

Preface
My whole life I have been fascinated by both medicine and technology which eventually brought me

to the area of medical imaging as a radiographer. Once I started working in this field I gained an

increasing interest in dosimetry and radiation physics, this led me to nuclear engineering technology

at UHasselt-KULeuven.

First and foremost, I would like to thank my internal and external supervisors prof. Brigitte Reniers

and prof. Frank Verhaegen for giving me the opportunity to work on such an exciting project and

their guidance during the completion of this master’s thesis.

This project could not have been completed without the financial support provided by Interreg

Vlaanderen-Nederland under the form of the DoseGuard project. I would like to thank them and all

the people who made the start of this project possible by providing their support: prof. Joachim

Wildberger (Maastricht UMC+), Françoise Malchair (ZEPHYRA scrl) and Dr Emiliano D’Agostino

(DoseVue).

I am especially grateful to Dr Blake Walters who made several adaptations to the source code of the

Monte Carlo engine on our request and provided valuable feedback and detailed explanations

regarding the use of the code.

Further thanks go to the people at the AZm radiology department specifically medical physicist Dr

Cecile Jeukens and radiological lab technicians Pascal Aerts and Ellen Bouchoms for providing an

insight in the inner workings of an interventional radiology procedure, providing example data,

allowing access to their equipment and making time to operate the equipment during our

measurements.

I would also like to thank all people at SmART Scientific Solutions, MAASTRO Clinic and the University

of Hasselt who gave valuable feedback, guidance and helped with experiments, in particular: Stefan

Van Hoof, Dr Gabriel Paiva Fonseca, Ana Vaniqui, Dr Mark Podesta, Murillo Bellezzo, Brent van der

Heyden, José Baeza, and Gerben Bosmans.

In addition, I would also want to thank my ex-colleagues, especially the deputy head nurse Koen Van

Caneghem and head nurse Dirk Van Vaerenbergh, at my previous employer AZ Nikolaas, for

supporting me in my decision to change my career path and enabling me to start this education

without losing my livelihood by adding flexibility to my working schedule.

Last but not least, I would like to thank my friends and family for the support and especially my

partner Maxime Trienpont for motivating me to follow my dream and pursue this master’s degree

and for her patience and continued support during this entire journey.

Table of Contents

PREFACE 1

ABSTRACT DOSEGUARD 9

ABSTRACT (DUTCH) 11

1. INTRODUCTION 13

2. BACKGROUND INFORMATION 15

2.1. INTERVENTIONAL RADIOLOGY 15

2.2. SKIN DOSE MONITORING 15

2.3. MONTE CARLO FOR RADIATION DOSE CALCULATIONS 17

2.4. COMPUTER VISION 17

3. METHODS AND MATERIALS 21

3.1. SYSTEM FLOW 22

3.2. CAMERA SYSTEM 23

3.2. MONTE CARLO DOSE ENGINE 25

3.3. OBTAINING A THREE-DIMENSIONAL ROOM MODEL 26

3.4. SOURCE MODEL 27

3.5. PATIENT MODEL 28

3.6. RESULT VISUALIZATION 29

3.7. INITIAL VERIFICATION 29

4. RESULTS 31

4.1. SYSTEM FLOW 31

4.2. GRAPHICAL USER INTERFACE 38

4.3. CALCULATION TIME 45

4.4. FILM MEASUREMENT 48

5. DISCUSSION 53

6. CONCLUSION 55

REFERENCES 57

APPENDIX A – DEPTH TO COLOR REGISTRATION INCLUDING SOURCE CODE SAMPLE 62

APPENDIX B – MATLAB IMPLEMENTATION HORN’S METHOD 69

APPENDIX C – EFFECT OF PHOTON SPLITTING NUMBER 71

APPENDIX D – SIMULATION TIMES FOR DIFFERENT FIELD AND VOXEL SIZES 73

List of tables
Table 1 ‒ Overview of available software solutions for dose management and calculation in radiology ______ 16

Table 2 ‒ Irradiation settings for the film calibration, film pieces placed at surface of solid water and a

calibrated dose rate factor of 1.452 mGy/mAs for the 120 kV and 2 mm Al filtration X-Rad 225Cx irradiator __ 30

Table 3 ‒ Average calculation time for each major step of the program excluding Monte Carlo ____________ 45

Table 4 ‒ Calculation times for some different field sizes for skin dose calculations on a 5 mm x 5 mm x 5 mm

upper body phantom with a 2.5 cm rejection distance. The uncertainty goal was ~5% on all voxels with a dose

>50% of the max dose. Total time includes the time spent on file input and output by DOSXYZnrc __________ 46

Table 5 ‒ Calculation times for some different field sizes for organ dose calculations on a 3 mm x 3 mm x 3 mm

upper body phantom. The uncertainty goal was ~5% on all voxels with a dose >50% of the max dose. Total time

includes the time spent on file input and output by DOSXYZnrc ______________________________________ 46

Table 6 – Relative CPU time speed increase and calculated dose rate for different backscatter rejection distances

on a 5 mm x 5 mm x 5 mm phantom ___ 47

Table 7 – CPU time for skin and organ dose calculations with 5% uncertainty on a 5 mm x 5 mm x 5 mm voxel

phantom, a comparison in calculation speed. The performance increase column shows the relative calculation

time gained for skin dose calculations __ 47

Table 8 ‒ Parameters for film calibration fit __ 48

Table 9 ‒ Calculation of the conversion factor for the 80 kV beam based on the RANDO phantom AP

measurements ___ 50

Table 10 ‒ Calculated PSD and mean dose compared to the radiochromic film scan measurement for each case,

difference is relative to the simulated dose of each individual case ___________________________________ 51

Table 11 ‒ Calculation times for skin dose calculations with 5 voxels rejection distance on a 5 mm x 5 mm x 5

mm voxel size upper body phantom for different field sizes and uncertainties. Total time includes file

input/output __ 73

Table 12 ‒ Calculation times for skin dose calculations with 9 voxels rejection distance on a 3 mm x 3 mm x 3

mm voxel size upper body phantom for different field sizes and uncertainties. Total time includes file

input/output __ 73

Table 13 ‒ Calculation times for organ dose calculations on a 5 mm x 5 mm x 5 mm voxel size upper body

phantom for different field sizes and uncertainties. Total time includes file input/output__________________ 74

Table 14 ‒ Calculation times for organ dose calculations on a 3 mm x 3 mm x 3 mm voxel size upper body

phantom for different field sizes and uncertainties. Total time includes file input/output__________________ 74

List of figures
Figure 1 ‒ Pinhole camera model where the coordinate system is defined with the Z-axis as principal axis ___ 18

Figure 2 ‒ Schematic representation of the dose calculation system setup in an interventional radiology room

with the results displayed on the right side. A short animation video illustrating the setup can be found at

https://youtu.be/yG9pjMmbv69 ___ 21

Figure 3 ‒ System flow chart of developed prototype __ 22

Figure 4 ‒ Design suggestion online system __ 23

Figure 5 ‒ Geometric relationships of the new source model, courtesy of Blake Walters __________________ 25

Figure 6 ‒ Two-dimensional representation of the particle rejection in case of a rejection distance of 1 voxel. (a)

shows particles travelling further than rejection distance and (b) shows particle backscatter inside the range 26

Figure 7 ‒ Family of XCAT phantoms [55, p. 9] __ 28

Figure 8 ‒ Raw image data retrieved from the three Kinect v2 cameras, each row shows the data from a

different camera. From left to right it shows the color, depth and infrared images _______________________ 32

Figure 9 ‒ The result of color and depth registration with the top row being the individual images after

rectification and registration and the bottom row the non-registered superimposed image on the left and on the

right the registered superimposed image __ 33

Figure 10 ‒ Merged point cloud from three cameras ___ 33

Figure 11 ‒ Point cloud of segmented phantom displayed as red points. The left image shows the segmented

patient in the original point cloud while the right shows how it was registered to the virtual phantom and shown

on a 3D grid with the units set to millimeter ___ 34

Figure 12 ‒ Visualization of the Monte Carlo input geometry including the source position and beam collimation.

The left image shows the pure Monte Carlo input geometry while the other images illustrate the correct

registration and beam position by showing the geometry inside the captured point cloud _________________ 35

Figure 13 – Photon spectrum for 80 kV with 1 mm Al and 0.1 mm Cu filtration __________________________ 35

Figure 14 ‒ Skin dose visualization ___ 36

Figure 15 ‒ Organ dose information, numeric evaluation ___ 37

Figure 16 ‒ Visual evaluation of dose gradients, a different color map scaling was used for the coronal image to

attain the same contrast ___ 37

Figure 17 ‒ Screenshot of the streaming module before and after a recorded stream ____________________ 38

Figure 18 ‒ Data selection module. Top image shows the normal layout of the selection module and the bottom

part the popup to select image data __ 39

Figure 19 ‒ Two of the viewer modules, the point cloud viewer to inspect registration at the top and multi

camera viewer to inspect the synchronization at the bottom, this is an optional feature for the advanced user 40

Figure 20 ‒ Calibration sub module that calculates the transformation between the camera coordinate system

and the shared reference coordinate system. The bottom images show the results display options with

measured coordinates on the left image and only reference and transformed on the right side ____________ 41

Figure 21 ‒ Center of rotation calibration submodule, this module is used to get an estimate of the isocenter

relation to the markers (blue) by finding the center of rotation (red) __________________________________ 42

Figure 22 ‒ Calculation module providing feedback about phantoms, spectra and media for user input. There

are also options to calculate single events and visualize the Monte Carlo input of a specific event __________ 43

Figure 23 ‒ Visualization of Monte Carlo input inside the point cloud generated from the camera system. A)

shows a small 8 cm x 10 cm field at the detector with the tube at a 30-degree angle. B) shows a rotational

acquisition with a 34 cm x 26 cm field, the green beam is the starting position and the red the end position. The

point cloud is shown for the starting position __ 43

Figure 24 ‒ Skin dose module showing the dose map from an event at a 30-degree angle with an arbitrary

calibration factor ___ 44

Figure 25 ‒ Screenshot of organ dose viewer while evaluating a single event of a beam with a 30-degree

rotation with an arbitrary calibration factor. The top left are user input parameters to customize the simulations

and visualization. Top right shows the dose gradients in all voxels of a slice through the phantom. Bottom right

shows the bar chart of the mean dose per organ, including the uncertainty from the simulation. Bottom left

shows a table with the mean dose per organ and the effective dose for the selected ICRP guidelines, all tissue

voxels not corresponding to one of the ICRP labels are grouped under the remainder tissues ______________ 45

Figure 26 ‒ Reflective density in relation to dose for the red, green and blue channels ____________________ 48

Figure 27 ‒ Red channel calibration fit for low dose range __ 49

Figure 28 ‒ Regions of interest used to determine the mean dose of the irradiated area. Left shows the ROI on

the film scan and on the right the ROI on the simulated skin dose ____________________________________ 50

Figure 29 ‒ On the left side the radiochromic film scans of case 1 and case 2 are displayed. The bottom left

shows the region of interest used to determine the peak skin dose on the film scan of case 2. The left shows the

simulated skin dose for case 2. All three images use the same color scale ______________________________ 51

Figure 30 ‒ Efficiency as a function of the photon splitting number in the case of 26 cm x 26 cm field on a thorax

phantom for skin dose and organ dose __ 71

Abstract DoseGuard
The increasingly strict legislation regarding dose monitoring and high skin doses associated with

interventional radiology dictate the need for accurate dose calculations. The current methods based

on the radiation dose structured report (RDSR) data or indirect dose metrics have high inaccuracies.

An automated dose calculation system based on Monte Carlo simulations and computer vision using

three RGB-D cameras was developed. The calibrated camera system determines the geometric

relationship between the patient and X-ray source and combines this with the RSDR data to generate

an input for a Monte Carlo simulation. The patients are modelled using a family of mathematical

phantoms.

Skin dose calculations can be performed under 10 seconds within 10% uncertainty for all field sizes

and within 5% uncertainty for all field sizes smaller than 15 cm x 15 cm. Organ dose calculations can

also be executed offline with a longer calculation time. Initial tests with a limited number of beam

positions were performed with GafChromic film and the simulations show differences below 5%,

which is within the range of the measurement and simulation uncertainties. Visual evaluation shows

good agreement over a large range of beam positions.

The created dose calculation system shows that the combination of Monte Carlo and computer

vision has the potential to improve the accuracy of dose calculations in radiology, even providing

near real time skin dose feedback during interventional procedures.

Abstract (Dutch)
Met de strengere wetgevingen betreffende stralingsdosisregistratie en de hoge huiddosissen bij

interventionele radiologie is er nood aan nauwkeurige dosisberekeningen. De huidige methoden op

basis van de RDSR-gegevens of indirecte metingen hebben hoge onnauwkeurigheden.

Een geautomatiseerd dosisberekeningssysteem werd ontwikkeld op basis van Monte Carlo simulaties

en computervisie dat gebruik maakt van drie RGB-D camera’s. Het gekalibreerde camerasysteem

bepaalt de geometrische relatie tussen de patiënt en de stralingsbron en combineert dit met de

gegevens uit het RDSR om input te genereren voor een aangepaste DOSXYZnrc code. De patiënten

worden gemodelleerd door een familie van XCAT-fantomen.

Huiddosisberekeningen kunnen in minder dan 10 seconden uitgevoerd worden voor alle veldgroottes

met een onzekerheid kleiner dan 10%, en minder dan 5% voor veldgroottes kleiner dan 15 cm x 15

cm. Orgaandosissen vereisen een langere rekentijd. Initiële testen bij een beperkt aantal buis posities

werden uitgevoerd met GafChromic film en het verschil tussen meting en berekening was telkens

kleiner dan 5%, wat binnen de onzekerheid valt. Visuele evaluatie van een groot aantal verschillende

posities toonde goede overeenkomsten.

