of the subsurface. These properties will be mapped to the geology, via mostly
empirical laws.

1.1.2 Exploration methods

Geophysical exploration methods are classified into natural field and artificial source meth-
ods [Kearey et al., 2013]. The first class studies perturbations in natural fields of the Earth,
for example, the gravitational field. These methods are appropriate for studying geology
at a large scale and at great depths. For example, in magnetic surveying, the spatial vari-
ations in the Earth’s magnetic field are recorded and used to detect local perturbations
or anomalies. Early magnetic surveying at sea [Heirtzler et al., 1968] showed that the
oceanic crust is characterized by a pattern of linear magnetic anomalies, the oceanic crust
is alternately magnetized in a normal and reverse direction1. This discovery led to the
theory of seafloor spreading2 and it provided a time scale for polarity transitions in the
Earth’s magnetic field.

1In geological sciences, alternately magnetized patterns are a well-known consequence of geomagnetic
reversal. This is the reversal of the Earth’s magnetic north and south.

2Seafloor spreading is the e↵ect of new oceanic crust that gradually moves away from a ridge, this is
mostly at mid-ocean ridges with volcanic activity.

1
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The other class of exploration techniques uses artificial (man-made) sources, for which,
in contrast to natural field methods, the source can be tuned. These techniques drive
to a more detailed image of the subsurface, but on the other hand, the signal does not
penetrate to great depths. Seismic imaging is a common artificial source geophysical
method. The density and elastic moduli of the sediments determine the propagation
velocity of seismic waves and by measuring travel times of reflected seismic waves, the
distribution of the subsurface parameters can be obtained. Seismic methods have the
disadvantage to be logistically intensive. Alternatively, electrical methods are adopted.
In resistivity methods, the electrical conductivity is obtained by measuring the subsur-
face’s resistance. Electromagnetic methods can be used as well, in which the response to
electromagnetic (EM) radiation is measured. The measurement of terrain resistivity has
several shortcomings: It requires placement of electrodes all over the terrain, which in-
volves relatively large amount of manpower3. Secondly, inhomogeneities, small compared
to the depth of exploration, cause significant error in the measurements4. Additionally,
resistivity techniques are sensitive to telluric currents, these natural electric currents flow
through the soil and cause regional potential gradients. This led academics [Stefanesco
et al., 1930] and companies such as Geonics Limited [McNeill, 1980] to examine the po-
tential of electromagnetic techniques. These techniques have similarities with resistivity
methods, although data acquisition can be executed faster, e.g. via airborne measure-
ments. This thesis will elaborate on certain challenges related to these electromagnetic
(induction) techniques. A third common electromagnetic technique is ground penetrating
radar, where the penetration of radar waves (with frequencies ranging from 10MHz to 10
000MHz) are used. It is analogous to seismic imaging, because the reflection of the radar
wave is used. The propagation velocity of radar waves depends mainly on the dielectric
constant.

1.1.3 Hydrogeophysics

The link between physics and hydrogeology is made via Archie’s law [Archie et al., 1942],
an empirical law that maps the electrical conductivity to the soil characteristics. The law
determines the conductivity of the soil � from the conductivity of brine �w, the porosity
fraction ✓ and the amount of water in the pores S:

� = �w✓
mSn. (1.1)

The exponents m and n need to be determined experimentally and depend on the soil.

Geophysical surveying has multiple applications and is especially valuable when a prop-
erly performing reconstruction scheme is available. It has economic value as it can be used
to locate metalliferous mineral deposits. Archaeological surveys can be executed faster
by imaging the underground structures non-invasively [Tang et al., 2018]. Geophysical
surveying also has societal merits, for example in coastal areas, where through groundwa-
ter prospection, the salt intrusion of seawater can be mapped. In the work of [Hermans

3It must be noted that this is a historical sketch. Advances in instrument technology have led to the
development of electrodes in the form of antennae that only need to be towed over the surface or spiked
wheels that ensure continuous galvanic contact with the soil. [Loke et al., 2013]

4More technically, one can overcome this issue by measuring at various inter-electrode spacings, at
the cost of more laborious data acquisition e↵orts.
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Figure 1.1: The standard seawater intrusion model exhibits an approximately horizontally
stratified structure.

et al., 2012], the natural reserve of Westhoek, Belgium is prospected for salt water in-
trusion. In that area, drinking water is produced via the extraction of fresh water from
the available aquifers. Too much water extraction puts pressure on the hydrogeological
equilibrium and it is therefore vital to map the spatial extent of the body of infiltrated
salt water. Indeed, concerning this context, electromagnetic techniques are appropriate,
since salty water greatly influences the electrical conductivities. Now we have translated
the hydrogeophysical problem back to Maxwell theory. We need to propose a model for
the structure of the soil, a conductivity profile. In coastal areas, the subsurface layers are
often flat and hence a horizontally stratified structure will be proposed in Section 1.3.
Figure 1.1 illustrates a typical profile of the coastal subsurface.

1.2 Electromagnetic induction exploration

1.2.1 Fundamental principle

Non-contacting conductivity measurements are based on the principle of electromagnetic
induction. By M. Faraday’s experiments reported in 1831, we comprehend that a changing
magnetic field induces an electric field. Later, J. Maxwell came up with a corrected
version of Ampère’s law, widely known as Ampère-Maxwell law, from which it follows
that a changing electric field induces a magnetic field. These fundamental principles form
the basis of the geophysical Electromagnetic Induction (EMI) technique. If we are able
to generate a changing magnetic field above the soil, so-called eddy currents will appear
in the subsurface, which in turn generate a response magnetic field.

1.2.2 A standard set-up

There are various conceivable experimental set-ups of the electromagnetic induction tech-
nique. In this thesis, we focus on the set-up of a mobile measuring device as shown
in Figure 1.2. A primary magnetic field is generated in the transmitter coil. Such a
transmitter coil consists of a wire that is coiled several times around a ring. When an
electric current is carried through the wire, the transmitter coil can be modelled as an
ideal magnetic dipole5 (via the Biot-Savart law). However, in EMI, an alternating current

5The transmitter coil is not an ideal magnetic dipole (it is so when it has a vanishing diameter), but
assuming an ideal dipole simplifies the calculations. The approximation is valid when the quadrupole
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will be carried through the wire and the sinusoidal current will generate an alternating
magnetic dipole. If the soil is conductive, the alternating magnetic dipole will generate
eddy currents in the subsurface.

Figure 1.2: Mobile transmitter–receiver electromagnetic field equipment. Figure adapted
from [Kearey et al., 2013].

These eddy currents, in turn, generate a response of the soil, called the secondary mag-
netic field, which is measured in the receiver coil. Note that in the case of a continuous
alternating current in the transmitter coil, the primary and secondary fields will both be
measured in the receiver coil. This coil has an identical construction as the transmitter
coil, except that it is connected with a data acquisition device instead of a current gener-
ator.

The transmitter and receiver coil are usually connected by a cable, which connects the
information (frequency, magnitude of the voltage) from the current generator to the log-
ger device. The intercoil distance is the distance between the two coils. It turns out that
this distance determines the depth of exploration (see later). There is freedom in the
orientation of the coils (they can greatly alter the di�culty of the analytical modelling!).
If the transmitter coil is placed horizontally above the surface, a vertical dipole will be
generated, while a vertical placement generates a horizontal dipole. The orientation of
the receiver coil determines which component of the secondary magnetic field that is
measured. Examples of common configurations are shown in Figure 1.3. The configura-
tions 1-3 are most common. Note that the NULL configuration is also perpendicular (as
PERP), but the configuration is not responsive to the cylindrically symmetric stratified
earth, when varied along the vertical plane of the transmitter.

The set-up considered in this section is deliberately quite general. More details on a
realistic experimental set-up and instrumentation will be provided in Section 2.8, where
the data acquisition performed in De Panne, Belgium in collaboration with prof. Dr. T.
Hermans’ team6 is discussed.

As mentioned in Section 1.1, artificial source methods (as EMI) are particularly suitable
for mapping the near subsurface. In general, for electromagnetic induction techniques, the

and higher order terms are negligible w.r.t. the dipole term. This is especially true at larger distances.
More details can be found Chapter 3 of [Wait, 1982].

6I notably want to thank Benjamin Maveau and Marieke Paepen again for working together during
the field work.
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Figure 1.3: Common dipolar loop configurations (HCP = Horizontal Coplanar, VCP =
Vertical Coplanar, VCA = Vertical Co-Axial). Figure retrieved from [Nabighian and
Corbett, 1988].

depth of penetration, also called depth of investigation (DOI), is a measure of how far the
electromagnetic fields reach in the matter and it is understood by the skin e↵ect. The skin
depth � is defined as the distance it takes to reduce the amplitude of an electromagnetic
wave by a factor e�1 ⇡ 1/3 [Gri�ths, 2005]

� =

r
2

!�µ
. (1.2)

From this equation, it is di�cult to determine an exact formula for the penetration depth.
We can deduce that electromagnetic fields penetrate less deeply into highly conductive
media and for alternating high-frequency electromagnetic fields. The frequency can thus
be tuned to get the desired depth range. Note that the skin e↵ect is derived for electro-
magnetic plane waves. In a general setting, the skin e↵ect gives some maximum on the
depth of penetration, but in our specific setting, it is di↵erent.

In Figure 1.2, a magnetic dipole is placed above the soil and it turns out under conditions
that will be further elaborated in Section 2.4, that the depth of penetration is primarily
limited by the fall-o↵ of the magnetic dipole field. It rather depends on the intercoil dis-
tance s, than on the electrical conductivity and frequency. To give a sense of the numbers,
take as a rule of thumb that for a horizontal dipole position the depth of exploration is
3s/4 and 3s/2 for vertical dipoles [McNeill, 1980]. Note that the amplitude of the mag-
netic dipole is still damped, due to of the skin e↵ect. This e↵ect will be examined in next
chapter in the discussion of the recently proposed Damped model [Maveau et al., 2017].
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1.2.3 Time domain vs frequency domain

A continuous sinusoidal electric current yields a measurement of both the primary and
secondary magnetic field in the receiver coil. Knowing that the secondary magnetic field
is much smaller than the primary field, we will, therefore, have poor accuracy. Time Do-
main EM surveying (TDEM) can resolve this issue. Instead of a continuous alternating
current, current pulses are sent through the transmitter coil. The pulses are separated
by an inactive primary magnetic dipole and the secondary field can be measured in the
absence of the primary field. The principal physical principles are a bit di↵erent in this
context. Eddy currents di↵use and gradually dissipate by resistive heat release. In higher
conductive bodies, eddy currents circulate around the boundary and decay more slowly.
Measurement of the decay rate of the waning eddy currents allows to estimate the con-
ductivities. Most methods propose to solve the problem in the frequency domain and
subsequently apply the inverse Fourier transform, in order to translate the solution in the
time-domain [Ward and Hohmann, 1988], [Farquharson and Oldenburg, 1993], [Ralph-
Uwe et al., 2008].

The analytical TDEM analysis actually exploits the work that has been done in the
frequency domain, for which an exact formulation was available quite early. As already
mentioned, in Frequency Domain EM surveying (FDEM), a continuous alternating current
is carried through the loop and as we will see in the next chapter, the Maxwell equations
can be reduced to the quasi-stationary field equations. The secondary magnetic field is
generally a complex function of conductivities, intercoil distance and frequency. We will
see that under some conditions, the relationship can be reduced to a linear model. These
models are both by J. Wait, in [Wait, 1951] and [Wait, 1962]7 respectively. A recent
model, proposed by [Maveau et al., 2017], will also be examined.

Notwithstanding the potential of TDEM analysis, the FDEM will be studied in this thesis.
Su�cient analytical models are available, however solving the inverse problem remains
challenging. We will propose a new inversion scheme for this problem. An inversion
scheme is a sequence of consecutive steps that allows to reconstruct a conductivity profile
from a given dataset.

1.3 Problem description and general method

In the hydrogeophysical setting of salinization in coastal areas, it is justified to present
the geology of the subsurface as stratified earth with only horizontal layers (this is called
an 1D model). Each layer has a thickness �hi, conductivity �i and magnetic permeability
µ, which we set equal for every layer8. We assume a vanishing conductivity of air. This
profile is shown in Figure 1.4, where a vertical dipole is depicted at height h0. h denotes
the total depth, measured from the surface of the soil, while hi is the depth of layer i.
The M th layer has a semi-infinite thickness. In Chapter 2, di↵erent forward models will

7In the literature, the model is sometimes referred to as by J.D. McNeill [McNeill, 1980], however
J. Wait notes in his book [Wait, 1982] that McNeill’s interpretation approach was already described in
[Wait, 1962].

8Permeability is the measure of the ability of a material to support the formation of a magnetic field,
we presume that this does not di↵er significantly from sediment to sediment.



1.3. PROBLEM DESCRIPTION AND GENERAL METHOD 7

h0

m I

...

�1, µ

�2, µ

�M�1, µ

�0 = 0, µ

�M , µ

�h1

�h2

�hM�1

h2

ez

er

e'

Figure 1.4: Stratified earth model with a vertical dipole with magnetic moment m. The
layers di↵er in depth and conductivity.

be presented for the geophysical electromagnetic induction technique. A forward model
is a model where the response (i.e. secondary magnetic field) is expressed in terms of the
primary magnetic field and conductivities for both a vertical and horizontal dipole.

After data acquisition (measuring the magnetic field), the inverse problem is considered.
This problem is concerned with determining the conductivity profile from the data. In
Chapter 3, we examine how the parameter distribution can be recovered and argue why
the inverse problem is challenging. The optimization problem will be exactly defined. We
will need to rely on iterative methods, such as the quasi-Newton limited-memory Broy-
den–Fletcher–Goldfarb–Shanno method for bound constraints (L-BFGS-B-method).

An inversion scheme usually consists of fitting the data, via the minimization of a least
squares functional. For stable inversion, a so-called regularization term will be added
to the minimization functional. This regularization term will impose an additional con-
straint. In our scheme, minimum-structure solutions will be promoted. This is an example
of Occam’s razor, it is the principle or belief that simpler solutions are more likely to be
correct than complex ones. We will consider a basis transformation in which minimum
structure solutions can be represented in a sparse form and impose sparsity on the solution
in the regularization term. Wavelet theory provides us with such a basis transformation.
With all the aforementioned ingredients, an inversion scheme for this inverse problem will
be proposed and tested in Chapter 5 using the wavelet theory developed in Chapter 4
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Chapter 2

Forward Modelling of the
EMI-problem

2.1 Introduction

The electrical conductivity � is the principal parameter that is measured, with units in
Siemens per meter (S/m) (In geophysical literature, it is often referred to as ground con-
ductivity in mS/m). The objective of this chapter is to deduce the soil’s response to a
magnetic dipole placed at height h0 above the surface and a soil with a specific parameter
distribution. All the models that we discuss in this thesis are related to the same stratified
conductivity profile, as discussed in Section 1.3.

First, we describe the quasi-stationary regime in which we rewrite and solve the Maxwell
equations. We then provide a summary of the long calculations of the exact model by
Wait [Wait, 1951] and a brief interpretation based on what we know about transmission
lines. Under the Low Induction Number (LIN) condition (see below), the complicated
exact model can be simplified. It does not take into account couplings between the
eddy currents and the electromagnetic dampening of fields in conductive media. This
simplification is especially necessary from a computational point of view and results in
the LIN approximation, a linear model. This model was developed in the 60s [Wait, 1962]
but is still used today (e.g. [Corwin and Lesch, 2003]). We additionally look at a recently
proposed model, the damped model [Maveau et al., 2017], which takes into account the
dampening of electromagnetic fields in conductive media. Such simplified models pave
the path for 2D and 3D problems, where subsurface layers do not necessarily need to
be horizontal. Afterwards, we briefly look at a quantitative comparison of the models.
In this thesis, we do not focus on the modelling problem, accordingly the comparison is
kept concise. In view of the inverse problem, the expressions for the magnetic fields are
discretized in Section 2.7. Finally, more details about data acquisition instrumentation
will be provided and the results from measurements in the Westhoek will be reported.

9



10 CHAPTER 2. FORWARD MODELLING OF THE EMI-PROBLEM

2.2 Quasi-stationary Maxwell equations

In this section, the standard Maxwell equations in the quasi-stationary field regime are
examined. The Maxwell equations are [Gri�ths, 2005]

r · E =
1

✏0
⇢ Gauss’s law, (2.1)

r · B = 0, (2.2)

r ⇥ E = �@B

@t
Faraday’s law, (2.3)

r ⇥ B = µ0J+ µ0✏0
@E

@t
Ampère-Maxwell law, (2.4)

where ⇢ is the charge density and µ0 and ✏0 are respectively the permeability and permit-
tivity of the vacuum. Historically, Maxwell added the displacement current

Jd = ✏0
@E

@t
. (2.5)

In the derivation of the forward models, a magnetic dipole with harmonic time dependence
will be assumed. It is convenient to write this with the exponential exp(i!t), where ! =
2⇡f is the angular frequency. The actual physical quantity is the real part of the complex
phasor. The Maxwell equations in the frequency domain are obtained by substituting
E(r, t) = E(r) exp(i!t) ! E(r) and @E(r,t)

@t
= i!E(r, t) ! i!E(r) and analogously for the

other vector field quantities. Using the constitutive equation in the absence of magnetic
materials, B = µ0H, yields

r · E =
1

✏0
⇢ = 0, (2.6)

r · H = 0, (2.7)

r ⇥ E = �iµ0!H (2.8)

r ⇥ H = J+ i✏0!E, (2.9)

where the subsurface is assumed to be electrically neutral. This means that there are no
net electrical charges, i.e. ⇢ = 0.

Finally, the displacement current (2.5) can be neglected when i✏0! ⌧ �, seeing that Eq.
(2.9) with Ohm’s law yields

r ⇥ H = J+ Jd (2.10)

= �E+ i✏0!E (2.11)

= (� + i✏0!)E. (2.12)

Since the direct derivation of a formula for the fields is an elaborate process, we resort to
using potentials instead of fields. It is well-known [Gri�ths, 2005] that the electric field
E and the magnetic induction B can be written in terms of a magnetic vector potential
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A and an electric scalar potential V

B = r⇥A, (2.13)

E = �@A

@t
� rV, (2.14)

where gauge fixing copes with the redundant degrees of freedom. [Maveau et al., 2017]
use the Weyl or temporal gauge, because this brings the derivation as close as possible to
the magnetostatics case. In the Weyl gauge, the electric scalar potential is zero, hence

H =
1

µ0

r⇥A, (2.15)

E = �i!A. (2.16)

The Maxwell equations now need to be written in terms of the vector potential A. The
following Helmholtz equation1 is obtained

(r2 � k2
i )Ai = 0 k2

i = i!µ0�i, (2.17)

by substituting Equations (2.15) and (2.16) in the Ampère-Maxwell equation and with
Gauss’ law. The wave number ki is purely imaginary due to the neglect of the displacement
current in our dynamics.

2.3 Exact solution in real space

2.3.1 Summary of the calculations

In this section, the full model is derived within the quasi-stationary regime of the previous
section. This result will be referred to as the exact model. The horizontally stratified
conductivity profile has already been introduced in Section 1.3, Chapter 1, including the
meaning of the symbols.

The results of cumbersome calculations are summarized [Maveau et al., 2017], [Deleersny-
der et al., 2017], [Wait, 1982]. First, the case of a vertical dipole is considered, because the
cylindrical symmetry simplifies the calculations. The Helmholtz Equation (2.17) is solved
using separation of variables, yielding exponential functions in z and cylindrical Bessel
functions J1,2 for the radial part. Omitting the non-physical (i.e. exploding) solutions
and summing (integrating) over all eigenvalues, yields

A0 = e�
mµ0

4⇡

Z +1

0

f(�) exp(��z)J1(�s) d�+
µ0

4⇡

m ⇥ r

r3
, (2.18)

Ai = e�
mµ0

4⇡

Z +1

0

gi(�) exp(�iz)[1 + xi(�) exp(�2�iz)]J1(�s) d� , (2.19)

AN = e�
mµ0

4⇡

Z +1

0

gN(�) exp(�Nz)J1(�s) d� , (2.20)

1It is not a surprise to find a time-independent form of the wave equation, since we have dealt with
the time-dependence by considering the frequency domain.
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for the components of the magnetic vector potential, where

�i =
q
�2 + k2

i . (2.21)

The second term in A0 is the magnetic vector potential of an ideal magnetic dipole with
moment m. The functions f(�), gi(�) and xi(�) result from solving the separated di↵er-
ential equations and do depend on the boundary conditions.

The next step is to apply boundary conditions to Eqns. (2.18)-(2.20). In this setting, the
relevant boundary conditions at the interface of two adjacent layers 1 and 2 are [Gri�ths,
2005]

µ1H
?
1 � µ2H

?
2 = 0, (2.22)

Hk
1 � Hk

2 = Kf ⇥ n̂, (2.23)

where Kf is surface current density. The unit vector n̂ is perpendicular to the interface
and points from layer 2 toward layer 1. We do not expect surface currents, since they
are only expected for highly conductive (metallic) layers. Also, we assume that all per-
meabilities are equal and thus all components in the magnetic field H are continuous at
every boundary. In terms of the vector potential A, we write

r⇥ (Ai � Ai+1) = 0. (2.24)

After applying the boundary conditions, a recursive relation is obtained

f(�) = �
�0 � Y1

�0 + Y1

exp(�2�h0), (2.25)

Yi := �i
1 � xi exp(�2�ihi�1)

1 + xi exp(�2�ihi�1)
(2.26)

= �i
Yi+1 + �i tanh �i�hi

�i + Yi+1 tanh �i�hi

. (2.27)

The starting point of the recursive relation is for xN = 0 (this can be seen from Eq.
(2.20)) or YM = �M .

For a horizontal dipole, cylindrical symmetry is lost and the calculations become more
cumbersome. [Wait, 1982] circumvents this issue by solving the problem with a magnetic
monopole instead of a dipole. Afterwards, the solution is transformed to a dipole-case,
via

m

q
· r

r

0

����
r

0=0

, (2.28)

where q is the strength of the monopole and m the strength of the dipole. After tedious
calculations, the function f(�) is

f(�) = ��� Y1

�+ Y1

exp(�2�h0), (2.29)

while the functions Yi remain the same.
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Let us finally note that other derivations exist for this specific stratified earth problem.
Zhdanov derives an expression in the Fourier domain. It can be shown (e.g. in [Deleer-
snyder et al., 2017]) via the Hankel transform2 that these approaches are equivalent.

2.3.2 Analogy with transmission lines

The recursive relations (2.26) and (2.27) are complex. At first glance, they do not seem to
provide much insight in what physically happens. However, a reader familiar with trans-
mission lines will recognize the relations. In transmission lines [Johnson et al., 2003], the
propagation of electromagnetic waves (or alternating voltages) are described over long
distances (that is: the size of the line is typically much larger than the wavelength),
where the current is not the same all the way down the line. If we instantaneously put a
voltage source across a transmission line, a certain current flows to create a voltage wave
that travels down the transmission line.

In direct current circuits, the resistance describes the ratio of the voltage over the cur-
rent, while with alternating currents, complex impedances are used. The characteristic
impedance Zi depends on the physical characteristics of the line (as that is also the case
with resistance in DC circuits) and determines the magnitude of the current. At an
impedance discontinuity, the reflection coe�cient describes how much of an electromag-
netic wave is reflected due to the discontinuity (that is the same as with acoustic waves).
The reflection coe�cient of the discontinuity between characteristic impedances Z1 and
Z2 is then

� =
Z1 � Z2

Z1 + Z2

. (2.30)

The impedance measured at a given distance h (between source and discontinuity) of the
discontinuity is3

Zin = Z1
1 + �e�2�h

1 � �e�2�h
, (2.31)

where � is the (complex) propagation constant. It depends on the characteristic impedance
Z1 of the medium and the reflection � . Rearranging the above equation yields

Zin(h) = Z1
Z2 + Z1 tanh (�h)

Z1 + Z2 tanh (�h)
, (2.32)

in terms of the Z2 instead of the reflection coe�cient. Z1 is the characteristic impedance
of the sub-circuit in the transmission line while the actual impedance at a specific position

2The Hankel transform F⌫(k) =

Z 1

0
f(r)J⌫(kr) r dr, where ⌫ is the order of the Bessel function, is

related to the Fourier transform. This can be seen by equating the 2D inverse Fourier transform of a
function f(r) with the inverse zero-order Hankel transform of f(r).

3Without giving too much detail, Equation (2.31) is obtained from the Telegraphers’ equations (see
[Johnson et al., 2003]). When a forward wave reflects o↵ at the far end, then the reflected wave returns
to the near end. The length will determine the decay of the electromagnetic wave (indeed, in conductive
media, electromagnetic waves decay). For the voltage at length h, it is simply the sum of both forward and
reflected wave: Vin = V+ exp(+�h) + V�� exp(��h). The current can be obtained via the Telegraphers

equation
dV

dz
= �(j!L + R)I. We write Iin = I+ exp(+�h) � I�� exp(��h). With Zin = Vin/Iin,

Equation (2.31) is obtained.
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is as in Eq. (2.31). For multiple discontinuities, the relation is recursive.

An impedance discontinuity corresponds with a new subsurface layer (indeed, the di↵erent
ground conductivity will yield a di↵erent electrical impedance). Every layer corresponds
with a specific sub-circuit with its characteristics. The sub-circuit of the air is quite
simple. The conductivity �0 = 0 ) ki = 0 ) �0 = �. The characteristic impedance of
the air is Z0 = �0 with reflection coe�cient

�0 =
Z0 � Y1

Z0 + Y1

. (2.33)

From the equation for f(�) and the z dependence in the integral of A, rewrite

f(�) exp(��z) = �
�0 � Y1

�0 + Y1

exp(�2�h0) (2.34)

,f(�) exp(��(z � h0)) = Z0�0 exp(��h0). (2.35)

f(�) exp(��z) describes the reflected measured impedance at a given distance in the air.

2.4 LIN Approximation

The model in Section 2.3 is highly non-linear. In order to reduce the computational bur-
den, a linear model was proposed. [Wait, 1962] proposed to linearise the model by slicing
the subsurface earth in thin conducting sheets and to neglect the induction between these
sheets and the self induction4, i.e. ‘independent sheets’. The total secondary magnetic
field was obtained by summing the contributions of all these thin sheets, or integrating
over infinitesimally small sheets.

2.4.1 Derivation via the exact solution

This LIN approach can be derived from the model by Wait in Section 2.3. First, an
expression for the contribution to the secondary magnetic field for an infinitesimal, inde-
pendent sheet is required. This expression is obtained from an infinitesimal thick layer
dh at depth h with conductivity �(h) embedded in free space. In the framework of Wait’s
model, this yields

Y1 = �1
�+ �1 tanh(�1dh)

�1 + � tanh(�1dh)
, (2.36)

f(�) = �k2dh

2
exp(�2�h). (2.37)

The next step is to calculate the secondary magnetic field response of such an infinites-
imally thin sheet. Equations (2.36) and (2.37) are substituted in Eq. (2.18). Via the
definition of the magnetic vector potential (2.13), the secondary magnetic field of the

4In his work, this approximation was e↵ectively only retaining the first term in a series expansion.
The approximation was only valid for su�ciently low frequencies. Retaining only the first term corre-
sponded physically with neglecting self-induction in the sheet. Summing over all the independent sheets
corresponds physically with neglecting the magnetic couplings (or linearisation).
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sheet is obtained.

The secondary magnetic field of the complete semi-infinite subsurface is obtained by
integration or superposition of the elementary secondary sources. Using the dimensionless
quantity ⌘ = hs�1 and putting the dipole field Hp at ⌘ = 0 yields the following magnetic
field ratios

Hs,z

Hp,vert

=
i!µ0s

2

4
�a,z (2.38)

and
Hs,⇢

Hp,vert

=
i!µ0s

2

4
�a,⇢, (2.39)

while the '-component is irrelevant, due to cylindrical symmetry. The expressions for the
apparent conductivities are given by

�a,z =

Z 1

0

�(⌘s)
4⌘

(4⌘2 + 1)
3

2

d⌘, (2.40)

and

�a,⇢ =

Z 1

0

�(⌘s)
2

(4⌘2 + 1)
3

2

d⌘. (2.41)

The z-component is measured in a horizontal coplanar system (HCP) coil setting, while
the ⇢-component is measured in a perpendicular (PERP) setting.

The dimensionless quantity ⌘ will be used on plots in Section 2.4.4, because in this model
(under the LIN condition), there is no coupling and thus the depth of penetration only
depends on the fall-o↵ of the magnetic dipole. It is a linear model, in the sense that a
function �(h) is linearly mapped on the magnetic field ratio. This linearity will make it
possible to easily discretize this forward model (see Section 2.7 and the associated inverse
problem in the next chapter).

For a horizontal dipole, the magnetic field ratio’s are

Hs,⇢

Hp,hor

= � i!µ0

4
xy

Z +1

0

�(⌘s)2

 
2 � 4⌘p

4⌘2 + 1
� 2⌘

(4⌘2 + 1)
3/2

!
d⌘, (2.42)

Hs,'

Hp,hor

= � i!µ0

4
s2

Z +1

0

�(⌘s)

"
y2 � x2

s2

 
2 � 4⌘p

4⌘2 + 1

!
� y2

s2

2⌘

(4⌘2 + 1)
3/2

#
d⌘, (2.43)

Hs,z

Hp,hor

= � i!µ0

4
ys

Z +1

0

�(⌘s)
2

(4⌘2 + 1)
3/2

d⌘. (2.44)

The ⇢-component of the secondary magnetic field is measured in the VCA coil orientation.
The '-component is measured in a VCP coil orientation and the z-component in the NULL
configuration. Note that in the latter configuration, the response will not be null if the
receiver coil is located outside the vertical plane of the transmitter coil.



