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Abstract

Spontaneous abortion or miscarriage is defined as the loss of pregnancy before 24 weeks of
gestational age and is the most common complication during early pregnancies. During
the first trimester, miscarriages are estimated to occur in 15-30% of the pregnancies. A
variety of risk factors have been proposed in the past and several studies have attempted
to implement these potential risk factors in a predictive risk model. However, many
of these previous studies used a univariate or multivariate logistic regression model in
order to predict the risk for a miscarriage. These methods do not take into account the
longitudinal aspect of a pregnancy. We applied the joint latent class modelling approach
to the EPOS data-set, containing information on 753 pregnancies. A joint latent class
model can simultaneously model a longitudinal process and a survival process, taking
into account heterogeneity within the population. The joint latent class model consists
of 3 sub-models, i.e. a multinomial logistic regression model to define class membership,
a proportional hazards model to model the time-to-event and a linear mixed model to
describe the evolution of a longitudinal variable. Parameter estimates for the joint latent
class model are obtained using maximum likelihood theory. In this assay, we report on
several different joint latent class models that aim to identify the risk for a miscarriage.
These models include ultra-sound features as longitudinal outcome variable in the linear
mixed model and have two to five latent classes. The best model identified in our study
models the crown rump length of the fetus over time and has 5 latent classes. The
model shows good discrimination, reasonable longitudinal and survival profiles and a
good predictive accuracy. This model might be very useful in practice, as it allows for
individual dynamic miscarriage predictions.
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Chapter 1

Introduction

Spontaneous abortion or miscarriage is defined as the loss of pregnancy before 24 weeks of
gestational age (GA) and is the most common complication during early pregnancies [1].
During the first trimester, miscarriages are estimated to occur in 15-30% of the preg-
nancies [2]. When fetal viability has been demonstrated by ultrasound, the incidence
of a miscarriage in the first trimester reduces to 2-16% [3]. Among women attending
an early pregnancy unit, the miscarriage rate is 17-46% [4]. The much rarer event of
a mid-trimester miscarriage is estimated to occur in 2-3% of the pregnancies [5]. Al-
though a miscarriage is often not associated with serious physical morbidity or mortality
to the mother, it has a major social and psychological impact on the parents to be [4]. It
appears that 10-50% of the patients experience a major depressive disorder after a preg-
nancy loss [6]. In the interest of the parent’s mental health and the correct counseling
and follow-up of the expecting mother, it is of great importance to accurately inform the
future parents about the likelihood of an ongoing pregnancy.

A variety of risk factors for miscarriage have been proposed in the past. These factors
can be be either modifiable or non-modifiable and can be acting before and/or during the
pregnancy. Chromosomal aneuploidies have been proven to be the main cause for miscar-
riages accounting for 50-70% [1]. Modifiable risk factors mainly include lifestyle factors
such as alcohol consumption, smoking status, caffeine intake, high body mass index (BMI),
exercise, increased maternal age, stress, underweight, lifting more than 20kg daily and
night work [7,8]. Nilsson et al. estimated that 25.2% of the miscarriages can be prevented
when modifiable risk factors would be reduced to low levels [8]. Non-modifiable risk fac-
tors include low serum progesterone levels, vaginal bleedings, abdominal pain, gestational
age at onset of bleeding, uterine size and fetal cardiac activity [7]. Nausea and vomiting
lower the risk for a miscarriage, where woman with nausea and vomiting have a lower risk
for a miscarriage than woman experiencing only nausea [9]. Also, daily vitamin intake is
associated with a lower risk for miscarriages [10]. Further, also ultrasound features can
be used to estimate the risk for a miscarriage. Falco et al. showed that fetal bradycardia,
a discrepancy between the diameter of the gestational sac and the crown-rump length
(CRL) and a discrepancy between the menstrual and sonographic gestational age of more
than 1 week, increase the risk for a miscarriage [11].
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CHAPTER 1. INTRODUCTION 2

Several studies have attempted to implement these potential risk factors in a predictive
risk model for miscarriage, attaining variable performances [2–4, 11–15]. However, these
studies often only contain a subset of the potential risk factors and are often focusing
on a sub-population of pregnant women such as infertility patients or expectant mothers
without a detectable embryo. Besides, many analyses use a univariate or multivariate
logistic regression model in order to predict the risk for a miscarriage. Although logistic
regression might be a suitable tool to predict the chance for a miscarriage, it does not
take into account the longitudinal aspect of the pregnancy.

Joint modelling, a statistical method that is used to jointly model a longitudinal process
as well as a survival process, might therefore be more suitable as compared to logistic
regression to identify miscarriage risk factors and to build a predictive risk model. Due to
the fact that a proportional hazards survival model is implemented in the joint modelling
approach, the probability to have a miscarriage can be estimated over time. Besides, be-
cause the survival process is jointly modelled with the evolution of longitudinally measured
variables by the implementation of a linear mixed model in the joint modelling frame-
work, the correlation between both processes is taken into account. Because the majority
of pregnant women will never experience a miscarriage, an extension of the joint modelling
approach, i.e. a joint latent class model, is used to take into account the heterogeneity
within the population of pregnant women. Although many researchers are unfamiliar with
the joint latent class modelling approach, it has been used before in studies with similar
data. Proust-Lima et al. used a joint latent class model to simultaneously model the lon-
gitudinal profile of prostate specific antigen and the risk of prostate cancer recurrence and
to investigate the cognitive evolution of elderly and the associated risk of dementia [16,17].

The aim of this study was to build predictive miscarriage risk models based on the joint
latent class modelling framework. Due to the complex structure of the data-set, including
time-to-event data as well as longitudinally measured variables within a heterogeneous
population, it is assumed that a joint latent class model is more appropriate for the
prediction of a miscarriage as compared to previously described models. In chapter 2, an
extensive description of the EPOS data-set is given as well as a throughout explanation
of the joint modelling framework. In chapter 3, the obtained results are given. Chapter
4 gives a critical discussion on the study and chapter 5 concludes the assay.



Chapter 2

Research Methods

2.1 The EPOS Data-Set

The data set analyzed in this study originates from the EPOS study, that is a study on
early pregnancy events and the impact on short-term and long-term pregnancy outcomes,
conducted by the Imperial College in Londen. The data were collected at the Queen
Charlottes and Chelsea Hospital at the Imperial College Healthcare NHS Trusts between
2013 and 2016 in the context of an observational prospective cohort study. The included
study subjects are patients attending the early pregnancy unit in the first trimester of
their pregnancy, with ages ranging from 17 to 48 years. Informed consent was obtained
from all included subjects. Women suffering from an acute medical condition, women
diagnosed with a miscarriage at the first examination and women who were unable to
give fully informed consent were excluded from the study. Besides, study subjects were
allowed to withdraw from the study at any time.

The EPOS data set contains information on baseline covariates measured at the begin-
ning of the pregnancy, as well as on longitudinal variables measured repeatedly during
the first trimester of the pregnancy. Information on the baseline covariates was obtained
through the completion of a standard questionnaire concerning demographic and obstet-
ric information. Important baseline covariates that might have an impact on the risk for
a miscarriage are the maternal age, the alcohol consumption and smoking status of the
mother, etc. A detailed list containing all baseline covariates can be found in table 21 in
the appendix.

Information on pregnancy related symptoms such as bleeding, pain and vomiting was
repeatedly measured throughout the first trimester. The amount of bleeding during the
pregnancy was assessed using a modified pectoral blood assessment chart (PBAC) scoring
system where a score is given on 4. The amount of pain experienced during the pregnancy
was recorded using a visual pain score where patients were asked to document the grade
and the duration of their pain with a score on 10. The amount of nausea and vomiting was
recorded using the pregnancy-unique quantification of emesis and nausea (PUQE) scoring
system with a maximum score of 15 [18]. Furthermore, the data set contains longitudinal
information resulting from routine trans-vaginal ultrasound scans performed every one
to two weeks during the first trimester. The outcome variable, with the three possible
outcome values ’viable’, ’pregnancy of unknown viability ’ (PUV) and ’miscarriage’, was
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CHAPTER 2. RESEARCH METHODS 4

examined at every ultrasound scan. For many subjects, a miscarriage was not observed at
the last scan, thus resulting in right censored observations. Note that although ultrasound
scans were taken every one to two weeks, it can be assumed that the observation of a
miscarriage is not interval censored due to the fact that women attend to the early preg-
nancy unit only when experiencing symptoms such as a bleeding, abdominal pain, etc. A
detailed list containing all longitudinal variables can be found in table 22 in the appendix.

Due to the fact that we are dealing with censored data, baseline covariates and longitu-
dinally measured variables, a specific data structure emerges from the EPOS study. The
longitudinal variables were repeatedly measured at the moment ultrasound scans were
taken. However, the occasions at which scans were taken, as well as the amount of scans
that were taken, vary considerably between the different subjects. At least 1 and at max-
imum 6 scans were taken during the first trimester. At last, the data set also contains a
considerable amount of missing data for all variables at all scan times, especially at scan
6. We therefore only used the data up to the fifth scan.

2.2 Outline of the Analysis

Before getting into detail, we want to provide the reader with a brief outline of the whole
analysis process. The flowchart given in figure 1 shows the main steps in our analysis. As
can be seen from this figure, the initial data-set contained information on 946 subjects.
After application of the exclusion criteria, 753 subjects were retained. We then applied
an exploratory analysis in order to identify possible covariates for each of the three sub-
models that compose the joint latent class model, i.e. a linear mixed model to model fetus
growth, a multinomial logistic regression model to model latent class membership and a
proportional hazards model to model the time until a miscarriage. Subjects with missing
values for any of the covariates included in any of the sub-models were further excluded
from the analysis, thereby making the number of included subjects model-dependent.
Several different models were fitted, including different combinations of the covariates in
the three different sub-models. The maximum likelihood estimates for the parameters
of the resulting joint latent class models were then obtained using a modified iterative
Marquardt algorithm. After the different models were fitted, the most appropriate model
was selected according to the Bayesian information criterion (BIC), the goodness-of-fit
(GOF) and the predictive ability of the model. Finally, the selected model can be used
to give individual dynamic predictions for future subjects.
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Figure 1: Flowchart showing the whole analysis process: After application of the exclusion

criteria, an exploratory analysis was performed to identify possible covariates for each of the three

sub-models. Then subjects with missing values for any of these covariates were further excluded

from the analysis. Different models were fitted, including different covariates in different sub-

models. The maximum likelihood estimates were obtained using a modified iterative Marquardt

algorithm. The most appropriate model was then selected according to the BIC, the goodness of

fit in terms of posterior class membership and according to the predictive ability. Finally, the

selected model can be used to give individual dynamic predictions.

2.3 Data Cleaning

The initial data-set contained information on 946 subjects. After application of some
exclusion criteria, 753 subjects were retained for analysis. The following subjects were
excluded:

• subjects with a stillbirth

• subjects with a second trimester miscarriage

• subjects with a high uncertainty on their last menstrual period (LMP) (certainty-
sore < 8)

Further, one subject (E1609) was further removed from the data-set due to some outlying
observations with very low values for the crown rump length (CRL) and the mean sac
diameter (MSD) at very high gestational ages. The initial data-set contained information
on 63 variables. Variables giving information on the baby itself, such as the gender of
the baby or the weight of the baby at birth were not included in our analysis. Further,
to avoid correlation between different variables, some additional variables were excluded
from our analysis. For example, it was decided to only include the BMI of the mother
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and not to include the weight and height of the mother. An exploratory analysis was
then performed on the resulting variables to see which variables might be of importance
to predict the risk for a miscarriage. The variables that seemed to differ between the two
groups, i.e. the group of miscarriages and the group of viable pregnancies, were eventually
included in the initial models and are shown in table 1.

Table 1: Variables included in the initial models.

Variable Included as

Maternal age covariate in all three sub-models
Paternal age covariate in all three sub-models
Smoking status covariate in all three sub-models
Fetal heartbeat at scan 1 covariate in all three sub-models
Amnion at scan 1 covariate in all three sub-models
PUQE-score at scan 1 covariate in all three sub-models
Crown rump length (CRL) outcome variable in the linear mixed model
Mean sac diameter (MSD) outcome variable in the linear mixed model
Gestational age (GA) time variable in the linear mixed model
Pregnancy outcome event of interest in the proportional hazards model

For the estimation of the models, subjects with missing values for any of the covariates
included in the model, except for the time variable, were further excluded from the anal-
ysis, thereby making the number of subjects used for estimation model-dependent. In the
CRL- and MSD-models, 623 and 620 subjects were used for the estimation of the model
respectively.