Het ontwikkelde dosisberekeningssysteem toont dat de combinatie van Monte Carlo met

computervisie potentieel heeft om de nauwkeurigheid van dosisberekeningen in de radiologie te

verbeteren. Het zou mogelijk zijn real time huiddosis informatie te geven tijdens interventionele

procedures.

1. Introduction
X-rays are inseparable from the medical industry ever since Wilhelm Conrad Röntgen discovered

them in 1895. Technological innovations over the course of decades introduced new applications

such as radiography, fluoroscopy, mammography, angiography and computed tomography. Despite

the development of imaging technologies without ionizing radiation such as ultrasound and magnetic

resonance imaging, these X-ray applications are still irreplaceable and frequently used in today’s

routine clinical practice [1], [2]. The dangers associated with ionizing radiation such as X-rays became

apparent in the early years following its discovery. Both deterministic effects such as dermatitis,

cataract and cardiac problems and stochastic effects like the development of cancer were frequently

observed in the population of early scientists working with ionizing radiation [3].

Development of complex surgical procedures and additional medical disciplines utilizing imaging in

their patient care both attributed to the dramatic increase of radiation doses that patients received

from fluoroscopic examinations [4]. Interventional procedures such as cardiovascular interventions

can potentially introduce skin lesions due to high skin doses caused by prolonged exposure during

fluoroscopy [5].

Radiation protection guidelines became increasingly restrictive over the last century. Most recent

European Basic Safety Standards (EC directive 2013/59/EURATOM) emphasize the need for dose

management. They state information related to patient exposure has to be part of the report of the

medical radiological procedure, therefore an accurate measurement or calculation of the dose is

required [6], [7].

This thesis approaches the dose calculation problem from another perspective by incorporating

proven techniques from radiotherapy, such as Monte Carlo simulations, and not limiting the

calculations to only skin dose. The goal is to enhance the accuracy of dose calculations in the field of

radiology, focusing on interventional radiology. Monte Carlo dose calculations have been considered

the gold standard in radiation therapy for decades [8]. We propose a method for automated skin and

organ dose calculations in interventional radiology based on Monte Carlo methods and a color and

depth (RGB-D) camera system.

14

15

2. Background information

2.1. Interventional radiology

Interventional radiology uses a range of medical imaging applications to guide the physician during a

treatment. These procedures are often used as a less invasive alternative to surgery [9]. One of the

most well-known applications is cardiovascular interventional radiology. During such an intervention

a catheter is inserted into the blood vessels that is then used as both a diagnostic observational and a

therapeutic tool. The first therapeutic procedure was performed in by Charles Dotter in 1964, 11

years after the first diagnostic catheterization method [10]. This field experienced tremendous

growth over the past 50 years contributing to an increase in patients exposed to high radiation doses

associated with complex procedures [4], [11]. Radiation induced skin lesions as a result of these

interventions have been reported [5].

2.2. Skin dose monitoring

Skin dose measurements are most frequently performed using thermoluminescent detectors (TLD),

MOSFETS or radiochromic film [12]. Measurements are rarely used in clinical practice due to the

amount of work and difficulty in accurately processing the results, neither do they give online

information regarding skin dose [13].

Initial attempts to provide real time skin dose feedback were made by searching for a correlation

between the measured skin dose and dose area product (DAP). While DAP can be used to set dose

reference levels to promote good practice, it is independent of the source to patient distance;

therefore, it cannot be used as an indicator for local exposure [5], [13]. Other indirect metrics such as

air kerma at a reference point can also be used. However, all these indirect dose metrics have high

inaccuracies that can go up to 50% [14].

Recently some vendors offer dose calculation software that provides skin dose feedback. Offline

vendor agnostic software solutions like DICOM dose (DiDo) and em.dose use the radiation dose

structure report (RDSR) which provides a better result than resorting to indirect dose metrics.

However not all C-arm manufacturers include information such as couch displacement to their RDSR,

limiting the accuracy of these methods [12], [15]. Manufacturers started integrating real time dose

mapping software with their newer machines. An example is the Dose Tracking System (Toshiba

Medical), this software provides some improvements such as allowing the user to input a geometry

resembling the patient. Skin dose is calculated on this geometry by applying an inverse square

correction to each element of their graphic intersecting with an incident X-ray. The conversion factor

for this method is determined using an ionization chamber [16]. These software solutions must

resort to rough estimations of where the patient could be positioned introducing additional

uncertainties or introducing errors in less commonly used tube positions. An example of such an

error is the close correspondence found in most planes between CareGraph® (Siemens HealthCare)

and GafChromic film except for a 78% underestimated dose in the lateral plane in [17]. Table 1 shows

an overview of commercially available software solutions that provide skin dose information, note

that this list contains most known commercial solutions but should not be considered exhaustive.

1
6

Table 1 ‒ Overview of available software solutions for dose management and calculation in radiology

Software (company)
Vendor

specific
Target objective Skin dose Organ dose

Dose (Qaelum) [18] No Dose management

(post-examination)

Peak Skin Dose and dose map using RDSR information

on unknown model

CT only: Monte Carlo by Virtual

Dose® CT.

Teamplay (Siemens) [19],

[20]

No Dose management

(post-examination)

Not specified Not specified

DoseWatch (GE) [21], [22] No Dose management

(post-examination)

Air Kerma in reference point (15 cm of isocenter) CT only: now SSDE with

conversion factor. Convolution

with XCAT future release

DoseWise (Philips) [23],

[24]

No Dose management

(post-examination)

Peak Skin Dose and Air Kerma in reference point CT only: unknown calculation

method

DoseTrack (Sectra) [25],

[26]

No Dose management

(post-examination)

Fluoro skin dose at point of reporting CT only: Monte Carlo by Virtual

Dose® CT

Radimetrics (Bayer) [27],

[28]

No Dose management

(post-examination)

Peak Skin Dose Pre-calculated Monte Carlo on

Christy phantoms.

DoseMonitor (PACS Health)

[29], [30]

No Dose management

(post-examination)

Peak Skin Dose without specification of method used CT only: Monte Carlo by Virtual

Dose® CT

OpenREM (open source)

[31]

No Dose management

(post-examination)

Skin entrance dose with backscatter correction based

on kVp with no filtration on water cuboid with 2

semicylinders on each side

No

CARE+CLEAR and

CareGraph (Siemens) [17]

Yes Skin dose feedback

(real-time)

Real time Air kerma in reference point and Peak Skin

Dose based on exposure and geometric data from unit

No

Infinix-i Dose Tracking

System (Toshiba) [16], [32]

Yes Skin dose feedback

(real-time)

Real time dose map base on distance corrections for a

virtual phantom and correlated to calibrated ionization

chamber measurements

No

em.dose (esprimed) [12] No Skin dose feedback

(post-examination)

Dose map based on RDSR information No

17

2.3. Monte Carlo for radiation dose calculations

The Monte Carlo method is a computational technique that uses random sampling to obtain

numerical results for complex models. While stochastic sampling methods were used long before

computers were invented, the computational technique was first invented by Ulam in the 40’s. Ulam

communicated this to von Neumann who was working alongside him on theoretical calculations

related to the development of a nuclear fission bomb. The development required precise calculation

of neutron transport and von Neumann suggested applying this stochastic sampling method to

radiation transport calculations. In 1949 Ulam and von Neumann published their paper coined “The

Monte Carlo Method” associating the name, “Monte Carlo” with stochastic sampling [33].

In [33] the Monte Carlo method is defined as: a numerical method to solve equations or to calculate

integrals based on random number sampling. When applying this technique to radiation transport a

single incident particle is tracked through a geometry. Each interaction has a probability of occurring

and for each potential interaction a random number is generated determining whether a certain

interaction should take place, this process is then repeated for a large number of so-called histories.

The actual implementation is orders of magnitudes more complex but out of the scope of this

discussion [34].

In medical physics the most commonly used Monte Carlo codes for particle transport are MCNP

(Monte Carlo N-Particle), EGS (Electron Gamma Shower) and the more recently developed GEANT

(GEometry ANd Tracking). These three codes are often considered to be the gold standard in dose

calculations in radiation therapy. MCNP is a general-purpose code developed at Los Alamos National

Laboratory that has state-of-the art neutron transport which makes it the first choice for many

nuclear and radiological applications, electron transport was first added in 1990 after which it

became popular in the medical physics field. GEANT was originally developed for high-energy physics

at CERN and SLAC but supports many-particle transport over a wide range of energies and has made

its impact in medical physics. EGS on the other hand specifically targeted the medical field but has

been used in applications outside of medical physics [33], [34].

EGSnrc (NRCC, Canada) is a version of EGS by the National Research Council Canada, that was

released as the successor for EGS4. It is designed for coupled electron-photon transport and supports

particle energies ranging from 1 keV to several hundreds of GeV [35]. Two EGSnrc-based simulation

codes dedicated to radiation treatment planning are available: BEAMnrc, a simulation system for

modelling radiotherapy sources and DOSXYZnrc to perform dose distribution calculations in a

rectilinear voxel phantom [36], [37].

2.4. Computer vision

Computer vision aims to build systems that can perform similar or better than the human vision

system. Computer vision originates from a summers student’s project in the sixties, making a

computer see was perceived as a simple task at that time. More than fifty years later it is still a large

challenging research field in computer science and has grown even more due to recent

developments in artificial intelligence. Many other fields such as image processing, photogrammetry

and computer graphics also contribute to development of computer vision applications [38], [39].

While being a research field with many challenges that have not yet been solved and mimicking

human vision and improving on it is still out of reach. Many useful applications have already been

developed using computer vision, this is done by using a goal driven approach. This implies that the

vision system only needs to extract enough information from its surroundings to fulfil its tasks. A few

successful examples are: industrial inspection applications which use 2D image processing and

pattern recognition; automatic license plate reading; augmenting movies with virtual objects and

computer games that allow real time detection of the players such as the Xbox Kinect [39], [40].

18

Perhaps the most important of a computer vision system are the sensors that provide the visual data.

The camera type must be carefully selected to fit its task, having appropriate properties such as the

correct resolution, working under the application’s lighting conditions, etc. Manufacturing

imperfections make every camera unique having slightly different lens imperfections or other

parameters. Depending on the application careful calibration might be required to compensate for

errors introduced due to such imperfections [41].

A camera maps the 3D world into a 2D image, an important and frequently used method of

modelling how the camera maps the 3D world is the pinhole camera. This pinhole camera uses a

perspective projection where all 3D points are mapped to an image plane [38].

Figure 1 ‒ Pinhole camera model where the coordinate system is defined with the Z-axis as principal axis

This pinhole camera model is shown in Figure 1. The optical center (Oc) of the camera is an

infinitesimally small point in three-dimensional space where all rays, that are projected on top of the

image plane, must cross. The principal point (cx, cy) is defined as the point of the image plane where

the principal axis crosses. This principal axis is the line perpendicular to the image plane that crosses

the optical center, in Figure 1 the Z-axis is the principal axis. The distance between the optical center

and the intersection with the image plane is called the focal length f (fx,fy), in an ideal camera model

the values of fx and fy are identical, but multiple factors can introduce differences, such as: flaws in

the digital camera sensor, non-uniform scaling in postprocessing and several other factors [38]. From

the schematic representation similar triangles can be used to find the relation between the pixel

position and the 3D coordinate, this relationship is shown in equation (1).

� =

� ��

�
+ 	�

(1)

 =
� ��

�
+ 	�

This pinhole model assumes the camera is a perfect pinhole however in practice this is not the case

and the projection of points is distorted by the camera’s lens. This lens distortion is caused by

different types of imperfections in design and assembly of lenses. Therefore, when calibrating a

camera to determine the intrinsic camera parameters (focal length and principal point) corrections

19

for lens distortion must first be applied. While there are many forms of distortion the most

commonly considered are radial and tangential distortion. A practical implementation of such lens

distortion correction can be seen in Appendix A [42], [43].

Different calibration methods exist to determine these intrinsic parameters and distortion

coefficients, most calibration methods can be classified as self-calibration and photogrammetric

calibration methods. Self-calibration consists of moving the camera in a static scene where the

correspondences between the images can be used to determine the parameters. This technique

however is not mature, and the results are not always reliable. Photogrammetric calibration methods

are very efficient but often require an expensive and elaborate setup. An alternative is Zhang’s

method, where a planar pattern is captured by the camera from different orientations by moving

either the camera or the pattern [44].

20

21

3. Methods and materials
A dose calculation system using color and depth (RGB-D) cameras was developed in MATLAB (version

9.5, R2018b, The MathWorks Inc., Ma). Additional C++ libraries such as the open source Kinect v2

driver Libfreenect2 and the Open Source Computer Vision Library (OpenCV 3.4.0) were used for

streaming and processing the image data [42], [45]. MexOpenCV is an open source development kit

for MATLAB Mex functions for the OpenCV library, this package was used to interface between

MATLAB and the C++ libraries. Several computationally intensive functions were also written in C++

and interfaced with MATLAB using the data type conversion template provided by MexOpenCV [46].

Absolute dose calculations are performed by interfacing with the Monte Carlo photon transport

program DOSXYZnrc. DOSXYZnrc is a Monte Carlo simulation code based on EGSnrc that allows for

dose distribution calculations in a rectilinear voxel phantom [37].

Figure 2 ‒ Schematic representation of the dose calculation system setup in an interventional radiology room with the

results displayed on the right side. A short animation video illustrating the setup can be found at

https://youtu.be/yG9pjMmbv69

The dose calculation system was designed to perform fully automated absolute skin and organ dose

calculations for an interventional radiology procedure. As seen in Figure 2 the patient and X-ray

machine are tracked by a camera system. Several visual markers are attached to the X-ray device to

provide fast and robust tracking of the source. Both marker-based and markerless tracking can be

used to determine the patient’s position and geometry.

While the system was designed specifically for interventional radiology, small modifications permit

usage in CT or conventional radiology. Those modifications could be simplifications such as reducing

the number of cameras as there would be less occlusion, or adapting the source model to match a

fan or cone beam CT.

