KU LEUVEN

FACULTY OF SCIENCE

Models of univalence In
cubical sets

An introduction to the proof of univalence and a
review of recent literature

Supervisor: Prof. Dr. D. Devriese Willem VANHULLE
Vrije Universiteit Brussel,

Department of Computer Science,
Software Languages Lab

Mentor: A. Nuyts
Katholieke Universiteit Leuven,

Department of Computer Science,

IMEC-DistriNet

Reader: Prof. Dr. F. Piessens tulfil fth . i
Katholieke Universiteit Leuven, ulfilment of the requirements

Department of Computer Science, for the degree of Master of Science
IMEC-DistriNet

Reader: Prof. Dr. W. Castryck
Katholieke Universiteit Leuven,

Department of Mathematics,
Algebra Section Academic year 2018-2019

Thesis presented in

in Mathematics



© Copyright by KU Leuven

Without written permission of the promoters and the authors it is forbidden to reproduce or adapt
in any form or by any means any part of this publication. Requests for obtaining the right to reproduce
or utilize parts of this publication should be addressed to KU Leuven, Faculteit Wetenschappen, Geel
Huis, Kasteelpark Arenberg 11 bus 2100, 3001 Leuven (Heverlee), Telephone +32 16 32 14 01.

A written permission of the promoter is also required to use the methods, products, schematics and
programs described in this work for industrial or commercial use, and for submitting this publication in
scientific contests.



Preface

The topic for my master thesis came up while reading about proof assistants and homotopy
type theory. I wanted to know if the implementation of the axiom of univalence in cubical
sets can make writing, reading and exchanging proofs easier.

This text was written with the help and support of many people. First of all, I would
like to thank my teachers who read drafts of this text thoroughly and gave very useful
feedback on intermediate presentations: Andreas, Dominique, Frank and Wouter. These
friendly people have a lot of experience and made me aware of the actual state of my
drafts. They especially helped me to restructure the content, focus on the important as-
pects and solve insightful problems. I am grateful to my sister for proofreading in the last
week before submission. My curious friends Jonathan, Alexander, Emily, Zhiyu, Michael,
Dieter, Ben, Edward, Zhigian were always there and asked questions that made me un-
derstand what I did not understand.

Leuven, June 2019



1



Summary

For beginners

The decimal numbers and binary numbers are both representations of numbers that can
be used in calculations and computers. Both representations can be used to add, multiply
and they have the same numerical properties. For example, addition from the left is the
same as addition from the right in both representations. Because both representations
represent the same object, the structure of the two proofs in the two representations would
be very similar.

The same phenomenon occurs in more complicated structures than numbers such as
topological spaces and algebraic structures. Those are objects that can have multiple
representations that look very different. For example, a doughnut looks very different
from a mug of coffee, but as topological spaces they have the same properties such as the
number of holes. This shows a distinction can be made between the different encodings
of one object and the underlying object itself. These encodings are similar and the proofs
for the properties of different encodings are also very similar.

In homotopy type theory, objects and encodings are equally important fundamental
concepts that come in the form of types. The distinction between encodings and their
underlying objects is made by introducing different notions of equality: type equivalence
and path equality. Two types are said to encode the same underlying object if they
are equivalent as types. The univalence axiom of homotopy type theory tells that these
encodings are path equal. Because the univalence axiom gives a path between equivalent
encodings, proofs of properties of the encodings can be transported along the path. If
this transport can be done automatically, the transport of the different proofs can be
considered as one single proof about the underlying object.

To do the transport automatically, it is necessary to find a model in which the uni-
valence axiom holds. A model in general gives meaning to axioms in a more familiar or
understandable language. The model in cubical sets of the univalence axiom gives an
explicit function that can be implemented and computed. This implementation maps
two encodings to a proof that the underlying objects are the same. It is currently an
open problem to use this mapping in practice for complicated objects and their different
encodings. This text will explain how the model works and look at some examples coming
from mathematics where the model and its implementation could be used. There is also
some ongoing debate and uncertainty whether the model is efficient enough to be used in
practice to generate encoding-invariant proofs because it fails to generate statements for
basic examples such as basic proofs about natural numbers.

iii



iv
For specialists

The univalence axiom states that the type of equivalences of spaces is equivalent with the
type of equalities between those spaces. The axiom has many interesting consequences
such as the ability to do mathematics up to isomorphism as claimed by [VAC*13], a state-
ment that will be verified in Sec. 4.3.1], and giving a foundation for a synthetic framework
of theoretical physics. The univalence axiom is very simple, but has many consequences
such as the theory of homotopy type theory in which types are topological spaces. The
consistency of the univalence axiom relative to ZFC was proven by giving a model in
simplicial sets [KL12]. This was a first step in the recognition of the univalence axiom
among mathematicians. However, this model in simplicial sets made use of the axiom of
choice which made it non-constructive and unsuitable for a constructive implementation,
see Sec. 2.3.

Cubical type theory is an intuitionistic type theory that can model the univalence
axiom constructively without using choice. This means that the univalence axiom is not an
axiom any more but a valid and provable theorem. Cubical type theory will be explained in
detail in [Ch. 3. Its proof in cubical theory has only recently been completed in [CCHM16].
Meanwhile, several updated proofs have been constructed in [SHC*18,MV19] which will
be discussed in [Ch. 4. By the constructiveness of cubical type theory, a proof gives
an explicit map between given equalities. The map can be used to rewrite proofs of
theorems in homotopy theory in the more basic constructive language of cubical sets.
Understanding constructive proofs of univalence can also help to study or understand
applications or consequences of the univalence axiom which will be surveyed in Sec. 4.3.
This text is mainly a literature review which means that as much recent literature will be
covered as possible. In Sec. 5.1] and Sec. 5.3, open problems in the field will be discussed.




Glossary

I'F..,AF .. Contexts of judgements
a: A A term a (lower case) of type A (capitalized)
Glue Font for custom types

A = B Equality type of types

X =Y Equality by definition

A ~ B Equivalence type of types

U A universe of types

Set Examples of categories

C,D Categories

I,J, K € € Objects in a category C
F, G Functors of categories

1,7, k,x,y, z Dimension variables
r,s,t Constants in unit interval [

(¢/r) A substitution of variable ¢ by r



vi



Contents

|1 Introductiod

h.l Foundations of mathematicsl ..........................
1.1.1 Constructivisni .............................
1.1.2 Type theoryl ...............................
|1.2 Intuitionistic type theoryl ............................
1.2.1 Judgements and contexts' .......................
1.2.2 Informal type theoryl ..........................
1.2.3 Natural deductiod ...........................
1.2.4 Propositions as type&l ..........................
1.2.5 Universeﬁi ................................
1.2.6  Dependent types{ ............................
1.2.7 Equalityl .................................
|1.3 The univalence axioml .............................
1.3.1 Univalent foundations of mathematicsl ................
1.3.2  Multiple proofs of identityl .......................
IZ Interpretations and modeH
2.1  Groupoid interpretatioﬂ ............................
2.2  Homotopy type theoryl .............................
2.3 Simplicial modei ................................
2.4 Categorical semantic&l ..............................
.5 Pre—sheavesl ...................................
13 The pre-sheaf model of cubical type theoryl
3.1 The category of cubesl .............................
3.2 The face la,tticel .................................
3.3 Restricting contexts and typesl .........................
3.3.1 Indexing contexts by dimensioné ...................
3.3.2  Restricting indexed context4 ......................
b.4 Adding operations . . . . . .. ...
3.4.1 The composition operatiod ......................
.42 The path typd . . . . . ...
3.4.3 The filling operationl ..........................
344 The Glue typd . . o o o o
3.4.5  Historical development of cubical set model&l .............