2.4 Joint Latent Class Modelling Framework

A joint latent class model is used to model the time until a miscarriage, taking into account
the heterogeneity within the population as well as the correlation between the longitudi-
nal process of the repeated measures and the survival process itself. A joint latent class
model consists of three sub-models, i.e. a multinomial logistic regression model for latent
class-membership, a linear mixed model for the longitudinal variable repeatedly measured
over time and a proportional hazards model for the time until the event [17, 19]. In this
study, the event of interest modeled by the proportional hazards model is a miscarriage
and the longitudinal process modelled by the linear mixed model is the growth of the
fetus, expressed in terms of CRL or MSD. Theory for all three sub-models as well as for
the estimation of the resulting joint model parameters, is discussed below. All joint latent
class models were fitted using the function ’jointlcmm’ of the R-package ’lcmm’ that was
recently developed by Proust-Lima et al. [17].

2.4.1 Multinomial Logistic Regression Model

In general, latent class models assume that the population under study is heterogeneous.
In case of the EPOS data-set, it was assumed that there are (at least) two latent classes,
i.e. one group of women where the pregnancy will result in a first trimester miscarriage
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and another group of women giving birth to a healthy child after a full term pregnancy.
The probability to belong to one of these latent classes can be described by a binomial (or
multinomial) logistic regression model within the joint latent class model. For G latent
classes, the class-membership for subject i is given by a discrete random and latent variable
ci that equals g if subject i belongs to latent class g (g = 1, . . . , G). The probability for
the latent variable ci is given by a multinomial logistic regression model according to the
covariates xci:

πig = P (ci = g|Xci) =
eξ0g+X>ciξ1g∑G
l=1 e

ξ0l+X
>
ciξ1l

(2.1)

with ξ0g the intercept for class g and ξ1g the vector of class-specific parameters associated
with the time-independent covariates Xci. The intercept ξ0G and the vector of parameters
ξ1G associated with the reference class G should be equal to zero for identifiability [17,19].

2.4.2 Linear Mixed Model

Within each of the G latent classes, the longitudinal mean profile of the repeatedly mea-
sured variable is modelled by a class-specific linear mixed model, where the fixed effects
as well as the distribution of the random effects can be class-specific. Within latent class
g, the repeatedly measured Gaussian outcome variable is modelled as proposed by Laird
and Ware [20]:

Yij|ci=g = XL1i(tij)
>β +XL2i(tij)

>vg + Zi(tij)
>uig + εij (2.2)

where the vector XL1i is associated with the fixed effects β that are common over the
different latent classes and the vector XL2i is associated with the class-specific fixed effects
vg. The vector Zi is associated with the subject-specific random effects uig that follow a
class-specific, zero-mean multivariate normal distribution with variance-covariance matrix
ω2
gB. Here, B is an unspecified variance-covariance matrix and ωg is a proportionality

coefficient allowing for class-specific variability of the subjects. For identifiability, the
proportionality coefficient ωG of the reference class should be equal to 1. The vector of
parameters for modelling the symmetric positive definite variance-covariance matrix B is
denoted by vec(B). The measurement errors are given by εij and are assumed to follow
a normal distribution with variance σ2

ε and mean zero [17, 19]. Within this study, two
measures of the growth of the fetus, namely the crown rump length (CRL) and the mean
sac diameter (MSD) were included as outcome variables in the linear mixed model.

2.4.3 Proportional Hazards Model

In survival analysis, the true event time for subject i is denoted by T ∗i, the censoring
time is denoted by T̃i and Ti = min(T ∗i, T̃i). The indicator variable Ei is equal to one
if T ∗i < T̃i and is zero otherwise, indicating non-censored and censored observations
respectively. The probability for an event to take place in a small interval after time t,
provided the event has not occurred before t, is then given by the instantaneous failure
rate or the hazard function which is defined as:

λ(t) = lim
h→0

P (t ≤ T ∗ < t+ h|T ∗ ≥ t)

h
. (2.3)
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The cumulative hazard function, defining the sum of risks up to time t is given by the
integral of the hazard function over time:

Λ(t) =

∫ t

0

λ(x)dx (2.4)

For subject i within latent class g, the hazard function at time t can be modelled by a
class-specific Cox’s regression model or proportional hazards model as:

λi(t)|ci=g = λ0g(t)e
X>Si1ν+X>Si2δg (2.5)

where the vector XSi1 is associated with the parameters v that are common over classes
and the vector XSi2 is associated with the class-specific parameters δg. The baseline
hazard λ0g, parametrized by vector ζg, is class-specific and is either stratified on the
latent class structure (λ0g(t) = λ0(t; ζg)) or proportional in each latent class (λ0g(t) =
λ0(t; ζ∗)eζg with ζ∗ the parameter vector defining λ0(t), with eζg a proportionality factor
and ζG = 0) [17, 19]. In this study, the baseline hazard function was either modelled
with cubic M-splines as λ0(t; ζ) =

∑nz+2
l=1 ζlMl(t) where nz denotes the number of knots

and (Ml(t))l=1,...,nz+2 denotes the basis of the M-splines [16] or with a Weibull function as

λ0(t; ζ) = ζ1ζ2(ζ1t)
(ζ2−1), where parameters were restricted to be positive in both functions

[17,19].

2.4.4 Assumption of Conditional Independence

Given the latent classes, the longitudinal process and the survival process are assumed
to be conditionally independent. In other words, it is thus assumed that the latent class
structure captures the entire dependency between the longitudinally measured variable
and the event-time and that there is no dependency through the random effects. The
assumption of conditional independence can be tested using a score test as described
by JacqminGadda et al. [21], with the alternative hypothesis that there is dependency
between the event-time and the longitudinal variable through the random effects. Under
the alternative hypothesis, the joint latent class model would thus contain shared random
effects and the proportional hazards model described in equation (2.5) would then be:

λi (t)|ci=g = λ0g(t)e
X>Si1ν+X>Si2δg+uigη (2.6)

where η is a vector of length p associating the p random effects uig of the linear mixed
model shown in equation (2.2) to the proportional hazards model. If the conditional
independence assumption is satisfied, we would have that η = 0. Thus the null-hypothesis
is that η = 0 while the alternative hypothesis is that η 6= 0.
This can be tested with a score test where the score U is given by:

U(η, θ) =
∂la
∂η

(2.7)

with la the log-likelihood under the alternative hypothesis. The score U is calculated for
η = 0.
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This derivative has been worked out by Jacqmin Gadda et al. [21] resulting in the following
expression for U

U(0, θ) =
N∑
i=1

G∑
g=1

π̂ig (Ei − Λig (Ti)) ûig (2.8)

where π̂ig is the probability of belonging to latent class g as described in equation (2.1),
Ei is equal to one if the time-to-event T ∗i is smaller than the censoring time T̃i and is zero
otherwise and where Λig (Ti) is the class-specific cumulative hazard. The score U can be
interpreted as an estimate for the covariance between the empirical Bayes estimates of
the random effects and the residuals from the survival model, weighted by π̂ig. The score
test statistic is now given by S = UTV ar(U)−1U , which follows a χ2-distribution with p
degrees of freedom under the null-hypothesis of conditional independence. A high score
test statistic favors the alternative hypothesis, while a score test statistic close to zero
favors the null-hypothesis of conditional independence [19,21].

2.5 Exploratory Data Analysis

An exploratory data analysis, including descriptive and visual summary statistics, was
performed in order to decide which covariates to include in which sub-models of the
joint latent class models. The time variable used in all joint latent class models was the
gestational age of the fetus in days, as defined by the last menstrual period (LMP) of
the mother. Because the exact date of the LMP might sometimes be hard to recall, all
subjects were asked to give a score from 0 to 10 on their certainty about their LMP.
In order to have reliable data on the gestational age of the fetus, only subjects with a
certainty score above 7 were included for analysis. The results from the exploratory data
analysis are given in section 3.1.

2.5.1 Multinomial Logistic Regression Model

The averages of all variables included in the EPOS data-set were calculated for the group
of women experiencing a miscarriage and for the group of women with a viable pregnancy
in order to detect important covariates that might discriminate between the two groups.
Further, the survival functions based on the Kaplan-Meier estimates were plotted for
different values of the baseline and longitudinal covariates. (Quasi)continuous covariates
were first discretized according to their median values in order to construct these plots.

2.5.2 Linear Mixed Model

The longitudinally measured variables CRL and MSD are the outcome variables modelled
in the linear mixed model parts of the joint latent class models. A log transformation
(log(CRL+ 1)) was applied to CRL to make its distribution more normal. A transforma-
tion of MSD was not needed. The time variable included in the linear mixed models is the
gestational age of the fetus in days, as defined by the last menstrual period of the mother.
To get an impression of the evolutions of CRL and MSD over time, their mean values were
calculated at all scan times within the two groups, together with the mean gestational
ages of the fetuses. However, since the gestational ages of different subjects at one scan
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time were not the same, comparison between the two groups based on the average CRL
and MSD values is difficult. We therefore also plotted the subject-specific evolutions for
CRL, logCRL and MSD. At last, in order to see which covariates might influence the
evolution of CRL and MSD over time, the longitudinal individual evolutions were plotted
for different values of the covariates. For example, the individual evolutions of CRL for
mothers younger and older than 32 years were plotted to investigate the impact of the
maternal age on the growth of the fetus.

2.5.3 Proportional Hazards Model

In order to decide which baseline covariates and which longitudinal variables measured
at the first scan should be included into the proportional hazards model, the survival
functions for different values of the covariates were plotted. (Quasi)continuous covariates
were first discretized according to their median values in order to investigate their influence
on the survival process.

2.6 Estimation of the Joint Latent Class Model Pa-

rameters

Maximum likelihood estimation was used to estimate the parameters in the resulting joint
latent class model. The vector of parameters to be estimated is denoted by θG and includes
the parameters involved in the multinomial logistic regression model, in the class-specific
linear mixed model and in the class-specific proportional hazards model. An overview of
all parameters that have to be estimated in a joint latent class model is given in table 2.

Table 2: Parameters that have to be estimated in the joint latent class model.

Parameter Explanation

Multinomial logistic regression model
(ξ0g)g=1,G−1 class-specific intercept for class g

(ξ1g
>

)g=1,G−1 parameters for class g

Linear mixed model
β> fixed effects common over the latent classes

(vg)
>
g=1,G class-specific fixed effects for class g

vec(B)
>

parameters involved in the variance-covariance matrix B
(ωg)g=1,G−1 proportionality coefficient for class g allowing class-specific variability

σ2
ε variance for the measurement error ε

Proportional hazards model
ν> parameters common over the latent classes

(δg
>)g=1,G class-specific parameters for class g

(ζg
>)g=1,G parameters involved in the class-specific baseline hazard λ0g
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For the resulting joint latent class model, the individual contribution to the likelihood is
given by:

Li(θG) =
G∑
g=1

πigφig(Yi|ci = g; θG)e−Λ(Ti|ci=g;θG)λi(Ti|ci = g; θG)Ei (2.9)

with πig the class-membership probability as defined in equation (2.1), with φig a mul-
tivariate normal density function with mean µig = XL1iβ + XL2ivg and variance Vig =
ZiBgZ

>
i +Ri + Σi as given by equation (2.2) and with λi (Ti|ci = g; θG) the instantaneous

hazard as defined in equation (2.5) with corresponding cumulative hazard Λi (Ti|ci = g; θG).
The log-likelihood is now given by [17]:

l(θG) =
N∑
i=1

log(Li(θG)). (2.10)

The resulting maximum likelihood estimates correspond to the parameter values that
maximize the log-likelihood function given in equation 2.10.

To obtain maximization of the log-likelihood, Proust-Lima et al. [22] modified the Mar-
quardt algorithm, i.e. an iterative algorithm belonging to the Newton-Raphson family
initially proposed by Marquardt et al. [23]. The modified Marquardt algorithm updates
the parameter vector θG using the following equation at iteration l + 1:

θ
(l+1)
G = θ

(l)
G − δ

(
H̃(l)

)−1

∇
(
L
(
θ

(l)
G

))
(2.11)

where δ = 1 by default and can be modified at each iteration to ensure that the log-
likelihood is improved. Further, H̃ is the Hessian matrix with potentially inflated diagonal
terms H̃ii to ensure positive definiteness. The inflated diagonal terms H̃ii are defined as
Hii +λ[(1− η)|Hii|+ η tr(H)] where λ and η are initially fixed at 0.01. These values for λ
and η are reduced if H is positive-definite and are increased if H is not positive-definite.
Further, ∇(L(θ

(l)
G ) is the gradient of the log-likelihood at iteration l. The Marquardt

algorithm is then reiterated until convergence as defined by the following three convergence
criteria based on:

• parameter stability:
∑nθ

j=1(θG(j)(l) − θG(j)(l−1))2 ≤ εa

• log-likelihood stability: |L(l) − L(l−1)| ≤ εb

• the size of the derivatives:
∇(L(θ

(l)
G ))>H(l)−1∇(L(θ

(l)
G ))>

nθ
≤ εc

with nθ the length of the parameter vector θG. The default values for εa, εb and εc are equal
to 10−4. Note that although these thresholds might seem relatively large, the convergence
criterion based on the derivatives is very stringent. Besides, because in complex settings
such as the joint latent class model the log-likelihood might be relatively flat in some
areas of the parameter space, all three convergence criteria must be met simultaneously.
In this way, good convergence to the actual maximum of the log-likelihood is ensured
and convergence to a local maximum is avoided [17, 19]. In order to further reduce the
risk of converging to a local maximum, it is advised to run the algorithm multiple times
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with different starting values [24, 25]. Further, an estimate for the variance-covariance
matrix V (θ̂G) of the maximum likelihood estimates is given by the inverse of the Hessian
matrix H̃ [17,19]. At last, after estimating the parameters for multiple models, each with
a different number of latent classes, the optimal number of latent classes can be chosen
according to the BIC:

BIC = −2L (θG) + nθ log(N) (2.12)

where N denotes the sample size. The BIC value more often gives the correct number of
latent classes as compared to Akaike’s information criterion (AIC) [26].

