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 The Story Of My Research 
Geologists are always interested in how different rocks are distributed beneath the Earths’ surface. 

Because drilling and coring is a very expensive business, they only have a few points available where 

they know exactly what is lying beneath their feet. What lies in between these control points is then 

estimated by constructing several possible 3D-models and choosing the most plausible. Traditionally, 

this modelling is done by geostatistical methods, where statistics are used to estimate what lies 

between the wells. Mathematical formulas however do not always produce realistic subsurface 

models, as they do not account for the natural processes that formed these rocks.  

An alternative way of realizing a subsurface model, is by reconstructing the geological history of a basin 

in chronological order. Such a Stratigraphic Forward Model (SFM) simulates all geological processes 

that were involved in the formation of a sedimentary body over time. In practice, the software builds 

a 3D model by adding layers of sediments in several time steps. As such, it can reconstruct how a lake 

or sea is gradually filled up with sand and mud, or how coral reefs grow over several million years. To 

validate the completed model, the simulated ‘layer cake’ is matched in selected control points with 

available borehole data. The complexity in this modelling approach lies in the simplification of the 

geological processes. Multiple natural processes participate in evolution of a sedimentary basin and 

interact with one other. The global climate, for example, affects the ocean currents, which in turn 

affect the distribution of sediment particles. By simulating each individual process, geologists can 

estimate their relative impact and gain insight in how they interact. 

For my master thesis, I chose to construct my own stratigraphic forward model on the Maldives 

carbonate platform from scratch. Therefore, I had to study all the possible processes that contributed 

to the formation of this extensively studied, submerged sedimentary body. In order to gain a complete 

overview of its depositional history, I had to study a great variety of geological processes. This involved 

reading papers that were focused on very different topics, ranging from stratigraphy to structural 

geology, sedimentology, biology, geophysics, mathematics, paleoclimatology, paleontology and 

reservoir modeling. Doing so, I genuinely felt like all of the theoretical concepts that I had studied over 

the years, as a bachelor and master student, finally came together into a single tangible model. This 

3D stratigraphic model (figure) is a product of multiple simulated processes, but also the result of a 

long journey of research and development: months of data gathering, more than 300 ‘trial-and-error’ 

simulations involving many nerve-racking obstacles, but also gave me great joy and satisfaction when 

the final model took shape. 
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Chapter 1: Introduction 
The Maldives atoll archipelago forms the top of a 3000 m thick submerged carbonate platform in the 

western Indian Ocean. The fascinating depositional history of the Maldives carbonate platform was 

extensively studied for both exploration and academic purposes, providing a large database of 

publications. This vast amount of available data makes it an ideal setting to study the formation and 

sequence stratigraphy of carbonate platforms. Although the evolution of the Maldives is fairly well 

understood, the contribution of different processes in the platform development remains a matter of 

debate. The complex web of interacting, scale-dependent controls on stratigraphy makes it difficult to 

assess the individual impact of each parameter on the carbonate platform architecture. Modelling 

depositional geometries by simulating genetic processes has therefore been of major interest to 

understand how carbonate platforms are constructed. Stratigraphic forward modelling (SFM) allows 

the quantification of each controlling factor and gaining a deeper insight in how their combined effect 

produces a specific stratigraphic architecture. This study uses such a 3D-stratigraphic forward 

modelling software, DionisosFlow, to improve our understanding of the interaction between different 

carbonate-producing organisms under changing environmental conditions. Once a stratigraphic model 

is calibrated to the ground-truth, it can be used to test several theoretical concepts about carbonate 

depositional mechanisms. In addition, the model forms a predictive tool for the depositional facies 

distribution and stratigraphic geometry, away from points of control. Facies distribution prediction 

with SFM is, however, still in its early days, while the exploration industry still works on these 

advancements. More research on how to develop such models and how to tie them to the geological 

reality is necessary to generate a streamlined approach.  

This study aims at gaining a deeper insight in the possibilities and limitations of applying SFM to a real 

setting from the geological past. The comprehensively studied Maldives carbonate platform forms an 

excellent case study, as several conceptual models were developed for its genesis. This study will focus 

on a section of the platform, formed from the late Oligocene to the Middle Miocene that is 

exceptionally well documented by seismic and well data. Consequently, a genetic model proposed by 

Betzler et al. (2018) is tested by simulating its main driving mechanisms. The calibration procedure of 

the stratigraphic model aims to provide a 3D depositional facies distribution and a deeper insight in 

the biotic changes within the platform. Two specific hypotheses are tested, surrounding these biotic 

changes under changing environmental conditions. At the same time, this study provides a workflow 

and guideline for future modelling efforts, focused on how to incorporate theoretical concepts, 

calculated assumptions and multi-scale geological data in a single model. The proposed model setup 

could function as an analogue for similar settings of the same age window. 

1.1 Carbonate sequence stratigraphy 
Since the end of the 20th century, sequence stratigraphy has been widely applied to study sedimentary 

systems. The concepts of sequence stratigraphy are used to study these systems by defining 

“genetically-related” stratigraphic units in the sedimentary record, namely the depositional sequences 

(Pomar and Haq, 2016). Each of these successions is defined by erosional or depositional surfaces, 

caused by changes in relative sea level. A strong rise in sea-level, a transgression, leads to deepening 

of the basin with the typical formation of maximum flooding surfaces, often found in the sedimentary 

record as condensed sections. Strong sea-level drops on the other hand, may expose coastal 

environments, leaving them vulnerable to erosion and thus creating unconformities and sequence 

boundaries. Due to the cyclic nature of sea-level changes, these surfaces will envelop depositionally 

related parasequences. The stacking pattern of several parasequences can be linked to the balance 

between higher order sea-level changes and sedimentation rates. Three stacking geometries are 

differentiated: aggradation, retrogradation and progradation (figure 1). Based on their geometry, the 
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parasequences are grouped in systems tracts. Depending on the author, three or four systems tracts 

make up a sequence, representing a full sea-level cycle (Pomar and Ward, 1994; Posamentier and 

Allen, 1999). A sequence is accordingly defined as a succession of relatively conformable strata 

bounded at their upper surface and base by unconformities and their correlative conformities (Vail et 

al., 1977), i.e. the sequence boundaries.  

 

Figure 1. Depositional architectures as a function of accommodation space and sediment influx (Emery and Myers, 1996) 

The initial conceptual models for sequence stratigraphic analysis (e.g. Vail et al., 1977) were based on 

the physical behavior of sediment particles and were mainly applied to clastic systems. Hydrodynamic 

thresholds for sediment mobilization played an important role in these models as they affect the 

stratigraphic geometry. Jervey (1988) suggested accommodation space as the major control on the 

stacking of sequences, which he defined as “the space available for sediment accumulation”. The 

changes in accommodation were tfhe result of relative sea-level changes, which depend both on the 

global eustasy and local tectonics. Later, several authors noted that sediment influx exerted at least a 

co-equal control on the available accommodation space (Posamentier and Allen, 1999; Catuneanu, 

2002). As comprehension of the influence of other hydrodynamic processes on the redistribution of 

sediment, like slope and wave effects, improved, Swift and Thorne (1991) defined the shelf equilibrium 

profile as a dynamic equilibrium between sediment input and hydraulic energy. According to this 

principle the sediments can accumulate until they reach the equilibrium profile. Above this theoretical 

surface the hydraulic energy is sufficient to transport the sediment and redistribute it along the shelf. 

The hydraulic energy depends on tidal, wave and storm energy and their associated current strengths. 

In clastic systems, the shelf redistribution processes follow a textural gradient, dominated by the 

particle size, which allows a lithofacies differentiation (Swift and Thorne, 1991). At stratigraphic scales, 

the shelf equilibrium profile can be seen as a physical upper boundary of sedimentary aggradation, 

marking the maximal accommodation space in a clastic system (Pomar and Haq, 2016). 
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The success of these first models, also known as the Exxon models, for predictive purposes in clastic 

basin analysis called for a comparable model for carbonate systems (Pomar and Haq, 2016). Carbonate 

systems, however do not follow the same hydrodynamic rules as their clastic counterparts. Carbonate 

shelves can produce a great diversity in depositional profiles, inconsistent with the shelf equilibrium 

profile (Pomar, 2001b). The cause for this variability lies within the biological nature of carbonate 

sediment production (figure 3). The sediment-producing organisms are bound to specific production 

loci by their ecological requirements. The in situ production by these carbonate factories is the first 

major difference compared to clastic systems, in which sediment is brought in from the hinterland. 

The second one is the ability of these factories to build rigid sedimentary structures, that defy the 

clastic hydrodynamic thresholds. These two factors led Pomar and Kendall (2008) to propose a 

subdivision of the accommodation, as defined by Jervey (1988), into physical and ecological 

accommodation. Physical accommodation would be constrained to “the space available for 

sedimentary fill by a lithoclastic system in a setting dominated by the character of the local 

hydrodynamics”, equivalent to the shelf equilibrium profile (Pomar and Kendall, 2008). The ecological 

accommodation is the capacity of organisms to produce and to accumulate sediments above and 

below this hydrodynamic threshold (Pomar, 2001b, 2001a). The wide spectrum of carbonate 

depositional profiles is a result of the interplay between these two types of accommodation. 

In contrast to clastic sediment, carbonate sediment is mostly produced in situ by an assemblage of 

organisms. Schlager (2000, 2005) distinguishes three basic modes of carbonate production: abiotic, 

biotically induced and biotically controlled carbonate precipitation. These modes combine into 

different production systems or ‘carbonate factories’ (figure 2):  

1. Tropical shallow-water systems (T-factories) consist mainly of photoautotrophic biotically 

controlled producers such as green and red algae, living often in symbiosis with heterotrophic 

organisms like hermatypic corals, large benthic foraminifera and certain bivalves. Less 

represented are abiotic or biotically induced precipitation in the form of marine cements and 

ooids. These factories occur nowadays in warm surface waters between 30° N and S of the 

equator, following the 20°C surface water winter isotherms. This system’s strong light 

dependency is responsible for the narrow production depth range with a high growth 

potential, making it particularly sensitive to drowning. 

2. Cool-water systems (C-factories) are dominated by heterotrophic biotically controlled 

producers such as foraminifera, sponges, bivalves, gastropods, brachiopods, bryozoans and 

echinoderms. This makes them less dependent on light but all the more on a steady nutrient 

supply. Photo-autotrophic organisms can contribute to the community in the form of red algae 

and symbiotic foraminifers. Their production profile reaches greater depths than the T-

factories but with lower growth rates. The C-factories only occur in cooler waters where they 

can outcompete the otherwise fast-growing T-factories. They can be found from the T-factory 

limits up to polar latitudes when provided with nutrients. 

3. Mud-mound systems (M-factories) are mainly constructed by abiotic and biotically induced 

precipitation. The fine-grained micritic carbonate is produced by microbes that are able to 

survive in aphotic and poorly oxygenated, but nutrient-rich waters. Pores within this 

automicritic framework can be filled by marine cements. Despite their wide depth range M-

factories occur rarely in shallow waters due to competition with the other factories. However, 

during periods of low oxygenation or after severe extinctions in the geological past, these 

mounds could extend into shallow waters. 

 



10 
 

Each of these factories not only possesses its own depth profile but also different accumulation rates. 

Accumulation rates are the ability of a carbonate factory to build up vertically until sea level. These 

rates are in most cases substantially lower than the growth potential, because (1) calculated 

accumulation rates are rarely corrected for compaction, (2) the growth potential is often limited by 

sea level causing the platform to prograde and (3) due to erosion and remobilization the buildup 

components are partially exported. Consequently, aggradation rates can only be used to quantify the 

lower limit of the growth potential (Bosscher and Schlager, 1993). Through geological time, the 

accumulation rates follow a scaled decreasing trend with increasing observed time interval (Sadler, 

1981). Nevertheless, T-factories consistently have higher mean rates than their fellow factories over 

the various time intervals. C-factories only reach 25 % of tropical rates, while M-factories are estimated 

at 80-90 % (Schlager, 2005). The relationship of the carbonate factories with water depth and 

production rates indicates the interdependency of the accommodation space and the sediment input 

in carbonate systems. 

 

 

Figure 2. Left: Production rates of carbonate factories in function of depth as a fraction of the tropical standard (Schlager, 
2005). Right: Carbonate production of main biota groups, divided by light dependence (Pomar, 2001b) 

 

Next to their latitudinal distribution, each carbonate factory can be decomposed into its constructing 

organisms. As light is undoubtedly the most influential parameter on biotically controlled production, 

Pomar (2001b) groups carbonate-producing organisms into three communities based on their light 

dependency (figure 3): (1) euphotic communities live in shallow, well illuminated, high-energetic 

environments; (2) oligophotic communities in deeper, less illuminated areas below wave base and (3) 

photo-independent biota, which can occur over the entire water column but are dependent on 

nutrients. Each community composition further relies on the ecological requirements of its composing 

organisms, such as nutrient availability, salinity, oxygenation, water chemistry, temperature gradients, 

water energy and substrate. To add to the complexity of classifying carbonate producers, all these 

ecological requirements change over time as the biota evolve (Pomar and Kendall, 2008). 
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Each biotic system has its own competence for building above and below the hydrodynamic shelf 

equilibrium profile. This ability, defined as the ecological accommodation, depends on the type of 

sediments that is produced, the production loci and the sediment transport (Pomar and Kendall, 2008). 

Clastic sediments are sorted along a textural gradient from coarse to fine grained as they are 

transported down the continental margin, leading to a bimodal grain-size distribution. Sedimentary 

carbonate sediments on the other hand, do not follow this pattern as they are produced in situ. This 

multimodal grain-size distribution will rather reflect the size of the skeleton particles, produced in 

place, than be a proxy for hydrodynamic energy (Pomar and Haq, 2016). In addition, the sediment 

dispersal by hydrodynamics can be obstructed by processes like sediment trapping, binding and 

baffling, framework construction and early cementation (Pomar, 2001a). For example, coarse skeleton 

particles can be formed beneath the wave base and remain in place due to a lack of hydraulic energy, 

while fine-grained particles within the tidal zone can be bound by microbial activity (Pomar and Haq, 

2016). 

The impact of ecological accommodation on the depositional profile, is excellently illustrated by the 

large range of carbonate platform types that can develop under similar global and regional conditions 

(Pomar et al., 2012). A carbonate platform is a general term, used for carbonate sequences with a large 

variation in architecture (Pomar, 2001b). Several attempts to classify these structures are based on 

morphological descriptions with homoclinal ramps and rimmed shelves used as end members of a 

wide variety in architectures (Burchette and Wright, 1992; Handford and Loucks, 1993). Pomar (2001b) 

argues, however, that these classifications lack the incorporation of genetic factors, linking the 

platform type to its ecological accommodation. A key example is the Miocene of the Mediterranean, 

where several platform types are associated with different ecological communities, while formed 

under similar global and regional circumstances (Pomar et al., 2012). In this comparison, reef-rimmed 

platforms and open platforms possess the maximum capacity for building above the hydrodynamic 

boundaries associated with physical accommodation. The in situ growth of euphotic large-skeleton 

metazoans, provides a rigid framework for sediment accumulation. Distally steepened and homoclinal 

ramps are dominated by oligophotic and aphotic carbonate production. They are mainly composed of 

loose grains, with some encrusting organisms, making them prone to sediment redistribution along 

the shelf equilibrium profile. Intermediate geometries tend to one of these end members depending 

on their ecological accommodation and sediment transport from euphotic to oligophotic zone and vice 

versa (Pomar et al., 2012). 

In summary, regional and global factors will determine the intrabasinal conditions and the 

hydrodynamical regime and so the physical accommodation changes. Depending on the ecological 

requirements of the organisms, a specific biotic community will form under these intrabasinal 

conditions. Several biotic communities can exist next to each other and interact, forming the carbonate 

factory. The composition of the carbonate factory not only controls the type of carbonate production, 

but also the production loci and the alteration of sediment redistribution. These three components 

will make up the ecological accommodation which can change through time with biological evolution. 

The interplay of ecological and physical accommodation will determine the depositional profile of the 

carbonate platform.  