vii

17
17
18
18
20
22



viii CONTENTS

|4 Proof of univalenc 47
.1 The univalence theorem| . . . . . . . . . . . ... ... .. 47
1.1 History of the proof . . . . . ... ... ... ... ... . ..., 47

1.2 Proof of the univalence theoreg ........................ 48
1.2.1  Contractibility of equivalence singletonsl ............... 48

1.2.2  Conclusion of the proof . . . . . . . . . . . ... ... ... 50

1.2.3  Univalence with topoi . . . . . . . . . ... 51
I&Agglica‘cions of the proof of univalencd . . . . . .. ... ... ... ..., 51
4.3.1  Isomorphism invariant algebral . . . . . . . . . ... ... ... ... 51
1.3.2  Generic datatypes . . . . . e e 57

1.3.3  Formalizing algebraic topologyl .................... 57

61

............................... 61
..................... 62

...................... 62
........................... 63
............................... 63
............................ 64

PR 64

5.3.1 _Strongly normalizing . . . . ... ... Lo 64

5.3.2  Canonicityl . . . ... 65

68



Chapter 1

Introduction

1.1 Foundations of mathematics

Around the beginning of the twentieth century, mathematicians were working on founda-
tions of mathematics and formalized the building blocks of mathematics: sets, proposi-
tions and proofs. Important examples of developments are the first inductive definition of
the natural numbers which appeared in [Pea79], the concept of types invented around the
time of [Rus03] and intuitionistic logic [Hey30]. Because these developments, especially
intuitionism and type theory are important for the rest of this text and quite different
from mathematics, this chapter will devote some time to explaining both.

1.1.1 Constructivism

The foundational work around the end of the 19" century was very different from the
mathematics in previous centuries. Mathematicians such as Cantor developed the concept
of countability and ordinals but such results were very abstract and vague, even to other
mathematicians. The terms constructivism and intuitionism stand for the philosophical
view of the time in which mathematicians questioned weird abstract foundational work
and was made popular by [Bro05]. According to [Bro0j], mathematics should be the
result of mental human activity rather than objective discovery. This philosophy was
formalized into a formal system based on intuitionism, called intuitionistic (or construc-
tive) logic [Hey3(]. The difference between intuitionistic and traditional logic is the lack
of the following propositions which are redundant assumptions or axioms according to
intuitionistic logic:

o The principle of excluded middle states that for every proposition P, PV —P. It
means that P holds or does not hold and is also called decidability of P. Decidability
can hold for a large portion of mathematics and does not need to be taken as an
axiom, see for example the decidability results in [Tar51].

e The axiom of choice states the existence of a choice function f on collections of sets
X:
f: X—=>UX, VAeX:f(A)eA

and can be seen as a generalization of the principle of excluded middle. This axiom
can lead to abstract nonsense but weaker versions are accepted in intuitionistic logic,

see [VACT13], Sec. 3.8.



2 CHAPTER 1. INTRODUCTION

o Other axioms that involve other ways of implicit choice on arbitrary objects are
not accepted unless a constructive motivation or model is given, see for a
constructive model of the univalence axiom in Ax. .

Example 1.1.1. One example of a theorem that traditionally is given using the princi-
ple of excluded middle, is mentioned in most introductions to constructive mathematics

(including [Pall4)]):
Theorem 1.1.2. There are irrational numbers a and b such that a® is a rational number.

This theorem is not a wvalid theorem in intuitionistic logic any more, unless a proof
without the principle of excluded middle is given:

Proof. The number @ = v/2 is irrational by the constructive proof in [Ros84], p. 18 and
b = 2log,(3) is also constructively irrational and by computation a’ = 3. [

This proof gives an explicit construction and can be directly verified by computation, op-
posed to the classical proof. It is however harder to give constructive proofs of irrationality
than is suggested by [Bau09].

There are still theorems that do not have constructive proofs such as the Robertson-
Symour theorem, see [BLIj]|.

The philosophy of intuitionism is kept alive in proof assistants and type theory which
are used by mathematicians to write more intuitive proofs with the help of computing
power. Most proof assistants such as Coq, NuPRL, Agda support writing proofs in
intuitionistic logic. On top of expressions and definitions in intuitionistic logic, a user of
a proof assistant can formulate complex theorems and proofs. These formalized proofs
can be used to investigate proofs of real-life theorems from mathematical domains such as
algebra or topology that are hard to write down by hand such as the Odd Order Theorem:

Theorem 1.1.3. If G is a finite group and there ezists an n > 0 such that if |G| = 2n+1,
then G is solvable.

This theorem was conjectured in 1911 and proven much later in [FT63]. It was one of
the first proofs in group theory that was hundreds of pages long. The proof was formalized
in the proof assistant Coq. The implementation of the formal proof ended up being at
least (or only) 5 times as long, see [GAAT13], Sec. 6. It also required the implementation
of new features and re-usable libraries in the proof assistant Coq. Subsequently, with the
help of these libraries, new developments should be easier. Proponents claim that proof
assistants will become more widely used in the short term.

1.1.2 Type theory

Type theory, in general, is different from set theory. Set theory has two main layers:
sets and propositions about elements of sets. In type theory, the analogues of these two
layers are called types and terms of types. The main difference between set theory and
type theory is that terms are always accompanied by their type. Types can be empty,
but when they have a term, they are called inhabited. Terms do not exist on their
own. Without a type annotation, terms do not have any meaning, while in set theory a
mathematical object exists on its own. For example, in type theory there is the type of



1.2. INTUITIONISTIC TYPE THEORY 3

groups denoted by Group and a group G would be denoted by the notation G : Group.
Although this difference can seem very superficial, it implies that set membership is not
a logical proposition any more but becomes a judgement, see .

Designers of formal systems and proof assistants based on type theory are confronted
with questions about the properties of their systems. For example, certain expressions
written in the system can or can not normalize or other expressions can be invalid in the
system but not according to a mathematician using the system. An in-depth overview of
the history of type theory can be found in [Coql3b] or [Conll] and [Conlj)].

1.2 Intuitionistic type theory

Now that some useful applications of type theory have been given, this section will explain
in more detail what intuitionistic type theory [MI175] is about.