22

3.1. System flow

The prototype of the system provides offline dose calculations based on the structured reports

generated after the interventional procedure is finished. However, with minor adaptations the

system can be used to provide “real time” feedback about the skin dose received by the patient.

Figure 3 ‒ System flow chart of developed prototype

Figure 3 shows the flow of the dose calculation system. The image data is collected on dedicated

single board computers connected to the RGB-D cameras. These single board computers are

connected to a server through ethernet where all raw image data is saved for later use. After the

structured reports are available they can be imported together with the recorded image data of the

examination and the system can perform processing. First the marker positions will be detected and

combined with the structured report data the source and isocenter position will be assigned. The

patient body parts will be segmented and registered with a predetermined mathematical phantom.

Afterwards an EGSnrc input file will be generated and fed to the DOSXYZnrc executable while

monitoring the progress. When the dose calculation is completed the binary 3ddose file is parsed and

the dose information is visually and numerically represented for both skin and organ doses.

23

Figure 4 ‒ Design suggestion online system

As this project was limited to a proof of concept it was not possible to directly interface with the X-

ray unit. Nonetheless the architecture is designed with a real time feedback system in mind. As

shown in Figure 4 the only modifications would be to integrate a data buffer to synchronize the data

stream from the X-ray unit and the images before feeding it to the server where processing happens.

To limit the required size of this buffer a sensitive sensor detecting radiation like a diode could be

added to the single board computers of each camera to trigger the start of image acquisition.

The final design would only have near real time feedback for skin doses, visually presented to the

physicians and physicists during the examination. This is possible through modifications in DOSXYZnrc

to speed up skin dose calculation as this is of specific interest for interventional radiology. Organ

dose calculations would be too time consuming to provide relevant and fast feedback.

3.2. Camera system

Microsoft Kinect v2 cameras were chosen for the camera system as they provide a reasonable

resolution depth map (512x424) combined with a full HD color image (1920x1080) at 30 frames per

second. The Kinect v2 uses a time of flight (TOF) principle as opposed to the structured light used by

the Kinect v1 or Asus Xtion Pro. When using multiple cameras there is less interference and noise

from other cameras using the TOF principle than when multiple structured light patterns are being

projected and processed [47]. Another advantage of the TOF camera is the constant offset in

distance that can easily be modelled compared to the distance dependent offset of the Kinect v1.

The Kinect v2 camera has its own limitations such as: flying pixels, that occur near discontinuities of

geometry; multipath interference, due to reflection of light from multiple surfaces often seen with

concave objects; the depth value is influenced by color and the dependent on the camera

temperature. Most of these limitations can be compensated by pre-processing the depth images

[48], [49]. The Microsoft Kinect v2 also provides a skeleton tracking feature that detects the major

joints of the human body and can do this for up to 6 persons. Although an interesting feature it was

24

not used to avoid dependency of one specific camera type, the system is designed to work with any

camera or mixture of cameras that provide a color, infrared and depth image.

In the interventional radiology room three Microsoft Kinect v2 cameras are positioned with

approximately 90 degrees rotation between each camera as shown in Figure 1. This configuration

allows to cover most of the interventional radiology room and handle occlusion caused by staff. A

fourth camera was considered unnecessary as this camera would be occluded by the C-arm most of

the time. Each camera is connected to an Odroid XU4, a single board computer running Ubuntu

16.04 LTS, which in turn is connected to a switch with a Cat-6 ethernet cable and synchronized with

the data server through the Network Time Protocol (NTP).

Each Odroid XU4 has a dedicated executable that streams and saves the image data from the Kinect

to a Network File System (NFS) directory under the form of a binary file containing information such

as a nanosecond precision timestamp, serial number taken from the Kinect, type of images stored,

compression type and the image data: Color, depth and infrared. If calibration has been performed

and intrinsic and extrinsic camera parameters are provided under the form of a YAML file the

rectified color and registered depth image is calculated immediately instead of the raw depth,

infrared and color. The processed images are larger to store than the raw data. Therefore, in the

prototype it was chosen to not save the processed data.

The individual Kinects are all calibrated using Zhang’s method with a custom-designed aluminum

(Dibond®) panel with a 6 by 9 checkerboard pattern that has 90 mm by 90 mm squares. First the

intrinsic camera parameters for the color camera and infrared camera were determined separately.

Based on initial tests the Kinect cameras did not present any noticeable axes skew so only the

following parameters were determined and used: focal length, principal point, radial distortion and

tangential distortion. Each camera calibration step uses approximately 100 individually recorded

images at different distances and angles to make sure every part of the field of view from the camera

is taken in account for the model. After single camera calibration was performed the rotation and

translation between the infrared and color camera is determined using a classic stereo camera

calibration with the same checkerboard pattern. For the stereo calibration another 100 images are

used but only in the field of view where both cameras can see the checkerboard pattern. The images

recorded for calibration are then processed using MATLAB and OpenCV to determine all parameters.

An additional calibration step is performed after setting up the multi camera system to link all

cameras to a predefined shared coordinate system. This is done by recording a stationary custom-

made aluminum calibration cube that consists of several unique 45 mm by 45 mm checkerboard

patterns. This calibration cube was precisely measured to know the exact geometric relation

between all corners of the checkerboards. The origin of the shared coordinate system was assigned

to one specific corner of the checkerboard at the top of the checkerboard.

25

3.2. Monte Carlo dose engine

Besides the camera system the second major component of the system is the Monte Carlo radiation

transport code. EGSnrc was chosen as the Monte Carlo engine, more specifically the user code

DOSXYZnrc. The choice was based on the in-house knowledge regarding DOSXYZnrc and its

calculation speed in voxel dosimetry calculations compared to other codes such as MCNPX [50].

For this project several modifications were made to the source code of the Monte Carlo engine by Dr

Blake Walters. A new source model was built and several methods to speed up calculation time for

skin doses were introduced.

Figure 5 ‒ Geometric relationships of the new source model, courtesy of Blake Walters

The alternative source type introduced is a dynamic point source represented by a spectrum. This

point source can be blocked by a perfectly blocking mask to mimic the collimation of the beam, the

collimation size is defined by a field size at a distance as shown in Figure 5. To allow modeling a

moving tube this point source can also be assigned dynamic movement by giving several isocenter

positions and rotation angles with a fixed collimation and source to isocenter distance. Each

combination of isocenter coordinates and angles must be assigned a mu-index (µ) in ascending value

with the first combination having an index 0 and the last 1. The simulated position for each history is

then determined by a randomly generated number (r), between 0 and 1. The closest mu-index lower

than the random number is chosen as the low position (µi-1) and the closest mu-index higher is

chosen as the high position (µi). The exact position is than determined using equation (2).

 =
��� +

� −
���

�� − ����
 (� − ����) (2)

� = ��� �� �� ��,� ��,� ��,��

Providing real time skin dose information requires additional methods to improve the speed of

calculation. The low photon energies used in radiology do not produce high energy electrons,

therefore the kinetic energy released per unit mass (kerma) is equal to the dose for X-rays in the kV

range. This allows dose calculations by scoring kerma, and electrons do not have to be tracked during

the Monte Carlo simulation. First variance reduction techniques were evaluated, forcing photon

interactions were compared to optimizing the number of photon splitting events, a more thorough

26

explanation is given in Appendix C. The optimal splitting count was different for skin dose

calculations than for organ doses. Optimal splitting was preferred over forcing interactions. Further

improving the efficiency of the skin dose calculation was done by allowing to specify a distance after

which the particles and its descendants are no longer tracked. The particle or its descendant is

rejected when it reaches a voxel of which the nearest surface voxel is further away than the specified

distance. To avoid losing too much time transporting particles through air all phantoms are trimmed

to have minimal air.

Figure 6 ‒ Two-dimensional representation of the particle rejection in case of a rejection distance of 1 voxel. (a) shows

particles travelling further than rejection distance and (b) shows particle backscatter inside the range

Figure 6 illustrates the method used to reject particles travelling too far from the skin after they have

been transported through a surface voxel. The rejection distance is defined in voxel count so

depending on the voxel size the distance should always be equal or slightly higher than the range in

which backscatter is significant.

3.3. Obtaining a three-dimensional room model

The Microsoft Kinect v2 consists of two cameras integrated into one system, a color and infrared

camera. As a result, there is no direct relation between raw depth and color image pixels. The images

cannot simply be matched by correcting for the field of view, resizing and translating since they

recorded the same scene from two different cameras with their own unique intrinsic camera matrix

and they are not physically in the same location. Calibrating the cameras allowed to determine their

intrinsic camera matrix as well as the translation and rotation between these two cameras.

Registration between the depth and color image is obtained through several steps: First the depth

image is deformed to obtain the depth image as if it had captured the scene with an ideal pinhole

camera with no lens distortion that has the same intrinsic camera matrix as the color camera. Second

with the depth information all pixels are projected into a three-dimensional point cloud by combining

this information with the intrinsic parameters of the color camera. Third this point cloud is now

rigidly transformed with the translation and rotation determined by the stereo calibration, this point

cloud now resembles how the scene was perceived if the infrared camera had been in the same

physical position as the color camera. Step four involves projecting back this cloud of points using the

color camera parameters and the pinhole model. After transformation some points might project to

the same pixel resulting in an erroneous depth value, these errors are eliminated using the Z-buffer

algorithm. Finally, the resulting image matches the color image, but the original color image is

affected by lens distortion, so this must be corrected before a pixel to pixel relationship can be

27

attained. In Appendix A the entire process is explained in depth and a MATLAB implementation of

the algorithm is provided.

After registration the color image can later be used to extract features and combined with the depth

image to determine three-dimensional coordinate as the depth and camera parameters are known.

For a single camera this coordinate could be used to determine the relationships between different

objects in the room. However, the dose calculation system uses a multi-camera setup consisting of

three Kinects and after individual calibration the origin of each camera’s coordinate system is its

optical center. Combining these three individual point clouds into a single three-dimensional model

of the room requires an additional step. This was obtained using the calibration cube mentioned in

Chapter 3.1. which has different checkerboard patterns and precisely known dimensions. One of the

checkerboard coordinates is assigned as the origin of the coordinate system and all other

checkerboard coordinates are generated using the measured relationships. This results in a ground

truth, the transformation from the Kinects coordinate system to the ground truth is then determined

with Horn’s method for absolute orientation using unit quaternions [51]. The MATLAB

implementation of this algorithm can be seen in Appendix B.

3.4. Source model

The radiation source model is one of the key components of the Monte Carlo input file, the radiation

source is modelled as a point source with an X-ray spectrum in the adapted version of DOSXYZnrc.

Spectra for a series of commonly used tube parameters were calculated using SpekCalc, creating a

library of spectra for different parameters. SpekCalc is a software program designed to calculate X-

ray spectra in the range of 40 to 300 kVp from tungsten anode X-ray tubes [52]. Each spectrum file

was converted to a format supported by EGSnrc. Before writing the Monte Carlo input the structured

report data is filtered for tube potential and filtration after which the most appropriate spectrum is

chosen.

While some basic geometric information regarding the tube position is available in the RDSR the

position needs to be translated to the coordinate system perceived by camera system. ArUco

markers were chosen to perform marker-based tracking of the tube. ArUco is a library for the auto

generation of highly reliable fiducial markers often used in augmented reality [53]. These markers

were used for reliable and fast tracking of the X-ray tube motion. Eight unique markers were places

on the X-ray tube, three on the detector, three on the tube, two on the suspension. The exact

position of the source and isocenter in relation to the marker positions was determined using

radiation measurements using an ionization chamber (Farmer, model…) while recording with the

camera system.

Once the relationship between source, isocenter and markers has been established for calibration

positions, these absolute positions are stored. During measurement when an event occurs the

current marker positions are determined, and the structured report is parsed for data regarding

changes in the relative positions of detector and source. If the relative positions are changed the

calibration marker positions are changed accordingly, moving the detector markers as determined by

previous calibration.

Once the calibration markers match the current situation of the C-arm the calibration positions are

compared to the measured marker positions. Then the relative transformation is determined using

Horn’s method which returns a rotation matrix and translation vector. This calculated translation

vector is used to translate the source and isocenter. The rotation matrix is decomposed into a

rotation around the x,y and z-axis. The rotation angles indicate the rotation around the isocenter in

the predefined camera coordinate system.

28

3.5. Patient model

A family of XCAT phantoms for different body types of each gender were generated to represent the

patient geometry. XCAT are 3D humanoid phantoms with 4D capabilities [54].

Figure 7 ‒ Family of XCAT phantoms [55, p. 9]

The activity mode is used to produce an XCAT with different activity levels for each organ, these

activities are used as labels for the tissue type when converting to an EGSPhant format. EGSPhant

format is a text or binary file containing a list of tissues and their corresponding label, voxel

boundaries and two three-dimensional matrices. The first matrix contains the tissue type label for

each voxel and the second the density of that voxel. Conversion from an activity XCAT to EGSPhant

was done using VOXSI [56]. An average skin thickness of 3 mm was selected and used for all XCAT

models [57]. The user can enter the patient’s gender, body mass index (BMI) and desired voxel size.

After confirmation the structured report is parsed to extract the examined body region and then the

most appropriate EGSPhant will be loaded into memory.

The EGSPhant is then filtered for skin voxels. The skin thickness of 3 mm results in some skin voxels

inaccurately being labeled as adipose when creating a voxelized geometry. To achieve a correct

three- dimensional logical array of skin voxels, the medium skin was defined as each skin or adipose

voxel that has a neighboring voxel containing air. Al three-dimensional coordinates of the skin voxels

are stored in a coordinate vector.

Segmentation of the examined body region is performed on each rectified color image. After this a

mask is applied to the depth map, all pixels outside of the segmented region are set to 0 depth. The

non-zero depth pixels are transformed to [x,y,z] coordinates and set to a shared coordinate system

using the methods described in Chapter 3.3.