2.7 Post-Fit Computations

After conduction of the exploratory analysis and after the estimation of the parameter
vector θG, several post-fit computations can be performed such as the calculation of the
posterior probability for class-membership, the calculation of the predicted profiles for
the longitudinal variable, the prediction of the event of interest and the assessment of the
predictive accuracy of the fitted model.

2.7.1 Posterior Class-Membership Probabilities and Posterior
Classification

Posterior class-membership probabilities can be used to determine the posterior classi-
fication of subjects, by assigning each subject to the latent class for which they have
the highest posterior class-membership probability (ĉi = argmaxg(π̂

(Y,T )
ig )). The posterior

classification of subjects can then be used to assess the goodness-of-fit of the joint latent
class model and to evaluate how well the model can discriminate between the different
latent classes. The posterior class-membership probabilities are computed using Bayes
theorem, given the already collected information, by:

π̂
(Y,T )
ig = P (ci = g|Xci, XLi, XSi, Yi, Ti, Ei, θ̂G)

=
π̂igφig(Yi|ci = g; θ̂G)e−Λ(Ti|ci=g;θ̂G)λ(Ti|ci = g; θ̂G)Ei∑G
l=1 πilφil(Yi|ci = l; θ̂G)e−Λ(Ti|ci=l;θ̂G)λ(Ti|ci = l; θ̂G)Ei

. (2.13)

The posterior classification table as defined in table 3 can be used to assess the goodness-
of-fit and the discriminating power of the model. It shows the mean of the posterior
probabilities of belonging to a latent class among the subjects classified a posteriori in
that latent class. In case of perfect classification, the posterior classification table displays
ones on the diagonal and zeros elsewhere [17,19].
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Table 3: Definition for the posterior classification table.

Final Mean of the probabilities of belonging to class:
class ĉi 1 · · · g · · · G

1 1
N1

∑N1

i=1 π̂
(Y,T )
i1 · · · 1

N1

∑N1

i=1 π̂
(Y,T )
ig · · · 1

N1

∑N1

i=1 π̂
(Y,T )
iG

...
...

. . .
...

g 1
Ng

∑Ng

i=1 π̂
(Y,T )
i1 · · · 1

Ng

∑Ng

i=1 π̂
(Y,T )
ig · · · 1

Ng

∑Ng

i=1 π̂
(Y,T )
iG

...
...

. . .
...

G 1
NG

∑NG

i=1 π̂
(Y,T )
i1 · · · 1

NG

∑NG

i=1 π̂
(Y,T )
ig · · · 1

NG

∑NG

i=1 π̂
(Y,T )
iG

2.7.2 Longitudinal Predictions

Class-specific predictions of the evolutions of the longitudinal variable can be calculated
from the fitted model, both on the marginal level, as well as on the subject-specific level.
The marginal predictions can be used when interest lies in the average evolution of a
population of subjects with the same covariate values while the subject-specific predictions
are used when one is interested in the evolution of a specific individual from the EPOS
data-set. The random effects then show how the individual is deviating from its population
average. For subject i, occasion j and class g, the predicted marginal evolution of the
longitudinally measured variable is given by:

Ŷ
(M)
ijg = XL1i(tij)

>β̂ +XL2i(tij)
>v̂g (2.14)

where the vector XL1i is associated with the fixed effects β that are common over the
latent classes and the vector XL2i is associated with the class-specific fixed effects vg. For
subject i, occasion j and class g, the prediction of a subject-specific longitudinal trajectory
is given by:

Ŷ
(SS)
ijg = XL1i(tij)

>β̂ +XL2i(tij)
>v̂g + Zi(tij)

>ûig (2.15)

where the vector Zi is associated with the random effects uig. The marginal predictions
can also be used to calculate and plot the predicted evolution of the longitudinal outcome
variable for a fictive future subject with a hypothetical profile of covariates.

From these class-specific individual predictions, weighted class-specific predictions aver-
aged over the individuals can be computed as:

Ŷ
(M)
jg =

N(j)∑
i=1

π̂igŶ
(M)
ijg (2.16)

and

Ŷ
(SS)
jg =

N(j)∑
i=1

π̂
(Y,T )
ig Ŷ

(SS)
ijg (2.17)

with N(j) the number of subjects with measurements at occasion j, with π̂ig the class

membership probability as defined in equation 2.1 and with π̂
(Y,T )
ig the conditional class

membership probability as defined in equation 2.13. In practice, time intervals are con-
structed to calculate these expressions. [17, 19].
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2.7.3 Residual Analysis

The class-specific marginal and subject-specific longitudinal predictions Ŷ
(M)
ijg and Ŷ

(SS)
ijg

as described in section 2.7.2 can be used to calculate the respective residuals. The class
specific predictions were first averaged over the latent classes as:

Ŷ
(M)
ij =

G∑
g=1

π̂igŶ
(M)
ijg

and

Ŷ
(SS)
ij =

G∑
g=1

π̂
(Y,T )
ig Ŷ

(SS)
ijg (2.18)

again with with π̂ig the class membership probability as defined in equation 2.1 and with

π̂
(Y,T )
ig the conditional class membership probability as defined in equation 2.13. The

marginal and subject-specific residuals are then respectively given by:

R
(M)
ij = Yij − Ŷ (M)

ij

and
R

(SS)
ij = Yij − Ŷ (SS)

ij . (2.19)

These residuals can be used to asses the goodness-of-fit of the joint latent class model by
plotting a normal QQ-plot or by plotting the residuals against the longitudinal predictions
[17].

2.7.4 Prediction of the Event of Interest

According to the fitted joint latent class model, predicted class-specific survival functions
and individual dynamic predictions can be calculated and plotted. An individual dynamic
prediction is defined as the predicted probability for a miscarriage to occur within the
time-frame (s, s+ t), according to the information collected for subject i up to time s. We
call s and t the landmark time and the horizon of the prediction respectively. Further, if
we define:

• Y (s)
i = Yij, j = 1, . . . , ni, such that tij ≤ s

(= values of the longitudinally measured variable for subject i up to time s)

• Xci

(=values for the covariates in the multinomial regression model)

• X(s)
i = XL1i(tij), XL2i(tij), Zi(tij), j = 1, . . . , ni, such that tij ≤ s

(= values of the covariates included in the linear mixed model for subject i up to time s)

• XSi = XSi1, XSi2

(= values of the covariates included in the proportional hazards model for subject i)
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then the individual dynamic prediction is given by:

P (Ti ≤ s+ t|Ti ≥ s, Y
(s)
i , X

(s)
i , XSi, Xci; θG)

=

∑G
g=1 πig (Si (s|XSi, ci = g; θG)− Si (s+ t|XSi, ci = g; θG))φig(Y

(s)
i |X

(s)
i , ci = g; θG)∑G

g=1 πigSi(s|XSi, ci = g; θG)φig(Y
(s)
i |Xi

(s), ci = g; θG)

(2.20)

with φig(Y
(s)
i |X

(s)
i , ci = g; θG) the density of the longitudinal outcomes in class g, with πig

the class-specific membership probability and with Si(s|XSi, ci = g; θG) the class-specific
survival function [17].

2.7.5 Assessment of Predictive Accuracy

The predictive accuracy of the fitted joint latent class models can be assessed using the
expected prognostic observed cross-entropy (EPOCE) which is defined as:

EPOCE = E
(
− ln fT |Y (s),T ∗≥s|T ∗ ≥ s

)
(2.21)

where fT |Y (s),T ∗≥S is the conditional density of the event time as derived from the joint
latent class model. The EPOCE is estimated using cross-validation, i.e. estimating the
log-likelihood Ns times, each time leaving out one of the Ns observations still at risk, then
calculating the EPOCENs times and finally computing the average EPOCE. The resulting
EPOCE estimate is called the cross-validated prognosis observed loss (CVPOL). However,
because cross-validation is computationally demanding, the CVPOL is approximated by
the CVPOLa at a fixed time s as:

CVPOLa(s) = − 1

Ns

Ns∑
i=1

Fi(θ̂, s) +N Trace
(
H−1Ks

)
(2.22)

where Ns is the number of subjects still at risk at time s. H is the Hessian matrix of the
joint log-likelihood. Ks = 1

Ns(N−1)

∑N
i=1 I (Ti ≥ s) v̂i(s)d̂

T
i with v̂i(s) the gradients of the

individual contributions to the conditional log-likelihood at time s using only Y
(s)
i , and

with d̂i the gradients of the individual contributions to the joint log-likelihood computed
in θ̂ using the total vector of repeated measures Yi. Fi is the individual contribution to
the conditional log-likelihood which is given by:

Fi (θG, s) = ln

∑G
g=1 πigφig

(
Y

(s)
i |ci = g; θG

)
λi (Ti|ci = g; θG)Ei Si (Ti|ci = g; θG)∑G

g=1 πigφig

(
Y

(s)
i |ci = g; θG

)
Si (s|ci = g; θG)


(2.23)

For a vector of different landmark times s, the predictive accuracy measure CVPOLa is
thus calculated based on the subjects still at risk and the collected information up to
a given landmark time. A lower value for CVPOLa corresponds to a better predictive
ability of the model [19,27,28].
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Results

3.1 Exploratory Data Analysis

As discussed in section 2.5 subjects with a LMP certainty score below 8 were excluded from
the analysis. From the remaining 753 subjects, 82 women experienced a first trimester
miscarriage, that is 10.89% of the women. The mean and median gestational ages at which
miscarriages occurred were 65.46 and 64.00 days respectively, ranging from a minimum
of 29 days to a maximum of 92 days.

3.1.1 Multinomial Logistic Regression Model

Table 4 shows the mean values for the baseline and longitudinal covariates included in the
EPOS data-set. Because time-varying variables can not be included into to multinomial
logistic regression sub-models, it was decided to only include the measurements taken at
the first scan for longitudinally measured variables. It can already be seen from this table
that the average maternal and paternal age within the group of miscarriages is higher as
compared to the group of viable pregnancies. Also, the average BMI and the percentage
of smokers is larger within the group of miscarriages. On average, the worst bleeding
score reported at the first scan is similar between the two groups, while the worst pain
score and the PUQE-score reported at the first scan are higher for the group of viable
pregnancies. At last, there seems to be a large discrepancy in the detection of a fetal
heartbeat and the detection of the amnion between both groups. At the first scan, a
fetal heartbeat is detected in 75.90% of the viable pregnancies and only in 41.46% of the
pregnancies that will eventually end in a miscarriage. The amnion is detected in 18.32%
of the viable pregnancies at the first scan, as opposed to only 7.41% in the group of the
miscarriages.

16
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Table 4: Mean values and percentages for baseline and longitudinally measured covariates
of interest in both groups.

Baseline variables Miscarriage (range) (n=82) Viable (range) (n=671)

Maternal age 33.68 (22-43) 32.71 (18-48)
Paternal age 35.40 (22-52) 34.95 (19-53)
BMI 26.13 (18.52-43.44) 24.67 (15.84-46.44)
1st trimester miscarriages 1.16 (0-10) 0.709 (0-8)
Gravida 3.259 (1-14) 2.642 (1-11)
Para 0.7531 (0-6) 0.6319 (0-6)
Current alcohol consumption 0.0520 (0-2) 0.0815 (0.14)
Smokers 13.92 % 8.87 %
Surgery uterus 40.74% 38.75%
Progesterone intake 6.25% 7.154%
Metformin intake 0.00% 0.7452
Aspirin intake 5.00% 4.77%
Folic acid intake 92.50% 96.26%
Termination of pregnancy (TOP) 20.99% 16.54%
Ectopic pregnancy 7.41% 5.37%

Longitudinal variables

Worst bleeding score 0.7805 (0-4) 0.7515 (0-4)
Worst pain score 1.987 (0-9) 2.461 (0-10)
PUQE score 3.635 (3-10) 4.539 (3-15)
Number of bleedings (SCH) 0.1358 (0-1) 0.1712 (0-2)
Fetal heartbeat detected 41.46 % 75.90 %
Amnion detected 7.41 % 18.32 %

Note that the summary measures for the longitudinal variables are calculated from the first
scan only.