1.2.1 Judgements and contexts

A judgement is a statement about types and terms in type theory or intuitionistic type
theory. Judgements can be philosophically seen as a constructive act of knowledge, but
formally, they come in different forms:

o A (starting with upper case) is just the statement that A is a type.

o A = B means that A and B are equal types, can also be seen as an identity type,
see Def. .

e a: A (starting with lower case) means that a is a term of type A, also called the
membership judgement.

Judgements are always accompanied by transformation rules that describe how several
judgements can be combined into one new judgement. These rules, called typing rules, can
be seen as rules of computation. This is an important difference with set theory because
in set theory the only constructions available are not much more than sets, tuples and
propositions. But intuitionistic type theory is rooted in intuitionism and constructivism
(see ) which requires a constructive approach to computation.

Definition 1.2.1. The following types of typing rules are required for a type:

o A formation rule states how to introduce a new type reference it once it is introduced.
For example, the formation rule of natural numbers is simply N.

e The constructors of a type state how terms of the type can be constructed. For
example, there are two ways to introduce a term of the type of natural numbers:
the zero element or as a successor of a natural number. An exception to this is the
empty type L which has no constructors.

e To compute with terms and types, eliminators describe how to apply terms and types
to other terms and types. For example, the eliminator of the natural numbers takes
a property about the natural numbers and states that it is enough to prove this by
induction to prove it for all natural numbers. The computation rules determine how
an eliminator can act on a constructor.



4 CHAPTER 1. INTRODUCTION

This structural distinction between rules according to their constructive effect on the
formal system is not really present in set theory. In set theory there is not much more
than set comprehension. However, certain set-based theories such as category theory also
have a more structural rule-based approach.

To make the bookkeeping of judgements and the above rules easier, contexts are used.
Contexts contain the judgements that are valid in the type theory according to the above
rules but are deemed not important enough by the type-theoretical proof writer to mention
explicitly. Their usage corresponds to the usage of scopes in programming languages.
Traditionally a context is denoted by I'" or A and stands for a list

a, A, .a, 0 A,
of judgements a, : A, where q; is a term of the type A,. The empty context is denoted by
(). In later chapters, contexts do not always take this form (see Def. ) Judgements
can be added to or taken from contexts:

o Judgements a : A can depend on the judgements that are present in a context which
is denoted by the expression I' - a : A and can be read as “a : A can be derived from
I'”. In formal type theories, all judgements are required to have a context. When a
judgement does not depend on other judgements, this is denoted by () F a : A, or
in other words, a : A depends on the empty context.

o A context I' can be extended with any judgements = : T if I' = = : T is a valid
expression in a process called context extension. Contexts can also be shortened by
removing judgements and moving them towards the right. This is what happens for
example in the introduction rule for the product type stating that if ',z : A-b: B
is a valid judgement, then there is a term of the product type I' = A(z : A).b :

I1,.. B

1.2.2 Informal type theory

The book [VACT13] introduced a difference between two kinds of type theory: informal
and formal. Informal type theory was introduced to make it easier for people accustomed
to classical set-based mathematics to understand type theory. The usage of contexts in
informal type theory is implicit and natural language is alternated with new judgements.
This practice is clearly illustrated in the the first chapters of [VACT13].

In formal type theory, for example as defined in [VACT13], A.2 or in implementations
in proofs assistants, context dependency is explicit because natural language is considered
ambiguous. This was also one of the reasons type theory was introduced in the first place:
to eliminate mathematical paradoxes formulated in natural language.

However, in all proof assistants there are ways to leave parts of the context implicit
and force the proof assistant infer the missing parts of the context. This brings back some
of the benefits of informal type theory and is called implicit arguments but can return
the problems of ambiguity as in informal type theory, see for example the difficulties
encountered in Sec. 4.3.1l.




1.2. INTUITIONISTIC TYPE THEORY 5

1.2.3 Natural deduction

Because context dependency is explicit in formal type theory, it is possible to write very
rigorous and explicit sequences of derivations in proofs that apply the typing rules of
Def. [1.2.1]. In this text and many other texts, there is a special notation for derivations
that is inspired by natural deduction. The method of natural deduction was originally a
formal approach to logic that helped to state the rules of the proving game very succinctly.
It was a reaction to the less informative Hilbert-style proofs and was defined for the first
time in [Gen35]. Proofs in the style of natural deduction visually resemble how proofs
are “naturally” constructed in the head of a mathematician, see Ex. [1.2.2 and for an
introduction to this style [GT90], Ch. 2.

Understanding this notation is important for understanding the literature on the sub-
ject. Most texts on type theory introduce the typing rules at the beginning with the help
of natural deduction. The notation allows for a very succinct description and introduction
to the theory. For example, the main reference text on cubical type theory introduces
type theory in [CCHM16], Fig. 1.

1.2.4 Propositions as types

Functions, which are terms of function types, are the most fundamental types and building
blocks of type theory.

Example 1.2.2. The typing rule for elimination or computation of function types, see
Def. , can be written with natural deduction, see , as follows:

'-f:A—B kFa:A
I'b:B

This typing rule does mot make use of set-theoretic concepts such as relations but just
reflects how functions are used or computed with.

Function types were historically the first types to have an interpretation in intu-
itionistic logic [Hey30] which was discovered in [Cur34]. More precisely, implications in
intuitionistic logic correspond to terms of function types in type theory. This means
that a constructive proof of the proposition A = B corresponds to giving a function in
type theory which is a term f of the function type A — B, written with a membership
judgement as f: A — B.

Types that can be constructed with the function type are called simple types but other
types also have parallels with logic:

Example 1.2.3. The sum type of two types A and B, denoted by A+ B, corresponds to
the “or” operation, formally denoted by the symbol V' from intuitionistic logic. In proofs
that make use of the the logical proposition AN B, there are two branches: one branch
that proves the case were A is assumed and the other branch proves the case were B is
assumed. The terms of a sum type A+ B are also constructed in two ways: either such
a term is left a: A+ B fora: A orright b: A+ B forb: B. A function A+ B — C
for C' some type is defined by case analysis, stating a result for values of both injections.

This interpretation can be generalized somewhat to interpreting constructive propo-
sitions as types and their proofs to terms of types. But it remains just an approximate



6 CHAPTER 1. INTRODUCTION

Figure 1.1: Nicolaas Govert de Bruijn (1918-2012) was a Dutch number theorist and the
creator of one of the first proof assistants. Less-known, he started to treat proofs in full

mathematical logic as objects with computational content. Picture taken in Oberwolfach
and found on [Jacl7].

interpretation between two completely foundational theories, not an isomorphism or bi-
jection. This interpretation can however be helpful to formalize constructive mathematics
and was applied in the first proof assistant Automath [BG70] (see Fig. 1.1)). Multiple peo-
ple worked (independently) on making this interpretation precise and it is often named
after (some of) these people. Besides being called an interpretation, it is also called the
propositions-as-types relation or Curry-Howard correspondence. There are several long
introductions available to the history of this correspondence such as [HSM*16].

