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ABSTRACT

Antibiotic resistance is steadily turning into a global crisis. Recent efforts have put

forward certain enzymes encoded by bacteriophages as a promising alternative to

traditional antibiotics. There is a certain number of protein domains that has been

identified in in these proteins, but not every possible combination of domains has

been found in nature. This phenomenon has lead to the hypothesis of an underlying

set of design rules on the basis of which functional phage lytic proteins are formed.

PhaLP is a database constructed from various sources (UniProt, InterPro etc.) con-

taining information on lytic proteins used during a bacteriophage’s lytic life cycle.

Quantitative analyses based on annotated protein domains in PhaLP show clear cor-

relations between protein architecture and the bacterial host of the phage encoding

them. This further substantiates the design rule hypothesis. A thorough understand-

ing of these rules could facilitate the design of new effective enzyme-based antibi-

otics or enzybiotics.. A dual computational approach is employed to get an outline of

these design rules. First of all, a cluster analysis is performed based on the pairwise

similarity of the protein sequences. This points out broad host-ranges for clusters of

similar proteins, which can be useful characteristic for an enzybiotic. Furthermore,

it demonstrates evolutionary relations between sequences. A second approach uses

several interpretable machine learning models to predict a host from sequence data

and subsequently extracts the elements that are deemed important for the model’s

prediction. This approach is applied on every level of the bacterial taxonomy to map

a narrowing path of design rules regarding host taxonomy.

Keywords: enzybiotics, phage lytic proteins, protein domains, sequence clustering,

interpretable machine learning
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SAMENVATTING

Antibioticaresistentie wordt langzaamaan een wereldwijde crisis. Recent zijn

bepaalde enzymen, die gecodeerd worden door bacteriofagen, naar voor geschoven

als veelbelovende alternatieven voor traditionele antibiotica. Een bepaald aantal

eiwitdomeinen is reeds gevonden in deze enzymen, maar niet elke mogelijke com-

binatie daarvan wordt gevonden in de natuur. Door dit fenomeen is een hypothese

onstaan van een onderliggende set van designregels op basis waarvan functionele

lytische faageiwitten worden gevormd. PhaLP is een database met informatie over

lytische eiwitten die worden gebruikt tijdens de lytische levenscyclus van bacteri-

ofagen. De lytische faageiwitten in PhaLP werden onderworpen aan kwantitatieve

analyses gebaseerd op geannoteerde eiwitdomeinen. Hieruit blijkt een duidelijke

correlatie tussen de domeinarchitectuur van lytische eiwitten en de bacteriële gas-

theer van de faag die ze coderen. Deze correlatie staaft verder de hypothese van de

onderliggende designregels. Een meer uitgebreide kennis van deze designregels is

veelbelovend om het ontwerpen van nieuwe enzym-gebaseerde antibiotica of enzy-

biotica te vergemakkelijken. Een tweedelige computationele aanpak wordt gebruikt

om deze regels in kaart te brengen. Ten eerste wordt een clusteranalyse uitgevoerd

op basis van de paarsgewijze similariteit van de eiwitsequenties. Hieruit blijkt het

brede gastheerspectrum van sommige clusters van gelijkaardige sequenties, wat

een nuttig kenmerk kan zijn voor een enzybioticum. Hiernaast duidt het ook op

evolutionaire relaties tussen sequenties. Een tweede aanpak maakt gebruik van

interpreteerbare machine learning modellen om een gastheer te voorspellen o.b.v.

sequentiegegevens en identificeert vervolgens de elementen die door het model

belangrijk geacht worden in deze voorspelling. Deze aanpak wordt ook toegepast op

elk niveau van de bacteriële taxonomie om een steeds specifieker wordende set van

designregels met betrekking op gastheer uit te zetten.

Trefwoorden: enzybiotica, lytische faageiwitten, eiwitdomeinen, clusteranalyse,

interpreteerbare machine learning
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CHAPTER 1

INTRODUCTION

If no action is taken to counter or circumvent antibiotic resistance, 2.4 million people

could die from infectious diseases in Europe, North America and Australia between

2015 and 2050 (OECD, 2018). Globally, 700,000 people die each year due to the

recent appearance of superbugs, extensively or totally drug resistant bacteria that

cause infections (nearly) untreatable by conventional antibiotics. If current trends

continue, this figure is estimated to rise to around 10 million per year by 2050, a

higher death rate than cancer currently has (Review on Antimicrobial Resistance,

2016). A promising alternative to traditional antibiotics can be found in bacterio-

phages. These are viruses that replicate within a bacterium before breaking out and

infecting other bacteria. The proteins used in this mechanism are currently considered

to be one of the most promising alternatives to conventional antibiotics (Czaplewski

et al., 2016). This dissertation will provide an overview of the natural diversity of

these enzymes and learn design rules regarding their domain architectures. This in-

sight is essential for the development of new enzyme-based antibacterials, also called

enzybiotics.

1.1 Antibiotic resistance

The discovery of antibiotics is considered one of the most important revelations of

the 20th century and has drastically changed healthcare in the process. In the 75

years since their introduction, massive improvements in production have made them

increasingly inexpensive, encouraging nonprescription and off-label uses (Davies and

Davies, 2010). Combined with their easy use and effectiveness, it has caused the use

of antibiotics to run rampant in recent years.

Antibiotic resistance is, simply put, the ability of a bacterium to successfully resist

treatment with an antibiotic. It can be initiated by the introduction of one or more ran-

dom mutations which provide the organism with a higher chance of survival against

a certain antibiotic. As the only bacteria that will survive treatment are ones that

have acquired the mutation(s), only these can reproduce. Consequently, the genetic
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makeup of the species will drift towards one that is more resistant to the treatment

(Normark and Normark, 2002). Each time a patient is put onto a regimen of antibi-

otics, any surviving organisms of the illness push towards a more resistant isolate.

This is why doctors always ask to complete the full treatment, even if symptoms fade

early.

The most commonly used antibiotics tend to be broad-spectrum, meaning they affect

a wide range of bacteria. Although this makes for a quick cure of the illness without

having to identify the pathogenic bacterium, it provokes resistance in several species

at once (Carlton, 1999). In 2010, over 30% of the prescriptions for antibiotics in am-

bulatory care were found to be unnecessary (Fleming-Dutra et al., 2016). This kind

of over- and misuse of antibiotics unnecessarily exposes bacteria to antibiotics, and

thereby increases the overall chance of resistance development.

Resistance development through the acquisition of random mutations is a complex

process with many variables that can drastically impact the rate at which it evolves

(Martinez and Baquero, 2000), but it is hardly the only way antibiotic resistance can be

obtained. Resistance developed by the acquisition of random mutations can spread

to other bacteria through several mechanisms of horizontal acquisition of resistance

genes. This Horizontal Gene Transfer (HGT) can even occur across species boundaries,

allowing resistance genes against a broad-spectrum antibiotic to spread from a non-

pathogenic bacterium to a pathogenic one. This results in a rapid spread of antibiotic

resistance in a population of bacteria (Dzidic and Bedeković, 2003).

1.2 Bacteriophages

The word bacteriophage, derived from the Greek phagein and the word bacteria, lit-

erally translates to ’bacteria eater’. These viruses are among the smallest and most

omnipresent biological entities on earth, estimated at 1031 entities on earth (which is

10 times more abundant than bacteria) (Hendrix, 2003). They are composed solely of

a nucleotide string carrying their genetic information (i.e. DNA or RNA) surrounded by

a protein shell or capsid. Bacteriophages are able to hijack a bacterium’s reproduc-

tion machinery, making it their host. They latch onto the host and inject their genetic

information into it. During their lytic life cycle, the viral DNA or RNA is amplified and

new capsids are assembled around them. The newly made phages then escape from

their host cell by lysis and spread out to target new hosts (see figure 1.1). Depend-

ing on the species and conditions, the number of phage progeny can be over 200

(Carlton, 1999).

2



CHAPTER 1. INTRODUCTION

Figure 1.1: The lytic and lysogenic life cycle of a bacteriophage. Lytic cycle: the bac-
teriophage inserts its genetic information from inside the virus capsid into a bacterial
cell (1 & 2), takes over the host’s replication machinery and directs the synthesis
of bacteriophage nucleic acids and proteins (3 & 4 and 5). The phage produces en-
zymes that break open the cell and the mature bacteriophage particles are released
(6). Lysogenic cycle: infection occurs identically (1), but instead of replicating the
viral DNA integrates into the bacterial genome (2b). When the bacterial cell then di-
vides, the viral DNA is replicated along with the host cell’s without expression of the
lytic genes(3b and 4b). A copy of the viral DNA is transferred along with the host chro-
mosome to the bacteria’s offspring (5b). Following induction into the lytic phase, the
integrated phage DNA is excised from the host cell genome, causing the lytic genes
to be expressed. This brings about the start of a lytic cycle (Rees et al., 2012).

The therapeutic use of lytic bacteriophages to cure pathogenic bacterial infection

is denoted as phage therapy. The fact that phages self-replicate and exponentially

amplify in number may cause this method of combatting bacterial illnesses to work

very fast and in small doses. They are highly specific towards hosts and are able

to evolve with the bacterium (Abdelkader et al., 2019). These same characteristics,

however, impose a requirement for a thorough understanding of the properties and

behaviour of a certain phage for safe and controlled use (Hermoso et al., 2007). In

general, a lack of a regulatory framework and standardised protocols has discouraged

funding and advancements of clinical trials, causing attention to largely shift towards

other phage-related antimicrobials.

1.2.1 Phage lytic proteins

More recently lytic proteins encoded by phages have been evaluated as putative an-

timicrobials (Hermoso et al., 2007). These enzymes are used by the phage to (i) infect

3
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a bacterial cell and (ii) to lyse this cell after new bacteriophages have been assem-

bled inside of it. The former are called Virion-Associated Peptidoglycan Hydrolases

(VAPGHs) because they are part of the virus particle (virion), while the latter are en-

dolysins (Rodríguez-Rubio et al., 2016). Both types of enzyme degrade peptidoglycan

(PG), the main component of bacterial cell walls (see figures 1.1 and 1.3). VAPGHs

only locally break down PG to form a pore through which the viral genome can be

injected into the bacterial host. Endolysins, however, compromise the host’s cell wall

by digestion of its PG layer. At a certain point, this will cause the high internal pressure

of the cytoplasm to take over, resulting in the bacterial cell exploding, i.e. lysis.

The use of phage lytic enzymes as antimicrobials, or enzybiotics, has multiple advan-

tages over conventional antibiotics. As in phage therapy, enzybiotic treatment has

high host specificity. In this case, however, the specificity is predominantly a result

of the type of PG the enzyme can digest, rather than being determined by phage

receptors and antiviral defence mechanisms (Abdelkader et al., 2019). This promotes

a slightly broader specificity than phage therapy, as peptidoglycan type is often con-

served at species level (Schleifer and Kandler, 1972), but still narrow enough to fa-

cilitate treatment of a disease without disturbing the normal flora (Fischetti, 2008).

It has also been hypothesized that phage antimicrobials have lower risk concerning

development of resistance since bacteriophages have co-evolved with their host bac-

teria to target conserved bonds in the PG layer (Rodríguez-Rubio et al., 2013). They

are also capable of disrupting biofilms: matrices of multiple micro-organisms that are

usually impenetrable by antibiotics (Meng et al., 2011; Sharma et al., 2018).

Figure 1.2: Schematic representation of the mode of action of Virion-Associated Pep-
tidoglycan Hydrolases (VAPGHs) and endolysins on a Gram-positive bacterium. A
VAPHG allows the phage to infect the bacterial cell from the outside in, while an
endolysin is able to reach the peptidoglycan layer from the inside out by means of a
holin (Modified from: Rodríguez-Rubio et al. (2016)).

4
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While the use of a phage lytic enzyme as an enzybiotic rests on the same principle as

their natural function, namely the degradation of PG, their mode of action is different

(see figure 1.2). Naturally occurring phage lytic proteins are assisted in their journey

to the site of action (the periplasmic space). VAPGHs are part of the virion that bind

to the cell wall and bring the enzyme in the proximity of the PG (Rodríguez-Rubio

et al., 2016). Endolysins gain access to the periplasmic space by means of holins,

bacteriophage-encoded proteins that form pores through the cytoplasmic membrane.

Depending on the type of phage this can cause (i) the endolysins to be able to cross

the cytoplasmic membrane or (ii) the membrane itself to depolarise, provoking en-

dolysins that have accumulated in the periplasmic space, but are still anchored in the

cytoplasmic membrane, to be released and refold into an active conformation (Park

et al., 2007). If phage lytic proteins are to be used as enzybiotics, they should work ex-

ogenously/from without. This implies that the enzybiotic must be able to reach the PG

solely by diffusion. This can pose a problem if the PG layer is not directly accessible,

as is the case in Gram-negative cells (cells that have an outer membrane surrounding

the PG), as well as in Gram-positive cells which are decorated with (lipo)teichoic or

teichuronic acids (Schleifer and Kandler, 1972) (see figure 1.3).

Nevertheless, some competent enzybiotics have been created for both Gram-positive

and Gram-negative bacteria. Methicillin-Resistant Staphylococcus aureus (MRSA)

is a Gram-positive pathogen that is resistant to many commonly-used antibiotics.

Nonetheless, the ContraFect Corporation’s lead enzybiotic, CF-301, has completed

phase 2 clinical trials and is on its way to phase 3 (ContraFect, 2019). CF-301 is

estimated to be brought onto the market as soon as 2022 (Czaplewski et al., 2016).

Figure 1.3: The difference in general cell wall structure between (A) Gram-negative
and (B) Gram-positive bacteria. Gram-negative cells have an additional membrane
surrounding the PG, while Gram-positive cells have a much thicker layer of PG. Gram-
negative cell walls are often decorated with lipopolysaccharides and Gram-positives
can carry teichoic or teichuronic acids.
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Among Gram-negative bacteria, Acetinobacter baumanii has been observed to be

more susceptible to phage lytic proteins (Gerstmans et al., 2018; Thummeepak et al.,

2016). The reasons behind this are however still unknown. Various physical and

chemical outer membrane permeabilization techniques have been put forward (Calle-

waert et al., 2011; Briers et al., 2008, 2011), but more promising is protein engi-

neering. A possible strategy here is to modify the enzyme with a lipopolysaccharide

(LPS)-destabilizing peptide that allows it to travel through the outer membrane of a

Gram-negative cell. These types of bactericidal, outer membrane-penetrating engi-

neered endolysins have been coined Artilysins® (Briers et al., 2014).

1.3 Protein Domains

Lytic enzymes, as all proteins, are strings of amino acids (AAs) folded in three-

dimensional space. Within these sequences, regions that constitute separate

functional entities and are able to autonomously fold are denoted protein domains.

Proteins often encompass multiple domains that can interact with one another or

contribute to a cooperative effect (Ponting and Russell, 2002). Thousands of these

protein domains are known and have been catalogued in specialized libraries such

as NCBI’s CDD (DeWeese-Scott et al., 2010), Pfam (Bateman et al., 2007), SMART

(Letunic et al., 2014) and TIGRFAMs (Harkins et al., 2012).

In naturally occurring phage lytic proteins, there are two types of domain architec-

tures: globular and modular (see figure 1.4). Globular proteins contain a single do-

main responsible for the enzymatic digestion of the PG layer of the bacterial host.

Such domain is aptly classified as an Enzymatically Active Domain (EAD). Modular

enzymes contain multiple domains. Among these are (one or more) EADs, but also

Cell wall Binding Domains (CBD)s which allow the protein to bind to a cell before

cutting its PG layer (Oliveira et al., 2013). The trait of having multiple EADs further

adds to the robustness of phage lytic proteins against bacterial resistance, as two

lytic domains are predicted to be more resilient to resistance development than one

(Rodríguez-Rubio et al., 2016; Schmelcher et al., 2012).

Lytic proteins with a globular structure are mostly found in phages infecting Gram-

negative bacterial cells (Briers and Lavigne, 2015), while the modular kind is predom-

inantly encountered in Gram-positive bacteria (Gerstmans et al., 2018). The hypoth-

esis is that, as Gram-positive bacteria don’t have an additional cell wall around the

PG layer, the binding of the enzyme through a CBD prevents its diffusion after diges-

tion, which would cause cells that have not yet been infected by the phage to rupture

(Loessner et al., 2002). Nevertheless, exceptions to this rule have been identified

(Briers et al., 2007; Walmagh et al., 2012, 2013).