Each component in this complex web of interdependent parameters influences the stratigraphic 

architecture in one way or another. Quantifying and assessing the impact of each individual control 

remains a challenge in carbonate sequence stratigraphy. Due to evolution, different controls can 

dominate in a different setting, either in the geological past or present. Many general conceptual 

models were formulated over decades of scientific research but still require validation in specified 

settings. 
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Figure 3. Sequence stratigraphic controls in clastic and carbonate system (Pomar and Haq, 2016) 

1.2 Stratigraphic Forward Modelling 
The general idea behind Stratigraphic Forward Modelling (SFM) is to quantify and simulate the 

geological processes over time to reproduce the morphology and internal architecture of sedimentary 

bodies (Watney et al., 1999). It is a computer simulation technique that creates synthetic stratal 

patterns by simulating tectonic and stratigraphic processes such as subsidence and uplift, sediment 

supply or production, and the various processes of sediment transport and deposition (Burgess, 2012). 

The first stratigraphic models were developed to quantitatively test conceptual ideas on depositional 

mechanisms over geological time scales. If stratal geometries, predicted by a conceptual model, could 

be reproduced by a mathematical description of its conceptual processes, the proposed model proves 

to be internally consistent and the processes properly understood (Warrlich et al., 2002). Moreover, 

such numerical modelling provides a quantitative expression of interacting processes within the 

defined system (Burgess, 2012). This has been proven particularly useful in systems where several 

stratigraphic controls interact to derive the most influential ones (Seard et al., 2013; Kolodka et al., 

2016).  
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Several types of stratigraphic models were developed over the last few decades, with the most recent 

ones simulating three-dimensional scenarios. Some models are developed to simulate specific 

environments, like fluvial plains (Cojan et al., 2005) or carbonate platforms (Warrlich et al., 2002). 

Others, known as combined whole system models, can include several environments to represent a 

source-to-sink simulation. These models include representation of several processes, such as ocean 

currents, waves, slope failures, rainfall, evaporation and are applicable in both clastic and carbonate 

environments (Burgess, 2012). One of the most advanced programs of this kind is DionisosFlow 

(Granjeon and Joseph, 1999), which has become an industry standard in hydrocarbon exploration. 

Among 3D models, it has been proven to be the most robust in various settings, as it handles both 

long-term and short-term processes (Shafie and Madon, 2008). 

SFM has been proven to be an effective basin modelling technique applicable to a wide spectrum of 

scales, both in space and time. DionisosFlow, as prime example, has been used for both modelling 

millennial scale stratigraphy (Csato et al., 2014), and for basin evolution over ten million years 

(Granjeon and Joseph, 1999). Not only the duration but also the age of the basins varies from 

Cretaceous (Hawie et al., 2015) to Miocene (Kolodka et al., 2016) carbonate platforms, to the relatively 

recent Holocene drowning of the Tahiti reefs (Seard et al., 2013). The latter was constructed on a much 

smaller model domain size (9.6 km2) compared to an exploration scale model for the Lower Cretaceous 

of Oman (90,000 km2) (Al-Salmi et al., 2019). This wide spectrum of possibilities for a single program, 

creates perspectives for future research on its applicability and use for stratigraphy and facies 

predictions on various scales. This diversity in applications is unfortunately also reflected in the 

diversity in modelling approaches and workflows. Each setting requires different simplifications to 

represent its dominant depositional mechanisms. As SFM is still in its early days, more studies are 

necessary to provide analogues for future modelling attempts. 

So far, the application goals of SFM have been essentially twofold, namely for experimental and 

predictive purposes. Firstly, the technique is often applied in an experimental way to validate 

theoretical concepts of physical systems. These studies test the variability in stratigraphic architecture 

of a pre-defined sedimentary system in response to individual parameter changes. This has been used 

in clastic systems to for example test model diffusion equations (Granjeon and Joseph, 1999; Granjeon, 

2014) or research the theoretical stratigraphic architecture under short-term climatic cycles (Csato et 

al., 2014). In carbonate systems, it is often used to test the impact of environmental parameters, linked 

to the ecologic accommodation of the system (Pomar and Kendall, 2008), on the resulting platform 

geometry (Williams et al., 2011). Such studies of the environmental control on platform architecture 

have also been performed on real examples derived from the geological record. Their main objective 

is to derive key parameters from the complex web in the evolution of a specific basin (Kolodka et al., 

2016).  

Secondly, SFM is used in petroleum exploration to predict the distribution of source and reservoir 

rocks. The quality of a hydrocarbon reservoir depends on its porosity and permeability. Carbonate 

reservoirs are in particular notorious for their internal complexity in these domains (Agar and 

Hampson, 2014). They can exhibit significant facies changes within short distances, resulting in 

unpredictable production behavior (Marzouk et al., 1995). Their heterogeneous pore distribution is in 

first instance generated by the depositional system and the biotic producers. This primary porosity is 

post-depositionally altered by tectonism, burial and various diagenetic processes. Enhanced secondary 

porosity can be formed by dissolution, fracturing and faulting. Conversely, porosity can be reduced by 

cementation and compaction (Mazzullo, 2004). Dolomitization, a process unique to carbonate rocks, 

plays another important role in the alteration of the primary porosity distribution (Braithwaite et al., 

2004). Carbonate rocks, built up by biota with rigid frameworks are able to better preserve their 
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primary porosity (Pomar and Haq, 2016). Especially reef reservoirs provide, as such, a strong link 

between specific porosity fabrics and depositional facies (Nurmi et al., 1990).  

Predicting depositional facies away from points of control, like expensive wells, remains a major 

challenge in exploration geology. Traditionally, stochastic and semivariogram-based methods are used 

to interpolate inter-well rock properties in static geological models (Lucia and Fogg, 1990). These 

geostatistical methods partially reduce the uncertainties, inherent to geological modelling, but are 

prone to deviation from the depositional morphology (Warrlich et al., 2008). Especially in carbonate 

rocks, the complex sedimentary geometries like mounds and clinoforms, prove to be difficult to grasp 

with traditional stochastic methods. Furthermore, these methods might fail to sufficiently capture the 

depositional facies heterogeneities due to a lack of accountability for geological processes (Hawie et 

al., 2015). The texture heterogeneities in a carbonate reservoir occur on various scales, depending on 

their genetic processes. Thus, a combination of different scale-dependent geostatistic modelling 

techniques is often required to recreate the natural distribution of rock properties (Amour et al., 2013).  

To incorporate more genetic factors in the modelling strategy, process-based forward models were 

developed to predict the vertical and lateral distribution of depositional environments. Because this 

primary texture is controlled by processes acting in space at the time of deposition, it is possible to 

both conceptualize and model these depositional mechanisms (Whitaker et al., 2014). Due to its 

forward modelling approach, SFM uses a pre-determined set of input parameters and mathematical 

equations to ensure an internal consistency within the model (Shafie and Madon, 2008). This rule-

based approach provides a more robust extrapolation potential than certain stochastic models. Once 

a model is calibrated to a specific dataset it provides a rigorous mathematical consistency for 

prediction, based on the forward model input data and its algorithms. This requires however that all 

processes involved in the strata deposition are properly understood and described (Warrlich et al., 

2008). The deterministic approach of SFM does not necessarily make traditional stochastic modelling 

techniques obsolete but provides a helpful addition to improve facies distribution models and gain 

deeper insight in the processes behind the stratigraphic architecture (Hawie et al., 2015). The results 

of the stratigraphic simulation can be compared to the seismic interpretation to refine the static 

geological model, which leads to improved dynamic reservoir modelling (Warrlich et al., 2008). 

An accurate stratigraphic model for prediction purposes requires a good understanding of all the 

processes involved in the formation of the stratigraphic body and a proper constraints on the 

controlling input parameters (Warrlich et al., 2008). Modern analogues are often used to replace 

unknown conditions or reduce uncertainties on ill-defined concepts. Further testing of multiple 

scenarios is often required and performed through a sensitivity analysis on the model output. For such 

an analysis, several simulations are executed by changing one parameter at a time, while the other are 

kept constant. The results of these simulations are then compared to observed data, such as wells or 

seismic data, to assess the impact of each parameter (Seard et al., 2013; Kolodka et al., 2016; Busson 

et al., 2019). Most recent innovations in SFM, allow to run automated sensitivity analyses with multiple 

realizations that yield quantified information on the impact of each individual parameter based on the 

fit with a reference case scenario (Warrlich et al., 2008; Hawie et al., 2015). 
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Chapter 2: Geological setting and evolution of the Maldives carbonate 

platform 

2.1 The modern Maldives 
The Maldives archipelago consists of a north-south orientated chain of atolls, located in the western 

Indian Ocean (figure 4). The atolls are organized in a double row, delineating the rims of an isolated, 

elongated carbonate platform. The platform contains a bank internal basin, the Inner Sea of the 

Maldives, that reaches depths of up to 550 m. The shallow sea is connected to the deeper Indian Ocean 

by channels, cutting through the platform rim and separating the atoll clusters (Betzler et al., 2018). 

The individual atolls have a maximum elevation of 5 m above sea level which makes the Republic of 

Maldives, the lowest country on Earth (Gischler et al., 2008). The water depths in the atoll lagoons 

varies between 31 and 82 m (Belopolsky and Droxler, 2003).  

The Maldives’ equatorial climate is characterized by the Indian monsoon system. This system 

generates a seasonally reversing wind system, creating strong ocean currents. During Northern 

Hemisphere summer, south-western winds generate eastward directed currents, the Southwest 

Monsoon Current. In winter, Northeast Monsoon winds take over and create westward flows in the 

form of the North Equatorial Current. Inter-seasonally, Indian Ocean westerlies concentrate all 

eastward flow into a narrow, 600 km wide band along the equator, the Equatorial Jet. These intense 

surface currents can reach down to 200 m of water depth with velocities up to 1.3 m/s (Tomczak and 

Godfrey, 2001). Within the modern atoll’s channels this results in velocities up to 2 m/s, strongly 

influencing the depositional processes. These strong currents reshaped the seafloor of Inner Sea 

depositing sediment-drift bodies around the atolls (Betzler et al., 2018).  

 

Figure 4. (a) Map of western Indian Ocean with monsoon system and (B) location of the Maldives archipelago. (b) Maldives 
archipelago with locations of Inner Sea, (C) study area and wells ARI-1 and NMA-1. (c) Bathymetry map of study area, 

similar to the model dimensions, with atoll contours, locations of IODP 359 wells and seismic line NEOMA-P65 (after Betzler 
et al., 2018) 

2.2 Chagos-Laccadives Ridge 
The Maldives carbonate platform was initially formed on top of the Chagos-Laccadives ridge. This 

aseismic volcanic structure stretches from the southwestern coast of India along the 73° meridian to 

south of the equator. Duncan and Hargraves (1990) researched the origin of this structure and linked 

its genesis to stationary hotspot activity, located nowadays beneath the island of Réunion. They 

provided geochronologic evidence that this hotspot became active with the rapid eruption of the 

Deccan flood basalts in Western India at the Cretaceous-Paleogene transition (65-68 Ma). While the 

Indian and African plate moved northwards, the remaining hotspot trail produced several volcanic 
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plateaus, such as the basements of the Laccadives, the Maldives (57 Ma), the Chagos bank (49 Ma) and 

the Mascarene plateau (45-31 Ma) (Duncan and Hargraves, 1990). This Paleocene basement served as 

a topographic high for the initial carbonate factories. 

 

2.3 Maldives carbonate platform architecture 

2.3.1 Previous studies and available data 
The architecture of the Maldives carbonate platform has been studied for both academic and 

exploration purposes, providing a vast amount of publications. The available data contains interpreted 

seismic profiles from different surveys, giving insights in the internal and external architecture of the 

platform. A total of 13 wells were drilled across the platform, from which four reach the volcanic 

basement. In these points of control, the well descriptions provide a continuous log with information 

on lithology, stratigraphy and depositional environment.  

In the 70’s the Maldives were first investigated for hydrocarbon exploration by Elf Aquitaine, who held 

an exploration license for the Inner Sea basin. They acquired 6750 km of 2-D deep marine seismic 

profiles in the central basin and in the atoll lagoons. An accompanying exploration well (NMA-1) was 

drilled in the North Male atoll lagoon. The well with a total depth of 2221 m penetrated the carbonate 

platform from recent to Eocene deposits up until the Paleocene basement. The well encountered 

potential reservoirs and source rocks but no hydrocarbons. The combined data, studied by Aubert and 

Droxler (1996) and by Purdy and Bertram (1993), provided various insights in the evolution of the 

carbonate platform since the Eocene to recent times. The interpretation of the unmigrated seismic 

data suffered, however, from the low resolution and several seismic artefacts, due to a lack of 

technological advancement at the time (Belopolsky and Droxler, 2003). 

During the 1980’s a second wave of interest in the Maldives occurred. In the context of the Ocean 

Drilling Program (ODP), leg 115, three wells were drilled through the carbonate platform in 1987 

(Backman et al., 1988). Site 714 and 715, drilled on the platform margin, targeted the volcanic 

basement and were used in the study of the origin of the Chagos-Laccadives ridge (Duncan and 

Hargraves, 1990). Site 716 was located in the Northern part of the Inner Sea and recovered 226 m of 

periplatform sediment from the Pleistocene and Miocene (Backman et al., 1988).  

In 1989, the Royal Dutch/Shell acquired the exploration concession for the Inner Sea. Shell obtained 

seismic data along a rectangular grid spanning the entire Inner Sea and some inter-atoll passages over 

an area of 275 x 50 km. The streamer lengths did not allow to collect data within the atoll lagoons. The 

densely spaced (1-2 km) 2-D sections provide medium-resolution (10-25 m) data with a good 

penetration up to the volcanic basement. Shell drilled an additional well, ARI-1, in the Inner Sea with 

a total depth of 3365 m, including 50 m of basement basalts. Again, no hydrocarbons were 

encountered due to a lack of sealing and mature source rocks. Shell terminated the Maldives project 

and disclosed all seismic and well data in 1997 to Rice University in Houston, Texas. These data were 

studied by Belopolsky (2000) and Belopolsky and Droxler (2003, 2004a, 2004b), who provided an 

extensive overview of the Cenozoic evolution of the Maldives carbonate platform. They were able 

visualize the subsurface in great detail, thanks to the dense seismic grid. Belopolsky and Droxler 

(2004a) produced several time structure horizon maps throughout the carbonate platform. 
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In December 2007, the German research vessel R/V METEOR set out to acquire multibeam imagery, 

seafloor samples and seismic reflection data on the Maldives platform. This expedition M74/4 aimed 

at gaining a deeper understanding of the climatic and paleoceanographic effects on the Neogene 

evolution of the Maldives, hence the NEOMA project. The multibeam images were used to research 

the morphology of several drowned reef terraces in the Maldives archipelago (Betzler et al., 2009, 

2013; Fürstenau et al., 2010). The seismic data consists of 1400 km of seismic reflection profiles, 

covering previously surveyed and unsurveyed areas in the northern half of the Inner Sea. The vertical 

resolution of this data is higher (4-6 m) than the former industrial data from Shell and Elf, but offers 

less penetration. Well correlation was executed with wells NMA-1, ARI-1 and ODP site 716 (Betzler et 

al., 2009, 2013; Lüdmann et al., 2013). 

Building further on the results of the NEOMA project, eight new wells were drilled in the framework 

of the IODP Expedition 359 in 2015 (figure 6). Sedimentary cores of sites U1465, U1466, U1468, U1469, 

and U1470 contained a sedimentary sequence covering a transition from carbonate platform to drift 

sequences from Oligocene to Pleistocene ages. Sites U1467, U1471, and U1472 only recovered 

Miocene to Pleistocene carbonate drift sequences. Stratigraphic, geophysical and geochemical core 

measurements allowed to improve the age determination of the seismic stratigraphy and gain insight 

in the timing of Neogene climatic changes (appendix A) (Betzler et al., 2016, 2018).  