Consequences of the correspondence

Certain versions of type theory do have good computational properties such as being
strongly normalizing: computations terminate (see Sec. 5.3). The main requirement for
being strongly normalizing is not having axioms such as excluded middle and other ver-
sions of the axiom of choice. In other words, the type theory can only contain type
theoretic interpretations of concepts of constructive mathematics, see Sec. 1.1.1. The
Curry-Howard correspondence then implies for such intuitionistic type theories that terms
double as constructive and computable proofs. Which means that these terms can be con-
verted into programs, a process called program extraction which is implemented in many
proof assistants. Examples of such implementations are:

o The proof assistant Agda is a functional programming language based on intu-
itionistic type theory (see Def. ) in which programs double as mathematical
proofs [ACD"19]. Program extraction can be done for well-behaved parts of the
theory but it is not the main purpose, see for an example of where proof extraction
fails Sec. 4.3.3.

o Idris is similar to Agda and compiles to imperative languages, see [BCAMH18]. This
programming language will not be further investigated.

o The proof assistant Coq [ADH'19] has program extraction as one of its main



1.2. INTUITIONISTIC TYPE THEORY 7

[P = Q] =[P] — [Q]
[P AQI=[P] x[Q]
[PvQ]=[P]+[d]

[Vz: AP =]][P(z)]
T:A

[Fz: AP] =) [P(x)]
z:A

[L] =0 (empty type)
[T] =1 (singleton type)

Figure 1.2: The Curry-Howard correspondence can be illustrated by defining a map ¥
that takes an intuitionistic proposition P and extracts its evidence [P] as a type. ¥ can
be defined for the full first-order fragment of constructive mathematics, based on [Alt17],

p-3.

applications, see for example [PCZF'18|. This particular extraction mechanism
does have some limitations, for example in the context of the Theorem of Alge-

bra [CFLO5].

1.2.5 Universes

Type theory is an alternative foundational theory for mathematics based on intuitionism.
Set theory does have self-referencing paradoxes such as the set of all sets that do not
contain itself

R={zx|z¢z}, RecR< R¢R.

This paradox is often called the Russell paradox but was discovered first by Zermelo in
1899 and later eliminated by a hierarchy of classes of sets. Type theory has a similar self-
referencing paradox, called the Burali-Forti or Girard paradox but it is harder to state on
one line.

This Russel paradox (and its type theory variant) is solved in type theory with the
solutions:

o Reject the set comprehension principle which allows to form weird sets and replace
it by types and typing rules as in Def. [1.2.1].

» Force the existence of an upside-down tower of types such that each type consistently
belongs in that tower.

The levels of the tower are indexed by ordinals or natural numbers. For example, if
the indexing set is the natural numbers, the levels are denoted by U, for ¢ € N. The levels
are called universes and are cumulative, T : U, : U,y = T : U, ; which is illustrated in
Fig. 1.4

In informal type theory, this tower is implicitly used and it is assumed that every type
T belongs to some universe, denoted by U or T'ype. The universes in the tower are types,



8 CHAPTER 1. INTRODUCTION

Figure 1.3: An illustration of the hierarchy of universes. Every type in type theory belongs
to a level in this hierarchy.

I}

¥V (A :Set 1) (B: Set 1') » Set (l-max 1 1")
B=32[ f€ (A-B) ] (isEquiv f)

A

1§

Figure 1.4: Equivalences will be introduced in Def. . The definition of equivalences
in [MV19] explicitly references the universe levels of the types A and B, respectively
denoted by [ and [’. The universe level of the type of equivalences is defined as the
maximum l-max 1 1' to prevent paradoxes arising from using A = B in the same context
as other expressions using A or B.

with other types as terms. An important consequence of this is that every type is also a
term of some universe.

In formal type theory implementations such as Agda, the tower of universe levels
can be manipulated explicitly. This allows for formalizations of complex foundational
mathematics. The explicit referencing of universe levels is also necessary because the
assignment of universe levels is a non-trivial task that cannot be automated with implicit
arguments (see Sec. 1.2.2) without introducing inconsistencies, see for example Fié 1 %

1.2.6 Dependent types

In traditional logic, a proposition states a property about elements of a set. Such a
property could for example state: given a group, there is a group element g with infinite
order. One could say that this property depends on the presence of an element g, and
in a sense it is a dependent property depending on a group element g. Properties can be
translated to type theory through the Curry-Howard correspondence as types such that
types, being interpreted as propositions, can depend on terms of other types. In this case,
they are called dependent types. The property about group element becomes for example
a type called hasC_, with terms that correspond to proofs of the property.

Definition 1.2.4 (Dependent types). Let A and B be types belonging to the hierarchy
of universes in a consistent way, this means that their presence does not introduce any
paradoxes. Formally speaking, it is enough to require that A and B belong to the same
universe type: A, B : U. Next to the simple types, the following types are basic building
blocks for intuitionistic type theory:

e Given a type B that depends on the choice of a term a : A, the dependent product



1.2. INTUITIONISTIC TYPE THEORY 9

notZero : N - Set
notZero zero = 1
notZero (suc n) =T

Ne : Set
Ne = £ N (A n - notZero n)

Figure 1.5: The type of non-zero natural numbers N, can be defined in Agda using a
dependent sum type indexed by the natural numbers. Terms of the type Neo are tuples
of a natural number and a proof that it is non-zero. The function non-zero is defined
as a dependent function that either takes values in the empty type L or the unit type T.
This allows to pattern match and reduce applications of notZero to the case where the
argument is of the form (suc n).

is the type denoted by

[IB(
a:A

which has as terms the generalized functions f : (a : A) — B(a). The dependent
product can_be viewed as a generalization of the function type and the typing rules
(see Def. |1.2. Z) for the dependent product are formally stated in [VACT13], A.2.4.

e The dual type of the dependent product over a type A and a family of types B
depending on terms a : A is the dependent sum which is denoted by > A B or

> Bla).
a:A

This type has as terms tuples (a,b) where a : A is a term and b : B(a) is the
value of a generalized function applied to this term. The formal typing rules for the
dependent sum are in [VACT15], A.2.5. When the second term b does not depend
on the first term a, the dependent sum becomes a finite product which is denoted by
A x B. A finite sum type has as terms the tuples of the form (a,b) where a € A
and b : B.

When the indexing type A only has two terms, both the dependent product and
the dependent sum are equivalent with the finite product type B x B. Using these two
dependent types, new dependent types can be built. See for an example of a
custom dependent types used in practice. When working in set-theoretic models, the
definition of a dependent type can be stated very precise in terms of sets, see Def. R.4.8.

1.2.7 Equality

Equality in type theory is completely different from set theory and called the intensional
identity type. Its definition is such that type theory still has good computational proper-
ties such as the normalizability of terms and types, see Sec. 5.3. This implies it is suitable
for implementation of proof assistants and this contributed to its popularity.