6
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The fact that protein domains are able to function and evolve independently

(Pawelkowicz et al., 2016) brings about the opportunity of their synthetic recombina-

tion without loss of function. Given sufficient knowledge of the domains commonly

found in phage lytic proteins, specific properties and functionalities could be cherry-

picked to recombine into an enzybiotic with the desired characteristics (Briers et al.,

2014; Gerstmans et al., 2018; Schmelcher et al., 2011). For instance, particular

binding or enzymatic domains could be chosen to target either a highly specific

or very broad spectrum of hosts. Additionally, domains could be optimised to the

environmental conditions the enzybiotic would encounter.

1.4 Objectives of this research

Naturally occurring phage lytic proteins are the result of the grand experiment of

evolution. Through millions of years of mutations and recombinations, competent

domains have formed and have banded together into functional architectures. Pre-

suming that HGT events are frequent (on an evolutionary time scale), the number of

theoretical domain architectures that can be formed with the domains observed in

natural phage lytic proteins is enormous. However, only a limited number of architec-

tures have been observed in nature (Oliveira et al., 2013; Vidová et al., 2014). This

leads to the hypothesis that there are fundamental design rules that determine which

combinations will be functional, and will thus occur in nature, and which will not.

Even though natural phage lytic proteins do not necessarily make good enzybiotics

and vice versa, deeper knowledge of these design rules would give insight into which

factors are important to engineer a phage lytic protein as a targeted (or intentionally

un-targeted/broad-spectrum) antibiotic. This would allow current research on protein

engineering of lytic enzymes to gradually shift strategy from directed evolution (Ger-

stmans et al., 2018; Heselpoth and Nelson, 2012; Linden et al., 2015) to a more direct

method based on rational design.

The objective of this research is to examine the protein domains in naturally occurring

phage lytic proteins and to identify their importance and function within the protein.

Alongside various bioinformatic techniques, the predictive power of machine learn-

ing algorithms is used to extract crucial domains and rule-defining characteristics

of phage lytic proteins. Chapter 2 will focus on exploratory analyses of the PhaLP

database, the main resource used in this research. Chapter 3 will make use of com-

mon bioinformatic protocols to infer crucial domains and evolutionary relationships

between lytic proteins. Finally, chapter 4 will explore how to take advantage of the

predictive power of machine learning methods to extract domains that are decisive

to a specific characteristic of phage lytic proteins.

7



1.4. OBJECTIVES OF THIS RESEARCH

It should be noted that the methods used in this inquiry will be mostly focussed on

identifying domains and domain architectures that play a role in the targetting and

binding of the lytic enzymes to a certain (spectrum of) bacterial host. This model

characteristic was chosen because it is a main point of interest in the engineering

of new enzybiotics and it has abundant data readily available. Given the right data,

these methods should however be adaptable to other protein traits.

8



CHAPTER 1. INTRODUCTION

Figure 1.4: Graphical representation of the modularity of endolysins. Catalytic do-
mains are coloured in purple and are sometimes linked to a binding domain (in or-
ange) (Hermoso et al., 2007). Although there might be domain interactions or coop-
erative effects, these domains provide distinct functionalities to the protein.
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CHAPTER 2

PHALP DATABASE

The data used in this research originates from PhaLP: a database of Phage Lytic Pro-

teins (Criel, 2017). This database was assembled from a query of UniProt (version

2019_03), VirusHostDB, ExPASy, NCBI and InterPro(Scan) (version 74.1) based on spe-

cific viral taxonomy, keywords and gene ontologies relating to phage lytic proteins.

The current version of the database (PhaLP version 2019_031) hosts information on

3901 distinct proteins. This includes, but is not limited to, the protein’s amino-acid se-

quence, corresponding coding DNA, phage and bacterial host taxonomy, experimental

evidence, gene ontology, conserved domains etc. (see figure 2.1). The enzymes in

this database are all naturally occurring phage proteins and thus do not include any

experimental recombinations or fusions.

Figure 2.1: Enhanced-Entity Relationship model of PhaLP including table and field
names. The relationships between tables in this database are all one-to-many, mean-
ing that a unique entry in table A can link to multiple rows in table B. This is illustrated
as an arrow (>|) at the table with the unique entry and an double line at the table with
many linked rows (||).

1This version is provided as a dump file in the digital appendix.



2.1. HOST TAXONOMY

2.1 Host Taxonomy

As specified in section 1.4, this research is mainly aimed at gathering domains that

are important for targeting a certain bacterial host. PhaLP includes 117 unique host

genera, whose full taxonomy is illustrated in figure 2.2. Among the bacterial phyla

present in this dataset, the genera belonging to the Actinobacteria and Firmicutes are

all Gram-positive, while those appertaining to the Bacteroidetes, Cyanobacteria, Fu-

sobacteria and Proteobacteria are Gram-negative. The phylum Deinococcus-Thermus,

for which only one genus is included in PhaLP, is left out of this classification as it

shares characteristics with both groups (Gupta, 1998). Of the 3636 UniProt phage

lysins that have a host genus linked to them, 2066 have a Gram-positive host, 1567

have a Gram-negative host and 4 have a host from the Deinococcus-Thermus phylum.

The entry with the UniProt accession ’S6BFI4’ is found in both Deinococcus-Thermus

and Gram-positive hosts.

Figure 2.2: Phylogenetic tree of bacterial hosts for which lytic enzymes are included
in PhaLP.
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Amidst the 3636 host-linked entries in the current version of PhaLP, 231 are known

to be capable of infecting multiple hosts. This host-spectrum is generally limited to

two different bacterial genera. The main pair here is Mycobacterium and Mycolicibac-

terium, having 145 shared assailants. A likely explanation for this is that these two

genera, both from the family of Mycobacteriaceae, have similar peptidoglycan struc-

ture (type A1γ, see section 2.2.1) and comparable compositions of cell wall and, up

until recently, were classified as one single genus (Gupta et al., 2018). These similar-

ities make them vulnerable to the same types of phage lytic proteins.

Propionibacterium and Cutibacterium have 58 common infecting phages. These gen-

era also belong to the same taxonomic family, i.e. the Propionibacteriaceae, but

unlike the Mycobacteriaceae, this family shows a wider spectrum of peptidoglycan

types, as well as more sequence variation (Stackebrandt et al., 2014). Interestingly

enough, these 58 phages produce 56 unique endolysin sequences with an identical

domain composition. These sequences all relate to studies on bacteriophages target-

ing the deprecated Propionibacterium acnes2 on the human skin (Farrar et al., 2007;

Marinelli et al., 2012; Liu et al., 2015; Brown et al., 2016), hence a plausible explana-

tion for this lack of diversity can be found in the lipid-rich anaerobic environment in

which these bacterial hosts reside (Marinelli et al., 2012). As a consequence, this par-

ticular domain architecture should be interesting for the engineering of an enzybiotic

to treat acne.

The entries in PhaLP with the broadest host spectrum emanate from the Enterobacte-

ria phage PRD1. This phage has two known lytic proteins in PhaLP and can infect six

different genera of bacterial host: Escherichia, Salmonella, Proteus, Acinetobacter,

Pseudomonas and Vibrio. The P7 protein (UniProt accession ’P27380’) is a VAPGH,

while the P15 protein (UniProt accession ’P13559’) plays a role in both injection of

the phage-genome and lysis of the host, making it rather interesting as a putative

broad-spectrum enzybiotic (Rydman and Bamford, 2002). Although these two entries

do not have a uniform sequence or structure, both contain multiple domains with a

transglycosylase functionality (e.g. LT GEWL: cd00254; SLT 1: IPR008258; Transglyc

AS: IPR000189 etc.).

It must be noted that since biology and evolution are ongoing processes, taxonomic

classification of bacteria is dynamic and rarely matches the biological truth perfectly.

Inaccurately classified bacteria may thus cause some correlations and similarities to

become unclear in the data exploration and analyses below. Accordingly, possible

relations and causal inferences are open for interpretation.

2In late 2016, most P. acnes were reclassified as Cutibacterium acnes (Scholz and Kilian, 2016).

13



2.2. PHALP DOMAINS

2.2 PhaLP domains

PhaLP contains a table of domains annotated to each phage lytic protein within it (see

figure 2.1). As mentioned in section 1.3, there are two types of domain that can be

found in these proteins that are involved in its lytic activity: EADs and CBDs. Despite

their shared goal, i.e. digestion of PG, there is a large variety of EADs, CBDs and

possible architectures in which they are arranged. This variety largely springs from

the diversity of PG found in different bacterial cell walls (Schleifer and Kandler, 1972).

2.2.1 Peptidoglycan

Peptidoglycan (PG), also called murein, is a heteropolymer common to all bacterial

cell walls. As the name suggests, it consists of glycan strands cross-linked through

short peptides (see figure 2.3). Glycans are strands of monosaccharides linked

with glycosidic bonds. In PG these are usually strands of alternating β-1,4-linked

N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) residues. These

strands can vary slightly in acetylation, phosphorylation and chain length depending

on the bacteria in which they are present, but they are usually quite uniform in

composition (Ghuysen, 1968). The stem peptide is bound from its N-terminus to the

carboxyl group of MurNAc and consists of a few amino acids (AAs) in alternating

L- and D-configurations. Furthermore, the peptide subunits of peptidoglycan are

cross-linked to one another through interpeptide bridges, usually between the amino

group of a diamino acid and the C-terminus of D-alanine (Schleifer and Kandler,

1972).

Not only the peptide subunits but the cross-links between them show great variety in

chemical composition (Cummins and Harris, 1956). Peptidoglycan types are classified

based on this variety. The cross-links can occur either between positions 3 and 4 of

the peptide subunits or between positions 2 and 4, dividing peptidoglycan types into a

group A and B, respectively. Subsequently, based on the components and biosynthe-

sis of the interpeptide bridge, the groups are further divided into subgroups denoted

by a digit, within which variations based on the third AA in the peptide subunit are

categorised by a Greek letter (Schleifer and Kandler, 1972).

Within Gram-negative bacteria, little variation in peptidoglycan type is perceived and

the most prominent type is A1γ. The Gram-positive bacteria, however, display great

disparity in PG composition and structure (Schleifer and Kandler, 1972).
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2.2.2 Enzymatically Active Domains (EADs)

The enzymatic domains that act upon the PG, i.e. the EADs, are ordinarily found at

the N-terminus of the protein (Loessner, 2005). Among their enzymatic activities,

there are generally regarded to be three main classes: Glycosidases, Amidases and

Endopeptidases. These cell wall hydrolases will each act upon the PG layer of a host

bacterium in a specific way (see figure 2.3).

Cell wall Glycosidases (CWGs) catalyse the hydrolysis of glycosidic β-1,4 linkages (Ver-

massen et al., 2019). The enzymes in this class generally belong to the EC classifi-

cation 3.2.1 and according to the CAZyme database (Carbohydrate Active Enzymes

database3), there are currently 162 known families. This group can be further differ-

entiated into N-Acetylglucosaminidases and lysozymes. The former cleave the β-1,4

specifically between the GlcNAc and the MurNAc of the bacterial PG (Rodríguez-Rubio

et al., 2016). Lysozymes and lytic transglycosylases both cleave the bond between

MurNAc and GlcNAc, but the reaction mechanism and end-products they generate are

different (Höltje et al., 1975). As the reaction meachanism in lytic transglycosylases

does not involve water, they are not technically hydrolases and are classified under

the EC numbers 4.2.2.n1 and 4.2.2.n2 (Herlihey and Clarke, 2017). For simplicity,

these will however be grouped as CWGs in this study.

Cell wall Amidases (CWAs) hydrolyse the amide bond between MurNAc and L-alanine

residues, effectively cleaving the glycan strand from the peptide moiety (Höltje et al.,

1994). These enzymes can all be classified under the EC number 3.5.1 (Vermassen

et al., 2019). A Cell Wall Peptidase (CWP) cleaves the bond between two amino acids

within the PG layer (Höltje et al., 1994). These enzymes are restricted to EC numbers

3.4 and can be subdivided into endopeptidases and carboxypeptidases (Vermassen

et al., 2019).

2.2.3 Cell wall Binding Domains (CBDs)

The often C-terminal CBDs are responsible for the binding of a phage lytic protein to a

ligand in or on the bacterial cell wall or PG (Loessner et al., 2002). This highly specific

binding, together with the specialized catalytic mechanisms of the EAD, brings about

a well-defined spectrum of activity for lytic proteins (Eugster et al., 2011). Addition-

ally, binding of the C-terminus to PG-associated ligands increases proximity of the

N-terminal EAD to its substrate (Loessner, 2005).

3http://www.cazy.org
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Figure 2.3: Schematic representation of the primary structures of two common pep-
tidoglycan (PG) types. N-Acetylglucosamine (GlcNAc) and N-Acetylmuramic acid
(MurNAc) make up the glycan strands, while the stem peptides are made up of several
amino acids and meso-diaminopimelic acid (mDAP). Through cross-links between the
several peptide subunits of peptidoglycan, the polymer gains its strength and rigid-
ity. The structure on the right in peptidoglycan type A1γ, the most common one in
Gram-negative bacteria. The structure on the left is a variation of type A3 (either α
or γ depending on the presence of L-Lys or mDAP in the third position of the peptide
subunit). A3 types are common to Staphylococcus aureus, a Gram-positive bacteria
(Schleifer and Kandler, 1972).
The different classes of cell wall hydrolases and the location on the cell wall where
they impact are also indicated on this figure. Cell Wall Amidases (CWAs) cleave
bonds between the glycan strand and the peptide subunits. Cell Wall Glycosi-
dases (CWGs) cleave within the glycan chain and can be further divided into N-
Acetylglucosaminidases, transglycosylases and lysozymes dependant on which exact
bond they target. Cell Wall Peptidases (CWPs) cleave bonds between AAs, this can be
both in the peptide subunit as well as along the interpeptide bridge.

2.3 Quantitative domain analysis

The connection in PhaLP from UniProt accessions to bacterial host taxonomy allows

for a preliminary examination of phage lytic protein design towards host-spectrum.

To do this, domains were manually curated into categories through the use of Gene

Ontology (GO) terms and EC numbers. To avoid redundancy between protein domains

from different source databases, domain accessions from InterPro were used when-

ever possible.

2.3.1 Abundance

As initial analysis, each entry in PhaLP was queried for domain annotation to give

insight into individual domain abundance. The EADs, subcategorised into hydrolytic
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classes, are set out in table 2.1. The CBDs are set out in table 2.2. Both tables also

include domain accessions from the various source databases incorporated in PhaLP

that link to a certain domain.

A total of 82 EADs could be distinguished. Among these by far the most abundant

are N-acetylmuramoyl-L-alanine amidase type 2 domain (Amidase 2; IPR002502) and

the Peptidoglycan Hydrolase Recognition Particle superfamily (PGRP SF; IPR36505).

These are both CWAs and are both found in around half of the phage lytic proteins in

PhaLP.

Among the CWGs, lysozymes are the most abundant and also most diverse group.

19 different types could be identified, of which the lysozyme-like domain superfamily

was observed in 1395 distinct phage lytics proteins.

The CWPs are the smallest and least abundant group in the database. Perhaps the

most interesting domain from this class is CHAP (Cysteine Histidine-dependent Ami-

dohydrolase/Peptidase; IPR007921), which is currently believed to cleave between

stem-peptides and cross-links in certain PG-types (Sundarrajan et al., 2014). CHAP

domains can be found in the protein architecture of 248 different entries in PhaLP.

Table 2.1: The conserved EADs present in PhaLP.