16 CHAPTER 2. FORWARD MODELLING OF THE EMI-PROBLEM

2.4.2 Low Induction Numbers (LIN) condition

In an alternative derivation of the LIN approach, the result is obtained by a series ex-
pansion of an integral (e.g. see [Wait, 1962]). Only retaining the first term in the series
expansion is only valid for B = s/� su�ciently small. The dimensionless quantity B is
called the induction number, s is the intercoil distance and � is the skin depth. Rewriting
the low induction number condition B ⌧ 1 yields

!µ0�s
2

2
⌧ 1. (2.45)

The meaning of the LIN condition is that if the skin depth is much larger than the path
the electromagnetic field has to traverse, the dampening can be neglected. We have al-
ready mentioned that the path length is restricted by the fall-o↵ of the magnetic dipole.
It has the same order of the intercoil distance s.

Now, the condition can be interpreted via Eq. (2.45). For highly conductive media,
the interaction between sheets is strong and cannot be neglected. Indeed, the induction
number B is larger and the approximation is poor. For large intercoil distances, the lower
lying layers are probed and the dampening e↵ect is more pronounced. It thus makes
sense that the approximation is poorer for larger intercoil distances. Finally, the angular
frequency of the magnetic dipole has to be su�ciently low. A larger frequency yields a
larger magnetic flux, also for the secondary magnetic fields and then the current loops
are more strongly coupled. In Section 2.6, the models will be compared and it will be
possible to recognize when the LIN condition breaks down.

2.4.3 The LIN condition and electronic circuits analogy

[McNeill, 1980] adds some insight by translating the problem to elementary circuit theory.
While we have used a transmission line interpretation in the wave representation for the
exact model, it can also be viewed as a series of circuits with load impedance ZL. Consider
two current loops with currents i1 and i2 respectively. An electromotive force E (voltage)
energizes the current in the first loop i1. From Faraday’s law, it is well-known that
an alternating electromotive force induces an alternating current. Additionally, a larger
frequency induces a larger magnetic flux. In alternating current loops, there are three
impedances that restrict the current to be infinite. Obviously, the electrical resistance R1

in the loop limits the current. Secondly, the self-inductance L1 and thirdly the mutual
inductance M12 between both loops play a role. The complex impedance ZL describes all
e↵ects of magnetic coupling between both loops. We have

ZL = i!L1 +
!2M2

R2 + i!L2

(2.46)

and

i1 =
E

R1 + ZL

. (2.47)

From these equations, it can be easily seen that for su�ciently low frequencies, |Z| ⌧ R1,
the loops decouple. This is another manifestation of the independence at low frequencies.
While it seems consistent with the LIN condition, the skin e↵ect is not taken into account
in this interpretation (current loops do not facilitate such behaviour).
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2.4.4 Relative contribution in di↵erent coil settings

To get some more detailed intuition about the depth of exploration, the instrumental
response as a function of depth is plotted in Figure 2.1. Recall that the dimensionless
quantity ⌘ is used. ⇠(⌘) is the relative contribution (or relative response) to the secondary
magnetic field from the normalized depth ⌘ and it is recognized from the expression of
apparent conductivity

�a =

Z 1

0

�(⌘s)⇠(⌘)d⌘. (2.48)

For the vertical dipole, the HCP coil orientation probes the lower lying conductivities
more than those near the surface. The maximum contribution to the apparent conduc-
tivity will be from (more or less) a layer at depth h = 0.5s. For the PRP coil orientation,
the first layer will contribute most significantly. In the HCP setting, the eddy currents
in the upper layer do not contribute solely due to geometrical reasons. Eddy currents in
conductive sheets behave as smoke rings5. The diameter of the current loop is small for
the upper layers and the magnetic flux (z-component) is only large right above the eddy
current.

For a horizontal dipole, we go to cylindrical coordinates x = s cos(✓), y = s sin(✓). For
✓ = 0, only the VCP coil configuration depends on the stratified earth. For ✓ = ⇡/2, only
PRP,V or VCA does not depend on the stratified earth.

2.5 The damped model

In the previous section, we have discussed the LIN approximation. In this section, a
hybrid model is derived in the same way as the LIN approach. The model is hybrid in
the sense that it does not take into account magnetic couplings between current loops,
but the e↵ect of the dampening of the propagation of the fields is included. This model
attempts to improve the LIN approach while preserving the spirit of simplicity (a closed
form relation of the fields and (quasi-)linearity).

The derivation is analogous as with the LIN approach, but instead of embedding an
infinitesimal thin sheet in free space, it is embedded in a half-space with a background
conductivity �b. The layers with background conductivity are modelled to have no eddy
currents, it is just there to model the dampening e↵ect. The conductivity profile is
described in three layers: the upper layer has a conductivity �b and reaches from the top
of the soil to the thin sheet, the second layer is the infinitesimal thin sheet at depth h with
conductivity �(h). The third layer is semi-infinite and has the background conductivity
�b (see Figure 2.2a). Applying the exact model to this conductivity profile to first order
in dh yields

Y3 = �b, Y2 ⇡ �b + (�2
h � �2

b )dh, Y1 ⇡ �b + (�2
h � �2

b ) exp(�2�bh)dh, (2.49)

f(�) ⇡ �
�� �b

�+ �b


1 + 2�

�(h) � �b

�b

exp(�2�bh)dh

�
exp(�2�h0). (2.50)

5There is a beautiful paper that gives some insight in the geometry of eddy currents, based on Maxwell’s
receding image construction [Saslow, 1992], esp. Section IV is relevant for our problem.
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Figure 2.1: Relative response (in the LIN approach) for di↵erent coil orientations.
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h0

m I

Conducting background �b

Conducting (thin) sheet �(h)

Conducting background �b

Air

dh

h

(a) Conductive sheet

h0

m I

Conducting background �b

Air �(h) = 0

Conducting background �b

Air

dh

h

(b) Non-conductive sheet

Figure 2.2: A scheme of the rationale behind the Damped model. It consist of a dipole
at height h0 above the ground, a thin (non-)conductive sheet embedded in a conductive
background.

As in the LIN approach, we need to integrate over all the sheets. The background con-
ductivity �b should not directly contribute to the secondary magnetic field Hs, since no
eddy currents are modelled in those layers. The unwanted contribution can easily be elim-
inated by subtracting the contribution of a thin sheet with vanishing conductivity with
the same background �b (see Figure 2.2b). This development yields an integral with no
known analytic solution. A further simplification (a Taylor approximation, see [Maveau
et al., 2017]) allows to write the contribution of an infinitesimally small conducting sheet
to the secondary magnetic field as

Hdh,z

Hp,vert

⇡ i!µ0s
2

4
4�(h)d⌘ exp

⇣
�kbs

p
4z2 + 1

⌘ z

4z2 + 1

✓
kbs+

1p
4z2 + 1

◆
(2.51)

Hs,⇢

Hp,vert

⇡ i!µ0s
2sdh

4
�(h)2

@2T (s, 2h)

@(2h)@s
(2.52)

T (s, z) =

Z +1

0

1

�
exp(��z)J0(�⇢)d� = I0


k

2
(r � z)

�
K0


k

2
(r + z)

�
(2.53)

for a vertical dipole, while for a horizontal dipole, the relevant kernel is

f(�) ⇡ iµ0!�(h)dh

2
exp(�2�bh). (2.54)

The functions I0 andK0 are the modified Bessel functions [Abramowitz and Stegun, 1965].
The explicit secondary magnetic fields will be given in Section 2.7, where the discretiza-
tion of the magnetic field will be considered.

It was assumed that the dipoles lie on the surface. This is not an issue, because dipoles
at a height h0 can be modelled to lie on a horizontal layer with vanishing conductivity,
i.e.

�̃(h) =

⇢
0 0 < h < h0

�(h � h0) h0 < h
. (2.55)
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The second issue is to find a proper value for the background conductivity �b. A fixed value
yields a linear model. However, [Maveau et al., 2017] argues that pinpointing the exact
value is di�cult. A small deviation in the optimal �b results in a large error in the magnetic
field. We can give up the linearity, by considering a more di�cult background conductivity
based on knowledge of the profile (prior or acquired). Dampening is primarily caused
by the layers on top of the thin conducting sheet. When the secondary magnetic field
contribution of the ith layer is calculated, �b is approximated as the weighted average of
the conductivities of the the layers on top of the layer. The weights will be the thicknesses
of those layers.

2.6 Behaviour of models

To gain more insight into the typical magnetic field ratios, the response is illustrated (Fig-
ure 2.3) for a conductivity profile in Liège [Hermans and Irving, 2017]. The conductivity
profile is obtained via borehole logging. Both the ⇢ and z-component for measurements
at di↵erent intercoil distances ranging from 1 to 40 metres at a height of 0.1 meters, as
well as measurements at di↵erent heights from 0 to 20 meters with intercoil distance 20
meters are plotted in Figure 2.4. Note that the latter setting is not practical. In prac-
tice, measurements with di↵erent intercoil distances will occur more often. The response
is slightly di↵erent for each model and the di↵erence is most apparent for the z-component.

The LIN approximation’s magnetic field ratio depends on a pre-factor that is quadratic
in s and the apparent conductivity �a. Recall that the apparent conductivity is some
weighted average of the subsurface’s conductivity profile, and this also depends on s! The
maximum of the relative contribution ⇠ thus depends on the intercoil distance. The LIN
condition

!µ0�s
2

2
⌧ 1 (2.56)

is quadratic in s, thus, for larger intercoil distances, the LIN assumption breaks down.
This is clearly visible for the z-component of Hs/Hp. The damped model follows the exact
response much more closely.

Let us now examine the measurements at di↵erent heights. If measurements are carried
out at larger heights, then the secondary magnetic field drops. The strength of the
magnetic dipole drops cubically with distance and is, therefore, less strong before it reaches
the soil. Consequently, the secondary magnetic field is weak. It is also clear how the
damped model follows the exact model much better than the LIN approximation. The
LIN approximation deviates from the exact model at h = 0 metres with 1.37⇥10�3 A/m,
which linearly drops to h = 20 meters with 1.14⇥ 10�3 A/m. The di↵erence between the
LIN approximation and the other models is so manifest because the intercoil distance s
is already 20 meters (LIN condition breaks down).
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Figure 2.3: Conductivity profile from a site in Liège, obtained via borehole logging. Data
retrieved from [Hermans and Irving, 2017].
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Figure 2.4: Behaviour of the response (in terms of heights and intercoil distances) for the
conductivity profile from Figure 2.3.
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2.7 Discretization

There is no need to have an expression that maps �(h) on Hs(⇢,�, z), since our conduc-
tivity profile is assumed to be a series of step functions. This allows us to easily discretize
the expressions.

2.7.1 Discretization of the LIN approximation

Discretizing the LIN approximation is basically discretizing the apparent conductivity

�a(h0) =

Z 1

0

�(⌘s)⇠(⌘), (2.57)

associated to a measurement conducted at height h0.

Consider a measurement of the field ratio conducted at heights h0,1, . . . , h0,m above the
surface (dipole height as well as receiver height). Let �a denote the m-dimensional vector
containing all of these values. As we will see below, the data from measurements with
the EM34-3 are given in these apparent conductivities.

As the conductivity in a layer is a constant, Eq. (2.57) can be discretized via Fredholm
integral equation of the first kind [Aster et al., 2018]. Consider an n-layered stratified
earth, where the n-th layer is semi-infinite. Then the vector � contains the electrical
conductivities of these layers. As an example, the i-th entry of �a can be computed as
follows:

�a,i = �a(h0,i) = �1

Z h
1

0

⇠(h+ h0,i)dh+ �2

Z h
2

h
1

⇠(h+ h0,i)dh+ · · ·+ �n

Z 1

h
n�1

⇠(h+ h0,i)dh.

Therefore the following matrix identity is obtained

�A = K�, (2.58)

where the ij-th entry of the matrix K 2 Cm⇥n is given by

Kij =

Z h
j

h
j�1

⇠(h+ h0,i)dh.

Then,
Hs

Hp

(h0,i) =
i!µ0s

2

4
Kij�j. (2.59)

This matrix scheme is the forward implementation of the LIN approximation. The lin-
earity of the LIN approximation allows a matrix K, independent of the conductivities �.

The experimenter might also want to conduct measurements at a variety of values for the
intercoil distance. Similarly as above, this yields a unique matrix K, independent of the
conductivities �.
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2.7.2 Discretization of the damped model

Analogously, the discretization of the damped model is obtained. The matrix K is now
dependent on the background conductivity �b. From [Maveau et al., 2017]:

Vertical dipole

Hi,s,HCP

Hp

⇡ � i!µ0�is
2

4

2

4
exp
⇣
�kbs

p
4⌘2 + 1

⌘

p
4⌘2 + 1

3

5

⌘
i+1

⌘
i

, (2.60)

Hi,s,PRP

Hp

⇡ i!µ0�is
2

4

"
kbs

2
p

4⌘2 + 1
(I1(r�)K0(r+) � I0(r�)K1(r+))

#⌘
i+1

⌘
i

, (2.61)

Horizontal dipole

Hi,s,PRP,V

Hp

⇡ i!µ0�i

4
xy

"
2I1/2(r�)K1/2 � 1p

4⌘2 + 1
exp
⇣
�kbs

p
4⌘2 + 1

⌘#⌘
i+1

⌘
i

(2.62)

Hi,s,V CP

Hp

⇡ i!µ0�i

4
s2

"
y2 � x2

s2
2I1/2(r�)K1/2 � y2

s2
p

4⌘2 + 1
exp
⇣
�kbs

p
4⌘2 + 1

⌘#⌘
i+1

⌘
i

,

(2.63)

Hi,s,PRP,H

Hp

⇡ � i!µ0�i

4
s2

"
kby

2
p

4⌘2 + 1
(I1(r�)K0(r+) � I0(r�)K1(r+))

#⌘
i+1

⌘
i

, (2.64)

where

ri,± =
kbs

2

✓q
4⌘2

i + 1 ± 2⌘

◆
(2.65)

and recall ⌘i = hi/s.

2.8 Data acquisition at De Panne

2.8.1 Location

In the context of this master’s thesis, I was given the opportunity to collaborate in a
measurement campaign. The data was obtained at a sea inlet6 in the Flemish Nature
Reserve “The Westhoek”, situated along the French-Belgian border. The sea inlet (Fig-
ure 2.5b ) was created in the fore dunes in 2004 [Hermans et al., 2012] [Verwaest et al.,
2005], with the aim of promoting biodiversity, esp. salt tolerant flora. Therefore, the
concrete dunefoot revetment was removed locally up to a hight such that sea water could
approximately 12 times a year flood into the dunes. During a storm or high tide, the sea
water would be able to access the dune slacks7. Nevertheless, the project is not running
as planned. The sea inlet is completely silted up because water could not penetrate the
sea inlet often enough. Consequently, the dune slack is also completely silted.

6in Dutch: “slufter”, as indicated on Figure 2.5a by Google.
7Dune slacks are low-lying areas within the dunes that are occasionally flooded. [Grootjans et al.,

1998] They can form infiltration ponds.
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From a hydrogeological point of view, it remains an interesting area, because there is
(only sporadically) salt water infiltration. Additional recharge of salt water can threaten
the fresh water lens in the dune aquifer8. As already mentioned in Chapter 1, the area
is used for drinking water production, whereby fresh water is pumped up from the fresh
water lens. The hydrogeological equilibrium (fresh vs. salty water) should therefore be
monitored. EMI measurements were carried out along the black lines in the sea inlet area,
see Figure 2.5a.

(a) Map of sea inlet area. Measurements were
carried ou along the black lines. Map retrieved
from [Google, 2019].

(b) The sea inlet at high tide. Water floods
towards the dune slack. Figure retrieved from
[Copejans, 2007].

Figure 2.5: Site location at the sea inlet, situated in the Flemish Nature Reserve “The
Westhoek”.

2.8.2 Instrumentation

The EM34-3 by Geonics [McNeill, 1980] was used to measure the apparent conductivities
(in mS/m) at di↵erent intercoil distances, according to the LIN approximation. It con-
sists of a self-contained dipole transmitter and receiver, a reference (shielded) cable, the
required power sources and consoles for the transmitter and receiver (see Figure 2.6). It is
two-man portable. The instrumentation is composed of three standard intercoil spacings
with a corresponding operating frequency. The alternating current will have a frequency
of 6.4, 1.6 and 0.4 kHz for respective intercoil spacing of 10 m, 20 m or 40 m. The
conductivity is measured in ranges of 10, 100 or 1000 mS/m with a ±0.1% resolution of
the full scale. The measurement accuracy is ±5% at 20 mS/m and the noise level is 0.2
mS/m, which can be greater in regions of high power line interference. For that reason,
there exists the EM34-3XL with larger transmitter and receiver coils. These larger coils
improve the signal-to-noise ratio by a factor of ten at the 40 m spacing and a factor of
four at the 10 m and 20 m spacings [Geonics, 2012]. This larger instrument, particularly
useful in regions of high cultural noise, was not used. The maximal depth of exploration
is about 60 m for an intercoil spacing of 40 m in a vertical dipole (HCP) coil setting.

8According to [Hubbard and Rubin, 2005]: “An aquifer is a body of rock that contains voids (such as
pores, fissures or joints) and is thus capable of conducting groundwater.”
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Figure 2.6: Typical measurement set-up with the EM34-3. Figure retrieved from [Geonics,
2012].

The instrumentation is built to operate at three intercoil spacings. Of course, one can
make measurements at numerous intercoil distances. The experimenter will need to man-
ually write down the intercoil spacings, while the spacings in the logging device will
correspond to the operating frequencies. This is how we have conducted the measure-
ments.

2.8.3 Data

The magnetic field ratio’s for measurements along line 1 in Figure 2.5a are shown in Figure
2.7. The raw data is tabulated in Appendix A, together with the data from lines 2 and 3.
To get the magnetic field ratio’s from the raw EM34-3 data, the following operations are
required: The frequency is determined by the spacing that is set on the transmitter device.
Spacing 10, 20 and 40 meters correspond respectively with 6.4, 1.3 and 0.4 kHz9. While
the instrumentation measures the magnetic field, a reading of the apparent conductivity
�a is given. In [McNeill, 1980], the conversion formula to the magnetic field ratio’s is
given. The formula is used for both HCP (vertical dipole) and VCP (horizontal dipole)
setting: ✓

Hs

Hp

◆

V

⇡
✓
Hs

Hp

◆

H

⇡ i!µ0�as
2

4
. (2.66)

9Indeed, a large intercoil distance is compensated by a small angular frequency, as required by the
LIN condition.
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Chapter 3

The Inverse Problem

3.1 Introduction

In the previous chapter, the forward problem was discussed in which the electromagnetic
field response for a horizontally stratified earth, with known electric conductivities and
thicknesses, to the field of an alternating magnetic dipole as source was examined. This
problem is theoretically interesting and challenging, however, the inverse problem is of
greater practical importance. An inverse problem is about finding the model parameters,
given an input signal and its response (see Figure 3.1). Here, an alternating magnetic field
is applied and a magnetic field is being measured. The question is, what is the structure
of the subsurface, i.e. what are the conductivities and thicknesses of the di↵erent layers?

model m

data d

Inverse problemForward problem K(m)

Figure 3.1: Forward vs. inverse problem.

More formally, the objective of an inverse problem is to find the model parameters m 2
R+,n such that

d = K(m) (3.1)

holds, where d 2 Cm is the vector that contains the measured data. K is the operator
that describes the relation between m and d. The forward models discussed in Chapter
2 are examples of such operators K. For a linear model, Eq. (3.1) reduces to

d = Km

where K 2 Rm⇥n is now a matrix. The LIN approximation is, after discretizing the con-
tinuous expression, an example of such a linear theory. The vectors m and d contain the

27
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electrical conductivities and magnetic field ratios respectively.

The inverse problem is further elaborated in this chapter. In Section 3.2, we define an
objective function that describes how well a vector m approximates the true model. The
minimum of this function should corresponds to the best set of conductivities for a given
data set d. Finding such a minimum is not a simple task. We will rely on iterative
methods that require gradient information from the objective function (see Section 3.3).
In Section 3.4, we discuss the iterative method that will be used in our inversion scheme.

3.2 The regularized objective function

3.2.1 Least-squares fitting of an ill-posed problem

Since there is no direct technique for solving the non-linear inverse problem, we use least-
squares fitting. An objective function �(m) is defined, which describes how the predicted
data K(m) from the model parameters m deviates from the observed data d. A standard
functional for a parametrized model is

�(m) =
1

2
kd � K(m)k2

2, (3.2)

where the intuitive `2-norm measures the Euclidean distance between the predicted data
K(m) and the observed data d.

A successful iterative inversion scheme requires fast and accurate computation of the for-
ward model. For the purpose of fast computation, the LIN approximation was introduced,
at the cost of a consistent error on the predicted data (cf. Section 2.6). Additionally, the
accuracy of the computation depends on the stability of the implementation and the
conditioning of the problem. Especially, if the inverse problem is ill-conditioned, then
a slightly perturbed data set produces largely deviating model parameters. The general
definition of the relative condition number of a function is [Trefethen and Bau III, 1997]

 = lim
�!0

X

||�x||�

✓
||�f ||

||f(x)||/
||�x||
||x||

◆
, (3.3)

where �x denotes a small perturbation on x and �f = f(x + �x) � f(x). The condition
number of a matrix is [Trefethen and Bau III, 1997]

(A) = ||A|| · ||A�1||. (3.4)

For a rectangular matrix of full rank, the inverse A�1 is replaced by the pseudoinverse
A+ = (A⇤A)�1A⇤. There is freedom to choose the norm, but for simplicity we take the `2-
norm, because then1 ||A||2 = �max, the first singular value of matrix A. Here, the condition
number (A) = �max/�min, where �max is the first singular value of matrix A and �min

is the smallest singular value of A. A simulation of the condition number of the linear
LIN matrix K reveals  ⇠ 1011, and consequently the inverse problem is ill conditioned.
Measurement errors make the task even more demanding and solutions will di↵er greatly

1Theorem 5.3 in [Trefethen and Bau III, 1997]
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for every remeasurement. We have thus three sources of noise: numerical round-o↵,
unmodelled influences (e.g. the subsurface is not perfectly horizontally stratified) and
noise due to instrument readings. The minimum of our least-squares functional (3.2) will
generally not be zero:

d = dtrue + ⌘ ) �(m) = kdtrue + ⌘ � K(mtrue) = k⌘k2
2 > 0, (3.5)

where ⌘ represents the experimental noise2 and dtrue is the exact magnetic field ratio for
a given model mtrue.

Furthermore, the inverse problem is ill-posed. There are in our set-up usually more model
parameters than measurement positions, i.e. one has more unknowns than knowns and
hence the solution is non-unique. Finally, the objective function could be multimodal for
non-linear least-squares. In Section 3.4, it will become clear that this exacerbates the
optimization problem.

The non-uniqueness requires the problem to be reformulated for numerical treatment.
The next example will demonstrate what is meant with such a reformulation. Consider
two solutions m

1

and m
2

for which �(m
1

) = �(m
2

), i.e. the data misfits of both solu-
tions are equal. For example, if m

1

is strongly oscillatory and m
2

is a constant solution,
then the inversion scheme should prefer the constant solution, for these parameters are
closer to realistic model parameters. Indeed, it is expected that there will be a set of
layers with equal conductivities � rather than spatially oscillatory behaviour of the con-
ductivity profile. The task is thus to define, or reformulate, an objective function for
which �(m

1

) > �(m
2

). Such an adjustment is made by imposing additional constraints
on the model. Adding these terms to the objective function is a technique known as
regularization. Various constraints can be imposed on the model, but in a general regu-
larization problem, the structure or variation in the model parameters is minimized. That
regularization can serve as a means of preventing overfitting due to noise, produced by
unmodelled artefacts (e.g. a small metal object in the subsurface). Minimum structure
regularization is a formalization of as Occam’s razor idea that states that simpler solutions
are more likely to be correct than complex ones.

In general, the objective function �(m) is separated in two terms

�(m) = �d(m) + ��m(m), (3.6)

where the �d is the data misfit term (i.e. the least-squares fitting) and �m is the model
misfit or regularization term. In the next section, a traditional regularization method and
the role of the regularization parameter � will be discussed.

3.2.2 Tikhonov regularization

The traditional regularization method is Tikhonov regularization [Kaipio and Somersalo,
2006], where the the model misfit term contains an `2-norm and a smoothing operator.
We define the objective function as

�(m) = �d(m) + ��m(m) =
1

2
kd � K(m)k2

2 + �kLnmk2
2 (3.7)

2Noise due to unmodeled influences would yield a di↵erent operator K and is not considered here.
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where Ln is a n-th order discrete di↵erential operator which together with the `2-norm
imposes continuity or better: smoothness. To make things more concrete, consider the
following example: Consider a conductivity profile of two subsurface layers with respective
conductivities �1 = 0.1 S/m and �2 = 0.01 S/m, the parametrization is such that m =
(0.1, 0.1, 0.1, 0.1, 0.01, 0.01, 0.01, 0.01)T . If n = 2, then

||L2m|| = ||(0, 0,�0.09, 0.09, 0, 0)T || = 0.1273. (3.8)

More complex structures yield larger derivatives and a larger `2-norm and hence a larger
‘cost’ in the objective function �. By minimizing �m, a minimum structure model m will
be a more probable outcome.

The parameter � in Eq. (3.7) is the regularization parameter, it controls the relative
contributions of both misfit functions �d and �m. There exist several strategies to choose
regularization parameter �. One can in an iterative optimization method, among other
heuristic strategies, start with a relatively large regularization parameter, which strongly
imposes minimum structure on the parametersm. This yields a low resolution approxima-
tion of the parameters. By decreasing the parameter � after several iterations, one allows
the solution m to have more structure and details. Alternatively, more advanced tech-
niques, such as the L-curve criterion, can, under some conditions, determine the optimal
regularization parameter. In Chapter 5, several strategies will be employed and compared.

The regularization scheme in Eq. (3.7) can be useful in our inverse problem, because
it improves the stability of our inversion. The reason behind this is that it smears out
small-scale perturbations, which we do not expect in our model and consider as noise
(measurement errors or artefacts in the subsurface). The disadvantage, however, is that for
our model parameters, a certain blockiness is expected: for some neighbouring parameters
in the same earth layer, the smoothness constraint is appropriate, but at the interface of
two layers, an abrupt change in conductivity is expected. By imposing the smoothness
constraint, high resolution is lost. In brief, Tikhonov regularization with a `2-norm in
combination with a di↵erential operator fails to simultaneously produce high resolution
solutions and to be stable.

3.2.3 Sparsity based regularization

Seeing that the `2-norm has been deemed insu�cient, other regularization terms need to
be examined. There are many other regularization schemes that can be thought of. As
discussed before, it is expected that the spatial derivative of our model m will have many
zero entries. Vectors with many zero-entries are called sparse vectors. An S-sparse vector
has S non-zero entries. A potentially successful regularization term would promote spar-
sity, because it favours sharp interfaces over smeared-out models. We will now examine
which focusing functions promote sparsity.

For a regularization term with an `p-norm3, all norms with p  1 promote sparse solu-

3The `p-norm is defined as

||x||p = p

sX

i

|xi|p. (3.9)
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tions, but the `1-norm is the most attractive norm, because of its relatively easy numerical
computation. A disadvantage is that the `1-norm is not di↵erentiable in x = 0, which will
be important in the next section, when the objective function will be minimized.

It is not obvious to understand why the `1-norm promotes sparse solutions. It is most
easily illustrated with a linear underdertermined system with matrix A, a desired sparse
solution x and a data vector b. Consider in 2D

A = [0.1, 1], x = (x1, x2)
T , b = 1, (3.10)

then we have an infinite number of solutions x2 = 1 � 0.1x1, as in Figure 3.2. As an
additional requirement, sparse solutions are promoted, which is formalized as the mini-
mum `1 norm solutions. In 2D, 1-sparse solutions correspond with solutions on the axes.
Indeed, xa = (0, 1) and xb = (10, 0) are both 1-sparse solutions of our simple 2D prob-
lem. xa = (0, 1) has smaller `1-norm and our minimization problem will promote this
solution4. We can understand graphically that no other non-sparse solutions exist with
smaller norm by plotting the `1-norm of xa in Figure 3.2.

It is important to note that not all 1-sparse vectors will be favoured above all other
solutions. Consider both solutions xb = (10, 0) and xc = (1, 0.9) , where kxbk1 = 10 and
kxck1 = 1.9 , for which the non-sparse solution xc will be promoted over xb. This could
be the outcome when the data misfit terms �d and regularization parameter � are such
that

[�(xa) = �d(x
a) + �] >

⇥
�(xb) = �d(x

b) + 10�
⇤
> [�(xc) = �d(x

c) + 1.9�] .

A potential problem with `1-norm minimization is that the slope of the locus of solutions
of our underdetermined problem is at an angle of ±⇡/4. The `1-norm of infinitely many
(including non-sparse) solutions coincides with the minimum `1-norm diamond shape.
The `1/2 norm, shown in Figure 3.3, resolves this issue and it always promotes sparse
solutions, however, the norm is computationally more expensive5. Luckily, this ±⇡/4-
outcome is less probable in higher dimensions6 and therefore we assume that it will not
occur. From Figure 3.3, it becomes clear that the `2-norm does not promote sparse solu-
tions: it minimizes the Euclidean length of the solution x.