Figure 2 shows the survival functions based on the Kaplan-Meier estimates for different
values of the baseline and longitudinal covariates. (Quasi)continuous covariates were first
discretized according tot their median values in order to construct these plots. The values
used for discretizing these variables are indicated in the respective plots. It can be seen
that subjects where a fetal heartbeat was not detected at the first scan and subjects where
the amnion was not detected at the first scan have a higher probability to miscarry. Also,
subjects who reported a PUQE-score below or equal to 4 have a higher probability to
miscarry. The risk for a miscarriage is higher with a maternal age above 32 and with a
paternal age above 35. At last, the risk for a miscarriage is higher for smoking mothers.
According to the mean values shown in table 4 and the survival plots shown in figure 2, it
was decided to include the maternal age, the paternal age and the smoking status of the
mother as baseline covariates. Further, the longitudinal variables measured at the first
scan that seem to have an important role in the discrimination between the two groups are
the detection of a fetal heartbeat, the detection of an amnion and the PUQE-score. These
variables were therefore included in the initial multinomial logistic regression model.
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Figure 2: Survival functions for the important baseline and longitudinal covariates: Sur-

vival functions for inclusion of baseline and longitudinal covariates in the multinomial logistic

regression model and proportional hazards model. When a fetal heartbeat is not detected, when

the amnion is not detected, when the PUQE-score is low, when the maternal or paternal age is

high or when the mother smokes, the risk for a miscarriage is higher. Note that the survival

functions for the longitudinal variables are based on data from the first scan only.

3.1.2 Linear Mixed Model

Table 5 shows the mean values for CRL and MSD calculated at all scan times within
the two groups, together with the mean gestational ages of the fetuses. Note again that
the gestational ages are not the same for all subject at a specific scan time and that the
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number of subjects is not the same at all scan times. From table 5, it can already be seen
that the average values for CRL are lower in the miscarriage group than in the viable
group at all scan times. The same is true for the average values of MSD, although this
difference seems less prominent at the last scan. However, the mean gestational ages are
also lower for the miscarriage group at all scan times. The observed differences between
the CRL and MSD values of the two groups might thus be due only to the fact that the
mean gestational ages are lower in the miscarriage group.

Table 5: The average CRL and MSD at all scan times for both groups.

Outcome Scan 1 Scan 2 Scan 3 Scan 4 Scan 5

Mean GA Miscarriage 47.39 57.12 64.35 70.31 76.00
Viable 52.37 62.87 71.18 76.86 80.33

CRL Miscarriage 6.064 8.278 11.850 17.71 34.15
Viable 13.39 21.25 30.88 37.8 40.50

MSD Miscarriage 11.64 18.06 22.85 25.02 44.15
Viable 21.02 33.06 40.95 44.38 45.42

We therefore also plotted the subject-specific evolutions for CRL, logCRL and MSD in
figure 3, for 30 random subjects from both groups. Here, CRL and logCRL are showing
increasing individual evolutions over time with mild curvature in both groups. The evolu-
tion of CRL is less steep in the group of miscarriages, although this effect is not that clear
when looking at logCRL. The individual evolutions of MSD are also increasing but seem
more linear. Again, the evolution seems less steep in the group of miscarriages. Based
on these plots, we will therefore include a quadratic time effect as well as a main time
effect in the linear mixed model for logCRL and only a main time effect will be included
in the linear mixed model for MSD. In order to avoid computational difficulties due to
the quadratic time effect in the linear mixed model for logCRL, the gestational age was
divided by 10. Random effects for all effects of gestational age were included in the initial
linear mixed models, together with random intercepts.
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Figure 3: Individual longitudinal profiles for the evolution of CRL, logCRL and MSD
within both groups: The increasing evolutions of CRL and logCRL show mild curvature in

both groups. The evolution of CRL/logCRL is less steep in the group of miscarriages. The

increasing evolution of MSD seems more linear and is less steep in the group of miscarriages.

In order to see which covariates might influence the evolution of CRL and MSD over time,
the longitudinal individual evolutions were plotted for different values of the covariates.
However, no obvious effects were found for any of the variables included in the EPOS data-
set. It was therefore decided to only include the main effects of the variables identified
in the previous section on the multinomial logistic regression model (section 3.1.1) as
covariates in the linear mixed models.

3.1.3 Proportional Hazards Model

Figure 2 shows the survival functions for different values of some of the covariates included
in the EPOS data-set. (Quasi)continuous covariates were first discretized according to
their median values in order to construct these plots. The values used for discretizing the
variables are indicated in these plots. According to this figure, it was decided to include
the fetal heartbeat, amnion, PUQE-score, maternal age, paternal age and the smoking
status in the initial proportional hazards model.

3.2 Fitted Models

Joint latent class models were fitted to the data, where in a first analysis the log trans-
formed longitudinal outcome variable CRL was included in the linear mixed model part,
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while in a second analysis the longitudinal outcome variable MSD was included. For both
analyses, the initial model contains two latent classes and all covariates identified in the
exploratory analysis (section 3.1). The covariates with a p-value above 0.50 were removed
from the initial CRL- and MSD-models. Afterwards, the remaining covariates with a high
non-significant p-value were removed in a sequential manner. Additional latent classes
were then added in order to see whether the models could be improved. Further, except
for the effect of gestational age in the linear mixed model, we assumed the effects of the
covariates included in the linear mixed model and in the proportional hazards model to be
the same over the latent classes. All models were fitted using M-splines with 3 equidistant
knots as baseline hazard function as well as a with a Weibull function as baseline hazard
function. For all models, lower BIC values were obtained when using a Weibull function
as baseline hazard. Within this assay, we therefore only report on the models with a
Weibull hazard function. At last, to avoid convergence to local maxima, the models were
fitted using the ’gridsearch’ function from the ’lcmm’ package. For all models, an auto-
matic grid search was performed with 3 random sets of initial values and a maximum of
15 iterations. The resulting parameters that corresponded to the best log-likelihood were
then used as initial values for the final estimation [24].

3.2.1 Models Including CRL

As stated above, a log transformation (log(CRL + 1)) was applied to CRL to make its
distribution more normal. Because of the curvature observed in the longitudinal profiles
of logCRL, all models include a quadratic time effect as well as a main time effect in the
linear mixed model part. Further, since the gestational ages in the EPOS data-set can
go up to 123 days, it was decided to use the gestational age divided by 10 (GA/10) as
time variable to avoid computational difficulties caused by the quadratic term in the linear
mixed model. Further, all models include a random intercept, a random slope for the time
effect and a random slope for the quadratic time effect. The included covariates and the
number of latent classes differ from model to model and a detailed overview of all fitted
models is shown in table 6, indicating the number of latent classes and the covariates that
were included in each of the sub-models.

Table 6: Overview of the fitted joint latent class models including CRL.

Covariates Sub-model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Maternal age Multinomial model x
Mixed model x x x x x x x
Survival model x x x x x x x

Fetal heartbeat Multinomial model x x x x x x x
Mixed model x x x x x x x

Smoking Multinomial model x x
Survival model x x

Paternal age Survival model x x x x x x
Amnion Survival model x
PUQE score Multinomial model x x x x x x

Latent classes 2 2 2 2 3 4 5

BIC 582.5 573.7 561.9 804.6 471.16 448.62 411.4

The BIC value for the initial model including all covariates discussed in the exploratory analysis

was 632.5.
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Two latent classes

The initial model, containing the longitudinally measured outcome variable CRL, two
latent classes and all covariates identified in the exploratory analysis, gave rise to a BIC
value of 632.5. The covariates with the highest p-values were then sequentially removed
from the model, resulting in model 1, model 2, model 3 and model 4 with respective BIC
values of 582.5, 573.7, 561.9 and 804.6. Convergence was reached for all four models and
the assumption of conditional independence could not be rejected in any of the models
(p1 = 0.9026, p2 = 0.8834, p3 = 0.8614, p4 = 0.0685). According to these BIC values,
model 3 appears to be the best two-class model and provides posterior classes 1 and 2
with proportions 92.46% and 7.54% respectively. Table 9 shows the proportion and num-
ber of subjects classified in class 1 and 2. 623 subjects, of which 51 (8.19%) experienced
a miscarriage, were used for the estimation of CRL-model 3 and 24 parameters had to be
estimated. The fetal heartbeat had a significant effect in the multinomial logistic regres-
sion model, the maternal age showed a significant effect in the proportional hazards model
and both covariates had a significant impact in the linear mixed model. The parameter
estimates and corresponding p-values for the model are given in table 23 in the appendix.

The posterior classification of subjects was used to assess the goodness-of-fit of the model
and the discrimination between the two latent classes. Table 7 shows the proportion of
subjects classified in each of the latent classes with a posterior probability above 0.7, 0.8
and 0.9. It can be seen that almost all subjects assigned to the first class were unam-
biguously classified since 99.65% of the subjects assigned to this class had a posterior
probability above 0.9. Although the proportion of subjects unambiguously assigned to
the second class is a bit lower as compared to the first class, high proportions are still
obtained and 80.85% of the subjects assigned to this class had a posterior probability
above 0.9. Table 8 shows the posterior classification table as defined in section 2.7.1.
Again, it can be seen that the average probability of belonging to the first class, when
classified in the first class, is higher as compared to the average probability of belonging
to the second class, when classified in the second class. The respective probabilities are
0.9982 and 0.9471 for class 1 and class 2, indicating good discrimination between the two
latent classes.

Table 7: Proportion of subjects classified in each of the latent classes with a posterior
probability above 0.7, 0.8 and 0.9 for CRL-model 3.

Class 1 Class 2

Probability > 0.7 100% 93.62%
Probability > 0.8 100% 89.36%
Probability > 0.9 99.65% 80.85%

Table 8: Posterior classification table for CRL-model 3.

Probability 1 Probability 2

Class 1 0.9982 0.0018
Class 2 0.0529 0.9471
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The goodness-of-fit of the model can be further investigated by looking at the obtained
residuals for CRL-model 3. Although the marginal and subject-specific residuals seem
to cluster around zero when plotted against the longitudinal predictions, a pattern can
be observed for both the marginal and subject-specific residuals. Besides, the QQ-plots
for the marginal and subject-specific residuals show deviation from the intersecting line.
These results both indicate that the model does not fit the data very well and that an
extension of the model might be needed.

Figure 4: Residual plots for the assessment of the goodness-of-fit of CRL-model 3: The

marginal and subject-specific residuals are clustering around zero but patterns can be observed.

The QQ-plots show deviation from the intersecting line, indicating that the model does not fit

the data well.

Figure 5 shows the observed and predicted marginal and subject-specific longitudinal
profiles of logCRL as calculated from model 3. It can be seen that the predicted profiles
fit the observed profiles very well. Besides, as was observed in the exploratory analysis
in section 3.1.2, the evolution of logCRL seems to be less steep in class 2 as compared to
class 1. According to these results, class 2 might correspond to the group of women who
experienced a miscarriage while class 1 might correspond to the group of women who had
a full term pregnancy.
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Figure 5: Comparison between observed and predicted marginal and subject-specific lon-
gitudinal profiles for log(CRL+1) calculated from model 3: The predicted profiles fit the

observed profiles well. The evolution of logCRL is less steep in class 2 than in class 1. Thus,

class 2 might correspond to the group of women who experienced a miscarriage.

Figure 6 shows the class-specific event-free probabilities over time for CRL-model 3. It
can be seen that the probability for a miscarriage is higher in class 2 than in class 1
where the number of viable pregnancies remains stable during the whole first trimester.
According to this figure, it can again be hypothesized that class 2 corresponds to the
group of women who experienced a miscarriage while class 1 corresponds to the group of
women with a viable pregnancy. However, if this truly would be the case, the survival
function for class 2 should eventually decrease to zero, a characteristic that can not be
observed from this figure. We can therefore conclude that a proportion of the subjects
who still have a viable fetus after the first trimester is included in the group of subjects
who experienced a miscarriage. Besides, because only a small fraction of the subjects
was classified in class 2, this model is underestimating the true amount of miscarriages
observed in our data-set. Therefore, more than 2 latent classes might be needed in order
to find a good model.
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Figure 6: Class-specific event-free probability for CRL-model 3: The probability for a mis-

carriage is higher in class 2 than in class 1. Thus, class 2 might correspond to the group of

women who experienced a miscarriage. However, the survival function for class 2 is not decreas-

ing to zero. We can therefore conclude that a proportion of the subjects who still have a viable

fetus after the first trimester is included in the group of subjects who experience a miscarriage

and that the true amount of miscarriages is underestimated.