Enzymatic

Class

Domain Description Linked accessions Number of UniProt

entries

Amidase

Amidase D sub1 Unnamed amidase AmiD subfamily PTHR30417:SF1 39

Amidase02 C N-acetylmuramoyl-l-alanine amidase 02 C IPR021976 and PF12123 44

Amidase-r sub1 N-acetylmuramoyl-l-alanine amidase-related

subfamily

PTHR30032:SF1 5

Amidase D N-acetylmuramoyl-l-alanine amidase AmiD PTHR30417 556

Amidase-r N-acetylmuramoyl-l-alanine amidase-related PTHR30032 5

Amidase 30404 sub4 N-acetylmuramoyl-l-alanine amidase subfamily PTHR30404:SF4 72

SleB 1 Cell wall hydrolase SleB, domain 1 IPR042047 and G3DSA:1.10.10.2520 24

Amidase C N-acetylmuramoyl-l-alanine amidase AmiC PTHR30404:SF0 148

Endolysin T7 type Endolysin T7 type IPR034689 and MF_04111 134

Amidase 30404 N-acetylmuramoyl-l-alanine amidase PTHR30404 231

Zn-exopept Zn-dependent exopeptidases G3DSA:3.40.630.40 and SSF53187 239

PGRP SF PGRP domain superfamily IPR036505, G3DSA:3.40.80.1 and SSF55846 1935

PGRP met/bac Peptidoglycan recognition protein family do-

main, metazoa/bacteria

IPR006619 and SM00701 273

PGRP Peptidoglycan recognition protein IPR015510 and PTHR11022 291

Amidase 5 Bacteriophage lysin IPR008044 and PF05382 12

Amidase D sub11 N-acetylmuramoyl-l-alanine amidase AmiD PTHR30417:SF11 125

Anhydro amidase AMPD 1,6-anhydro-N-acetylmuramoyl-l-alanine ami-

dase AMPD

PTHR30417:SF4 1

Amidase 3 N-acetylmuramoyl-L-alanine amidase type 3 IPR002508, cd02696, PF01520 and SM00646 239

Amidase 2 N-acetylmuramoyl-L-alanine amidase type 2 IPR002502, cd06583, PF01510 and SM00644 1841

Glycosidase

Glycosidases Glycosidase superfamily G3DSA:3.20.20.80 291

Glycoside hydrolase SF Glycoside hydrolase superfamily IPR017853 and SSF51445 286

Glyco hydro 19 cat Glycoside hydrolase, family 19, catalytic IPR000726 and PF00182 5

Glyco hydro fam25 subgr Glycoside hydrolase, family 25 subgroup IPR018077 and SM00641 211

Glyco hydro 25 Glycoside hydrolase, family 25 IPR002053 and PF01183 279

Glyco hydro 25 AS Glycoside hydrolase, family 25, active site IPR008270 and PS00953 16

Glyco hydro 25 AtlA-like GH25_AtlA-like cd06522 1

Glyco hydro 25 Cpl1-like GH25_Cpl1-like cd06415 44

Glyco hydro 25 Lyc-like GH25_Lyc-like cd06525 3

Glyco hydro 25 LysA-like GH25_LysA-like cd06417 1

Glyco hydro 25 LytC-like GH25_LytC-like cd06414 2

Glyco hydro 25 muramidase GH25_muramidase cd00599 76

Glyco hydro 25 PlyB-like GH25_PlyB-like cd06523 25

Glyco hydro 66 Glycosyl hydrolase family 66 IPR025092 and PF13199 1

GLUCO Mannosyl-glycoprotein endo-beta-N-

acetylglucosaminidase-like domain

IPR002901, PF01832 and SM00047 11

Continued on next page
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Table 2.1: The conserved EADs present in PhaLP.

Enzymatic

Class

Domain Description Linked accessions Number of UniProt

entries

Glycosidase

(continued)

LT-GEWL Lytic Transglycosylase and Goose Egg White

Lysozyme domain

cd00254 168

Gp16 Internal virion protein Gp16 IPR038994 and MF_04121 102

Mur transglyc D Membrane-bound lytic murein transglycoylase

D

PTHR33734:SF14 98

SLT 1 Transglycosylase SLT domain 1 IPR008258 and PF01464 170

Transglyc AS Prokaryotic transglycosylase, active site IPR000189 and PS00922 144

Transglyc F Membrane-bound lytic murein transglycoylase F PTHR35936:SF19 6

Endolysin/autolysin Endolysin/autolysin IPR033907 and cd00737 375

Endolysin lambda type Endolysin lambda type IPR034691, cd00736 and MF_04109 87

Endolysin T4 type Endolysin T4 type IPR034690 and MF_04110 147

T4-like bacteriophage_T4-like_lysozyme cd00735 235

T4-type lysozyme T4-type lysozyme IPR001165 and PR00684 386

Lysozyme 23208 Lysozyme protein PTHR23208 41

Lysozyme RrrD-r Lysozyme RrrD-related PTHR38107:SF2 171

Lysozyme 40 Unnamed lysozyme G3DSA:1.10.530.40 1108

Lysozyme 23208 sub38 Lysozyme protein subfamily PTHR23208:SF38 41

Phage lysozyme2 Phage tail lysozyme IPR041219 and PF18013 6

Lysozyme-like SF Lysozyme-like domain superfamily IPR023346 and SSF53955 1395

Glyco hydro 24 Glycoside hydrolase, family 24 IPR002196 and PF00959 1202

Phage PRD1 P15 lysozyme Bacteriophage PRD1, P15, lysozyme IPR016284 and PIRSF001069 1

IraD/Gp25-like IraD/Gp25-like IPR007048 and PF04965 1

Lysozyme 280 Unnamed lysozyme G3DSA:2.40.10.280 1

Muramidase N-acetylmuramidase IPR024408 and PF11860 1

Gp5 OB N Protein Gp5, N-terminal OB-fold domain IPR009590 and PF06714 197

Chitinase Unnamed chitinase G3DSA:1.10.530.70 7

DUF847 Protein of unknown function DUF847 IPR008565 and PF05838 2

Peptidase

Peptidase U40 Peptidase U40 IPR019505 and PF10464 1

Peptidase M15A C Peptidase M15A, C-terminal IPR013230 and PF08291 2

Peptidase-r Peptidase-related PTHR21666 249

Mur hydro NLPD Murein hydrolase activator NLPD PTHR21666:SF263 1

Peptidase-r sub266 Unnamed subfamily with metalloendopeptidase

activity

PTHR21666:SF266 1

Mur DD endopept MEPM Murein DD-endopeptidase MEPM PTHR21666:SF270 3

Peptidase-r sub271 Unnamed subfamily with metalloendopeptidase

activity

PTHR21666:SF271 2

Cys proteinase SF Cysteine proteinases G3DSA:3.90.70.10 19

NLP P60 Endopeptidase, NLPC/P60 domain IPR000064 and PF00877 2

Peptidase C39 Peptidase C39-like IPR039564 and PF13529 7

Peptidase M23 Peptidase M23 IPR016047 and PF01551 252

Papain-like cys pep SF Papain-like cysteine peptidase superfamily IPR038765 and SSF54001 249

endopeptidase-like Endopeptidase domain like G3DSA:3.90.1720.10 263

CHAP CHAP domain IPR007921, PF05257 and PS50911 248

Gp5 SF Peptidoglycan hydrolase Gp5 superfamily IPR038288 and G3DSA:1.10.530.50 1

Unknown

Cell wall hydrolase SleB Cell wall hydrolase, SleB IPR011105 and PF07486 23

Hydro 34135 sub2 Unnamed subfamily with hydrolase activity PTHR34135:SF2 98

Hydro 34135 sub1 Unnamed subfamily with hydrolase activity PTHR34135:SF1 41

Dup hybrid motif Duplicated hybrid motif IPR011055, G3DSA:2.70.70.10 and SSF51261 263

PG exotransglyc lys Unnamed superfamily G3DSA:1.10.530.10 281

Hydro 38107 sub3 Unnamed subfamily with hydrolase activity PTHR38107:SF3 45

DUF3597 Domain of unknown function DUF3597 IPR022016 and PF12200 7

Glygly endopept Cell wall targeting domain of glycylglycine en-

dopeptidase

G3DSA:2.30.30.410 283

Despite the advantages CBDs serve to the efficacy of lytic proteins, they are not

essential to the lytic functionality. Consequently, only about one third of the en-

tries in PhaLP possesses a known CBD (See table 2.2). Furthermore, as will be dis-

cussed in section 2.3, the vast majority of phage lytic proteins containing a CBD

targets a bacterial host of positive Gram-type. Noteworthy CBDs are SRC Homology

3 domains (IPR003646, SSF82057 and G3DSA:2.30.30.40), Peptidoglycan Binding do-

mains (IPR002477, IPR036366 and IPR036365) and Lysin Motif domains (IPR036779,
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Table 2.2: The conserved CBDs present in PhaLP.

Domain Description Linked accessions Number of UniProt
entries

Peptidoglycan BD-like Peptidoglycan binding-like IPR002477 and PF01471 256

PGBD SF PGBD superfamily IPR036366 and G3DSA:1.10.101.10 290

Invasin/intimin cell adhe-
sion

Invasin/intimin cell-adhesion fragments IPR008964 and SSF49373 1

SPOR-like Sporulation-like domain IPR007730, PF05036 and PS51724 20

LysM SF Lysin motif domain superfamily IPR036779 and G3DSA:3.10.350.10 169

SH3-like bac-type SH3-like domain, bacterial-type IPR003646, PF08239, PF08460, PS51781 and
SM00287

322

PSA CBD PSA endolysin, cell wall binding domain IPR041341 and PF18341 8

Cell wall/Cho-BD repeat Cell wall/choline-binding repeat IPR018337, PF01473, PS51170 and
G3DSA:2.10.270.10

97

Cpl-7 lyso C Cpl-7 lysozyme, C-terminal IPR013168, PF08230 and SM01095 25

LGFP LGFP repeat IPR013207 and PF08310 66

SH3-like SF SH3-like domain superfamily IPR036028 and SSF50044 2

SPOR-like SF Sporulation-like domain superfamily IPR036680, G3DSA:3.30.70.1070 and
SSF110997

16

SH3-r pro SF Prokaryotic SH3-related domain superfamily SSF82057 8

SH3 SF SH3 domains superfamily G3DSA:2.30.30.40 68

LysM dom SF Lysin motif domain superfamily SSF54106 165

LysM Lysin motif domain IPR018392, cd00118, PF01476, PS51782 and
SM00257

169

Vir attach Virus attachment protein , globular domain G3DSA:2.60.90.20 1

Attachment protein shaft
SF

Attachment protein shaft domain superfamily IPR009013 and SSF51225 1

BIg 2 Bacterial Ig-like, group 2 IPR003343, PF02368 and SM00635 1

LysM GPI 2 Lysin motif domain-containing GPI-anchored protein 2 PTHR33734:SF11 65

Peptidoglycan-BD 3 Peptidoglycan binding domain IPR018537 and PF09374 1

CWB repeat SF Cell wall binding repeat superfamily SSF69360 97

Vir attach sigma1 reovir Viral attachment sigma 1, reoviral IPR002592 and PF01664 1

PGBD-like SF PGBD-like superfamily IPR036365 and SSF47090 296

Any CBD 976

IPR018392 and SSF54106). These domains can be found in the majority of the entries

in PhaLP with a known CBD.

2.3.2 Occurrence and distribution

Narrowing down on host-specificity, the occurrence of all domains specified in ta-

bles 2.1 and 2.2 was mapped against the host taxonomy on genus level (although

these are sorted on higher levels as well, see figure 2.4). The inverse relation, i.e.

the ratio of occurrence of all host genera for a particular domain, was charted in fig-

ure 2.5.

Quantitative analyses of this type have been conducted before on datasets of phage

lytic proteins. Oliveira et al. (2013), for instance, analysed the appearance of 35 do-

mains in 727 endolysins. Since then, the amount of known and annotated phage lytic

proteins has risen tremendously, allowing for a more accurate estimation of the do-

main distribution in nature. The use of PhaLP version 2019_03 now accommodates

for a study of the occurrence of 106 domains across 3636 unique phage lytic proteins.

In figure 2.4, a clear distinction can be made between domains that appear in hosts

of different Gram-types. The Gram-negative genera seem to be a lot less likely to

contain a CBD, with the phyla Bacteroidetes, Cyanobacteria and Fusobacteria con-

taining none at all. This further supports the hypothesis of Loessner et al. (2002) that
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the endolysins of Gram-negative bacteria are mostly globular because their cell wall

beyond the PG layer already prevents diffusion of the endolysin after digestion, nul-

lifying the need for a binding domain. Surprisingly, the only common Gram-negative

CBD identified by Oliveira et al. (2013), namely Peptidoglycan-BD 3 (IPR018537), is

only found in a single entry in PhaLP4. This discrepancy can however be traced back

to the fact that not all phage lytic proteins studied by Oliveira et al. (2013) are also

incorporated in PhaLP and will likely be resolved with future versions of the database.

It however points to an important caveat that a quantitative analysis is not an exact

representation of the occurrence and distribution in nature and is highly dependent

on the database.

Among the Proteobacteria, some CBDs do appear, but rather infrequently. The SRC

Homology 3 (SH3) domain family (G3DSA:2.30.30.40) is one of the most frequent

CBDs among Proteobacteria. It is detected in all phage lytic proteins for hosts of

the genera Pelagibaca, Salipiger and Sphingobium and more scattered in Agrobac-

terium, Ruegeria and Sinorhizobium. These six genera all belong to the class of the

Alphaproteobacteria, with half of them (Pelagibaca, Salipiger and Ruegeria) sharing

the same taxonomic family, the Rhodobacteraceae. In fact, almost all occurrences of

CBDs in Gram-negative hosts are located within a small cluster of genera belonging

to the class of Alphaproteobacteria in the figure (between Agrobacterium and Sph-

ingobium). Furthermore, peptidoglycan binding domains (IPR036366, IPR036365 &

IPR002477) are also found in phage lytics proteins targeting Pseudomonadales and

Escherichia, albeit rather infrequently. Since there is no overlap in lytic proteins tar-

geting Gram-positive bacteria and these Proteobacteria, this could indicate a unique

need for CBDs when targeting certain Proteobacteria.

About half of the phage lytic proteins for Gram-positive hosts in PhaLP contain CBDs.

The most abundantly detected ones in PhaLP are Peptidoglycan Binding Domains

(PGBD SF; IPR002477, IPR036365 & IPR036366) and Lysin Motif domains (LysM;

IPR018392). These two domain families were also deemed prominent in the study by

Oliveira et al. (2013). Most CBDs are shared between the two Gram-positive phyla,

but there are exceptions: the sporulation-like (SPOR-like; IPR007730 & IPR036680)

and SRC Homology 3-like (SH3-like; IPR003646 & SH3; G3DSA:2.30.30.40) do-

mains are unique to the Firmicutes, although both are also prominent among the

Alphaproteobacteria.

EADs execute the main function of phage lytic proteins and are evidently found in

all entries regardless of Gram-type or modularity. Some domains are almost univer-

sally incorporated, such as the Peptidoglycan Recognition Particle domain superfamily
4The single entry in PhaLP containing Peptidoglycan-BD 3 has Pseudomonas as a host. Seeing as it only

appears for one entry out of the 132 that have this host (resulting in an occurrence fraction of 0.0075), it
is indistinguishable in figure 2.4.
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(PGRP SF; IPR036505) and the N-acetylmuramoyl-L-alanine amidase type 2 (Amidase

2; IPR002502) domains. While other domains seem rather strictly confined to a Gram-

type, phylum or even lower taxonomic level. The endolysin T7 type (IPR034689), for

instance, is solely detected in bacterial hosts from the class of Gammaproteobacte-

ria, in which it is only rarely spotted outside of the order of Enterobacterales. Other

CWAs, such as Amidase 30404 sub4 (PTHR30404:SF4) are restricted to genera within

the Firmicutes, although its overarching domain family Amidase 30404 (PTHR30404)

is also detected in multiple Bacteroidetes genera. Analogously, the Amidase D sub11

(PTHR30417:SF11) is exclusive to the Firmicutes as well, while its larger domain family

(Amidase D; PTHR30417) is frequently present in all Gram-positive hosts even some

Alphaproteobacteria. This unique distribution could possibly point to a divergent evo-

lution of lytic protein domains towards ones specialized for specific host-ranges. Also

notable within the CWAs is the cell wall hydrolase SleB 1 domain (IPR042047), whose

occurrence is entirely limited to the order of Synechococcales. Vice versa, in the 57

entries targeting a Synechococcales host, 24 contained this specific domain. Never-

theless, further research with larger sample sizes sequenced from nature should be

conducted to understand the full scope of this correlation.

As can be seen in the bottom right corner of figure 2.4, CWGs are the most abun-

dant EAD for Gram-negative hosts, having a much more sparse distribution within

Gram-positive ones, where CWAs have the upper hand. Among the CWGs, lysozyme

and transglycosylase domains are most prominent in Gram-negative hosts, while glu-

cosaminidases are confined to Gram-positive ones (see rightmost columns in fig-

ure 2.5). Transglycosylase domains themselves seem significantly more present in

hosts from the Enterobacterales class, this can be clearly seen as a cluster in both

figure 2.4 and figure 2.5.