The objective function is now

�(m) = �d(m) + ��m(m) =
1

2
kd � K(m)k2

2 + �kLnmk1. (3.11)

4Because that corresponds with the minimum of the objective function. Recall that � = �m + ��d

and that � determines the trade-o↵. The promotion of sparse solutions does not mean that the solution
is guaranteed to be sparse.

5The `p-norm for 0  p < 1 is non-convex. It is known that non-convex optimization is strongly
NP-hard or computationally di�cult to solve exactly. (see [Ge et al., 2011]) and [Ramirez et al., 2013]).
We don’t delve in the issues of computational complexity theory.

6A higher dimensional set of solutions need to have a slope of ±⇡/4 along every axis, before this issue
occurs.
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Norms are not the only measures that can be considered in regularization schemes. Other
measures, which will be called focusing functions µ(vj), map weights to every entry of a
vector v. The model misfit �m is then the sum of these weights:

�m(m) =
X

j

µ(vj), (3.12)

where the vector v is e.g. the spatial derivative of the model m.

Focusing functions can be designed to promote sparsity. That is, in general, the case when
large values are mapped on large values and zeros mapped on the minimum of the focusing
function. For small values, we require µ(vj) > µ(0). There are innumerable measures that
can be constructed with this property and therefore focusing inversion seems to provide
additional freedom in finding a perfect measure for the regularization term �m. However,
that freedom must be balanced against the fact that these functions often depend on
additional parameters, the question then remains to find the optimal parameter.

In geophysical inverse problems, the M -measure of Huber [Huber et al., 1964] is often
considered ([Farquharson, 2007], [Ha et al., 2009]). The function

µ�,Huber(x) =

(
1
2
x2 for |x|  �,

�(|x| � 1
2
�) otherwise

(3.13)

is quadratic for small values of x and linear for large values of x (see Figure 3.4a). The
M -measure of Huber is di↵erentiable, the slope at |x| = � is equal for both sections. This
focusing function corresponds to to taking a `1-norm when the residuals are large and
half of the `2-norm when residuals are small. [Guitton and Symes, 2003] show that for
several types of noise in seismic applications, more robust results can be obtained via
the M -measure of Huber than with the `2-norm. The Huber measure is also known from
statistics, esp. in robust regression [Vogel, 2002].

[Portniaguine and Zhdanov, 1999] use the following measure, the minimum support func-
tional,

µZdh(x) =
x2

x2 + ✏2
, (3.14)

where ✏ is a parameter that we can choose (see Figure 3.4b). This measure, for ✏ small
enough, is proportional to the number of non-zero elements in x. [Portniaguine and Zh-
danov, 1999] have used this measure in 3D inversion, where the total volume within the
model m for which the gradient is non-zero was minimized.

Fast optimization techniques usually use gradient information from the objective function
�. The `1-norm is not di↵erentiable in x = 0 and therefore the perturbed `p-norm measure
of Ekblom [Ekblom, 1987] for p = 1 often replaces the `1-norm. The measure

µEkblom(x) =
�
x2 + ✏

�p/2
, (3.15)

where ✏ is a small number, is shown in Figure 3.5.
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One can invent innumerable measures for sparsity based inversion. Even machine learning
can be used to find better regularization functionals. [Haber and Tenorio, 2003] use
supervised learning techniques that determine a regularization functional, based on a
realistic training set.

3.2.4 Reformulation in sparse basis

There are other strategies for a minimum structure inversion than imposing sparsity on
the spatial derivative on the model m. Suppose that there exists a basis in which the
true model parameters m, known to have minimum structure, are represented in a sparse
form. Then,

x = Wm, (3.16)

where W is the basis transformation. The objective function � in terms of the sparse
basis is

�(x) = �d(x) + ��m(x) =
1

2
kd � K(W�1x)k2

2 + �kxk1, (3.17)

where �m is the new regularization term.

In summary, the objective function (3.17) has a data misfit term �d and a model misfit
term �m. The data misfit term describes the error on a proposed model x in some basis,
while the regularization term �m imposes minimum structure on the model m, by impos-
ing sparsity via the `1-norm on its transform x. The trade o↵ between the two terms is
governed by the regularization parameter �.

The choice of the basis, in which a minimum-structure model m is represented in a sparse
fashion, is crucial and is the topic of next chapter. Indeed, that basis preferably represents
a strongly oscillatory model m in a non-sparse fashion. It remains to find the minimum
of the objective function, which we will discuss next.

3.3 The optimization problem

In the previous section, we have proposed an objective function, for which finding the
minimum remains a challenging task. Fast optimization techniques exist (see Section
3.4), but they make use of the objective function’s gradient. We will examine this further
in this section and we will introduce the relevant optimization problem formulations.

The minimum of the objective function is at least an approximate solution of the real
model parameters m, or x in some sparse basis. It remains to select the best elements
that minimize that function �. Many such selection methods exists. In the field of
mathematical optimization, the most general problem is the following:

minimize �(x)

subject to gi(x) = 0, i = 1, · · · , `
hi(x) < 0, i = 1, · · · , `

(3.18)
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where � is the objective function, x the solution and hi, gi are equality and inequality
constraints respectively. In the remainder of the text, ‘subject to’ will often be abbrevi-
ated as ‘s.t.’.

An optimization method or algorithm will iteratively find improved estimates of x, starting
from an initial guess x(0). The iterate at iteration k is denoted with x(k). A stop criterion
will be defined such that the algorithm terminates at a (hopefully) good approximate
solution. The algorithm that will used is described in Section 3.4.

3.3.1 The minimization problem

In optimization theory, our type of objective function is known as the LASSO-problem
(Least Absolute Shrinkage and Selection Operator) or BPDN (Basis Pursuit Denoising).
There are typically two strategies that try to resolve the di↵erentiability issue of the `1-
norm in x = 0. One strategy transforms the problem to a linear program and the other
replaces the `1-norm with a di↵erentiable measure. In this section, we examine how the
general problem formulation Eq. (3.18) can be reformulated.

There are two special cases of Eq. (3.18): The Linear Program (LP) and the Quadratic
Program (QP). In a linear program, the objective function and the constraints are linear

minimize aTx

s.t. Ax = b

Cx  c.

(3.19)

The minimization problem Eq. (3.17) from Section 3.2.4 can be written as

minimize ||x||1
s.t. KW�1x = d,

(3.20)

under the assumptions that m < n (i.e. there are more model parameters m than mea-
surements d), K is linear (i.e. LIN approx.) and that x would exactly yield d. In Eq.
(3.5) from Section 3.2.1, we have argued that noise, originating from various sources,
yields that KW�1xtrue 6= dtrue and esp. the restriction to use only the LIN approximation
amplifies the error.

Keeping the assumptions in mind, the constrained, non-smooth minimization problem
(3.20) is equivalent to the constrained, smooth linear program, by writing x = p�w via
the following construction for all i:

(
pi = xi if xi � 0

wi = �xi if xi  0
. (3.21)

Then,

kxk1 =
X

i

|xi| =
X

i

(pi + wi), (3.22)
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and hence,

minimize
X

i=1

(pi + wi)

s.t. KW�1(p � w) = d

p,w � 0

(3.23)

The variables p,w in the objective function and in the inequality constraints are called
slack variables. Using slack variables is a standard method to deal with objective func-
tions � with an `1-norm. Linear programs can be solved easily [Nocedal and Wright,
2006], however we turn our focus to a slightly more general optimization problem that
can handle noise.

In a quadratic program (QP), the objective function is non-linear and is written as

minimize aTx+
1

2
xTHx

s.t. Ax = b

Cx  c.

(3.24)

where H 2 Rn⇥n is a symmetric matrix. It turns out that QPs with a positive semidefinite
matrix7 H can be solved reliably to their global optimality [Patrinos, 2018]. As with the
linear program, the minimization problem (3.17) can be transformed to a QP. While linear
problems are easier to solve, it is better to use the quadratic variant. The latter allows
to minimize the error on the solution and is thus able to deal with measurement error
and unmodelled e↵ects. The objective function expressed in (3.17) is equivalent to the
following quadratic problem

minimize
1

2
||K (W (p+w)) � b||22 + �

X

i

(pi + wi)

s.t. p,w � 0

(3.25)

Alternatively, the non-di↵erentiability issue of the `1-norm in x = 0 is resolved by replacing
the `1-norm with other, di↵erentiable measures, such as the Ekblom measure and Huber
measure µ.

||x||1 =
nX

i=1

µ(xi) (3.26)

In conclusion, the problem with the non-di↵erentiability of the `1-norm can be tackled by
reformulating the problem using slack variables or by replacing the `1-norm with another
di↵erentiable focusing function.

3.3.2 Convex optimization

Convexity plays an important role in optimization, because convex optimization problems
exhibit great properties (see below). Definitions [Nocedal and Wright, 2006] related to
sets, functions and optimization problems are listed. First, we give a definition af a
positive semidefinite matrix [Horn et al., 1990]:

7See Definition 1 in Section 3.3.2.
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Definition 1 (positive (semi)definite matrices) A symmetric matrix A 2 Rn⇥n is posi-
tive definite (A � 0) if

xTAx > 0, 8x 2 Cn\{0}
and positive semidefinite (A ⌫ 0) if

xTAx � 0, 8x 2 Cn\{0}.

The following theorem8 serves as a practical method to check if a matrix is positive
semidefinite or not.

Theorem 1 (Symmetric positive semidefinite matrices) Let A be a symmetric matrix.
The following statements are equivalent

1. A is positive semidefinite (A ⌫ 0)

2. All eigenvalues of A are non-negative

3. There exists a factorization A = BTB, where A 2 Rn⇥r and r is the rank9 of A.

Definition 2 (convex set) A set S 2 Rn is convex if a straight line segment connecting
any two points in S lies entirely inside S.

An example of a convex set is a unit ball.

Definition 3 (convex function) The function f is a convex function if

1. its domain S is a convex set;

2. for any two points x and y in S.

For convex functions, the following property is satisfied:

f(ax+ (1 � ↵)y)  ↵f(x) + (1 � ↵)f(y), for all ↵ 2 [0, 1]. (3.27)

A linear function f(x) = cTx+↵ is an example of a convex function. A quadratic function
f(x) = xTHx, where H is symmetric and positive definite is also a convex function. The
convexity of a function means that the linear interpolation between two arbitrary points
on that function is never below the graph.

Definition 4 An optimization problem of general form

minimize �(x)

s.t. x 2 X
(3.28)

is convex when � is a convex function and X ✓ Rn is a convex set.

The following theorem explains why convex problems are relatively easy to solve, the
proof can be found in Chapter 2 of [Nocedal and Wright, 2006].

8Observation 7.1.4 and Theorem 7.2.7 in [Horn et al., 1990]
9The rank of a matrix A is the dimension of the range of A, a space spanned by the columns of A.
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Theorem 2 (Local minima of convex optimization) When f is convex, any local mini-
mum x⇤ is a global minimum of f . If in addition f is di↵erentiable, then any stationary
point x⇤ is a global minimum of f .

However, for many optimization problems the objective function is not convex. Applying
convex optimization algorithms yield local minima. For even more (exotic) functions, no
local minimum will be found. The quadratic problem (3.25) is a convex problem, only if
H = (K(Wx))TK(Wx) is positive semidefinite. The more general problem �, where the
`1-norm is replaced by a measure µ, can be non-convex if H is not positive semidefinite or
if µ is non-convex. Indeed, the `1-norm is convex, but e.g. the minimum support measure
µZhd (Eq. (3.14)) is not.

3.3.3 The sensitivity matrix

In geophysics, the sensitivity matrix 10 is basically the derivative of a model response with
regard to the subsurface conductivities [Christensen, 2014]. The sensitivity matrix coin-
cides with the Jacobian, as will become clear in this section. This jargon forces us to think
more about changes in the parameters that propagate through the system and yield a dif-
ferent output. The sensitivities are useful when one tries to understand the importance of
a parameter in a simulation. When a sensitivity of some parameter is large, compared to
the other parameters, then this implies that changes in the parameter significantly change
the output.

First consider the non-linear forward problem with a slightly di↵erent notation

d = K(m) =

2

6664

K1(m)
K2(m)

...
Kn(m)

3

7775
, (3.29)

where K is a multivariate vector function that yields the discrete data set d from its
discrete model parameter m. The non-linear relation can be written via Taylor series as

K(m+ ✏p) = K(m) + ✏
X

i,j

@Ki(mj)

@mj| {z }
J

ij

pj + O(✏2) (3.30)

= K(m) + ✏Jp+ O(✏2). (3.31)

For small ✏, the non-linear relation can be approximated by a linear relation and it provides
insight in the local behaviour in the forward problem. This linear relation is used to define
the sensitivity matrix (or Jacobian)

J =
@d

@m
or Jij =

@di

@mj

or J = rK(m). (3.32)

10In the language of linear operators and functionals (esp. in the literature by [Zhdanov, 2015]), ‘Fréchet
derivative’ is used instead of sensitivity matrix. When K is a di↵erentiable operator, �K(m) = Fm�m,
where the linear operator Fm is the Fréchet derivative.
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More generally, the forward problem can be written as follows:

I(d,m) = 0 (3.33)

and taking the derivative w.r.t. m yields a following expression:

rmI(d,m) + rdI(d,m)
�d

�m
= 0 (3.34)

) J = �(rdI(d,m))�1rmI(d,m) (3.35)

where the rdI(d,m) is assumed to be invertible. In geophysics, this formula is known
as the fundamental sensitivity equation [Haber, 2014]. Let us see if we can recover the
sensitivity matrix that we have obtained via the Taylor expansion in Eq. (3.32):

I(d,m) = K(m) � d = 0, (3.36)

rdI(d,m) = �I, (3.37)

rmI(d,m) = rK(m), (3.38)

) J = �(�I)�1rK(m) = rK(m). (3.39)

The sensitivities are not only relevant for solving inverse problems. They also provide us
insight in the forward problem [Haber, 2014]. The singular value decomposition (SVD)
allows us to analyse the sensitivities. The sensitivity matrix J 2 Rm⇥n is decomposed in

J = U⌃V T =
mX

i=1

�iuiv
T
i , (3.40)

where U 2 Rm⇥m and V 2 Rn⇥n are both orthogonal matrices. ⌃ = diag(�1, · · · , �m) and
�i is a singular value for which �1  �2 · · ·  �m. When the model is perturbed m +w,
we write

w =
mX

i=1

↵ivi +worth = V↵+worth. (3.41)

Indeed,
Jworth = U⌃V Tworth = 0, (3.42)

from which one concludes that a perturbation of m in the direction of worth does not
change the the data vector d. On the other hand, a perturbation with a singular vector
that corresponds with a large singular value, yields a significant change in the data. In-
deed, we can now identify the parameters in the forward problem that are important.

Consider again the conductivity profile of Chapter 2 (Figure 2.3) from borehole logging in
Liège. Let us illustrate the linearity of the LIN approximation and the non-linearity of the
damped and exact model. The non-linearity is apparent from the equations in Chapter
2, but a visual inspection will help us to understand that a local linearisation (see next
section) of the forward models will be justified. The parametrization is such that there
are 40 layers with thicknesses hi of 0.2 meters. For simplicity, the response is shown for
measurements at an intercoil distance s of 20 meters and at a height h0 of 0.1 meters,
along the m40 axis of the model space. This semi-infinite layer is at a depth of 7.8 meters
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Figure 3.6: Behaviour of the response around the true conductivity of the 40-th layer.

and therefore it contributes significantly to the response. This is also seen in the singular
value decomposition of the sensitivity matrix. Let us consider the SVD-decomposition
of the sensitivity matrix of the damped model. The singular vector, corresponding with
the largest singular value has the in absolute value largest value for the 40-th entry. This
is indeed in agreement with what physically is expected. The 40-the entry is -0.989 and
much larger than the other entries with values around -0.025. In Figure 3.6, the behaviour
of the the response around the true electrical conductivity �40 = 0, 0076 S/m is shown.
This confirms that the LIN approximation is linear in the conductivity �(h) and thus
the data misfit functional �d will be quadratic and convex. The behaviour of the other
models is non-linear and the data misfit functional deviates from the quadratic behaviour.
Within the physical ranges11, the data misfit functional seems to have a unique minimum.
For in absolute value larger (unphysical) conductivities, a clear non-convex behaviour is
observed. We will need to keep this in mind. In choosing the optimization algorithm, we
opt an algorithm that allows to set bounds in the model space. By doing so, we would
be able (if necessary) to constrain the model parameters to the range where the the data
misfit exhibits one minimum. There is no guarantee that there is only one minimum
within such a range. Let us stress that this was only an illustration, where only the
m40 -dimension was considered.

3.3.4 (Non-)linear least squares

In this section, the gradient of the data misfit functional �d is obtained for both the linear
and non-linear least squares term. The residual vector r = K(W�1x)�d 2 Cm is usually

11positive electrical conductivities and smaller than 1 S/m
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introduced in this context.

r�d(x) = r1

2
kK(W�1x) � dk2

2 (3.43)

=
1

2
r
�
rT r
�

(3.44)

= rT rr (3.45)

= rT rK(W�1x) (3.46)

or componentwise

r�d(x) =
nX

j=1

@�d(x)

@xj

=
nX

j=1

@

@xj

1

2

 
mX

i=1

ri(x)ri(x)

!
=

nX

j=1

mX

i=1

ri(x)
@ri(x)

@xj

. (3.47)

Analogously, the Hessian12 of �d can be obtained via

r2�d(x) =
nX

k=1

nX

j=1

mX

i=1

@ri(x)

@xk

@ri(x)

@xj

+
nX

k=1

nX

j=1

mX

i=1

ri(x)
@2ri(x)

@xj@xk

(3.48)

=
mX

i=1

rri(x)rri(x)
T +

mX

i=1

ri(x)r2ri(x). (3.49)

Expressing the gradient and Hessian in terms of the sensitivity matrix,

J =

2

6664

rr1(x)T

rr2(x)T
...

rrm(x)T

3

7775
, (3.50)

yields
r�d(x) = JT r (3.51)

r2�d(x) = JTJ +
mX

i=1

ri(x)r2ri(x) (3.52)

Linear Case
In the case of a linear-least squares functional13 (i.e. K(W�1x) = KW�1x), the gradient
can simply be obtained from Eq. (3.46) via

r�d(x) = rT rr (3.53)

= rT rKW�1x (3.54)

= rTKW�1 (3.55)

= (KW�1)T r, (3.56)

12In optimization literature (such as [Nocedal and Wright, 2006]), the Hessian refers to the derivative
of the gradient.

13Linear least squares means that the residual vector r is linear. Indeed, K and W are linear matrix.
They do not depend on x.
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where we recognize the sensitivity matrix J = (KW�1).

Writing componentwise makes the linearity more manifest (it will clearly demonstrate the
meaning of a non-linearity). First note,

ri(x) = (KW�1x�d)i =
X

k

Kik(W
�1x)k�di =

X

k

X

l

KikW
�1
kl xl�di ⌘ cTx�di, (3.57)

a manifestly linear function, where c is simply a vector with scalars.

Non-linear Case
In the non-linear case, the Hessian in Eq. (3.52) has two terms. The first term is a
symmetric and positive semidefinite matrix. The second term depends on the curvature
of the objective function �, indeed, it can make the Hessian negative definite. However,
the second term will be small for problems with a small residual at the solution or for
problems that are not very non-linear [Haber, 2014]. It is common to apply the Gauss-
Newton approximation to such a non-linear problem, which linearises the residual vector
r and thus linearises the forward model. The Gauss-Newton approximation drops the
second (possible negative definite) term in the Hessian.

We can linearise the forward model via Taylor

r(x+�x) ⇡ r(x) +
X

j

@r(x)

@xj

�x, (3.58)

and thus we approximate our residual r in the neighbourhood of of some model x by a
linear function. Note that K will be linear, but it still depends on x. The sensitivity
matrix is again recognized

@r(x)

@xj

= rK(W�1x) = J(W�1x)W�1. (3.59)

3.3.5 The gradient of the objective function

Recall the objective function

�(x) = �d(x) + ��m(x) =
1

2
kK(W�1x) � dk2

2 + �kxk1, (3.60)

where we opt to replace the `1-norm with another measure or focusing function µ. Then,

�(x) = �d(x) + ��m(x) =
1

2
kK(W�1x) � dk2

2 + �
nX

i=1

µ(xi). (3.61)

The gradient is

r�d(x) =
�
J(W�1x)W�1

�T
r+

nX

i=1

dµ(xi)

dxi

(3.62)

where the transpose of the sensitivity matrix JT is recognized.
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The derivatives of the measures introduced in Section 3.2.3 are straightforward to calcu-
late:

dµEkblom(x)

dx
=

p

2

1p
x2 + ✏

· 2x =
xpp
x2 + ✏

(3.63)

dµHuber(x)

dx
=

8
><

>:

x for |x|  �,

±�, otherwise.

(3.64)

and the derivative of the minimum support functional is

dµZdh(x)

dx
=

2✏2x

(✏2 + x2)2
. (3.65)

In this section, we have discussed how the objective function can be reformulated in a
proper optimization problem. There are some choices to be made. We choose the most
‘flexible’ optimization problem without the slack variables and with the Ekblom measure,
because this measure resembles best the `1-norm for p = 1.

min
x

�(x) = min
x

(�d(x) + ��m(x)) = min
x

 
1

2
kK(W�1x) � bk2

2 + �
X

i

q
x2

i + ✏

!
,

(3.66)
Note that the summation can be avoided with the Hadamard product or pointwise mul-
tiplication ? as

r�m(x) = x ?w where wi =
1p

x2
i + ✏

. (3.67)

This is also the closest notation for the vectorized implementation in Python.

3.4 Optimization methods

In this section, several fundamental ingredients for powerful optimization algorithms are
summarized. The line search method and Broyden-Fletcher-Goldfard-Shanno (BFGS)-
method are required to understand the Limited memory (L)-BFGS-B-method, which will
be used in our inversion scheme. It is important to understand these ingredients because
blindly adopting the algorithm will obstruct the interpretation of our inversion scheme
and our implementation.

There are a plethora of optimization algorithms available. Conversations with colleague
students and members of the physics department have led us to examine several algo-
rithms, but the BFGS-method was generally considered as a good ‘standard’ algorithm.
A few words on the other suggestions and why they are not used: A suggestion was the
use of Particle Swarm Optimization14 (with implementation in Python: PySwarm [Lee,
2014]). This technique does not use gradient information and will be much slower than

14This technique utilizes a population of candidates (bees) that move around in the model space, with
a given velocity. Each particle (or bee) finds its best positions (with lowest objective function), but when
other bees find another better solution, they will converge towards the better position. Like bee colonies
that search for flowers.
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the BFGS-method. In Geophysical literature [Bunks et al., 1995], multiscale approaches
are also popular. These approaches are generally slower than the BFGS-method. We
will first assume that the objective function does not exhibits a strongly multimodal be-
haviour. (It turns out that this is true for simple, two-layered conductivity profiles, but
not that this is not generally true for complex models. We will elaborate on this issue in
Chapter 5.) The main idea behind multiscale approaches are summarized in Appendix C.

3.4.1 Line search methods

In general, a line search method produces a sequence of iterates that meets the requirement
�(x(k+1)) < �(x(k)), by finding an optimal step length for a given descent direction at every
iteration. The following notation for the iterates is adopted

x(k+1) = x(k) + ↵(k)d(k), (3.68)

where ↵(k) is the step length at iteration k and d(k) is a direction in which the objective
function decreases.

The first step of the algorithm is to find the direction d(k). We have some freedom in the
choice of the direction d(k), but it should satisfy the descent requirement

r�(x(k))Td(k) < 0. (3.69)

A symmetric matrix B(k) 2 Rn⇥n defines the direction from the objective function’s
gradient,

d(k) = �(B(k))�1r�(x(k)), (3.70)

for which an additional requirement can be derived. From the descent requirement Eq.
(3.69) and Eq. (3.70)

r�(x(k))Td(k) = �r�(x(k))T (Bk)�1r�(x(k)) < 0 (3.71)

it is clear that if r�(x(k)) 6= 0, B(k) should be positive definite matrix. The negative
gradient d = �r�(x) is the simplest example, where B = I.

The second step is to find an optimal step length ↵(k). It is a trade-o↵ between computa-
tional e�ciency and the desire for a substantial reduction. The requirement (3.69) is not
su�cient. Consider the following example (from [Nocedal and Wright, 2006]) in Figure
3.7 where f(x(k)) = 5/k. Every iteration satisfies f(x(k+1)) < f(x(k)), but the function
converges to zero and not f ⇤ = �1. We need stronger requirements.

Armijo condition
The Armijo condition, also known as the su�cient decrease condition, requires:

�(x(k) + ↵(k)d(k))  �(x(k)) + �↵(k)r�(x(k))Td(k), (3.72)

where � 2 (0, 1). The di↵erence with the descent requirement is that a step length ↵(k)

has to be chosen such that the objective function is smaller than a first order function,
rather than the constant �(x(k)). The larger ↵(k), the larger the decrease of the objective



46 CHAPTER 3. THE INVERSE PROBLEM

32 C H A P T E R 3 . L I N E S E A R C H M E T H O D S

(φ α)

point
stationary
first

minimizer
localfirst

global minimizer

α

Figure 3.1 The ideal step length is the global minimizer.

We now discuss various termination conditions for line search algorithms and show
that effective step lengths need not lie near minimizers of the univariate function φ(α)
defined in (3.3).

A simple condition we could impose on αk is to require a reduction in f , that is,
f (xk + αk pk) < f (xk). That this requirement is not enough to produce convergence to
x∗ is illustrated in Figure 3.2, for which the minimum function value is f ∗ " −1, but a
sequence of iterates {xk} for which f (xk) " 5/k, k " 0, 1, . . . yields a decrease at each
iteration but has a limiting function value of zero. The insufficient reduction in f at each
step causes it to fail to converge to the minimizer of this convex function. To avoid this
behavior we need to enforce a sufficient decrease condition, a concept we discuss next.

2
x

0
x

1x

x

xf( )

Figure 3.2 Insufficient reduction in f .
Figure 3.7: Insu�cient decrease [Nocedal and Wright, 2006].
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THE WOLFE CONDITIONS

A popular inexact line search condition stipulates that αk should first of all give
sufficient decrease in the objective function f , as measured by the following inequality:

f (xk + αpk) ≤ f (xk) + c1α∇ f T
k pk, (3.4)

for some constant c1 ∈ (0, 1). In other words, the reduction in f should be proportional to
both the step length αk and the directional derivative ∇ f T

k pk . Inequality (3.4) is sometimes
called the Armijo condition.

The sufficient decrease condition is illustrated in Figure 3.3. The right-hand-side of
(3.4), which is a linear function, can be denoted by l(α). The function l(·) has negative slope
c1∇ f T

k pk , but because c1 ∈ (0, 1), it lies above the graph of φ for small positive values of
α. The sufficient decrease condition states that α is acceptable only if φ(α) ≤ l(α). The
intervals on which this condition is satisfied are shown in Figure 3.3. In practice, c1 is chosen
to be quite small, say c1 $ 10−4.

The sufficient decrease condition is not enough by itself to ensure that the algorithm
makes reasonable progress because, as we see from Figure 3.3, it is satisfied for all sufficiently
small values of α. To rule out unacceptably short steps we introduce a second requirement,
called the curvature condition, which requires αk to satisfy

∇ f (xk + αk pk)T pk ≥ c2∇ f T
k pk, (3.5)

for some constant c2 ∈ (c1, 1), where c1 is the constant from (3.4). Note that the left-hand-
side is simply the derivative φ′(αk), so the curvature condition ensures that the slope of φ at
αk is greater than c2 times the initial slope φ′(0). This makes sense because if the slope φ′(α)

αl( )

φ (α f(x +) = kαk p )

acceptableacceptable

α

Figure 3.3 Sufficient decrease condition.
Figure 3.8: Armijo condition. Figure retrieved from [Nocedal and Wright, 2006].
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Figure 3.4 The curvature condition.

is strongly negative, we have an indication that we can reduce f significantly by moving
further along the chosen direction.

On the other hand, if φ′(αk) is only slightly negative or even positive, it is a sign that
we cannot expect much more decrease in f in this direction, so it makes sense to terminate
the line search. The curvature condition is illustrated in Figure 3.4. Typical values of c2 are
0.9 when the search direction pk is chosen by a Newton or quasi-Newton method, and 0.1
when pk is obtained from a nonlinear conjugate gradient method.

The sufficient decrease and curvature conditions are known collectively as the Wolfe
conditions. We illustrate them in Figure 3.5 and restate them here for future reference:

f (xk + αk pk) ≤ f (xk) + c1αk∇ f T
k pk, (3.6a)

∇ f (xk + αk pk)T pk ≥ c2∇ f T
k pk, (3.6b)

with 0 < c1 < c2 < 1.
A step length may satisfy the Wolfe conditions without being particularly close to a

minimizer of φ, as we show in Figure 3.5. We can, however, modify the curvature condition
to force αk to lie in at least a broad neighborhood of a local minimizer or stationary point
of φ. The strong Wolfe conditions require αk to satisfy

f (xk + αk pk) ≤ f (xk) + c1αk∇ f T
k pk, (3.7a)

|∇ f (xk + αk pk)T pk | ≤ c2|∇ f T
k pk |, (3.7b)

with 0 < c1 < c2 < 1. The only difference with the Wolfe conditions is that we no longer
allow the derivative φ′(αk) to be too positive. Hence, we exclude points that are far from
stationary points of φ.