In order to see whether class 1 and class 2 indeed correspond to the group of viable preg-
nancies and the group of miscarriages respectively, the number of observed miscarriages
were evaluated in both classes. Also, the average values for the variables included in
CRL-model 3 were calculated for both classes to investigate how the latent classes differ
from each other. Table 9 shows the proportion and number of subjects classified in each
of the two classes, together with the number of subjects for which a miscarriage has been
observed at the end of the first trimester and the average values for the variables included
in CRL-model 3. The model contains 2 latent classes with probabilities of 92.46% for class
1 and 7.54% for class 2, corresponding to 576 and 47 subjects respectively. According
to the longitudinal CRL-evolutions and the survival plots obtained from CRL-model 3,
it was assumed that class 1 corresponds to the group of viable pregnancies while class
2 corresponds to the group of miscarriages. However, from the 47 subjects a posteriori
classified into class 2, only 35 subjects have experienced a miscarriage, while 20 subjects
classified in class 1 also experienced a miscarriage. It can thus be concluded that the pro-
portion of subjects that experience a miscarriage is indeed higher in class 2 than in class 1.
However, CRL-model 3 can not completely discriminate between women who do miscarry
and women who do not miscarry. It can be seen that at the first scan, a fetal heartbeat
was detected in 76.04% of the cases for class 1 and only in 48.94% of the cases for class 2.
Also, the PUQE-score that was reported at the first scan is higher in class 1 than in class 2.



CHAPTER 3. RESULTS 26

Table 9: Proportion and number of subjects assigned to the 2 latent classes for CRL-model
3.

Class 1 Class 2

Proportion 92.46% 7.54%
Number of subjects 576 47
Number of final miscarriages 20 35
Maternal age 32.89 32.17
Paternal age 35.05 34.66
Fetal heartbeat at first scan 76.04% 48.94%
PUQE-score at first scan 4.531 3.681

More than 2 latent classes

Because of the improper results obtained for model 3, we then investigated whether this
model could be further improved by including more than 2 latent classes, resulting in
model 5, model 6 and model 7, with 3, 4 and 5 latent classes respectively. Again, conver-
gence was reached for all of these models and the assumption of conditional independence
could not be rejected for any of the models (p5 = 0.2014, p6 = 0.1544, p7 = 0.9137). When
fitting a model with more than 5 latent classes, convergence could no longer be reached.
The model with 5 latent classes (model 7) resulted in the lowest BIC with a value of 411.4,
as compared to BIC values of 471.16 and 448.62 for model 5 and model 6 with 3 and 4
latent classes respectively. We therefore selected model 7 as the final CRL-model, result-
ing in 5 latent classes with proportions of 4.82% for class 1, 87.80% for class 2, 3.05% for
class 3, 1.28% for class 4 and 3.05% for class 5. These proportions and the corresponding
number of subjects assigned to each of the 5 latent classes is given in table 12. Since
the covariates included in model 7 are the same as those included in model 3, the same
number of subjects was used for estimation of the model, i.e. 623 subject of which 51
(8.19%) experienced a miscarriage. For this model, 48 parameters had to be estimated.
The maternal and paternal age showed a significant effect in the proportional hazards
model and the fetal heartbeat and the maternal age had a significant impact in the linear
mixed model. The parameter estimates and corresponding p-values for CRL-model 7 are
given in table 24 in the appendix.

Again, the posterior classification of subjects was used to asses the goodness-of-fit of
CRL-model 7 and to assess the discrimination between the corresponding 5 latent classes.
Table 10 shows the proportion of subjects classified in each of the latent classes with a
posterior probability above 0.7, 0.8 and 0.9 for model 7. It can be seen from this table that
the model shows good discrimination between the 5 latent classes. The most confident
classification of subjects can be done to class 2, since 98.72% of the subjects assigned to
class 2 have a posterior probability above 0.90. The fact that such a high percentage of
subjects can be unambiguously assigned to class 2 is very important since the majority
of the subjects (87.80%) belong to this class. The percentage of subjects assigned to
class 1 and class 4 with a probability above 0.90 is 83.33% and 87.50% respectively and
subjects are thus assigned to these classes with good confidence. At last, the percentage
of subjects assigned to class 3 and class 5 with a probability above 0.90 is only 68.42%
and 63.16% respectively. However, when looking at the percentage of subjects assigned to
these classes with a probability above 0.70, we can still state that assignment of subjects
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to classes 3 and 5 is reliable. Table 11 shows the posterior classification table for model
7. Again, it can be seen from this table that model 7 can discriminate very well between
the 5 latent classes. Indeed, the values on the diagonal all lie close to 1 with a minimum
value of 0.8839 for class 5 and a maximum value of 0.9921 for class 2.

Table 10: Proportion of subjects classified in each of the latent classes with a posterior
probability above 0.7, 0.8 and 0.9 for CRL-model 7.

Class 1 Class 2 Class 3 Class 4 Class 5

Probability > 0.7 96.67% 99.45% 84.21% 100.0% 78.95%
Probability > 0.8 93.33% 99.27% 73.68% 87.5% 68.42%
Probability > 0.9 83.33% 98.72% 68.42% 87.5% 63.16%

Table 11: Posterior classification table for CRL-model 7.

Probability 1 Probability 2 Probability 3 Probability 4 Probability 5

Class 1 0.9500 0.0025 0.0361 0.0114 0.0000
Class 2 0.0004 0.9921 0.0035 0.0001 0.0039
Class 3 0.0953 0.0265 0.8774 0.0008 0.0000
Class 4 0.0000 0.0000 0.0000 0.9715 0.0285
Class 5 0.0000 0.1155 0.0000 0.0005 0.8839

The goodness-of-fit for CRL-model 7 was further investigated using the residual plots
shown in figure 7. Again, the residuals are clustered around zero and the same pattern
as before can be recognized. However, the QQ-plots for CRL-model 7 show less deviation
from the intersecting line as compared to the QQ-plots for CRL-model 3, thus indicating
a model improvement.
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Figure 7: Residual plots for the assessment of the goodness-of-fit of CRL-model 7: The

residuals are clustered around zero and the same pattern as before can be recognized. The QQ-

plots show less deviation from the intersecting line as compared to the QQ-plots for CRL-model

3.

Figure 8 shows the observed and predicted marginal and subject-specific longitudinal
profiles of logCRL as calculated from model 7. For class 2, the marginal predicted profile
fits the observed profile very well. This is a good characteristic of the model since most
of the subjects belong to this class. Indeed, it can be seen from this figure that the 95%
confidence bands for the longitudinal profile in class 2 are very narrow, indicating good
precision. Also, the marginal predicted profile for class 3 fits the observed profile very
well. The marginal predicted longitudinal profiles in class 1 and 4 seem to fit the observed
profiles reasonably well while the marginal predicted profile within class 5 clearly deviates
from the observed profile at small gestational ages. When looking at the subject-specific
evolutions, the observed and predicted profiles are corresponding well within all 5 classes.
We can thus state that CRL-model 7 fits our data well. According to figure 8, class 2
shows the highest logCRL values at all times. It can therefore be hypothesized that class
2 corresponds to the group of women with a viable pregnancy.
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Figure 8: Comparison between observed and predicted marginal and subject-specific lon-
gitudinal profiles for log(CRL+1) calculated from model 7: For class 2 and 3, the marginal

predicted profile fits the observed profile very well. The marginal predicted longitudinal profiles

in class 1 and 4 fit the observed profiles reasonably well. The marginal predicted profile within

class 5 deviates from the observed profile at small gestational ages. The observed and predicted

subject-specific profiles are corresponding well within all classes. class 2 shows the highest logCRL

values at all times. Thus it is hypothesized that class 2 corresponds to the group of women with

a viable pregnancy.

Figure 9 shows the class-specific event-free probabilities for CRL-model 7 over time. Class
5 is clearly corresponding to women who do not miscarry while class 1 and 3 are clearly
corresponding to women who do experience a miscarriage. Within class 2 and 4, the
majority of the subjects will not experience a miscarriage. As compared to the survival
curves plotted for CRL-model 3 in figure 6, the survival functions plotted for CRL-model
7 look much better.

Figure 9: Class-specific event-free probability for CRL-model 7: Class 5 is corresponding

to women who do not miscarry. Class 1 and 3 are corresponding to women who do experience a

miscarriage. Within class 2 and 4, the majority of the subjects will not experience a miscarriage.

In order to see whether class 1 and class 3 indeed correspond to the group of miscar-
riages and whether classes 2, 4 and 5 correspond to the viable pregnancies, the number
of observed miscarriages were evaluated in all latent classes. Also, the average values for
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the variables included in CRL-model 7 were calculated for all latent classes to investigate
how the latent classes differ from each other. Table 12 shows the proportion and number
of subjects classified in each of the five classes, together with the number of subjects for
which a miscarriage has been observed at the end of the first trimester and the average
values for the variables included in CRL-model 7. CRL-model 7 contains 5 latent classes
with probabilities of 4.82% for class 1, 87.8% for class 2, 3.05% for class 3, 1.28% for class
4 and 3.05% for class 5. The corresponding number of subjects classified in each of these
classes is 30, 547, 19, 8 and 19 respectively. According to the longitudinal CRL-evolutions
and the survival plots obtained from CRL-model 7, it was assumed that class 5 corre-
sponds to the group of viable pregnancies while classes 1 and 3 correspond to women who
experienced a miscarriage. For classes 2 and 4 it was assumed that the majority of the
subjects would not experience a miscarriage. Indeed, from the 19 subjects a posteriori
classified into class 5, only 1 subject had experienced a miscarriage at the end of the first
trimester. From the 547 and 8 subjects classified in classes 2 and 4, miscarriages were
observed for only 5 subjects and 1 subject respectively. Finally, for the 30 and 19 subjects
classified in classes 1 and 3, 29 and 19 miscarriages were observed respectively. Classes 1
and 3 thus indeed correspond to the women who did experience a miscarriage, while the
occurrence of a miscarriage in the other groups is only rare. The difference between the
two classes that contain the group of women who do miscarry, i.e. class 1 and 3, appears
to be the fact that a fetal heartbeat is more often detected in class 3 than in class 1 with
73.68% and 40.00% respectively. Besides, the average maternal age in class 3 is higher
than the average maternal age in class 1. When looking at the classes that correspond
to the women who do not miscarry, class 4 is standing out because a fetal heartbeat was
only detected in 37.5% of the cases as compared to 76.05% and 84.21% for classes 2 and
5 at the first scan.

Table 12: Proportion and number of subjects assigned to the 5 latent classes for CRL-
model 7.

Class 1 Class 2 Class 3 Class 4 Class 5

Proportion 4.82% 87.8% 3.05% 1.28% 3.05%
Number of subjects 30 547 19 8 19
Number of final miscarriages 29 5 19 1 1
Maternal age 32.97 32.91 34.37 29.62 30.05
Paternal age 34.83 35.06 35.95 31.5 34.74
Fetal heartbeat at first scan 40.00% 76.05% 73.68% 37.50% 84.21%
PUQE-score at first scan 4.00 4.57 3.47 3.38 3.68

3.2.2 Models Including MSD

Because the longitudinal profiles of MSD seem to be linear, it was decided to only include
a main time effect in the linear mixed model part. Since no quadratic term was included in
the linear mixed model, gestational age was not divided by 10, as was done for the CRL-
models in the previous section. Further, all MSD-models included a random intercept
and a random slope. The included covariates and the number of latent classes differ from
model to model. A detailed overview of all fitted MSD-models, indicating the number of
latent classes and the covariates that were included, is shown in table 13.
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Table 13: Overview of the fitted joint latent class models including MSD.

Covariates Sub-model Model 1 Model 2 Model 3

Maternal age Mixed model x x x
Survival model x x x

Fetal heartbeat Multinomial model x x x
Mixed model x x x
Survival model x x x

Paternal age Survival model x x
Amnion Multinomial model x x x
PUQE score Multinomial model x x

Mixed model x x x

Latent classes 2 2 3

BIC 11044.54 11989.52 11008.6

The BIC for the initial model including all covariates discussed in the exploratory analysis was

11047.19.