As also observed by Oliveira et al. (2013), the enzymatic domains belonging

to the lysozyme-like superfamily (e.g. autolysin; IPR033907, T4-type lysozyme;

IPR001165 & glycoside hydrolase family 24; IPR002196) almost exclusively oc-

cur in Gram-negative genera. From these, the T4-type lysozyme (IPR001165) is

even limited to the Proteobacteria. The glycoside hydrolase superfamily domains

(G3DSA:3.20.20.80, IPR018077 & IPR002053) are solely found in phage lytic pro-

teins targeting Gram-positive or Gram-ambiguous5 genera. Unlike the study by

Oliveira et al. (2013), however, domains from the glycoside hydrolase family 25 (e.g.

IPR002053, IPR018077 & cd00599) are found in both Gram-positive phyla rather

than being mostly restricted to the Firmicutes (see figure 2.6). Nevertheless, some

domains within this family (e.g. IPR008270, cd06414, cd06415, cd06522, cd06523

5Bacteria in the phylum Deinococcus-Thermus possess a secondary cell envelope (primary characteristic
of Gram-negative bacteria), but still show a Gram-positive stain (Gupta, 1998). These are furthermore
classified as Gram-ambiguous in this research.
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& cd06525) do seem specialized to hosts from this phylum, although these domains

are quite rare and appear in too little entries within PhaLP to make substantial

conclusions (see table 2.1).

CWPs seem less common overall and almost completely absent from the Gram-

negative hosts. A possible hypothesis for this relation could be that, as PG-types

are quite uniform among Gram-negative bacteria (see section 2.2.1), more general

lytic protein architectures will function on most of these hosts, creating no increased

fitness for bacteriophages capable of specialised hydrolysis in the peptide moiety.

The only relatively abundant peptidase domain for Gram-negative hosts is the

cysteine proteinase superfamily (G3DSA:3.90.70.10), which is found in 14 out of

the 57 lytic proteins for hosts of the genus Synechococcus. This might even be a

specialised domain for this host as this domain is overall only observed in 19 entries

in PhaLP (see table 2.1). The Actinobacteria show only one peptidase domain of note,

i.e. Peptidase M23 (IPR016047), a family of endopeptidases whose occurrence within

PhaLP is almost entirely restricted to the order of the Corynebacteriales.
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CHAPTER 2. PHALP DATABASE

Figure 2.6: The occurrence and distribution of 35 domains from 727 endolysins across
phage families and bacterial hosts as analysed by Oliveira et al. (2013).

25



2.3. QUANTITATIVE DOMAIN ANALYSIS

26



CHAPTER 3

CONSERVATION APPROACH

As specified in section 1.4, the overarching goal of this dissertation is to find underly-

ing design rules in the architectures of phage lytic proteins. An important part of this

process is learning from nature. The natural phage lytic proteins that are discovered,

are the result of the massive experiment of natural evolution. They have evolved

through duplications, mutations and recombinations and only those that resulted in

an increase of fitness have been assimilated into the gene pool. This means that by

looking at a set of proteins of a certain function, we gain a unique window into what

makes the execution of that function feasible. With that in mind, this chapter will fo-

cus on finding commonalities in the amino acid (AA) sequences of phage lytic proteins

and will try to root these commonalities in evolution.

3.1 Conserved Domains

Conservation of a region in an AA-sequence means this sequence has (for the most

part) withstood the various mechanisms driving evolution. If such region is conserved

across many proteins of a similar function, this signifies a certain degree of impor-

tance to that function, as conservation is achieved through a fitness advantage. Ac-

cording to the NCBI handbook, a conserved domain is a recurring unit in polypeptide

chains that can be discovered by comparative analysis. Molecular evolution uses

these domains as building blocks of modular proteins. They are recombined in differ-

ent architectures to make proteins of various functions (Sayers and Bryant, 2002).

While a conserved region does not necessarily constitute a protein domain, it has

been proven that sequence identity of over 40% generally means a correspondence

of function (Wilson et al., 2000; Todd et al., 2001). The hypothesis thus is that through

alignment of different phage lytic proteins, conserved domains and even domain ar-

chitectures can be found. Not only would this allow to quickly identify host-ranges for

which phage lytic domain composition is similar, it can provide insights on horizontal

and vertical gene transfer based on the distance measure between sequences that

an alignment score generates. It could also be possible to annotate novel conserved
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domains, although recent efforts by Pfam, CDD etc. make this less likely (Bateman

et al., 2007; DeWeese-Scott et al., 2010).

3.1.1 Local alignment

The most straightforward way of sequence comparison is through alignment algo-

rithms. These algorithms, often based on dynamic programming, cycle through every

character and return a score on how much the compared sequences are alike (Needle-

man and Wunsch, 1970). There are two main variants of this algorithm, global and

local alignments. While global alignments optimise the overall alignment of two se-

quences, local alignments search for conserved subsequences within the given in-

put sequences (Smith and Waterman, 1981). Since global alignments may include

stretches of little similarity, local alignments are often preferred for homology-based

domain annotation (Altschul et al., 1990; DeWeese-Scott et al., 2010).

Alignments performed in the analyses in this chapter were all local alignments on

the full AA sequences of phage lytic proteins. AAs have several advantages over

nucleotides in sequence comparisons. First of all, because there are 20 different AAs

and only 4 different nucleotides, an AA match has a lot more significance than a

nucleotide match would1. Additionally, many triplets of nucleotides (codons) code

for the same amino acid, causing certain substitutions to only introduce noise and

accordingly lower the sensitivity and reach of the algorithm. Lastly, the likelihood

of AA substitutions occurring during evolution varies substantially according to the

particular AA, unlike for nucleotides where substitution probabilities are more uniform.

This added degree of variability vastly improves the performance of an alignment as

it allows to discern between possible mutations and non-aligning sections (Koonin and

Galperin, 2003).

Alignment algorithms score sequence similarity based on a substitution matrix and

gap penalties. A substitution matrix includes scores to be added or subtracted from

the total for each relation of characters. This matrix returns positive scores if char-

acters from the input sequences line up and negative or zero scores for mismatches.

The BLOSUM62 matrix was chosen in this case because it has been optimised for

more distantly related sequences (average similarities of 20 to 40%), which is gener-

ally the case for the phage lytic proteins in PhaLP (Henikoff and Henikoff, 1992) (see

appendix A.1). Gap penalties are scores subtracted from the total in case of insertions

or deletions. These were set as 10 for the opening of a gap and 1 for the extension of

a gap, which are standard values for BLOSUM62 matrices (Reese and Pearson, 2002).

1An amino acid match carries over four bits of information, while a nucleotide match carries only two.
This means statistical significance of a matching segment can be reached for much shorter sequences.
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Figure 3.1: An example of an alignment matrix for a local alignment on two AA-
sequences using the BLOSUM62 substitution matrix and a gap penalties of 10 and
1 for opening and extending, respectively. The red arrows indicate the path of back-
tracing taken by the algorithm to find the resulting alignment, which is pictured on
the right.

The score for each possible alignment between two AA-sequences v = 1, 2, . . . , n

and w = 1,2, . . . ,m is stored in an alignment matrix A of size n × m. The best

possible alignment at each position is then gathered from the maximal score obtained

by either insertion, deletion or (mis)match:

,j =mx























−1,j−1 + BLOSUM62(,j)

−1,j − σ (gap in w)

,j−1 − σ (gap in v)

, (3.1)

with σ denoting the gap penalty (which is either 1 or 10 depending on opening or

extension). The optimal alignment can then be found by the highest score in A (Smith

and Waterman, 1981). An example of how this score is calculated for two sequences

can be found in figure 3.1.

Alignments were all performed pairwise, meaning an optimal alignment was com-

puted for every possible pair of sequences and stored in a score matrix. Since

comparative analysis on identical sequences is redundant, duplicate proteins were

excluded from the alignments. Annotations from omitted alignments (e.g. phage,

protein type and bacterial host) were added onto the accession of their matching

sequence. Similarity was assessed for 2591 unique phage lytic proteins, yielding a

symmetric 2591 × 2591 score matrix S.
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Since alignment scores add up for every match, the optimal score for each pairwise

alignment is highly dependent on the length of the conserved segment. Therefore,

score matrix S was scaled:

ŝ,j =
s,j

p
s,
p

sj,j
, (3.2)

for each element s,j in S where 0 ≤ , j ≤ 2591.

This brings about a 2591 × 2591 matrix Ŝ of similarity scores between 0 and 1 (with

0 for completely different and 1 for identical sequences).

3.2 Clustering

To isolate highly conserved regions across a multitude of sequences, a Multiple Se-

quence Alignment (MSA) could be used. However, if employed directly on the entire

set of sequences, it would yield a huge, vaguely related region with a lot of gaps. A

more valuable approach would be to group similar sequences together and to carry

out a MSA on the individual groups.

Gathering sequences into highly similar groups can be achieved through agglomera-

tive clustering. This unsupervised machine learning technique starts from a partition

of singleton data points and iteratively merges the mutually closest pairs into clusters

until all data points have been joined into one (Müllner, 2011). This iterative merg-

ing also allows the algorithm to construct a dendrogram as a visual representation

of the (dis)similarity, or distance, between data points (see figure 3.2). The scaled

similarity Ŝ was used in this case as a distance measure between sequences to build

linkages upon. The result of this analysis set out as a clustered heatmap can be seen

in figure 3.3. Some aspects of this figure will be discussed below, but readers are

encouraged to scope out any other details from the full figure available in the digital

appendix.

The most similar cluster of phage lytic proteins can be seen in the upper-left corner

of this figure (cluster A). The 90 sequences to be found in this cluster all target a

bacterial host in the Propionibacteriaceae family, the majority targets both Propioni-

bacteria and Cutibacteria. The specific bacteriophages that encode the sequences in

this cluster show less consistency apart from all being Siphoviridae.

The sequences in this cluster contain a C-terminal Amidase 2 domain (IPR002502)

and an N-terminal domain of unidentified function and are mostly identical apart from

some scattered point-mutations and a variable linker region between the two domains
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Figure 3.2: Schematic representation of how an agglomerative, hierarchical clustering
algorithm joins datapoints and constructs a dendrogram. (I) Representation of data
points A through G in a 2D-space at certain distances from each other. (II) At each
step the pair closest to each other is merged into one cluster. (III) Based on the order
of merging, data points and their individual distances from each other are visualised
in a dendrogram.

(which was identified as such by DFLPred; (Meng and Kurgan, 2016)). As already men-

tioned in section 2.1, the high sequence similarity for these phage lytic proteins likely

relates to the unique evolutionary constraints imposed by the habitat of the bacterial

hosts they infect.

Perhaps one of the most interesting clusters in this figure is cluster B, as can be

seen isolated in figure 3.4. While most sequences in this cluster have a scaled sim-

ilarity of around 0.7, certain subgroups within it are almost exact copies. Further-

more, as can be seen in figure 3.3, almost no other sequences in PhaLP are similar to

them. This cluster, containing only VAPGHs, targets bacteria from 11 different genera

from the Enterobacterales clade. A single sequence targeting Stenotrophomonas (A

gammaproteobacteria belonging to the order of Xanthomonadales) is also found in

this cluster.

Although MSA of these sequences shows various segments that are unique to one

or several UniProt entries, a query of the conserved domains within these sequences

through NCBI’s CD-Search tool (Marchler-Bauer and Bryant, 2004) shows evidence for

only one domain, i.e. internal virion protein D (PHA003682). Further analysis through

DFLPred determined that the variable regions between conserved segments were

likely linker segments, causing a break in the alignments, hence the separated sub-

clusters. Since this cluster has variable linker regions as the sole source of sequence

variation and is able to target such a large span of bacteria (including many known

2PHA00368 is not included in PhaLP/InterPro.
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pathogens, e.g. Escherichia, Klebsiella, Yersinia, Salmonella etc.), it could be highly

interesting as a broad-spectrum enzybiotic.

3.2.1 Evolutionary relations

The isolated dendrogram of the the cluster analysis can be seen in figure 3.6. This

figure was further annotated with information gathered from PhaLP regarding protein

Figure 3.3: Heatmap of the score matrix Ŝ hierarchically clustered through the simple
nearest points algorithm (Müllner, 2011). The darker an area, the more similar the
sequences of those phage lytic proteins. Sequences are identically ordered on both
axes, resulting in perfect similarity on the diagonal. Due to overlapping labels at
this size, the sequence accessions on the axis were left out of this figure. The fully
annotated figure can be found in the digital appendix.
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Figure 3.4: Close-up version of cluster B in figure 3.3 with bacterial host annotations
on the y-axis where available.

type and bacterial host. One of the first things that can be noticed in this figure

is that sequences targeting Gram-positive hosts almost never cluster together with

sequences targeting Gram-negatives and vice versa. This separation between phage

lytic proteins from phages infecting Gram-negative and Gram-positive host is also

reflected in the domain composition and distribution analysis (see section 2.3.2) and

is likely rooted in the same concept. While substrate specificity can vary within a

family of conserved domains, the reaction chemistry is usually preserved (Todd et al.,

2001). Therefore it is reasonable to assume that the differing enzymatic mechanisms

of phage lytic proteins, for instance glycosidase activity and lysozyme activity (which

occur more in Gram-positive and Gram-negative hosts, respectively (see figure 2.4))

would manifest themselves as separate clusters.

To a degree, the clusters of phage lytic proteins also correlate to certain taxonomic

levels of the host. While many small clusters of high-similarity sequences that target

a particular species can be explained away as variants that only differ in a couple

of point-mutations. (e.g. clusters IV, VII and VIII), larger clusters typically relate to
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specific clades as well (e.g. clusters I, III, VI, IX, X and XII). It is therefore probable that

these derive from a common viral ancestor.

The clusters that target seemingly unrelated hosts can convey significant information

as well. Cluster II, for instance, contains 24 phage lytic proteins of which some target

Pseudomonas aeruginosa, which belongs to the phylum Gammaproteobacteria, while

others target Chryseobacterium, a bacterium belonging to the Bacteroidetes phylum.

Apart from its Gram-type and common habitats, the latter is not related to Pseu-

domonas. A MSA was performed for the sequences in this cluster and was illustrated

in figure 3.5. It shows that the sequences from phages that infect Chryseobacterium

contain an alternative startcodon. Combined with the fact that both these sequences

contain the LT GEWL domain (cd00254), a domain that is very uncommon among Bac-

teroidetes (see figure 2.4), the occurrence of a horizontal gene transfer event could

be hypothesised. Malki et al. (2015) examined some of these sequences in depth and

determined that this was however not the case. It was discovered that two frame

shift mutations had occurred in the phage genome coding for the sequence target-

ing Chryseobacterium. These frame shifts disturbed the coding regions of a putative

minor head protein and a putative structural protein. According to the study, this

phage, called ϕFenriz, can also infect E. Coli ATCC 8739, Arthrobacter sp. and Mi-

crobacterium sp.. The width of this host-range is unprecedented and could thus be

interesting in the scope of a broad-range enzybiotic. The current hypothesis for this

range proposed by Malki et al. (2015) is that this generalism is of benefit to phages

inhabiting an oligotrophic environment.