The coordinate vectors of both the EGSPhant and the segmented patient can now be further

processed as point clouds. Initial coarse registration is done by using the center of mass of both point

clouds and applying a translation to the segmentation point cloud to align both centers. The center

of mass was determined for the surface points detected by the camera and for the skin voxels of the

virtual phantom.

After the initial coarse registration another fine registration transformation matrix was determined

using a fast KD-tree implementation of the iterative closest point algorithm [58], [59]. The

determined transformation matrix and initial translation are saved and applied to the isocenter and

source position to correctly represent the position of the beam in the same coordinate system as the

phantom. The choice to apply the transformation to the beam instead of the phantom was done for

performance reasons.

29

3.6. Result visualization

Reporting the calculated dose is done both visually and numerically. To visualize the calculated skin

dose a mesh of the patient geometry is shown. Each mesh was created from the EGSPhant voxel

geometry to preserve the coordinate system. A more visually pleasing mesh was attained by

smoothing the geometry and reducing the number of faces in MATLAB. Meshes were then exported

in Stereolithography (STL) format and loaded into Blender (Blender Foundation), an open source 3D

modeling software, where the vertices subdivision was altered to allow for a more even distribution

of vertices. The mesh was exported again as STL and compared to the original mesh to make sure no

significant changes in coordinates were introduces.

Skin dose is represented by adding a colormap on top of the mesh. The colors are based on user

defined thresholds, where blue is the visibility threshold, orange warning and dark red exceeds the

maximum threshold. Alternatively, the option exists to show the location and value of the peak skin

dose, this peak skin dose is the 0.5 cm2 area on the skin with the highest dose.

Organ doses visualization is done numerically in the form of a table with the mean, median and

maximum dose in Gray (Gy). The effective dose in Sievert (Sv) is also calculated using the calculated

organ doses and weighting factors described in ICRP 103 [60]. Dose gradients inside the organs can

be further investigated by a color-based dose map overlaid on top of the density image of the

phantom. As the exact organ positions for individual patients are not known these values and

gradients serve merely as an approximation for selected XCAT standard phantom.

3.7. Initial verification

Full validation of the system must be performed in a radiology room in service mode to have

complete control over the tube parameters. This validation will be done using XR-RV3 or EBT3 film

and these tests are scheduled but will not be finished before the end of this thesis. A preliminary test

was performed using the standard clinical settings of the X-ray machine. Due to the clinical settings

of the machine the tube parameters are chosen automatically, controlled by an Automatic Exposure

Control (AEC) device. This AEC adjusts parameters based on the Incident Air Kerma Rate (IAKR) to

avoid fluctuations in image brightness and noise. This holds the implication that the tube parameters

will differ between each measurement even if the geometric relations remain the same, small

fluctuations are still possible [61].

Film measurements were performed using XR-RV3 film (lot# 08311801) fixed on top of an

anthropomorphic phantom: the Alderson RANDO phantom (Radiology support devices, Inc.).

Converting the Monte Carlo calculated values to absolute dose requires a conversion factor for each

kV of the X-ray tube, to transform the value from dose per photon (
�
�

) to a more usable format that

can be determined from tube parameters (
�

 !"
). This conversion factor is determined using in air

measurement with a Farmer ionization chamber (2571, Thermo Electron Corporation) according to

the AAPM TG-61 protocol [62]. This value is then correlated to a film calculation with a simple

geometry and known geometric relations to the source. This simple geometry was a polymethyl

methacrylate (PMMA) cube positioned with the surface in the isocenter and the tube above the film

at a zero-degree angle, vertically pointing down.

30

Film calibration was done by irradiating a total of 33 films with a 40 mm2 square field on a calibrated

small animal irradiator (X-Rad 225Cx; Precision X-ray Inc., North Brandford, CT) using a 120 kV X-ray

source with 2 mm Al filtration to closely resemble the diagnostic X-ray spectrum. The film irradiation

at each set dose level was repeated 3 times to reduce the impact of noise and detect potentially

erroneous exposures. The dose levels used in the calibration are shown in Table 2. All film processing

was done using an in-house MATLAB routine. The reflective density of the red channel was used to

determine the calibration curve [63], [64].

Table 2 ‒ Irradiation settings for the film calibration, film pieces placed at surface of solid water and a calibrated dose rate

factor of 1.452 mGy/mAs for the 120 kV and 2 mm Al filtration X-Rad 225Cx irradiator

Tube current (mA) Beam on time (s) Dose (mGy)

0.0 0 0.0

0.1 11 1.6

0.5 6 4.4

0.5 9 6.5

0.5 11 8.0

0.5 33 24.0

1 28 40.7

4 14 81.3

5.6 50 406.6

5.6 99 805.0

5.6 496 4,033.1

31

4. Results
The dose calculation system works on a per event basis, this means it will perform calculations only

on the images that get captured around the time an irradiation takes place. Synchronization in this

prototype is done using the timestamps of the RDSR and the individual cameras. To facilitate the use

of this system a basic graphical user interface (GUI) was created to communicate with the calculation

engine.

To minimize computation time some simplifications regarding synchronization are made for the

different irradiation types. For static acquisitions only the frames corresponding to the starting time

are processed. A rotational acquisition uses the frames at the start of the rotation and end of the

rotation and interpolates all intermediate positions assuming a constant movement speed of the X-

ray tube. During a fluoroscopy event the patient is assumed to remain immobile and markers on

each frame are detected but only the tube movements with an angle larger than 3° or translation of

more than 2 cm are processed further as new set points for the Monte Carlo model. These setpoints

are then assigned a relative mu-index based on the time spent in each position. The minimal angle

and translation thresholds were chosen to handle the noise that results from the uncertainty on the

depth map obtained from the Kinect and the effect of rejecting these positions should be analysed at

a later stage.

4.1. System flow

This section will show the entire trajectory of a single static event to illustrate how the system works.

Due to not being able to fully integrate the prototype into a clinical system the process is interrupted

by storing the data to be able to load it later instead of having a single flow.

The first part of the system consists of streaming, after triggering the program the three Odroids will

run a dedicated executable that calls the libfreenect2 libraries to retrieve the information from the

Kinect v2 camera it is connected to. Upon start-up the serial number from the Kinect is retrieved and

a separate directory on a server with a shared NFS folder is created which is labelled after the

starting time and serial number. After each combination of frames (Color, depth and infrared) is

retrieved a nanosecond resolution timestamp is generated. The frames are then written to the

separate directory as a binary file with the serial number, timestamp and additional information

about the frames in its header. The rate at which the data is written is limited to 5 frames per

second. This was done to conserve disk space in prolonged recordings, a problem that should not

occur in a fully integrated system.

For the processing part the three directories created on the NFS directory, one by each camera, can

be selected alongside their corresponding RDSR. After this a timeline is generated sorting all

radiation events and matching them up with the corresponding image data based on the timestamp

read from the header.

From now on the image data and its processing steps will be shown for an event with a RANDO

phantom and the C-arm with the X-ray tube at a 30-degree angle above the table. The first step

involves loading the images from the camera in to memory, as this is a static event there are a total

of 9 images: 3 color, 3 depth, and 3 infrared images, for rotational events it is twice the amount and

with fluoroscopy even more depending on the duration. The initial images are shown in Figure 8,

these images are stored into a separate data class for each serial number.

32

Figure 8 ‒ Raw image data retrieved from the three Kinect v2 cameras, each row shows the data from a different camera.

From left to right it shows the color, depth and infrared images

After importing the images, the data classes are assigned their corresponding calibration and

transformation data according to their serial number. The calibration and transformation data are

read from a YAML file as the calibration occurs before processing. First the calibration data is used to

perform the rectification of the color image to remove lens distortion and remapping and

registration of the depth image to correctly match the color pixels. The top row of Figure 9 shows the

rectified color and registered depth image, the thin black curved lines on the edges of the rectified

color image show that the color image had a small amount of barrel distortion. The bottom left

shows the original depth and color image overlaid, illustrating the lack of relationship between pixel

locations. Finally, the bottom right shows the remapped and registered depth superimposed on top

of the color image, illustrating the correct relationship between the pixels of the two images

essentially giving each color pixel depth information.

33

Figure 9 ‒ The result of color and depth registration with the top row being the individual images after rectification and

registration and the bottom row the non-registered superimposed image on the left and on the right the registered

superimposed image

The registration of depth and color allows the creation of a point cloud from the view point of the

color cameras. These point clouds are individually generated and then registered using the

transformation matrices that were loaded into each image class from the transformation calibration.

This results in a three-dimensional point cloud aligned to a reference coordinate system.

Figure 10 ‒ Merged point cloud from three cameras

34

Determining the source and isocenter position is done by detecting the markers on the C-arm. Each

marker has a unique pattern and is given an identifier corresponding to its location on the device.

The marker positions are then compared to a calibrated position and their translation and rotation is

determined. The results of the markers are compared to information about the tube position in the

structured report to make sure the determined X-ray tube displacement and rotation are correct,

providing a measure of redundancy and robustness. The isocenter should only be affected by the

translation of tube. To verify the correct position of the isocenter it is recalculated based on the

source to detector and source to isocenter distances found in the RDSR and the marker positions,

this is then compared to the calibrated isocenter position based on the center of rotation to which

the translation has been applied. The collimation of the source is also derived from the structured

report and stored together with the source position.

On the individual rectified color images the phantom is segmented from the background image using

image features specific to the RANDO phantom. From the segmented region a logical mask indicating

which pixels belong to the RANDO phantom is created. This logical mask is used to eliminate all non-

phantom pixels from the depth map. Which allows the creation of a point cloud containing only

points belonging to the phantom. In Figure 11 the phantom segmentation is shown. The left image

shows a missing region, this is the result of the radiochromic film which was not detected as part of

the phantom for the camera system. The right image shows that an incomplete surface has no

negative impact on the registration with between the patient or physical phantom (red) and the

mathematical phantom (blue).

Figure 11 ‒ Point cloud of segmented phantom displayed as red points. The left image shows the segmented patient in the

original point cloud while the right shows how it was registered to the virtual phantom and shown on a 3D grid with the

units set to millimeter

This point cloud of the patient is then matched to a point cloud created from the skin voxels of the

virtual phantom using the iterative closest point algorithm. The virtual phantom model was chosen

based on body mass index (BMI) and gender. The transformation matrix to convert the patient’s

position to the virtual phantom’s is then applied to all other coordinates including the source,

detector and isocenter positions derived from the markers and used to generate an input geometry

for DOSXYZnrc. Figure 12 shows the visualization of this geometry.

35

Figure 12 ‒ Visualization of the Monte Carlo input geometry including the source position and beam collimation. The left

image shows the pure Monte Carlo input geometry while the other images illustrate the correct registration and beam

position by showing the geometry inside the captured point cloud

When the geometry is ready information about the beam such as the tube potential and filtration is

extracted from structured report and the best matching spectrum file is chosen. This specific event

had a tube potential of 80 kV with 1 mm aluminum filtration and 0.1 mm copper filtration. The

spectrum shown in Figure 13 was selected as the source for the Monte Carlo simulation.

Figure 13 – Photon spectrum for 80 kV with 1 mm Al and 0.1 mm Cu filtration

Now the input file for the simulation can be generated using: the isocenter position, source distance,

tube angles and spectrum from the beam; the target geometry and material data associated with the

phantom. The number of histories required for the simulation is based on the field size of the beam.

When the input file was generated the simulation is initialized by feeding the file to DOSXYZnrc.

When the simulation is finished the .3ddose file containing the dose distributions in all voxels is

imported into the program and used for dose analysis. These dose distributions are combined with a

36

calibration factor that transforms this dose per photon to a dose per mAs and together with the

exposure time and tube current from the RDSR these distributions are converted to an absolute

dose.

Figure 14 ‒ Skin dose visualization

The default skin dose visualization is shown in Figure 14, a colormap based on user defined

thresholds mapped to a mesh of the virtual phantom. Dose distributions inside the organs of this

phantom can also be inspected by evaluating the mean, median or maximum dose in different tissue

types as shown in Figure 15 or by looking at slices of the density image of the phantom with the dose

values overlaid in a color map illustrated in Figure 16.

37

Figure 15 ‒ Organ dose information, numeric evaluation

Figure 16 ‒ Visual evaluation of dose gradients, a different color map scaling was used for the coronal image to attain the

same contrast

This process is fully automated, no user interaction is required after initial calibration has been

performed other than starting the image stream, selecting image directory, its calibration data and

the corresponding structured report. This minimal manual intervention can easily be eliminated in an

integrated system.

38

4.2. Graphical user interface

The graphical user interface was designed with two goals: to facilitate the use of the program by

hiding the implementation details to start the stream and select the data behind some simple

buttons; and to provide easy visualization of the calculated doses. To facilitate the calibration

required and allow for evaluation and customization of the process at each step of the calculation

process several additional modules were added to the GUI. Each of these modules will be discussed

shortly. The only part not integrated into the GUI is the single camera calibration using Zhang’s

method, this was done using a custom MATLAB routine using the OpenCV library.

The streaming module as seen in Figure 17 is a user-friendly control panel that interfaces with the

Odroids connected to the Kinects. It triggers and stops recording by calling underlying Bourne Again

Shell (Bash) scripts that communicate through Secure Shell (SSH). Besides triggering the camera

system, it also provides feedback about the recording, starting time and end time.

Figure 17 ‒ Screenshot of the streaming module before and after a recorded stream

Importing recorded image data, calibration data and the corresponding RDSR is done in the data

selection module shown in Figure 18. Here the directory containing the recorded image data is

selected together with the corresponding directory containing the calibration data for that serial

number, the data is quickly parsed to check if the serial numbers of the data from both directories

match. The path to the RDSR can be entered as well as the possible time offset between the image

data and the RDSR, in case the RDSR uses a different time zone than the images or in case the DICOM

39

server was synchronized to a time server with an offset compared to the NTP server used on the

processing and recording server. This time offset is added to each event contained in the report.