Two latent classes

The initial model containing the longitudinal variable MSD, two latent classes and all
covariates identified in the exploratory analysis gave rise to a BIC value of 11047.19.
The covariates with the highest p-values were then sequentially removed from the model,
resulting in models 1 and 2 with respective BIC values of 11044.54 and 11989.52. Con-
vergence was reached for both models and the assumption of conditional independence
could not be rejected in any of the two models (p1 = 0.3237, p2 = 0.4125). According to
these BIC values, model 1 was selected as the best MSD-model with two latent classes
and resulted in posterior proportions of 89.52% and 10.48% for class 1 and 2 respectively.
Table 16 shows the proportion and number of subjects classified in class 1 and class 2.
620 subjects, of which 58 (9.35%) experienced a miscarriage, were used for the estimation
of MSD-model 1 and 22 parameters had to be estimated. The fetal heartbeat had a sig-
nificant effect in the multinomial logistic regression model. Further, the fetal heartbeat
and the maternal age had a significant impact on the proportional hazards model and the
linear mixed model. The parameter estimates and corresponding p-values for this model
are given in table 25 in the appendix.

The goodness-of-fit of MSD-model 1 was then assessed using the posterior classification
of subjects. Table 14 shows the the proportions of subjects classified with a posterior
probability above 0.7, 0.8 and 0.9. According to this table, many subjects are unambigu-
ously assigned to any of the two classes, especially for latent class 1. Table 15 shows the
posterior classification table for MSD-model 1, again indicating good discrimination.

Table 14: Proportion of subjects classified in each of the latent classes with a posterior
probability above 0.7, 0.8 and 0.9 for MSD-model 1.

Class 1 Class 2

Probability > 0.7 98.56% 93.85%
Probability > 0.8 98.02% 89.23%
Probability > 0.9 95.68% 80.00%
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Table 15: Posterior classification table for MSD-model 1.

Probability 1 Probability 2

Class 1 0.9843 0.0157
Class 2 0.0608 0.9392

The goodness-of-fit of MSD-model 1 was then further investigated using residual plots as
is shown in figure 10. The residuals are clustering around zero, but the QQ-plots show
some deviation from the intersecting line at the tails. Therefore, an extension of the model
to a model with more than two latent classes seems necessary.

Figure 10: Residual plots for the assessment of the goodness-of-fit of MSD-model 1: The

residuals are clustering around zero, but the QQ-plots show deviation from the intersecting line

at the tails.

Figure 11 shows the predicted and observed marginal and subject-specific longitudinal
profiles of MSD as given by model 1. The predicted profiles fit the observed profiles very
well. The MSD values of class 1 are higher than the MSD values of class 2 at all time
points. It is therefore hypothesized that class 2 corresponds to the group of women who
experienced a miscarriage and that class 1 corresponds to the group of women with a
viable fetus.
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Figure 11: Comparison between observed and predicted marginal and subject-specific
longitudinal profiles for MSD calculated from model 1: The predicted profiles fit the observed

profiles well. The MSD values of class 1 are higher than the MSD values of class 2 at all time

points. Thus, it is hypothesized that class 2 corresponds to the group of women who experienced

a miscarriage.

Figure 12 shows the class-specific event-free probabilities for MSD-model 1. This figure
indicates that the probability for a miscarriage is higher in class 2 than in class 1 where
only a very small number of subjects is expected to have a miscarriage. This figure
again indicates that class 2 corresponds to the women with a miscarriage and that class
1 corresponds to the women who did not experience a miscarriage. However, as was also
seen for the two-class model including CRL (CRL-model 3), the survival function for class
2 does not go down all the way to zero. It thus appears that a large proportion of the
subjects assigned to class 2 are still having a healthy fetus after completion of the first
trimester. We therefore might have to extend this model to a model with more than two
latent classes.

Figure 12: Class-specific event-free probability for MSD-model 1: The probability for a

miscarriage is higher in class 2 than in class 1. Class 2 corresponds to the women with a

miscarriage and class 1 corresponds to the women who did not experience a miscarriage. The

survival function for class 2 does not go down all the way to zero, indicating that a proportion

of the subjects assigned to class 2 are still having a healthy fetus after completion of the first

trimester.
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In order to see whether class 1 and class 2 indeed correspond to the group of viable preg-
nancies and the group of miscarriages respectively, the number of observed miscarriages
were evaluated in both latent classes. Also, the average values for the variables included
in MSD-model 1 were calculated for both latent classes to investigate how they differ from
each other. Table 16 shows the proportion and number of subjects classified in each of
the two latent classes, together with the number of subjects for which a miscarriage has
been observed at the end of the first trimester and the average values for the variables
included in MSD-model 1. MSD-model 1 contains 2 latent classes with probabilities of
89.52% for class 1 and 10.48% for class 2, corresponding to 555 and 65 subjects respec-
tively. According to the longitudinal MSD-evolutions and the survival plots obtained from
MSD-model 1, it was assumed that class 1 corresponds to the group of viable pregnancies
while class 2 corresponds to the group of miscarriages. Indeed, from the 65 subjects clas-
sified into class 2, 54 subjects experienced a miscarriage by the end of the first trimester
and only 9 subjects classified in class 1 experienced a miscarriage. Thus, the proportion
of subjects that experienced a miscarriage is indeed much higher in class 2 than in class
1. Although the model does quite well, it can not completely discriminate between the
women who do miscarry and the women who do not miscarry since 9 miscarriage cases
were still classified in class 1. It can be seen that at the first scan, a fetal heartbeat
was detected in 75.14% of the cases for class 1 and only in 49.23% of the cases for class
2. Also, the amnion was detected at the first scan for 18.92% of the subjects in class 1
and only for 4.62% of the subjects in class 2. At last, the PUQE-score that was reported
at the first scan is higher in class 1 than in class 2 with values of 4.50 and 3.65 respectively.

Table 16: Proportion and number of subjects assigned to the 2 latent classes for MSD-
model 1.

Class 1 Class 2

Proportion 89.52% 10.48%
Number of subjects 555 65
Number of final miscarriages 9 54
Maternal age 32.81 33.43
Paternal age 35.03 35.28
Fetal heartbeat at first scan 75.14% 49.23%
Amnion at first scan 18.92% 4.62%
PUQE-score at first scan 4.50 3.65

More than 2 latent classes

To further improve MSD-model 1, three latent classes were fitted instead of two, re-
sulting in model 3 for which a BIC value of 11008.6 was obtained. Covergence was
reached for model 3 and the assumption of conditional independence could not be re-
jected (p3 = 0.1862). When fitting models with more than 3 latent classes, there was no
longer convergence. MSD-model 3 classified 9.19% of the subjects into class 1, 88.87% in
class 2 and 1.94% in class 3. These proportions and the corresponding number of subjects
assigned to each of the three latent classes are given in table 19. Since the covariates
included in MSD-model 3 are the same as those included in MSD-model 1, the same
number of subjects was used for the estimation of the model, i.e. 620 subject of which 58
(9.35%) experienced a miscarriage. For this model, 30 parameters had to be estimated.
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The maternal and paternal age had a significant effect in the proportional hazards model
and the fetal heartbeat and the maternal age had a significant effect in the linear mixed
model part. The parameter estimates and corresponding p-values for the covariates in-
cluded in MSD-model 3 are given in table 26 in the appendix.

As before, the goodness-of-fit of the model was assessed using the posterior classification
of subjects to the latent classes. Table 17 gives the proportions of subjects with a posterior
probability above 0.7, 0.8 and 0.9 and table 18 shows the posterior classification table.
Subjects were unambiguously assigned to classes 1 and 2 where 96.49% of the subjects
in class 1 and 98.37% of the subjects in class 2 had a posterior probability above 0.9.
Although only 66.67% of the subjects in class 3 had a posterior probability above 0.9,
83.33% had a posterior probability above 0.7, which can still be considered relatively
good.

Table 17: Proportion of subjects classified in each of the latent classes with a posterior
probability above 0.7, 0.8 and 0.9 for the MSD-model 3.

Class 1 Class 2 Class 3

Probability > 0.7 98.25% 99.64% 83.33%
Probability > 0.8 98.25% 99.27% 66.67%
Probability > 0.9 96.49% 98.37% 66.67%

Table 18: Posterior classification table for MSD-model 3.

Probability 1 Probability 2 Probability 3

Class 1 0.9833 0.0167 0.0000
Class 2 0.0055 0.9933 0.0012
Class 3 0.0374 0.0835 0.8791

The goodness-of-fit of MSD-model 3 can be further investigated by looking at the residual
plots shown in figure 13. However no great differences can be seen with the residual plots
from the previous model (see fig. 10). Although the residuals are clustering around zero,
the QQ-plots again show some deviation from the intersecting line at the tails.
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Figure 13: Residual plots for the assessment of the goodness-of-fit of MSD-model 3: The

residuals are clustering around zero, but the QQ-plots show some deviation from the intersecting

line at the tails.

Figure 14 shows the class-specific predicted and observed marginal and subject-specific
longitudinal profiles for the evolution of MSD over time. Within class 1 and 2, the
predicted MSD profiles fit the observed MSD profiles very well. However, for class 3, the
predicted profile shows a bad fit to the observed profile. Class 2 has the highest MSD
profiles at all times and we therefore hypothesize that this class corresponds to group
of viable pregnancies. Since the majority of the subjects were assigned to class 2, the
precision is much higher and the confidence bands are much more narrow than for class
1 and class 3.
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Figure 14: Comparison between observed and predicted marginal and subject-specific
longitudinal profiles for MSD calculated from model 3: Within class 1 and 2, the predicted

MSD profiles fit the observed MSD profiles very well. For class 3, the predicted profile shows

a bad fit to the observed profile. Class 2 has the highest MSD profiles at all times. It is thus

hypothesized that class 2 corresponds to group of viable pregnancies.

Figure 15 shows the class-specific survival functions for MSD-model 3. According to this
figure, class 3 corresponds to the group of women who do not experience a miscarriage
while class 1 corresponds to the group of women who do experience a miscarriage. Class
2 seems to represent a mixture of women who do and do not experience a miscarriage,
although the majority of the subjects classified in class 2 will not have had a miscarriage
after completion of the first trimester.

Figure 15: Class-specific event-free probability for MSD-model 3:Class 3 corresponds to

the group of women who do not experience a miscarriage. Class 1 corresponds to the group of

women who do miscarry. Class 2 represents a mixture of women who do and do not experience

a miscarriage, although the majority of the subjects in class 2 will not miscarry.

In order to see whether class 1 indeed corresponds to the group of miscarriages while
class 2 and class 3 correspond to the group of viable pregnancies, the number of observed
miscarriages were evaluated in all three latent classes. Also, the average values for the
variables included in MSD-model 3 were calculated for all latent classes to investigate how
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they differ from each other. Table 19 shows the proportion and number of subjects clas-
sified in each of the three latent classes, together with the number of subjects for which
a miscarriage has been observed at the end of the first trimester and the average values
for the variables included in MSD-model 3. MSD-model 3 contains 3 latent classes with
probabilities of 9.19% for class 1, 88.87% for class 2 and 1.94% for class 3, corresponding
to 57, 551 and 12 subjects respectively. According to the longitudinal MSD-evolutions
and the survival plots obtained from MSD-model 3, it was assumed that class 1 corre-
sponds to the group of miscarriages, class 2 corresponds to a group with mainly viable
pregnancies and class 3 corresponds to a group of women with viable pregnancies. Indeed,
from the 57 subjects classified into class 1, 56 subjects had experienced a miscarriage by
the end of the first trimester. Only 6 subjects classified in class 2 and only 1 subject
classified in class 3 had a miscarriage after the first trimester. Class 1 thus corresponds
to the group of women who miscarry while classes 2 and 3 mainly correspond to women
who do not miscarry. Further, it can be seen that at the first scan, a fetal heartbeat
was detected in 45.61% of the cases in class 1, in 75.68% of the cases in class 2 and in
50.00% of the cases in class 3. The amnion was detected at the first scan for 5.26% of
the subjects in class 1, for 19.06% of the subjects in class 2 and for 0.0% of the subjects
in class 3. Also, the maternal age is higher in class 1 than in class 2 and 3. At last, the
average PUQE-score reported at the first scan was higher for class 2 than for class 1 and 3.

Table 19: Proportion and number of subjects assigned to the 3 latent classes for MSD-
model 3.

Class 1 Class 2 Class 3

Proportion 9.19% 88.87% 1.94%
Number of subjects 57 551 12
Number of final miscarriages 56 6 1
Maternal age 33.86 32.81 31.08
Paternal age 35.6 35.05 32.75
Fetal heartbeat at first scan 45.61% 75.68% 50.00%
Amnion at first scan 5.26% 19.06% 0.00%
PUQE-score at first scan 3.737 4.506 3.25

3.2.3 Predictive Accuracy of the Models

The predictive accuracy of the models was assessed using the EPOCE criterion, which
is approximately estimated with the CVPOLa estimate. Figure 16 shows the CVPOLa
values for the CRL- and MSD-models. It can be seen that the models with only two
latent classes have higher CVPOLa values as compared to the models with more latent
classes. Besides, the models including the longitudinally measured variable CRL have
considerably lower CVPOLa values than the models including the longitudinal variable
MSD. CRL-model 7 thus seems to have the highest accuracy to predict the risk for a
miscarriage.
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Figure 16: Comparison of the predictive accuracy for CRL-model 3 and 7 and MSD-model
1 and 3: Models with only two latent classes have higher CVPOLa values as compared to the

models with more latent classes. Models including the longitudinally measured variable CRL

have considerably lower CVPOLa values than the models including the variable MSD.