Figure 3.9: Curvature condition. Figure retrieved from [Nocedal and Wright, 2006].

function should be. The parameter � is typically 10�4 [Patrinos, 2018], such that our
condition is not too stringent.

There are several strategies for implementing line searches for which the Armijo condition
holds. Usually, an initial step length ↵(0) is chosen and subsequently, the step length is
iteratively halved until the Armijo condition is satisfied. This yields the largest allowed
step (smaller than the maximal step length ↵(0)) that su�ciently decreases the objective
function. This method is referred to as the Backtracking Line Search Algorithm, presented
in Algorithm 1 in Appendix B, where � is the factor by which the step length ↵(k) is
decreased when the Armijo condition is not satisfied.

Curvature condition
With the Armijo condition, su�cient decrease of the objective function is guaranteed. A
potential failure with the Armijo condition is that the step length is too small, this is
possible when the parameter � is too large. To rule out these unacceptably small steps,
an additional curvature condition is imposed:

r�(x(k) + ↵(k)d(k))Td(k) � ⌘r�(x(k))Td(k). (3.73)

This condition ensures that the slope of �(x(k) + ↵(k)d(k)) is greater than ⌘ times the
initial slope. Indeed, for ⌘ < 1, the smaller slope yields that small ↵’s are excluded, as
is shown in Figure 3.9. A strongly negative slope of �(x(k) + ↵(k)d(k)) suggest that the
objective function can be significantly reduced for larger ↵, while a slightly negative slope
is a sign that the objective function cannot be decreased much further in that direction.

The Armijo condition and curvature condition are collectively known as the Wolfe condi-
tions. There exists a software implementation of the line search algorithm that satisfies the
Wolfe conditions. The implementation by [Moré and Thuente, 1994] will be used in this
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thesis. The strength of this implementation is in the sweep strategy (e.g. Backtracking)
that yields minimal iterations.

3.4.2 The BFGS-method

A Newton’s method requires Hessian information in order to find the minima of an ob-
jective function. The Hessian has to be computed at each iteration. When the Hessian
computation is too expensive, the Broyden-Fletcher-Goldfard-Shanno (BFGS)-method
can be used. It is a quasi-Newton method, which means that it uses an approximation
of the true Hessian. The approximate Hessian will be obtained solely by first-order infor-
mation (i.e. gradient information).

Finding minima of the objective function � is equivalent to finding the roots of r�. The
roots of a function g are found via Newton’s method. At every iteration, the function g
is linearised and the root of the linear function is the next iterate. In one dimension,

`(k)(x) = g(x(k)) +
dg(x(k))

dx
(x � x(k)) = 0 ) x = x(k+1) = x(k) � g(x(k))

g0(x(k))
(3.74)

and when the derivative g0 is unknown, a finite di↵erence approximation of g0 is used:

g0(x(k)) ⇡ B(k) =
g(x(k)) � g(xk�1)

x(k) � xk�1
. (3.75)

This method is known as the secant method. This reasoning can be applied to r� in
multiple dimensions. The series of iterates are

x(k+1) = x(k) � (B(k))�1r�(x(k)), (3.76)

where B(k) satisfies the secant condition

B(k)(x(k) � x(k�1)) = r�(x(k)) � r�(xk�1). (3.77)

In shorter notation, the secant condition is written as

B(k)s(k�1) = y(k�1), where s(k�1) = x(k) � x(k�1) and y(k�1) = r�(x(k)) � r�(x(k�1)).
(3.78)

It remains to find a positive definite matrix B(k) which satisfies the linear equations,
imposed by the secant condition, and has an inverse. We have some freedom on B(k):
there are n equations and n(n+1)

2
unknowns15. The BFGS method attempts to iteratively

find minimum Frobenius norm16 corrections to the Hessian, i.e. B(k+1) is not too far from
B(k). Broyden, Fletcher, Goldfarb and Shanno have derived [Nocedal and Wright, 2006]
the following famous formula:

B(k+1) = B(k) +
y(k)y(k)T

y(k)Ts(k)
� B(k)s(k)s(k)TB(k)T

s(k)TB(k)s(k)
, (3.79)

which determines the descent direction d(k+1). The complete algorithm is presented in
Algorithm 2 in Appendix B.

15The matrix B(k) has n2 elements, but the Hessian is symmetric.

16The Frobenius norm is defined as kAkF =

vuut
mX

i=1

nX

j=1

|aij |2 =
q

trace (ATA), according to [Golub and

Van Loan, 1996]. It is a matrix norm.
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3.4.3 L-BFGS-B algorithm

The actual algorithm that will be used in the inversion scheme is the L-BFGS-B method,
implemented in the Python SciPy solver [Jones et al., 2001]. It uses the algorithm from
[Byrd et al., 1995] and [Zhu et al., 1997]. It is di↵erent from the BFGS-method in two
ways.

The first di↵erence is that it can be used for bound constrained minimization, via a gradi-
ent projection method [Nocedal and Wright, 2006]. Each iteration can be divided in two
stages. The first stage starts as a normal line search along the gradient. When a variable
encounters its constraint, then this variable is held fixed, such the line search stays in the
feasible model space. Along this piecewise-linear path, the first local minimum is defined
as the Cauchy point. From that point, an active set is defined. It is the set of points (or
models) for which the components of the Cauchy points are at their bounds. The second
stage is then to solve the optimization problem for the free variables (those that are not
at their bounds). The operator P projects the gradient r� on the free variables of the
model space. Pr� is thus the projected gradient.

The second di↵erence is that limited memory matrices are used to iteratively approximate
the Hessian of the objective function, via the BFGS formula (3.79). This is especially
useful for large scale optimization problems.
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Chapter 4

Wavelet Theory

4.1 Introduction

Wavelet theory has been used in exploration geophysics for many decades [Kumar and
Foufoula-Georgiou, 1997]. While it is common in seismic applications [Kearey et al.,
2013], the context is now di↵erent. Here, it is introduced as a regularization tool in our
inversion scheme, which will be further discussed in Chapter 5. The goal of this chapter
is to build up the basics of wavelet theory, which will provide us the right vocabulary.
By the end of this chapter, one is familiar with the di↵erent properties of wavelets and
understands why it is crucial to choose the right wavelet. Relations between vanishing
moments, compact support and regularity of the wavelet will play an important role.
While the continuous wavelet transform is widely used in seismic geophysics, this chapter
is dedicated to the discrete wavelet transform for which the signals are discretely sampled.
The wavelet transform has both frequency and temporal resolution and we expect that the
inherent multiscale nature can be exploited in our inversion application. Understanding
the discrete wavelet transform (DWT) and its fast wavelet transform (FWT) requires
understanding of filter banks, for which the elementary basics are summarized in this
chapter.

4.2 Setting the scene

In Fourier series, a 2⇡ periodic signal in the continuous time domain can be represented
in terms of basis functions {eikt}k2Z with Fourier coe�cients fk = heikt, fi [Mallat, 1999].
Indeed, we write

f(t) =
X

k2Z

fke
ikt. (4.1)

Analogously to Fourier series, wavelet theory builds up a set of basis functions, in which a
signal can be represented. There are two types of such basis functions: scaling functions
' and wavelet functions  . Finding such bases and determining the properties are the
major concern of wavelet theory.

Consider the wavelet function  (t) and the following translations and dilatations

 n,k(t) = 2n/2 (2nt � k) (4.2)

51
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where n is the dilatation parameter that makes the wavelet function’s compact support
wider or smaller. Dilating the wavelet function  (t) corresponds to translations on the
frequency axis. The k-parameter describes translations along the t-axis. These functions
{ n,k}k,n2Z form a basis for a function space. Assume, for now, that the basis is orthonor-
mal and that the wavelet function  (t) is compactly supported1. Similarly as with Fourier
series, the representation of a signal in the wavelet basis is of the form

f(t) =
X

n,k2Z

wnk nk(t), (4.3)

where wnk = h nk, fi are the wavelet coe�cients.

The dimension of the wavelet basis set is infinite, which for practical reasons is not always
desirable or computationally possible. One can approximate a function f by projecting it
on a subspace fW

n 2 Wn, the space of resolution n. The basis functions { n,k}k2Z generate
that subspace Wn. A function f at resolution n is represented by

fW
n (t) =

X

k2Z

wnk nk(t). (4.4)

Exactly the same reasoning can be applied to scaling functions '(t). Then,

'n,k(t) = 2n/2'(2nt � k) (4.5)

and we can project f on a subspace Vn, which is generated by the basis functions {'n,k}k2Z.
Then,

fV
n (t) =

X

k2Z

vnk'nk(t), (4.6)

where vnk = h'nk, fi are the scaling coe�cients. In what will become clear later, the
following relations between subspaces hold:

Vn = Vn�1 � Wn�1. (4.7)

A one level wavelet transform is the decomposition of a function fn 2 Vn in its components
fn�1 2 Vn�1 and gn�1 2 Wn�1.

fn =
X

k

vnk'nk =
X

k

vn�1,k'n�1,k

| {z }
f

n�1

+
X

k

wn�1,k n�1,k

| {z }
g

n�1

(4.8)

where vn�1,k are the scaling coe�cients and wn�1,k the wavelet coe�cients of scale of res-
olution n. gn�1 describes the details that were present on scale n, but have disappeared
from the coarser (n � 1)-scale.

1[Loeb, 2016] defines in Definition 9.9.5.: “A continuous function with compact support on a topological
space (X, I) is a continuous function that is identically equal to 0 outside of some compact subset of
X”. Ignoring the technicalities of a topological space that facilitate the definition of a compact set,
we paraphrase that a function has compact support if it is zero outside a compact set. The function
f : x ! x2 in its entire domain is not compactly supported, while a block function does have compact
support.
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Figure 4.1: A function f0 2 V0 and its one level wavelet transform.

To make things more concrete, a classic example of such a one level transform is presented
with Haar wavelets. A blocky signal f is considered in Figure 4.1. It is piecewise constant
and has a domain width of 8 and each constant piece has width 1. The scaling function
'(t) is a block function and has width 1 in V0, whereas the wavelet function is a linear
combination  (t) = '(2t)�'(2t� 1). At each resolution level, the basis of the subspaces
are Vn = {'n,k}k2Z andWn = { n,k}k2Z, where dilatations and translations are considered
as in Eq. (4.2). The scaling and wavelet function are shown in Figure 4.1. The signal f
is constructed such that f 2 V0, so it can be decomposed as

f(t) =
7X

k=0

v0k'0k(t). (4.9)

Applying a one level wavelet transform

f(t) =
7X

k=0

v0k'0k =
3X

k=0

v�1,k'�1,k +
3X

k=0

w�1,k �1,k (4.10)
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splits the signal in the two subspaces V�1 and W�1, where the scaling and wavelet func-
tions now have width 2. Only four functions span each subspace. The scaling and wavelets
coe�cients are the amplitudes from the block functions and wavelet functions shown in
Figure 4.1.

Having illustrated what is meant by the wavelet transform, we will now move on to the
motivation behind wavelet theory. As previously mentioned, wavelet theory has some sim-
ilarities with Fourier analysis. The Fourier transform maps a function from time or space
domain to frequency domain. By examining Fourier coe�cients, valuable information
about the frequency content of a signal is obtained. This is useful in e.g. signal denoising
[Walker, 1997]. The Fourier representation of periodic functions are sparse and are there-
fore easier to work with. The cosine is an example of a perfectly localized function in
frequency domain, it contains one frequency. In the time domain, however, the cosine has
infinite support and thus has no localization. The wavelet transform is a decomposition
that captures both frequency and space/time information, i.e. it has both frequency and
temporal resolution.

Temporal resolution can be advantageous, because then only few coe�cients are needed to
represent local transient behaviour. Indeed, our conductivity profile is expected to exhibit
no periodic behaviour, however some low frequency content will be present. Neighbour-
ing model parameters probably belong to the same subsurface layer and have the same
conductivity. Only model parameters at the boundaries will di↵er with the neighbouring
parameters. The wavelet transform is promising for our purpose, for it has both time and
frequency localization. The Fourier transform has periodical basis functions with infinite
support and no time localization, it would be strange to consider such decomposition in
a minimum structure inversion scheme.

Note that it is impossible to have perfect localization in both domains. [Mallat, 1999] calls
it the Heisenberg Uncertainty principle: It is impossible to have a signal with finite sup-
port on the time axis which is at the same time band limited2. The Heisenberg principle
is well known in the Fourier analysis and is best illustrated with the help of the Gaussian
distribution. The Gaussian distribution does not have compact support in any domain,
but entertains a notion of localization expressed in its variance. The Fourier transform
of a Gaussian with variance �2 is again a Gaussian, yet with reciprocal variance 1/�2. A
Gaussian with small variance corresponds with strong localization and large variance with
less localization. If a Gaussian has strong localization (or small variance) in the time do-
main, it is spread out in the frequency domain (large variance). In the limit, a Dirac pulse
in the time domain is a constant function in frequency domain and vice versa. Wavelet
theory has a multiscale nature by the choice of basis, expressed in Eq. (4.2). Dilating
the wavelet function corresponds with translations in the frequency domain. [Mallat,
1999] uses rectangles in the time-frequency plane to explain the multiscale nature of the
wavelet basis. A wavelet  n,k(t) has a specific time support centred at k and proportional
to n. Smaller time support or higher resolution scales n correspond with high temporal
resolution, at the cost of a more spread out Fourier transform. Figure 4.2 illustrates that
relation, note that we identify u = k and s = n. The right figure illustrates that every

2More formally, one needs to define a measure for expressing the width of the support of a function
and of its Fourier transform.
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time value is covered by many wavelets at di↵erent scales (and resolution).

The discrete Fourier transform can numerically be obtained in a reliable fashion via the
fast Fourier transform (FFT), which has a complexity of only O(N logN). The discrete
wavelet transform also has such a fast algorithm with complexity of O(N). The existence
of that algorithm makes wavelet theory popular in applications such as image denoising,
compressed sensing and optimization.

Figure 4.2: (left) Heisenberg time-frequency boxes of two wavelets. (right) The wavelet
basis tiles the time-frequency plane. Figures retrieved from [Mallat, 1999].

4.3 A filter bank Interpretation

There are two main approaches to introduce wavelet theory. One approach exploits the
similarity to Fourier transformations in which compactly supported basis functions �(t)
decompose some function f(t). This approach is well described in Daubechies’ book
[Daubechies, 1992]. The second approach is based on the deep link with filter banks and
is key to the fast wavelet transform. Since we are more concerned about the discrete
wavelet transform, the latter method is described here. In this text, the concept of a filter
bank is introduced, which decomposes a discrete signal into two signals via high and low
pass filters. The two resulting signals have half the size after a subsampling procedure. A
key result is that the original signal can be reconstructed from the two half-sized output
signals, when necessary and su�cient conditions are satisfied.

4.3.1 Filters

Definition 5 (Filter) A filter H is an operator which maps a signal into another signal.

The impulse response hn is the e↵ect of the filter applied to a Dirac impulse �, hn = H�
In what follows, the z-transform is often considered. The unilateral z-transform converts
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a discrete-time signal s into the z-domain, a complex frequency-domain:

Z{s} =
1X

k=0

skz
�k = S(z). (4.11)

Setting z = ei!, reduces the z-transform into the discrete Fourier transform of the signal.
When linear filters are considered, a filtering operation can be interpreted as a multipli-
cation with a Toeplitz matrix3: g = T f with

T =

2

6664

. . . . . . . . . . . .
· · · h2 h1 h0 h�1 · · ·

· · · h2 h1 h0 h�1 · · ·
. . . . . . . . . . . .

3

7775
.

An example of such filter is an ideal bandpass filter, whose Fourier transform is 1 for
|!|  ⇡/2 and 0 for |!| > ⇡/2. The elements of the Toeplitz matrix or the impulse
response can be easily derived

hk =
1

2⇡

Z ⇡

�⇡

H(!)eik!d! =
1

2⇡

Z ⇡/2

�⇡/2

eik!d! =
2

k⇡
sin

k⇡

2
=

1

2
sinc

k⇡

2
(4.12)

for k 6= 0 and h0 = 1/2. Such a filter cannot be constructed in practise, because the filter is
not causal. And computationally, it would require an infinite dimensional Toeplitz matrix.

We conclude this section with a definition and some notation

Definition 6 (Transfer function) A transfer function of a filter H is the z-domain
representation of that filter H(z) =

P
k h̄kz

k.

The complex conjugate and time reverse of a signal s = (sk) is denoted by a substar
conjugate s⇤ = (s̄�k). A linear filter H⇤ has impulse response h⇤ and has a Toeplitz
matrix representation H⇤, the Hermitian adjoint of H.

4.3.2 Analysis and synthesis

The discrete wavelet transform has a filter bank interpretation that provides more insight.
A filter bank is a series of band-pass filters that separates the input in multiple frequency
sub-bands, this is called the analysis side of the filter bank. This section describes the
two-channel filter bank, which simplifies the description. The two-channel filter bank
consists of a high pass filter G̃⇤ and a low pass filter H̃⇤ that act on a discrete signal s.
After the filtering operation, an input signal of length L is transformed into two output
signals of length L. The low pass filter’s output contains the low frequencies and thus the
low resolution content of the signal. The other signal contains the high frequency content
or details of the input signal. For ideal low and high pass filters, each of the two filters

3A Toeplitz matrix is often referred to as diagonal-constant matrix, since Tij = Ti+1,j+1 8i 2 Z
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take exactly half of the frequency band. After downsampling the output signals, the two
half bands are rescaled to the original full bandwidth. This can be seen in the z-domain:

S(z) + S(�z)

2
=

1

2

1X

k=0

sk

�
z�k + (�z)�k

�
(unilateral z-transform) (4.13)

=
1

2

1X

k=0

s2k

�
z�2k + (�z)�2k

�
(4.14)

=
1X

k=0

s2k

�
(z2)�k

�
(4.15)

=
1X

k=0

s0
k(z

2)�k (downsampling) (4.16)

= S 0(z2) (4.17)

In the frequency domain z = ei!, yielding

S 0(ei!) =
S(ei!/2) + S(�ei!/2)

2
(4.18)

and thus when the bandwidth of S is B, then the bandwidth of S 0 is 2B. If the original
signal x = (xn) has length L, then the two output signals have total length 2L. By
downsampling, the original length of the signal is restored.

The synthesis side of the filter bank is concerned with reconstructing the original signal
from the subsampled high and low frequency parts. The synthesis is done in two steps:
First, the signals are upsampled, that is adding a zero between every two samples. Sec-
ondly, filters are applied in such a way that after addition, the output signal s̃ equals the
original signal s. The analysis and synthesis side of such a filter bank is schematically
shown in Figure 4.3.

S S
~

H H*

~

~
*G G

LP LP

HP HP

↓ 

↓ ↓ 

↓ 

Figure 4.3: The analysis and synthesis side of a two-channel filter bank. H̃⇤ and G̃⇤ are
respectively the analysis low pass (LP) and high pass filters (HP).H andG are respectively
the reconstruction filters on the low pass and high pass filter. # denotes downsampling,
while " denotes the upsampling operation.

A multiple-channel filter bank can be constructed by repeatedly applying a two-channel
filter bank on the signal outputs. The discrete wavelet transform is such a multiple-
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channel filter bank, where every level of the transform corresponds with a two-channel
filter bank applied on solely the low pass output. Since the two-channel filter bank with
ideal filters divides the bandwidth in equal widths, the end channels of the recursive filter
bank will have di↵erent bandwidths. A schematic representation of such a filter bank is
set out in Figure 4.4, together with the bandwidths of the output signals with ideal filters.

HF

LF

↓ 2

↓ 2 HF

LF

↓ 2

↓ 2 HF

LF

↓ 2

↓ 2 HF

LF

↓ 2

↓ 2

B

B/2

B/4

B/8

B/16

Figure 4.4: The recursive two-channel filter bank (four levels). The two-channel filter
bank is applied recursively to the low pass filter. On the right side, bandwidths are given
for ideal filters. # 2 denotes downsamling.

4.3.3 Perfect Reconstruction

Designing a two-channel filter bank entails designing good filters G̃⇤, H̃⇤, G and H such
that the output signal after synthesis equals the original signal. A filter bank with this
property is called a Perfect Reconstruction (PR) filter bank. In terms of matrices, a
condition that guarantees PR is easily derived:


H̃⇤

G̃⇤

�
s ⌘ K̃⇤s =


p
q

�
. (4.19)

On the synthesis side, we find (using Figure 4.3 as a reminder)

s̃ = Hp+Gq =
⇥
H G

⇤ p
q

�
⌘ K


p
q

�
. (4.20)

The PR condition requires s̃ = s, then

KK̃⇤ = 1. (4.21)

However, from that condition, it is challenging to derive conditions for the filters. Without
giving any details, a lossless filter bank can be constructed by choosing H̃(z) = H(z) and
G̃(z) = G(z) and requiring

H⇤(z)H(z) +H⇤(�z)H(�z) = 2, (4.22)

G⇤(z)G(z) +G⇤(�z)G(�z) = 2, (4.23)

H⇤(z)G(z) +H⇤(�z)G(�z) = 0, (4.24)
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leads to relations on the filter coe�cients (they are called the double shift orthogonality
relation and alternating flip relation) and K̃ = K.

A lossless filter bank is a more restrictive type of PR filter bank and will lead to orthogonal
wavelets. It forces the matrix K to be unitary, however for perfect reconstruction only
KK̃⇤ = 1 is required. Two di↵erent matrices K for synthesis and K̃ for analysis that
satisfy KK̃⇤ = 1 will lead to biorthogonal wavelets, which will be further examined in
Section 4.5.

4.4 A multiresolution analysis

4.4.1 Formal definition

The example with Haar wavelets in Section 4.2 illustrates how the DWT decomposes
a signal in a coarser approximation and detail vector. When applied recursively, the
signal’s true multiscale nature is exposed. A more formal approach is developed with the
definition of a multiresolution analysis:

Definition 7 (Multiresolution)
A multiresolution analysis (MRA) of the Lebesgue space4 L2 is a nested sequence of sub-
spaces · · ·V�2 ⇢ V�1 ⇢ V0 ⇢ V1 ⇢ V2 ⇢ · · · such that

1.
[

n2Z

Vn = L2 and
\

n2Z

Vn = {0}

2. f(t) 2 Vj , f(2t) 2 Vj+1, j 2 Z

3. f(t) 2 V0 , f(t � k) 2 V0, k 2 Z

4. {'(t � k)}k2Z form a Riesz basis for V0.

The first requirement describes that the nested subspaces fill the whole function space.
Technically, closure of

[
Vn is required, which makes the union dense in L2. Any function,

an element from L2, can be approximated (arbitrarily close) by elements of that union
and its limit points. This is the completeness requirement. The intersection ensures that
the nested subspaces are not redundant. The second property is that of scale invariance of
our sequence. Shift or time invariance is expressed in the third property. The last part of
the definition shows that one generating function, the scaling function '(t), together with
its integer shifts form a basis for V0. That basis is complete and non-redundant and not
necessarily orthogonal (so far, we only discussed orthogonal scaling functions), but it is at
least a Riesz basis5. This weaker requirement allows to more freedom and yields a wider
variety of wavelets, more specifically biorthogonal wavelets, to be discussed in Section 4.5.

4Lp: A function space equipped with a p-norm.
5A formal definition of a Riesz basis can be found in [Christensen, 2001].
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4.4.2 Bases

The formal definition of a multiresolution analysis enables us to find requirements for
'(t). The 4th property of the MRA determines that '(t) 2 V0 and from the 2nd property
it is clear that '(t/2) 2 V�1 ⇢ V0, thus there should exist a relation

'(t/2) =
X

k

ck'(t � k), (4.25)

with coe�cients ck 2 R. Eq. (4.25) is called the two-scale relation. This equation is
hard to solve, but several solution strategies exist [Bultheel, 2003]. We are not going
to derive new wavelets, therefore these strategies are not discussed. The average value
of the scaling functions

R
'dt is non-zero, this is called the partition of unity6. Indeed,

the scaling function considered in Section 4.2 was de box function and has non-zero energy.

From these scaling functions, wavelet functions can be derived via the following wavelet
relation:

 (t) =
X

n

dn'(2t � n) 2 V1, dn = (�1)nc̄1�n (4.26)

One can prove7 that the wavelet basis at a given resolution n forms an orthonormal basis
for Wn, where Wn is the orthogonal complement of Vn in Vn+1 and thus

Vn+1 = Vn � Wn. (4.27)

Note that in the literature, the following normalization is often utilized

hk =
ckp
2

and gk =
dkp
2
. (4.28)

4.4.3 The link with filter banks

The link between scaling functions and discrete filters is based on the two-scale relation
Eq. (4.25). The sequence ck will be interpreted as a discrete filter. This filter (or its
transfer function C(z)) describes all the properties of the scaling function '(t), because
those (filter) coe�cients completely define the function. These coe�cients are indeed the
only freedom in the two-scale relation.

When the DWT is applied on a function fn 2 Vn, then its components fn�1 2 Vn�1 and
gn�1 2 Wn�1 are obtained

fn =
X

k

vnk'nk =
X

k

vn�1,k'n�1,k +
X

k

wn�1,k n�1,k, (4.29)

where vn�1,k are the scaling coe�cients and wn�1,k the wavelet coe�cients.

6Theorem 6.6 + corollary in [Strang and Nguyen, 1996].
7Theorem 7.3, page 278 in [Mallat, 1999].
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We want an e�cient decomposition algorithm, where vnk can be expressed in terms of
vn+1,k and wn+1,k:

'nk(t) = 2n/2'(2nt � k) (Notation) (4.30)

= 2n/2
X

i

ci'(2
n+1t � 2k � i) (Two-scale relation) (4.31)

=
1p
2

X

i

ci2
(n+1)/2'(2n+1t � (2k + i)) (4.32)

=
1p
2

X

l

cl�2k'n+1,l(t) (l = 2k + i) (4.33)

=
X

l

hl�2k'n+1,l(t) (Normalization, Eq. (4.28)) (4.34)

and consequently

vnk = h'nk, fi =
Z
'̄nk(t)f(t)dt =

X

l

h̄l�2kh'n+1,l, fi =
X

l

h̄l�2kvn+1,l. (4.35)

Together with

 nk(t) = 2n/2 (2nt � k) (Notation) (4.36)

= 2n/2
X

j

dj'(2
n+1t � 2k � j) (cf. Eq. (4.26)) (4.37)

=
1p
2

X

j

dj2
(n+1)/2'(2n+1t � (2k + j)) (4.38)

=
1p
2

X

l

dl�2k'n+1,l(t) (4.39)

=
X

l

gl�2k'n+1,l(t) (4.40)

and thus

wnk =
X

l

ḡl�2kvn+1,l. (4.41)

Equations (4.35) and (4.41) are crucial results and reveal the filter bank interpretation
of the discrete wavelet transform. Relation (4.35) is a convolution8 with a downsampled
and time reversed impulse response. A convolution in time domain is a multiplication in
the z-domain and thus the scaling coe�cient vector v

n

is obtained by the multiplication
of a suitable (Toeplitz-)matrix with the scaling coe�cients at a higher scale of resolution
v

n+1

. This will be the downsampled and time reversed filter H⇤ from Section 4.3. We
thus have 

H⇤

G⇤

�
vn+1 =


vn

wn

�
, (4.42)

8An ordinary discrete convolution: vk ? hk =
P

l vlhk�l. A convolution with time reversed and
downsampled filter coe�cients has the following form: vk ? h�2k =

P
l vlhl�2k
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where the scaling coe�cients vk contain the low frequency content and the wavelet coef-
ficients wk the high frequency content. In linear algebra notation


H⇤

G⇤

�
vn+1 =


vn

wn

�
, (4.43)

which is shown in Figure 4.5 for the one level DWT with Haar (or Daubechies 1 ) wavelets.

Figure 4.5: The linear algebra representation of a (left) one level (right) five level discrete
wavelet transform with Haar (or Daubechies 1) wavelets. This wavelet has two filter
coe�cients. A black box represents a non-zero element.

Similarly to the Fast Fourier Transform for the Discrete Fourier Transform, there exists
a Fast Wavelet Transform (FWT) for the Discrete Wavelet Transform. The computa-
tion cost is low due to the sparsity of the transformation matrix. Since that matrix is
orthogonal, the inverse matrix is easily calculated. Finite dimensional data will often be
periodically or symmetrically extended until it has a length 2l. When the wavelets have
a large number of filter coe�cients, the matrices will be truncated to match the length of
the signal. This will yield edge e↵ects and orthogonality will be lost. For this purpose,
the matrix has periodical boundary conditions, as is shown in Figure 4.6.

There are many implementations available for the FWT. We have used the Wavelet Tool-
box [MathWorks, 2019] in Matlab and the PyWavelets package [Lee et al., 2006] in Python.
These implementations do not use the linear algebra matrix, which is required in explicit
form for minimizing the objective function (cf. Chapter 3). I have therefore implemented
the FWT matrix in Python, which was used in Figures 4.5 and 4.6.