Figure 3.6 also contains information on the types of lytic protein. Although PhaLP

contains a lot more endolysins than VAPGHs, the VAPGHs all cluster towards relatively

high similarities and only rarely group together with endolysins. Notable here is the

separation for the clusters targeting Gammaproteobacteria (cluster III), the VAPGHs

are arranged entirely separately from the endolysins.
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Figure 3.5: Segments from the MSAs of both the AA-sequences and the encoding DNA
of a few of the sequences from the Chryseobacterium/Pseudomonas cluster (cluster II
in figure 3.6). The phage lytic protein targeting Chryseobacterium (A0A0P0ILQ2) is a
lot shorter and has an alternative start codon, i.e. TTG. Malki et al. (2015) discovered
that this protein was truncated due to two frame shift mutations upstream of the
gene.
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Figure 3.6: Isolated dendrogram from the similarity clustering analysis annotated with
protein-types and bacterial host information where available. The roman numerals
refer to specific groupings of bacterial host that can be targeted: (I) Propionibacte-
riaceae, (II) Chryseobacterium & Pseudomonas, (III) Various Gammaproteobacteria,
(IV) Lactococcus lactis, (V) Enterobacteriaceae & Staphylococcus, (VI) Arthrobacter
sp. ATCC 21022, (VII) Staphylococcus aureus, (VIII) Synechococcus sp. WH 7803, (IX)
Bacillus, (X) Mycobacteriaceae, (XI) Escherichia and (XII) Streptococcus pneumoniae.
This figure was made through the interactive Tree of Life tool (Letunic and Bork, 2019).
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CHAPTER 4

INTERPRETABLE MACHINE

LEARNING APPROACH

Machine Learning (ML) is the scientific study of computational and statistical models

that seek patterns within large amounts of data (Hastie et al., 2017). This is often used

in predictive modelling to infer an outcome or label for a given set of features after

being trained on a dataset with known outcomes. This is called supervised learning

and could, for instance, be used to predict the bacterial host that can be targeted

given the set of domains present in a phage lytic protein (see section 4.1.2). These

algorithms are often black box models, making it very difficult to grasp why certain

predictions are made. However, through the use of interpretable ML models (Molnar,

2019), the design rules necessary for engineering a phage lytic protein with a desired

characteristic, e.g. the ability to target a certain bacterial host, can be obtained. This

could then be expanded to the engineering of an targeted enzybiotic. This chapter will

focus on the feature engineering, model selection and optimal design of ML algorithms

capable of inferring these design rules.

4.1 Supervised Machine Learning

Within ML, there are three approaches: supervised learning, unsupervised learning

and reinforcement learning. They all look for patterns in the data, but the task at

hand is different. Unsupervised learning methods, such as the agglomerative cluster

analysis in chapter 3, find associations and group data based on the absence or pres-

ence of commonalities, independent of any label. Reinforcement learning is a branch

of ML where appropriate actions within an environment are predicted based on the

optimization of a reward function. This method will however not be further discussed

in this research.

Supervised methods rely on a set of given input-output pairs to learn a function to

label unannotated examples. Here, the data is generally first split into two sets,

the training and the test set. The training set is a subset of which both input data
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(features) and corresponding output (labels) are supplied to the algorithm. Based on

this subset, a prediction model is built that conditions itself on the given input-output

relations to learn to predict the outcome for new unseen inputs (Hastie et al., 2017).

Predictions can then be made on the test set, which is kept separate from this learning

process, to validate the accuracy of the predictions.

In this chapter, supervised ML methods will be used to predict host information given

a phage lytic protein. The end goal here will not be the prediction task itself, but

the extraction of the rationale behind each prediction. First, an appropriate model

should be selected and features should be engineered to represent the phage lytic

proteins to the model. These two steps are crucial, since they also impact the quality

of interpretations to be extracted.

4.1.1 Feature engineering

Feature engineering is a fundamental step in the ML process where variables are

constructed to describe a point in the dataset. For p features, this should be a p-

dimensional vector for every phage lytic protein in the dataset, in this case a phage

lytic protein. In certain cases, competent feature vectors can be generated directly

from the input data through preprocessing functions, e.g. word or character counters

for text-based inputs, but as model interpretation is often extracted from the values

of features, this negates the possibility for meaningful interpretation (Molnar, 2019).

Furthermore, using domain knowledge to construct appropriate features can usually

improve upon the learning method (Hastie et al., 2017). To obtain the most accu-

rate prediction, features should not only be relevant, but redundancy between them

should be avoided for the sake of maximizing information over computational burden,

i.e. the time and memory it takes to execute and store the model. Maximising the

non-redundant information also reduces the risk of overfitting, which is when a model

describes instances from the training set too strictly, causing it to not generalize well

and fail to accurately perform predictions on test data (Hawkins, 2004).

As protein domains have demonstrated high correlation to a lytic protein’s host spec-

trum (see chapters 2 and 3), a binary vector referencing the presence or absence of

domains seems a natural choice for a feature vector. Additionally, this presence or

absence is also a characteristic that can be altered in the lab by synthetic recom-

bination (Gerstmans et al., 2018). The interpretation of a model that predicts host

characteristics on this basis could thus be valuable in the recombination of a lytic

protein into one with a desired characteristic. To optimise the amount of information,

and in turn optimise the accuracy of the ML model, a few different feature sets were

compared in redundancy and predictive power. The redundancy within a feature set
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Figure 4.1: The ROC curves of three RF models using the three feature set described
in section 4.1.1. The number in the legend refers to the AUC score of the individ-
ual models, a statistic often used to summarize the efficacy of a ML algorithm (see
section 4.1.3).

was measured by the Mutual Information (MI) between features in a set. This is a

measure of similarity between two features of the same data point. High MI thus

signifies that two features explain the data in a very similar manner, meaning only

a relatively low amount of information is gained from the inclusion of both features

in the model (Pedregosa et al., 2011). The predictive power was evaluated by the

capability of a standard Random Forest (RF) model to predict the Gram-type of phage

lytic proteins based on each feature set.

The binary vector representing the absence or presence of the domains was based

on a BLAST of the domains against a sequence. The significance of hits is quantified

as the E-value, which is the expectation value of occurrence of the obtained pairwise

alignment score (Pearson, 2013). These E-values were adopted from RPS-BLAST and

significant hits under a chosen threshold were counted as present (Criel, 2017).

Three feature sets were considered. The first makes use of every domain found in

the PhaLP database. A total of 180 relevant domains and 2591 unique sequences

are taken into account. PhaLP collects domains from a myriad of different protein

databases (Pfam, SMART, CATHDB etc.), hence some conserved domain accessions

can describe the same protein domain. Accordingly, the MI between some features

here is as high as 0.61.

The second set of features maps PhaLP domains onto CDD conserved domain su-

perfamilies, which are sets of evolutionarily related single-domain models (DeWeese-

Scott et al., 2010). While not every domain can be mapped onto a superfamily, mean-
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ing loss of information, this guarantees a minimum of redundancy between features

(maximum MI between features is only 0.29). This yields a 2591× 411 feature matrix.

The final set of features makes use the broad integration of domains and sequence

motifs into InterPro accessions (Mitchell et al., 2018). Although not every PhaLP do-

main has a corresponding InterPro accession, the majority of information is retained,

while also decreasing redundancy. The maximal MI between features here is 0.58,

which is lower than that in the PhaLP feature set, while almost doubling the size of

the feature matrix to 2591 × 752.

Although arguments can be made for any of the three feature sets, ultimately the In-

terPro features were chosen. Even though the RF model predicting Gram-type based

on these features does not perform quite as well as one based on all PhaLP domains

(see figure 4.1), this feature set offers a middle ground between extremes of redun-

dancy and predictive power that should prove more robust against extension to more

than two classes of prediction. Additionally, InterPro offers clear descriptions and

functional annotations to most of the domains included in their database, thereby fa-

cilitating the interpretation of the results. Domain annotations for some of the sources

of PhaLP, e.g. PantherDB, are oftentimes sparse.

4.1.2 Model selection

Although there are some methods of extracting post-hoc interpretations from com-

plex machine learning models (Ribeiro et al., 2016), the most straight-forward way

of achieving interpretability is by using so-called interpretable models. Because of

the low complexity of these algorithms, it is still possible to inspect model compo-

nents directly, a characteristic called translucency (Molnar, 2019). The most common

interpretable models rely on decision trees, linear or logistic regression or probabilis-

tic classification. In this chapter, the bacterial host of a phage lytic protein will be

predicted at different levels. As this is a categorical value, the models that will be

discussed are all classifiers.

Naive Bayes

A highly interpretable, yet still powerful model can be found in the Naive Bayes clas-

sifier. This algorithm makes use of Bayes’ theorem of conditional probabilities to

calculate the probability of a class given a value of a certain feature. The Naive part

1Out of the 180 domains in PhaLP, 73 domains can be mapped onto 41 CDD superfamilies.
2Not all PhaLP domains have a linked InterPro accession and some have the same InterPro accession.
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refers to the model’s assumption of conditional independence of the features3, as

probabilities are calculated for each feature independently. Naive Bayes models the

probability of a class Ck as:

P(Ck |x) =
1

Z
× PCk

p
∏

=1

P(|Ck) , (4.1)

with x = [1, 2, . . . , p] a vector of values for p features and Z a scaling factor ensur-

ing that the sum of the probabilities for all classes is normalised.

Despite the very straight-forward calculation of probabilities and consequent translu-

cency of this model, it is not always interpretable on a global level. Inherently, any

feature set larger than three dimensions is incomprehensible for the average person

and sets of more than a few dozen features can no longer be held in our working

memory simultaneously. Models like Naive Bayes can, however, be understood on a

modular level, meaning the effect of a variation in value of a specific feature can be

interpreted should all other values stay constant (Molnar, 2019).

Decision Rules

Linear models tend to fail in instances where features interact with each other, as

can be the case for protein domains (Ponting and Russell, 2002). An interpretable

alternative in that case is a decision rule classifier. Rule-based classifiers split the

data in subsets based on feature cut-off values learned by the algorithm. The various

cut-offs culminate in a specifically bounded region in the feature space which relates

to a particular class of outcome. The prediction of a certain class then corresponds to

an evaluation of whether or not an input is located in that region:

rk(x) =
p
∏

=1

( ∈ sk) , (4.2)

where  is the indicator function, yielding 1 if its argument is true and a 0 otherwise,

 is the value of feature  and sk is a specified subset of the set of possible values 

can take on Si. This base learner will return a 0 or 1 corresponding to whether class

k is predicted or not (Friedman and Popescu, 2008).

Through the use of decision cut-offs, these types of classifiers are able to discretize

the high-dimensional feature space into a set of interpretable "IF conditions THEN

response" statements. Their predictive power borders on that of RF models, while

3Dependence of features does however not render this model ineffective as long as the dependences
distribute evenly among the classes or cancel each other out (Zhang, 2005).
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being more interpretable because they select the most relevant features and return

them in a format that semantically resembles natural language (Molnar, 2019).

4.1.3 Performance metrics

Even though the interpretation of the predictions is the main goal here instead of

the predictions themselves, it stands to reason that the better a model’s predictive

performance is, the more valuable its interpretations will be. To get an understanding

of how well a certain model performs, various metrics are commonly used. These

metrics are calculated based on the predictions made on the test set, which contains

data that is new to the model and thus creates a reliable validation of predictive

power. Metrics can however vary in the extent to which they accurately describe

model performance. Some prominent performance metrics are discussed below.

Accuracy

The classification accuracy is simply defined as the fraction of correct predictions out

of all the predictions made:

accuracy =
TP + TN

TP + FP + TN + FN
, (4.3)

Where TP is the number of true positives, TN the number of true negatives, FP the

number of false positives and FN the number of false negatives (see table 4.1). Al-

though this intuitively seems like a good measure of performance in a single number,

this metric is often not used due to the accuracy paradox. This phenomenon refers

to the fact that a highly imbalanced dataset for which all predictions are made in the

dominant class, will still have a high accuracy (Valverde-Albacete and Peláez-Moreno,

2014).

Precision

The precision is the fraction of correctly predicted instances from a certain class (true

positives) out of all the instances that were predicted as this class (true positives and

false positives) (see table 4.1):

precision =
TP

TP + FP
. (4.4)

This metric, however, says nothing about how many instances belonging to a class

were predicted as such.
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Recall

The recall refers to the fraction of correctly predicted instances from a certain class

(true positives) out of all the instances that actually belong to this class (true positives

and false negatives):

recall =
TP

TP + FN
. (4.5)

This metric, however, says nothing about the fraction of correct predictions for that

class like the precision does. In a binary classification, the recall is also called the True

Positive Rate (TPR) as it is equal to the ratio of correctly predicted positives over the

total number of positive labels (see table 4.1).

Area Under the ROC Curve (AUC)

The AUC is a frequently-used metric measuring the discrimination, i.e. the ability of

a learning algorithm to correctly classify instances in a binary problem. As the name

suggests, it represents the area under a Reciever Operating Characteristic (ROC)

curve, a curve which sets out the TPR, or recall, against the False Positive Rate (FPR)

at various discrimination thresholds (e.g. figure 4.1). Analogously to the TPR, the FPR

is the ratio of incorrectly predicted positives over the total number of negative labels

(see table 4.1):

TPR =
TP

P
=

TP

TP + FN
(4.6)

FPR =
FP

N
=

TP

FP + TN
. (4.7)

The higher the overall TPR is relative to the FPR, the more accurate the classification.

This is then reflected in a large AUC. The difficult expansion for use in multi-class

problems and an inability to assign weighted misclassification costs are however no-

table weaknesses to this metric (Halligan et al., 2015). Accordingly, AUC is generally

only used in the early stages of model assessment.

Table 4.1: Confusion matrix of a binary classification problem. Instances that are
correctly predicted are commonly referred to as true, while incorrectly predicted in-
stanced are referred to as false. This nomenclature is often used to describe different
performance metrics.

Positive label Negative label

Positive prediction True Positives (TP) False Positives (FP)

Negative prediction False Negatives (FN) True Negatives (TN)
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ƒ1-score

The ƒ1-score, also called F-score or F-measure, is the harmonic average between pre-

cision and recall:

ƒ1 = 2 ·
precision · recall

precision+ recall
. (4.8)

As this metric can be calculated for each class and subsequently weighted according

to the amount of instances in that class to produce and average weighted ƒ1-score,

it provides an overview of performance that is robust enough for the purposes of this

research.

4.2 Gram-type prediction

Chapters 2 and 3 have shown that there are clear distinctions in the composition of

phage lytic proteins targeting Gram-positive and Gram-negative bacteria. Therefore,

it is expected to be possible to predict the Gram-types of the hosts of these proteins

based on their domain composition.

Proteins with Gram-ambiguous hosts were removed from the data since only four in-

stances of this type were present and this would therefore likely not generate any

usable predictions. Furthermore, 180 proteins for which no host annotation was avail-

able, were also omitted. A feature set using 75 relevant InterPro domains for 2407

phage lytic proteins remained. The data was split into a train and a test set, with 80%

going into the training set and 20% going into the test set. As the number of proteins

of each Gram-type is not fully balanced within the dataset (1104 G- and 1303 G+),

this split was stratified on Gram-type, meaning the fraction of each type remained

equal in both train and test set.

A Naive Bayes model and a rule-based classifier were trained and tested on this

dataset. As the feature values are binary (0 for absence of a domain and 1 for pres-

ence), a Naive Bayes model was chosen that calculates its conditional probabilities

based on multivariate Bernouilli distributions. The smoothing hyperparameter α was

optimized through a grid search on a 10-fold cross-validation. This means the training

data itself was split into 10 subsections and was trained and tested on all subsections

individually and results of the test predictions were averaged for each split to give

a more accurate estimate of the model’s general performance. This process was re-

peated for a range of values of α, the optimal one was ultimately determined to be

0.001.
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precision recall f1-score support

Gram-negative 0.96 0.76 0.85 221
Gram-positive 0.82 0.97 0.89 261
micro avg 0.87 0.87 0.87 482
macro avg 0.89 0.86 0.87 482
weighted avg 0.89 0.87 0.87 482

(a) Performance statistics for the Bernouilli-distributed Naive Bayes
model.

precision recall f1-score support

Gram-negative 0.96 0.90 0.93 221
Gram-positive 0.92 0.97 0.94 261
micro avg 0.94 0.94 0.94 482
macro avg 0.94 0.93 0.93 482
weighted avg 0.94 0.94 0.94 482

(b) Performance statistics for the Skope Rules decision model.

Table 4.2: Classification reports on the performances of the Naive Bayes and Skope
Rules models for Gram-type prediction. These set out precision, recall and ƒ1-score
for the prediction of each class and also provide the support, the number of instances
of this class in the test set.

For the rule-based classifier, a python implementation called Skope Rules was used

(Gardin et al., 2018). The minimum recall and precision necessary for a rule were

both set as 0.75 and rules were generated up to 10 features in length.

The predictive potency of both models is somewhat similar (see table 4.2), although

the Skope Rules algorithm performs a little better overall. The most probable expla-

nation for the higher predictive power of the rule-based classifier, lays in the inter-

actions that can occur between protein domains (Ponting and Russell, 2002). As a

Naive Bayes model calculates conditional probabilities independently for all features,

these cannot be taken into account. Decision-based classifiers can however take

these into consideration, since the cut-off for each interacting feature only defines

one boundary in the feature space. What this means in a purely biologic sense is that

the interactions between domains in a phage lytic protein have only a minor effect

on the Gram-type of the host it is able to target. This can be concluded from the fact

that the Naive Bayes model, which only takes presence or absence of a domain into

consideration, can still make accurate Gram-type predictions.