3.3 Individual Dynamic Predictions

To illustrate the use of a joint latent class model in practice, we applied dynamic pre-
dictions to two random subjects from the EPOS-data set according to CRL-model 7.
The first subject (E1200) was 31 years old and delivered a healthy child at the end of
the pregnancy. Also the father was 31 years old. At the first ultrasound scan which
took place at 52 days of gestational age, the subject reported a PUQE-score of 3 and
a fetal heartbeat was detected. The second subject (E1006) was 28 years old and had
a first trimester miscarriage that was diagnosed at a gestational age of 73 days. At the
first ultrasound scan which took place at 45 days of gestational age, no fetal heartbeat
was detected and the subject reported a PUQE-score of 9. The father was 25 years old.
The model with the best predictive accuracy, i.e. CRL-model 7, was then used to plot
their predicted longitudinal logCRL profiles and to dynamically predict the risk for a
miscarriage. Both subjects were a priori classified in class 2, where subject E1200 had a
probability of 91.38% to belong to class 2 and subject E1006 had a probability of 86.63%
to belong to class 2. Table 20 gives the probabilities to belong to each of the five latent
classes for both subjects.

Table 20: Posterior probabilities to belong to each of the latent classes for subject E1200
and subject E1006 as computed from the final model.

Class 1 Class 2 Class 3 Class 4 Class 5

Viable (E1200) 7.4052% 91.3755% 0.6581% 0.2437% 0.3175%
Miscarriage (E1006) 3.0947% 86.6263% 4.3703% 0.9749% 4.9338%

Figure 17 shows the predicted class-specific longitudinal trajectories of the logCRL values
for both subjects. When looking at the trajectories predicted within class 2, it can be
seen that the subject who experienced a miscarriage is starting with a lower logCRL value
but is expected to have a steeper increase as compared to the subject that had a viable
pregnancy.
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Figure 17: Predicted class-specific longitudinal profiles of log(CRL+1) for a random sub-
ject with a viable pregnancy and a random subject with a miscarriage: For the trajectories

predicted within class 2, the subject who experienced a miscarriage is starting with a lower

logCRL value but is expected to have a steeper increase as compared to the subject that had a

viable pregnancy.

Figure 18 shows the dynamic predictions for both subjects at landmark times 7, 8 and 9
and horizon times 0.2, 0.5, 1, 1.5, 2, 2.5 and 3. Clearly, the predicted risk for a miscarriage
is much lower at all landmark times for the subject who did not miscarry. Further, the
risk for a miscarriage drops considerably when the landmark time increases. However,
subject E1006 miscarried at a gestational age of 73 days. The dynamic predictions at
landmark time 8 and 9 are therefore not relevant for this subject but show that if the
subject would not have miscarried at the gestational age of 73 days, the risk for a miscar-
riage would have dropped gradually. This effect, although less prominent can also be seen
for the subject that delivered a healthy baby at the end of the pregnancy. Note that all
predictions have broad confidence bands, indicating high uncertainty for the individual
dynamic prediction of a miscarriage.
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Figure 18: Dynamic predictions for a random subject with a viable pregnancy and a
random subject with a miscarriage: The predicted risk for a miscarriage is lower at all

landmark time points for the subjects who did not miscarry and drops considerably when the

landmark time increases. The dynamic predictions at landmark time 8 and 9 for the subject who

miscarried at a gestational age of 73 days are not relevant for the subject itself but show that if

the subject would not have miscarried, the risk for a miscarriage would have dropped gradually.

All predictions have broad confidence bands.
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Discussion

The aim of this study was to build a predictive model to identify the risk for a miscarriage
using the joint latent class modelling approach. To our knowledge, this is the first study
that applies the joint latent class methodology to pregnancy data. Several models were
fitted, including different covariates and different numbers of latent classes. In this assay,
we first selected the most appropriate CRL- and MSD-model with 2 latent classes and
extended these models to 5 and 3 latent classes respectively.

CRL-model 3 contains 2 latent classes where the proportion of subjects that experienced
a miscarriage is higher in class 2 than in class 1. However, CRL-model 3 can not com-
pletely discriminate between women who do miscarry and women who do not miscarry.
When comparing the average values for the variables included in CRL-model 3 between
the two classes, a fetal heartbeat was more often detected class 1 than in class 2. Also,
the PUQE-score that was reported at the first scan is higher in class 1 than in class 2. It
thus appears that the detection of a fetal heartbeat and a high PUQE-score at the first
scan are related to a low risk for miscarriage.

CRL-model 7 contains 5 latent classes where classes 1 and 3 correspond to the group
of women who experienced a miscarriage while the majority of women classified in class
2, class 4 and class 5 had a viable pregnancy. The difference between the two classes
that contain the group of women who do miscarry, i.e. class 1 and 3, appears to be the
fact that a fetal heartbeat is more often detected in class 3 than in class 1. Besides, the
average maternal age in class 3 is higher than the average maternal age in class 1. Class
1 might thus correspond to the women who do miscarry due to the absence of a fetal
heartbeat at the first scan, while class 3 might correspond to the group of women who do
miscarry due to a high maternal age. When looking at the classes that correspond to the
women who do not miscarry, class 4 is standing out because the probability to detect a
fetal heartbeat in class 4 was much lower as compared to the probability to detect a fetal
heartbeat in classes 2 and 5. Class 4 might thus correspond to the group of women who
do not miscarry even if a fetal heartbeat was not detected at the first scan.

MSD-model 1 contains 2 latent classes where class 1 corresponds to the group of women
with a viable pregnancy while class 2 corresponds to the group of women who experienced
a miscarriage. However, the model can not completely discriminate between the women
who do miscarry and the women who do not miscarry since 9 miscarriage cases were still
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classified in class 1. The proportion of subjects for which a fetal heartbeat was detected
at the first scan is much higher in class 1 than in class 2. Also, the proportion of subjects
where the amnion was detected at the first scan is much higher in class 1 than in class
2. At last, the PUQE-score that was reported at the first scan is higher in class 1 than
in class 2. The detection of a fetal heartbeat, the detection of the amnion and a high
PUQE-score at the first scan thus appear to lower the risk for a miscarriage.

MSD-model 3 contains 3 latent classes where class 1 corresponds to the women who
do miscarry while classes 2 and 3 correspond to the women who do not miscarry. The
proportion of subjects where a fetal heartbeat was detected at the first scan is lower
in classes 1 and 3. Also, the proportion of subjects where the amnion was detected at
the first scan is lower in classes 1 and 3. The maternal age is higher in class 1 than in
class 2 and 3. At last, the average PUQE-score reported at the first scan was higher for
class 2 than for class 1 and 3. The difference between class 2 and class 3 might thus be
the fact that although the probability to detect a fetal heartbeat and the probability to
detect the amnion in class 3 is rather low, these subjects are still not expected to miscarry.

When comparing all four models, the CRL-models showed a better predictive ability
as compared to the MSD-models, where the CRL-model with 5 latent classes (model
7) showed the highest predictive ability. Besides, the BIC values obtained by the CRL-
models were considerably lower than the BIC values obtained by the MSD models. Again,
CRL-model 7 with 5 latent classes showed the lowest BIC value of all models. At last,
when comparing the longitudinal profiles and the event-free probabilities for all four mod-
els, model 7 is giving the most plausible and informative results. We therefore selected
model 7 as the best model for the prediction of the risk for a miscarriage. This model
resulted in 5 latent classes, where the majority of the subjects was classified into class 2,
a class where only very few subjects are expected to miscarry. Also within class 4 and 5,
only very few subjects are expected to miscarry. Further, subjects classified in class 1 and
3 are expected to miscarry during the first trimester. The number of subjects classified in
one of these two classes a posteriori was equal to 49. From these 49 subjects, 48 indeed
had a miscarriage at the end of the first trimester. Further, the goodness-of-fit of this
model as assessed by the posterior classification of subjects and the residual plots was
good.

In general, when looking at the results obtained for all four models, a high maternal and
a high paternal age, the absence of a fetal heartbeat at the first scan, the absence of the
amnion at the first scan and a low PUQE-score seem to be associated with a higher risk
for a miscarriage. When looking at the final model, i.e. CRL-model 7, the maternal and
paternal age showed a significant effect in the proportional hazards model and the fetal
heartbeat and maternal age showed a significant effect on the linear mixed model (see
table 24 in the appendix). The PUQE-score that was also included in the final model
did not show a significant effect. Indeed, it has been shown in previous studies that the
detection of a fetal heartbeat and the age of the mother have a large impact on the risk
for a miscarriage. Previous studies also identified a high paternal age as a possible risk
factor for miscarriage [7].
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One of the greatest advantages of the joint latent class modelling approach used in this
study is the fact that the correlation between the longitudinal process and the survival
process is taken into account by the use of a relatively simple model that can be estimated
using general maximum likelihood theory. Besides, due to the inclusion of latent classes,
the heterogeneity within the population of pregnant women can be taken into account. As
compared to other joint modelling methods, the joint latent class modelling approach has
several advantages. Another popular approach to simultaneously model a longitudinal
process as well as a survival process is the shared random effects model or selection model
in which a function of random effects defining the longitudinal process is included as a
covariate in the survival model [29]. The general shared random effects model has been
further extended by Yu et al. to include a cured fraction that is modelled as a logistic
function of baseline covariates [30]. However, the shared random effects model accounting
for a cured fraction is not implemented in any software program. Because the joint latent
class modelling approach uses two latent components, i.e. the random effects and latent
classes, it allows a more flexible association structures as compared to the shared random
effects model that assumes the random effects to capture the association between the
repeatedly measured variable as well as the association between the longitudinal process
and the survival process. Because of the independence between the longitudinal process
and the survival process given on the latent classes, the likelihood remains tractable to
compute as opposed to the shared random effects model that often requires numerical
integration [31]. Besides, the flexibility of the joint latent class model allows for better
predictions as compared to the shared random effects model [19].

Another big advantage of this approach is the fact that the joint latent class model allows
for individual dynamic risk predictions. This might have great implications for patient
follow-up and counseling during the pregnacy. Indeed, when the risk for a miscarriage
appears to be high, medical advice can be given to the expecting mother in an attempt to
avoid a miscarriage. The risk for a miscarriage can then be reevaluated over time for each
subject individually and the medical advice can be adapted accordingly. In this study,
we gave the dynamic predictions for two random subjects from the EPOS-data set as an
example of how the final model can be used in practice.

The joint latent class modelling approach has some disadvantages as well. First of all,
when one starts with a specific assumption on the dependency between the longitudinal
process and the survival process, this assumption can be build in into the shared random
effects model but not into the joint latent class model that is assuming independence
between the two processes. Thus, the joint latent class model can not be used to evaluate
specific assumptions regarding the characteristics of the longitudinal process that are the
most influential on the risk for the event [19]. Also, the interpretation of the latent classes
and the parameters within each class might come with a difficult interpretation. Another
issue is that the log-likelihood of the joint latent class model might have multiple max-
ima. As a consequence, the model must be refitted multiple times with different starting
values in order to avoid convergence to a local maximum. Besides, because the number
of latent classes is not known a priori, multiple models must be fitted to find the best
number of latent classes. Due to the fact that the models must be refitted multiple times,
computation time can increase considerably [31].
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Eventually, we also have to note that our study comes with some limitations. First of all,
the number of subjects included in our study is not that large, especially when compared
to the number of parameters that had to be estimated. Although 753 subject were eligible
for the study, only 623 and 620 subjects could be used for the estimation of the CRL- and
MSD models respectively. Besides, the number of subjects included in the latent classes is
often considerably lower than 623 or 620, thus further compromising the precision of our
estimates in each of the latent classes. Indeed, very broad confidence bands were seen in
the individual dynamic predictions in section 3.3. We therefore recommend to estimate
the model parameters on a larger data-set to obtain more precise estimates and better
individual predictions.

A second limitation to our study is the fact that the predictive accuracy of the final model
is expressed using the approximate estimate for the EPOCE criterion, i.e. CVPOLa. Since
most studies on miscarriage risk factors report the predictive ability of their models in
terms of sensitivity and specificity or in terms of AUC, it is difficult to compare the pre-
dictive ability obtained in this study to the predictive ability obtained by other studies.
At last, due to the fact that 48 parameters had to be estimated in CRL-model 7, the
final model might be prone to over-fitting. To some extend, this feature was taken into
account by the use of a cross-validation based method to assess the predictive ability of
the model. However, we still recommend to validate this model on external pregnancy
data.