4.4.4 Signal extension

Because an analysis will be made with wavelets with more than two filter coe�cients,
we are forced to consider ‘signal extension’. In this case, the matrix from the previous
section no longer has periodic boundary conditions. Depending on the wavelet, the signal
will be extended at every level of the wavelet decomposition. Indeed, it will be necessary
to represent the signal with more vector entries than in space or time domain. This is a
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Figure 4.6: The linear algebra representation of a one level discrete wavelet transform
with Daubechies 4 wavelets. This wavelet has 8 filter coe�cients and in order to restore
orthogonality, the matrix is periodically extended. A black box represents a non-zero
element.

requirement for the perfect reconstruction property.

The need to represent the signal with more entries in the wavelet domain than in the space
domain can be recognized in two ways. Let us first consider the linear algebra represen-
tation. It is impossible to fit all filter coe�cients (if there are more than two) in a square
matrix if we do not want to apply boundary conditions or truncate the Toeplitz-matrix.
Indeed, for a one level DWT, it becomes a nm ⇥ nx matrix. nm is the length of the signal
in the space domain and nx is the length in the wavelet domain. For example, if there
are 5 filter coe�cients, then nx = nm + 3. For each additional DWT level, the signal in
the wavelet domain becomes longer.

An analogous situation occurs with convolutions9. With a finite signal, one must think
about how the boundaries should be handled. It is virtually impossible to correlate a
basis function with a part of a signal, when that basis function has wider support than
the length of that part of the signal. The signal is therefore usually extended.

There are several ways to extend a signal. The most popular approach is symmetrization
(e.g., this is Matlab’s default [Misiti et al., 2009]), because this usually unabruptly extends
the behaviour of the signal. Consequently, there will be less boundary distortion. With
symmetrization, a copy of the signal is flipped and fixed to the ends of the signal. See
Figure 4.7. Other strategies include periodic and antisymmetric signal extension. Reflec-
tion is the same as symmetric extension, with the di↵erence that the first and last entry
of the signal are not copied. Furthermore, the signal can be extended by only copying the
first and last entry of that vector over the complete extension interval. In smooth signal
extension, a linear fit is produced at each side, based on the two boundary entries. These
types of signal extension are all illustrated in Figure 4.7.

The choice of signal extension will determine the boundary distortion. Boundary distor-

9We have already argued that the wavelet transform is some type of convolution.
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Figure 4.7: Types of signal extension for the discrete wavelet transform.

tions generally result in large values in the wavelet representation. Therefore, the wavelet
representation will lose its approximating abilities (see Section 4.6). We will have to ex-
amine what works satisfactorily in our inversion scheme.

The linear algebra representation that was implemented in the previous section is no
longer su�cient. A signal after a one level DWT will not necessarily have a length that
is a power of two. In addition, orthogonality will be lost, so the inverse transformation
matrix must also be implemented (It is now no longer possible to consider its transpose).
Another approach will have to be developed that generates the matrix in explicit form.

The alternative implementation of the transformation matrix W is actually very simple,
provided that you have access to a toolbox that has implemented the wavelet transform.
As mentioned earlier, we use the PyWavelet toolbox in Python [Lee et al., 2006]. Consider
�i the ‘Dirac train’ of length nm with spike at the ith entry. In this context, it is a column-
vector. The idea is the following:

W = W I (4.44)

= W [�1 �2 · · · �n
m

] (4.45)

= [W �1 W �2 · · ·W �n
m

] . (4.46)

The wavelet transform from the package PyWavelet can be used to transform the Dirac
trains to the wavelet domain W �i, specified with the correct level of DWT and extension
mode. Concatenating the resulting wavelet representations yields an explicit representa-
tion of the nx ⇥ nm wavelet transformation matrix W .
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For completeness, we note that there exist di↵erent wavelet transforms that avoid this
signal extension issue, the so-called “wavelets on the interval” methods [Cohen et al.,
1993], [Černá and Finěk, 2011]. They are theoretically interesting, but the concepts are
hardly used in practise, due to practical limitations [Misiti et al., 2009]. Additionally, the
intuition behind the transform is less clear.

4.5 Biorthogonality

Regarding the perfect reconstruction property, the matrix K was assumed to be unitary
and yielded orthogonal wavelets. This orthogonality condition is too restrictive and more
wavelet families can be found when more degrees of freedom become available by imposing
a weaker requirement. The definition of a multiresolution analysis deliberately required
only a Riesz basis and not an orthogonal basis.

There exists a weaker condition on the PR property, where K does not need to be unitary.
The requirement KK̃⇤ = 1 can be fulfilled by considering two distinct matrices K and K̃
which are biorthogonal. The formalism slightly alters to a function space with a primal
and dual basis. The functions  and ' generate the primal bases { nk} and {'nk}, while
the dual basis is generated by  ̃ and '̃. For these bases, the relations

h'nk, '̃nli = �k�l, (4.47)

h nk,  ̃mli = �k�l�m�n, (4.48)

h'nk,  ̃nli = 0, (4.49)

h'̃nk, nli = 0 (4.50)

hold and thus a function can be expanded in both bases. We follow the convention that
 and ' will be used on the synthesis side and that  ̃ and '̃ will be used on the analysis
side. The relations in Eqns. (4.47)-(4.50) show that Vn ? W̃n and Wn ? Ṽn. It is still
true that Vn � Wn = Vn+1, but they are not orthogonal complements (this contrasts the
orthogonal wavelet formalism).

4.6 Wavelet families and properties

The performance of a wavelet application strongly depends on the choice of the wavelet.
It is often advantageous to choose a wavelet in which a function is represented in a sparse
fashion, for that yields faster calculations. Other properties are regularity, vanishing
moments, size of the (compact) support and the convergence rate.

Vanishing moments The number of vanishing moments is the most decisive property
of a wavelet. A wavelet has p vanishing moments when

Z
tk dt = 0 for k = 0, 1 · · · , p � 1. (4.51)

It is equivalent of saying that a multiresolution analysis is of order p, it means tk 2 V0

for k = 0, 1 · · · , p � 1. Recall the Haar scaling function from Section 4.2, which is a box
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function with support width 1. Indeed, the Haar scaling function has t0 2 V0 and thus has
p = 1 vanishing moment. In general, p vanishing moments means that  is orthogonal to
any polynomial of degree p � 1.

The number of vanishing moments of  is related to the number of zeros of the low pass
filter H(!). p vanishing moments of the wavelet function is equivalent to the low pas
filter having p zeros at ! = ⇡. To see this, consider the two-scale relation for the wavelet
function  ̃ in the Fourier domain10

 ̃(2!) =
1p
2
G̃(!)�̃(!), (4.52)

where

G̃(!) =
X

k

g̃e�ik!. (4.53)

We have that �̃(0) 6= 0, since11

�̃(! = 0) =
1p
2⇡

Z
'̃(t)e�i0tdt =

1p
2⇡

Z
'̃(t)dt 6= 0. (4.54)

Eq. (4.52) for ! = 0 yields

 ̃(0) =
1p
2
G̃(0)�̃(0) ) G̃(0) = 0. (4.55)

For  ̃ with k � 1 vanishing moments, we find its derivatives

 ̃ (k)(!) =
1p
2⇡

Z
 ̃(t)(�it)ke�i!tdt = (�i)k

1p
2⇡

Z
 ̃(t)tke�i!tdt (4.56)

)  ̃ (k)(! = 0) = (�i)k
1p
2⇡

Z
 ̃(t)tkdt = 0, (4.57)

which is used to find higher order zeros of G̃(0). Di↵erentiating the Fourier space two-scale
relation for  ̃ and using the condition from (4.57):  ̃ (k)(0) = 0 for k = 1 yields

2 ̃ (1)(2!) =
1p
2
G̃(1)(!)�̃(!) +

1p
2
G̃(!)�̃(1)(!) (4.58)

) 2 ̃ (1)(0) =
1p
2
G̃(1)(0)�̃(0) +

1p
2

G̃(0)|{z}
cf. Eq. (4.55)

�̃(1)(0) (4.59)

) G̃(1)(0) = 0. (4.60)

Di↵erentiating k = p� 1 times proves that G̃ has p� 1 zeros in ! = 0. By di↵erentiating
the relation12 G̃(!) = e�i!H(! + ⇡), the p zeros of H(!) at ! = ⇡ are obtained. This

10Obtained by multiplying the two-scale relation with e�i!t and integrating with respect to t. Alter-
natively, G̃ and H̃ are obtained by the z-transform, where only the unit circle z = e!t is considered.

11Recall the partition of unity from Section 4.4.2.
12See [Bultheel, 2003] Section 5.9.
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property is often referred to as ‘flatness ’ of the wavelet.

At first sight, the compact support of a wavelet seems unrelated to the number of vanishing
moments. A theorem by Daubechies [Daubechies, 1988] states that an orthogonal wavelet
with p vanishing moments has at least a support of size 2p � 1. In the same paper,
Daubechies shows that the order of regularity increases linearly with the support width.
Regularity is related to smoothness, which is a potential desirable property of our inversion
scheme.

Convergence When dealing with piecewise smooth functions, a wavelet basis is better
than e.g. a Fourier basis. We touched upon this idea earlier in this chapter, but by stating
a theorem13, we make it more formal:

Theorem 3 (Convergence of wavelet approximation) When H(!) has p zeros at
⇡, any p-times di↵erentiable function f(t) is approximated to order (�t)p = 2�jp by its
projection fj(t) in Vj:

||f(t) � fj(t)||  C(�t)p||f p(t)|| (4.61)

Thus, the number of vanishing moments p determines the rate at which the projections
onto Vj converge to f . Note the explicit condition that f should be p-times di↵erentiable.
Since wavelets are localized in time, it is su�cient that functions are only locally smooth
(in the support width of the basis function). Another important theorem14 is the following:

Theorem 4 (Decay of the Wavelet) If f(t) is p times di↵erentiable, its wavelet coef-
ficients decay like 2�jp:

|wj,k|  C2�jp||f p(t)|| (4.62)

Thus, a wavelet coe�cient decays with increasing j and thus for smaller scales. Higher
vanishing moments induce faster decay and thus sparser representations. This theorem
can be inverted: when large wavelet coe�cients are observed on all scales, then this
is a result from discontinuities or singularities of f . This theorem therefore reveals an
important trade o↵: higher vanishing moments improve the approximating abilities of a
wavelet (which is interesting in applications), but also induce a larger compact support.
This higher compact support width makes it more di�cult to meet the conditions of the
theorem: the function f must then be piecewise smooth on a larger interval.

Examples The most famous wavelets are the Daubechies (db) wavelets. The Haar
wavelet was already used in earlier sections (the corresponding scaling function was the
block function) and is an example of a Daubechies wavelet, more precisely it is referred
to as the Daubechies 1 wavelet. In general, Daubechies wavelets are orthogonal and
compactly supported. For a given support, they attain the highest possible number of
vanishing moments. We denote dbN as a Daubechies wavelet of order p, i.e. with p = N
vanishing moments. It has a support size of 2p � 1 and a regularity (for large p) of 0.2p.
The db2-db4 wavelets are shown in Figure 4.8. Indeed, with increasing p we observe
smoother wavelets and larger support widths.

13Theorem 7.5 p.230 in [Strang and Nguyen, 1996]
14Theorem 7.6 p.231 in [Strang and Nguyen, 1996]
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FIGURE 7.10
Daubechies scaling function ! and wavelet " with p vanishing moments.

only real compactly supported conjugate mirror filter that has a linear phase. The
Daubechies symmlet filters are obtained by optimizing the choice of the square
root R(e!i#) of Q(e!i#) to obtain an almost linear phase.The resulting wavelets still
have a minimum support [!p"1, p] with p vanishing moments,but they are more
symmetric, as illustrated by Figure 7.11 for p#8. The coefficients of the symmlet
filters are in WAVELAB. Complex conjugate mirror filters with a compact support
and a linear phase can be constructed [352], but they produce complex wavelet
coefficients that have real and imaginary parts that are redundant when the signal
is real.

Coiflets
For an application in numerical analysis, Coifman asked Daubechies [194] to con-
struct a family of wavelets " that have p vanishing moments and a minimum-size
support, with scaling functions that also satisfy

∫ "$

!$
!(t) dt #1 and

∫ "$

!$
tk !(t) dt #0 for 1%k&p. (7.99)

Such scaling functions are useful in establishing precise quadrature formulas. If f is
Ck in the neighborhood of 2 J n with k&p, then aTaylor expansion of f up to order
k shows that

2!J/2 ⟨ f , !J ,n⟩≈ f (2 J n)"O(2(k"1)J ). (7.100)

Figure 4.8: Daubechies scaling and wavelet functions with vanishing moments p. Figure
retrieved from [Mallat, 1999].

In summary, wavelet theory provides a framework for finding compactly supported basis
functions which are localized both in time and frequency. It has a multiscale nature,
present in the wavelet basis. The wavelet transform has a fast implementation that can
be viewed as a matrix operation acting on the signal. Choosing an appropriate wavelet
is a crucial part in designing applications. In the next chapter, we put together all the
ingredients and propose our inversion scheme.



Chapter 5

Analysis and Discussion

In this chapter, we discuss the most important results in building up a robust inversion
scheme. Robust in the sense that it can handle noisy measurements and unmodelled
artefacts. First, a simple scheme is proposed based on the optimization methods in
Chapter 3 and wavelet theory from Chapter 4. Subsequently, the results will be analysed
in order to improve the scheme. We will do this by adding or adjusting features in the
inversion scheme, step by step.

5.1 The inversion scheme

5.1.1 The outline of our scheme

In Chapter 3, we have discussed a framework for solving inverse problems and have argued
why a minimum structure regularization is required. This resulted in an objective function
� that we must minimize with iterative methods. Recall the objective function from
Section 3.2.4

�(x) = �d(x) + ��m(x) =
1

2
kd � K(W�1x)k2

2 + �kxk1, (5.1)

where W is the basis transformation

x = Wm (5.2)

in which the model parameters m are represented in a sparse fashion.

We can construct such a transformation with the concepts from Chapter 4 about wavelet
theory. Then x becomes a vector with model parameters in the wavelet domain. There
is a lot of freedom: In the first place, one can choose to implement the transformation
at various levels of resolution N . Secondly, there is the choice of wavelet. We know
from Section 4.6, that the wavelets in the Daubechies family are suitable candidates, be-
cause they are by construction the best wavelet in the following trade-o↵: more vanishing
moments improve the approximation abilities of a wavelet, that is, you can make a good
approximation of a vector with few non-zero wavelet coe�cients. On the other hand, more
vanishing moments induce larger compact support widths, which on their turn make it
more di�cult to meet the conditions of a proper decay of the wavelet coe�cients (i.e.
close to zero). Indeed, Daubechies wavelets are those orthogonal wavelets that have the

69
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smallest support width for a given vanishing moment.

The wavelet transform has its limitations though. Recall its filter bank interpretation
that on the analysis side splits the vector into two parts: a high-frequency part (detail or
wavelet coe�cients) and a low-frequency part (approximation or scaling coe�cients). In
view of facilitating a potential full discrete wavelet transform, we require the conductivity
profile parameterization m 2 R+,n to have a length of power two. This specification is
rather a programming inconvenience/issue, than something that causes fundamental prob-
lems. Suppose that in some context, a parameterization is needed with predetermined
layer thickness and that the variability in the magnetic field data is largely explained with
a parameterization up to a certain depth d’ (remember: this depends on the maximum
intercoil distance of the measurement). If this parameterization has n’ model parameters,
it can be extended to a dimension of power two without any problem. Indeed, these
parameters will not make a significant contribution to the variability in the data.

In Section 4.4.4, we explained that the full DWT requires a signal extension x 2 Rn
x

in order to preserve all the properties of the wavelet and to avoid unpleasant boundary
e↵ects. As a matter of fact, we must then solve the objective function for nx parameters
for a model parameterization of only nm  nx parameters, this makes the minimization
problem more cumbersome. We can avoid this issue by not considering the full DWT,
i.e. a N < log2(nm) level DWT. Consequently, we have introduced an additional di�-
culty: can the true model parameterization still be su�ciently sparsely represented in the
wavelet domain? Fortunately, the Haar wavelets, also called Daubechies 1 (db1) wavelets,
do not exhibit this di�culty (they only have two filter coe�cients per filter). We first
limit ourselves to the db1 wavelet, which is furthermore the most intuitive. In Section
5.4, we will loosen the power of two requirement and examine the e↵ect of a N < log2(nm)
level DWT and its e↵ect on boundary distortions.

The DWT with db1 wavelet is now examined on a simple conductivity profile. This con-
ductivity profile comprises a 5 meters thick upper layer with an electrical conductivity of
0.5 S/m and a second semi-infinite layer with a conductivity of 0.05 S/m. This profile
is modelled by 8 layers (n = 8) with a thickness of 2.5 meters. Figure 5.1a presents this
profile in the space domain, together with all the representations in the wavelet domain
with the Haar wavelet. In the figure with the one level discrete wavelet transform (with
subspaces of m 2 V0 = V�1 � W�1), the pattern of the original model is recognized in
the scaling coe�cients, these coe�cients are the first four components of x. Note that a
normalization has resized all values in x. This ditto pattern in the scaling coe�cients (the
first four coe�cients) is not a surprise, because the model in the space domain could ex-
actly be represented with a parameterization m’ with only four components on a di↵erent
basis, more specifically with layers (or block functions) with thicknesses of 5 meters, for
which m’ 2 V0’ = V�1. In the two-level DWT, the first two components are still scaling
coe�cients. The interpretation for Haar wavelets is that the first component gives the
average value of the first four components of m and that the second component describes
the average of the last four components, except for a rescaling. The wavelet coe�cients
provide a ‘correction’ on the too simplified coarse scale scaling coe�cients and ensures
the perfect reconstruction property. The full DWT (here: three-level DWT) usually de-
scribes the given model in the most sparse fashion. However, we note that both the two
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and three-level DWT generate a 3-sparse vector, this is not generally valid. In conclusion,
we can represent a non-sparse vector, the model m, by an S-sparse vector in the wavelet
domain. In this example, we get a 3-sparse vector.

The first component of x in the full DWT is never zero, as in the example above. Suppose
that in the full DWT, the scaling coe�cient is zero, by consequence the space domain
vector has zero energy (the sum of all elements in m is zero), something that is not
expected in our physical model m 2 R+,n because electrical conductivities are positive.
Therefore, we can mitigate the sparsity constraint in our objective function. Note that we
cannot simply repeat this reasoning on other components since we do not know a priori
which components will be non-zero. The objective function with the mitigated sparsity
constraint is now

�(x) =
1

2
kd � K(W�1x)k2

2 + �

 
n

xX

i=2

|xi|
!
, (5.3)

where nx is the total number of components in x. Since we are going to use iterative meth-
ods that use gradient information, the perturbed `p-norm measure of Ekblom (Eq.(3.15)
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Figure 5.1: (a) The conductivity profile in the space domain. (b)-(d) level of resolution
N discrete wavelet transform with the Haar or Daubechies 1 wavelet.
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Figure 5.2: The inversion scheme

in Section 3.2.3) for p = 1 is used instead of the `1-norm

�(x) =
1

2
kd � K(W�1x)k2

2 + �
n

xX

i=2

✓q
x2

i + ✏

◆
, (5.4)

where ✏ = 10�4 unless otherwise stated1.

The synthetic data d 2 Rm is obtained from 20 measurements with intercoil distances
s = 1, 2, · · · , 20 meters in both horizontal coplanar (HCP) and perpendicular with vertical
dipole configurations (m = 40) at a height of 0.1 meter. It will be further specified which
forward model is used to generate the data and what noise is added in order to make the
synthetic data more realistic.

An iterative inversion procedure starts with an initial guess or trial model. In a true
geological inversion process, the geophysicist tries to choose the initial guess based on the
available geological knowledge. Here, we try to create a robust inversion scheme and pre-
tend that no prior knowledge is available. The simplest initial guess is a constant model,
although it could just as well be a randomly generated positive model vector with values

1This is a good choice for ✏, according to [Farquharson and Oldenburg, 1998].
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lower than 1 S/m2. In our inversion experiments, the initial guess is a constant, unless
otherwise stated.

After determining the initial guess, it is transformed into the wavelet domain (we have
the freedom to choose the level of the DWT and the wavelet). Subsequently, the objective
function � is minimized through the iterative method (see Section 3.4). The objective
function’s gradient information allows a line search algorithm to search for a minimum
of the objective function. After each iteration, it is checked whether the iterate has
converged. We set the following stop criteria:

�(k) � �(k+1)

max(1, |�(k)|, |�(k+1)|)  10�10, (5.5)

max(|Pr�i|, i = 1, · · · , n)  10�7, (5.6)

maximum 1500 iterations, (5.7)

where Pr� is the projected gradient (see Section 3.4.3).

After conversion, we (hopefully) get a minimum of the objective function xout. Eventually,
the outcome is translated into the space domain through the appropriate inverse discrete
wavelet transform. This inversion scheme is schematically summarized in Figure 5.2.

5.1.2 Test of the inversion scheme

The inversion scheme, as proposed in the previous section, is tested on the conductivity
profile from Figure 5.1. To keep things simple, again only eight model parameters are
considered. For simplicity, the data is generated and inverted via the LIN approxima-
tion and no noise was added to the synthetic data. The wavelet representation of m is
obtained via the full DWT with Haar wavelets. The regularization parameter � is held
constant during the iterations and tuned manually. The L-BFGS-B-method [Zhu et al.,
1997] is used in the standard Python SciPy [Jones et al., 2001] solver. Note that we do
not yet impose bounds on our parameters and thus Pr� = r�.

The inversion was performed for several regularization parameters �. A too large regu-
larization parameter yields the null solution (let’s say a 0-sparse ‘solution’). When the
regularization parameter was too small, the solution exhibits complex structure, i.e. it is
not sparse and is slightly overfitted. We can summarize the typical outcome after con-
version for what seems a slightly too small regularization parameter and a slightly too
large parameter in Figure 5.3 (note that the lowest subsurface layer is semi-infinite, and
thus the solid line mtrue must be thought of to be semi-infinite). The left figure shows the
inversion with � = 0.001, the solution does not show the expected minimum structure.
The exact model in wavelet space is represented by a 3-sparse vector, where the first
three elements are (0.459, 0.318 ,0.45 ), while the solution after conversion, rounded to 3

2This is a realistic upper bound, based based on experimental data obtained from [Hermans et al.,
2012].
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Figure 5.3: Model m = W�1x after conversion (orange -·- line) for � = 0.001 (left) and
0.004 (right). The solid line describes the true model, which was used to generate the
data. No noise was added. The initial guess m(0) (blue, dashed line) was a constant model
in space domain.

significant figures, yields

x� = 0.001 =

2

66666666664

0.475
0.470
0.181

�4.96 ⇥ 10�3

0.0615
�8.26 ⇥ 10�4

�8.68 ⇥ 10�4

�4.86 ⇥ 10�3

3

77777777775

, (5.8)

which is not sparse. One could do thresholding3 to clean up the vector x, although this
introduces an extra issue: which threshold � should we choose? Additionally, it somewhat
obscures the e↵ect of the sparsity constraint in the objective function which we want to as-
sess now, therefore it is not a good approach to consider this in an initial inversion scheme.

When the regularization parameter is increased to � = 0.004, the outcome is di↵erent
and has more minimal structure (see Figure 5.3, right). Note that the conductivities at
large depths have negative electrical conductivities, which is unphysical! This issue will
be resolved in a later version of the inversion scheme. We cannot fully rely on the visual
inspection of the outcomes. In the discussion above, we presented outcomes that seemed
to be a result of too large or too small regularization parameters. However, in the light
of our objective function’s model misfit, both outcomes seem to have too little structure,
compared to the true model. This minimum structure can be examined by considering
the model misfit �m of the outcomes and to compare it with the exact solution, rounded

3[Liu et al., 2017] suggest that one can do thresholding after every iteration. That is removing the
coe�cients that are smaller than some threshold �. However, they only mention it and do not include it
in their inversion scheme.
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to 3 significant figures

�m(x
true) =

p
x3 + ✏+ 5

p
✏ = 0.500, (5.9)

�m(x
� = 0.001) = 0.286, (5.10)

�m(x
� = 0.004) = 0.0645, (5.11)

from which we observe that the regularization was in fact too strong. In the next section,
we will develop a slightly di↵erent regularization term that better agrees what we visually
assume a complex structure solution.

5.1.3 Scale-dependent regularization

The problem with the regularization term in the previous section is that it gives each
component in x the same weight. We have already argued that the first component of x
cannot be zero. We also expect that the second component will be non-zero. Wavelet coef-
ficients at smaller scales are expected to be zero, since these correspond with neighbouring
model parameters having equal conductivities. Our wavelet basis, however, exhibits bet-
ter minimum structure when the high resolution wavelet coe�cients xi 2 W�1 are sparse.
Theorem 4 from Chapter 4 makes this more formal for any type of wavelet with p van-
ishing moments, recall that if f is locally smooth and p times di↵erentiable, the theorem
states that at scale j+1 the wavelet coe�cients, localized where f is smooth and p times
di↵erentiable, are approximately smaller than those on scale j by a factor of 2p. This result
can be used to define a new regularization term (where we assume no signal extension):

�m(x) = µ(x2) + 2p

4X

i=3

µ(xi) + 22p

8X

i=5

µ(xi) + 23p

16X

i=9

µ(xi) + · · · , (5.12)

where we have made the sparsity constraint for high resolution coe�cients more stringent
and µ is the Ekblom measure. In shorter notation, where N = log2(nm) and j is the
scale of resolution of the subspace Wj and m 2 V0, then4 the relation between the i-th
component of x and j is for i > 1

j = blog2(i � 1)c � N (5.13)

and thus

�m(x) =
n

mX

i=2

2blog
2

(i�1)cp
q

x2
i + ✏. (5.14)

In order to be able to better compare between di↵erent parameterizations, we normalize
with the Euclidean norm

�m(x) =

Pn
m

i=2 2
blog

2

(i�1)cp
p

x2
i + ✏

(
Pn

m

i=2(2
blog

2

(i�1)cp)2)
1

2

. (5.15)

4Recall that a three level DWT yields the following decomposition of subspaces V0 = V�3 � W�3 �
W�2�W�1, where Wj are the subspaces which correspond to with wavelet coe�cients at scale of resolution
j and the subspace V�3 corresponds to the scaling coe�cient.
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Figure 5.4: (Left): With scale-dependent regularization term. (Right): Without regu-
larization.

The inversion was applied to the same conductivity profile with the new stabilizing term
�m for a manually tuned regularization parameter and compared with the inversion with-
out regularization (� = 0). Visual inspection from Figure 5.4 shows that a regularized
objective function results in a more stable result. The model misfits confirm this state-
ment:

�m(x
true) = 0.126 (5.16)

�m(x
� = 0) = 0.207 (5.17)

�m(x
� = 3 ⇥ 10�5

) = 0.125 (5.18)

Hitherto, no noise was added to the synthetic data. Let us conclude that the regu-
larization term with appropriate regularization parameter improves the stability of the
inversion scheme. Additionally, the scale-dependent regularization significantly improves
the outcome, when compared to equal regularization between di↵erent scales.

Other conductivity profiles
So far, only one simple conductivity profile was considered. In Figure 5.5, we examine
two other profiles with the scale-dependent regularization strategy: Profile II is similar to
the profile that was used earlier, only with switched electrical conductivities. Profile III
is a somewhat more di�cult conductivity profile with layers of 2.5 meters, 5 meters and
a semi-infinite layer. The conductivities are 0.05, 0.5 and 0.05 S/m respectively.

The inversion scheme performs satisfactorily for Profile II, which is apparent in the model
in Figure 5.5 and the model misfits are very alike:

�m(x
true) = 0.1636 (5.19)

�m(x
Profile II, � = 2 ⇥ 10�5

) = 0.1633. (5.20)

For profile III, a suitable regularization parameter was not immediately found through
manual tuning. Therefore, di↵erent initial guesses were taken (randomly generated as
described in Section 5.1.1) and in the various outcomes, negative conductivities were
often noted, as in Figure 5.5 with � = 2 ⇥ 10�6. In the next section, we will adjust the
inversion scheme in order to avoid negative conductivities.
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Figure 5.5: Outcomes with the scale-dependent regularization term. (Left:) Profile II
(Right): Profile III

5.1.4 Imposing positive conductivities in log-space

By applying a logarithmic transformation on the model parameters, an outcome with
negative electrical conductivities is prevented. This is because the outcome is back-
transformed to the normal space domain with an exponential transformation. The ad-
justed inversion scheme is presented in Figure 5.6. In the wavelet domain, we get

x = W log10(m) (5.21)

and hence the objective function is

min
x

�(x) =
1

2
kd � K

⇣
10W

�1x
⌘
k2

2 + ��m(x), (5.22)

where �m(x) in Eq. (5.15) remains unaltered.

The data misfit gradient is di↵erent. The derivative of the residual vector

r = d � K
⇣
10W

�1x
⌘

(5.23)

with respect to x is obtained componentwise

@ri(x)

@xj

=
@

@xj
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!
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W�1
kl xl (5.24)

=
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k log(10)
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xj

(5.25)

=
X

k

Kik10
y

k log(10)W�1
kj , (5.26)

where log is the natural logarithm and with the Hadamard product ?,

@r(x)

@x
= log(10) (K(m) ? Y )W�1 where Yik = 10y

k for i = 1, · · · ,m (5.27)
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Space domain:
Initial guess m(0)

log10-space:
m(0),log = log10 m

(0)
Wavelet-log10 domain:
xlog,(0) = Wm(0),log

Inversion: Solve �(x)
with iterative technique

Wavelet-log10 domain:
xout,log

log10-space:
mout,log = W�1xout,log

Space domain:
mout = 10(mout,log)

Figure 5.6: The inversion scheme in log10-space domain
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Figure 5.7: Outcomes with the inversion scheme with logarithmic transformation and
scale-dependent regularization strategy. (Left:) Regularization parameter � = 2 ⇥ 10�6,
as in Figure 5.5. (Right): Manually tuned ‘optimal’ regularization parameter � = 10�7.