All this available data was used to gain a complete understanding of the driving mechanisms behind 

the evolution of the Maldives carbonate platform. Interpreted deep seismic profiles from Purdy and 

Bertram (1993), Aubert and Droxler (1996), and Belopolsky and Droxler (2003, 2004b, 2004a) were 

used to acquire a 3D overview of the complete internal platform architecture. Shallower interpreted 

sections from Betzler et al. (2013, 2018) provided a more detailed insight in the Neogene evolution of 

the platform and will form the backbone of this study. These high-resolution seismic profiles and 

comprehensive well data are used to directly calibrate the developed stratigraphic model. 

Furthermore, the conceptual genetic model, outlined by Betzler et al. (2018) is tested by modelling its 

main driving processes  and reproducing the seismic stratigraphy. 

2.3.2 Cenozoic evolution 
The evolution of the Maldives carbonate platform can be divided into three episodes, roughly 

concurring with the Paleogene, the Neogene and the Quaternary. The first episode consists of the 

Eocene installment and growth of shallow, flat-topped carbonate banks on the Paleocene volcanic 

basement (figure 5). By the latest Oligocene this carbonate sequence is almost completely drowned, 

with exception of the marginal platform rims. After this first drowning event, a second phase of 

carbonate bank growth arises and continues until the late Middle Miocene. In the Late Miocene, the 

carbonate platform underwent a second regional-scale drowning, driven by an intensified South Asian 

Monsoon. The strong currents associated with this third episode, shaped the Maldives archipelago into 

its present configuration of separated atolls (Betzler et al., 2009, 2013, 2018). 

2.3.2.1 Paleogene 

The sedimentation during the Paleogene is dominated by tectonic instability of the Paleocene 

basement (60-50 Ma). Purdy and Bertram (1993) characterized the structure of the volcanic ridge with 

seismic and subsidence data from well NMA-1. The N-S orientated ridge appears to be cut by an 

oblique en échelon graben system, formed due to minor crustal extension until the Oligocene. The 

extension was caused by the up-doming of the crust by volcanic activity along the Réunion hotspot 

track. Describing and mapping of the graben system was done by Purdy and Bertram (1993), Aubert 

and Droxler (1996) and in more detail by Belopolsky and Droxler (2004a), thanks to the higher 

resolution of the Shell seismic grid.  
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The en échelon pattern across the Chagos-Laccadives ridge is a near-surface expression of the left-

lateral transform fault called the Chagos fracture zone. In the subsurface of the Maldives Inner Sea two 

axial grabens with a north-northwest – south-southeast orientation are present. Both consist of several 

normal faults cutting through basement blocks and overlying sediments. Movement along these faults 

continued until the early Oligocene indicating the end of the crustal extension (Purdy and Bertram, 

1993). Deepening of the grabens during the Paleogene turned them into deeper seaways that were 

filled with sediment transported from the graben rims (Belopolsky and Droxler, 2004a).  

The shoulders of the grabens formed topographic highs, allowing the wide-spread establishment of 

shallow, flat-topped carbonates in the early Eocene. These banks aggraded and backstepped 

throughout the Eocene and Oligocene due to a subsidence-induced, relative sea-level rise. The position 

of the grabens controlled the initial formation of the carbonate banks. The interior slope breaks 

remained pronounced due to the continuous activity of the faults. Consequently, the seaways keep 

mimicking the initial graben shape and position. Nevertheless, the deepening grabens were gradually 

filled by pelagic and periplatform sediments, reducing the seaway depths. The late Oligocene is 

characterized by the development of elevated bank margins, separating the bank interior from the 

open ocean (Belopolsky and Droxler, 2003, 2004a). The protected lagoon environments evolved from 

flat topped carbonate banks into mounded patch reefs, while the exterior marginal reef crest extended 

almost along the entire platform rim. This change in depositional profile can be linked to the first large-

scale drowning of the platform, marking the end of the first episode of continuous platform growth 

(Belopolsky and Droxler, 2004a). 

2.3.2.2 Neogene 

The Neogene of the Maldives is characterized by tectonic stability throughout the carbonate bank with 

little faulting and no tectonically driven subsidence until the Late Miocene (Purdy and Bertram, 1993). 

Furthermore, several authors traced the late Oligocene drowning unconformity across the platform to 

the same depths, arguing against differential subsidence past this point (Aubert and Droxler, 1996; 

Belopolsky and Droxler, 2004a; Betzler et al., 2009, 2013). In absence of tectonically induced 

subsidence during the Early and Middle Miocene (Purdy and Bertram, 1993), the depositional 

geometry is almost entirely controlled by changes in eustasy. Due to this sea-level controlled platform 

evolution, the Neogene is commonly subdivided by its sequence stratigraphy. Belopolsky and Droxler 

(2003, 2004a, 2004b) used the seismic reflection amplitude to correlate the stratigraphic sequences 

with sea-level cycles and presented a model that was fully interpreted in function of relative sea-level 

fluctuations. 

After acquisition of new data in the NEOMA project, Betzler et al. (2009, 2013) suggested that there 

was more to the Neogene evolution than pure sea-level control. Based on the new high-resolution 

seismic data and detailed core information from IODP Expedition 359, a new model and stratigraphic 

subdivision was proposed by Betzler et al. (2018). Five intervals with a distinctive configuration were 

identified in the Neogene platform stratigraphy (figure 6). The intervals are separated by six sequence 

boundaries, identified as stratigraphic turning points in sedimentation patterns. Age determination of 

the sequence boundaries with micropaleontologic evidence provides a solid timeframe for detailed 

platform architecture analysis. The general trend during the Neogene sedimentation consists of a 

gradual infill of the Inner Sea by carbonate platform growth up until the Middle Miocene. At the latest 

Middle Miocene the sedimentation pattern shifted abruptly towards the deposition of sediment drifts 

under increasing influence of vigorous currents. 
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Drowning unconformity: O/M horizon (late Oligocene to Early Miocene) 

A drowning unconformity from the latest Oligocene, referred to as horizon O/M, can be traced across 

the platform and serves as the first turning point in its evolution through the Neogene (figure 6) 

(Betzler et al., 2018). The latest Oligocene is marked by a global sea-level rise of approximately 50 m 

after a sea-level lowstand (Miller et al., 2005). This is confirmed by several wells that record a 

substantial deepening trend throughout the Maldives between 24 and 22 Ma (Betzler et al., 2018). 

Aubert and Droxler (1996) suggested exposure and karstification of this horizon prior to the drowning. 

Later studies confirmed a pre-Miocene sea-level drop but found no evidence of exposure (Belopolsky 

and Droxler, 2004a). In any case, the late-Oligocene rimmed platform configuration reacted to the 

subsequent sea-level rise by backstepping to the outer margins. The platform interior developed into 

drowning patch reefs while the exterior rims were restricted to a narrow zone in contact with the open 

ocean. These marginal reef crests kept up with the sea-level rise by aggrading throughout the earliest 

Miocene. Belopolsky and Droxler (2004a) explain the widening of the Inner Sea by a difference in 

growth potential between platform interior and exterior in combination with a sea-level rise. The 

higher growth potential of the aggrading rims compared to the protected interior, resulted in a 

platform geometry, referred to as an “empty bucket” (Kendall and Schlager, 1981; Schlager, 1993). 

Betzler et al. (2018) argue that a sea-level rise of 50 m at the O/M boundary (Miller et al., 2005) is 

insufficient to cause platform drowning and backstepping. They propose an alternative cause based 

on the presence of organic-rich layers in several cores in this time interval (Betzler et al., 2018). These 

sapropel-like layers could indicate an oxygen deficiency and an increased nutrient input associated 

with an upwelling event. High nutrient inputs are known to reduce the growth potential of carbonate 

factories and might have contributed to the partial drowning of the platform (Hallock and Schlager, 

1986). 

Sea-level controlled platform growth (Early- to Middle Miocene) 

After the reef growth was confined to a 5 km wide strip at the platform edges, these rims prograded 

inwards during the Miocene, gradually enclosing the Inner Sea. The general prograding trend towards 

the basin center can be observed across the entire platform, although it was more substantial on the 

western than the eastern margin (Aubert and Droxler, 1996; Belopolsky and Droxler, 2004a). This 

asymmetric growth of the bank margins is best explained by the dominance of easterly currents during 

the Early to Middle Miocene, stimulating progradation on the leeward bank edge (Betzler et al., 2013). 

During the Early Miocene, a shallow-water carbonate succession was established on the Oligocene 

drowned platform interior. This succession developed a carbonate ramp depositional profile, marking 

the second turning point at its base (PS1; 22 Ma) (figure 6). The carbonate ramp steepened through 

aggradation, forming an interior well-defined bank edge (Betzler et al., 2018). The ramp-to-rimmed 

platform evolution was in agreement with the global sea-level rise, culminating in a highstand around 

20 Ma (Miller et al., 2005). The following sea-level drop forced the platform to prograde inwards and 

closed the cycle with a sea-level lowstand at 18.5 Ma (turning point 3; PS5) (figure 6). The consecutive 

episode of sea-level rise and highstand was associated with a new platform aggradation phase that 

ended around 15.1 Ma. Simultaneously, the outer platform margins were backstepping, away from the 

open Indian Ocean (Betzler et al., 2018). This time interval corresponds with a warm climate period 

with associated high sea levels that lasted from 17 to 14.7 Ma. This period, known as the Miocene 

Climate Optimum (MCO), embodied global annual mean temperatures that were 3-8°C higher than 

pre-industrial levels and atmospheric pCO2 values reaching around 500 ppm (Zachos et al., 2001; 

Holbourn et al., 2015). After the MCO, Earth underwent a long-term global cooling that resulted in the 

onset of Northern Hemisphere glaciation at 2.8 Ma (Holbourn et al., 2005). The associated eustatic 

sea-level lowering is recorded in the stratigraphic record of the Maldives by another phase of platform 

progradation. The sequence boundary at 15.1 Ma marks this geometry turnover, assigned to the fourth 
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turning point (PS8) (figure 6). After this second progradational phase, the excellent correlation 

between global sea-level changes and the sequence stratigraphy of the Maldives carbonate platform 

ends abruptly at 13 Ma. This sequence boundary, forming the fifth turning point (DS1), marks the onset 

of a completely different depositional system (figure 6) (Betzler et al., 2018).  

Current controlled sedimentation of drift bodies (Middle Miocene to Pliocene) 

The Middle- to Late Miocene platform evolution is characterized by partial drowning of the bank and 

development of channels. These channels cut perpendicular through the elongated bank edges, 

creating a connection with the open ocean. Some separated bank parts resisted the drowning and kept 

aggrading to present sea level, leading to the present atoll configuration. This partial bank drowning 

was formerly interpreted in function of changes in relative sea level (Purdy and Bertram, 1993; Aubert 

and Droxler, 1996; Belopolsky and Droxler, 2004a). Aubert and Droxler (1996) acknowledge that the 

genetic relationship between these channels and the bank drowning, remained unclear due to a lack 

of sedimentological and high-resolution seismic data. Betzler et al. (2009) proposed a new model to 

explain the channel origin by the establishment of the South Asian Monsoon (SAM) system.  

Around the Middle- to Late Miocene transition several climate changes transpired, that turned around 

the sedimentation patterns in the Indian Ocean. The uplift of the Himalaya, caused an increased 

sediment flux into the Indian Ocean around 11 Ma (Rea, 1992; Zheng et al., 2004) and a peak in Indus 

fan sedimentation rate between 16 and 11 Ma (Clift et al., 2008). This impactful tectonic event, 

combined with closure of the Tethys created a seasonal atmospheric pattern with strong reversing 

winds. This monsoonal wind system generated vigorous ocean currents, inducing upwelling over 

topographic highs (Betzler et al., 2016). Planktonic foraminifera from the Arabian Sea were used to 

date these upwelling events and provided evidence that this SAM system developed at 12.9 Ma and 

the summer monsoon came to its full force around 7 Ma (Kroon et al., 1991; Gupta et al., 2015). 

Additionally, the stratigraphic record combined with geochemical evidence on the IODP 359 cores 

suggests that the onset of drift deposition occurred within a few 100 kyrs (Betzler et al., 2016). 

The onset of the SAM has several negative effects on the platform growth, which eventually resulted 

in a stepwise partial drowning that ended during the early Pliocene (Betzler et al., 2009). Nutrient 

influx, associated with upwelling events are known to suppress coral reef growth (Hallock and Schlager, 

1986). After the MCO, Earth underwent a global cooling, provoking a long-term eustatic sea-level 

lowering (Holbourn et al., 2005). This caused the platform to become frequently exposed, terminating 

the carbonate production. When these platforms were submerged again during minor sea-level cycles, 

the currents were too strong for the ecosystem to recover (Betzler et al., 2016). Instead, the currents 

widened the channels in the platform rim to passages in between separated atolls. The eroded 

sediment was redeposited in the Inner Sea as drift fans, which were further shaped by bottom currents 

into contourite drifts. As these bottom currents swept away the sediment around the atolls, 

progradation was inhibited (Lüdmann et al., 2013). A last factor, that contributed to the drowning of 

the platform was the expansion of the Oxygen Minimum Zone (OMZ) from the Arabian Sea into the 

Maldives during the Late Miocene (Betzler et al., 2016). 

2.3.2.3 Quaternary: Aggradation of the individual atolls (Pliocene to recent) 

The stepwise drowning of the Maldives carbonate platform ended at 3.8 Ma, forming the sixth and last 

stratigraphic turning point (figure 6) (Betzler et al., 2018). The rims of the carbonate platform were cut 

into a double row of dispersed individual atolls. Gradual eustatic lowering and a retraction of the OMZ 

allowed the individual atolls to aggrade again and keep up with sea level until present times (Betzler 

et al., 2016).   
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Chapter 3: Methods 

3.1 Modelling workflow 
Building a stratigraphic forward model for a sedimentary body involves a procedure of simplification 

and conceptualization of its genetic processes. An overview of how this was tackled in this study is 

depicted in a workflow diagram in figure 8. The first step starts with a detailed study of the sedimentary 

system, focused on published literature. A realistic geological model requires namely that all 

sedimentary processes involved in the deposition are fully understood (Warrlich et al., 2008). After 

understanding the genesis of the sedimentary body, the deposition mechanism must be transferred 

into several key parameters. A first selection of impactful stratigraphic controls is desirable, because 

the more uncertain parameters are included in the model, the more difficult the model calibration 

becomes. The selection of key parameters is then quantified and constrained by sedimentological 

evidence from the study area or from similar settings. This leads to a subdivision of well-constrained 

input parameters and parameters with variable uncertainties. Depending on the amount of uncertain 

parameters and the size of their respective uncertainties, it might be necessary to make assumptions, 

in order to facilitate the calibration process (Warrlich et al., 2008). Due to the deterministic nature of 

stratigraphic forward modelling, all parameters need a single value assigned before a model can be 

produced. This result is then evaluated as a function of its plausibility after which the input parameters 

are altered in order to fine-tune the model. This strenuous calibration process of ‘trial-and-error’ can 

become complex, when too many uncertain parameters are involved. The model result is evaluated in 

function of calibration data on the modeled basin, such as wells and seismic data. Wells allow to 

calibrate the model at points of control in terms of lithology and thickness. Well data, such as a gamma 

ray logs can for example be directly compared with simulated sediment properties of the 3D model, 

like mud content. Facies logs can be used for indirect comparison, through a depositional facies 

classification of the stratigraphic grid, based on its properties. Thickness of simulated sequences can 

be calibrated with time markers from the wells. Extensive well data in the proposed study area is 

available from the IODP expedition 359, with well markers (Betzler et al., 2017) and a lithological 

interpretation into depositional facies (Betzler et al., 2018). Lastly, interpreted seismic profiles (figure 

6, appendix A) were used to derive depositional morphologies. Lacking conversion to the depth 

domain, they were not used to tie the simulated sequences to interpreted sequence boundaries.  

 

Figure 8. Modelling workflow for each simulation 
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3.2 DionisosFlow 
This study uses the 3D numerical modelling software DionisosFlow, developed by the Institut Français 

du Pétrole (IFP). DionisosFlow is based on a water-driven diffusion that allows simulating sedimentary 

and tectonic processes in both carbonate and siliciclastic settings. It was developed to model geometry 

and facies of sedimentary bodies over regional spatial scales (10 to 100 km) and geological time scales 

(10 kyr to 100 Myr) in a sequence of time steps (Granjeon and Joseph, 1999; Granjeon, 2014). 