In traditional mathematics, an equality between two sets is an equivalence relation: a
transitive, symmetric and reflexive relation. When an equivalence relation is not explicitly
given, it assumed that the equivalence is one of the following:




10 CHAPTER 1. INTRODUCTION

Figure 1.6: Per-Martin Lof (1942-) is a Swedish logician and statistician. He was the
first to give a good definition of equality in type theory with his intensional identity
i3

type [] Picture taken from []

o Equality by definition: can be seen as an equality up to substitution of definitions.
It denoted in this text by = and by = in most programming languages.

» Equality by isomorphism: between objects of a category.

In the absence of any of such interpretations, equality can be defined based on whether
properties are the same or different between objects. This way of identifying objects is
called extensional because it is based on the behaviour of “black-box” objects which can
not be well-behaved. This equality is called judgemental equality. Judgemental equality
is sometimes also called propositional equality to emphasize that the properties of equal
objects (at least according to this equality) have the same properties.

Example 1.2.5 (Leibniz’s function extensionality axiom). According to this aziom, two
arbitrary set functions f,g: X — Y are identified when they take the same values:

f=g9< f(z)=g(x),Vx

This is an example of a propositional equality between two different objects. This principle
is in type theory also called function extensionality axiom because it does not hold in stan-
dard type theory and “extensionality” is the term associated with black-box reasoning. The
function extensionality axiom does hold however in certain extensions such as cubical type
theory or univalent type theory, see the chapter about the univalence axiom in /M]
for a proof. A generalization of this axiom is called indiscernibility of identicals.

The intensional identity type is not defined as a relation using set-theoretic concepts
such as tuples, opposed to the traditional equivalence relations of mathematics. The
intensional identity type is a type with its own typing rules which will be stated explicitly
in Def. [1.2.6 and was only fairly recently added to type theory. Its definition, see Def. [L.2.6,
was_given inductively, similar to the inductive definition of the natural numbers (see
- 0 0

Fig. 1.6).

Definition 1.2.6 (Formation rule). Given a type X and terms a,b : X, the intensional
identity type between a and b is written as a = b, a = b (or sometimes Idx(a,b)). The
intensional identity type satisfies Props. 1.2.’1 and 124




1.2. INTUITIONISTIC TYPE THEORY 11

When a =y b, the terms a and b satisfy the same properties and it is the intensional
identity type can be treated as the jugmental equality from mathematics which explains
the notation “=".

Property 1.2.7 (Identity type introduction rule). There is only one constructor called
reflexivity or in short refl. Given a term a : X it returns the term refl(a) of the
intensional identity type a = a.

The rule Prop. makes the intensional identity type reflexive by construction.

The definition of the eliminator for the intensional identity type is one of the most
complex expressions in type theory because it short but has many implications. This is
because a proof of equality between two objects is now a term of the intensional identity
type and there can be multiple terms (or equalities).

Property 1.2.8 (Identity type elimination rule). The eliminator is also called path
induction or J: given a dependent product type, also called a family

C: H(m:Ay)—>Z[

z,y:A

representing a predicate depending on terms (and proofs of identity), a function

c: H C(z,x, refl,)
z:A

that can be considered as the base step in an inductive construction, there is a function

11 II ¢@,v.p)

T,y ADT=,Y

such that
f(z,z, refl,) = c(x).

It tells that that to prove a property C' for all terms x,y and equalities p : © = y
between them, it suffices to consider all the cases of the proof where x is definitionally
equal to y and where the term of the intensional identity type under consideration is
refl, oz =ux.

Using the definition of the eliminator, the remaining properties of the usual identity
can be proven. This is also done in [VAC*13], Ch. 2.

Lemma 1.2.9. For every type A and every x,y,z: A:

e The intensional identity type is symmetric. There is a function (r =y) — (y = x)
denoted by p — p~t, such that refl, = refl, for each x : A. The term p~! is called
the inverse of p.

o The intensional identity type is also transitive. This means that there is a function
(x =y) = (y = 2) = (x = 2) written p > q — p*q such that refl xrefl, = refl,.
The expression p x q is called the concatenation of p and q.



12 CHAPTER 1. INTRODUCTION

e The intensional identity type supports indiscernibility of identicals (see Fr. )
if P is a type family over A or, in other words, there is a dependent function
P:A— U and suppose there is a term p : © =4 y, then there is a function, called
the transport p, : P(x) — P(y). When the family P is important, p, is sometimes
also denoted by transport? (p,—) : P(z) — P(y).

These properties are not the defining properties of the intensional identity type but
consequences of Prop. [1.2.§. This is what makes the intensional identity type special
compared to the traditional notion of equality, defined with relations over sets.

As mentioned earlier, the introduction of the intensional identity type was an im-
portant step in the establishment of (Per-Martin Lof) type theory. Having defined the
intensional identity type in Def. [L.2.6, the previous sections can be summerized in a def-
inition. Because there are many definitions of type theory, it is also a good occasion to
fix on a particular definition.

Definition 1.2.10. A theory about types is called a type theory if it includes typing rules
as in Def. 121 for the following types:

o The empty and unit type, the type of booleans.
e The inductive type N of natural numbers.

e The %uncfion, dependent product, sum types and their derivatives introduced in
Def. |1.2.4.

e The intensional identity type from Def. .

e The universes from |Sec. 1.2.4.

For an introduction to more advanced aspects of this version type theory, see [Pall4].
This theory is also called MLTT and is very close to the type theory used in proof assistant
Agda [ACD"19]. Next to Agda, there is are other variants of MLTT such as CIC, used in
proof assistant Coq [ADH"19]. For now, for understanding the intensional identity type
and the univalence axiom, the differences are however not that important. There are for
example formalizations of the univalence axiom and applications of it in both assistants.
For simplicity, this text not cover the differences between MLTT, CIC and type theory
as in Def. and all code examples and implementations will be in Agda.

Implications of equality as a type

With equality having been defined and implemented, the definitions of mathematical
objects that use equality relations between elements of sets can be translated to the
language of type theory. An example is the type theoretic definition of a group.

Example 1.2.11 (Naive group type). One could try to define a group as a dependent sum.
Take G to be the base type, e the neutral element, © the inversion and m the multiplication
map. A first try at a definition of a group would then be ), i (GxG— @G), but
this definition is not yet complete. The maps i and m have to satisfy associativity and
other properties. These properties have to be encoded as types or terms. Let’s say there
is a proof that these properties hold, called «, then the first definition of a group can be



1.3. THE UNIVALENCE AXIOM 13

extended to contain this proof. However, the following questions turns up: if two groups G
and G’ have different multiplication maps, they are definitely not equal. But what if they
have different proofs of associativity, o and o’ ¢ This can happen because the intensional
identity type between terms of G can have more than one term. Are they still equal? They
are not, at least according to the definition of the base type G. By the definition of the
intensional identity type on G, there can be different terms of the intensional identity type
and different proofs of associativity o and o'.