Figure 18 ‒ Data selection module. Top image shows the normal layout of the selection module and the bottom part the

popup to select image data

The processing module contains several separate submodules, the first four modules of which some

are shown in figure 19 are used to allow for closer inspection of the image and RDSR data at different

stages of processing: a basic viewer for visualization of the raw unprocessed data; a multi camera

viewer for evaluation of the synchronization and rectification of the images; the point cloud viewer

allows evaluation of the registered point cloud from all three cameras, this step however requires

loading in data from the additional calibration module; finally the event viewer shows the extracted

information from the RDSR for each recorded event.

40

Figure 19 ‒ Two of the viewer modules, the point cloud viewer to inspect registration at the top and multi camera viewer to

inspect the synchronization at the bottom, this is an optional feature for the advanced user

41

The two last submodules shown in figure 20 and 21 are required to load and perform additional

calibrations. The additional calibrations module is used to get the transformation to the reference

coordinate system for each camera. Two options are available, loading the transformation matrices

from a YAML file or determining the transformation by loading a series of images with the calibration

cube, which in turn can be exported in YAML format. This module is also used to find an initial

estimate of the isocenter in relation to the source and detector positions. Finding the isocenter

estimation is done by using a least squares approach in finding the center of rotation by detecting

the marker positions on the C-arm at different known angles. Finally, the source calibration module is

used to set the source and detector center positions in relation to the markers for one single

calibrated position.

Figure 20 ‒ Calibration sub module that calculates the transformation between the camera coordinate system and the

shared reference coordinate system. The bottom images show the results display options with measured coordinates on the

left image and only reference and transformed on the right side

42

Figure 21 ‒ Center of rotation calibration submodule, this module is used to get an estimate of the isocenter relation to the

markers (blue) by finding the center of rotation (red)

The last main module is the result module, this module is used to initialize the calculation and

analyse the results. It consists of three separate submodules calculation, skin dose and organ dose.

43

Figure 22 ‒ Calculation module providing feedback about phantoms, spectra and media for user input. There are also

options to calculate single events and visualize the Monte Carlo input of a specific event

The calculation submodule allows the user to input parameters required for an accurate calculation

such as the patient length, weight and gender, the phantom resolution and the patient type: a

physical phantom (for dosimetric measurements) or patient (clinical examination). The length and

weight are used to calculate the BMI and together with the gender, patient type and requested

resolution the most suitable phantom can be loaded. The patient type is important to select the

method used to segment the patient and register its coordinates with the mathematical phantom.

Each event can be calculated separately or a calculation of all events at once can be triggered.

Besides triggering calculation an option is available to show the Monte Carlo input overlaid on the

registered point cloud from the camera system. The visualization method can be used to determine

possible sources of errors during the prototyping phase of the system. Additionally, the visualization

allows verifying if the generated input is valid as seen in Figure 23.

Figure 23 ‒ Visualization of Monte Carlo input inside the point cloud generated from the camera system. A) shows a small 8

cm x 10 cm field at the detector with the tube at a 30-degree angle. B) shows a rotational acquisition with a 34 cm x 26 cm

field, the green beam is the starting position and the red the end position. The point cloud is shown for the starting position

44

The skin dose module is a representation of what the physician would see inside the interventional

room in case the system gets integrated and real-time feedback is provided. A mesh generated from

the phantom used in the simulations is shown. On top of this mesh a color based dose map is

projected, the color thresholds can be pre-set to change with a certain dose level as shown in Figure

24. The prototype is used offline and gives an additional option to show the location and value of the

PSD as this is a commonly used value in evaluating risk in interventional radiology, this PSD could also

be reported real time. Warnings when exceeding certain PSD values could easily be built into the

system.

Figure 24 ‒ Skin dose module showing the dose map from an event at a 30-degree angle with an arbitrary calibration factor

The organ dose module allows for a separate calculation of dose distributions where speed

optimizations such as rejecting photons after a certain distance are not performed. Instead the dose

in each voxel is calculated. This allows for an evaluation of the dose gradients inside the phantom

which gives good approximation of the gradients inside the actual patient. The gradients can be

evaluated for all voxels or separately per organ, for example isolating the skin or lungs. Besides

evaluating dose gradients on the density image of the phantom the effective dose is calculated and

histograms are available to evaluate the mean, median and maximum dose of the most important

organs. An overview of the evaluation methods is given in Figure 25.

45

Figure 25 ‒ Screenshot of organ dose viewer while evaluating a single event of a beam with a 30-degree rotation with an

arbitrary calibration factor. The top left are user input parameters to customize the simulations and visualization. Top right

shows the dose gradients in all voxels of a slice through the phantom. Bottom right shows the bar chart of the mean dose

per organ, including the uncertainty from the simulation. Bottom left shows a table with the mean dose per organ and the

effective dose for the selected ICRP guidelines, all tissue voxels not corresponding to one of the ICRP labels are grouped

under the remainder tissues

4.3. Calculation time

Calculation time tests were performed on a high-end desktop with an Intel Core i9-7980XE CPU, GTX

1080Ti Nvidia GPU and 64 GB 3200MHz DDR4 memory. Table 3 shows the calculation times for each

major step taken in the program excluding Organ dose visualization and Monte Carlo. Organ dose

visualization calculation times were not determined as they do not belong to the time critical part of

the system. However, no noticeable delay is present when evaluating different calculated events and

charts in the organ dose module. The duration of the Monte Carlo simulation depends on many

different parameters. Table 4 and 5 show the simulation times for the default settings, simulation

times of different settings can be found in the tables of Appendix D.

Table 3 ‒ Average calculation time for each major step of the program excluding Monte Carlo

Function group Total time per event (s) Relative time (%)

Import Images 0.019 0.55

Register Images 0.503 14.38

Detect markers 0.007 0.19

Segment and

Register patient
0.805 23.00

Create point clouds 0.034 0.96

Read 3ddose 0.596 17.02

Interpolate colormap mesh 1.537 43.90

Monte Carlo input visualization 0.921 Optional

46

It is important to note that generating the input and performing the Monte Carlo simulation can

occur in parallel. Meaning the input for the next event can be generated while the first is still being

simulated. This parallel processing should have only a minor impact on the calculation time of both

as the generation of input files is mostly single threaded with minor GPU acceleration leaving the

remaining CPU threads available for EGSnrc. The interpolation of the colormap can also be optimized

for speed but due to the offline nature of the prototype application this was not prioritized.

Table 4 ‒ Calculation times for some different field sizes for skin dose calculations on a 5 mm x 5 mm x 5 mm upper body

phantom with a 2.5 cm rejection distance. The uncertainty goal was ~5% on all voxels with a dose >50% of the max dose.

Total time includes the time spent on file input and output by DOSXYZnrc

Field size (cm) Uncertainty (%) Total time (s) CPU time (s)
Number of

histories
Photons per cm2

5x5 4.91 3.5 0.9 40,000 1,600

10 x 10 5.12 5.8 3.2 125,000 1,250

15 x 15 4.99 10.9 8.3 281,250 1,250

20 x 20 4.92 18.2 15.7 500,000 1,250

30 x 30 4.83 42.2 39.7 1,125,000 1,250

Table 5 ‒ Calculation times for some different field sizes for organ dose calculations on a 3 mm x 3 mm x 3 mm upper body

phantom. The uncertainty goal was ~5% on all voxels with a dose >50% of the max dose. Total time includes the time spent

on file input and output by DOSXYZnrc

Field size (cm) Uncertainty (%) Total time (s) CPU time (s)
Number of

histories
Photons per cm2

5x5 5.22 9.9 4.1 60,000 2,400

10x10 4.95 21.6 15.8 220,000 2,200

15x15 4.76 43.7 37.9 495,000 2,200

20x20 4.66 73.9 67.8 880,000 2,200

30x30 4.72% 153.9 148.1 1,980,000 2,200

The backscatter was found to be significant for depths up to 2.5 cm below the skin for simulations

with ±5% average uncertainty for all doses above 50% of the max dose, after this skin dose will be

accurate within uncertainty. This was determined using simulations with different backscatter

distances compared a simulation with no backscatter rejection. Table 6 shows the difference in

calculated dose rate versus backscatter distance and the time gain compared to a calculation with no

photon rejection on a 5 mm x 5 mm x 5 mm phantom.

47

Table 6 – Relative CPU time speed increase and calculated dose rate for different backscatter rejection distances on a 5 mm

x 5 mm x 5 mm phantom

Backscatter distance (cm) Relative speed up (%) Average dose rate (x10-15 Gy/Particle)

None 0 1.231 ± 5.84%

5.0 19.6 1.236 ± 5.82%

3.5 43.3 1.211 ± 5.89%

2.5 55.5 1.192 ± 5.94%

2.0 60.7 1.175 ± 5.99%

1.5 67.2 1.161 ± 6.04%

1.0 73.9 1.105 ± 6.20%

0.5 79.7 1.051 ± 6.37%

0 84.4 0.926 ± 6.84%

In Table 7 the calculation time for a 5% uncertainty is compared between organ dose and skin dose

with 2.5 cm rejection distance for a 5 mm x 5 mm x 5 mm phantom. This illustrates the performance

speed up from the adaptations to DOSXYZnrc.

Table 7 – CPU time for skin and organ dose calculations with 5% uncertainty on a 5 mm x 5 mm x 5 mm voxel phantom, a

comparison in calculation speed. The performance increase column shows the relative calculation time gained for skin dose

calculations

Field Size CPU time skin (s) CPU time organs (s) Performance increase (%)

5x5 0.9 1.5 40.00

10x10 3.2 4.6 30.43

15x15 8.3 10.4 20.19

20x20 15.7 18 12.78

30x30 39.7 44.6 10.99

48

4.4. Film measurement

The relationship of the relative reflective density to dose was determined for each color channel.

Figure 26 shows the difference in resolution for each color channel, especially at low doses.

Figure 26 ‒ Reflective density in relation to dose for the red, green and blue channels

The calibration fit was done using the relation between reflective density and dose according to

equation (3).

#$ = −log�((

) + *$
	 + $

) (3)

A least mean squares approach was used to determine the parameters for each color channel, the

results can be seen in Table 8.

Table 8 ‒ Parameters for film calibration fit

Parameter Red Green Blue

a 0.274 0.316 0.074

b 0.110 0.053 0.032

c 0.354 0.736 0.787

The red channel shows a better dose sensitivity, especially at lower doses. Therefore, only the red

channel was used for all further processing and as all measurements were in the low dose range the

4 Gy calibration point was removed to obtain the best possible fit. The new fit and the residuals are

shown in Figure 27.

49

Figure 27 ‒ Red channel calibration fit for low dose range

The films irradiated on the PMMA phantom could not be used due to underexposure as a

consequence of the automatic exposure control. As an alternative the calibration factor was

determined using the films from static anteroposterior (AP) projection of the RANDO phantom. A

region of interest (ROI) was placed in the center part of the irradiated area. This was done on 2

different radiochromic films and the pixels inside all these regions of interest where averaged. A

similar ROI was taken in the simulated skin dose multiplied by the tube current and exposure time

from which we obtained a mean dose rate. Both regions of interests are shown for case 1 in Figure

28. The measured dose, simulated dose rates and the calculated conversion factor can be found in

Table 9.

50

Table 9 ‒ Calculation of the conversion factor for the 80 kV beam based on the RANDO phantom AP measurements

 Case 1 Case 2 Mean

Measured dose (Gy) 4.9 x 10-3 5.5 x 10-3 5.2 x 10-3

Calculated dose rate

(Gy mAs/particle)
7.2652 x 10-13 8.9892 x 10-13 8.1272 x 10-13

 Conversion factor

(particles/mAs)
6.3983 x 109

Figure 28 ‒ Regions of interest used to determine the mean dose of the irradiated area. Left shows the ROI on the film scan

and on the right the ROI on the simulated skin dose

The acquired calibration factor is then used on the other simulated series of exposures where 3

different tube angles were combined. The irradiation of two XR-RV3 films taped to a RANDO

phantom was performed using 4 AP, 8 right anterior oblique (RAO) and 12 left anterior oblique (LAO)

exposures. Both oblique exposures were performed at a 30-degree angle.

51

Figure 29 ‒ On the left side the radiochromic film scans of case 1 and case 2 are displayed. The bottom left shows the region

of interest used to determine the peak skin dose on the film scan of case 2. The left shows the simulated skin dose for case 2.

All three images use the same color scale

Figure 29 shows both the radiochromic film scan and the calculated dose map for this multi beam

irradiation. The peak skin dose in a 0.5 cm2 area and the mean dose were determined for both film

scans and the calculated data. The results are displayed in Table 10.

Table 10 ‒ Calculated PSD and mean dose compared to the radiochromic film scan measurement for each case, difference is

relative to the simulated dose of each individual case

Case 1 Case 2

Simulation Film scan Simulation Film scan

Mean dose (mGy) 12.8 12.8 12.3 12.5

PSD (mGy) 23.4 24.5 22.0 21.1

Difference mean (%) 0 0.2 0 1.6

Difference PSD (%) 0 4.8 0 -4.1

52

53

5. Discussion
The initial results show a difference of ±5% between the calculated and the measured PSD, the

average only shows a ±2% difference. These initial results look promising but cannot be considered

enough proof that the system functions appropriately. The film scans on the PMMA cube were not

successful due to the automatic exposure control that prevented setting an appropriate dose. Due to

this the AP projections on the RANDO phantom had to be used determine the Monte Carlo

conversion factor, these simulations had a relatively similar positioning to the unknown cases

creating a bias. Additionally, the films from the RANDO phantom are not ideal to perform the

calibration of the conversion factor on due to its irregular shape and potential air gaps beneath the

film.

Access to the clinical machine was limited in time. Therefore, only a few measurements could be

performed in the period of this thesis limiting the number of test cases the system could be validated

on. Additionally, the X-ray unit’s parameters could not set to a fixed set of exposure parameters

without collaboration of the machine’s manufacture. This resulted in variations between each

measurement. Due to these variations it is harder to detect possible measurement errors associated

with the film scans as there is no reference. It also resulted in an underexposure of several film

measurements.