The model construction is founded on an initial paleobathymetry at a given age, which is divided in 

grid cells according to the size of the model domain. From the defined initial age, the simulation creates 

new grid layers in a sequence of time steps, for a specified time interval. The size of the grid cells and 

the time step determine the simulation duration and are limited by the computing power of the 

hardware. For each newly created grid cell, the software considers three main stratigraphic processes, 

based on its position in space and time:  

1. The available accommodation space for sediment infill, determined by the subsidence and 

eustasy level. Subsidence is computed from a set of user-defined subsidence maps. The 

eustatic sea level is retrieved by sampling a eustasy curve at each model time step. 

2. The sediment accumulation, which can be clastic supply, basement erosion, carbonate 

production or evaporite precipitation. In carbonate settings the production happens in situ 

and depends on the ratio between production values for each sediment class. The production 

for each class is defined over time and depth and can be further restricted by ecological 

requirements, such as wave energy, substrate and turbidity. The defined production rates 

form the sum of the benthic and pelagic production over the entire water column. 

3. The sediment transport, importing and exporting sediment to and from its neighboring cells. 

The sediment transport is calculated by diffusion equations, fit to simulate sediment transport 

at a regional scale (Granjeon and Joseph, 1999; Granjeon, 2014). Two types of transport can 

be simulated with DionisosFlow: (1) long-term transport driven by slope-action, wave energy 

and water discharge and (2) short-term transport like debris-flows. Long-term transport 

equation, used in this study, can be written as a sum of three linear equations (Seard et al., 

2013; Hawie et al., 2015): 

𝑄 =  𝐾𝑔𝑟𝑎𝑣𝑖𝑡𝑦 × 𝑆 + 𝐾𝑤𝑎𝑡𝑒𝑟 × ∅𝑤𝑎𝑡𝑒𝑟 × 𝑆 +  𝐾𝑤𝑎𝑣𝑒 × 𝐸𝑤𝑎𝑣𝑒 × 𝑆 

with Q representing the average sediment flow (km2/kyr), S the slope, K the diffusion 

coefficient of each process (km2/kyr), Øwater the water flow and Ewave the wave energy. The 

diffusion coefficients (K) of each process have to be estimated by the user for each sediment 

class, in function of the grain size and depositional environment, continental or marine. The 

sedimentation and/or erosion is calculated at each point from a mass conservation equation 

and defined erosion rates. After prediction of the sediment distribution by the diffusion 

equation, the slope stability in each cell is checked. If the slope angle exceeds the static angle 

of repose of the composing grain-size fractions, all sediments are moved downslope until an 

equilibrium is reached. Lastly, the compaction of the sediment can be calculated from burial 

laws and sediment load estimation (Granjeon, 2014).  

Upon creation, each cell is characterized by its thickness and several depositional properties, such as 

bathymetry, slope, sedimentation rate, wave energy and the composing fractions of each sediment 

class (Seard et al., 2013). Based on these properties the 3D model grid can be classified into user-

defined facies. 

  



25 
 

Chapter 4: Model Design 

4.1 Pre-processing: Input parameters definition 
The parametrization of the depositional mechanism starts with quantifying and constraining the input 

parameters from literature data. Based on the available data set, the input parameters were 

subdivided in two categories: the basin conditions and the sediment characteristics. Overall, the basin 

conditions contained much less uncertainties than the sediment properties. Therefore, the quantified 

basin parameters, combined with some assumptions, were used as a solid framework on which various 

scenarios of carbonate sedimentation could be tested. After a suitable representation of the 

depositional mechanism was validated, several hypotheses on the stratigraphic controls were 

evaluated. Due to the low constraints on sediment properties, most notably production rates and 

transport properties, this process required more than 300 simulations. This section will discuss the 

data on which quantified input parameters are based and outline several concepts in carbonate 

production that helped to constrain the more uncertain parameters.  

Each simulation ran from 25.75 Ma to 13 Ma, in 51 time steps, each 0.25 Ma in length. The total time 

interval, corresponds with the four first episodes of platform evolution with distinct geometry, 

separated by five stratigraphic turning points (figure 6) (Betzler et al., 2018). This conceptual model 

was based on the sequence stratigraphy of the western platform margin, because its 

progradation/aggradation trends are more pronounced than on the eastern margin. This study will try 

to reconstruct these western margin trends by simulating the depositional processes that formed each 

sequence. The produced sequence volumes represent fully compacted sediment loads, matching with 

the present-day volumes. Compaction laws were not used in this study, as they greatly complicate the 

calibration of the model (Al-Salmi et al., 2019). Moreover, compaction laws in carbonate sequences 

are ill-constrained due to variable cementation and lithification of each fabric (Purdy and Bertram, 

1993). Properly accounting for this process would require knowledge of the lithification and pressure 

solution history of each interval up until the present-day sedimentary cover. 

4.1.1 Basin conditions 

4.1.1.1 Domain definition and initial bathymetry construction 

Before any other input parameter can be tested through simulation, the software needs an initial 

bathymetric surface, upon which new grid layers are created. In the Maldives carbonate platform, the 

O/M horizon creates a strong reflection, clearly visible in seismic reflection profiles from various 

publications (Aubert and Droxler, 1996; Belopolsky and Droxler, 2003, 2004a, 2004b; Betzler et al., 

2013, 2018). This drowning unconformity forms an ideal model base surface that can be traced 

throughout the entire platform. 

Well data from NMA-1, ARI-1 (Aubert and Droxler, 1996), ODP 716 (Belopolsky, 2000), and all wells 

from IODP 359 (Betzler et al., 2017) were used in Petrel to construct a stratigraphic framework. All 

published seismic sections (Aubert and Droxler, 1996; Belopolsky, 2000; Belopolsky and Droxler, 2003, 

2004a, 2004b; Betzler et al., 2013, 2018; Lüdmann et al., 2013) were digitized, georeferenced and 

fitted to the well data, in absence of a depth conversion. Based on well markers for ground-truth and 

seismic profiles for its morphology, the topography of the O/M horizon was approximated. Further 

detailed surface editing was based on the time-structure map from Belopolsky and Droxler (2004a). 

The entire surface was elevated to paleo-sea level, correcting for an estimated total subsidence of 

1130 m (Purdy and Bertram, 1993), assuming that the Eocene shallow-water platform had not been 

exposed (Belopolsky and Droxler, 2004a).  
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Figure 9. Top and oblique 3D view of the reconstructed O/M horizon across the entire Maldives carbonate platform. The 
elevated outer rims consist of Paleogene shallow carbonates sequences. The inner seaways mimic the graben morphology, 

while being filled up largely with periplatform sediments. 

 

Figure 10. Top and oblique 3D view of the initial paleobathymetry used as a base for the stratigraphic model construction. 
The surface was sliced out of the northern part of the reconstructed O/M horizon, fitting with the size of the study area and 

elevated to paleosea level. 
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The resulting initial bathymetric surface spanned the entire width of the Maldives carbonate platform 

and ocean floor from 72° 23’ E to 73°44’ °E and most of the present central Maldives atolls from 2 ° N 

to 6 ° N (figure 9). This large domain required a grid cell size of 2000 m x 2000 m to be able to run a 

simulation, which is too large to represent progradation trends over a few kilometers. Therefore, an 

E-W slice of the large domain was selected as study area between 4°39’ N to 5°01’N (figure 10), similar 

to the study area in figure 4 (Betzler et al., 2018). This study area was chosen to contain most of the 

seismic profiles and wells, so the initial bathymetry would be constrained as best as possible. The size 

of the model domain was subdivided in 300 x 80 grid cells, each 500 m x 500 m in size. The initial 

bathymetry was assumed to be a well constrained, certain parameter and remained constant for all 

simulations. 

 

4.1.1.2 Basement subsidence 

The tectonic regime of the Maldives is remarkably stable since the latest Oligocene, with no recent 

faulting, nor signs of differential subsidence (Belopolsky and Droxler, 2004a; Betzler et al., 2013, 2018). 

The region can be considered as a far-field site, regarding ice load of continental margins, making the 

impact of glacio-isostatic effects negligible (Fürstenau et al., 2010). Purdy and Bertram (1993) 

presented a single back-stripped subsidence curve for well NMA-1, based on bulk density calculations 

from the log (figure 10). The loaded subsidence curve shows a gradually increasing subsidence under 

an increasing sedimentary load. The unloaded subsidence curve on the other hand shows three 

episodes of tectonic stability, interrupted by three shorter phases of accelerated subsidence, which 

currently are still left unexplained. In any case, a total subsidence of around 500 m can be derived from 

the loaded curve for the interval from 25.75 Ma to 13 Ma. In addition, a total subsidence of 400 m was 

estimated by Betzler et al. (2013) for the interval of 23- 13 Ma. Other long-term subsidence rates 

derived from deep core data of wells ODP715 and ARI-1 correspond with respective ranges around 

0.043-0.047 mm/yr (Backman et al., 1988) and 0.03–0.04 mm/yr (Lüdmann et al., 2013). Higher 

Pleistocene rates of 0.15 mm/yr were found in sedimentological evidence from the Rasdhoo atoll 

(Gischler et al., 2008). 

In order to reconstruct the structural evolution of the Maldives carbonate platform for this study, the 

absence of differential subsidence was assumed. By combining all subsidence data and calibrating the 

model to a geologically plausible result, an average subsidence rate of 0.0385 mm/yr was used for the 

interval 25.75 Ma -13 Ma and a higher average rate of 0.087 mm/yr until present times. These values 

approximate the curve presented by Purdy and Bertram (1993), while respecting the long-term 

subsidence rates and increased Pleistocene rates (figure 10). Due to these constraints the uncertainties 

on the subsidence values were relatively small and thus considered as a certain parameter. 
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Figure 11. Comparison of simulated subsidence and subsidence curves from well NMA-1. Curvatures between measuring 
points A-F are redrawn after original curves. Unloaded subsidence curve has only been corrected for sedimentary load and 

paleobathymetry (redrawn from Purdy and Bertram, 1994). 

4.1.1.3 Wave impact 

The distribution of wave energy plays two important roles in the definition of the basin conditions: (1) 

it will determine how sediments are transported by waves as a component of the diffusion equation 

and (2) it allows to impose ecological restrictions of wave energy to selected sediment classes, to 

create for example a reef zonation for different wave energy levels (Graus and Macintyre, 1989; 

Montaggioni, 2005). In this study, waves are simulated along their wave propagation angle (1D) with 

wave energy decreasing from sea level to a defined wave base. 

Until the Oligocene, the Tethys current created dominant westward flowing, circum-global surface 

circulation crossing the Arabian Sea. Due the convergence of the African and Eurasian plates, the 

current was gradually reduced and finally cut off by the Early Miocene. This event isolated the 

Mediterranean from the Indo-Pacific province (Aubert and Droxler, 1996). The collision of the Indian 

and Eurasian plate invoked the uplift of the Himalaya Massif establishing the SAM system by the Late 

Miocene (12.9 Ma) (Rea, 1992; Zheng et al., 2004). Before the full enforcement of this new wind system 

and under reduced Tethys current, a weak proto-monsoon system prevailed between 25 Ma and 12.9 

Ma (Betzler et al., 2016). Evidence for this phenomenon, is found in the dominantly eastward 

progradation of the Maldives carbonate platform and in the eolian dust record in the Inner Sea. Both 

indicate prevailing summer-monsoon westerly winds for this period, inducing eastward currents. At 

12.9 Ma, the proto-monsoon system strengthened to the present SAM system, with vigorous currents 

hampering the carbonate platform development and generating sediment drift deposits (Betzler et al., 

2016, 2018).  
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The proto-monsoon system was simulated with two constant sets of waves over the study interval 

from 25.75 Ma to 13 Ma. Both have an average wave base of 20 m (figure 12), which is the average 

value for shallow-water environments (Coe et al., 2003), but opposite wave propagation angles, 

namely 90° and 270°. To establish the dominance of the summer monsoon over the study interval, the 

eastward directed wave was defined by a wave frequency per year of 100%. The minor westward 

winter monsoon is characterized by a frequency per year of 70%.  

 

  

Figure 12. Left: Wave energy distribution in function of bathymetry. Right: Simulated waves orientations over model domain 

 

4.1.1.4 Eustasy 

During the DionisosFlow simulation, the available accommodation space is calculated for every time 

step by sampling a user-defined eustasy curve and calculating the subsidence or uplift (Seard et al., 

2013). However, when the model time step surpasses the interval at which the curve was constructed, 

two major consequences influence the modelling approach, namely: (1) eustasy curve data points will 

be inevitably lost and (2) depositional sequences might not be gradually stacked within a single sea-

level rise/fall. The first issue goes hand in hand with the simplifications that are involved in every model 

construction. It is nevertheless important that crucial eustatic changes are not displaced in time nor 

altered in amplitude to produce a geologically relevant stratigraphic model. The second issue depends 

on the order of sea-level changes, that the model aims to reflect. 

Due to its excellent correlation with the depositional stacking patterns of the Maldives carbonate 

platform (Betzler et al., 2018), this study uses the eustatic sea-level curve by Miller (2005), constructed 

with an interval of 100 kyrs over the studied section. Due the size of the model, and the available 

computing power, the lower time step limit was set at 250 kyrs. To tackle the above-mentioned issues, 

the original sea-level curve was resampled with an interval of 500 kyrs. Using this resampled eustasy 

curve as an input parameter, allows the software to sample the curve two times for every sea-level 

rise/fall, producing more gradual sequence stacking patterns. At the same time, the resampled curve 

honors the expected geometrical evolution of the carbonate platform, associated with the four 

simulated time intervals (figure 12).  
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Figure 13. Resampling procedure of the original sea-level curve by Miller (2005). Resampling with a 500 kyrs interval 
maintains the timing and amplitude of crucial changes but preserves the expected depositional geometries. Stratigraphic 
turning points 1-5 are indicated with their respective sequence boundary. Expected platform geometries are represented 
across the time intervals in color code: drowning and backstepping (red), aggradation (yellow) and progradation (blue) 

4.1.2 Sediment classes and properties 
The selection of the sediment classes is one of the most defining steps in the parametrization of the 

depositional system. The main idea is to define the sediments by a set of common characteristics, 

related to its production/supply and transport parameters. The choice of classes embodies how to 

conceptualize the depositional dynamics of the simulated target system. In carbonate systems, the aim 

is to simplify the carbonate factory by lumping several production processes into classes. 

Consequently, conceptual production laws are assigned to each class, representing the combined 

effect of all its incorporated processes. Lastly, the available calibration data plays a role in the class 

selection. A class differentiation on grain sizes can be useful, when well logs with grain-size 

distributions are available. Conversely, a classification based on ecological restrictions is preferable, 

when only interpreted depositional facies logs are on hand.  

Depending on the spatial and temporal scale of the model, several approaches to the sediment class 

definition exist. Regional stratigraphic models with grid cell sizes of several kilometers, require a 

greater degree of simplification. These exploration- and reservoir-scale models often differentiate 

classes based on grain size, to fit them with a different diffusivity. Due to high uncertainties within the 

equally large time steps, the generalized production laws are assumed to remain constant over time 

(Hawie et al., 2015; Al-Salmi et al., 2019). Smaller-scale models use a wide range of approaches, that 

are commonly more fit to the specifics of the depositional system. Classes can be constrained to 

ecologic requirements of individual biotic communities, like corals, benthic foraminifera, red and green 

algae. A study on the last deglacial drowning of the Tahiti reefs used different classes for distinct coral 

assemblages with each their own production rates and depth profiles (Seard et al., 2013). A 

stratigraphic model of the Quaternary evolution of the western Great Bahama Bank differentiated 

classes based on the degree of diffusivity. The diffusivity was linked to early cementation processes, 
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specific to each depositional environment (Busson et al., 2019). A third example, from a case study on 

a mixed platform from the Messinian of the Sorbas Basin, used wave energy restrictions to constrain 

each sediment type to a depositional environment (Kolodka et al., 2016).  