This new inversion scheme is employed to the 3-layered conductivity profile (profile III),
for which negative conductivities were observed in the previous scheme. Figure 5.7 shows
the results with the same regularization parameter as in the previous section. The out-
come indeed follows the real model better and the negative electrical conductivities have
disappeared. Tuning the parameter to � = 10�7 produces an outcome that follows the
outcome well. With the other conductivity profiles that were considered earlier, no sig-
nificant di↵erences were noticed.

So far, the regularization parameter was tuned manually. In the next section, several
automatic procedures for selecting an optimal regularization parameter will be examined.
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5.2 Choosing the regularization parameter

The regularization parameter balances the importance of the data and model misfit terms
in the objective function. In the inversion schemes considered above, the regularization
parameter was manually tuned. This was possible, because the exact conductivity profile
was known. In a real-world scenario, this is not the case and we wish to choose an optimal
regularization parameter without prior knowledge of the exact solution. We discuss three
common methods for choosing the regularization parameter. The first method, the dis-
crepancy principle, is known in inversion literature [Hansen, 2010], however [Farquharson
and Oldenburg, 2004] suggest that the ‘automatic’ L-curve criterion procedure performs
equally well in iterative, minimum-structure, underdetermined inversion algorithms. The
third method is more pragmatic. The regularization parameter will be decreased through-
out the iterations, based on our own defined criteria. We will refer to this method as the
�-descent method. These methods are discussed in Section 5.2.1, 5.2.2 and 5.2.3 respec-
tively.

5.2.1 The discrepancy principle

Recall that in Eq. (3.5) in Chapter 3, we have defined a measurement error vector ⌘.
We know that the data misfit cannot (and should not) be lower than 1/2||⌘||22. We can
exploit this fact and find a lower bound on � if an upper bound of 1/2||⌘||22 is known5.

(a) Discrepancy principle in truncated SVD.
Figure retrieved from [Hansen, 2010].
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(b) Discrepancy principle for Profile I with 16
parameters and constant �.

Figure 5.8: The discrepancy principle

Morozov’s discrepancy principle [Tikhonov et al., 2013], [Hansen, 2010] states that one
should choose the regularization parameter � such that the data misfit equals the discrep-
ancy in the data, i.e. �d = ||⌘||22. Since ⌘ is unknown and can only be estimated, it is
safer to choose a slightly larger regularization parameter, such that �d = ↵||⌘||22 (this will
become very clear in the next section about the L-curve criterion). In theoretical work,
this method is popular, because it is possible to show for Tikhonov regularization with
smoothness functional that the regularized solution converges to the exact solution as

5For the ease of notation, we will drop the 1/2 in 1/2||⌘||22 in the remainder of this text.
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||⌘||2 vanishes6. To our knowledge, no such proofs exist for our type of inversion scheme.
Additionally, the major drawback (in both Tikhonov and our inversion scheme) is the
di�culty to estimate7 ||⌘||2.

In a general setting [Hansen, 2010], the discrepancy principle is expected to behave as in
Figure 5.8. In Figure 5.8a, a linear problem is considered which can be inverted via a direct
method, based on truncation of the singular value coe�cients. A truncation parameter
k implies that only the k largest singular values are retained (the idea is that the small
singular values correspond to the uncorrelated noise). Strong regularization corresponds
with a small k and yields a large discrepancy on the data, while a large truncation param-
eter allows overfitting to happen. Overfitting means that the data is better fitted than
what the quality of the data allows. The discrepancy principle plot in our inverse prob-
lem wil have the typical appearance as in Figure 5.8b, where the data misfit �d is plotted
against the regularization parameter �. The LIN approximation was used in both the data
generation and inversion. Noise was added to the synthetic data (see below) and thus the
exact error ||⌘||22 is known. The solid line is the ‘safe estimation’ of that noise, with ↵ = 2.

Morozov’s discrepancy principle is still used in geophysical inversion literature today
([Grasmair et al., 2015], [Oldenburg and Li, 2005]). In Section 5.2.4, we will examine
if the principle can be included in our inversion scheme.

5.2.2 L-curve criterion

The L-curve criterion is a very intuitive tool for finding the ‘optimal’ regularization pa-
rameter, due to its graphical interpretation. The idea is to solve the inverse problem for
a set of ` regularization parameters 0 < �1 < �2 < · · · < �` and to log the data misfit
and model misfit after conversion. Then, these misfits are plotted in log-log scale and
are expected to appear as an L-shape. In Figure 5.9, a generic L-curve of an ‘ideal’ case
is shown. The x and y-axis correspond respectively with the data misfit �d and model
misfit �m.

The reason for the expected shape is intuitive. Consider the misfits �d,k and �m,k obtained
after conversion with regularization parameter �k, where 1 < k < `. Similarly, �d,k+1 and
�m,k+1 are obtained with �k+1 > �k. The larger regularization parameter �k+1 gives larger
weight to the model misfit in the objective function � and the model misfit will, in gen-
eral, be minimized more. It is expected that �m,k+1  �m,k, while �d,k+1 � �d,k. Indeed,
this �k+1 generally yields an outcome with an ordered pair of misfits, located underneath
and/or right with respect to (�d,k;�m,k). The vertical ‘stick’ of the L corresponds to out-
comes where the model misfit is very sensitive to changes in the regularization parameter,
while the horizontal part corresponds to outcomes where the data misfit is sensitive. The
vertical part of the L generally corresponds with �d = ||⌘||22. For vanishing regularization,
outcomes with �d < ||⌘||22 are obtained (overfitting). We recognize the importance of

6See Chapter 1 in [Tikhonov et al., 2013].
7For measurements with the EM34-3, the a measurement accuracy is 5%. However, there are also

unmodelled e↵ects (e.g. if one uses the LIN approximation) that will lead to an additional error. Ad-
ditionally, coil misalignment also leads to a measurement error. We will denote  for the total error.
Especially for large intercoil distances, it is hard to estimate the error introduced by e.g. misalignment.
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Figure 5.9: The generic form of the L-curve in log-log scale. Figure adapted from [Hansen,
1994].

taking �d = ↵||⌘||22 in Morozov’s discrepancy principle. If the error estimation ||⌘est.||22
was such that ||⌘est.||22 < ||⌘true||22, then one finds very di↵erent outcomes with very large
model misfit (for vanishing regularization parameters). It is therefore safer to take ↵ > 1.

The L-curve divides the plane in two regions. It is impossible to construct any outcome
that corresponds to a point below the L-curve. Note that the log-log scale emphasizes
the L-shape. It is not guaranteed that the curve will exhibit the L-shape. However, in
theoretical work [Hansen and O’Leary, 1993], there exists conditions that yield a guar-
anteed L-shape8. To our knowledge, no such theoretical work exists that is related to
our inversion scheme. We will examine if we can use the L-curve criterion without the
guarantee of its expected shape.

Corner selection
The optimal regularization parameter is the parameter that corresponds with the corner
of the L-curve. There are two main approaches to determine the corner. The first ap-
proach is to connect the ordered pairs (�d,k,�m,k), for k = 1, · · · , ` with spline curves.
The corner is the point with maximal curvature. A method to map a discrete � to the
corner of the L-curve is provided in [Hansen and O’Leary, 1993]. The algorithm may
sometimes mistake a local ‘corner’ (with larger curvature) for the global corner, as that
can be the result of spline interpolation. When this issue occurs, a di↵erent spline (with
e.g. di↵erent degree or order) can resolve this issue.

Nonetheless, we will rely on a more robust method: The Adaptive Pruning algorithm by
[Hansen et al., 2007], as presented in Algorithm 3 in Appendix B. It should be able to

8 If the following criteria are met with Tikhonov regularization with the `2-norms, then the L-curve
is guaranteed to exhibit an L-shape. The conditions are (1) The error on the data d is ‘white noise’, i.e.
the sequence is statistically uncorrelated; (2) The signal-to-nose ratio is reasonably large and; (3) The
discrete Picard condition is satisfied. Without giving a formal treatment, it means that the data vector
d is su�ciently smooth and not too noisy.
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adaptively filter all the small local corners. Indeed, without a guarantee of the typical
L-shape, we expect some local corners to be present in the curve. Therefore this robust
corner method will be adopted. The idea is that the global corner can be easily found, by
removing the right amount of points. The process must be adaptive, because the set of
points that need to be removed so that the L-curve only has one global corner is unknown.
Therefore, the algorithm will work in two stages. The first stage generates a sequence
of pruned L-curves for which it locates the corner. The second stage is concerned with
finding the best corner from the candidates generated in the first stage. In the belief that
minimizing the data misfit is more important than minimizing the model misfit, all the
candidates on the vertical part of the curve are removed. These candidates are found by
calculating the slope. If the slope is greater than ⇡/4, the candidate is removed. Secondly,
only the candidates with a negative angle are retained. Finally, the smallest remaining
regularization parameter � is considered as the ‘optimal’ regularization parameter, that
is the last candidate before reaching the vertical part.

5.2.3 Pragmatic method: decreasing the regularization param-
eter

In geophysical literature, the regularization parameter � is often varied throughout the
iterative minimization of �. [Liu et al., 2017] uses this approach in combination with a
wavelet stabilizer. In his paper, an initial value for � of 1000 is chosen. The parameter � is
decreased with 10% if the data is misfit decreases slowly. If the regularization parameter
� equals 0.1, it will be kept constant throughout the subsequent iterations. There is no
further specification as to what the precise criterion is for ‘if the data misfit decreases
very slowly’. Additionally, taking the lowest regularization parameter equal to 0.1 is an
arbitrary decision. One can choose such a value to make it work on a synthetic data set,
however, when no prior knowledge is available, there is no guarantee that this value is
adequate. We will therefore not rely on such an arbitrary stop criterion.

Finding a suitable stop criterion for decreasing lambda will prove di�cult. A too small �
will allow overfitting (see below), something that is di�cult to detect, based on knowledge
of the behaviour of �m and �d. A justified way to determine the lower limit for � is on
the basis of the discrepancy principle. However, it would still be beneficial if we find a
strategy that does not use that information, because as we will see later, the discrepancy
principle is not always that easy to interpret.

Decreasing the regularization parameter � could be an interesting strategy, because it
could lead to a computationally faster inversion scheme. A too low regularization param-
eter will allow excessive structure to build up in the model during the first iterations.
Additional iterations will then be required to eliminate this excessive structure. It was
therefore suggested (as in [Farquharson and Oldenburg, 2004]) that it may be more ef-
ficient to choose a fairly large initial regularization parameter �0 for the first iterations
and then to decrease � via a so-called ‘cooling schedule’. In Section 5.2.6, we will develop
and compare such �-descent strategies.
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5.2.4 The discrepancy principle in use

In this section, the same two-layered conductivity profile as in Section 5.1.1 is considered.
The number of parameters is doubled to 16 and thus the thickness of the layers with
unknown electrical conductivities is halved. To make the inversion more realistic, noise
is added to the synthetic magnetic field data. A Gaussian distribution is created with a
mean of one and a standard deviation of 10�2, from which randomly drawn elements are
multiplied with the synthetic data. We do not use additive noise, because the measured
magnetic secondary field for an arrangement with intercoil distance s = 1 meters is only
about 1.2⇥ 10�3 A/m, while it is 2.8⇥ 10�1 A/m for intercoil distance s = 20 meters for
perpendicular with vertical dipole configuration (PERP) coil setting. Additionally, the
measurement accuracy of the instrumentation is usually a percentage (e.g. in our exper-
imental setting, this is 5% [Geonics, 2012]). First, for simplicity, data is generated and
inverted via the LIN approximation, because in this way the discrepancy principle can
be best understood. Afterwards, the discrepancy principle is employed on synthetic data
from the exact model and inverted via the damped model. This latter setting contains
noise due to unmodelled e↵ects and it will appear that this considerably complicates the
inversion problem.

For the case with the synthetic LIN data, the data misfit functional of the outcome after
conversion �d(xout) is plotted in terms of the regularization parameter �. In this ersatz
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Figure 5.10: The discrepancy principle on synthetic data (with 1% noise) and inversion
via LIN approximation. Three outcomes are shown for notably di↵erent regions of the
graph.
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case, the noise on the data ||⌘||22 is known and plotted (dashed line), together with ↵||⌘||22
(solid line) where ↵ = 2. This choice for ↵ is a suggestion in [Hansen, 2010]. The plot
of the discrepancy principle is shown in Figure 5.10, accompanying three other outcomes
after inversion for � = 2, 0.05 and 5 ⇥ 10�5. These regularization parameters correspond
to three regions in the graph. The first profile (� = 2) corresponds to the domain on the
right, where the graph tends to be constant and the data misfit large. This coincides with
constant solutions. Indeed, the regularization is strong and the constant conductivity
profile has the absolute minimally possible structure. In the domain between 10�2 and
1, a lot of variation in the data misfit is observed. This seems like a domain where the
interesting stu↵ is happening, although the outcomes are very similar. Such an outcome
is shown in Figure 5.10 for � = 0.05. The interesting domain (in terms of outcomes)
is for � < 10�2, where the data misfit of the outcome is in of the order of the true
noise. An example of an outcome in this region (� = 5 ⇥ 10�5) is also shown. There is
a good agreement between the true conductivity profile and the outcome after conversion.

At first glance, it seems good that for specific regularization parameters �, the data misfit
appears close to the real noise on the data. Note that there is no guarantee that this will
always be the case. In fact, not all outcomes in the � < 10�2 domain are desirable. It is
instructive to see how the data misfit and the model misfit evolve in terms of the number
of iterations k. This is examined for 3 outcomes � = 10�7, 5 ⇥ 10�5 and 10�3 for which
the data misfit is approximately equal to the noise: �d ⇡ ||⌘||22. The results are shown
in Figure 5.11. The conductivity profile of the first outcome (Figure 5.11a, � = 10�7)
exhibits a complex structure solution. This is an indication of overfitting. On the plot of
the misfits in terms of the iteration, we observe that the data misfit after conversion is
actually slightly below the real noise. Observe that the model misfit is larger than the true
complexity of the true solution (dotted line). The contribution of the minimum structure
condition (i.e. regularization term) is too low and not significant in the minimization of
the objective function �. We conclude that the situation where ��m ⌧ �d yields poor
outcomes. The second outcome (Figure 5.11b, � = 5 ⇥ 10�5) is an acceptable result, the
outcome follows the true conductivity profile closely. The misfits are much closer to each
other (at the end and during the minimization process) than in the previous outcome.
This is a desirable feature because both misfits have a significant contribution in the ob-
jective function � during most of the iterative process. Note that for iterations k > 60,
��m < �d and �d(xout) < ||⌘||22. In the final outcome (Figure 5.11c, � = 10�3), ��m > �d

and we can conclude that the case of underfitting should likewise be rejected.

Inspired by the discrepancy principle, the same type of plot is generated for the model
misfit instead of the data misfit. Instead of an increasing curve, a decreasing curve is ob-
tained, see Figure 5.12 (left). The model misfit of the true conductivity profile �m(mtrue)
is known and plotted on the graph (dotted line). The overfitting for small regularization
parameters � is apparent. We can now put these graphs together, after normalization.
Of course, this is not useful in practice, since it is impossible to normalise the misfits
with the true conductivity profile. At least, something can be learned from the plot. We
notice that the domain where the curves overlap is fairly wide. Therefore, the optimal
regularization parameter cannot be determined, based on these types of plots. Moreover,
we know from Figure 5.11c (inversion with � = 10�3) that the parameter � for which �d

crosses ↵||⌘||22 is not optimal (Recall that this was the actual, original basic assumption
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Figure 5.11: Further inspection of the discrepancy principle of Figure 5.10.
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Figure 5.12: Misfits in terms of regularization parameter � for synthetic data (1% noise)
and inversion via the LIN approximation.

of Morozov’s discrepancy principle). On the other hand, the discrepancy principle is very
intuitive. If this behaviour occurs more generally, a parameter range (where the curves
overlap) can be determined and used as input in other automatic regularization parameter
selection algorithms, such as the L-curve criterion (see below). We now have to further
investigate whether such behaviour also occurs in other settings.

We now turn to a more realistic case. The synthetic data is generated via the exact
model and noise is added in the same way as in the previous setting. Inversion is now
done using the damped model. The problem is more complex because the noise has two
origins: measurement noise and noise from unmodelled interactions. The total noise is
denoted with , while measurement noise is still written with ⌘. Note that the  is
more relevant than ⌘ The behaviour of the discrepancy principle is di↵erent (see Figure
5.13), yet there are similarities. There is a domain for large lambda that corresponds
with constant solutions. Secondly, for small �, some lower bound on �d is reached. This
lower bound is di↵erent from the bound in the previous case and lies in between ||⌘||22 and
||||22. In the combined discrepancy principle plot, we illustrate that the principle can still
determine some good range for the regularization parameter �, without prior knowledge
of the errors. Within that range, the outcome for � ⇡ 2.5 ⇥ 10�4 was selected for which
��m(mtrue) ⇡ �d(mtrue), more specifically (up to three significant figures)

�d(m
true) = 7.09 ⇥ 10�5, (5.28)

�m(m
true) = 0.429. (5.29)

There is a good agreement up to 10 meters (see Figure 5.13), but a small discrepancy is
noticeable for the semi-infinite layer. We cannot report a regularization parameter that
yields a significantly better agreement with the true conductivity profile. Following Moro-
zov’s discrepancy principle, the regularization parameter that crosses the total noise ||||22
should be considered. Here, this is for � = 9.2 ⇥ 10�3. This outcome has the required
minimal structure, but the electrical conductivities deviate largely from the true values.
This outcome is not reported.

The outcomes for which �d < ||||22 should not be viewed as cases with overfitting. In
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Figure 5.13: The discrepancy principle on synthetic data (with 1% noise) from the exact
model and inversion via the damped model for the conductivity profile mtrue, together
with the outcome for � = 2.5 ⇥ 10�4.

Figure 5.13, the magnetic field ratio for the z-component is plotted9. This shows the
response of the true model for the exact and the damped model. It also shows the response
of the damped model of the outcome, obtained after 52 iterations. This illustrates the
‘proof of concept’: Our inversion scheme pushes the response of the outcome from the true
response towards the response of the true conductivity profile, generated via the model
used for inversion (i.e. damped model). This plot clearly illustrates the regularization’s
raison d’être.

5.2.5 The L-curve criterion in use

The L-curve criterion is applied to exactly the same inverse problem as in the previous
section. First, it is examined whether the method works for the simple case with LIN
data. Then, the method is applied on the more intricate problem, where the synthetic
data from the exact model is inverted with the damped model.

First, the L-curve method is applied to a large range or regularization parameters � 2
[10�7, 102], see Figure 5.14. The L-curve is very similar to the generic shape of the L-curve.
The Adaptive Pruning algorithm selects � = 3⇥ 10�4 as the corner. The outcome is very
sensitive to the regularization parameter. Therefore, a smaller range on � is considered.

9Recall, also the ⇢-component is measured, but this does not illustrate the point so clearly.
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Figure 5.14: L-curve for data generation and inversion via the LIN approximation. Solid
lines are corner selection by the Adaptive Pruning algorithm, while the dashed line is a
corner selected by eye.
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Figure 5.15: Conductivity profiles for LIN data, � selected via L-curve criterion with
Adaptive Pruning algorithm.

The choice of the bounds of that range is inspired by the combined discrepancy principle.
The ‘zoom’ on the corner of the L-curve is as well presented in Figure 5.14. The corner
selection method picked � = 1⇥10�4. This is not really what is visually considered as the
true corner. This choice for the rightmost candidate is due to the following philosophy:
The rightmost corner candidate is selected for which going to the next candidate yields
a larger increase in the model misfit than decrease in the data misfit, provided that the
L-curve is convex for that candidate. When no such point exists, the leftmost corner is
selected. We will compare this rightmost candidate with a � = 1 ⇥ 10�5 (dashed line),
which we selected by eye. The conductivity profiles are shown in Figure 5.15. In this case,
that philosophy proves useful. Our manually picked � = 10�5 exhibits excessive structure
at small depths d.

The L-curve for the synthetic data generated by the exact model is more di�cult to inter-
pret. Consequently, the corner selection is also more careful. In a straightforward fashion,
the L-curve method is applied to the range � 2 [10�7; 102], as with the LIN data. The
resulting L-curve and conductivity profile corresponding to the corner (� = 3 ⇥ 10�5)
are shown in Figure 5.16. At first sight, the L-curve resembles the curve as with the
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Figure 5.16: L-curve for data generation via Wait and inversion via Damped.
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Figure 5.17: L-curve for data generation via the exact model and inversion via the damped
model for a reduced range of �.

LIN data, yet a small cusp near �d = 10�4 is observed, together with a higher density of
misfit pairs. Accordingly, something interesting happens there. The conductivity profile
associated with the corner selection is failing, because the regularization parameter is too
small. Note that the typical vertical ‘stick’ of the L can be recognized and coincides with
||⌘||22, as mentioned earlier.

A straightforward application of the L-curve criterion does not lead to the optimal out-
come for this conductivity profile. As a next step, the range of the L-curve is reduced,
based on the combined discrepancy principle. In this case (see previous section), an op-
timal � should be between 10�5 and 10�2. However, this will not lead to an acceptable
outcome either. One really has to remove the leftmost corner, before the adaptive pruning
algorithm can detect a second (local) corner. Indeed, adjusting the ranges will lead the
Adaptive Pruning algorithm to select a corner in the cusp. We throw away all the data
with �d < ↵||⌘||22 with ↵ = 1.2 (we cannot use ↵ = 2, because too much data will be
thrown away). The L-curve for this limited range, with corner selection, and the corre-
sponding result, is given in Figure 5.17. This outcome is equivalent to the best outcome
we have already observed for this setting. There is again that small discrepancy in the
second layer, staring at 10 meters.
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In conclusion, the L-curve criterion performs successfully in the simplest case with LIN
data. It can be used as an automatic selection method. When unmodelled e↵ects are
considered (||⌘|| 6= ||||), then there is no guarantee that the Adaptive Pruning algorithm
will select a � from the right corner. After some adjustments, it is capable of selecting
the ‘best you can get’ outcome with our current inversion scheme.

5.2.6 �-descent regularization in use

In this section, we summarize three types of �-descent strategies. First, a simple reg-
ularization strategy is examined. It is the combination of the following criteria: If the
relative reduction of the objective function � is smaller than 10�5, then the regularization
parameter � is decreased with 90%. The critical part is to define a stopping rule on the
descent of �. The above results inspired us to set the following criterion: The regulariza-
tion parameter is only lowered if �d  0.1��m. This is because we have understood that
the best regularization parameter was for outcomes where �d was in the same order of �m

(and often when �m was slightly larger than �d).

In order to keep things brief, we immediately jump to the case where data is generated
via the exact model and inverted via the damped model, because in the case of the LIN
approximation, the L-curve criterion seems to provide us with a good algorithm. As we
have seen, the challenge really lies in finding a regularization scheme that can handle the
unmodelled e↵ects. We again work with the same profile and parametrization, in order to
make a good comparison with the earlier methods. In our simulation, we have performed
a sweep over 15 di↵erent initial regularization parameters ranging from 10�3 up to 102.
The data reveals that for every initial parameter �0, there corresponds a very di↵erent
trajectory in the model space. With this strategy, all regularization parameters at the
final iteration �out are di↵erent. If the several final regularization parameters �out would
be similar, then this could be a sign that no other automatic regularization parameter
selection method would be required.

With the descent strategy outlined above, various di↵erent outcomes are obtained. Some
outcomes are acceptable and the L-curve criterion would be able to determine the best
outcome. However, some unexpected behaviour was observed that leads us to improve
the decent strategy. In Figure 5.18, an outcome after conversion is shown for �0 = 0.31,
together with the evolution of both misfits. Note that we have introduced �̃m as shorter
notation for �m(xtrue). The regularization parameter did not decrease throughout the
iterative process and we have the typical situation where both misfits converge to a value
of the same order. It is the case where the regularization parameter is too strong. The
reason is that the total objective function � always decreased with at least a relative
reduction of 10�5, before the regularization parameter could be decreased with 90%. In a
better descent strategy, the relative reduction of the data misfit �d should be considered
instead of the reduction of the objective function �.

In a second strategy, we examine the e↵ect of setting the regularization parameter (after
the second iteration) equal to

�k =
�d(xk�1)

�m(xk�1)
. (5.30)
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Figure 5.18: Example of an outcome where the descent strategy with criterion on the
objective function � was considered. �̃m is shorter notation for �m(xtrue).

By doing so, the regularization parameter ‘lags’ the ideal balance where �d  ��m. In
Figure 5.19 (left), the evolution of � throughout the iterative process is shown. We can
divide the range of � in two regions. For strong regularization, � first evolves towards
the value 6.9. These cases generally yield a constant outcome. Indeed, the regularization
is too strong. The second range also quickly evolves towards a ‘metastable’ value for �
around 3⇥ 10�4. Note that conversion was obtained more quickly than in other settings.
The maximal number of iterations was less than 30. An example of such an outcome for
�0 = 0.028 is shown in Figure 5.20. The outcome follows the true conductivity profile
closely, except for the conductivity at a depth starting 18 meters, which translates in a
relatively large model misfit. The model misfit is approximately 10 times bigger than the
model misfit of the true conductivity profile. The regularization parameter at the final
iteration was �out = 2.0⇥ 10�5. The problems with this strategy are the following: (1) it
is hard to find a stopping rule that stops the � from decreasing, (2) because both misfits
are always from the same order (for k large enough), excessive structure can build up
in the model. The noise in Figure 5.19 is a remnant of that excessive structure. This
confirms what we have observed earlier, it is better to have �m slightly larger than �d.
Indeed, the following choice

�k = ↵
�d(xk�1)

�m(xk�1)
, ↵ > 1 (5.31)

could resolve this issue. However, tests did not produce significantly better results, which
are therefore not reported.

The third type of strategy combines knowledge obtained from the discrepancy principle
as stopping rule and the minimal iterations required for conversion from the lagging strat-
egy. Thus the �-descent is the same as in the previous strategy, but it is stopped when
it reaches some value based on the discrepancy principle. Indeed, we have discussed that
pinpointing this value is di�cult and it may be somewhat arbitrary. Here, �min = 10�3 is
taken. The behaviour of � in terms of iterations k is shown in Figure 5.19 (right). The
range of � can again be divided into two domains. The interesting domain is for �  0.01.
From the plot, it is immediately apparent that the number of iterations is much larger
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Figure 5.19: Evolution of � throughout the iterative process (Left:) for the lagging
strategy, (Right:) for the stop criterion based on the discrepancy principle.
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Figure 5.20: Example of an outcome with the lagging strategy. �̃m is shorter notation for
�m(xtrue).
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Figure 5.21: Example of an outcome with information from the discrepancy principle in
the stop criterion. �̃m is shorter notation for �m(xtrue).

than in the previous lagging strategy. That beneficial characteristic is thus lost. Note
that there are final regularization parameters �out that are smaller than 10�3. This is
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because �min = 10�3 is only a stopping rule, this means that if a current � > �min, that
it can still be decreased.

In conclusion, ‘stand-alone’ descent strategies do not allow to find the optimal outcome,
because it depends on the initial regularization parameter �0, however it can be used in
combination with the L-curve criterion or discrepancy principle. In particular, the lagging
strategy is potentially useful in practise, because it reduces the number of iterations and
thus the computation time. The combination with the discrepancy principle is quite
stable, but the number of iterations is again large.

5.3 Improving the stabilizer

We have seen positive e↵ects from our stabilizer so far. In this section, the stabilizer’s
impact is examined in more detail. For simplicity, we return to an 8 dimensional model
space, because we will now look at the behaviour of each parameter.

5.3.1 Evaluating an outcome

As before, the optimal regularization parameter is selected via the L-curve criterion for
this analogue problem with 8 model parameters, where the same conductivity profile was
considered again (for a better comparison). The outcome after 74 iterations (Figure 5.22)
is similar to the outcome from the previous sections, which showed a minor discrepancy
for the lowest layer. Figure 5.22 also shows the wavelet transform of the true conductivity
profile and the outcome after conversion. The sparse representation in the wavelet domain
immediately becomes apparent. From this wavelet representation, it is clear that the
scaling and first wavelet coe�cient deviate from the true profile. Remember from wavelet
theory, that the first two coe�cients have the greatest e↵ect on the outcome, for example,
the first wavelet coe�cient determines the total energy of the outcome. We must then
question the inversion scheme and examine whether the solution can converge to the true
profile. It will not be obvious anyway, because the scaling coe�cient and the coarsest
scale wavelet coe�cient have an e↵ect on all other coe�cients.
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Figure 5.22: Outcome after conversion in both space and wavelet domain. Data generated
by the exact model (+ 1% noise) and inverted via the damped model.