At last, we want to note that the ’lcmm’ package is only able to include one outcome
variable into the linear mixed model part of the joint latent class model. However an
extension of the package to include a multivariate linear mixed model into the joint la-
tent class modelling framework might be of interest. Indeed, in our study, simultaneously
modelling the evolutions of CRL and MSD might give better predictions as compared to
models based on CRL or MSD alone.
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General Conclusion

In this study, we have build several predictive models that can be used to dynamically as-
sess the risk for a miscarriage in pregnant women. To our knowledge, this is the first study
that applies the joint latent class methodology to pregnancy data. We can summarize the
results of our study with the following conclusions:

• In general, when looking at the results obtained for all fitted models, a high maternal
and paternal age, the absence of a fetal heartbeat at the first scan, the absence of
the amnion at the first scan and a low PUQE-score are associated with a higher risk
for a miscarriage.

• The best model (CRL-model 7) identified in this study includes 5 latent classes,
shows good discrimination, acceptable profiles and has the best predictive accuracy
of all fitted models.

• The subjects classified in classes 2, 4 and 5 are not expected to miscarry even though
the probability to detect a fetal heartbeat is class 4 is rather low.

• Classes 1 and 3 from the final model correspond to the group of women who miscarry
and differ from each other in terms of the average maternal age and the proportion
of subject where a fetal heartbeat was detected at the first scan.

• The predictive model identified in our study might be very useful in practice due
to the fact that individual dynamic predictions can be made. However, due to
the limited size of our study, broad confidence bands for the dynamic predictions
were often obtained and re-estimating the model on a larger dataset is therefore
recommended.

• Finally, it is recommended to validate the final model on external data.

Although our model suffers from several caveats as was discussed in section 4, the joint
latent class modelling approach seems promising for the construction of predictive risk
models and we believe this approach might be of use in practice due to the fact that it
can be used dynamically over time. However, since this methodology is rather recent and
remains unfamiliar to many researchers, its application should be further investigated.
Future research could further establish the joint latent class modelling framework, for
example by developing models that can include multiple longitudinal outcome variables
in the linear mixed model part.
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Chapter 6

Appendix

Table 21: Detailed list of the baseline covariates.

Variable Type Explanation

EPOS Identifier Patient identifier
Pregnancy outcome Ordinal Viable/PUV/ Miscarriage
Maternal age Continuous Age of the mother in years
Paternal age Continuous Age of the father in years
Maternal ethnicity Nominal Asian/ Caucasian/Afro-caribbean/Mixed/Other
Paternal ethnicity Nominal Asian/ Caucasian/Afro-caribbean/Mixed/Other
BMI Continuous BMI of the mother in kg/m2

Height Continuous Height of the mother in m
Weight Continuous Weight of the mother in kg
Gravida Continuous Number of pregnancies in the past
Para Continuous Number of viable pregnancies in the past
TOP Continuous Number of terminated pregnancies in the past
TOP binary Binary Indicator variable for TOP in the past
Ectopic Continuous Number of ectopic pregnancies in the past
Ectopic binary Binary Indicator variable for ectopic pregnancies in the past
Cesarean Section Continuous Number of cesarean sections in the past
PSH Uterus Binary Indicator variable for surgery of the uterus in the past
PSH Cervix Binary Indicator variable for surgery of the cervix in the past
Progesterone Binary Indicator variable for the intake of progesterone
Metformin Binary Indicator variable for the intake of metformin
Aspirin Binary Indicator variable for the intake of aspirin
FolicAcid Binary Indicator variable for the intake of folic acid
PreconceptualFolicAcid Binary Indicator variable for the preconceptual intake of folic acid
Pre-pregnancy alcohol Continuous Alcohol use before the pregnancy in units per week
Current alcohol Continuous Current alcohol use in units per week
SmokingStatus Binary Indicator variable for smoking status
1stTMiscarriage Continuous Number of past miscarriages in the first trimester
2ndTMiscarriage Continuous Number of past miscarriages in the second trimester
CertaintyUPT Ratio Certainty of the urine pregnancy test
CertaintyLMP Ratio Certainty of the LMP
EDD LMP Date Expected delivery date by LMP
EDD by scan Date Expected delivery date by scan
Date of delivery Date Date of delivery
FinalGALMP Continuous Final gestational age as calculated by the LMP
FinalGAdays Continuous Final gestational age in days
FinalGADiff Continuous Difference between FinalGALMP and FinalGAdays in days
Baby Weight Continuous Weight of the baby in g
Baby gender Binary Male/Female
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Table 22: Detailed list of the longitudinal variables measured at each scan.

Variable Type Explanation

GAbyLMP Continuous Gestational age as calculated by the LMP
GAbyCRL Continuous Gestational age as calculated by the CRL
GAbyMSD Continuous Gestational age as calculated by the MSD
PC Nominal Principal complaint: Pain/Bleeding/Pain & bleeding/reassurance
Site Nominal Anterior/Posterior/Fundal
BleedingDays Continuous Number of days with a bleeding
BleedingScoreAtPresent Ratio Bleeding score at the day of the ultrasound scan
WorstBleedingScore Ratio Worst bleeding score during each period between scans
PainDays Continuous Number of days with pain
PainScoreAtPresent Ratio Pain score at the day of the ultrasound scan
WorstPainScore Ratio Worst pain score during each period between scans
PUQEscore Ratio PUQE score indication the amount of nausea and vomiting
MSD Continuous Mean Sac Diameter
CRL Continuous Crown Rump Length
FH Binary Indicator variable for the presence of a fetal hearth beat
MYS Continuous Mean Yolk Sac Size
Amnion Binary Indicator variable for the detection of the amnion
AmnionSize Continuous Size of the amnion
SCHnumber Continuous Number of subchriotonic hematomas
SizeSCH Continuous Size of the largest SCH
SCHperc Ratio Percentage of the largest SCH
SCHloc Nominal Location of the largest SCH
SCHcont Nominal Content of the largest SCH: Homogene/Heterogene
outcomeAtScan Ordinal Pregnancy outcome at each scan: Viabe/PUV/Miscarriage
NumberOfScan Continuous Number of performed ultrasound scans during the first trimester
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Table 23: Parameter estimates and p-values for CRL-model 3.

Variable Estimate P-value

Multinomial logistic regression model
Intercept 1.06592 0.02301
Fetal heartbeat 1.09433 0.00098
PUQE-score 0.19467 0.10552

Proportional hazards model
Weibull 1,1 0.17869 < 0.0001
Weibull 2,1 2.18863 < 0.0001
Weibull 1,2 0.23001 < 0.0001
Weibull 2,2 1.96382 < 0.0001
Maternal age 0.15191 0.00032
Paternal age -0.05347 0.11291

Linear mixed model
Intercept 1 -5.31828 < 0.0001
Intercept 2 1.16613 0.06315
Gestational age 1 1.93996 < 0.0001
Gestational age 2 -0.07994 0.64736
(Gestational age 1)2 -0.10494 < 0.0001
(Gestational age 2)2 0.02534 0.04102
Fetal heartbeat 0.06645 0.00042
Maternal age 0.00827 < 0.0001

Class 2 is the reference class for the multinomial logistic regression model. The indices 1,1-2,2

in the proportional hazards model denote the two parameters of the Weibull baseline function

for the two latent classes. The numbers 1 and 2 in the linear mixed model denote the two latent

classes.
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Table 24: Parameter estimates and p-values for CRL-model 7.

Variable Estimate P-value

Multinomial logistic regression model
Intercept 1 0.80598 0.46555
Intercept 2 2.43759 0.01438
Intercept 3 0.28218 0.84374
Intercept 4 0.90827 0.63974
Fetal heartbeat 1 -2.05355 0.00941
Fetal heartbeat 2 -0.64697 0.35248
Fetal heartbeat 3 -0.55232 0.54558
Fetal heartbeat 4 -2.13885 0.03937
PUQE-score 1 0.26038 0.31793
PUQE-score 2 0.35829 0.11898
PUQE-score 3 0.04962 0.89377
PUQE-score 4 -0.13031 0.81091

Proportional hazards model
Weibull 1,1 0.37651 < 0.0001
Weibull 2,1 2.85026 < 0.0001
Weibull 1,2 0.26394 < 0.0001
Weibull 2,2 3.12891 < 0.0001
Weibull 1,3 0.36907 < 0.0001
Weibull 2,3 3.01454 < 0.0001
Weibull 1,4 0.23247 0.00070
Weibull 2,4 1.91919 0.02704
Weibull 1,5 0.05113 0.99794
Weibull 2,5 2.28086 0.99380
Maternal age 0.05101 0.00441
Paternal age 0.03533 0.00033

Linear mixed model
Intercept 1 -3.98431 < 0.0001
Intercept 2 -5.26524 < 0.0001
Intercept 3 -9.97518 < 0.0001
Intercept 4 1.99128 0.15273
Intercept 5 -8.82872 < 0.0001
Gestational age 1 1.74867 < 0.0001
Gestational age 2 1.95855 < 0.0001
Gestational age 3 3.60791 < 0.0001
Gestational age 4 -0.34154 0.29740
Gestational age 5 2.41605 < 0.0001
(Gestational age 1)2 -0.13408 < 0.0001
(Gestational age 2)2 -0.10696 < 0.0001
(Gestational age 3)2 -0.25675 < 0.0001
(Gestational age 4)2 0.04459 0.02329
(Gestational age 5)2 -0.11702 < 0.0001
Fetal heartbeat 0.05195 0.00172
Maternal age 0.00672 < 0.0001

Class 5 is the reference class for the multinomial logistic regression model. The indices 1,1-2,5

in the proportional hazards model denote the two parameters of the Weibull baseline function for

the five latent classes. The numbers 1-5 in the linear mixed model denote the five latent classes.
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Table 25: Parameter estimates and p-values for MSD-model 1.

Variable Estimate P-value

Multinomial logistic regression model
Intercept 0.82802 0.06714
Fetal heartbeat 0.71686 0.01572
PUQE-score 0.16113 0.15982
Amnion 1.22094 0.08625

Proportional hazards model
Weibull 1,1 0.07086 < 0.0001
Weibull 2,1 2.58852 < 0.0001
Weibull 1,2 0.08061 < 0.0001
Weibull 2,2 1.87717 < 0.0001
Fetal heartbeat -0.74510 0.01319
Maternal age 0.12753 0.00574
Paternal age -0.04840 0.15893

Linear mixed model
Intercept 1 -40.87039 < 0.0001
Intercept 2 -26.33839 < 0.0001
Gestational age 1 0.97598 < 0.0001
Gestational age 2 0.51202 < 0.0001
Fetal heartbeat 2.72209 < 0.0001
Maternal age 0.31057 < 0.0001
PUQE-score 0.20528 0.07480

Class 2 is the reference class for the multinomial logistic regression model. The indices 1,1-2,2

in the proportional hazards model denote the two parameters of the Weibull baseline function

for the two latent classes. The numbers 1 and 2 in the linear mixed model denote the two latent

classes.



CHAPTER 6. APPENDIX 53

Table 26: Parameter estimates and p-values for MSD-model 3.

Variable Estimate P-value

Multinomial logistic regression model
Intercept 1 -0.34178 0.86988
Intercept 2 0.55636 0.78694
Fetal heartbeat 1 -0.48927 0.50328
Fetal heartbeat 2 0.52683 0.43956
PUQE-score 1 0.64857 0.31363
PUQE-score 2 0.79260 0.21438
Amnion 1 7.25963 0.88480
Amnion 2 8.34027 0.86789

Proportional hazards model
Weibull 1,1 0.11437 < 0.0001
Weibull 2,1 2.73037 < 0.0001
Weibull 1,2 0.09065 < 0.0001
Weibull 2,2 3.81552 < 0.0001
Weibull 1,3 0.01242 0.99242
Weibull 2,3 2.36687 0.99245
Fetal heartbeat -0.02863 0.93783
Maternal age 0.14631 0.00235
Paternal age -0.11401 0.00060

Linear mixed model
Intercept 1 -23.73738 < 0.0001
Intercept 2 -39.89915 < 0.0001
Intercept 3 -69.44138 < 0.0001
Gestational age 1 0.49655 < 0.0001
Gestational age 2 0.97241 < 0.0001
Gestational age 3 0.95169 < 0.0001
Fetal heartbeat 2.50250 < 0.0001
Maternal age 0.29570 < 0.0001
PUQE-score 0.18936 0.08039

Class 3 is the reference class for the multinomial logistic regression model. The indices 1,1-2,3

in the proportional hazards model denote the two parameters of the Weibull baseline function

for the three latent classes. The numbers 1-3 in the linear mixed model denote the three latent

classes.
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