This study proposes a new sediment classification, fit to the depositional mechanisms that governed 

many Miocene carbonate platforms around the world. The selection is based on the concepts of 

carbonate sediment production, outlined in the chapter 1. As many of the adopted ideas were defined 

by Luis Pomar on Miocene carbonate platforms of the Mediterranean (Pomar, 2001a, 2001b; Pomar 

and Hallock, 2008; Pomar et al., 2012; Pomar and Haq, 2016), they suit the purpose of this stratigraphic 

model particularly well. 

4.1.2.1 Sediment class definition 

Distant from any terrigenous input during the Neogene, all siliciclastic sediment classes can be 

excluded from our model (Purdy and Bertram, 1993; Aubert and Droxler, 1996). Since the latest 

Oligocene the Maldives carbonate platform was located in its present equatorial position (Aubert and 

Droxler, 1996). A regional tropical carbonate factory can thus be assumed to have produced the bulk 

of the carbonate sediment. Deeper in the water column, the tropical system passes into a cool-water 

system below the thermocline. This transition between T- and C-factory fluctuates in areas with 

upwelling of cooler, nutrient-rich waters (Schlager, 2005). Also the latitudinal transition between 

tropical factories and cool-water factories is known to be very gradual (Betzler et al., 1997). 

Furthermore, the composition of the carbonate factory has changed over time due to biological 

evolution under changing environmental conditions.  

An extensive overview of the evolution of carbonate-producing organisms through the Mesozoic and 

Cenozoic is given by Pomar and Hallock (2008). During Paleogene, the marginal seas of the Tethyan 

Ocean were dominated by Large Benthic Foraminifera (LBF) assemblages. These LBF made up massive 

carbonate ramps, while often living in symbiosis with light-dependent algae. They would remain an 

important component of the carbonate factory throughout the Neogene although less abundant than 

in the Eocene. While many other groups declined during the Paleogene, scleractinian corals increased 

in diversity since the Eocene. The expansion of these corals contributed to an increased reef-building 

capacity. Around the Oligocene-Miocene transition, the main reef builder function transferred from 

these scleractinians corals to coralline red algae. These encrusting organisms diversified strongly in the 

Oligocene, until they became the dominant carbonate producers in the Early- and Middle Miocene. 

Halfar and Mutti (2005) argue that the red algae abundance peak from the Burdigalian to the Tortonian 

was caused by elevated nutrient levels, due to enhanced global productivity. Coralline red algae tend 

to flourish compared to other reef builders under eutrophic conditions (Halfar et al., 2004). Towards 

the Late Miocene the competition between coralline red algae and scleractinians corals continued, 

while the carbonate reef environment expanded towards the shallow euphotic zone. In these shallow 

environments the zooxanthellate coral species gained the upper hand as dominant reef builders, 

thanks to their symbiosis with photosynthesizing algae (Pomar and Hallock, 2008). The exact 

mechanism behind the expansion of reef environments at the Oligocene-Miocene transition and in the 

Late Miocene of this shallowing reef environment remains a topic of debate. Aguirre et al. (2000) 

argues that the expansion can be attributed to the increasing abundance of scleractinians, which 

provided habitat for red algae. Conversely, the argument can be made that these same red algae 

stabilized the coral framework, allowing the scleractinians to expand to higher energy environments 

(Pomar and Hallock, 2008).  
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Taking these nuances on the carbonate factory composition into account, several carbonate-producing 

processes were identified in the Neogene formation of the Maldives carbonate platform (figure 13). 

As illustrated above scleractinian corals and coralline red algae play an important role in the reef 

building mechanisms. Coral fragments of massive, platy and branching species were found in well 

sections from the shallow-water reefs, together with green algae (e.g. Halimeda) and large benthic 

foraminifera (Betzler et al., 2017, 2018). These light-dependent organisms produce sediments within 

the photic zone, which are lumped together as euphotic bioconstructions (first sediment class). Red 

algae are also found in the shallow-water reefs and the platform slope, with ahermatypic coral 

fragments and LBF (Betzler et al., 2017, 2018). Together they make up for the production of oligophotic 

bioconstructions (second sediment class), because they are able to survive under reduced light 

conditions (Pomar, 2001b). Photo-independent, heterotrophic organisms, typical for the C-factory, 

produce loose sand-sized skeletal particles, rather than rigid frameworks (Schlager, 2005). Examples 

of these organisms in the lithological well descriptions are bryozoans, mollusks and echinoids (Betzler 

et al., 2017, 2018). Pelagic organisms are not necessarily photo-independent, but their skeletal remains 

can be found at all water depths across the platform. Therefore, their carbonate production is 

clustered with photo-independent biotic production and bioconstruction erosion into one sediment 

class, namely carbonate grains (third sediment class). Lastly, the fourth sediment class is produced by 

reworking and erosion of the previous classes, resulting in fine-grained carbonate mud. The choice of 

these four sediment classes, is founded on the common properties for each class, which will be 

highlighted in the following sections. 

 

Figure 14. Sediment class definition for reference model based on dominant carbonate-producing processes and available 
facies logs for calibration 

4.1.2.2 Carbonate production depth profiles 

The first and most obvious characteristic of each sediment class is its carbonate production as a 

function of water depth. As this parameter is difficult to assess on fossil species, this study uses modern 

species ranges as analogues. Each sediment class is fit with a common production efficiency in function 

of water depth, as a fraction of its maximum production potential (figure 14). As light dependency is 

undoubtedly the most influential parameters on this carbonate production profile, it forms an 

excellent differentiation parameter (Pomar, 2001b). The influence of light intensity on reef growth can 

be represented by an equation, presented by Bosscher and Schlager (1992): 

𝐺(𝑧)  =  𝐺𝑚𝑎𝑥 × tanh (𝐼0 × 𝑒−𝑘𝑧/𝐼𝑘) 
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with G is the reef growth rate (m/kyr), z is the water depth (m), I0 is the surface light intensity (µE/m2s), 

k is the extinction coefficient of light (m-1) and Ik is the light intensity at the base of the saturated zone 

(µE/m2s). Due to the high light dependency of the euphotic sediment producers, their production 

profile was approached with this formula, with k = 2, I0/Ik = 50. A relatively high extinction coefficient 

is justified by the enhanced global productivity during the Early and Middle Miocene (Halfar and Mutti, 

2005). This results in a maximum production between 0 and 15 m water depth, with a rapid decline in 

production towards 20 m, fitting with Holocene coral growths from the Maldives (Gischler et al., 2008) 

and the Indo-Pacific (Montaggioni, 2005).  

Modern coralline red algae and associated encrusters are either found in protected muddy 

environment, less than 10 m deep or more commonly in deep fore-reef crests and slopes at more than 

20 m (Montaggioni, 2005). Their low light requirements make them thrive in water depths between 

30 and 80 m, where competition with euphotic biota is absent (figure 15) (Pomar, 2001b). Photo-

independent biota can occur all over the water column, but are dependent on a nutrient supply. They 

live often in symbiosis with light-dependent organisms, leading to an increased abundance within the 

photic zone (Pomar, 2001b; Schlager, 2005). Nevertheless, a small fraction of photo-independent 

carbonate production is maintained up until 350 m of water depth for this simulation experiment. This 

fraction is attributed to pelagic production and reworking of sediment grains. Both the carbonate mud 

and carbonate grains are characterized by the same photo-independent depth production profile. 

 

Figure 15. Carbonate production depth profiles of each sediment class 
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4.1.2.3 Carbonate production over time 

As illustrated in the introduction, carbonate production rates from the geological past are difficult to 

estimate. At best, their lower limit can be calculated from accumulation rates, simply by dividing the 

sequence thickness by its depositional time interval (Bosscher and Schlager, 1993). This technique is 

sometimes applied in stratigraphic forward modelling, but works best on rigid reef models during 

recent time intervals (Seard et al., 2013; Camoin and Webster, 2015). In rigid reef frameworks the 

carbonate export is minimal due to sediment baffling, which reduces the difference between 

accumulation and production rates. An overview of calculated accretion rates from Indo-Pacific cores 

of Holocene reefs provides values for framework-dominated reefs of between 1 to 30 mm/yr with a 

modal rate of 6-7 mm/yr. Coralline algae achieve lower growth rates, up to a maximum of 3 mm/yr 

(Montaggioni, 2005). Similar values were calculated from cores of Quaternary reefs in the central 

Maldives. By dating these cores, Gischler et al. (2008) found marginal reefs accreting with rates of 15 

mm/yr and lower lagoonal rates around 4 mm/yr. 

Modern reef growth rates can be obtained by adding standing crops and growth rates of its composing 

organisms or by measuring the reduction in alkalinity of sea water by passing over the reef (Bosence 

and Waltham, 1990). Both techniques result in reef growth rates around 4000-4500 m/Ma. These 

values are often used in stratigraphic forward models, when lacking quantified data for the paleo-

growth rate (Bosence et al., 1994; Warrlich et al., 2008; Williams et al., 2011). As illustrated by Sadler 

(1981) and Schlager (1999), sedimentation rates on carbonate platforms decrease with a scaling trend 

over an increasing interval of observation. These authors show how modern analogues have 

sedimentation rates that are an order of magnitude higher than in reefs from the Miocene. Their 

results indicate values for Neogene accumulation rates around 100-1000 m/Ma. 

With the above-mentioned reference values in mind, several scenarios of carbonate production were 

tested over time. Due to the low constraints of the carbonate production values this trial and error 

procedure involved more than 300 simulations to acquire a model fitting with all available calibration 

data. Two major trends were taken into account during the strenuous calibration of this production 

curve: (1) the possible hypotheses on the cause for platform drowning around the Oligocene-Miocene 

boundary (Belopolsky and Droxler, 2004a; Betzler et al., 2018), and (2) the evolving relationship 

between coralline red algae and scleractinian corals throughout the Miocene (Halfar and Mutti, 2005; 

Pomar and Hallock, 2008). Every simulation was matched with the morphological evolution of the 

platform, focusing on the four phases with distinct geometries outlined by Betzler et al. (2018) (figure 

12). During this calibration process, modelled horizons were compared to sequence boundaries in the 

interpreted seismic sections (Betzler et al., 2013, 2018) and simulated thicknesses tied to the well 

markers (Betzler et al., 2017). The final best fitting production curve is shown in figure 15. 
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Figure 16. Best fit for carbonate production values in function of time. Note that the scale of y-axis is logarithmic. The most 
notable features are a dip in light-dependent production between 24 and 22 Ma and a gradual catch up of oligophotic 

production rates with euphotic rates since the latest Aquitanian. 

 

4.1.2.4 Ecological restrictions  

A final constraint on the carbonate production can be imposed in DionisosFlow by ecological 

requirements for each producing mechanism. As such, the occurrence of certain sediment classes can 

be restricted to specified environmental conditions, based on salinity, temperature, substrate, wave- 

and drift energy. This study uses only wave energy to differentiate high- and low-energy environments. 

Depending on the species, hermatypic corals inhabit moderate- to high-energy environments, 

diagnostic of windward margins (Gischler et al., 2008). Coralline red algae on the other hand, occur 

rather in low-energy environments, either in protected, muddy lagoons or in deeper fore-reef zones 

below wave base (Montaggioni, 2005). By evaluating the simulated wave energy distribution over time, 

a boundary of 50 W/m2 was picked to differentiate between high- and moderate-energy environments 

on one side, and low-energy environments on the other. Euphotic sediment production was restricted 

to the former and oligophotic production to the latter. 
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4.1.2.5 Transport Properties 

Transport of sediment particles in DionisosFlow is calculated for each cell through a diffusion equation 

(section 3.2). Due to the size of the model and the time step, only long-term diffusion processes are 

simulated in this study. Consequently, the diffusivity of each sediment class is defined by three 

diffusion coefficients, each linked to a different transport process. The three processes, responsible 

for sediment transport on a basin scale are gravity, water flux and wave action, with their respective 

diffusion coefficients Kgravity, Kwater and Kwave. Each diffusion coefficient has to be estimated by the model 

user with respect to the grain size of each sediment class and depositional environment, continental 

or marine (Granjeon and Joseph, 1999; Seard et al., 2013; Hawie et al., 2015). As a rule of thumb, 

diffusion coefficients for sand-sized particles are often 10 to 5 times lower than for mud (Williams et 

al., 2011; Hawie et al., 2015). Early depositional cementation or microbial binding can also weigh in on 

the estimation of diffusion coefficients, when the sediment classes envelop specific lithological or 

biotic associations (Busson et al., 2019). Lastly, each sediment class also has an angle of repose, based 

on its grain size, which determines the slope stability (Granjeon, 2014). 

Diffusion coefficient are ill constrained by real-world examples, especially in shallow-marine and 

carbonate systems. Estimates in natural systems range from 560 km2/ky in the Mississippi delta 

(Kenyon and Turcotte, 1985) to 7 x 10-6 km2/kyr in pelagic environments, near the Galapagos spreading 

center (Mitchell, 1996). In shallow carbonate platforms the values are estimated to range within 0 to 

50 km2/kyr (Williams et al., 2011). This poorly-constrained interval makes this input parameter another 

calibration challenge. 

After testing several diffusion coefficients in more than 300 simulations, a best fit was calibrated with 

the available data, in a similar way as for the production rates. The values associated with this model 

are given in table 1. All diffusion coefficients are defined within the marine realm, as no significant 

emersion takes place during the simulation. Diffusion coefficients for carbonate mud and grains differ 

one order of magnitude as proposed by Williams et al. (2011). Diffusion coefficients for euphotic 

bioconstructions are minimized to represent their rigid reef framework properties. Oligophotic 

diffusion coefficients are fit to represent the solidifying effect of coralline red algae and other 

encrusters on the fore-reef slope. 

 

Diffusion coefficients in 

marine environment 
Carbonate mud 

Carbonate 

grains 
Oligophotic Euphotic 

𝐾𝐺𝑟𝑎𝑣𝑖𝑡𝑦(𝑘𝑚2/𝑘𝑦𝑟) 0.0800 0.0080 0.0003 0.0001 

𝐾𝑊𝑎𝑡𝑒𝑟(𝑘𝑚2/𝑘𝑦𝑟) 0.7000 0.0700 0.0003 0.0001 

𝐾𝑊𝑎𝑣𝑒(𝑘𝑚2/𝑘𝑦𝑟) 0.7000 0.0700 0.0003 0.0001 

Table 1: Diffusion coefficients of each sediment class in marine environment for the best case scenario. Each set of diffusion 
coefficient represents the three main sediment transport processes, namely by gravity, water flux and wave action. 
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4.2 Post-processing: Facies definition 
The calibration of uncertain parameters, like some sediment properties in this study, is executed 

through a deterministic “trial-and-error” process (section 3.1). Validation of the input parameters, and 

of the model by extent, requires ground-truth reference data. This calibration data was constructed 

from literature by Betzler et al. (2013, 2017, 2018). Sequence boundaries, reported as well markers, 

were used to directly calibrate simulated sequence thicknesses (Betzler et al., 2017). This study 

validates the simulated lithology of each sequence, by matching it with interpreted depositional facies, 

hence the choice of sediment classes (figure 13). The lithological descriptions of each IODP 359 well, 

were interpreted into five depositional facies (Betzler et al., 2018): (1) shallow-water, (2) slope and 

basin, (3) pelagics, (4) drift fans and (5) sheeted drifts and submarine dunes (appendix B). As the latter 

two, only occur outside of the study interval, they are irrelevant to the calibration of this model. Based 

on the remaining three facies, a classification scheme was developed for the stratigraphic model (table 

2). The aim is to classify each grid cell into one depositional facies, according to its simulated 

properties. The boundary between shallow- and deep-water environments was placed at 40 m of 

water depth at the time of deposition. To gain a deeper insight in the model dynamics and its capacity 

to simulated conceptual ideas, the shallow-water depositional facies was differentiated into shallow-

water reef and –lagoon based on the simulated wave energy and fraction of euphotic bioconstructions. 

Deep-water facies consists of pelagics and slope and basin and are discriminated by their mud content. 