94 CHAPTER 5. ANALYSIS AND DISCUSSION

A visual inspection does not allow us to assess the inversion scheme. Let us examine the
di↵erent terms in the objective function:

�(xout) = 1.23 ⇥ 10�4 �d(xout) = 6.55 ⇥ 10�5 �m(xout) = 0.459
�(xtrue) = 2.85 ⇥ 10�4 �d(xtrue) = 2.42 ⇥ 10�4 �m(xtrue) = 0.338

The objective function of the true profile is not zero. This is due to noise, but also because
the stabilizer assigns a non-zero value to this conductivity profile. Indeed, a zero model
misfit would mean the null solution, where no structure is present. However, note that
�d(xout) < �d(xtrue) and �m(xout) > �m(xtrue), from where it can be deduced that the
regularization parameter is too small. There is over-fitting and too complex structure.
Simply increasing the regularization parameter is not the solution. How large should this
parameter be? The fact that we visually opt for this outcome (also after manual tuning),
indicates that the profile for the ‘optimal’ regularization parameter � does not generate
a visually good agreement with the true conductivity profile. If that is the case, can the
stabilizer still be improved?

Figure 5.23 shows the z-component of the magnetic field ratio of the outcome after con-
version (the ⇢-component is not reported, but was considered in the analysis). We have
already explained that a perfect inversion scheme obtains a conductivity profile where
the data generated from that profile overlaps with the data generated with the forward
model on the true profile that is used in the inversion (in this scheme: the damped
model). With this reasoning, the regularization parameter � is tuned so that the outcome
after conversion overlaps more or less with the data from the damped model (Figure 5.23).

It is crucial to review this outcome and to understand why the scheme does not yield the
outcome with the best agreement, given the optimal � in terms of data misfit. In Figure
5.24 the solution for � = 4.5⇥10�3 is shown in both space and wavelet domain. A typical
stairlike behaviour is recognised in the space domain. This behaviour was also observed
in many other inversions for various regularization parameters and other settings. It is
a recurring phenomenon. Would the stabilizer be accountable for this behaviour? Note
that the stairlike behaviour is small enough and can at least be considered as a relatively
good agreement.

In the wavelet domain, the scaling coe�cient and the second and fourth wavelet coe�cient
deviate from the true conductivity profile (coe�cients 1, 3 and 5 in x), with values -2,769,
0,8067 and 0,007736 respectively, instead of -2,927, 1 and 0 for the true conductivity pro-
file. The second wavelet coe�cient of the outcome is smaller than what it should be.
This may be a consequence of the scale-dependent regularization, since the regularization
strategy adds 2p times more weight to the second coe�cient than on the first coe�cient (p
is the number of vanishing moments of the wavelet). If this scale-dependent regularization
scheme is responsible for this stairlike behaviour in the model space, the stabilizer should
be adjusted in order to achieve a proper result.

It can further be noted that the model misfit for this stairlike outcome has a smaller
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Figure 5.23: Response for a tuned regularization parameter �, (Left:) based on visual
overlap with true conductivity profile, (Right:) based on visual overlap with the response.
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Figure 5.24: Outcome in space and wavelet domain for regularization parameter � such
that the data is close to the data from the true conductivity profile via the damped model.

model misfit than the true outcome, although that di↵erence is small:

�(x�=4.5⇥10�3

) = 1.707 ⇥ 10�3

�d(x
�=4.5⇥10�3

) = 2.324 ⇥ 10�4 (5.32)

�m(x
�=4.5⇥10�3

) = 0.326

This means that our stabilizer promotes this outcome more than the structure in the true
profile.

Some alternatives will be set out in the following sections. In Section 5.3.2, the inversion
scheme will be extended with a second optimization problem. Firstly, the outcome of the
current inversion scheme will serve as an input to choose a new regularization vector or
scale dependent regularization approach. Secondly, in Section 5.3.3, the output of the
current optimization problem will be used to threshold the outcome and to set bounds in
a second optimization problem. Thirdly, in Section 5.3.4, the e↵ect of other measures or
focusing functions on the performance of the scheme will be examined.
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5.3.2 Adaptive regularization vector

The inversion scheme is easily modified by simply extending the current scheme with a
second optimization problem (Figure 5.25). The first optimization problem is the min-
imization of the objective function with the scale-dependent regularization in the misfit
functional. Then, it is examined if the outcome of that optimization problem has stairlike
or close to inappropriate behaviour. When that it the case, a new model misfit functional
�m is proposed with a new scale-dependent regularization vector.

The scale-dependent regularization in the second optimization problem is initially the
same as in the first stabilizer as described in Equation (5.15). However, if a wavelet
coe�cient in the outcome xout1, log is significantly larger than ✏ (✏ is 10�4 here, so let us
put xi > 10�3 as a threshold) and the wavelet coe�cient of level of resolution n + 1 is
less than twice a wavelet coe�cient of level of resolution n (thus at the coarser scale),
then the weight of the regularization vector for this wavelet coe�cient of level n+ 1 will
be adjusted to the same weight of level n. In this form, the over-pushing to zero for a
coe�cient at a smaller scale will be compensated. It will be pushed to zero as much as
the coe�cients on a coarser scale.

To make the idea more clear, assume that the third component of the following regular-
ization vector sscale-dependent forces the second wavelet coe�cient (i.e. the third coe�cient
in x) to zero too much, then the adaptive regularization vector is sapdative:

sscale-dependent =

2

66666666664

0
2p

22p

22p

23p

23p

23p

23p

3

77777777775

! sadaptive =

2

66666666664

0
2p

2p

22p

23p

23p

23p

23p

3

77777777775

(5.33)

Note that we have normalised the regularization vector s/||s||2 in Equation (5.15) and in
the implementation.

This modified inversion scheme is now applied to the same problem as described in the pre-
vious section. The regularization parameter �1 of the first optimization problem minx �1

is retained, while the L-curve criterion is used for the decision of �2. This results in
�2 = 3.3 ⇥ 10�4. The L-curve with the corresponding conductivity profile in space and
wavelet domain are presented in Figure 5.26. The profile displays the correct structure.
Note that the fifth coe�cient x5 in wavelet domain has disappeared. This indicates that
it came into play to compensate for a too small coe�cient x3. The x3 coe�cient is now
indeed larger than x2, as it should be.

In future work, this process could be made more adaptive. In the iterative process, a
criterion could be implemented that adjusts the regularization vector s for this issue ‘on-
line’. Note that an optimal regularization parameter must be determined for the first
optimization problem min

x

�1(x) as well as the second problem min
x

�2(x).
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Figure 5.25: The inversion scheme in log10-space domain with a second optimization
problem.

5.3.3 Sparsity probing

The modification described in this section is very similar to the approach from the previ-
ous section. A second minimization problem for �2 is added to the inversion scheme after
the minx �1(x) with scale-dependent regularization. Instead of a new scale-dependent
regularization vector, it is now checked which are the non-zero elements in the wavelet
representation vector xout1, log. We assume that significantly large values in the outcome
xout1,log describe the real structure of the model. These large values are larger than a
threshold �. It will shortly be described how a good threshold � can be pinpointed.
Thresholding means that S coe�cients, larger than �, are considered as the only possible
non-zero entries of S-sparse vector x. As it were, by solving the minimization problem
minx �1(x), the sparsity of the wavelet representation is probed. This is equivalent to
probing the structure of the conductivity profile and not yet caring too much about the
values of the true electrical conductivities. Finding accurate values for the conductivities
is then the main issue for the second minimization problem minx �2(x). This view is why
we refer to this approach as ‘sparsity probing’. Subsequently, after minimizing �1 and
determining the S non-zero coe�cients, the other coe�cients in x are set to zero. This
is maintained throughout the minimization of �2, by setting an upper and lower bound
equal to zero in our optimization method. Indeed, the L-BFGS-B-method (see Section
3.4.3) allows us to easily impose bounds on the model. Hence, a projected gradient Pr�
will be considered, which will eliminate the zero-entries from the set of free variables.
This is currently the easiest implementation of this approach and allows us to test and
evaluate the concept. The regularization vector s in �2 is put equal to a vector with ones
and is not normalised (hence, there is no scale-dependent regularization).
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Figure 5.26: Outcome with adaptive regularization vector

There are some choices to be made, concerning the thresholding strategy. Especially in
image denoising and compression, a field where wavelet theory is widely used, several
thresholding algorithms exist [Chang et al., 2000], [Luisier et al., 2007]. For example, one
can retain the �% in absolute value largest values in the vector or one can retain the
values that are in absolute value larger than 10% of the largest coe�cient in the vector.
If the proposed approach works well, one could certainly think about more ‘advanced’
thresholding algorithms (as in the suggested literature). However, this would needlessly
complexify the currently proposed approach and probably obstruct a simple assessment
of the scheme.

One may wonder if it would not be better to take asymmetric threshold parameters �±,
since the inversion is carried out in log-space10, such that |10�� � 1| = |10�

+ � 1|. The
catch is that the inversion is carried out in wavelet log space. Wavelet coe�cients do not
contribute to the overall energy of the conductivity profile. Indeed, consider the domain
where a wavelet coe�cient xi (1 < i  nx) is localized in space. The net e↵ect on the
total model of xi and �xi is the same, except for its mirror image w.r.t. the centre of the
domain of the wavelet.

Setting the threshold � requires careful considerations. It depends on the maximum value
of that wavelet function11, the level of the discrete wavelet transform N and the value of
the scaling coe�cient. Let us illustrate the idea that will give us a good estimation for a

10Asymmetric parameters on the log-transform, such that the back-transform exhibits symmetric
thresholds, i.e. one threshold parameter �.

11The db1-wavelet has one as maximum value.
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Figure 5.27: Sparsity probing approach where the outcome of a manually selected corner
is shown (Dashed, green line in the L-curve plot).

good threshold �. Consider the wavelet coe�cient xi of the smallest scale (or wavelets in
the function space with the largest scale of resolution n, or nx/2 < i  nx). Its net e↵ect
on the model in the space domain �m, where the wavelet coe�cient is localized in space,
will be

�m ⇡ 10
1p
2

N

x
1

+ 1p
2

� � 10
1p
2

N

x
1

. (5.34)

x1 is the scaling coe�cient. The factor (1/
p
2)N comes into play due to the normalisation

at every level of the DWT (See e.g. Eqns (4.30)-(4.34)). In practise, this threshold could
be automatically determined such that it eliminates structure that is in the order of �m =
1 mS/m by calculating

� =
p
2 log10

⇣
�m+ 10x

1

/(2)N/2

⌘
� |x1|

2(N�1)/2
. (5.35)

In this case,

� =
p
2 log10

⇣
10�3 + 10�3/(2)3/2

⌘
� (�3/2) ⇡ 10�2 (5.36)

is the threshold that will be used.

As in the previous section, �1 = 4.5⇥ 10�3 is fixed and the L-curve criterion is applied on
minx �2. The Adaptive Pruning algorithm did not perform that well12. The corner was
then manually tuned (dashed line) and the outcome is shown in Figure 5.27. After the first

12This is probably due to the density in the region for small �. Many pruned L-curves will have the
wrong shape and will produce wrong candidates.
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optimization problem, the first, second, third and fifth component of x were retained after
thresholding. There is again a significant improvement w.r.t. the stairlike solution from
Section 5.3.2 from the scheme with only one optimization problem and scale-dependent
regularization. The fifth component vanishes (as in the true profile), while it was a free
variable. This is a promising result.

Let us note that there is a significant decrease in number of iterations. This is due the
fact that there were only four free variables instead of eight. Especially for parametriza-
tions with a large number of model parameters, this approach could notably reduce the
computational burden.

5.3.4 Other focusing functions

The simplest modification to the scheme would be to find an alternative measure that
solves the above problem. The `1-norm and the perturbed `1-norm measure of Ekblom
will proportionally give a weight or ‘cost’ to any value in x:

µEkblom(x) > µEkblom(x
0) for |x| > |x0|. (5.37)

Indeed, x = 1 will add more weight to the objective function � than x0 = 0.95, ceteris
paribus, the outcome with x0 = 0.95 is favoured. This is an undesirable e↵ect on the
components in x which should be non-zero. The proportionally larger weight will favour
outcomes where the non-zero coe�cients are pushed to smaller values. In our context,
x ⇡ 1 is definitely a dense entry in the wavelet representation. We can opt for a more
binary scale for the measure.

Such a more binary measure was already introduced in Section 3.2.3: The minimum sup-
port measure µZhd. For convenience, the curve of the measure is again shown in Figure
5.28. This measure is non-convex and the outcomes depend critically on the parameter
✏. For small ✏, the measure exhibits a more the binary scale. We believe that for small
✏, the strongly non-convexity of the focusing function poses problems for the line search
algorithm. Even for larger parameters, the results were not satisfying.

As a last attempt, we resort to another measure that is often used in geophysical inversion
literature: The Cauchy measure (e.g. used in [Guitton, 2012]):.

µCauchy(x) =
1

2
log

 
1 +

✓
x

�

◆2
!
, (5.38)

where � is a hyperparameter that needs to be selected. The e↵ect of the hyperparameter
on µCauchy is shown in Figure 5.28. This parameter will play a more signficant role than
with the Ekblom measure. Its derivative is

dµCauchy(x)

dx
=

1

2

1✓
1 +

⇣
x
�

⌘2
◆ · 2 x

�2
=

x

�2 + x2
. (5.39)

The derivative for x ! ±1 vanishes much more slowly than the minimum support mea-
sure. This could be advantageous for the line search algorithm: The gradient will guide
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Figure 5.28: Binary-like focusing functions that replace the non-di↵erentiable `1-norm.

the coe�cients more reliably towards the minimum at x = 0.

Simulations were performed for � = 10�1, 10�2, 10�3, 10�4 and 10�5. The results can be
summarized in Figure 5.29, where the result is shown for � = 2.9⇥10�3 and � = 10�3. The
L-curve is non-convex, thus the corner form the Adaptive Pruning algorithm should not be
trusted (solid line). The solutions around �d = 10�2 correspond with constant solutions
with no structure. The true L-curve is situated around for data misfits smaller than 10�4.
This corresponds with the corner around the measurement noise ||⌘||22. We are, however,
interested in the ‘cusp’ around the error around ||||22, where both the unmodelled and
measurement noise is included. This cusp is absolutely absent in the L-curve. Taking into
account that we have worked with equidistant regularization parameter distribution for
the generation the L-curve, it is remarkable that there is not such a density around this
point. There is thus not a broad regularization parameter range in which the outcomes
are similar. Let us have a look at the misfit functionals

�(x�=2.9⇥10�3

) = 2.976 ⇥ 10�3 �(xtrue) = 7.34023 ⇥ 10�3

�d(x�=2.9⇥10�3

) = 1.7112 ⇥ 10�4 �d(xtrue) = 2.4 ⇥ 10�4

�m(x�=2.9⇥10�3

) = 2.4085 �m(xtrue) = 2.3849

from which we learn that the presented outcome is indeed too complex, but it cannot be
lowered, because a larger regularization parameter yields a constant outcome. The lower
data misfit is also obvious from the plot from the data in Figure 5.28. The outcome in
the wavelet domain has the right structure, but the scale-dependent regularization still
forces the solution too much to zero. The Cauchy measure could not resolve this issue.
The di↵erence of the weight that is assigned to the true values x2 = 0.707 and x3 = 1
with � = 10�3 is still significant: µCauchy(x2) = 2, 849 vs. µCauchy(x3) = 3. Parameter �
does not have much influence in this di↵erence.

Let us finally mention that the Huber-measure, introduced in Section 3.2.3, has a quite
similar behaviour as the Ekblom measure. Consequently, no significant di↵erence in
outcomes is expected. Without reporting the results, our simulations confirm our expec-
tations.
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Figure 5.29: Scale-dependent regularization with the Cauchy measure µCauchy, � = 10�3.

5.4 n-layered conductivity profiles

In this section, we turn our attention to realistic conductivity profiles, obtained via bore-
hole logging. Two profiles from the Liège region are considered [Hermans and Irving,
2017], where a rich structure is observed with low electrical conductivities (maxima are
in the order of 10�2 S/m). Other profiles remain in line with the setting with salt wa-
ter intrusion, where conductivity profiles from De Panne are considered [Hermans et al.,
2012]. These conductivity profiles have higher electrical conductivities, the maxima are
in the order of 10�1 S/m.

The higher variability in the model may be accompanied by a need for a higher data
density. This can be achieved by conducting measurements at more intercoil spacings,
heights and frequencies. We will briefly illustrate the e↵ect on the outcome in Section
5.4.5. Additionally, the number of parameters has an e↵ect: A more precise parametrisa-
tion increases the computational burden and leads to a more ill-posed problem, i.e. there
are more possibilities to approximately describe the same data. On the other hand, it
increases the resolution; for example, the location of a boundary between two layers can
be more adequately described. We will not focus on this trade-o↵, since the regularization
was introduced to deal with this issue.

Recall that the lowest layer is semi-infinite. Consider a model m which is known to a
depth of h meters. We will then generate the synthetic data with maximum intercoil
distance s = h meters. We parametrize the model for inversion to a depth of 2h meters.
The part between h and 2h meters will only contribute 30% to the magnetic field data for
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Figure 5.30: Conductivity profile from a site in Liège, obtained via borehole logging. Data
retrieved from [Hermans and Irving, 2017].

the z-component, while for the ⇢ component this is even less. The data coverage of that
range is low, but we do this because the semi-infinite layer is often not properly recovered
at a depth of h meters. In this way, we push this issue to a less relevant region (see for
example Figure 5.34b). However, we should keep in mind that the range between h and
2h meters should not be geologically interpreted.

In the subsequent section, we argue why wavelets other than Haar wavelets are more
suitable for n-layered conductivity profiles.

5.4.1 Sparse representation

The main reason for the wavelet representation is that simple models have sparse rep-
resentations. In Sections 5.1-5.3, simple two- or three-layered conductivity profiles were
considered. More complex conductivity profiles, such as the one introduced in Chapter 2,
see also Figure 5.30, are also considered as simple models in terms of the wavelet repre-
sentation. An example of a model that cannot be represented in a sparse form is a model
of uncorrelated noise. This model will contain just as much complexity in the wavelet
domain: one will not observe the decay of the wavelet, as we explained in Section 4.6.

The di↵erence between the blocky, two-layered conductivity profiles of Section 5.1 and
the conductivity profile as in Figure 5.30 is that the two-layered structure could be exactly
represented with only 3 coe�cients in the db1 domain, while the more complex conduc-
tivity profile can not. For more complex models, the wavelet coe�cient will contain few
zeros, but many very small coe�cients. The influence of those small coe�cients is small
on the model in the space domain. The meaning of sparse has changed from having few
non-zero coe�cients to having few large coe�cients. Wavelets other than the db1 wavelet
will be more suited.

This is easily illustrated with the conductivity profile presented in Figure 5.30 and its
wavelet transformation into db1 space and db6 space in Figure 5.31, together with the
scaling function and wavelet function. All values smaller than 10�3 are replaced by zeros,
causing us to lose the perfect reconstruction property, but enabling us to approximate
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the model with fewer entries. After thresholding, the sparse representation is back-
transformed into the space domain. Observe the following characteristics: First, the
shape of the wavelet is usually recognized in the back-transformed model. This is clearly
visible for the db1 wavelet. Second, higher vanishing moments p yield larger compact
support and thus require more signal extension. In the case of db1 wavelets, no signal ex-
tension was required (nx = nm = 42) while for the db6 wavelet, the number of parameters
in wavelet space was more than doubled (nx = 91). The model with db1 is represented
with S/nx = 9/42 ⇡ 21% of the coe�cients and db6 with 23/91 ⇡ 25% of the coe�cients.
However, it is manifest that db6 with 25% of the coe�cients can be better represented
than the model with db1 and 21% of the coe�cients (see Figure 5.31). Third, in the
db6 wavelet domain, the peaks at the 18-th, 30-th, 40-th ... coe�cient are the result of
boundary distortions, due to the signal extension. Indeed, symmetrization usually leads
to the least distortions and still the e↵ect is significant. This issue will be addressed in
more detail in the next section.

Multiple Daubechies wavelets are used in this section, it is instructive to know how they
look like. For an increasing number of vanishing moments, the compact support, the
number of elements in wavelet domain nx, the regularity and the number of oscillations
increase. Figures such as Figure 5.31 are listed in Appendix D for all Daubechies wavelets
for p = 1, · · · , 9.

5.4.2 E↵ect of boundary distortions on sparsity

Boundary distortions emerge as a result of signal extension and a↵ect the sparsity of the
representation. We describe two aspects that are relevant in order to avoid too much
border e↵ects.

Technically, an N = blog2(nm)c level DWT can be computed from a model with a
parametrization of nm entries. However, there is a common rule [Mallat, 1989] that
sets a maximum on the level of the DWT that should be considered, in order to avoid too
many boundary distortions:

N =

�
log2

✓
nm

nc � 1

◆⌫
, (5.40)

where nc are the number of filter coe�cients in the two-scale relation (4.25). The ra-
tionale is that the wavelet decomposition stops when a signal becomes shorter than the
filter length for a given wavelet. Indeed, more filter coe�cients correspond with wavelets
with larger compact support. In terms of that compact support, the maximum level is
determined such that at least one scaling coe�cient corresponds with a scaling function
that is not a↵ected by signal extension and thus border distortion.

A second aspect that impacts boundary distortions is the way by which signal extension
is carried out (see Section 4.4.4). In general, periodization and symmetrization yield the
most natural extension of the signal. For a two-layered structure, it is also conceivable
to consider a smooth or constant extension. Di↵erent types of the extension were tested
for the conductivity profile in Liège (Figure 5.30). The back-transformed conductivity
profiles after thresholding were di↵erent for every type of signal extension, however, the
level of sparsity was not significantly altered. At least, not to such an extent that we can
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conclude that a certain type of extension is always better. For the remaining part of this
thesis, symmetrical signal extension is used.

5.4.3 Inversion with Daubechies wavelets

In the previous sections, the considered conductivity profiles presented exactly two or
three layers with sharp boundaries. The reality is often di↵erent, e.g. when there is a
certain soft transition between the layers and thus no sharp boundary. This is observed
in a conductivity profile from the Westhoek (Figure 5.32), where one strongly conductive
layer with soft edges is present, embedded in less conductive layers. We cannot expect
much more from the inversion with Haar wavelets than the rough blocky structure shown
in Figure 5.32, because soft boundaries do not have a sparse representation with Haar
wavelets. The L-curve exhibits the typical L-shape, the corner was selected for a regu-
larization parameter just before the vertical part of the L-shape (as described in Section
5.2.2) and that regularization parameter lies in between the measurement error ||⌘||22 and
total error ||||22. The result describes the coarsest structure of the layer well, except for
the soft boundary. Small scale e↵ects are filtered out. We must resort to other wavelets
to recover the soft boundaries in a sparse fashion.

The db2 wavelet can accurately represent linear functions, indeed, this wavelet has two
vanishing moments and hence, each wavelet coe�cient is orthogonal to any linear function.
The wavelet has 4 filter coe�cients and with a parameterization of 80 parameters, a 4
level DWT is considered in the inversion scheme. Via the Adaptive Pruning algorithm,
the corner � = 0.3 of the L-curve (Figure 5.33) is determined. Note that this is less
regular than for db1 wavelets, although the data misfit �d for the selected regularization
parameter still lies between ||⌘||22 and ||||22. The result is presented in Figure 5.34a. At
first glance the outcome looks relatively correct, the value of the maximum conductivity
is close to the actual maximum of the electrical conductivity. The localization of the peak
is not entirely correct. Note that the wavelet representation is indeed sparse, with the
exception of the scaling coe�cients (the first seven coe�cients in the wavelet domain),
where no regularization is also applied. Note, however, that all wavelet coe�cients are
vanishing, this suggests that the outcome is too sparse and thus that the regularization
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with Haar wavelets.



5.4. N -LAYERED CONDUCTIVITY PROFILES 107

10�5 10�4 10�3 10�2 10�1

�
d

10�1

2 � 10�1

3 � 10�1

4 � 10�1

�
m

L-curve (for � � [1e-09, 1e+04])

db2 wavelet
� =3e-01

||�||2
2

||⌘||2
2

Figure 5.33: L-curve for inversion of conductivity profile from the Westhoek [Hermans
et al., 2012] .

0 10 20 30 40 50 60

d (m)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

�
(S

/m
)

Conductivity profile

� = 3.0e-1, db2

m

true

m

(267)

10 20 30 40 50 60 70 80

i

�10

�8

�6

�4

�2

0

x
i

4 level DWT with db2

x

true

x

out

(a) The regularization parameter � is determined from the L-curve criterion.

0 10 20 30 40 50 60

d (m)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

�
(S

/m
)

Conductivity profile

� = 3.6e-9, db2

m

true

m

(75)

10 20 30 40 50 60 70 80

i

�12.5

�10.0

�7.5

�5.0

�2.5

0.0

x
i

4 level DWT with db2

x

true

x

out

(b) Manual tuning of regularization parameter �.

Figure 5.34: Conductivity profile from the Westhoek [Hermans et al., 2012] and L-curve
with Haar wavelets.



108 CHAPTER 5. ANALYSIS AND DISCUSSION

was too strong. The model misfit of the outcome is equal to the model misfit of the
null-solution (with no structure):

�m(x
out) = �m(0) = 0.0724. (5.41)

The model misfit is non-zero, due to the ✏ = 10�4 in the Ekblom measure. Additionally,
��m = 0.0216 � �d = 2.98 ⇥ 10�5 and we have argued before that in an optimal case
��m ⇡ �d.

The result can be further improved by choosing a regularization parameter � = 3.6⇥10�9.
The conductivity profiles in space and wavelet domain are shown in Figure 5.34b. The
result follows the conductivity profile much more closely, especially in the space domain.
The wavelet representation is less sparse and more details are now present. Note the
spike at the depth of more or less 60 meters. We have warned for the e↵ect of the lowest
layer and we can ignore this for now, by our parametrization we e↵ectively avoid the
e↵ect of the lowest layer in the interesting region of the true conductivity profile mtrue.
A more important issue is how to select this regularization parameter. All the techniques
discussed in Section 5.2 do not yield a good selection of this regularization parameter.

All Daubechies wavelets up to vanishing moment p = 9 were tested on the conductivity
profile. This yielded similar outcomes, which are not reported. For an increasing number
of vanishing moments p, the L-curve became very disordered: what the vertical part of
the L-shape should be, is a hodgepodge of unordered points. As with the db2 wavelet,
the results with small regularization parameters showed the best agreement with the true
conductivity profile.

Only Daubechies wavelets were tested, because these wavelets are the most popular
wavelets due to their good characteristic: they have the largest number of vanishing mo-
ments (and thus approximating abilities) while maintaining the smallest possible compact
support. Wide compact support produces more boundary distortions and consequently,
the wavelet representation is less sparse. Daubechies wavelets are therefore a good choice.
In Section 5.4.7 we will look more closely at biorthogonal wavelets.

The best outcomes were recognised for very small regularization parameters. This suggests
to verify whether the inversion scheme in the wavelet domain with non-db1 wavelets in
itself has a stabilizing e↵ect and whether the regularization parameter � can be set to
zero. This will turn out to be useful result in the next section.

5.4.4 Multimodal objective function

In the previous section, a constant model was taken as the initial guess, with an electrical
conductivity of 0.01 S/m. In that case, small regularization parameters were suitable
and the L-curve was more unordered for larger p. For random initial guesses, a larger
regularization parameter is required to filter out small-scale e↵ects. The most important
observation is that the outcome di↵ers for each initial guess. The objective function
exhibits multimodal behaviour. In Figure 5.35a-5.35b, two results with di↵erent random
initial guesses are shown. These outcomes should correspond to minima in the model
space (in log wavelet space). This is illustrated in Figure 5.35c, where the objective
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(a) Outcome 1
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(b) Outcome 2
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Figure 5.35: Inversion of the conductivity profile from Liège [Hermans and Irving, 2017]
with the Daubechies 8 wavelet for di↵erent random initial guesses.

function is plotted along the straight line, connecting the two outcomes, by varying ↵(k)

in

�(xout,1 + ↵(k)d(k)), where d(k) = xout,2 � xout,1. (5.42)

There are two approaches that we propose to handle the multimodality of the objective
function that we will briefly illustrate. The first approach is a kind of statistical analysis,
in which we start with many di↵erent initial guesses. In this way, we try to assign a kind
of probability to an outcome. Ideally, the absolute minimum of the objective function
(if it exists) is the most probable outcome and the minimum of the objective function
has a good agreement with the true conductivity profile. There are more systematic and
advanced multiscale techniques, which are described in Appendix C. We will return to
this in the Future work in Chapter 6. The second approach starts from the constant ini-
tial guess, this is described in the Section 5.4.6, after the observations made in next section.

For the statistical analysis we only compare the outcomes for the parameters for depths
between 0 and h meters. The lower layers also have an influence on the upper layers (Due
to the wide compact support of the wavelets there is always an overlap), we therefore
state that outcomes are equal to each other as the `2-norm of the di↵erence between the
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(a) Most frequent outcome: 23/40
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(b) Outcome with relative frequency 8/40
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(c) Outcome with relative frequency 3/40
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(d) Outcome that occurred only once.

Figure 5.36: Statistical analysis of the outcomes with di↵erent initial guesses.

models in space domain di↵er by 0.005, i.e.

||mout,1 � mout,1|| < 0.005. (5.43)

Of the 40 di↵erent initial conditions, we find five di↵erent solutions with relative fre-
quencies 23/40, 8/40, 3/40 and 6 outcomes that were unique. The three most frequent
outcomes and fourth outcome are shown in Figure 5.36. This way of working is quite
cumbersome and computationally demanding because the inversion procedure needs to
be repeated numerous times. Based on this analysis, the model in Figure 5.36a would be
favoured. This outcome broadly follows the conductivity profile and has the lowest value
of the objective function �.