The developed system selects a different spectrum depending on the tube parameters. It is not clear

if the differences introduced by the spectrum changes are significant. But a quantitative evaluation of

these differences is not possible without a conversion factor for the two different spectra. Initial tests

were performed normalizing the calculated dose rates by their own maximum and these showed

some differences. The negligible calculation time overhead associated with the different spectra led

to keeping the spectrum selection part in the program, but its significance should be investigated.

The current patient geometry does not include the material for the table. This means the table is

ignored during these dose calculations, introducing a potentially significant dose underestimation

when the tube is below the table. The small correction for attenuation from the table will be

implemented after the extensive validation measurements. Due to the increased computation time

introduced by adding the table material to the geometry other options are explored first such as:

choosing a different spectrum by adding the table material as a filter material; determining a

different conversion factor for exposures below the table; or potentially even just using a correction

factor for different angles below the table. More measurements are required to find the most

optimal solution.

The organ dose module returns an effective dose in Sievert based on the ICRP 103 weighting factors.

However, in the literature it is not clear if these weighting factors were calculated based on a dose

calculation system that reports dose to water in water, dose to water in medium or dose to medium

in medium. Most likely, it is the first option (dose to water in water). DOSXYZnrc always returns dose

to medium in medium, adaptations have been reported to allow DOSXYZnrc to return dose to water

in medium. But further investigation of this is advised and it might be required to apply different

weighting factors to report a similar effective dose to be conform with ICRP 103.

54

Most Monte Carlo codes including DOSXYZnrc function through input and output files. This is an

elegant solution as the time reading and writing these files is negligible compared to normal

calculation times. However, the adaptations created to speed up the skin dose calculations greatly

reduced the calculation time. These input/output actions now contribute to a significant increase in

total time spent by the dose engine. Further development is planned to fully integrate the dose

engine avoiding the time lost on reading and writing data to the hard drive.

The prototype was first aimed at successfully passing preclinical evaluation, which results in the

patient detection and segmentation module being in an experimental phase. Several approaches are

available: marker-based tracking being robust implementation for a human patient at this time;

markerless tracking could be done by detecting joints similar to how the Kinect’s skeleton tracking

works and segmenting the body parts using the join locations. Or a body part segmentation using

poselets or a convolutional neural network could be used. These methods have been investigated to

assess the current state of technology but have not been fully implemented. The reason for not

implementing these yet is due to the patient being partially covered by a surgical sheet during a

clinical procedure. Observation of several interventions including some test data would be needed to

construct a robust system. Overcoming the occlusion from the sheet could be done by adding

markers to a swimcap that patients could wear during the examination, or if markerless detection is

preferred adding one or more thermal cameras to the calibrated camera system could be a possible

solution.

55

6. Conclusion
The initial tests were performed using the automatic exposure control on (there was no option to

disable it), resulting in varying tube parameters. The tests were also too limited in number of

measurement points and exposure types to fully validate the system. The largest deviation was a

4.75% underestimation of the peak skin dose and a 1.63% underestimation of the mean dose, which

is within the 5% uncertainty of the simulation and the uncertainty of the XR-RV3 film. The visual

representation of the Monte Carlo input geometry overlaid on the three-dimensional point cloud

generated from the camera system showed good visual agreement over a large range of tube angles.

More extensive dosimetric measurements are needed to validate the system in a larger range of

positions and exposure parameters. A more controlled determination of the Monte Carlo conversion

factor should also be performed using a simple geometry. Additional investigation is needed to see

how the patient detection algorithm could be best implemented in clinical practice with the presence

of a surgical sheet.

The prototype system shows that combining computer vision with Monte Carlo simulations shows

great potential in providing accurate and automated dose calculations in radiology improving on

calculations based on the RDSR information alone. The limited calculation times required for skin

dose calculations also show that real-time skin dose feedback is possible after integration with the X-

ray unit. It is capable of reporting doses after several seconds delay depending on field sizes and

requested uncertainties. This combined with the user defined thresholds could allow valuable

feedback for the physician during the procedure, indicating when a change in the X-ray tube position

is necessary to avoid skin lesions.

56

57

References

[1] W. G. Bradley, “History of Medical Imaging,” Proceedings of the American Philosophical Society,

vol. 152, no. 3, pp. 349-361, 2008.

[2] F. Van Gelderen, “A Brief History of Radiology,” in Understanding X-Rays, Berlin Heidelberg,

Springer-Verlag, 2005, pp. 597-602.

[3] W. Inkret, C. Meinhold and J. Taschner, “Radiation and Risk - A Hard Look At the Data,” Los

Alamos Science, vol. 23, pp. 116-123, 1995.

[4] P.-J. P. Lin, B. A. Scheuler, S. Balter, K. J. Strauss, K. A. Wunderle, T. M. LeFrance, D.-S. Kim, R. H.

Behrman, J. S. Shepard and I. H. Bercha, “Accuracy and calibration of integrated radiation

output indicators in diagnostic radiology: A report of the AAPM Imaging Physics Committee

Task Group 190,” Med Phys, vol. 42, no. 12, pp. 6815-6829, 2015.

[5] E. Bogaert, K. Bacher, K. Lemmens, M. Carlier, M. Desmet, X. De Wagter, D. Dijan, C. Hanet, G.

Heyndrickx, V. Legrand, Y. Taeymans and H. Thierens, “A large-scale multicentre study of

patient skin dosesin interventional cardiology: dose-area product action levels and dose

reference levels,” The Britisch Journal of Radiology, vol. 82, pp. 303-312, 2009.

[6] “Council Directive 2013/59/EURATOM: laying down basic safety standard for protection against

the dangers arising from exposure to ionising radiation, and repealing Directives

89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom,” 5

December 2013. [Online]. Available: https://eur-

lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF. [Accessed 6

October 2018].

[7] N. Fitousi, “Patient dose monitoring systems: A new way of managing patient dose and quality

in the radiology department,” Physica Medica, 2017.

[8] H. Wang, Y. Ma, G. Pratx and L. Xing, “Toward real-time Monte Carlo simulation using a

commercial cloud computing infrastructure,” Phys Med Biol, vol. 56, no. 17, pp. 175-181, 2011.

[9] D. Kessel, “What is Interventional Radiology?,” British Society of Interventional Radiology, 2018.

[Online]. Available: https://www.bsir.org/patients/what-is-interventional-radiology/. [Accessed

2018 12 16].

[10] J. Rösch and F. S. Keller, “Historical Account: Cardiovascular Interventional Radiology,” in

Catheter-Based Cardiovascular Interventions, Berlin Heidelberg, Springer-Verlag, 2013, pp. 15-

26.

[11] T. Teo, B. Tan and K. Tay, “A brief history of interventional radiology in Singapore and its

current status,” Biomedical Imaging and Intervention Journal, vol. 7, no. 2, 2011.

[12] J. Greffier, C. Van Ngoc Ty, G. Bonniaud, G. Moliner, B. Ledermann, L. Schmutz, L. Cornillet, G.

Cayla, J. Beregi and F. Pereira, “Assesment of peak skin dose in interventional cardiology: A

comparison between Gafchromic film and dosimetric software em.dose,” Physica Medica, vol.

38, pp. 16-22, 2017.

58

[13] S. Van De Putte, F. Verhaegen, Y. Taeymans and H. Thierens, “Correlation of patient skin doses

in cardiac interventional radiology with dose-area product,” The British Journal of Radiology,

vol. 73, pp. 504-513, 2000.

[14] A. Jonas, J. Ensor and A. Pasciak, “How accuratly can the peak skin dose in fluoroscopy be

determined using indirect dose metrics?,” Med Phys, vol. 41, 2014.

[15] R. M. Sanchez, E. Vano, J. M. Fernandez Soto and J. I. Ten, “Validation of a quick skin dose map

estimator for interventional cardiology procedures,” in European Congress of Radiology,

Vienna, 2018.

[16] D. R. Bednarek, J. Barbarits, V. K. Rana, S. P. Nagaraja, M. S. Josan and S. Rudin, “Verification of

the performance accuracy of a real-time skin-dose tracking system for interventional

fluoroscopic procedures,” in Proceedings of SPIE, 2011.

[17] M. A. Ozeroglu, T. E. Johnson and S. A. Nemmers, “Verification of Caregraph Peak Skin Dose

Data Using Radiochromic Film,” Department of Preventive Medicine and Miometrics, Bethesda,

2005.

[18] Qaelumn, “Qaelumn Announces Partnership with Virtual Phantoms, Inc to Add Organ Dose

Data to Radiation Dose Monitoring Software,” Qaelumn NV, [Online]. Available:

https://qaelum.com/view/blog/press-release-qaelum-announces-partnership-with-virtual-

phantoms-inc-to-add-organ-dose-data-to-radiation-dose-monitoring-software. [Accessed 10

September 2018].

[19] Siemens, “teamplay: The departmental performance management solution for Radiology and

Cardiology,” Siemens, [Online]. Available: https://www.healthcare.siemens.com/infrastructure-

it/digital-ecosystem/teamplay#Home. [Accessed 10 September 2018].

[20] Siemens Healthineers, “teamplay data sheet,” Siemens, Erlangen, 2017.

[21] GE Healthcare, “DoseWatch: Radiation Dose in Interventional Radiology,” General Electric

Company, 2013.

[22] D. Fornell, “GE Healthcare to License Duke University's CT Organ Dosimetry Technology,”

Imaging Technology News, 31 July 2017. [Online]. Available:

https://www.itnonline.com/content/ge-healthcare-license-duke-universitys-ct-organ-

dosimetry-technology. [Accessed 10 February 2018].

[23] K. O'Reilly, “Philips announces DoseWise Portal 2.0 to manage radiation risk for both patients

and clinicians at RSNA 2015,” Philips, 1 December 2015. [Online]. Available:

https://www.usa.philips.com/a-w/about/news/archive/standard/news/press/2015/20151201-

Philips-announces-DoseWise-Portal-2-0-to-manage-radiation-risk-for-both-patients-and-

clinicians-at-RSNA-2015.html. [Accessed 7 February 2018].

[24] C. Martel and D. Siewko, “DoseWise: The role of dose tracking systems in radiation safety

programs,” Philips, 2016.

[25] Sectra, “Sectra DoseTrack: Cloud-based solution for patient radiation dose monitoring,” Sectra,

[Online]. Available: https://sectra.com/medical/product/sectra-dosetrack/. [Accessed 3

February 2018].

59

[26] Virtual Phantoms, Inc, “Sectra and Virtual Phantoms are Partners!,” 15 May 2015. [Online].

Available: http://www.virtualphantoms.com/sectra-and-virtual-phantoms/. [Accessed 8

February 2018].

[27] Bayer HealthCare, “Radiation Dose Calculations in Radimetric Enterprise Platform by Bayer,”

Bayer, Whippany, 2014.

[28] Bayer HealthCare, “Size Specific Dose Estimate (SSDE) Calculations Including in Release 2.1 of

Bayer Healthcare's Radimetrics Enterprise Platform,” Bayer, Whippany, 2014.

[29] National Institute for Health and Care Excellence, “Radiation dose monitoring software for

medical imaging with ionising radiation,” 2017.

[30] “PACSHealth Partners With Virtual Phantoms to Improve Patient Radiation Dose Monitoring,”

Imaging Technology News, 13 July 2015. [Online]. Available:

https://www.itnonline.com/content/pacshealth-partners-virtual-phantoms-improve-patient-

radiation-dose-monitoring. [Accessed 8 February 2018].

[31] E. McDonagh, “OpenREM Documentation Release 0.9.0b3,” 2018.

[32] Toshiba, “Visualize your way to better patient safety: Infinix Dose Tracking System,” 2014.

[33] J. Seco and F. Verhaegen, Monte Carlo Techniques in Radiation Therapy, CRC Press, 2016.

[34] A. Kajaria, N. Sharma, S. Sharma, S. Pradhan and L. M. Aggarwal, “Review of Monte Carlo

Simulation in Radio Therapy Treatment Planning System for Modelling of Radiation Transport &

Dose Calculation,” VAICHARIKI, vol. III, no. 4, 2013.

[35] I. Kawrakow, E. Mainagra-Hing, D. Rogers, F. Tessier and B. R. Walters, “The EGSnrc Code

System: Monte Carlo Simulation of Electron and Photon Transport,” National Research Council

of Canada, Ottawa, 2018.

[36] D. W. Rogers, B. Walters and I. Kawrakow, “BEAMnrc Users Manual,” National Research Council

of Canada, Ottawa, 2018.

[37] B. Walters, I. Kawrakow and D. Rogers, “DOSXYZnrc User Manual,” National Research Council of

Canada, Ottowa, 2018.

[38] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge:

Cambridge University Press, 2004.

[39] T. S. Huang, “Computer Vision: Evolution and Promise,” 19th Cern Sch. Comput., pp. 21-25,

1996.

[40] K. Dawson-Howe, A Practical Introduction to Computer Vision with OpenCV, Wiley, 2014.

[41] B. Pinnamaneni, “Machine Vision Systems and Image Processing with Applications,” Journal of

Innovation in Computer Science and Engineering, vol. 2, no. 2, 2013.

[42] G. Bradski, “The OpenCV Library,” Dr. Dobb's Journal of Software Tools, 2000.

[43] T. Zhongwei, “High precision camera calibration,” General Mathematics, 2011.

60

[44] Z. Zhang, “A Flexible New Technique for Camera Calibration,” Microsoft Research, Redmond,

1998.

[45] L. Xiang, F. Echtler, C. Kerl, T. Wiedemeyer, L. Hanyazou, R. Gordon, F. Facioni, R. Wareham, M.

Goldhoorn, A. Gaborpapp, S. Fuchs, Imtatsch, J. Blake, Federico, H. Jungkurth, Y. Mingze,

Vinouz, D. Coleman, B. Burns, R. Rawat, S. Mokhov, P. Reynolds, P. Viae, M. Fraissinet-Tachet,

Ludique, J. Billingham and Alistair, “libfreenect2: Release 0.2,” Zenodo, 28 April 2016.