In order to grasp the rationale behind the predictions of the Naive Bayes model, the

individual feature importances were extracted in the format of conditional probabili-

ties P(|Ck) with  the value of the -th feature and Ck the k-th class. The result of

this extraction visualised as a heatmap can be seen in figure 4.2. This figure indicates

which domains are the most significant in the prediction of each Gram-type, i.e. the

domains whose presence is most indicative of a certain Gram-type.
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Figure 4.2: A heatmap of the conditional probabilities of each InterPro domain given
a Gram-type.

For the Gram-negative bacteria, the most decisive domains are estimated to be

lysozymes (Lysozyme-like SF: IPR023346 and Glyco hydro 24: IPR002196). This is

quite plausible, since figure 2.4 indicated that these domains are very abundant in

lytic proteins targeting Gram-negative bacteria, while only appearing rarely in those

targeting Gram-positive bacteria.

For Gram-positive targeting proteins, the most significant domains identified by

the Naive Bayes model are amidases (e.g. PGRP SF: IPR036505 and Amidase

2: IPR002502), although these appear to also be somewhat influential for Gram-

negative lytic proteins. This is compatible with the results of the quantitative analysis,

as both of these domains were abundant in proteins targeting both Gram-types,

albeit more so for Gram-positives. Considering the overlap in occurrence and the

fact that the model allocates its largest conditional probabilities for Gram-positive

predictions to these domains, it makes sense that the precision for these predictions

is marginally lower (see table 4.2a). The biggest drawback of interpretations on

conditional probabilities is that no context is given, i.e. each feature importance is

calculated independently.

For the rule-based model, the rules that define the base learners described in equa-

tion 4.2 can be extracted directly. These rules can combine multiple domains, but

only incorporate AND-relationships, meaning every condition in the rule must be met

for an instance to be classified in the class it defines. Different rules are completely

separate, meaning these correspond to OR-relationships. The resulting precision and

recall are also supplied for each rule individually. The top three performing rules

(based on ƒ1-score) that the Skope Rules algorithm generates for the prediction of a

Gram-positive host are as follows:

1. IF NOT IPR015510 and NOT IPR020362 and NOT IPR023346 and NOT IPR038288

and NOT IPR042047 THEN G+
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precision: 0.954106

recall: 0.941597

2. IF NOT IPR015510 and NOT IPR020362 and NOT IPR023346 and NOT IPR042047

THEN G+

precision: 0.94856

recall: 0.943302

3. IF NOT IPR015510 and NOT IPR020362 and NOT IPR023346 and NOT IPR041219

and NOT IPR042047 THEN G+

precision: 0.947929

recall: 0.941246

Because a prediction on Gram-type is a binary classification and the set of domains is

of reasonable size, most rules created at this level are based solely on the exclusion of

particular domains. The top three rules above are thus solely based on the absence of

the specified domains. What is surprising is the performance this achieves. The best

performing rule culminates into an ƒ1-score of 0.95 based on the absence of the PGRP

(IPR015510), Tail accessory factor GP4 (IPR020362), Lysozyme-like SF (IPR023346),

Gp5 SF (IPR038288) and SleB 1 (IPR042047) domains. Conditions on domains that

only appear very rarely in the dataset, e.g. SleB 1 and Gp5 SF, are most likely only

included for the sake of maximising the performance metrics. Those that appear very

abundantly, however, like the PGRP and the Lysozyme-like SF domains, convey a lot

more meaning and can thus be of high interest in the synthesis of targeted enzybiotics

at Gram-type level. The latter in this case were also determined to be valuable in the

Naive Bayes analysis. The full list of rules generated by this algorithm can be found

in appendix B.1.1. Remarkably, not a single one of these rules mentions a CBD that

appears in more than one entry in PhaLP. Note that the inverse of the rules above

should mostly hold true for a Gram-negative prediction, although performance will

not necessarily be equal. A full list of rules generated specifically for Gram-negative

host classification is included in appendix B.1.2.

4.3 K-mer approach

Although protein domains have been assumed as single functional entities in the anal-

yses up until this point, single AAs can have an impact on a protein’s function, as well.

The extent of this impact, however, varies greatly. Through the use of interpretable

ML models, it can be deduced which AAs have the most effect towards a certain pro-
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tein characteristic. In theory, this information could then be used in to tailor a protein

to a specific need through a rational design experiment (Lutz, 2010).

Table 4.3: Performance statistics for the k-mer-based Naive Bayes model.

precision recall f1-score support

M. smegmatis 1.00 0.95 0.97 93
Other 0.92 1.00 1.00 635
micro avg 0.99 0.99 0.99 728
macro avg 1.00 0.97 0.98 728
weighted avg 0.99 0.99 0.99 728

Accordingly, a Naive Bayes model was constructed to predict a particular host species

for phage lytic proteins. To construct a feature set capable of conveying single AA in-

formation without losing interpretability, a count of the specific k-mers that occur

within each protein sequence was used. K-mers refer to all possible substrings of

length k that can be found in a string. The frequencies at which they appear in a cer-

tain sequence or genome has been extensively used as a unique microbial signature

(Jiang et al., 2012; Siranosian et al., 2015; Wang et al., 2018), making for an eas-

ily constructed, relevant and highly interpretable feature set. A k-mer size of three

was chosen. As sequences containing the unidentified AA ’X’ were excluded from

this analysis, there are 20 different characters that can appear in an AA-sequence,

generating a feature vector of size 3638 × 8000.

In this example, the host label to be predicted was chosen as Mycolicibacterium smeg-

matis as (i) phage lytic proteins targeting this species are very abundant in PhaLP and

(ii) because these lytic proteins showed high similarity in figure 3.5 and it would thus

be interesting to find out if this level of conservation is caused by an increased fitness

towards host targeting. The algorithm4 can be altered to predict a species of choice,

although performance may vary.

As the set of hosts is binarized into either M. smegmatis and any other host, the

resulting dataset is rather imbalanced, i.e. 464 positives versus 3174 negatives. To

somewhat mitigate this imbalance, the 80/20 train test split was stratified on the host

label.

Due to the discrete nature of a count-based feature set, a Naive Bayes classifier

based on a multinomial distribution was used. Once again the hyperparameter α was

optimised through a grid search on a 10-fold cross-validation. Despite the imbalance

in the dataset, the classifier is able to perform exceptionally well (see table 4.3), with

only five lytic proteins for M. smegmatis being wrongly classified.

4This aglorithm is available at https://github.ugent.be/bw10master/2018_Taelman_Steff
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The conditional probabilities of the features given a class computed by the Naive

Bayes model are again used for interpretation. In this case however, not exactly the

impact of the full features, i.e. the k-mers, are the most relevant for follow-up studies

in rational design, but the individual AAs. To make this conversion, sequences were

iterated over each AA they contain and the feature importances for all k-mers that AA

is found in, are stacked (see figure 4.3).

Complete phage lytic protein sequences could then be visualised through a sequence

logo, where the size of the character for each AA represents its importance in the pre-

diction of M. smegmatis as the protein’s host. Part of such a sequence logo generated

for the UniProt accession ’Q856D3’, a phage lytic protein targeting M. smegmatis, can

be seen in figure 4.4. Interestingly enough, the important AAs seem to somewhat line

up with the active site of Amidase 2 (IPR002502), the main EAD in this protein.

4.4 Hierarchical classification

The previous sections both describe flat classifications, i.e. a direct prediction on the

Gram-type or species level, but antimicrobials are often desired for specific host-

ranges. While this could be achieved by a multi-class model with a set of taxonomic

clades as labels, it could be interesting to take into consideration the inherent hierar-

chy of bacterial taxonomy (see section 2.1). Not only could this improve the overall

quality of the predictions, it enables interpretation on each level, allowing researchers

to pick and choose a desired host-range for the synthesis of an enzybiotic.

As definitions vary, hierarchical classification in this research will refer to a clas-

sification approach that can cope with a pre-defined class hierarchy. This means

there is only one root of the hierarchy and every other element within it can be

defined through a "IS A" relationship. This type of relationship is asymmetric (e.g.

every Gammaproteobacteria is a Proteobacteria, but not every Proteobacteria is a

Gammaproteobacteria), anti-reflexive (i.e. the hierarchic tree flows in one direction

Figure 4.3: An example of how k-mer feature importances were stacked to achieve
importance for each single AA in a protein sequence.
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Figure 4.4: A sequence logo indicating AA-importance for host classification for the
phage lytic protein with UniProt accession ’Q856D3’. Due to its size, this figure was
cropped to only the Amidase 2 domain (IPR002502).

and does not loop) and transitive (e.g. if every Pseudomonadales bacteria is a

Gammaproteobacteria and every Gammaproteobacteria is a Proteobacteria, then

every Pseudomonadales bacteria is a Proteobacteria) (Silla and Freitas, 2011).

There are generally three types of models that can manage data with a pre-defined

class hierarchy: flat classifiers, local classifiers and global classifiers. Flat classifiers

predict the leaves of the hierarchic tree directly. This makes use of the asymmetrical

"IS A" relationship to infer higher level classes from the predicted leaf class. Accord-

ingly, this strategy is also called the bottom-up approach (Barbedo and Lopes, 2006).

Local classifiers are modular combinations of several models that propagate the pre-

diction throughout the tree from the top down. Several subtypes exist in this category.

Global Classifiers, also called big-bang methods, consider the entire class hierarchy at

once to make predictions (Silla and Freitas, 2011). Two distinct local classification ap-

proaches were chosen for their compatibility with the high-performant, interpretable

models discussed in section 4.1.2.

Figure 4.5: A schematic representation of a level-based local classifier for the predic-
tion of bacterial taxonomy. The circles represent classes and the dashed rectangles
represent multi-class classifiers. These models are trained separately and subse-
quently combined to make predictions.
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4.4.1 Level-based local classifier

A level-based local classifier trains separate models on each level of the class hierar-

chy. In the case of classification on bacterial host, this means a separate model on

phylum, class, order, family and genus level (see figure 4.5). To then combine the

models, a prediction can be made top-down, iteratively picking the most probable

prediction and restricting deeper levels to the child branches of the predicted class

node (Silla and Freitas, 2011). As this method only presents a greedy optimization

of prediction probability and risks propagating high-level errors downwards, a brute-

force approach was chosen wherein probabilities are calculated for each leaf node

based on all prediction probabilities preceding it. The prediction is then made based

on the leaf with the highest probability (see section 4.4.1).

The level-based local classifier was built on five multivariate, Bernouilli-distributed

Naive Bayes models. As there are more than two classes to be predicted at each level,

the models in this case make multi-class predictions instead of binary ones. Bacterial

clades for which less than 10 phage lytic proteins are known, were omitted from the

dataset. Although this means the exclusion of the majority of hosts (see figure 4.6),

the rationale behind this was that (i) classes with this little support are highly un-

likely to be correctly classified and (ii) misclassification of those instances would bring

down certainty of the predictions for other classes. The resulting dataset contains

2201 phage lytic proteins targeting 38 different bacterial genera. The training and

testing was performed on an 80/20 split stratified on host genus as in section 4.2. The

hyperparameter α was tuned through a grid search on a 10-fold cross-validation.

Figure 4.6: A histogram of the frequency of occurrence of different amounts of phage
lytic proteins being targeting a bacterial genus. In the pursuit of maximization of the
model’s quality, all phage lytic proteins for which less than 10 are known to target a
certain genus, were excluded from this classification.
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Probability propagation

Each of the five models generates a matrix of prediction probabilities of size n × k

where n is the number of instances in the test set and k is the number of classes to

predict on that level. For each instance, this set of probabilities adds up to one. For ex-

ample, in the order level model in figure 4.5, the probabilities could be: P(Order 1.1) =

0.2, P(Order 1.2) = 0.35, P(Order 2.1) = 0.15 and P(Order 2.2) = 0.3. To streamline

these probabilities for a combination towards each leaf, the probabilities of these or-

ders given their respective taxonomic class were calculated using Bayes’ theorem

(see appendix B.2). For the above example, this would mean:

P(Order 1.1|Class 1) = P(Order 1.1) ×
P(Class 1|Order 1.1)

P(Class 1)

= 0.2
1

0.2 + 0.35

= 0.36 ,

(4.9)

where P(Class 1|Order 1.1) = 1 due to the asymmetrical nature of a taxonomic

tree. Analogously, P(Order 1.2|Class 1) = 0.64, P(Order 2.1|Class 2) = 0.33 and

P(Order 2.2|Class 2) = 0.67. Once probabilities given the parent nodes at each split

are calculated, the genus probability is calculated by propagating downward for each

branch, i.e. multiplying at each node in the path to a genus. For instance:

P(Genus 1.1.1.1) = P(Genus 1.1.1.1|Family 1.1.1) × P(Family 1.1.1)

= P(Genus 1.1.1.1|Family 1.1.1) × P(Family 1.1.1|Order 1.1)

× P(Order 1.1)

= P(Genus 1.1.1.1|Family 1.1.1) × P(Family 1.1.1|Order 1.1)

× P(Order 1.1|Class 1) × P(Class 1)

= P(Genus 1.1.1.1|Family 1.1.1) × P(Family 1.1.1|Order 1.1)

× P(Order 1.1|Class 1) × P(Class 1|Phylum) × P(Phylum) .

(4.10)

An example of how these probabilities propagate through the taxonomic tree to make

a prediction is illustrated in figure 4.7.

For every phage lytic protein in the test set, the genus with the highest prediction

probability is chosen. Some phage lytic proteins can however target multiple hosts

(see section 2.1). The algorithm will therefore count all genera that can be targeted

by a lytic protein as correct predictions. The classification report on this prediction

can be seen in table 4.4.
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4.4. HIERARCHICAL CLASSIFICATION

Table 4.4: Classification report of the level-based local classification of phage lytic
proteins into 38 different bacterial host genera. These set out precision, recall and
ƒ1-score for the prediction of each class and also provide the support, the number of
instances of this class in the test set.

precision recall ƒ1-score support

Acinetobacter 0.00 0.00 0.00 5
Aeromonas 0.16 0.78 0.27 9
Arthrobacter 0.50 0.08 0.14 12
Bacillus 0.79 0.54 0.64 28
Burkholderia 0.00 0.00 0.00 3
Caulobacter 0.00 0.00 0.00 3
Citrobacter 0.00 0.00 0.00 5
Clostridioides 0.33 1.00 0.50 3
Clostridium 0.33 0.40 0.36 5
Cronobacter 0.00 0.00 0.00 3
Cutibacterium 0.17 1.00 0.29 17
Enterobacter 0.00 0.00 0.00 2
Enterococcus 0.25 0.12 0.16 8
Erwinia 0.00 0.00 0.00 2
Escherichia 0.26 0.19 0.22 59
Gordonia 0.83 0.77 0.80 13
Klebsiella 0.00 0.00 0.00 17
Lactobacillus 0.41 0.85 0.55 13
Lactococcus 0.00 0.00 0.00 25
Leuconostoc 0.00 0.00 0.00 2
Listeria 1.00 0.25 0.40 4
Mycolicibacterium 0.67 0.24 0.35 42
Oenococcus 0.00 0.00 0.00 3
Paenibacillus 0.00 0.00 0.00 4
Pectobacterium 0.00 0.00 0.00 4
Propionibacterium 0.00 0.00 0.00 2
Pseudomonas 0.21 0.26 0.23 19
Ralstonia 0.00 0.00 0.00 3
Rhodococcus 1.00 0.40 0.57 5
Salmonella 0.17 0.10 0.13 20
Shigella 0.00 0.00 0.00 8
Staphylococcus 0.84 0.81 0.82 26
Streptococcus 0.90 0.78 0.84 23
Streptomyces 0.19 0.36 0.25 14
Synechococcus 0.88 0.64 0.74 11
Vibrio 0.00 0.00 0.00 10
Xanthomonas 0.03 0.50 0.06 2
Yersinia 0.00 0.00 0.00 7
micro avg 0.34 0.34 0.34 441
macro avg 0.26 0.26 0.42 441
weighted avg 0.38 0.34 0.33 441
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Table 4.5: Classification report of flat classification of phage lytic proteins into 38
different bacterial host genera. These set out precision, recall and ƒ1-score for the
prediction of each class and also provide the support, the number of instances of this
class in the test set.

precision recall ƒ1-score support

Acinetobacter 0.00 0.00 0.00 5
Aeromonas 0.00 0.00 0.00 9
Arthrobacter 0.00 0.00 0.00 12
Bacillus 0.55 0.61 0.58 28
Burkholderia 0.00 0.00 0.00 3
Caulobacter 0.00 0.00 0.00 3
Citrobacter 0.00 0.00 0.00 5
Clostridioides 0.00 0.00 0.00 3
Clostridium 0.00 0.00 0.00 5
Cronobacter 0.00 0.00 0.00 3
Cutibacterium 0.18 0.94 0.30 17
Enterobacter 0.00 0.00 0.00 2
Enterococcus 0.67 0.25 0.36 8
Erwinia 0.00 0.00 0.00 2
Escherichia 0.29 0.73 0.42 59
Gordonia 0.91 0.77 0.83 13
Klebsiella 0.00 0.00 0.00 17
Lactobacillus 0.34 0.77 0.47 13
Lactococcus 0.00 0.00 0.00 25
Leuconostoc 0.00 0.00 0.00 2
Listeria 0.00 0.00 0.00 4
Mycolicibacterium 0.45 0.24 0.31 42
Oenococcus 0.00 0.00 0.00 3
Paenibacillus 0.00 0.00 0.00 4
Pectobacterium 0.00 0.00 0.00 4
Propionibacterium 0.00 0.00 0.00 2
Pseudomonas 0.00 0.00 0.00 19
Ralstonia 0.00 0.00 0.00 3
Rhodococcus 1.00 0.80 0.89 5
Salmonella 0.00 0.00 0.00 20
Shigella 0.00 0.00 0.00 8
Staphylococcus 0.77 0.88 0.82 26
Streptococcus 1.00 0.70 0.82 23
Streptomyces 1.00 0.07 0.13 14
Synechococcus 1.00 0.45 0.62 11
Vibrio 0.17 0.40 0.24 10
Xanthomonas 0.00 0.00 0.00 2
Yersinia 0.00 0.00 0.00 7
micro avg 0.37 0.37 0.37 441
macro avg 0.22 0.20 0.52 441
weighted avg 0.34 0.37 0.31 441
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Figure 4.8: A confusion matrix for the level-based local classification classification of
phage lytic proteins into 38 different bacterial host genera. This kind of plot sets out
the actual hosts of the instances in the test set versus the hosts that were predicted
for those instances.