5.4.5 Inversion in wavelet domain and no regularization

An inversion scheme in the wavelet domain has a clear advantage. In Figure 5.37 two
outcomes are presented from minimization in the space domain vs minimization in the
wavelet domain with the db2 wavelet and without regularization (i.e. � = 0). In the space
domain, 405 iterations were needed, while only 77 in the wavelet domain. Both outcomes
have a data misfit that is approximately equal to the measurement noise ||⌘||22. The
outcome in the space domain has too much structure, while the solution in the wavelet
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Figure 5.37: Comparison between space domain inversion and wavelet domain inversion
with a Daubechies 2 wavelet.

domain follows the behaviour of the true model very well.

The remaining task is to make a distinction between the solutions with di↵erent wavelets
and to determine which outcome is the best. The discrepancy principle is most relevant,
although not in the usual usage. The data misfit is not plotted in terms of the regu-
larization parameter � but in terms of the number of vanishing moments p. Let us also
immediately vary the number of data points and see how critically the outcome depends
on the gradation of ill-posedness (fewer data points leads to a more ill-posed problem).
The inversion is reproduced three times with 60, 30 and 20 data points. In Figure 5.38a,
the ratios of the data misfits �d by the measurement noise ||⌘||22 are plotted (in this way
the data misfits remain comparable across the di↵erent simulations) in terms of the num-
ber of vanishing moments p. A wide spectrum of outcomes is observed, ranging from
outcomes with overfitting and outcomes with too large data misfit. Based on the plot, it
is clear that db1 wavelets are not suitable for an inversion scheme without regularization.
In Figure 5.38b, such an outcome for 60 data points is shown. It clearly does not allow
for a good interpretation of the conductivity profile (the location of the peaks and values
for electrical conductivities are too di↵erent from the true geology). For db4 wavelets, it
is clear that the data misfit depends critically on the number of data points. The data
misfits of the db5 wavelet are very close to each other and are not greater than the total
noise ||||22. This could be a hint for a potential good wavelet for this specific conductivity
profile. The results of the inversions are shown in Figures 5.38c-5.38e. The results are of
similar quality, they describe the peak and fuzzy edges fairly well, but the true maximum
value of the electrical conductivity cannot be recovered. The case with only 20 data points
succeeds in locating that peak exactly, but the edges are recovered less sharply.

5.4.6 Perturbation on the outcome

The analysis from the previous section was carried out in the previous section on a com-
plex model from the Liège borehole data. All outcomes for di↵erent wavelets were quite
similar, except for the unstable behaviour of the Haar wavelet. Further analysis of the
results in the wavelet domain led to the observation that all outcomes are rather sparse.
This is a remarkable result, given that no sparsity constraint was imposed (� = 0). It



112 CHAPTER 5. ANALYSIS AND DISCUSSION

1 2 3 4 5 6 7 8 9

p

100

101

�
d

/�

60 datapoints

30 datapoints

20 datapoints
�

d

= �

�/�

(a) Ratio �d/(1/2||⌘||22) in terms of number of vanishing moments p.

�
d

/
1 2

||⌘
||2 2

0 10 20 30 40 50 60

d (m)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

�
(S

/m
)

Conductivity profile

� = 0, db1

m

true

m

(991)

(b)

0 10 20 30 40 50 60

d (m)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

�
(S

/m
)

Conductivity profile

� = 0, db5

m

true

m

(36)

(c)

0 10 20 30 40 50 60

d (m)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

�
(S

/m
)

Conductivity profile

� = 0, db5

m

true

m

(43)

(d)

0 10 20 30 40 50 60

d (m)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

�
(S

/m
)

Conductivity profile

� = 0, db5

m

true

m

(115)

(e)

Figure 5.38: Inversion in wavelet domain without regularization and constant initial guess.
Simulation was performed for several numbers of data points.
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(d)

Figure 5.39: Results of the second optimization problem in the perturbative approach.

appears that the initial guess of the model has a major influence on the outcome, as we
have emphasized in Section 5.4.4. The global structure is recognized from the constant
initial guess, but small-scale e↵ects do not emerge. This is di↵erent than the first ap-
proach, where a random initial guess was taken. However, if the inversion of a constant
solution succeeds in finding the coarse structure in a small number of iterations (often
less than 100 iterations), then we might better consider an alternative method. The in-
version scheme is again extended with a second optimization problem. The first problem
is an optimization problem with a Daubechies wavelet with vanishing moment p > 1 and
with � = 0. Subsequently, this result is perturbed, the sparse representation is made
dense by adding a random model in wavelet space to the result of the first optimization
problem. This random model vector has entries of a maximum of 0.01. As it were, the
extra structure is added to the outcome of the first optimization method, and a second
optimization problem will minimize this structure, while it will also hopefully describe
the as yet undiscovered structure. In terms of the model space, the outcome is perturbed
will search for another minimum in the neighbourhood.

The results of this approach with db2 wavelets are presented in Figures 5.39 and 5.40.
In Figure 5.39a, the outcome of the first optimization problem is shown (solid line),
together with its perturbation (dotted line). In Figures 5.39b-5.39d, the outcomes of
the second optimization problem are shown for di↵erent regularization parameters. The
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Figure 5.40: L-curve for inversion of conductivity profile from Liège [Hermans and Irving,
2017] from the perturbed outcome, see Figure 5.39a.

typical features are recognized: a too low regularization parameter leads to too much
structure, while � = 1 generates a too sparse outcome. The L-curve in Figure 5.40 does
exhibit the desired L-curve. The robust Adaptive Pruning method still manages to obtain
a parameter near the corner, � = 7.8⇥ 10�7. The outcome has a more complex structure
than the outcome of the first optimization problem. The sharp peak is recovered pretty
well (the localization and value of electrical conductivity are notably good, given that
this is a di�cult conductivity profile with many high resolution features). Near a depth
of 2.5 meters, the outcome does not follow the real profile very closely, but from 4 to 7.5
meters it does. Remember that the lower layers have very low data coverage; we should
not attach too much importance to it.

5.4.7 Biorthogonal wavelets

We end the analysis of the inversion scheme with a remark about the choice of the wavelet.
The best choice of the wavelet is not an exact science, but depends on the application.

Suppose that geologists are more interested in sharp boundaries and yet they expect a
complex conductivity profile. The complex profile excludes the Haar wavelets from being
the best choice. One can resort to biorthogonal wavelets, these allow much more freedom.
We consider the case of a complex conductivity profile from the Liège region. Suppose
that the geologist desires a blocky outcome. One can now look into the wavelet library;
the bior1.3 wavelet seems to be a suitable candidate for this setting. The bior1.3

wavelet has three vanishing moments on the analysis side and one vanishing moment on
the synthesis side of the filter bank. The vanishing moments at the analysis side of the
DWT allow for a sparse representation, while the blocky synthesis wavelets allow a blocky
reconstruction. The scaling functions of both sides are shown in Figure 5.41. The result
after inversion is presented in Figure 5.42. There is, of course, no perfect agreement, but
the desired blockiness is present in the outcome.
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Figure 5.41: The scaling functions corresponding with the Biorthogonal 1.3 wavelet.
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Figure 5.42: Inversion with biorthogonal wavelet.
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Chapter 6

Conclusions and Future Work

Conclusions

The goal of this thesis was to examine the working principle of the Electromagnetic In-
duction exploration technique, its forward modelling in a conductive environment and the
use of wavelet theory in the inversion scheme. The motivation and context of this thesis
are to monitor the hydrogeological balance between fresh and salt water, in a typically
conductive environment. Due to the higher electrical conductivity of salt water, the ex-
ploration technique based on electromagnetic induction is very suitable for prospecting
salt water intrusion.

The typically horizontally stratified sedimentary structure in the Belgian coastal region
justifies the use of the 1D model proposed by [Wait, 1951], which we referred to as the
exact model. The computational burden was too large for the inverse problem and conse-
quently, alternative models were examined. A first simplification was available under the
LIN approximation [Wait, 1962], this model did not take into account the electromagnetic
dampening and couplings between the eddy currents. This is a valid approximation under
the LIN condition, but the LIN assumption breaks down for large intercoil distances and
electrical conductivities, hence a third model was introduced. This recently developed
model by [Maveau et al., 2017] is comparable to the LIN approximation but e↵ectively
models the electromagnetic dampening by the introduction of a conductive background.

The inverse problem is tackled by the minimization of a data misfit functional �d, where
the magnetic field response of a guess of the conductivity profile (a trial model) is cal-
culated via the forward model and compared with the response from experiments or
synthetic data. The inverse problem is ill-conditioned and ill-posed. Given the presence
of measurement errors and unmodelled errors, the inverse problem is reformulated for nu-
merical treatment. Wavelet theory is suited to be incorporated in the inversion scheme,
through the approximating abilities of the discrete wavelet transform. Basically, wavelet
coe�cients decay for higher levels of resolution, provided that the model in space domain
is su�ciently di↵erentiable (this degree depends on the number of vanishing moments of
the wavelet). Put di↵erently, an uncorrelated model (e.g. a randomly generated vector)
cannot be represented in the wavelet domain in a sparse fashion. This guarantees the
sparse nature of the wavelet representation of a realistic, geological model. The sparsity
constraint is imposed on the conductivity profile, by adding a model misfit functional �m

117
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to the objective function �, via a sparsity promoting measure or focusing function. The
`1-norm is the most well-known sparsity promoting measure, though it is not di↵eren-
tiable in x = 0. The L-BFGS-B method is used to minimize the objective function and
this method requires gradient information. The perturbed `1-norm measure of Ekblom
approximates the `1-norm and is di↵erentiable on the whole domain. Our results indicate
that the Ekblom measure is a suitable alternative to the `1-norm as a sparsity promoting
measure.

For a two-layered subsurface, the Haar wavelets are particularly well suited, because
the true model can be represented in an exactly sparse form (for other wavelets, many
coe�cients are almost zero). A comparison between inversion with and without regular-
ization shows that regularization does indeed filter out small-scale e↵ects from the model
and therefore it prevents overfitting. For this purpose, a scale-dependent regularization
scheme had to be implemented. In this scheme, every scale of resolution n was weighted
by a factor of 2np, where p is the number of vanishing moments of the wavelet. There is
no regularization imposed on the scaling coe�cients because it describes the (non-zero)
energy of the conductivity profile. This factor p was inspired by the better approximating
abilities of wavelets with a higher number of vanishing moments.

Electrical conductivities are always positive, however, the results of the inversions oc-
casionally contained negative conductivities. This problem could easily be resolved by
applying a logarithmic transform. The sequence of transforms in our inversion scheme is
the following: A guess of the conductivity profile in the space domain is transformed into
the logarithmic domain with base 10. Subsequently, it is transformed into the wavelet
domain of a specific wavelet family, where the objective function is minimized and the
outcome is back-transformed to the space domain.

We have argued in Section 5.3 that in certain cases the scale-dependent regularization
generates wrong outcomes. We have proposed three solutions to this problem: adaptive
regularization, sparsity probing and the use of other focusing functions. The first two
methods extend the inversion scheme with a second optimization problem, where the
objective function has a di↵erent regularization strategy. The adaptive strategy detects
when a wavelet coe�cient on a higher scale of resolution n+ 1 is suppressed and sets the
weight to 2np instead of 2(n+1)p. This strategy improves the performance of the scheme.
The sparsity probing strategy uses the outcome of the first optimization problem to find
the true non-zero elements of the wavelet representation, via thresholding. A second
optimization problem is then performed, only on the non-zero coe�cients with equal reg-
ularization (i.e. not scale-dependent). This strategy also yields better results.

Other focusing functions were also tested, namely the minimum support measure, the
Cauchy measure and the Huber measure. The latter is quite similar to the Ekblom mea-
sure and consequently, it does not yield very di↵erent results. We have argued that the
minimum support measure is an approximate binary measure; for every pair of di↵erent
values x1, x2 larger than some threshold (i.e. far enough from x = 0), the weights are
similar, µ(x1) ⇡ µ(x2). This measure does not generate good results, probably due to
the strong non-convexity of the measure. The Cauchy measure is a hybrid between the
behaviour of the minimum support and the Ekblom measure, but it cannot prevent that
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large values on a higher scale of resolution are suppressed.

The balance between the data misfit and the model misfit is determined by the regular-
ization parameter �. A regularization parameter too small allows overfitting, while one
that is too large yields outcomes with too little structure. Three common methods were
described and tested in Section 5.2: The discrepancy principle, which uses information
about the noise level; The L-curve criterion, where the model misfit is plotted in terms
of the data misfit in log-log scale and for which the corner corresponds with the optimal
outcome; Descent strategies, several strategies were developed and tested. The latter
method is not always robust, it strongly depends on the choice of the initial regulariza-
tion parameter and the stopping criterion. The lagging strategy, where the regularization
parameter is updated in every iteration until the model misfit and data misfit are equal,
does decrease the number of iterations and thus the computation time. A ‘stand-alone’
decent strategy is not su�cient, yet in combination with the discrepancy principle, the
outcome is stable.

The L-curve exhibits a typical L-shape for data that is generated and inverted via the
LIN approximation, though it is an unrealistic dataset. A more realistic synthetic dataset
is generated by the exact model. When the inversion is conducted via the damped model,
the L-curve criterion is more challenging to interpret. In the latter case, the L-curve does
not entirely display the typical L-shape. The left vertical part of the L is easily recognized,
it corresponds with the data misfit that is approximately equal to the measurement noise
||⌘||22. However, near the total noise ||||22 (i.e. measurement and unmodelled errors) a
small cusp is usually noticeable; this is an atypical local corner in the L-curve. In com-
bination with the discrepancy principle, the L-curve can be truncated. This allows the
robust Adaptive Pruning Algorithm to select a regularization parameter � which corre-
sponds to an outcome that follows the true conductivity profile closely.

For complex conductivity profiles, i.e. profiles with soft boundaries or more than 3 layers,
it is better to use other wavelets than Haar wavelets, because Haar wavelets cannot rep-
resent a complex conductivity profile in such a sparse fashion. Other wavelets are often
able to represent complex profiles with fewer large coe�cients. The use of other wavelets
generally introduces boundary distortions, due to the inevitable fact that signal extension
is required. Boundary distortions cannot be represented in a sparse form. Tests with
di↵erent types of extension on true conductivity profiles are not very conclusive. For that
reason, the standard symmetrical signal extension type is best used. In general settings,
they are known to produce the least distortions. Moreover, it is better not to use the
full wavelet transform, but only the number of levels that still allow one entire scaling
function to fit in the profile completely (i.e. the number of filter coe�cients is smaller
than or equal to the number or model parameters in space domain).

For a heavily ill-posed problem (e.g. the number of parameters is much larger than the
number of data points), the objective function is multimodal. In Section 5.4, where we
have inverted complex conductivity profiles with many Daubechies wavelets, we have en-
countered such cases of multimodality. One can consider a statistical analysis, where
many random initial guesses are generated and the inversion is conducted on every initial
guess. The outcome with the lowest value of the objective function is then selected. There
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exist more systematic approaches, which can be considered in future work. An alternative
approach is to start from a constant initial guess, for which the global structure of the con-
ductivity profile emerges. Even when the model misfit term is dropped from the objective
function (� = 0), the outcome is sparse. Additional details from the conductivity profile
are obtained by perturbing the outcome and solving a second optimization problem. This
problem will require a non-zero regularization parameter. Both approaches are promis-
ing but should be further investigated, before drawing a definite conclusion. Finally, we
have illustrated that it is important to choose the right wavelet. For simple two-layered
conductivity profiles, Haar wavelets are most suitable. For complex conductivity profiles
with sharp boundaries, wavelets with low regularity should be used (such as Daubechies
wavelets with two or three vanishing moments). With very smooth conductivity profiles,
wavelets with a high degree of regularity are most fitted (such as Daubechies wavelets with
six or eight vanishing moments). The choice of wavelets is not only limited to Daubechies
wavelets; biorthogonal wavelets allow to combine di↵erent properties by considering a
di↵erent wavelet on the analysis and on the synthesis side of the wavelet transform.

In conclusion, we have developed an e↵ective inversion scheme that significantly alleviates
the ill-posedness of the inverse problem. The scheme can be tailored to the context of the
survey and the needs of the geologist.

Future work

In Chapter 2, we have described the EMI measurements in De Panne. A first future work
would be to invert this data. To make this work properly, (1) the implementation has to
be further developed to work with data of di↵erent frequencies; (2) the implementation
of weighted least squares is most probably beneficial. The latter addition to the scheme
will allow to incorporate the reciprocals of the estimates of the standard deviations of the
noise. Writing the estimates in a diagonal matrix Wd yields a modified data misfit

�d =
1

2
kWd

�
d � K(W�1x)

�
k2

2. (6.1)

The multimodality of the objective function requires the use of more systematic ap-
proaches. In Appendix C, the issue was already addressed and the listed methods are
worth implementing. Nowadays, machine learning is appearing in many fields of science,
recall that it was even mentioned as a method to find better focusing functions in Section
3.2.3. Machine learning is capable of further refining the ideas from the statistical anal-
ysis and could be used in the inversion of multimodal objective functions. The papers of
[Day-Lewis, 2018] and [Oware et al., 2019] can serve as a source of inspiration.

In Chapter 1, the di↵erence between time domain electromagnetic (TDEM) surveying
and frequency domain electromagnetic (FDEM) surveying was described. The accuracy
of TDEM surveys is larger due to the absence of the primary magnetic field during the
receiver interval. The interpretation of the analysis will be slightly di↵erent: the decay
rate of the secondary magnetic field will be related to the conductivity, as we have out-
lined in Chapter 1. In future work, the analysis of the models in time domain could
be examined. Typically, the frequency domain model is back-transformed to the time
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domain. Time-domain electromagnetics is commonly used today: The TOPSOIL project
[Jørgensen, 2018] is an EU cooperation supported by the Interreg VB North Sea Region
program, which uses SkyTEM’s airborne electromagnetics products [SkyTEM, 2019].

Finally, it would be a significant improvement to consider 2D models, where the electrical
conductivity varies vertically and laterally. This can be achieved by approximating the
dipping layers through a polynomial description along the measurement direction. Recent
work by [Dierckx et al., 2018] could serve as a good starting point.
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Appendix A

EMI-measurements

EMI-data around the sea inlet, as described in Chapter 2.

Data along line 2 in Figure 2.5a
A = intercoil distance s [m]
B = receiver orientation
C = transmitter orientation
D = apparent conductivity �a [mS/m]
E = range of instrument

A B C D E
10 HD HD 175,9 100
10 HD (perp) HD 179,4 100
10 VD HD 180,4 100
10 VD VD -86 100
10 HD (perp) VD 181,6 100
20 HD HD 158,2 100
20 HD (perp) HD 66,5 100
20 VD HD -31,7 100
20 VD VD -52,2 100
20 HD (perp) VD 186,9 100
40 HD HD 180,8 100
40 HD (perp) HD 106,6 100
40 VD HD 42,4 100
40 VD VD -41 100
40 HD (perp) VD 186,9 100

Concluded

Data along line 3 in Figure 2.5a
A = intercoil distance s [m]
B = receiver orientation
C = transmitter orientation
D = apparent conductivity �a [mS/m]
E = range of instrument

A B C D E
10 HD HD 183,3 100
10 HD (perp) HD 183,5 100
10 VD HD 183 100
10 VD VD -19,5 100
10 HD (perp) VD 183,3 100
20 HD HD 181,3 100
20 HD (perp) HD 98,6 100
20 VD HD 53,1 100
20 VD VD -18,1 100
20 HD (perp) VD 186,1 100
40 HD HD 166 100
40 HD (perp) HD 118,1 100
40 VD HD 101,4 100
40 VD VD -19,8 100
40 HD (perp) VD 189 100

Concluded
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Data along line 1 in Figure 2.5a
A = intercoil distance s [m]
B = spacing instrument in meters
C = coil orientation
D = apparent conductivity �a [mS/m]
E = range of instrument

A B C D E
10 10 HD 44,2 100
10 10 VD 55,7 100
10 10 VD 59,2 100
10 10 HD 44,6 100
20 20 VD 61,4 100
20 20 HD 82,2 100
40 40 HD 101 100
40 40 VD 58 100
20 20 HD 83,2 100
20 20 VD 63,1 100
40 10 VD 177,5 100
40 10 HD 177,9 100
40 20 HD 45,3 100
40 20 VD 14,1 100
40 40 VD 58 100
40 40 HD 97,5 100
38 40 HD 103 100
38 20 HD 50 100
38 10 HD 170,2 100
38 10 VD 170,3 100
38 20 VD 19,1 100
38 40 VD 62,1 100
36 40 VD 51,4 100
36 20 VD 21,9 100
36 10 VD 179,1 100
36 10 HD 179 100
36 20 HD 53,9 100
36 40 HD 94,5 100
34 10 HD 179,5 100
34 20 HD 59,8 100
34 40 HD 85,1 100
34 40 VD 37,5 100
34 20 VD 27,9 100
34 10 VD 179,4 100
32 40 VD 25,8 100

Continued
A = intercoil distance s [m]
B = spacing instrument in metres
C = coil orientation
D = apparent conductivity �a [mS/m]
E = range of instrument

A B C D E
32 20 VD 32,3 100
32 10 VD 179,9 100
32 10 HD 179,6 100
32 20 HD 64,7 100
32 40 HD 65,7 100
30 40 HD 35,3 100
30 20 HD 67,6 100
30 10 HD 180,5 100
30 10 VD 180,2 100
30 20 VD 37,5 100
30 40 VD 103 1000
28 40 VD 113 1000
28 20 VD 41,8 100
28 10 VD 180,9 100
28 10 HD 180,9 100
28 20 HD 70,9 100
28 40 HD 138 1000
26 40 HD 143 1000
26 20 HD 72,2 100
26 10 HD 181,2 100
26 10 VD 180,9 100
26 20 VD 46 100
26 40 VD 125 1000
24 40 VD 64 1000
24 20 VD 47,9 100
24 10 VD 181,3 100
24 10 HD 181 100
24 20 HD 71,6 100
24 40 HD 72 1000
22 20 HD 74 100
22 10 HD 181,4 100
22 10 VD 181,2 100
22 20 VD 56,7 100
20 10 VD 155,2 100
20 10 HD 181,2 100
18 10 HD 140 100
18 20 HD 85,5 100
18 20 VD 85 100
18 10 VD 157,5 100
16 20 VD 40,8 100
16 10 VD 135,3 100
16 10 HD 154,9 100
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Continued
A = intercoil distance s [m]
B = spacing instrument in metres
C = coil orientation
D = apparent conductivity �a [mS/m]
E = range of instrument

A B C D E
16 20 HD 40,2 100
14 10 VD 75,3 100
14 10 HD 90 100
12 10 VD 45 100
12 10 HD 35,7 100

Concluded
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Appendix B

Algorithms

Algorithm 1 Backtracking Line Search

Choose ↵̄, � 2 (0, 1), � 2 (0, 1);

↵k = ↵̄

while �(x(k) + ↵d(k))  �(x(k)) + �↵(k)r�(x(k))Td(k)

↵(k) = �↵(k)

(B.1)

Algorithm 2 The BFGS-method with Line Search algorithm [Vogel, 2002].

⌫ = 0;

x0 = initial guess for minimum;

H0 = initial guess for Hessian

g0 = grad �(x(k))

begin quasi-Newton iterations

p⌫+1 := �(H⌫)�1g⌫ ; % Compute quasi-Newton step

⌧ ⌫+1 := arg min⌧>0�(x
⌫ + ⌧p⌫);% Line search, cf. Section 3.4.1

x⌫+1 := x⌫ + ⌧ ⌫p⌫ ; % Update approximate solution

g⌫+1 = grad �(x⌫+1);

s⌫ = x⌫+1 � x⌫

y⌫ = g⌫+1 + g⌫

H⌫+1 = H⌫ +
y⌫y⌫T

y⌫Ts⌫
� H⌫s⌫s⌫TH⌫T

s⌫TH⌫s⌫
; % BFGS-formula

⌫ := ⌫ + 1;

end quasi-Newton iterations

(B.2)
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Algorithm 3 Adaptive Pruning Algorithm, from [Hansen et al., 2007].

p̂ = min(5, p � 1);

Stage one: : while p̂ < 2(p � 1)

p̂ = min(p̂, p � 1)

Create a pruned L-curve consisting of the p̂ largest line segments.

For each corner location routine

Locate the corner Pk using the pruned L-curve

Add the corner to the list: L = L [ {Pk}
p̂ = 2p̂

Stage two: : if #L = 1 then k = k1; return.

Otherwise for i = 1, · · · ,#L � 1

Compute the slope �i associated with point Pk in L.
If max{�i} <

⇡

4
then k = max{ki}; return

Otherwise let k = min{ki : �i >
⇡

4
^ �(ki�1, ki, ki+1) < 0}



Appendix C

Multiscale Optimization Approaches

[Bunks et al., 1995] proposes a multigrid method as an alternative to iterative inversion
methods for inverting seismic data from complicated earth models. They argue that
the primary di�culty is the presence of numerous local minima in the objective function.
The multigrid method decomposes a problem by scale, which is illustrated for an objective
function in Figure C.1(a). First, the problem is Nyquist sampled on a smaller grid. This
accelerates the compuational cost and the long scale component is more manifest. For the
largest length scale (see Figure C.1(e)), gradient methods easily find the global maximum
(the objective function shown in the figure is convex). That global minimum serves as a
initial guess for the next optimization problem: the true objective function sampled at
a slightly more dense grid. This the so-called ‘fining-up’ procedure. This approach may
succeed in finding the global minimum for the original objective function in Figure C.1(a).

There exist also probabilistic multiscale approaches, such as simulated annealing [Kirk-
patrick et al., 1983]. This algorithm follows a probabilistic walk throughout the model
space. At every step from model m(µ) to m(⌫), there is a probability P (µ ! ⌫) that the
step is accepted. The stochastic dynamics is often split as

P (µ ! ⌫) = g(µ ! ⌫)A(µ ! ⌫) (C.1)

where µ, ⌫ are two states or models, g(µ ! ⌫) is called the selection probability and A(µ !
⌫) is the acceptance ratio. The selection probability tells us which states can be generated
by the algorithm from a given initial state. The acceptance ratio determines the fraction
of times that an actual transition takes place. In simulated annealing, the acceptance
ratio will depend on the value of the objective function �(xµ) and a parameter T , the
temperature. An example of such an acceptance ratio is found in the Metropolis-Hastings
algorithm1 [Chib and Greenberg, 1995], a well known Monte Carlo type of random walk.
More precisely, the random walk is a Markov chain that satisfies the ergodicity2 and
detailed balance condition3.

1Of course, other acceptance ratios can be considered [Khachaturyan et al., 1981].
2Ergodicity means that every state, or model in the model space, is reachable. For all states, there is

a nonzero probability that the random walker reaches the state.
3The detailed balance condition is used to generate a stochastic dynamics which yields a specific

stationary state. The condition requires that at an equilibrium state, each elementary process should be
equilibrated by its reverse process.
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Figure C.1: Illustration of the multigrid method for non-linear problems. Figure retrieved
from [Bunks et al., 1995].
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In the Metropolis algorithm, the acceptance ratio is based on the Boltzmann distribution:

A(µ ! ⌫) =

⇢
e��(E

⌫

�E
µ

) if E⌫ > Eµ

1 otherwise
, (C.2)

where � = 1/(kT ) is the thermodynamic beta. We can interpret the energy as the value
of the objective function �: If the energy or value of the objective function of a step µ ! ⌫
decreases, then that step is always accepted (i.e. A(µ ! ⌫ = 1)). In the other case, when
a step is proposed that increases the energy or the objective function, the probability
A is smaller than 1 and decreases for larger energy di↵erences. The temperature plays
an important role. When the temperature is high, almost every step is accepted, since
e��(E

⌫

�E
µ

) ⇡ 1, whereas with low temperatures almost only steps are accepted that move
towards a minimum of the objective function.

The algorithm slowly decreases its temperature and thus slowly decreases the probability
that worse solutions (i.e. �(m(k+1)) > �(m(k))) are accepted. The advantage of these
large temperatures is that the model space is well explored: It allows an extensive search
for a global minimum.

Thus in general, the algorithm selects a random model at each time step and then cal-
culates the probability of accepting the step (depending on the change in the objective
function and energy). It then generates a random number pr that serves to decide if the
step is accepted or not. During the search, the temperature is decreased slowly. There is
not only the Metropolis algorithm. Simulated annealing can be designed such that it per-
forms its optimization at di↵erent scales, by making the Markov chain step size dependent
on the temperature. High temperatures allows a sampling of the objective function at
long scales, while low temperatures correspond with smaller steps. Simulated annealing
slowly cools down the system, that is a slow decrease in the probability of accepting a
worse solution (�(m(k+1)) > �(m(k))).

Simulated annealing does not make use of gradient information of the objective function.
Consequently, the method does not take into account in which direction there is a descent.
Also, it will take many steps before the algorithm gets a precise minimum.

Finally, wavelet theory is another domain of research that decomposes problems by scale
[Mallat, 1999]. We cite [Bunks et al., 1995]: “The method of the multigrid method is based
on a frequency decomposition; however, wavelet decomposition might be more e�cient
and further reduce the computational burden.”.
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Appendix D

Wavelet Representation with
Daubechies Wavelets
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