Of course this an undesirable consequence of the generality of the definition of the
intensional identity type. In practice, it is undesirable to have more than one term or
proof of equality between certain terms representing group elements. The difference in
proofs is irrelevant to the structure and properties of the group. This motivates the
following definitions:

Definition 1.2.12. e An h-prop X is a type such that any two terms x,y : X are
equal and can be formally stated using a dependent product type as

isProp(X) = H (x =vy).

z,y: X

o When the intensional identity type between any two terms of a type X is an h-prop,
the type is called an h-set which is formally denoted by

isSet(X) = H H (p=2q).

z,y:A p,q:(x=y)

It can be proven that isSet(X) is always a proposition.

Example 1.2.13. All types that have a decidable equality are h-sets, the types are some-
times called discrete types. More specifically, the natural numbers N are an h-set. A
proof can be found in the library [MV19).

The terminology of these concepts refers to the fact that they serve the same purpose
as propositions and sets in intuitionistic logic. It can be proven that they have the same
properties. In type theory the prefix is omitted, for example the type of all types that are
h-props is denoted by Prop and the type of all types that are h-sets is denoted by Set,
but for clarity, this text will always try to use the “h” prefix.

In Ex. , the type G can be chosen to be an h-set, that is G : Set. Then the
possibility of having multiple proofs of associativity is eliminated because the intensional
identity type is always an h-prop. The definition of groups can be changed such that it
only allows for G to be an h-set. This gives an intuitive type-theoretical alternative to the
traditional mathematical definition of groups. This means that all existing constructive
proofs can be studied again in type theory. Although it may seem like a stupid idea to
do everything again, it has proven to be useful for proving big theorems in algebra that
needed a lot _of so-called proof-engineering, for example in the formal type theoretical
proof of Th. .



14 CHAPTER 1. INTRODUCTION

Figure 1.7:  Vladimir Voevodsky (1966-2017) was a Russian algebraic topologist and
algebraic geometrist. When working on the simplicial model for a type theory that was
inspired by algebraic topology, [oduced the univalence axiom under the name
of equivalence axiom. According to [Voeld], the term univalence comes from a Russian
translation of [] where the term “faithful functor” is translated as “univalent functor”.
He said about his terminology himself: “Indeed these foundations seem to be faithful
to the way in which I think about mathematical objects in my head.” Unfortunately,
he suffered from hallucinations [] and died because of an aorta-aneurysm [
Picture taken in his office at Princeton and found on [Gral7].

1.3 The univalence axiom

The univalence axiom states that the type of equivalences between two types is equivalent
with the intensional identity type between those types. Its addition to type theory gives
a new theory, called univalent type theory, see Def. [L.3.3, a new domain in mathematics
that was considered very promising and still is. See for example [] In this domain,
concepts from topology, category theory and type theory are combined to study new ways
of writing proofs and discover new results with topological interpretations, see Sec. 2.2.
The definition of the univalence axiom is based on the concept of equivalences. It is proven
in [], Sec. 4.5, that there are at least three different but equivalent definitions of
equivalence. The definition of equivalences used in this section and in [PW14] corresponds
with the definition isContr in [.VACJ“@]. In applications (see for examples Sec. 4.3) it is
often easier to use biinv which characterizes equivalences as generalized homotopies.

Definition 1.3.1. Let X,Y : U for some universe U be types and f : X — Y an ordinary
function.

e For each y:Y, the homotopy fibre of f over y is defined as

) =) (f@) =y ).

x: X

e A type X is contractible, if there is an y : X, called the centre of contraction, such
that the type x = y is inhabited, there is a term contr,, for all x : X. In other

words isContr(X) = Zy:X I1,.x(z=y).



1.3. THE UNIVALENCE AXIOM 15

e The function f is called an equivalence between X and Y if there exists a term of
the type

equiv(f) = HisC’ontr(ffl(y)).
yY
The type of all equivalences between the types X and Y is given by
XY= Z equiv(f).

f:X-=Y

Given two types X,Y : U for some universe &/ and a term p : (X = Y) of the
intensional identity type, it is quite straightforward to prove with the transport that
there is a unique equivalence between the types e : (X ~Y). This gives a function @y -
from the intensional identity type to the type of all equivalences.

Axiom 1.3.2 (Univalence axiom). Given types X,Y : U for some universe U, the map
Pyy: (X =Y) = (X ~Y) is an equivalence of types.

It can be proven that all equivalences, defined as in Def. , are propositions. The
univalence axiom, once stated and accepted, has to be a proposition because the property
of being an equivalence is a proposition. Implementations of applications of the univalence
axiom were released as part of libraries [VAG'10] and [GSBT11] with code formalizing
large portions of popular mathematics that were surveyed in [BGL'16].

1.3.1 Univalent foundations of mathematics

The univalence axiom gives ways to identify equivalent types. An algebraic topologist
[Gral8h| said that it

.. offers the hope that formalization and verification of today’s mathemat-
ical knowledge can be achievable, relieving referees of articles of the tedious
chore of checking the details of proofs for correctness, allowing them to focus
on importance, originality, and clarity by exposition.

Meanwhile, there are more introductions available to univalence such as the short
introduction for mathematicians [Esc18], the longer intuitive introduction [Gral8b] and
the implementation oriented course texts [Alt17] and the longer [Esc19].

Definition 1.3.3 (Univalent type theory). A type theory (see Def. |1.2.1() that includes
the univalence axiom, defined in Ax. |1.3.4, is_called univalent or a univalent type theory.
Because of its homotopy interpretation, see |Sec. 2.4, it is also called a homotopy type
theory.

The Univalent Foundations project was a joint work undertaken by mathematicians
active in the fields of logic, computer science, algebra and topology around consequences
of the univalence axiom that resulted in a textbook, also called homotopy type theory
[VAC*13]. This project took place in Princeton in the style of Bourbaki but over the
course of only one year. The practical aspects of this project are discussed in [Baul3].

It was also mentioned in [Voel(] that the use of the univalence axiom in proof assis-
tants such as Coq could be useful for the formalization of mathematics. The philosophical



16 CHAPTER 1. INTRODUCTION

Figure 1.8: If a,b : X, there can be two different terms p,q : Idy(a,b). Because the
intensional identity type can be formed or introduced between any two terms of any type,
there is also an intensional identity type Idgy (44 (P,;q). The type Idyy (44 (P, ) can
be interpreted as a “second layer” of intensional identity types. By the Curry-Howard
correspondence (see ), this second layer contains the proofs of equality between
proofs of equality. This construction can be contained inductively to obtain a third layer
ete.

aspects of the univalence axiom as a foundation for mathematics were discussed in [LP16]
and more practical aspects for synthetic mathematics in [Shul7]. An extension of homo-
topy type theory, called modal homotopy type theory is being used to formalize and clean
up certain foundational theories of physics such as differential co-homology and higher
differential geometry (see for a recent example [Sch19]). This shows applications of ho-
motopy type theory are still being investigated in other fields than just type theory or
logic. The rest of this text will assume that the univalence axiom is useful and look more
at the technical aspects of models and primitives for univalent type theory.