Performance-wise, this model seems on average only slightly better than a flat model,

i.e. a model directly classifying the lowest hierarchical level (see tables 4.4 and 4.5).

In the confusion matrices in figures 4.8 and 4.9, it can be seen that both models

make frequent incorrect predictions in the Cutibacterium and Escherichia genera,

likely when average prediction probabilities are quite low. This results in a weighted

average ƒ1-score of 0.33. At first glance, this appears low, but the model makes a

prediction in 38 classes. A random classification of the same number of classes would

only generate an average ƒ1-score of 0.03. The disadvantage of this type of layered

hierarchical classification is that the lower level models have increasing numbers of

classes to predict and will thus be only marginally effective. This problem is further

exacerbated if some of the higher level models are already error-prone, as the low

prediction probabilities of misclassified instances will trickle down.

Interpretation

In a similar way to section 4.2, interpretations can be extracted from the Naive Bayes

models through the conditional probabilities P(|Ck). In figure 4.10, the top three
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deciding domains and their respective probabilities are plotted for each split in the hi-

erarchy. The PGRP SF domain(IPR036505) appears to be the most important domains

in most branches of this figure, except in the Proteobacteria, where it no longer makes

the top three. In Proteobacteria, the most crucial domain by far is the Lysozyme-like

SF (IPR023346). These results are congruent with those from the quantitative analysis

in section 2.3.

Figure 4.9: A confusion matrix for the flat classification of phage lytic proteins into 38
different bacterial host genera.
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Figure 4.10: The taxonomic tree of bacterial hosts of phage lytic proteins with for each
split, the top three decisive protein domains and their probabilities as calculated by a
Naive Bayes model.
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4.4.2 Parent node local classifier

An even more localized approach to hierarchic classification is by parent node local

classifiers. This strategy employs a separate model at each point in the class hierar-

chy where a node splits into two or more classes (see figure 4.11). Accordingly, the

further down the tree, the less data the model will be trained and validated on. This

method enjoys the advantages of a limited computational strain while still utilising

very specialised classifiers.

The Skope Rules algorithms described in section 4.1.2 were used as parent node clas-

sifiers. Skope Rules is, however, strictly a binary classifier. Since some nodes in the

class hierarchy have more than two child branches, a One-Versus-All mechanism was

implemented at these nodes. This means that for every child branch, a classifier is

built to distinguish that child branch from all other branches (see figure 4.12). Analo-

gously to the level-based local classifier, low-abundance hosts, i.e. genera for which

less than 10 unique lytic proteins are known, and instances without known hosts were

omitted from the data. The minimum precision and recall necessary for a rule to be

created was set at 0.5 and rules of up to 5 conditions were generated.

Figure 4.11: A schematic representation of a parent node local classifier for the pre-
diction of bacterial taxonomy. The circles represent classes and the dashed rectangles
represent multi-class classifiers.
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The decision rules can be extracted from the algorithm for each branch separately,

generating a comprehensive path of rules for each leaf (see figure 4.13). To facilitate

easy interpretation, domains that should not occur in a lytic protein for it to be classi-

fied in that branch were crossed out. Branches without printed rules either didn’t have

a classifier built due to fact that the parent node only has one child and no split occurs

or it was impossible to generate a rule with a precision and recall above the thresh-

old. This is mostly the case at higher taxonomic levels, since these can contain very

diverse bacteria with many different PG-types and cell wall compositions, requiring a

more diverse set of phage lytic proteins to target all hosts in this group. To supply

a certain degree of quality assurance, rules per branch are ranked on performance

(ƒ1-score).

Due to the thresholds set for inclusion in this figure, some branches do not have as-

sociated domains. This low performance can be caused by the fact that these genera

include many different species. The sequences of the phage lytic proteins targeting

some of these species are highly similar (see for instance the Synechococcus sp. WH

7803 cluster in figure 3.5), which could point to highly specialised architectures on

species and even subspecies level. This would bring down their ƒ1-score in rule-based

methods and would lead to them being overshadowed by more universally present

domains in probabilistic classifiers. The results will be discussed in more depth in

chapter 5.

Figure 4.12: A schematic representation of how One-Versus-All classifiers can be used
to break down multi-class problems into several binary problems. The axes represent
two features 1 and 2. The algorithm will always model the distinction between
one class and all other data points, e.g. the blue squares versus all other instances.
Afterwards the models can be combined into one set of predictions.
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Figure 4.13: The taxonomic tree of bacterial hosts of phage lytic proteins with for
each split, the a set of rule-defining protein domains as calculated by a Skope Rules
model. They are ranked on the ƒ1-scores they generate for instances belonging to that
branch. InterPro domain accessions that are struck through are domains that should
not occur in a lytic protein for it to be classified in that branch. Regularly displayed
domain accessions should occur. 63
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CHAPTER 5

DISCUSSION AND

CONCLUSIONS

We have shown that nature has numerous cell wall binding and degrading domains

available. Nature has combined those in various compositions, as described in the

PhaLP database. While an almost infinite number of combinations of these domains

could be created through the natural evolutionary process of horizontal transfer, nat-

ural selection has withheld only a limited number of combinations, dependent on the

phage and its host. In this work, the existing variation in PhaLP is described and sub-

sequently used in interpretable ML models to map the design rules that have been

established throughout natural evolution and selection. Despite the relatively small

amount of data and often incomplete annotation on this subject, some promising ob-

servations and prospectives can be put forward.

5.1 Domain composition

The results from the quantitative analyses in chapter 2 indicate a clear relation be-

tween the types of domains in a phage lytic protein and the host this is able to target.

CBDs were shown to be the most common in Gram-positive-targeting lytic proteins,

although they were also found in some proteins targeting Alphaproteobacteria, Pseu-

domonadales and even Escherichia. These occurrences were, however, infrequent or

involved in hosts with only very few known lytic proteins and should thus be further

investigated in depth. All other Gram-negative hosts were found to be targeted by

strictly EAD-containing proteins.

Out of the EADs, lytic protein architectures for Gram-positive hosts seemed to be

mostly based on the action of PGRP (IPR036505, IPR006619 & IPR015510) and Ami-

dase 2 domains (IPR002502). The CWGs that occur here are mostly restricted to

N-acetylglucosaminidases. Many of the architectures for Gram-negative hosts also

contain the PGRP and Amidase 2 domains, but more frequent are lysozyme and trans-
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glycosylase domains. Apart from the occurrence of CHAP domains (IPR007921) in

Staphylococcus, CWPs appeared to be generally uncommon.

5.2 Host-ranges

Regarding host-ranges, some interesting overlap is found in the exploratory analyses

in section 2.1 and the cluster analysis in section 3.2. Globular endolysins targeting

Propionibacterium and Cutibacterium acnes indicate high similarity, likely due to the

lipid-rich anaerobic environment in which their bacterial hosts reside (Marinelli et al.,

2012). These sequences could prove useful in an antimicrobial compound targeting

these pathogens on the human skin and this also demonstrates the potential of sim-

ilar analyses based on environment rather than host. Additionally, figure 4.13 also

indicates some candidates for further distinguishing between Propionibacterium and

Cutibacterium.

VAPGHs have shown a particular potential as broad-spectrum antibacterials. The

VAPGHs encoded by Enterobacteria phage PRD1 demonstrate a wide range of hosts

from the Gammaproteobacteria and as illustrated in figure 3.6, VAPGHs targeting

Gammaproteobacteria in general have relatively similar sequences. Other interesting

VAPGHs are those found in cluster II of this figure. Some phages from which these

lytic proteins emanate display unprecedented width in host-range, with the ϕFenriz

phage even crossing Gram-type. The standing hypothesis here was again due to the

conditions in which this phage operates (Malki et al., 2015).

The lytic proteins targeting Synechococcus demonstrate an especially narrow host-

range. High similarity was found among sequences targeting the WH 7803 strain.

These sequences contain the peculiar peptidase C70 domain (IPR022118), a domain

not included in the initial quantitative analyses on the basis of its lack of confirmed

GO-terms for cell wall hydrolysis. The SleB domains (IPR011105 & IPR042047) were

also found exclusive to Synechococcus hosts, which is reflected in the conditional

probability of IPR042047 in the Synechococcus-branch of figure 4.10.

5.3 Design rules

The agglomerate of the interpretable ML analyses can be found in figure 5.1. This

figure displays a guideline of domain composition in natural phage lytic proteins based

on the data assembled in PhaLP. The non-crossed out symbols represent domains

that were determined by the level-based or parent node local classifiers to be highly
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correlated to their particular branch. This was visualised for domains with conditional

probabilities of the Naive Bayes classifier above 0.8 or an ƒ1-score equal to or higher

than 0.95 in the Skope Rules model. Furthermore, domains required by the parent

node model to be absent for classification were cross-referenced with the results from

the quantitative analysis (see section 2.3) and those absent in every downstream

branch were signified by a crossed-out symbol.

Many of the unannotated branches in this figure belong to Gram-negative bacteria,

e.g. Synechococcus, Pseudomonas and Vibrio. Due to the highly conserved PG com-

position in these bacteria (see section 2.2.1), it could also be possible that the do-

main composition of phage lytic proteins targeting these hosts is more determined

by other factors. For instance, peptidoglycan composition has been observed to vary

within species and even strains due to environmental factors and growth conditions

(Schleifer and Kandler, 1972; Schleifer et al., 1976). Although this variation is gener-

ally low, this could mean that domain architecture is less directly associated with the

bacterial host, causing performance of the ML models to drop.

Because the mechanism behind the annotation in figure 5.1 is known, some inter-

pretations can still be made for the branches without explicit domains assigned.

In figure 4.13, the Skope Rules model points to distinctions between Cutibacterium

and Propionibacterium largely made on groups of glycoside hydrolases (IPR002053,

IPR018077 & IPR017853). After cross-reference with the quantitative analysis, it was

found that these are absent in all Cutibacterium-targetting proteins in PhaLP. While

some phage lytic proteins target both of these genera, and these glycoside hydrolase

domains are thus not present in every Propionibacterium-targeting protein, they are

present in one-third of the lytic proteins that solely target Propionibacterium. Incor-

poration of such domain may thus help narrow down the host-spectrum.

5.4 Future prospects

While nature has evolved towards the requirements of the natural function of phage

lytic proteins, protein engineers nowadays try to mimic evolution on a laboratory scale

to re-engineer proteins towards the application the protein engineer has in mind. This

strategy is called directed evolution. In the case of phage lytic proteins, the appli-

cation at hand is the engineering of enzybiotics. This thesis may give the engineer

indications which domains should be (minimally) included in an enzybiotic targeting

the desired genus. However, to construct a functional enzybiotic, additional param-

eters have to be taken in mind. The conditions in which an enzybiotic is applied,
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differ from those that prevail in the infected bacterial cell. Additionally, an enzybiotic

requires stability and an applicable shelf life.

To work towards the full design of an enzybiotic, the methods described in this thesis

should be expanded to include information on the order and amount of the domains

found in a phage lytic protein. Domains themselves can vary in sequence as well,

hence an adaptation on the method used in section 4.3 should be implemented to

find the optimal variation. Furthermore, pH- and thermostability should be consid-

ered, as well as other environmental factors. As new phage lytic proteins are discov-

ered and known ones are better characterised and annotated, these methods should

also be expanded accordingly, as this can further substantiate or disprove any of the

hypotheses made, as well as improve the quality of predictive models and the design

rules deduced from them.

While antibiotic resistance is shaping up to be a global crisis and solutions so far are

sparse, interpretability might just cast a light on the solution to a very predictable

trend.
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Figure 5.1: A schematic aggregate of figures 4.10 and 4.13 conveying a rough guide
to domain architecture in natural phage lytic proteins. Striked out symbols represent
domains that are not found in nature in the specified branch, while regular symbols
represent domains that strongly correlated with a specific branch. The tree itself is
coloured on phylum.
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APPENDIX A

A.1 BLOSUM 62 substitution matrix

Figure A.1: The scores for matches and mismatches as given by the BLOSUM62 sub-
stitution matrix as assembled by Henikoff and Henikoff (1992)
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APPENDIX B

B.1 Gram-type prediction rules

B.1.1 Gram-positive

All rules and corresponding performance statistics generated for a Gram-positive host

prediction by a Skope Rules model.