[46] K. Yamaguchi, “mexopencv v3.4.0,” [Online]. Available:

https://github.com/kyamagu/mexopencv. [Accessed 10 April 2018].

[47] A. Maimone and H. Fuchs, “Reducing interference between multiple structured light depth

sensors using motion,” in VR '12 Proceedings of the 2012 IEEE Virtual Reality, Washington,

2012.

[48] O. Wasenmüller and D. Stricker, “Comparison of the Kinect V1 and V2 Depth Images in Terms of

Accuracy and Precision,” in Computer Vision - ACCV 2016 International Workshops, 2016.

[49] Y. He, B. Liang, Y. Zou, J. He and J. Yang, “Depth Errors Analysis and correction for Time-of-Flight

(ToF) Cameras,” Sensors, vol. 17, 2017.

[50] M. Hadad, M. Saeedi-Moghadam and B. Zeinali-Rafsanjani, “Voxel dosimetry: Comparison of

MCNPX and DOSXYZnrc Monte Carlo codes in patient specific phantom calculations,”

Technology and Health Care, vol. 25, pp. 29-35, 2017.

[51] B. K. P. Horn, “Closed-form solution of absolute orientation using unit quaternions,” Journal of

the Optical Society of America, vol. 4, pp. 629-642, 1987.

[52] G. Poludniowski, G. Landry, F. DeBlois, P. Evans and F. Verhaegen, “SpekCalc: a program to

caclulate photon spectra from tungsten anode X-ray tubes,” Phys Med Biol, vol. 54, no. 19, pp.

433-438, 2009.

[53] S. Garrido-Jurado, R. Munoz-Salinas, F. Madrid-Cuevas and M. Marın-Jimenez, “Automatic

generation and detection of highly reliable fiducial markers under occlusion,” Pattern

Recognition, vol. 47, no. 6, pp. 2280-2292, 2014.

[54] P. W. Segars, G. Sturgeon, S. Mendonca, J. Grimes and W. B. Tsui, “4D XCAT phantom for

multimodality imaging research,” Med Phys, vol. 37, no. 9, pp. 4902-4915, 2010.

[55] P. W. Segars, J. Bond, J. Frush, S. Hon and C. Eckersley, “Population of anatomically variable 4D

XCAT adult phantoms for imaging research and optimization,” Med Phys, vol. 40, no. 4, p.

043701, 2013.

[56] B. Van Der Heyden, L. E. Schyns, M. Podesta, A. Vaniqui, I. P. Almeida, G. Landry and F.

Verhaegen, “VOXSI: A voxelized single- and dual-energy CT scenario generator for quantitative

imaging,” Physics and Imaging in Radiation Oncology, vol. 6, pp. 47-52, 2018.

[57] A. Laurent, F. Mistretta, D. Bottigioli, K. Dahel, C. Goujon, J.-F. Nicolas, A. Hennino and P. E.

Laurent, “Echographic measurement of skin thickness in adults by high frequency ultrasound to

asses the appropriate microneedle length for intradermal delivery of vaccines,” Vaccine, vol.

25, pp. 6423-6430, 2007.

61

[58] T. Jost and H. Hügli, “Fast ICP algorithms for shape registration,” in Pattern Recognition (In:

Lecture Notes in Computer Science) 2449, 2002, pp. 91-99.

[59] H. M. Kjer and J. Wilm, Evaluation of surface registation algorithms for PET motion correction,

Lyngby: Technical University of Denmark, 2010.

[60] ICRP, “The 2007 Recommendations of the International Commission on Radiological

Protection,” ICRP Publication 103, Vols. Ann. ICRP 37 (2-4), 2007.

[61] A. Jones, “Chapter 8: Fluoroscopic Imaging Systems,” in Diagnostic Radiology Physics, IAEA,

2014, pp. 183-207.

[62] C.-M. Ma, C. Coffey, L. DeWerd, C. Liu, R. Nath, S. Seltzer and J. Seuntjens, “AAPM protocol for

40-300 kV x-ray beam dosimetry in radiotherapy and radiobiology,” Medical Physics, vol. 28,

no. 6, pp. 868-893, 2001.

[63] B. P. McCabe, M. A. Speidel, T. L. Pike and M. S. Van Lysel, “Calibration of GafChromic XR-RV3

radiochromic film for skin dose measurements using a standardized x-ray spectra and a

commercial flatbed scanner,” Medical Physics, vol. 38, pp. 1919-1930, 2011.

[64] J. Farah, A. Trianni, O. Ciraj-Bjelac, I. Clairand, C. De Angelis, S. Delle Canne, L. Hadid, C. Huet, H.

Jarvinen, A. Negri, L. Novak, M. Pinto, T. Siiskonen, M. Waryn and Z. Knezevic, “Characterization

of XR-RV3 GafChromic films in standard laboratory and in clinical conditions and means to

evaluate uncertainties and reduce errors,” Medical Physics, vol. 42, pp. 4211-4226, 2015.

[65] T. Wiedemeyer, “IAI Kinect2,” Institute for Artifical Intelligence, University of Bremen, 2014.

[Online]. Available: https://github.com/code-iai/iai_kinect2. [Accessed 20 Juli 2018].

[66] F. Dunn and I. Parberry, 3D Math Primer for Graphics and Game Development, Texas:

Wordware Publishing, Inc, 2002.

62

Appendix A – Depth to color registration including source code sample
The source code sample below shows the class used to store image data and register color and

depth. This algorithm was inspired by Wiedemeyer’s approach in iai_kinectv2, a robotic operating

system (ROS) bridge for Libfreenect2 [65]. Routinely the registration is performed using a C++

algorithm called through a mex file for a fast calculation (cv.doseguardRegisterDepth), but the initial

MATLAB implementation of the algorithm is shorter and simpler to read in the MATLAB class

provided below. Note that the “doseguard.data.LookUpTable” class code is not shown but this class

generates a lookup table for each pixel that contains: the pixel position minus the principal point

divided by the focal length. This is done to avoid unnecessary operations as the results of these

operations stay the same for each frame from the same camera.

The registration code is started from the “registerDepth” method and follows several steps to attain

a color and depth image with the point in three-dimensional mapped to the same pixel.

First the “cv.initUndistortRectifyMap” function is called with an identity matrix as transformation to

bypass that step. This function follows a three step process: First the pixels (u,v) are converted to

coordinates using the infrared intrinsic camera parameters, principal point (c’) and focal length (f’) as

seen in equation (A.1).

� ←
� − 	,

�

�,
�

(A.1)
� ←

 − 	,
�

�,
�

Then the radial (k) and tangential distortion factor (p) are used to correct for lens distortion using

equation (A.2).

�, = � (1 + .��/ + ./ �0 + .1�2) + 24�� � + 4/(�/ + 2�/)
(A.2) �, = � (1 + .��/ + ./ �0 + .1�2) + 4�(�/ + 2�/) + 24/� �

As a final step the coordinates are projected back to pixel space using the color intrinsic camera

parameters as shown in equation (A.3) [42].

 5)4�(�,
) ← �′ �� + 	�
(A.3)

 5)4�(�,
) ← �′ �� + 	�

These two new maps are arrays of the same size as the full HD color image. They hold the x or y pixel

positions of the original depth image as if the image was originally taken by the infrared camera with

the color camera’s focal length and principal point.

Then these maps are used to perform a form of bilinear interpolation as shown in the method

“interpolateDepth”. A few additional checks were added to avoid reducing the sharpness of edges by

adding a check for difference in depth value. The new resulting image is the depth image as if it had

the intrinsic camera matrix of the color camera.

While the resolution and camera parameters are now the same for the color and depth image the

scene is still captured from 2 cameras that are not physically on the same position, this is solved by

63

projecting the points using the pinhole mode and the depth value from each pixel as described by

equation A.4 and the depth value is just equal to the depth value assigned to the pixel.

� =
� (� − 	�)

��

(A.1)
� =

� 7
 − 	�8
��

These three-dimensional points are the rigidly transformed by the transformation matrix that was

determined in the stereo calibration and projected back using the same pinhole model. The Z-buffer

algorithm is used to handle multiple points being reprojected back onto the same pixel, if this occurs

the all points but the closest one to the camera get rejected.

The final step is to remove lens distortion from the color [66] image as the registered depth has no

distortion after reprojecting.

Source code sample

classdef KinectImageData < matlab.mixin.Copyable

 % package doseguard.data

 %

 %---

 %**** updates / major changes **************************************

 % 04-04-2018 - class creation

 %

 %--

 %**** Class description ***

 %

 % // Summary

 % This class reads out the binary images written by the Odroid (or other

 % intermediate computer doing the recording)

 %

 % // Methods

 % obj.registerDepth uses the camera calibration parameters to change

 % the pixel coordinates of the depth map to match this of the color,

 % the resulting matched arrays are rectified color and registered depth

 % it tries to call the mex implementation first but uses the MATLAB

 % version if this is not compiled or the opencv library cannot be

 % called.

 %

 % obj.reprojectDepthMex uses a C++ implementation to speed up the

 % registration as it this was one of the bottlenecks of the

 % application, currently mex implementation runs at 0.1s, if a faster

 % registration is needed a GPU implementation could be made.

 %

 % obj.readBinaryFile reads in the image data from a binary file and is

 % automatically launched when a image data filepath is added or given

 % as input

 properties

 originalColor(:,:,:) uint8 = []

 infrared(:,:) single = []

 depth(:,:) single = []

 calibrationData(1,:) doseguard.data.CameraCalibrationData =

doseguard.data.CameraCalibrationData.empty

 transformationData(1,:) doseguard.analysis.TransformCoordinateSystems =

doseguard.analysis.TransformCoordinateSystems.empty;

64

 filePath(1,:) smart.io.Path = smart.io.Path.empty

 headerInfo(1,:) doseguard.io.ImportKinectData = doseguard.io.ImportKinectData.empty

 lookupTable(1,:) doseguard.data.LookUpTable = doseguard.data.LookUpTable.empty

 minimalDepth(1,1) = 0.3

 maximumDepth(1,1) = 5

 end

 properties (SetAccess = protected)

 rectifiedColor(:,:,:) uint8 = []

 registeredDepth(:,:) single = []

 end

 methods

 function newObj = KinectImageData(varargin)

 if nargin > 0

 for idx = 1:numel(varargin)

 if isa(varargin{idx},'smart.io.Path') || ischar(varargin{idx})

 assert(strcmpi(varargin{idx}.extension, '.rgbd'),'The file extension

is not .rgbd and thus the file does not contain the correct data');

 if ischar(varargin{idx})

 newObj.filePath = smart.io.Path(varargin{idx});

 else

 newObj.filePath = varargin{idx};

 end

 newObj.headerInfo = doseguard.io.ImportKinectData(newObj.filePath);

 [newObj.infrared, newObj.depth, newObj.originalColor] = ...

 newObj.headerInfo.readImagesFromRGBD;

 elseif isa(varargin{idx},'doseguard.data.CameraCalibrationData')

 newObj.calibrationData

 elseif isa(varargin{idx}, 'doseguard.io.ImportKinectData')

 newObj.headerInfo = varargin{idx};

 newObj.filePath = varargin{idx}.filePath;

 [newObj.infrared, newObj.depth, newObj.originalColor] = ...

 newObj.headerInfo.readImagesFromRGBD;

 elseif isa(varargin{idx}, 'doseguard.io.LookUpTable')

 newObj.lookupTable = varargin{idx};

 end

 end

 end

 end

 function registerDepthMex(this)

 [registeredDepth, this.rectifiedColor] = cv.doseguardRegisterDepth(...

 uint16(this.depth), this.originalColor,...

 this.calibrationData.colorMatrix,...

 this.calibrationData.infraredMatrix,...

 this.calibrationData.transformationMatrix,...

 this.calibrationData.infraredDistortionCoeffs,...

 this.calibrationData.colorDistortionCoeffs);

 this.registeredDepth = single(registeredDepth);

 end

 function registerDepth(this)

 try

 this.registerDepthMex;

 return

 catch

65

 warning('could not launch mexfile so running matlab code');

 end

 % initialize the same size depth image

 numberOfRows = size(this.originalColor,1);

 numberOfColumns = size(this.originalColor,2);

 scaledDepth = zeros(numberOfRows, numberOfColumns);

 % create the map of depth with the resolution and camera matrix

 % of the color image, opencv uses [width height] instead of

 % [rows columns]

 [mapX, mapY] = cv.initUndistortRectifyMap(...

 this.calibrationData.infraredMatrix,...

 this.calibrationData.infraredDistortionCoeffs,...