1.3.2 Multiple proofs of identity

In univalent type theory, the identity type may have multiple terms. To illustrate this,
take two h-sets, or even two definitionally equal h-sets. In general, there are multiple
bijections between these h-sets. Bijections between h-sets are the equivalences between
h-sets. Simplifying the finer aspects of equivalences, the univalence axiom roughly gives
a bijection between those equivalences and terms of the intensional identity type between
h-sets. However, in case there are multiple bijections, there are also multiple equalities
and this is unsatisfactory. An h-set should only be equal to itself in one way. Furthermore,
the universe in which those h-sets are contained cannot be an h-set. Another example is
categories: the type of objects in a category is not an h-set, see [VAC*13], lemma 9.1.8.
In general, there exist constructions of types that prove for any positive integer n that
there is a nested tower of equalities which is non-trivial with depth n, see

This demonstrates that in univalent type theory, certainly not all types are h-sets
and there can be multiple proofs of identity. This implies that the uniqueness of identity
proofs principle (UIP), stating that there is only one proof of identity, does not hold.
So univalent type theory has some slightly counter-intuitive consequences for the clas-
sical mathematician that is used to working with (h-)sets and never really bothers too
much with alternative interpretations of equality. The chapters on algebraic topology
and category theory in [VACT13] show what some other consequences are of accepting
the univalence axiom for classical mathematical domains and rejecting the UIP principle.



Chapter 2

Interpretations and models

The presence of a non-trivial hierarchy of equalities in type theory was somewhat unex-
pected and gave rise to a new field in foundations of mathematics that also had many
applications [VAC*13]. Mathematicians who are working in foundations can try to find
models of a theory they are working with. Models with category theory prove the rela-
tive consistency of the system in relation to classical foundational frameworks such as set
theory, intuitionistic logic and optionally the axiom of choice. This was also the case in
(univalent) type theory which was first modelled with groupoids in [HS98]. This section
will explore some of the models that exist for univalent type theory.

2.1 Groupoid interpretation

Before the univalence axiom was discovered, one of the first models of type theory was
done in the language of groupoids [HS98| and is called the groupoid model. A groupoid is
a concept in category theory that is inspired by the behaviour of groups.

Definition 2.1.1. A groupoid is a category with only invertible morphisms.

Let X be any type. The model in groupoids of type theory worked by interpreting
every term of a,b : X as an object of a category and the terms of the intensional identity
type Idy(a,b) as invertible morphisms in the category (see where the equalities
are replaced by morphisms). The tower of equalities needed to be interpreted as well. This
was done with a higher-dimensional groupoid, called an oo-groupoid or w-groupoid, see
the thesis [Lum1(] for an extensive overview of the model in groupoids. An oco-groupoid
contains morphisms between morphisms and so on. However, for the model to be a
correct model, it also needs to satisfy all the properties that are satisfied by the tower of
equalities in type theory. These properties of equalities are translated as coherence laws of
the oo-groupoid and stated for example that the composition of two morphisms between
morphisms of the co-groupoid should be associative. But these coherence laws became
very complex for higher levels of morphisms in the oo-groupoid and there was not a clear
simple way to state them generically.

The tower of equalities inspired [Voel6] to define a hierarchy of levels of types above
h-sets. This hierarchy, that can be proven to be cumulative, is defined by induction on
the integers, starting from —2.

17



18 CHAPTER 2. INTERPRETATIONS AND MODELS

Definition 2.1.2. A type X has h-level —2 if it is contractible, see Def. . The type
X has h-level n + 1 if for any term a,b : X, the intensional identity type Idx(a,b) has
h-level n.

For example, types that are h-props are by definition on level —1 and h-sets are on
level 0.

According to [Voel6] the h-level hierarchy can help to distinguish different levels of
doing mathematics. On the bottom, there is element-level mathematics, the level corre-
sponding to h-level -1. Working with h-level -1 types corresponds to working with ele-
ments of sets in classical mathematics. There is also set-level mathematics, which is about
working with h-level 0 types, the types that correspond to h-sets or sets in classical math-
ematics. On top of all of this, there is higher-level mathematics, the mathematics that is
about type-theoretical analogues to categories, co-groupoids or other higher-dimensional
category theory.

2.2 Homotopy type theory
Besides the iroui oid model from , there are also other models. The simplicial set

model (see ) is such a model. To make this model very rigorous, very complicated
mathematics is needed, and in the end the model still has some problems such as non-
constructivitiy. But the simplicial model makes precise the interpretation of univalent
type theory as topological spaces and homotopy theory. The homotopy interpretation of
univalent type theory, was motivated by the complexity of the oo-groupoid model and
algebraic topology. In algebraic topology, the properties of topological, continuous spaces
are studied with methods from group theory. In the homotopic interpretation of type
theory, the type X is interpreted as a topological space and the intensional identity type
Idy(a,b) is interpreted as all the continuous paths between points a, b in X considered as
topological space. Because paths are reversible, the symmetry of the intensional identity
type is consistent and the other properties of equality can be verified to be consistent as
well. Let p,q : Idy(a.b) be two terms interpreted continuous paths (compare this with the
construction in ) Terms r, s : Idyy (45 (p,q) are interpreted as two-dimensional
paths, see . This explains the naming homotopy type theory for univalent type
theory, when interpreted using algebraic topology.

The definition of h-levels can be done in this interpretation as well. Here, a type is
on h-level n if its analogue in the homotopy theoretic model, a topological space, has
vanishing homotopy groups above order n. This topological model can be extended to
all concepts in univalent type theory by giving interpretations to each concept in the
language of homotopy theory, see table Table R.1l. So the study of types in univalent type
theory corresponds to the study of higher order homotopy groups.

2.3 Simplicial model

The topological spaces used in the homotopic interpretation of univalent type theory are
actually not really topological spaces but simplicial sets, Kan complexes with fibrations.
See [Str06] and [Voe09] for how universes are modelled in simplicial sets. The simplicial set
model was completed in [KL12] and proved to be very useful for later models of univalent



2.3. SIMPLICIAL MODEL

Y3

QY

19

Figure 2.1: In the context of topological spaces and algebraic topology, a path between two
curves p, q starting and ending at the same base points a, b is called a homotopy of paths.
In this picture there are homotopies s and r. Formally, a homotopy of paths is in general
a continuous function F' : [0,1] — X that satisfies F'(0,u) = a, F(1,u) = b,Vu € [0, 1]
and F(v,1) = p(v), F(v,0) = q(v),Vv € [0,1]. The study of homotopic paths leads to

the study of fundamental or homotopy groups, see

Sec. 4.3.3.

See. 134

Logic Types Homotopy
proposition A topological space
proof a: A point in space
A= B A— B continuous functions
predicate B: A — U, denoted B (x) covering
conditional proof b(x): B(z) section of a covering
LT 0,1 0, %
AV B A+ B co-product
ANB Ax B product space
3,.4B (z) Z(m:A) B (x) total space of a covering
V..aB () H(w:A) B (z) space of sections
equality Id, path space A1

Table 2.1: The homotopic interpretation of type theory as written in the introduction
of [VACT13] gives a comparison of the concepts of univalent type theory toiether with

their interpretations in the topological model and intuitionistic logic, see .