1. IF NOT IPR015510 and NOT IPR020362 and NOT IPR023346 and NOT IPR038288

and NOT IPR042047 THEN G+

precision: 0.954106

recall: 0.941597

2. IF NOT IPR015510 and NOT IPR020362 and NOT IPR023346 and NOT IPR042047

THEN G+

precision: 0.94856

recall: 0.943302

3. IF NOT IPR015510 and NOT IPR020362 and NOT IPR023346 and NOT IPR041219

and NOT IPR042047 THEN G+

precision: 0.947929

recall: 0.941246

4. IF NOT IPR015510 and NOT IPR023346 and NOT IPR042047 THEN G+

precision: 0.944106

recall: 0.943607

5. IF NOT IPR015510 and NOT IPR023346 and NOT IPR038258 and NOT IPR042047

THEN G+

precision: 0.943216

recall: 0.944337



B.1. GRAM-TYPE PREDICTION RULES

6. IF NOT IPR011105 and NOT IPR015510 and NOT IPR023346 THEN G+

precision: 0.941858

recall: 0.945556

7. IF NOT IPR003343 and NOT IPR015510 and NOT IPR023346 and NOT IPR038288

and NOT IPR042047 THEN G+

precision: 0.942584

recall: 0.942584

8. IF NOT IPR015510 and NOT IPR023346 and NOT IPR038258 and NOT IPR040471

and NOT IPR042047 THEN G+

precision: 0.944578

recall: 0.938922

9. IF NOT IPR002508 and NOT IPR007048 and NOT IPR008964 and NOT IPR015510

and NOT IPR020362 and NOT IPR023346 and NOT IPR038288 and NOT

IPR041219 and NOT IPR042047 THEN G+

precision: 0.969399

recall: 0.869761

10. IF NOT IPR002508 and NOT IPR003343 and NOT IPR015510 and NOT IPR020362

and NOT IPR023346 and NOT IPR038288 and NOT IPR040471 and NOT

IPR042047 THEN G+

precision: 0.963612

recall: 0.870889

11. IF NOT IPR002508 and NOT IPR008964 and NOT IPR015510 and NOT IPR023346

and NOT IPR038258 and NOT IPR038288 and NOT IPR040471 and NOT

IPR042047 THEN G+

precision: 0.964798

recall: 0.869565

12. IF NOT IPR002508 and NOT IPR003343 and NOT IPR015510 and NOT IPR023346

and NOT IPR038288 and NOT IPR040471 and NOT IPR042047 THEN G+

precision: 0.97047

recall: 0.864833

13. IF NOT IPR002508 and NOT IPR007048 and NOT IPR008964 and NOT IPR015510

and NOT IPR023346 and NOT IPR038288 and NOT IPR042047 THEN G+

precision: 0.960422

recall: 0.872902
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14. IF NOT IPR002508 and NOT IPR015510 and NOT IPR020362 and NOT IPR023346

and NOT IPR041219 and NOT IPR042047 THEN G+

precision: 0.962865

recall: 0.870504

15. IF NOT IPR002508 and NOT IPR015510 and NOT IPR020362 and NOT IPR023346

and NOT IPR038288 and NOT IPR040471 and NOT IPR042047 THEN G+

precision: 0.962985

recall: 0.869837

16. IF NOT IPR002508 and NOT IPR007048 and NOT IPR015510 and NOT IPR023346

and NOT IPR03825 and NOT IPR042047 THEN G+

precision: 0.958165

recall: 0.873309

17. IF NOT IPR002508 and NOT IPR003343 and NOT IPR007048 and NOT IPR015510

and NOT IPR020362 and NOT IPR023346 and NOT IPR038288 and NOT

IPR042047 THEN G+

precision: 0.968835

recall: 0.864571

18. IF NOT IPR002508 and NOT IPR008964 and NOT IPR015510 and NOT IPR023346

and NOT IPR038258 and NOT IPR041219 and NOT IPR042047 THEN G+

precision: 0.970706

recall: 0.862722

19. IF NOT IPR002508 and NOT IPR007048 and NOT IPR015510 and NOT IPR023346

and NOT IPR038258 and NOT IPR038288 and NOT IPR041219 and NOT

IPR042047 THEN G+

precision: 0.966287

recall: 0.86604

20. IF NOT IPR002508 and NOT IPR003343 and NOT IPR015510 and NOT IPR023346

and NOT IPR038258 and NOT IPR042047 THEN G+

precision: 0.966353

recall: 0.86506

21. IF NOT IPR002508 and NOT IPR003343 and NOT IPR015510 and NOT IPR023346

and NOT IPR038258 and NOT IPR040471 and NOT IPR042047 THEN G+

precision: 0.962633

recall: 0.868061
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22. IF NOT IPR002508 and NOT IPR008964 and NOT IPR015510 and NOT IPR023346

and NOT IPR038288 and NOT IPR040471 and NOT IPR042047 THEN G+

precision: 0.965879

recall: 0.864865

23. IF NOT IPR002508 and NOT IPR007048 and NOT IPR008964 and NOT IPR015510

and NOT IPR020362 and NOT IPR023346 and NOT IPR038288 and NOT

IPR042047 THEN G+

precision: 0.956175

recall: 0.872727

24. IF NOT IPR002508 and NOT IPR003343 and NOT IPR015510 and NOT IPR020362

and NOT IPR023346 and NOT IPR038288 and NOT IPR042047 THEN G+

precision: 0.964973

recall: 0.865163

25. IF NOT IPR002508 and NOT IPR003343 and NOT IPR015510 and NOT IPR020362

and NOT IPR023346 and NOT IPR040471 and NOT IPR041219 and NOT

IPR042047 THEN G+

precision: 0.966443

recall: 0.863309

26. IF NOT IPR002508 and NOT IPR008964 and NOT IPR015510 and NOT IPR020362

and NOT IPR023346 and NOT IPR042047 THEN G+

precision: 0.959264

recall: 0.869048

27. IF NOT IPR002508 and NOT IPR003343 and NOT IPR015510 and NOT IPR023346

and NOT IPR038258 and NOT IPR038288 and NOT IPR040471 and NOT

IPR042047 THEN G+

precision: 0.963952

recall: 0.864671

28. IF NOT IPR002508 and NOT IPR011105 and NOT IPR015510 and NOT IPR023346

and NOT IPR038258 THEN G+

precision: 0.960973

recall: 0.866939

29. IF NOT IPR002508 and NOT IPR008964 and NOT IPR015510 and NOT IPR023346

and NOT IPR038258 and NOT IPR040471 and NOT IPR042047 THEN G+

precision: 0.961538

recall: 0.866189
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30. IF NOT IPR002508 and NOT IPR008964 and NOT IPR015510 and NOT IPR02334

and NOT IPR038258 and NOT IPR042047 THEN G+

precision: 0.959677

recall: 0.867558

31. IF NOT IPR002508 and NOT IPR003343 and NOT IPR007048 and NOT IPR015510

and NOT IPR023346 and NOT IPR038258 and NOT IPR038288 and NOT

IPR042047 THEN G+

precision: 0.963838

recall: 0.86374

32. IF NOT IPR002508 and NOT IPR011105 and NOT IPR015510 and NOT IPR023346

THEN G+

precision: 0.955979

recall: 0.870068

33. IF NOT IPR002508 and NOT IPR007048 and NOT IPR008964 and NOT IPR015510

and NOT IPR023346 and NOT IPR038258 and NOT IPR042047 THEN G+

precision: 0.961108

recall: 0.865853

34. IF NOT IPR002508 and NOT IPR015510 and NOT IPR020362 and NOT IPR023346

and NOT IPR042047 THEN G+

precision: 0.961275

recall: 0.865635

35. IF NOT IPR002508 and NOT IPR015510 and NOT IPR023346 and NOT IPR038258

and NOT IPR042047 THEN G+

precision: 0.960054

recall: 0.866197

36. IF NOT IPR002508 and NOT IPR011105 and NOT IPR015510 and NOT IPR023346

and NOT IPR038258 and NOT IPR038288 THEN G+

precision: 0.962766

recall: 0.863962

37. IF NOT IPR002508 and NOT IPR015510 and NOT IPR023346 and NOT IPR038258

and NOT IPR038288 and NOT IPR040471 and NOT IPR042047 THEN G+

precision: 0.958778

recall: 0.867108

89



B.1. GRAM-TYPE PREDICTION RULES

38. IF NOT IPR002508 and NOT IPR008964 and NOT IPR011105 and NOT IPR015510

and NOT IPR020362 and NOT IPR023346 and NOT IPR038288 and NOT

IPR041219 THEN G+

precision: 0.967828

recall: 0.859524

39. IF NOT IPR002508 and NOT IPR015510 and NOT IPR023346 and NOT IPR038288

and NOT IPR042047 THEN G+

precision: 0.959239

recall: 0.866258

40. IF NOT IPR002508 and NOT IPR003343 and NOT IPR015510 and NOT IPR020362

and NOT IPR023346 and NOT IPR042047 THEN G+

precision: 0.964683

recall: 0.861385

41. IF NOT IPR002508 and NOT IPR008964 and NOT IPR015510 and NOT IPR023346

and NOT IPR038258 and NOT IPR038288 and NOT IPR041219 and NOT

IPR042047 THEN G+

precision: 0.96438

recall: 0.861013

42. IF NOT IPR002508 and NOT IPR008964 and NOT IPR015510 and NOT IPR023346

and NOT IPR038258 and NOT IPR038288 and NOT IPR040471 and NOT

IPR041219 and NOT IPR042047 THEN G+

precision: 0.963061

recall: 0.861865

43. IF NOT IPR002508 and NOT IPR015510 and NOT IPR023346 and NOT IPR042047

THEN G+

precision: 0.958467

recall: 0.865053

44. IF NOT IPR002508 and NOT IPR003343 and NOT IPR015510 and NOT IPR023346

and NOT IPR038258 and NOT IPR038288 and NOT IPR040471 and NOT

IPR041219 and NOT IPR042047 THEN G+

precision: 0.966395

recall: 0.858616

45. IF NOT IPR002508 and NOT IPR007048 and NOT IPR015510 and NOT IPR023346

and NOT IPR038288 and NOT IPR042047 THEN G+
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precision: 0.967785

recall: 0.857313

46. IF NOT IPR002508 and NOT IPR015510 and NOT IPR023346 and NOT IPR038258

and NOT IPR038288 and NOT IPR042047 THEN G+

precision: 0.959891

recall: 0.8635

47. IF NOT IPR002508 and NOT IPR008964 and NOT IPR011105 and NOT IPR015510

and NOT IPR023346 and NOT IPR038258 and NOT IPR038288 and NOT

IPR040471THEN G+

precision: 0.967828

recall: 0.856465

48. IF NOT IPR002508 and NOT IPR002901 and NOT IPR015510 and NOT IPR023346

and NOT IPR038258 and NOT IPR038288 and NOT IPR040471 and NOT

IPR041219 and NOT IPR042047 THEN G+

precision: 0.966033

recall: 0.85766

49. IF NOT IPR002508 and NOT IPR002901 and NOT IPR003343 and NOT IPR015510

and NOT IPR020362 and NOT IPR023346 and IPR038288 and NOT IPR042047

THEN G+

precision: 0.965147

recall: 0.858164

50. IF NOT IPR002508 and NOT IPR002901 and NOT IPR007048 and NOT IPR015510

and NOT IPR020362 and NOT IPR023346 and NOT IPR038288 and IPR042047

THEN G+

precision: 0.965333

recall: 0.85782

51. IF NOT IPR002508 and NOT IPR007048 and NOT IPR015510 and NOT IPR020362

and NOT IPR023346 and NOT IPR042047 THEN G+

precision: 0.958868

recall: 0.862719

52. IF NOT IPR002508 and NOT IPR003343 and NOT IPR007048 and NOT IPR015510

and NOT IPR020362 and NOT IPR023346 and IPR042047 THEN G+

precision: 0.957276

recall: 0.863855
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53. IF NOT IPR002508 and NOT IPR007048 and NOT IPR015510 and NOT IPR023346

and NOT IPR038258 and NOT IPR038288 and IPR042047 THEN G+

precision: 0.9629

recall: 0.858643

54. IF NOT IPR002508 and NOT IPR015510 and NOT IPR023346 and NOT IPR038258

and NOT IPR041219 and NOT IPR042047 THEN G+

precision: 0.962213

recall: 0.859036

55. IF NOT IPR002508 and NOT IPR008964 and NOT IPR015510 and NOT IPR023346

and NOT IPR042047 THEN G+

precision: 0.961126

recall: 0.859712

56. IF NOT IPR002508 and NOT IPR003343 and NOT IPR011105 and NOT IPR015510

and NOT IPR023346 and NOT IPR038258 THEN G+

precision: 0.959839

recall: 0.860744

57. IF NOT IPR002508 and NOT IPR015510 and NOT IPR023346 and NOT IPR040471

and NOT IPR042047 THEN G+

precision: 0.960055

recall: 0.860494

58. IF NOT IPR002508 and NOT IPR003343 and NOT IPR015510 and NOT IPR023346

and NOT IPR038258 and NOT IPR038288 and IPR041219 and IPR042047 THEN

G+

precision: 0.962213

recall: 0.858002

59. IF NOT IPR002508 and NOT IPR011105 nd NOT IPR015510 and NOT IPR020362

and NOT IPR023346 THEN G+

precision: 0.954606

recall: 0.863527

60. IF NOT IPR002508 and NOT IPR015510 and NOT IPR020362 and NOT IPR023346

and NOT IPR040471 and NOT IPR042047 THEN G+

precision: 0.958865

recall: 0.859603
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61. IF NOT IPR002508 and NOT IPR003343 and NOT IPR007048 and NOT IPR015510

and NOT IPR020362 and NOT IPR023346 and NOT IPR038288 and NOT

IPR041219 and NOT IPR042047 THEN G+

precision: 0.965673

recall: 0.85375

62. IF NOT IPR002508 and NOT IPR007048 and NOT IPR008964 and NOT IPR015510

and NOT IPR023346 and NOT IPR038258 and NOT IPR041219 and NOT

IPR042047 THEN G+

precision: 0.964217

recall: 0.854216

63. IF NOT IPR002508 and NOT IPR015510 and NOT IPR023346 and NOT IPR038258

and NOT IPR040471 and NOT IPR042047 THEN G+

precision: 0.956815

recall: 0.859394

64. IF NOT IPR002508 and NOT IPR003343 and NOT IPR007048 and NOT IPR011105

and NOT IPR015510 and NOT IPR020362 and IPR023346 and NOT IPR038288

and NOT IPR041219 THEN G+

precision: 0.960437

recall: 0.856448

65. IF NOT IPR002508 and NOT IPR003343 and NOT IPR015510 and NOT IPR023346

and NOT IPR041219 and NOT IPR042047 THEN G+

precision: 0.962213

recall: 0.853892

66. IF NOT IPR002508 and NOT IPR003343 and NOT IPR015510 and NOT IPR023346

and NOT IPR038258 and NOT IPR038288 and NOT IPR042047 THEN G+

precision: 0.959459

recall: 0.851319

B.1.2 Gram-negative

All rules and corresponding performance statistics generated for a Gram-negative

host prediction by a Skope Rules model.

1. IF NOT IPR002502 and NOT IPR016047 and IPR023346 and NOT IPR036779 THEN

G-
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precision: 0.980668

recall: 0.785915

2. IF NOT IPR002502 and NOT IPR003646 and IPR023346 and NOT IPR036779 THEN

G-

precision: 0.978648

recall: 0.785714

3. IF NOT IPR002502 and NOT IPR003646 and NOT IPR016047 and NOT IPR018392

and IPR023346 THEN G-

precision: 0.980523

recall: 0.782885

4. IF NOT IPR003646 and NOT IPR010090 and IPR023346 and NOT IPR036505 and

NOT IPR036779 THEN G-

precision: 0.979594

recall: 0.783096

5. IF NOT IPR002502 and NOT IPR003646 and NOT IPR010090 and IPR023346 and

NOT IPR03677 THEN G-

precision: 0.981131

recall: 0.781398

6. IF NOT IPR002502 and IPR023346 and NOT IPR036779 THEN G-

precision: 0.976147

recall: 0.784069

7. IF NOT IPR002502 and NOT IPR003646 and NOT IPR010090 and NOT

IPR018392and IPR023346 THEN G-

precision: 0.98144

recall: 0.780476

8. IF NOT IPR002502 and NOT IPR010090 and NOT IPR018392 and IPR023346 THEN

G-

precision: 0.979635

recall: 0.781191

9. IF NOT IPR002502 and NOT IPR016047 and NOT IPR018392 and IPR023346 THEN

G-

precision: 0.974453

recall: 0.784141
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10. IF NOT IPR002502 and NOT IPR010090 and IPR023346 and NOT IPR036779 THEN

G-

precision: 0.98168

recall: 0.779296

11. IF NOT IPR003646 and NOT IPR010090 and NOT IPR018392 and IPR023346 and

NOT IPR036505 THEN G-

precision: 0.981731

recall: 0.779204

12. IF NOT IPR002502 and NOT IPR018392 and IPR023346 THEN G-

precision: 0.974399

recall: 0.783337

13. IF NOT IPR010090 and IPR023346 and NOT IPR036505 and NOT IPR036779 THEN

G-

precision: 0.976619

recall: 0.780172

14. IF NOT IPR010090 and NOT IPR018392 and IPR023346 and NOT IPR036505 THEN

G-

precision: 0.979951

recall: 0.777869

15. IF NOT IPR018392 and IPR023346 and NOT IPR036505 THEN G-

precision: 0.974979

recall: 0.780204

16. IF NOT IPR002502 and NOT IPR003646 and NOT IPR018392 and IPR023346 THEN

G-

precision: 0.977535

recall: 0.77836

17. IF IPR023346 and NOT IPR036505 and NOT IPR036779 THEN G-

precision: 0.973674

recall: 0.779803

18. IF NOT IPR003646 and IPR023346 and NOT IPR036505 and NOT IPR036779 THEN

G-

precision: 0.978533

recall: 0.770423
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B.2 Bayes’ theorem

P(A|B) = P(A)
P(B|A)

P(B)
(B.1)
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