 

Model parameters Pelagics Slope and basin 

Shallow-water 

Reef Lagoon 

Bathymetry (m) 40 - max 40 - max min – 40 min – 40 

Carbonate mud (%) 50 - max min – 50 - - 

Euphotic (%) - - - min – 50 

Wave energy (kW/m) - - - min – 50 

Classification priority 1 4 3 2 

Table 2: Depositional facies definition in function of simulated model properties for model calibration 

 

 

. 
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Chapter 5: Model Results 

5.1 Reference model 
By calibrating the stratigraphic model with the seismic profiles and tying it to the well data, a best-case 

scenario for the western margin of the Maldives carbonate Platform was developed. The resulting 

reference model consists of a 3D grid of cells, each 500 x 500 m in base surface size, and with a variable 

height, depending on the deposited sediment volume over a time step of 0.25 Myr. Each cell is 

characterized by several syndepositional properties, like bathymetry, wave energy, slope and its 

composing sediment class fractions. These properties will be used in this chapter to analyze and 

validate the reference model output.  

Firstly, the simulated sequence geometries and slopes are compared with morphologies derived from 

the seismic interpretation. This comparison focuses in particular on the sequence stratigraphic 

interpretation which subdivides the platform evolution into four episodes, as proposed by Betzler et 

al. (2018) (figure 6 and 12). Each episode is associated with a distinct platform geometry: (I) The 

Oligocene platform partially drowns and a carbonate ramp develops on the drowned interior, (II) The 

steepening carbonate ramp progrades and evolves into a rimmed platform, (III) The aggrading rimmed 

platform develops a steep internal slope, and (IV) The bank edge progrades further inwards, enclosing 

the Inner Sea. To illustrate these four phases within the reference model, two cross sections through 

the stratigraphic grid are presented, crosscutting the wells from the IODP expedition 359 (figure 16). 

Cross section 1 and 2 envelop respectively, seismic lines 1 and 2 presented in Betzler et al. (2018) 

(appendix A). Furthermore, cross section 1 corresponds to seismic line NEOMA-P65 (Betzler et al., 

2013) and its interpretation into stratigraphic turning points: i.e. O/M, PS1, PS5, PS8 and DS1 (figure 

6) (Betzler et al., 2018). Each turning point forms a synchronous sequence boundary in the seismic 

interpretation. Based on their age, these simulated key sequence boundaries are highlighted in all 

cross sections (figures 17-20). Each cross section is composed of four property views, showing the 

fraction of each sediment class.  

Secondly, the well data is compared with simulated properties in synthetic points of control. The 

lithologies are checked indirectly through a depositional facies definition of each cell, based on its 

depositional properties. The defined depositional facies terminology matches with the facies from the 

well data (Betzler et al., 2018) to facilitate comparison of real and synthetic well logs. Lastly, the 

thicknesses of the simulated sequences are validated by comparing the depth of the well markers with 

the scaled position of the simulated sequence boundaries. 



40 
 

 

Figure 17. Map of model domain with location of cross sections and well sites, discussed in the text. Color scale and isolines 
represent the initial bathymetry at the onset of the simulation (25.75 Ma) 

 

 

 

Figure 18. Cross section 1 through the stratigraphic model grid after complete simulation. Colors represent classification of 
grid cells into depositional facies. Stratigraphic turning points are indicated as sequence boundaries in their respective colors. 
Indicated wells are located along the cross section. Note that the vertical scale exaggeration is 15x. 
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Figure 19. Cross section 2 through the stratigraphic model grid after complete simulation. Colors represent classification of 
grid cells into depositional facies. Stratigraphic turning points are indicated as sequence boundaries in their respective colors. 
Indicated wells are located along the cross section. Note that the vertical scale exaggeration is 15x. 

 

5.1.1 Evolution of simulated stratigraphy in four phases with distinct platform geometry 

I. Drowning of Oligocene platform and development of carbonate ramp depositional profile 

(turning point 1-2) 

The model is founded upon an initial bathymetry, constructed to reflect the Oligocene drowning 

unconformity, which forms a marked reflector on the seismic profiles (section 4.1.1.1). Above this O/M 

horizon, set at age 25.75 Ma, both section 1 and 2 contain a mud-rich sequence (figures 19.c, 20.c), 

matching with a deepening, fining-upward trend, detected in all deep wells across the platform. The 

carbonate mud occurs in the interior bank edge slope, increasing in fraction towards the deeper 

internal basin. Next to mud these slope deposits are composed of carbonate grains, increasing in 

abundancy towards the platform rim (figures 19.d, 20.d). The slope angle steepens locally when 

encrusted by oligophotic bioconstructions (figures 19.b, 20.b). The occurrence of these oligophotic 

mounds is determined by the initial topography of the O/M surface, hence the different morphologies 

in section 1 and 2. The area behind these elevated structures is filled with flat sequences of slope 

sediment that transitions into a narrow reef rim, composed mainly of euphotic bioconstructions 

(figures 19.a, 20.a). 

The first phase of the western bank evolution is characterized by the continuation of the drowning 

event, followed by the establishment of a new carbonate factory on top of the drowned edifice in the 

form of a carbonate ramp. The resampled eustasy curve, used in the model, contains two high-

amplitude sea-level fluctuations that contribute to the drowning (figure 12). The combination of these 

fluctuations and decreased photic production values restrict the shallow reef to a narrow marginal rim, 

facing the open ocean. In section 1, the euphotic reef recovers and expands shortly due to a sea-level 

drop between 23 and 24 Ma, but subsequently drowns again due to a fast, high-amplitude sea-level 

rise (figure 19.a). In section 2 on the other hand, the reef maintains its width after its recovery thanks 

to the solidified fore-slope, encrusted by oligophotic organisms (figure 20.a-b). In both sections the 

following gradual eustatic sea-level lowering prevents the euphotic system from drowning completely. 

Under the combined effect of the eustasy fall, the continuous subsidence and the recovering 

production rates, the reef transitions from a backstepping to an aggradation pattern (figures 19.a, 
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20.a). The culmination of this slow eustatic sea-level drop into a lowstand reduces the wave energy in 

the narrow reef interior, preventing euphotic framework growth and replacing it with loose carbonate 

grains and mud. These protected low-energy areas are defined as shallow-water lagoons within the 

depositional facies classification (figures 17, 18). 

While euphotic production survives the drowning event, the oligophotic producers partially disappear 

after the second sea-level rise at 24 Ma. Their absence results in a greater fraction of loose carbonate 

grains in the slope sediments (figures 19.d, 20.d), causing the depositional profile to flatten into a 

carbonate ramp. The slow sea-level lowering from 25 to 22 Ma allows the oligophotic producers to 

gradually restore their position as slope encrusters, but their abundance remains relatively low due to 

their reduced production rates. Finally, the depositional profile at turning point 2 (22 Ma) consists of 

a narrow reef rim connected to a low angle carbonate ramp. Comparing both sections, the relative 

sizes of the reef rim and the ramp appear to be controlled by the abundance of the oligophotic buildups 

in the early parts of phase I.  

 

II. Evolution from carbonate ramp to rimmed shelf geometry with first aggradation and 

progradation phase (turning point 2-3) 

The second phase exhibits a change in platform morphology of the internal western bank from a 

carbonate ramp to a reef rimmed platform. Firstly, the euphotic reef, reduced to a marginal rim during 

phase I keeps aggrading until 20 Ma. At this point the bank at section 1 suddenly progrades strongly 

(figure 19.a). Along with the marginal euphotic crests, the low-energy lagoon extends (figure 17), 

composed of carbonate grains and mud. The reason for this sudden euphotic reef expansion lies with 

the revival of the oligophotic producers. Since their demise in phase I, these encrusters increase in 

abundancy throughout phase II, replacing carbonate grain and mud fractions within the internal slope 

(figure 19.b). Because the oligophotic sediment class possesses a lower diffusivity than the carbonate 

grains and mud, this replacement causes the simulated depositional profile to steepen over time. 

Moreover, the sediments lying behind the rigid oligophotic rim are sheltered from incoming waves. 

They remain in place and form a solid base over which the euphotic reef rim is able to prograde. Once 

the encrusted base has accumulated enough sediment to reach the euphotic production depth, a 

strong and abrupt progradation phase is triggered around 20 Ma. In only 0.5 Myrs (two model steps) 

the western bank expands almost 5 km eastwards. After this explosive expansion, the progradation 

continues more gradually, due to the stepwise interaction between prograding slope and reef 

sequences. Similar as for the oligophotic bioconstructions, the low-diffusive euphotic components, are 

not transported down-slope and prevent carbonate grains and mud in the back-reef from being 

redistributed (figure 19.c-d).  

Opposed to section 1, the western bank barely progrades at section 2 during this second phase. The 

abundant encrusters are not able to provide a base for reef progradation. Instead they steepen the 

short slope, increasing down-slope sediment transport to the deeper basin (figure 20.b). The deep 

seaway in front of the slope functions as a large sink for all exported sediment. Without a flattened 

progradation base, the shallow-water reefs keep aggrading and form extensive internal lagoons (figure 

18). Similar as for section 1, the bank develops a clearly defined edge transitioning into an angular 

slope. As such, the depositional profile in contact with the Inner Sea evolves into a reef rimmed 

platform with a steep slope and a flat back-reef area. 
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III. Second aggradation phase with development of steep platform slopes (turning point 3-4) 

In the last two phases (III and IV) the evolutionary trends between section 1 and 2 remain similar. At 

the third turning point, horizon PS5 (18.5 Ma), accommodation space is increased under a eustatic sea-

level rise and the rimmed platform is flooded with high energy waves. This results in an interruption 

of the low-energy, lagoon deposits and high-energy, shallow-reef deposits populating the entire bank 

surface (figures 17,18). Under these elevated sea levels, the internal slope reaches its maximum angle, 

inhibiting further progradation. Most of the carbonate grains are transported downslope, removing 

the progradation base for oligophotic and euphotic bioconstructions. In the restricted remaining zone 

for reef building, both producers compete to keep up with rising sea level. The euphotic producers 

gain the upper hand, thanks to their relatively higher production rates (figure 15) and shallower 

optimal production depth (figure 14). Due to the sea-level rise and the competition with the euphotic 

producers, the oligophotic encrusters are driven to below their optimal growth depth and gradually 

drown (figures 19.b, 20.b). As the marginal euphotic reef crests further keep up with the sea-level rise, 

the platform interior turns into extensive low-energy lagoons, composed of carbonate grains and mud 

(figures 19.c-d, 20.c-d). In all, the high eustatic sea levels from 18 to 15.1 Ma, shaped the western rim 

into a more symmetrical and continuous bank, bounded by steep edges facing both the open ocean 

and the Inner Sea. Furthermore, it placed the platform in a precarious position, where it was no longer 

able to accumulate interior fore-slope sediments and put the oligophotic producers on the brink of 

drowning. 

 

IV. Second progradation phase (turning point 4-5) 

The fourth phase is characterized again by progradation, although less substantial and abrupt than in 

the phase II. The onset of phase IV is marked by a eustatic sea-level drop (figure 12), placing the fourth 

turning point (PS8) around 15.1 Ma. Due to the model time step of 0.25 Ma, the age of this turning 

point and its associated sequence boundary was rounded to 15 Ma. The lowered sea level and 

increased carbonate production rates of oligophotic bioconstructions and carbonate grains allow for 

the deposition of clinoform sequences. These sequences reflect the prograding character of this phase 

and maintain a similar slope gradient. While the platform exterior progrades under relatively low sea 

levels compared to the third phase, minor sea-level fluctuations are reflected in the platform interior. 

Alternating beds of euphotic bioconstructions indicate minor sea-level highstands (figure 19.a, 20.a), 

while beds with carbonate grains and mud indicate lowstands (figures 19.c-d, 20.c-d). The simulation 

ends abruptly at 13 Ma, sequence boundary DS1, where platform growth is inhibited by the onset of 

sediment drift deposition. 
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5.1.2 Depositional facies validation 
Seismic profiles only provide exact subsurface stratigraphy, when converted from the time to the 

depth domain. As this was not the case for the seismic lines in the study area, the only available ground-

truth data are wells. The data of eight wells from the IODP expedition 359 are published in its 

proceedings (Betzler et al., 2017). Based on the cores, five depositional facies were defined by Betzler 

et al. (2018): (1) shallow-water, (2) slope and basin, (3) pelagics, (4) drift fans and (5) sheeted drifts 

and submarine dunes (appendix B). These facies will be used to calibrate and indirectly check the 

simulated lithological properties of the reference model. Well U1465, U1466 and U1468 are crossed 

by section 1 (figure 17, 19) or seismic line 1 (appendix A)(Betzler et al., 2018), and wells U1470, U1471 

and U1472 by section 2 (figure 18, 20) or seismic line 2 (appendix A)(Betzler et al., 2018).  

The comparison of the well facies logs and the simulated facies logs of the reference model for these 

six wells is presented in figure 21 and 22. Focusing on the carbonate platform growth, the study interval 

ends at 13 Ma without modelling the onset of drift deposition. However, to provide a clear sedimentary 

boundary within the log comparison, artificial drift sediment was added to the simulated logs on top 

of sequence boundary DS1. In other words, the depositional facies “Drift fans” and “Sheeted drifts and 

submarine dunes”, used in the real facies logs, equal the “Drift”-facies in the synthetic wells. 

The wells in section 1 provide an excellent calibration dataset as they are adequately distributed over 

the bank, covering the reef edge, proximal and distal slope. The deep penetration of wells U1466 and 

U1468 offer insight in the thickness and lithology of the different slope sequences up to the initial 

bathymetric surface. This includes the thickness of the pelagic sequence at the base of the wells, 

associated with the Oligocene drowning. Well 1465, penetrating the shallow reef, illustrates how far 

the internal margin must have prograded from its original position. The match between the real and 

the simulated logs from the reference model is particularly good. A minor deviation occurs in well 

U1465 where the bottom of the synthetic log is classified as “slope and basin” instead of “shallow 

water”. Other small deviations (< 50 m) occur in the thickness of the “slope and basin” deposits in wells 

U1466 and U1468. 

The three wells crossed by section 2 contain less extensive data that can be used for reference model 

validation. Well U1470 provides again a reference point for the extent of the prograded western bank. 

The upper boundary between the real and simulated “shallow water” package do not match. This can 

be explained by the abrupt ending of the simulated platform growth and its artificial replacement by 

“Drift”-facies. In reality, the platform drowned gradually and diachronously after 13 Ma. The “shallow 

water” facies in the well facies log at site U1470 is thereby also present above sequence boundary DS1. 

At first sight, well U1472 seems to be of no use to this study as it does not contain any carbonate 

platform facies. The absence of “shallow water” facies, proves however that the bank progradation 

did not reach this point. Thus, the absence of simulated platform facies can be interpreted as a match. 

Lastly, well U1471 contains a large section through the drift deposits, abruptly shifting to “shallow 

water” facies. Although the lower boundary of drift deposits concurs in both the simulated and real 

well data, the underlying facies does not match. In contrast to the U1471 well data, the lowest part of 

the synthetic well contains pelagic sediments, deposited in a deeper seaway. The origin of this seaway 

at this point is associated with the initial surface topography, based on deep seismic data from 

Belopolsky and Droxler (2004a). The presence of “shallow water” facies in this deep seaways cannot 

be explained by the dynamics of this stratigraphic model, even with different production scenarios. A 

solution for this issue might be found by converting the seismic sections to the depth domain, possibly 

revealing erroneous estimations for the initial bathymetry. 



47 
 

 

Figure 22. Comparison of depositional facies in real and simulated wells along cross section 1 through the reference model. 
The positions of the simulated stratigraphic turning points are indicated along the wells. 