 [numberOfColumns numberOfRows], 'NewCameraMatrix',...

 this.calibrationData.colorMatrix, 'M1Type', 'single1');

 % interpolate the depthValue to the new resolution and camera

 % matrix

 for rowIdx = 1:numberOfRows

 for columnIdx = 1:numberOfColumns

 scaledDepth(rowIdx, columnIdx) = ...

 this.interpolateDepth(mapX(rowIdx,columnIdx),...

 mapY(rowIdx,columnIdx));

 end

 end

 if isempty(this.lookupTable)

 this.lookupTable = doseguard.data.LookUpTable(this);

 this.lookupTable.generateLookUp(this);

 lookupX = this.lookupTable.lookupTableX;

 lookupY = this.lookupTable.lookupTableY;

 else

 % get the lookups in memory to avoid having to grab it from

 % the handle every time (need to check if it is actually

 % faster later on

 lookupX = this.lookupTable.lookupTableX;

 lookupY = this.lookupTable.lookupTableY;

 end

 % preallocating

 registeredDepth = zeros(numberOfRows, numberOfColumns);

 scaledDepth = double(scaledDepth ./ 1000);

 fx = this.calibrationData.colorMatrix(1,1);

 fy = this.calibrationData.colorMatrix(2,2);

 cx = this.calibrationData.colorMatrix(1,3);

 cy = this.calibrationData.colorMatrix(2,3);

 for rowIdx = 1:numberOfRows

 for columnIdx = 1:numberOfColumns

 % conversion from mm to meter

 depthValue = scaledDepth(rowIdx, columnIdx);

 % cut off extremely close and far values to avoid

 % unreliable results

 if depthValue < this.minimalDepth || depthValue > this.maximumDepth

 continue

 end

 % assign the original 3D coordinate using the pinhole

66

 % camera model

 originalCoordinates = [...

 lookupX(columnIdx)*depthValue;...

 lookupY(rowIdx)*depthValue;...

 depthValue; 1];

 % apply the rotation and translation to convert from

 % the viewing frame from depth to color space

 transformedPoints = this.calibrationData.transformationMatrix *...

 originalCoordinates;

 % project back to color image plane to get the depthmap

 % in same pixel coordinates as the color image

 inverseDepth = 1/transformedPoints(3);

 newX = (fx * transformedPoints(1)) * inverseDepth + cx;

 newY = (fy * transformedPoints(2)) * inverseDepth + cy;

 % round of to integer value to use as pixel coordinates

 newX = round(newX);

 newY = round(newY);

 % filter out pixel values outside of the image range

 if (newX >= 1 && newX <= numberOfColumns && newY >= 1 && newY <=

numberOfRows)

 % return to millimeters

 newDepth = single(transformedPoints(3) * 1000);

 % use Z-buffer

 previousRegistration = registeredDepth(newY, newX);

 if previousRegistration == 0 || newDepth < previousRegistration

 registeredDepth(newY, newX) = newDepth;

 end

 end

 end

 end

 this.registeredDepth = cv.medianBlur(single(registeredDepth), 'KSize', 5);

 % the registration requires a rectified color image

 % initialize undistortion maps

 [map1Color, map2Color] = ...

 cv.initUndistortRectifyMap(this.calibrationData.colorMatrix,...

 this.calibrationData.colorDistortionCoeffs, [numberOfColumns numberOfRows],...

 'NewCameraMatrix', this.calibrationData.colorMatrix,...

 'M1Type', 'int16');

 % create undistorted color image

 this.rectifiedColor = cv.remap(this.originalColor,...

 map1Color, map2Color, 'Interpolation', 'Lanczos4');

 end

 function depthValue = interpolateDepth(this, x, y)

 % initiate the values for bilineair interpolation

 xLow = floor(x);

 xHeight = ceil(x);

 yLow = floor(y);

67

 yHeight = ceil(y);

 % if the map value does not fit inside the original depth image

 % assign a zero value

 if xLow < 1 || yLow < 1 || xHeight > size(this.depth, 2) || yHeight >

size(this.depth, 1)

 depthValue = 0;

 return

 end

 % check if the depth image contains valid information or if the

 % value is 0 (outside of active depth range)

 depthLeftTop = this.depth(yLow, xLow);

 depthRightTop = this.depth(yLow, xHeight);

 depthLeftBottom = this.depth(yHeight, xLow);

 depthRightBottom = this.depth(yHeight, xHeight);

 validLeftTop = depthLeftTop > 0;

 validRightTop = depthRightTop > 0;

 validLeftBottom = depthLeftBottom > 0;

 validRightBottom = depthRightBottom > 0;

 numberOfValids = validLeftTop + validRightTop + validLeftBottom +

validRightBottom;

 % don't allow more than 2 bad pixels because interpolation is

 % not very reliable then

 if numberOfValids < 3

 depthValue = 0;

 return

 end

 % detect extreme edges to avoid unrealistic results

 averageDepth = (depthLeftTop + depthRightTop +...

 depthLeftBottom + depthRightBottom) / numberOfValids;

 thresholdValue = 0.01 * averageDepth;

 validLeftTop = abs(depthLeftTop - averageDepth) < thresholdValue;

 validRightTop = abs(depthRightTop - averageDepth) < thresholdValue;

 validLeftBottom = abs(depthLeftBottom - averageDepth) < thresholdValue;

 validRightBottom = abs(depthRightBottom - averageDepth) < thresholdValue;

 numberOfValids = validLeftTop + validRightTop + validLeftBottom +

validRightBottom;

 if(numberOfValids < 3)

 depthValue = 0;

 return

 end

 distanceXLow = x - xLow;

 distanceXHigh = 1.0 - distanceXLow;

 distanceYLow = y - yLow;

 distanceYHigh = 1.0 - distanceYLow;

 normalizationValue = sqrt(2.0);

 if validLeftTop

 finalLeftTop = normalizationValue - sqrt(distanceXLow + distanceYLow);

 else

 finalLeftTop = 0;

 end

68

 if validRightTop

 finalRightTop = normalizationValue - sqrt(distanceXHigh + distanceYLow);

 else

 finalRightTop = 0;

 end

 if validLeftBottom

 finalLeftBottom = normalizationValue - sqrt(distanceXLow + distanceYHigh);

 else

 finalLeftBottom = 0;

 end

 if validRightBottom

 finalRightBottom = normalizationValue - sqrt(distanceXHigh + distanceYHigh);

 else

 finalRightBottom = 0;

 end

 sumValues = finalLeftTop + finalRightTop + finalLeftBottom + finalRightBottom;

 depthValue = ((depthLeftTop * finalLeftTop +...

 depthRightTop * finalRightTop +...

 depthLeftBottom * finalLeftBottom +...

 depthRightBottom * finalRightBottom) / sumValues) + 0.5;

 end

 end % end of methods no attributes

end % end of class

69

Appendix B – MATLAB implementation Horn’s method
Small part of the class “doseguard.analysis.TransformCoordinateSystems” to illustrate the

implementation of Horn’s method for absolute orientation using unit quaternions as described in

[51].

classdef TransformCoordinateSystems < handle

 % package doseguard.analysis

 properties [...]

 properties (SetAccess = protected) [...]

 properties (Hidden) [...]

 methods [...]

 methods (Access = protected) [...]

 methods (Static) [...]

 function [rotationMatrix, translationVector] =

findTransformation(referenceCoordinates, measuredCoordinates)

 % this code uses horn's method for absolute orientation and

 % uses the same variable names as used in the paper

 assert(all(size(referenceCoordinates) == size(measuredCoordinates)),'Reference

coordinates and measured coordinates need to be the same size');

 % get centroids

 measuredCentroid = mean(measuredCoordinates,2);

 referenceCentroid = mean(referenceCoordinates,2);

 % deduct the centroids from the measured points so only the

 % rotation remains (we assume no scaling as all our markers are

 % rigid and should be the same size for all cameras.

 allMeasuredCentered = bsxfun(@minus,measuredCoordinates,measuredCentroid);

 allReferenceCentered = bsxfun(@minus,referenceCoordinates,referenceCentroid);

 % Sum of all products (M = [Sxx Sxy Sxz; Syx Syy Syz; Szx Szy Szz])

 M = zeros(3,3);

 for idx = 1:length(allMeasuredCentered)

 intermedM = allMeasuredCentered(:,idx) * allReferenceCentered(:,idx).';

 M = M + intermedM;

 end

 % the sum and difference matrix (N)

 N = [(M(1,1)+M(2,2)+M(3,3)), (M(2,3)-M(3,2)), (M(3,1)-M(1,3)), (M(1,2)-M(2,1));...

 (M(2,3)-M(3,2)),(M(1,1)-M(2,2)-M(3,3)),(M(1,2)+M(2,1)),(M(3,1)+M(1,3));...

 (M(3,1)-M(1,3)),(M(1,2)+M(2,1)),(-M(1,1)+M(2,2)-M(3,3)),(M(2,3)+M(3,2));...

 (M(1,2)-M(2,1)),(M(3,1)+M(1,3)),(M(2,3)+M(3,2)),(-M(1,1)-M(2,2)+M(3,3))];

 % the unit quaternion that maximizes q'Nq is the eigenvector

 % corresponding to the most positive eigenvalue of matrix N so

 % we find the eigenvalue and its max

 [eigenVectors, eigenValues] = eig(N);

 % handle complex numbers

 eigenValues = real(eigenValues);

70

 % remove all the zeros as we only have the diagonal and get a

 % vector instead of a matrix

 eigenValues(eigenValues == 0) = [];

 [~,indexMaxEigenValue] = max(eigenValues);

 quaternion = eigenVectors(:,indexMaxEigenValue);

 % avoid complex numbers, remove imaginary parts

 quaternion = real(quaternion);

 % result of the root expression can be positive or negative so

 % we use this to make it so that the max of our quaternion is

 % positive

 [~,indexMax] = max(abs(quaternion));

 if quaternion(indexMax) < 0

 quaternion = -quaternion;

 end

 % convert to a unit quaternion

 quaternion = quaternion ./ norm(quaternion);

 % split the quaternions to make the rotation matrix conversion

 % more readable

 q0=quaternion(1);

 qx=quaternion(2);

 qy=quaternion(3);

 qz=quaternion(4);

 % construct the rotation matrix

 rotationMatrix = [...

 (q0^2 + qx^2 - qy^2 - qz^2), (2*(qx*qy - q0*qz)), (2*(qx*qz + q0*qy));...

 (2*(qy*qx + q0*qz)), (q0^2 - qx^2 + qy^2 - qz^2), (2*(qy*qz - q0*qx));...

 (2*(qz*qx - q0*qy)), (2*(qz*qy + q0*qx)), (q0^2 - qx^2 - qy^2 + qz^2)];

 % now find the translation using the previously determined

 % centroids (they should match after rotation)

 translationVector = ...

 referenceCentroid - rotationMatrix * measuredCentroid;

 end

 end

end

71

Appendix C – Effect of photon splitting number
Forcing photon interaction to improve dose statistics in surface voxels improved the efficiency

compared to no variance reduction. However splitting photons resulted in a more significant increase

in efficiency when the splitting number was carefully selected.

Photon splitting is an essential variance reduction technique to increase the efficiency of DOSXYZnrc

dose calculations. The parameter used to control photon splitting is nsplit. When nsplit is higher than

1m each photon is forced to interact nsplit times along its path. Each split photon has its weight

reduced by a factor of 1/nsplit.

Efficiency (Ɛ) of Monte Carlo simulations is calculated using equation (C.1).

 9 =

1
:/;

 (C.1)

Where σ is the uncertainty in the voxels of interest and T is the calculation time. In Figure 30 the

voxels of interest are all these with doses higher than 50% of the maximum dose. The graph clearly

indicates the difference in optimal nsplit for skin and organ dose calculations.

Figure 30 ‒ Efficiency as a function of the photon splitting number in the case of 26 cm x 26 cm field on a thorax phantom for

skin dose and organ dose

72

73

Appendix D – Simulation times for different field and voxel sizes

Table 11 ‒ Calculation times for skin dose calculations with 5 voxels rejection distance on a 5 mm x 5 mm x 5 mm voxel size

upper body phantom for different field sizes and uncertainties. Total time includes file input/output

Field Size Uncertainty (%) Total time (s) CPU time (s) Number of histories

5x5

2.47 6.2 3.6 160,000

4.91 3.5 0.9 40,000

9.63 2.8 0.2 10,000

10x10

2.56 14.9 12.4 500,000

5.12 5.8 3.2 125,000

10.21 3.4 0.8 31,250

15x15

2.50 36.3 33.7 1,125,000

4.99 10.9 8.3 281,250

9.94 4.6 2.1 70,000

20x20

2.46 65.4 62.9 2,000,000

4.92 18.2 15.7 500,000

9.74 6.5 3.9 125,000

30x30

2.43 157.6 155 4,500,000

4.83 42.2 39.7 1,125,000

9.63 12.3 9.7 281,250

Table 12 ‒ Calculation times for skin dose calculations with 9 voxels rejection distance on a 3 mm x 3 mm x 3 mm voxel size

upper body phantom for different field sizes and uncertainties. Total time includes file input/output

Field Size Uncertainty (%) Total time (s) CPU time (s) Number of histories

5x5
4.92 9.1 3.3 135,000

9.84 6.8 0.8 33,750

10x10
4.96 18.5 12.4 480,000

9.82 9.2 3.2 120,000

15x15
5.01 34.5 28.4 990,000

9.95 13.0 7.1 247,500

20x20
4.93 62.4 56.4 1,760,000

9.83 19.8 13.7 440,000

30x30
5.00 115.4 109.4 3,780,000

9.92 41.9 36.0 945,000

74

Table 13 ‒ Calculation times for organ dose calculations on a 5 mm x 5 mm x 5 mm voxel size upper body phantom for

different field sizes and uncertainties. Total time includes file input/output

Field Size Uncertainty (%) Total time (s) CPU time (s) Number of histories

5x5

2.50 7.8 5.2 92,000

5.00 4.2 1.5 23,000

9.84 2.9 0.3 5,750

10x10

2.45 20.3 17.8 300,000

4.98 7.2 4.6 75,000

9.99 3.7 1.2 18,750

15x15

2.35 43.2 40.7 675,000

5.00 13 10.4 168,750

9.35 5.2 2.6 43,000

20x20

2.37 74.2 71.6 1,200,000

4.70 20.5 18 300,000

9.28 7 4.5 75,000

Table 14 ‒ Calculation times for organ dose calculations on a 3 mm x 3 mm x 3 mm voxel size upper body phantom for

different field sizes and uncertainties. Total time includes file input/output

Field Size Uncertainty (%) Total time (s) CPU time (s) Number of histories

5x5
5.22 9.9 4.1 60,000

9.35 7.2 1.3 18,000

10x10
4.95 21.6 15.8 220,000

9.89 9.7 4.0 55,000

15x15
4.76 43.7 37.9 495,000

9.34 15.6 9.6 123,750

20x20
4.66 73.9 67.8 880,000

9.21 21.5 15.8 220,000

30x30
4.72 153.9 148.1 1,980,000

8.99 43.7 37.9 495,000

75