 

Figure 23. Comparison of depositional facies in real and simulated wells along cross section 2 through the reference model. 
The positions of the simulated stratigraphic turning points are indicated along the wells. 
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5.1.3 Sequence thickness validation  
To validate the thickness and geometry of each simulated stratigraphic sequence, sequence 

boundaries described in the well logs (Betzler et al., 2017) are compared to the depth of simulated 

ones in synthetic logs. Figure 23 displays a segment of cross section 1 containing wells U1465, U1466 

and U1468 and visualizes the calibration quality. On each well path, the depth markers of several 

platform and drift sequence boundaries are positioned to scale. Based on the average age 

determination of each depth marker (Betzler et al., 2018), simulated sequence boundaries are selected 

by their approximate depositional age. Each of these sequence boundaries is represented in a different 

color, matching those of the original seismic interpretation (appendix A). Sequence boundary PS11 is 

not visualized in the section as its average age coincides with the age of PS10. The wells along cross 

section 2 are not discussed, as they do not provide many sequence boundaries for calibration. 

Well 1465 provides only two relevant markers for this study interval, namely DS1 and PS11. Their 

equivalent simulated sequence boundaries are respectively 30 m below and 25 m above their marker 

depth. This suggests that the upper sequences are not thick enough. Unfortunately, this trend appears 

also in the upper sequences of wells U1466 and U1468, where simulated horizons PS7 to DS1 

consistently lie below their respective markers. This accumulating effect is particularly visible in well 

1468 where the cumulative offset for DS1 amounts to almost 100 m. Conversely, horizons PS1, PS5, 

PS6 in well 1466 and O/M, PS2 and PS5 in well 1468 are located above their ground-truth position, 

suggesting that simulated sequences are too thick in the lower part of the stratigraphic model. Overall, 

however, the individual difference between the depth of each marker and its simulated sequence 

boundary is never more than 50 m. Therefore, this reference model and its input parameters provide 

a solid best-case scenario for further modelling experiments, such as the testing of different 

hypotheses and assessment of the impact of individual input parameters.  
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Figure 24. Segment of cross section 1 across the reference model, comprising the wells along the transect. Well markers of 
sequence boundaries are positioned to scale on the well path. Equivalent simulated sequence boundaries are represented in 
colors matching the seismic interpretation (appendix A). Background colors represent the depositional facies classification. 

5.4 Alternative scenarios 
Several alternative scenarios were tested in this study by varying one of the major uncertainties in the 

input parameter set, namely the carbonate production rates of each sediment class. Two of these 

scenarios are of particular interest to the evolution of the Maldives, as they highlight two debated 

biotic changes: (1) a simulation without a dip in photo-dependent carbonate production, and (2) a 

simulation with a constant oligophotic/euphotic carbonate production ratio. The respective model 

results are presented in the following sections, but could not provide a match with the given calibration 

data. The link between each of these scenarios and the proposed hypotheses are clarified in the 

discussion chapter. 

To allow a visual comparison between the different model outputs, a new facies classification of the 

reference model is presented in figure 24. This classification was merely developed to visualize the 

distribution of the different facies classes in a single property view, instead of four. Each cell is classified 

as specific sediment class facies when it contains more than 50 % of this particular sediment. The 

remaining cells are classified as mixed facies (table 3). 
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Figure 25. Oblique view on reference model result. The 3D stratigraphic grid is cut off along cross section 1 for comparison. 
The colors represent a facies classification, based on the dominant sediment fraction (table 3). The location of wells and 
stratigraphic turning points are indicated along the cross section. Note that the vertical scale exaggeration is 10x. 

 

Model parameters Oligophotic Euphotic 
Carbonate 

mud 

Carbonate 

grains 
Mix 

Oligophotic (%) 50 - max - - - - 

Euphotic (%) - 50 - max - - - 

Carbonate mud (%) - - 50 - max - - 

Carbonate grains (%) - - - 50 - max - 

Classification priority 1 2 3 4 5 

Table 3: Facies classification for visualization purposes. Each facies class represents a dominant sediment class fraction. The 
remaining cells are classified as mixed facies, due to the classification priority. 

5.4.1 Simulation without dip in photo-dependent carbonate production 
To evaluate the impact of a reduction in photo-dependent carbonate production during phase I (figure 

15), a model without this particular dip was executed. Instead, carbonate production rates were kept 

constant throughout the expected drowning phase of the platform (figure 25). The resulting 3D model 

(figure 26) differs fundamentally in internal and external morphology from the reference model (figure 

24). 

During phase I, the euphotic bioconstructions are able to keep up with the sea-level rises and produce 

aggrading instead of retrograding sequence geometries. Additionally, the euphotic reef is able to 

expand strongly during the punctuating sea-level fall around 24 Ma. This 10-15 km wide rim maintains 

its dimensions until the end of phase I. The internal platform slope at this first turning point (PS1) is 

relatively small compared to the broad flat-topped reef, and composed of carbonate grains and 

oligophotic bioconstructions. In contrast to the reference model, the oligophotic producers survived 

throughout phase I. Their abundance severely steepens the short slope, leading to the development 

of a well-defined internal bank edge at PS1 rather than the expected ramp depositional profile from 

the reference model. 
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The steep internal bank at 22 Ma sheds most of the accumulated carbonate grains and mud 

downslope, limiting the platform progradation during phase II. The inability to accumulate sediment 

in the fore-slope will dominate the remainder of the simulation until 13 Ma, resulting in thin slope 

sequences and limited progradation of the reef. At 13 Ma, the total width of the western bank at 

section 1 only amounts to 18 km instead of the 20 km, prescribed by the calibration data. 

 

 

Figure 26. Carbonate production rates for simulation without dip in photo-dependent production during phase I. 

 

 

Figure 27. Oblique view on stratigraphic model without a dip in photo-dependent production during phase I (figure 26). The 
3D stratigraphic grid is cut off along cross section 1 for comparison. The colors represent a facies classification, based on the 
dominant sediment fraction (table 3). The location of wells and stratigraphic turning points are indicated along the cross 
section. Note that the vertical scale exaggeration is 10x. 
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5.4.2 Simulation with constant ratio between oligophotic and euphotic production 
The second carbonate production scenario assumes a constant relationship between oligophotic and 

euphotic production rates (figure 27). While the production curve for the euphotic production is taken 

from the reference model, the oligophotic production values are an order of magnitude lower over the 

entire simulated time interval. In order not to overestimate the contribution of carbonate grains in the 

slope, their maximum production rate was limited to the oligophotic curve since the Burdigalian. 

The resulting stratigraphic model (figure 28) is similar to the reference model up to sequence boundary 

PS5, as the production curves up to the corresponding point in time are identical. Subsequently, the 

slope platform aggrades vertically in phase III, developing a steep slope. The same aggrading trend 

occurs synchronously in the reference model, although slightly inclined and tending a little more 

toward progradation. As such the platform slope at 15 Ma (PS8) is more gentle in the reference model 

than in the simulation with a constant euphotic/oligophotic ratio. The effect of the constant 

production ratio is clearly exposed in phase IV, where the platform progradation is completely halted. 

Due to the steep angle of the slope the loose carbonate sediment are no longer accumulated and the 

oligophotic producers no longer have a substrate within their growth depth range to encrust. The 

shallow euphotic bioconstructions can only aggrade when new accommodation is created by relative 

sea-level changes. The missing progradation during phase IV, prevents the western bank margin from 

reaching well U1465 and does not provide a match with its depositional facies log. 

 

 

Figure 28.Carbonate production rates for stratigraphic model with a continuous ratio between euphotic and oligophotic 
carbonate production rates over the entire simulation. 
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Figure 29. Oblique view on stratigraphic model with a continuous ratio between euphotic and oligophotic carbonate 
production rates (figure 28). The 3D stratigraphic grid is cut off along cross section 1 for comparison. The colors represent a 
facies classification, based on the dominant sediment fraction (table 3). The location of wells and stratigraphic turning 
points are indicated along the cross section. Note that the vertical scale exaggeration is 10x. 
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Chapter 6: Discussion 
The impact of individual controlling parameters on the stratigraphy of a sedimentary body is difficult 

to assess, as all these factors interact in a complex web (figure 3). Stratigraphic forward modelling 

allows to simulate different depositional processes, involved in the formation of the sediment body. 

The impact of each process, can be assessed by varying a single parameter and comparing the new 

model output to a reference model, representative of the sedimentary body architecture. This study 

will use the above described reference model to test the impact of several uncertain input parameters. 

6.1  Testing carbonate production rates in function of conceptual scenarios 
Production rates of carbonate factories in the geological past remain ill-quantified for stratigraphic 

model applications. Many studies thereby use either growth rates from modern analogue settings 

(Bosence et al., 1994; Warrlich et al., 2008) or derive accumulation rates from the geological record. 

Though accumulation rates only provide a lower limit to the production rate (section 1.1), variations 

can be calculated through time from age-depth plots, by assuming constant values between measuring 

points (Bosscher and Schlager, 1993; Camoin and Webster, 2015). Alternatively, accumulation rates 

from similar settings and ages are used in SFM, and kept constant over time (Al-Salmi et al., 2019). 

Another approach is to acknowledge and assess the uncertainties on the production rate values and 

calibrate the model with several plausible scenarios (Kolodka et al., 2016). The latter approach is 

followed in this study, while other input parameters are quantified by available data or assumptions. 

To link the production-rate uncertainties to existing theoretical hypotheses, two debates on the 

carbonate production rates are tested: (1) the cause for the drowning of the Oligocene Maldives 

platform and (2) the interaction and competition between euphotic and oligophotic carbonate-

producing organisms throughout the Miocene. 

6.1.1 The partial drowning of the Oligocene carbonate platform 
The carbonate platform of the Maldives can be subdivided in three stages of carbonate platform 

growth, namely during the Paleogene, Neogene and Quaternary (section 2.3.2). The three stage are 

divided by two drowning events lasting respectively from the latest Oligocene to the earliest Miocene 

(~ 25.7 to 22 Ma), and from the latest Middle Miocene to the latest Pliocene (~ 13 to 3.8 Ma). The 

cause for the extensive second drowning episode has been proven to be the abrupt onset and 

continuation of the South Asia Monsoon (SAM) system, inducing strong currents that inhibit further 

platform growth (Betzler et al., 2009, 2016, 2018). Though, the cause for the first drowning event 

remains a matter of debate. 

Belopolsky and Droxler (2004a) interpreted the O/M drowning unconformity in function of the 

depositional geometries, derived from the seismic interpretation. The restriction of the backstepping 

reefs to a narrow 5 km wide rim at the platform margins, and the drowned patch reefs in the platform 

interior describe a platform type referred to as “empty bucket”. Such an “empty bucket” morphology 

is typically conceived due to different biotic growth potentials of platform interior and margins (Kendall 

and Schlager, 1981; Schlager, 1993). Following this rationale, it is suggested that the Maldives endured 

a substantial relative sea-level rise, causing the platform interior to drown and the reduced margins to 

aggrade and keep up with sea level (Belopolsky and Droxler, 2004a). This theory is substantiated by 

the presence of organic-rich pelagic limestones above the O/M horizon in well ARI-1. These very fine 

grained sediments were interpreted to indicate an abrupt deepening facies trend. 
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Contradictorily, a fast- and high-amplitude sea-level rise is not supported by eustatic, nor tectonic 

changes. The eustatic sea-level curve by Miller et al. (2005) suggests a sea-level rise of merely 50 m 

around the Oligocene-Miocene transition. Additionally, the subsidence curve from well NMA-1 

indicates no tectonically induced subsidence for the lower Miocene (figure 10) (Purdy and Bertram, 

1993). Differential subsidence is implausible as all faults from seismic interpretations seem to 

terminate at the O/M horizon (e.g. figure 5). Furthermore, the pelagic sequence above this surface is 

detected in several wells across the platform and relatable to similar depths, which contradicts 

differential subsidence (Aubert and Droxler, 1996; Betzler et al., 2013, 2018). 

Therefore, Betzler et al. (2018) argue that a total relative sea-level rise of 50 m seems insufficient to 

drown the carbonate producers across the entire platform interior and induce pelagic sedimentation 

instead. These authors proposed an alternative cause, relating both events to an influx of nutrients 

and associated enhanced primary productivity. These processes can occur as equatorial upwelling, 

induced over topographic highs on the seafloor by ocean currents. Nutrient upwelling could be 

responsible for enhanced organic matter production, explaining the presence of organic-rich, sapropel-

like layers found above the O/M horizon in wells U1466 and U1468 (Betzler et al., 2018). Additionally, 

enhanced nutrification and primary productivity are known to increase turbidity, reducing carbonate 

production potential of light-dependent organisms (Hallock and Schlager, 1986). This phenomenon 

also explains the presence of organic-rich deposits on top of a drowned platform interior. Most 

recently, a third mechanism was proposed for the origin of these sapropel layers, namely the 

occurrence of cyclic anoxic conditions in the Inner Sea (Swart et al., 2019). Eustatic sea-level 

fluctuations could temporarily restrict the exchange with the Indian Ocean leading to periodical stable 

water mass stratification and sapropel formation. 

To investigate the interacting mechanisms behind the drowning of the platform, several depositional 

scenarios were tested in a stratigraphic model and calibrated with its sequence- and lithostratigraphy. 

All simulated scenarios were nevertheless constrained by certain input parameters and a few 

assumptions in the model design (chapter 4). As carbonate production rates were ill-constrained over 

time, multiple curves for each sediment class were tested by ‘trial-and-error’.  

The input parameter set of the final reference model indicates a dip in carbonate production, between 

24 and 22 Ma, similar to the hypothesis proposed by Betzler et al. (2018). Inducing platform drowning 

during phase I (turning points 1-2) was namely impossible without reducing the carbonate production 

rates. Compensation of the low eustatic sea-level rise with increased subsidence is not validated by 

the subsidence data. Alternatively, using continuous low production values would drown the bank 

permanently, while inducing constant high production values results in no drowning geometries at all. 

The latter scenario is illustrated in section 5.4.1. The essential carbonate production drop affects only 

photo-dependent organisms, which fits the effect of a nutrient influx, described by Hallock and 

Schlager (1986).  

The executed modelling experiment substantiates the hypothesis that the Oligocene platform was not 

only drowned by relative sea-level changes. The input parameters of the reference model suggest that 

the carbonate production was hampered during the drowning interval by an internal or external stress. 

A nutrient influx or cyclic anoxic events are valid propositions for such an environmental stress. A more 

detailed and comprehensive simulation would be required to shed light on the cause of the dip in 

carbonate production. The experiment nevertheless exhibits how continuous production rates should 

be used with precaution in stratigraphic model designs. Production rates over longer time scales can 

fluctuate significantly under environmental changes affecting different components of the carbonate 

factory. 
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6.1.2 The evolving relationship between oligophotic coralline red algae and euphotic 

scleractinian corals throughout the Miocene 
The Miocene is in particular a period of biotic change under different environmental stresses. During 

the Oligocene, the LBF assemblages were gradually replaced by coralline red algae and scleractinian 

corals in shallow-, warm waters (Pomar and Hallock, 2008). These two carbonate producers would 

compete with one another to become the dominant reef builders throughout the Miocene. 

Strengthening of the thermodynamic circulation and thermal gradients impose environmental 

changes, affecting the biotic competition. Halfar and Mutti (2005) suggest that enhanced upwelling 

and increased run-off induced enhanced surface-water productivity. This augmented nutrient 

availability favored the growth of coralline red algae over scleractinian corals, resulting in a global 

abundancy peak from the Burdigalian to early Tortonian. Halfar et al. (2004) illustrated how modern 

red algae communities can thrive under a broader range of temperatures and nutrient levels than 

corals, hence dominating reefs under eutrophic conditions.  

This study proposes a stratigraphic model design for the Lower and Middle Miocene of the Maldives, 

that allows to test the evolving relationship between oligophotic and euphotic assemblages. 

Lithological descriptions of the system, indicate that these sediment classes are respectively 

dominated by encrusting red algae and ahermatypic corals (section 4.1.2). By calibrating a reference 

model with varying carbonate production rates, the abundancy and distribution of each group can be 

tested in time and space.  

As illustrated in the experiment above (section 6.1.1), it might be necessary to fluctuate the production 

rates over time, in order to obtain a calibrated and geologically realistic stratigraphic model. This 

deviation from modern-day production rates raises the question of whether the modern-day ratio 

between different sediment classes should be maintained throughout the model. With modern growth 

rates ranging between 1 and 30 mm/yr for corals and between 0.1 and 3 mm/yr for coralline red algae 

(Montaggioni, 2005), both growth rates were initially estimated to differ one order of magnitude in 

the geological past (figure 27). This assumption did however not provide a suitable model result, fitting 

with the calibration data. Figure 28 illustrates how the simulated western bank, under a constant 

euphotic/oligophotic production ratio of 10, matches with the reference model only until 18.5 Ma 

(PS5). To induce a final progradation phase, similar to the expected geometry from phase IV (figure 6), 

the ratio oligophotic/euphotic production needs to be gradually increased from PS5 onwards. The 

necessary increase can be explained by an enhancement of oligophotic producer efficiency under 

changing environmental conditions. Furthermore, this gradual increase from 18.5 Ma, matches the 

global peak in rhodalgal lithofacies abundancy, starting in the Burdigalian (Halfar and Mutti, 2005). The 

exact cause of the biotic change, cannot be determined with this conceptual model design, but 

increased nutrient availability could be a plausible scenario. A more extensive set of input parameters, 

incorporating various nutrient sources and associated ecological restrictions for each biotic 

assemblage, would be required to exclude other scenarios. 

As both of the experiments illustrate, production rates, derived from modern-day settings, do not 

always generate realistic results when modelling processes from the geological past. Assuming 

continuous values over an entire simulation, neglects the impact of environmental changes on the 

carbonate production. When several biotic communities are simulated, the ratio between their 

respective production rates in time and space will reproduce their dominance in the stratigraphic 

model. These ratios change, according to the evolving biotic requirements under changing 

environmental conditions. Treating production rates as calibration variables, allows to analyze possible 

biotic and environmental changes during the evolution of the depositional system. 
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6.2 Impact of other uncertain parameters and assumptions 

6.2.1 Initial bathymetry 
In previous studies, the initial bathymetry has been proven to be an input parameter with a significant 

impact on the model output (Warrlich et al., 2002; Seard et al., 2013; Al-Salmi et al., 2019). The 

topography controls the location and production rate of each sediment class, the wave-energy 

distribution, the transport and deposition of sediments. As such, it determines the morphology of the 

first sequence, which in turn determines the bathymetry for the next. Due to this chain-effect certain 

geometries can be inherited from the initial surface across the entire simulation (Al-Salmi et al., 2019). 

In this study the impact of the depositional geometry was not tested for different surfaces. Instead, a 

best-case scenario was constructed, based on the model response and constraints, imposed by well 

and seismic data (section 4.1.1.1). Yet, the effect of the initial bathymetry can be observed, by 

comparing different sections through the 3D stratigraphic reference model.  

Cross section 1 (figure 17 and 19) and cross section 2 (figure 18 and 20) through the reference model 

exemplify how small topographic differences in the initial bathymetry can determine the outcome of 

the completed simulation. The initial bathymetry at cross section 1 contains several relief irregularities 

but has an average homoclinal slope. During phase I, these topographic highs are located within the 

optimal oligophotic production depth and determine the distribution of these bioconstructions (figure 

19.b). The isolated structures, shield areas from incoming waves that are filled up with carbonate 

grains and sand (figure 19.c-d). The gradual drowning of the oligophotic patch reefs leaves the loose 

grains and mud prone to redistribution along the slope. The resulting depositional profile at 22 Ma 

consists of a narrow, 5 km wide rim followed by a broad slope. The bathymetry at cross section 2 on 

the other hand, is relatively flat until it reaches the slope break, where it transitions into a deeper 

seaway. The flat fore-slope allows deposition of extensive oligophotic banks holding large amount of 

carbonate grains and mud (figure 20.b-d). This solidified base prevents the reef from backstepping 

under a second sea-level pulse at 24 Ma. Consequently, the reef rim remains relatively broad until, 

compared to cross section 1, while the internal slope is strongly reduced. This illustrates how the slope 

gradient and topography of the initial model surface, have a strong impact on the internal model 

heterogeneity and lateral facies variability. 

6.2.2 Diffusion coefficients 
Alongside the production rates, also the diffusion coefficients are ill-constrained input parameters. The 

values used in the reference model (table 1) were determined based on multiple calibration runs while 

respecting a few rules of thumb (section 4.1.2.5). The lack of theoretical scenarios and hypotheses, 

yields a great number of possible combinations. To gain proper insight in the impact of each diffusion 

coefficient on the model outcome, an automated sensitivity analysis is required (Hawie et al., 2015). 

Such a workflow generates multiple valid realizations by sampling a range of values for each parameter 

and quantifying the match of the model outcome with a reference model. Then, a final selection of 

scenarios is made based on their geological plausibility. As such, multiple reference models with diffent 

diffusion coefficient combinations can be developed for a single calibration dataset. Furthermore, the 

impact of each coefficient can be quantified by a sensitivity analysis of the different model outcomes. 

Such an extensive study of the model output falls outside of the scope of this project, but sounds 

promising for future research. 
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6.3 Advantages and limitations of the model design 
The proposed model design is founded on several concepts in carbonate sedimentology and 

stratigraphy, developed by Luis Pomar on outcrops from the Miocene around the Mediterranean Sea 

(Pomar, 2001b, 2001a; Pomar and Hallock, 2008; Pomar and Kendall, 2008; Pomar et al., 2012; Pomar 

and Haq, 2016). Many of these concepts are valid for contemporaneous carbonate depositional 

systems across the globe. The proposed model design could therefore function as a reference setup 

for future modelling efforts on Miocene carbonate platforms. 

6.3.1 Interacting sediment classes 
The proposed set of sediment classes differentiates based on (1) diffusivity and (2) carbonate 

production. The differentiation based on diffusivity, allows the model to produce textural gradients 

and lithological variations that resemble real physical processes. Similar to reality, unconsolidated 

sediments are brought into suspension by wave energy and transported downslope by water flow and 

gravitational processes. Framework-building and encrusting biota produce more rigid structures, able 

to defy the expected hydrodynamic thresholds, associated with clastic systems. Characterized by their 

diffusion coefficients, the model design simulates the transport behavior of each class. When these 

transport characteristics are properly calibrated, each sediment class fulfills an essential role in the 

total evolution of the carbonate platform. 

Carbonate grains and mud are exported away from the rigid bioconstructions and redeposited deep in 

the basin. Due to their diffusivity difference, carbonate grains make up an angular platform slope, while 

carbonate mud gradually fills the deeper internal basin as pelagic deposits. During this process, the 

deep internal seaways, originating from the en échelon grabens, are gradually filled. The rigid 

bioconstructions create protected low-energy zones that prevent the export of loose sediments. These 

sediment accumulations will occur in the fore-reef as solidified slope parts, and in the back-reef as flat-

topped lagoon deposits. Thus, the depositional profile is altered from the shelf equilibrium profile, 

which determines the surface topography for the next simulated sequence. 

The distribution of the bioconstructions is determined by the carbonate production laws, defined in 

time and depth, and restricted by wave-energy. By differentiating between euphotic and oligophotic 

production, two major reef components of the Miocene can be reproduced, namely ahermatypic 

corals and coralline red algae. The interaction between these two classes characterizes the 

progradation mechanism of the western carbonate bank. As the oligophotic organisms encrust the 

carbonate grains of the slope, it allows the accumulation of fore-slope sediment. When the thickness 

of this solidified fore-slope reaches the optimal production depth of euphotic producers, the euphotic 

reef rim is able to expand. This stepwise progradation mechanism is similar to the interaction between 

chlorozoan and rhodalgal factories, reconstructed from outcrop data of the Upper-Miocene Llucmajor 

Platform (Pomar and Ward, 1994, 1999) and the upper Tortonian to lower Messinian Reef Complex of 

Menorca (Pomar et al., 2012). It also shows how both groups collaborate on the reef expansion. The 

wave-energy restrictions create a clear vertical differentiation between oligophotic and euphotic 

bioconstructions. In addition, the restriction of euphotic frameworks to high-energy zones also creates 

a horizontal differentiation between reef crest and back-reef. The low-energy back-reef area is infilled 

by in situ produced carbonate grains and mud. Followed by a facies classification (table 2), this setup 

illustrates how lagoon environments can be simulated, without the need for a separate lagoon-

restricted sediment class (figure 17 and 18). As fewer classes involve fewer model uncertainties, this 

greatly facilitates the calibration procedure while creating a whole-system model with depositional 

environments from source to sink. 
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6.3.2 Spatial and temporal scale 
The complete model domain covers a well-studied E-W section of the Maldives carbonate platform of 

150 x 40 km (section 4.1.1.1). This model domain envelops a complete source-to-sink model that 

contains all depositional environments, from the shallow lagoons to the bathyal ocean floor. In order 

to adequately represent the progradation movements of the western bank in several steps, a minimum 

spatial scale of 500 x 500 m was chosen for each cell surface. Unlike many other basin scale models 

(Granjeon and Joseph, 1999; Hawie et al., 2015; Al-Salmi et al., 2019), this study uses a very age- and 

basin-specific model design. The model design focuses on simulating different biotic assemblages, to 

provide a depositional facies distribution and gain insight in the biotic changes during platform 

evolution.  

During the simulated time interval of 12.75 Myrs, an almost 1 km thick platform was generated, 

composed of multiple sequences. Each sequence varies in thickness, representing 0.25 Myrs of 

deposited sediments. This time step was picked to capture the essential lithological variations in the 

platform and sample the eustatic sea-level curve in way that results in gradual sequence stacking 

pattern (section 4.1.1.4). Ideally, the model time step could have been reduced to 0.125 Myrs, in order 

to sample the sea-level at least four times per sea-level rise/fall. However, the total amount of time 

steps needed to be balanced with the grid resolution, to maintain an appropriate computation speed. 

A consequence of the large time step, used for each simulated sequence, is the alternation of shallow-

lagoon and shallow-reef layers in the back-reef (figure 17 and 18). Due to the modelling step, the 

eustatic sea-level curve is only sampled twice for each sea-level rise/fall. This results in considerable 

fluctuations that episodically flood the entire platform. During the flood, wave energy is high across 

the entire platform surface, generating extensive euphotic bioconstruction layers. In reality, the sea-

level would rise gradually, allowing the reef crest to keep up and maintain a low-energy back-reef 

environment. The resulting lagoon facies would be deposited continuous throughout the simulation 

and follow sea-level fluctuations by increasing and decreasing in size. A smaller simulation time step 

was, however, not achievable due to computational limits. This oversimplified result, however, 

validates the approach to consciously resample the eustatic sea-level curve before application in a 

stratigraphic forward model.  

6.4 Perspectives on stratigraphic forward modelling  
Even when the reference model provides a solid match with the calibration data, the possibility of 

another scenario with an equally good match exists. To tackle this issue, recent developments in 

industrial applications of stratigraphic forward modelling use automated multiple realizations to 

quantify the match between simulated and reference data (Warrlich et al., 2008; Hawie et al., 2015). 

With an experimental design several simulations can be executed by varying a single parameter over 

a range of values, associated with the uncertainty on the parameter value. The results of several 

parameters are then analyzed using Response Surface Modelling to quantify the impact of each 

parameter on the model output. This sensitivity analysis allows to screen for the most influential 

parameters. Developing such insight in the model is particularly useful when a high number of 

uncertain parameters are involved in the calibration of the model. This way, the most plausible and 

geologically realistic scenarios are easily extracted for a more detailed comparison. 
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A calibrated and geologically validated stratigraphic model can be used to estimate subsurface 

properties away from point of control. As such, it can complement geostatistical techniques in the 

construction of a static geological model. As illustrated by Amour et al. (2013) several geostatistical 

methods are often required to cover different reservoir heterogeneity scales. Stratigraphic forward 

modelling does not suffer from scale-dependent uncertainties, thanks to its internal mathematical 

consistency. Although, the resolution of the model (spatial and temporal) is dependent on its total size 

and the available computation power (section 6.3.2). So far, industrial applications have mostly 

focused on the prediction of depositional facies at an exploration (Al-Salmi et al., 2019) and reservoir 

scale (Hawie et al., 2015). More research should, however, be conducted on the accuracy of 

stratigraphic modeling for different scales.  

Depositional facies distributions, predicted by stratigraphic forward models, are being introduced bit-

by-bit into reservoir characterization and dynamic flow models, both in hydrocarbon exploration 

(Whitaker et al., 2014) and geothermal applications (Willems et al., 2017). Whitaker et al. (2014) 

illustrates how the predicted depositional facies can be coupled with early diagenetic processes. By 

coupling petrophysical parameters to different diagenetic facies, these authors conducted flow 

experiments for several diagenetic scenarios. The development of process-based workflows for 

diagenetic and depositional models are still actively researched by industry and academics (Agar and 

Hampson, 2014). Though, many novel model approaches still require validation on well-studied 

datasets or outcrops. 
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Chapter 7: Conclusions 
A 3D stratigraphic model was developed in DionisosFlow on an extensively studied section of the 

Maldives carbonate platform. This study focuses on the evolution of the western bank of the platform 

from the late Oligocene to the Middle Miocene (25.7 – 13 Ma). During this tectonically stable period, 

the bank strongly prograded under eustatic fluctuations and enclosed the internal basin. The 

stratigraphic model tests a conceptual model proposed by Betzler et al. (2018) for the platform 

evolution. Accordingly, four distinct phases of platform growth are simulated, characterized by distinct 

morphological changes, and separated by stratigraphic turning points. A best-case scenario was 

calibrated with seismic profiles and well data, acquired across the platform. The design of the resulting 

reference model was founded on general principles and concepts in carbonate sedimentology that 

were originally developed for Miocene carbonate platforms in the Mediterranean. Even with a coarse 

spatial and temporal resolution, the model design was constructed to respect the biotic nature of the 

carbonate platform and the depositional processes involved. The selected sediment classes interact 

with one another, in way that captures the driving mechanisms behind the platform evolution. The 

proposed basin-specific design can thus be altered to fit other carbonate platform models, similar in 

age and composition. 

The calibration of the reference model was executed primarily by varying the production rates of the 

different sediment classes, and quantifying other input parameters by available data or assumptions. 

This approach allowed to gain insight in biotic changes under changing environmental conditions 

within the simulated time interval. Consequently, two hypotheses linked to variations in carbonate 

production were substantiated. Firstly, the Oligocene platform drowned under reduced carbonate 

production conditions, possibly induced by an external stress. Secondly, the ratio between euphotic 

and oligophotic production dropped beneath present-day values during the Middle Miocene. The 

exact cause of both production fluctuations requires a modelling experiment, that involves more 

environmental conditions in the model design. The reference model calibration indicates nevertheless 

the importance of carbonate production fluctuations in stratigraphic forward modelling. This aspect is 

often neglected by using continuous values, derived from modern growth rates. As these values do not 

necessarily yield geologically plausible scenarios, carbonate production rates should rather be treated 

as uncertain calibration parameters. 

Finally, the calibrated reference model forms a mathematically robust predictive tool for the carbonate 

platform architecture away from point of control. Its stratigraphic framework can be used to predict 

sequence boundary terminations and associated stratigraphic hydrocarbon traps. The regional-scale 

depositional facies prediction can be fitted with petrophysical properties to predict the distribution of 

potential reservoir rocks. Nevertheless, a more comprehensive sensitivity analysis of the model output 

to its uncertain input parameters should be executed with automated multiple realizations. Additional 

research on the quantification of the uncertainty of the model output is needed before the technique 

can be incorporated in a streamlined workflow for exploration purposes. 
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Appendix B 

 

Sequence stratigraphic correlation of IODP Expedition 359 sites along the northern transect of wells in the Maldives HSGR: 

downhole gamma ray log; NGR: gamma ray counts on wholeround cores. M mudstone, W wackestone, P packstone, G 

grainstone, F/R floatstone/rudstone. (Betzler et al., 2018) 

 

Sequence stratigraphic correlation of IODP 359 sites along the southern transect of wells in the Maldives. HSGR: downhole 

gamma ray log; NGR: gamma ray counts on whole cores. Inset to the left shows the time-depth curves for Sites U1467 and 

U1471. M mudstone, W wackestone, P packstone, G grainstone, F/R floatstone/rudstone. (Betzler et al., 2018) 