20 CHAPTER 2. INTERPRETATIONS AND MODELS

Figure 2.2: Martin Hofmann (1965-2018) was a German computer scientist and the

founder of the groupoid interpretation [] and popularized the usage of categori-

cal semantics in type the]. In January 2018, he died in a snow storm on the
Rod1§].

mountain Nikko Shirane |

type theory such as the one in [] The model in simplicial sets does have the same
homotopic properties, the homotopy of spaces stays the same whether they are viewed as
topological spaces or Kan complexes, so it is a simplification that can be made. This is
also called the homotopy hypothesis [] Because the model in simplicial sets was
proven to be consistent, it also proved that univalent theory as a mathematical theory was
as consistent as Zermelo-Frankel set theory with the axiom of choice. The usage of the
axiom of choice made it non-constructive however, meaning that the translation of proofs
in univalent type theory into the language of simplicial sets also became non-constructive.
It was as well cumbersome to implement in computers, because simplicial sets and more
specifically their building blocks, simplexes, do not have nice combinatorial properties.
This lead to the development of cubical type theory, see Ch. 3.

2.4 Categorical semantics

Both the groupoid and simplicial model turned out to have some problems. To properly
deal with these problems, new constructive and easy to implement models have to be
found. Models of type theory can be built with the framework of categories with families
[tHon?h, see [Fig. 2.2].

Categories with families can be seen as algebraic representations of type theory. The
idea behind a category with families is to translate the types, terms and typing rules from
type theory to a model in category theory.

Definition 2.4.1. A category with families model is a category and a functor denoted by
(Ctx, F) that satisfies Props. l?.4.< and |2.4.4 to 4’1

Property 2.4.2. The context category Ctz is a category whose objects represent contexts
of the type theory. There is a terminal object () in Ctz, called the empty context. This is
an object such that for every other object T' € Ctx, there is a unique morphism T' — ().

The objects of this category are denoted with capital Greek symbols A,T" and are
simply called contexts, even though they only represent or model the contexts from type
theory. If the choice for Ctx is clear from the context,

I'=



2.4. CATEGORICAL SEMANTICS 21

denotes that I' is a context in the context category Ctx. The morphisms of the category
Ctx are called substitutions or context morphisms.

The relation between terms and their types in set (and category) theory is captured
with a family of sets.

Definition 2.4.3. The category of families of sets Fam has as objects pairs of the form
(A, B) where A is a set and B= (B, | a € A) is a A-indezed family of sets B,,a € A.

A morphism between (A, B) — (A’, B") is given by a pair (f,g) where f: A — A’ is
a function and g is an A-indexed family of functions such that g, : B, — B}a.

Property 2.4.4. Types and terms are modelled by a functor & = (Ty, Tm) that goes
from the opposite category Ctz® to the category of families Fam.

This functor takes a context I' € Ctx and returns:

o a set denoted by Ty (I"), called the types in context I'. Because these category-
theoretical types represent the real types, the dependency A € Ty(I') is often de-
noted by the judgement

'+ A.

o a family of sets indexed by elements A € Ty (I'), called the terms Tm (I', A) of A.
Similarly, the elements a € Tm (I, A) are called terms of A within the context I,
denoted by

I'-a:A.

Take a substitution o : A — I, then the morphism F (o) is a morphism that acts on
Ty (I).

Property 2.4.5. Let I' € Ctz. The action of a substitution on a type A € Ty (L) is
written as Ao and the action on terms a is written as ac. Because F is contra-variant,
Ao € Ty(A) and ac € Tm (A, Ac). Let T be yet another context. The substitutions on
terms satisfy the following composition laws: (Ac)T = A(oT) and (ac)T = a(oT) for
7: TV = A.

Because contexts in type theory can be extended with other judgement, the category-
theoretical model should be able to do this as well. For example, if I" is a context and
A is a type in I', there is a context I'.A called the context extension. Intuitively, this
context has all the terms and types that are already in I' and the type A, including the
term I' - ¢ : A defined in Prop. .

Property 2.4.6. Given a context I' € Ctx and type I' = A, there are the following objects:
e an object in the category of contexts representing the context extension I'.A
e a morphismp:T.A—T

e a term q € Tm(I'.A, Ap), which can also denoted by the previously introduced
notation U.AF q: Ap.

Here the term ¢ is another name for the variable of type A that was added the latest
to I'. A.



22 CHAPTER 2. INTERPRETATIONS AND MODELS

Property 2.4.7. The objects p and q should satisfy the universal extension property: for
any context A, T, substitutions o, and term a there is a substitution (o,a) : A — T".A
such that

The substitution o is a partial inverse of p: p(o,a) =o.

The substitution (o,a) of the term q returns a: q(o,a) = a.

The substitution is invariant under composition of o with other substitutions T:
(0,a)T = (oT,aT).

The context morphism (p,q) is the identity morphism on the extended context I'.A.

There is an alternative presentation of the category with families model in [Ort19],
Sec. 3.1.

Given a category with families, the informal description in Def. becomes a very
short definition:

Definition 2.4.8. A type B is a dependent type depending on another type A within
context A if T A+ B.

If B is a dependent type, substitution of terms in B is done by lifting the morphism
or substitution from the universal property of extensions where ¢ = 1 is the identity
substitution of contexts. This gives a morphism (1,a) : I' — I'. A that can be lifted with
the Ty-functor to a morphism [a] : I' — I'"A. The action of [a] on B gives B [a] which is
by the contra-variance of F a type in the context I', so T' - Blal].

2.5 Pre-sheaves

In practice, a category with families is built with more fundamental concepts. A base
category is chosen such that it possesses the properties which are required for the contexts
in the particular type theory that is being modelled. With this base category, a category
with families is built. For example, if the contexts of the type theory have to be indexable
by dimension variables, a base category has to be chosen that has objects which are at
least able to represent dimensions.

Examples of pre-sheaves

Definition 2.5.1. Let C be any category. A pre-sheaf on € is a contra-variant functor
from C into the category of sets, Set. This is a mapping of objects and morphisms of
categories that reserves arrows.

e The category of all pre-sheaves on base category C has as objects the pre-sheaves and
as morphisms the natural transformations between pre-sheaves. It is denoted by C.

o Let I,J be two base objects the base category and I' € Ca pre-sheaf. The mapping
of a morphism f € Home(J,I) under ' is formally denoted by T'(f) but often just
f and written as a right action. It is a morphism T'(f) : I'(I) — T'(J) : p > pf
where it is said that pf is the restriction of p by f.



2.5. PRE-SHEAVES 23

Example 2.5.2. Take as base category C a category with only one object x , then the
pre-sheaves in € are contra-variant functors from € to Set mapping the object x to any
set.

Example 2.5.3. Let € = {0, 1} with two morphisms f,g:0 — 1.

A pre-sheaf T on € consists of two setsT'(0),'(1) together with two functions I'(f),'(g) :
['(1) — I'(0).

IfT'(0) is interpreted as the set of vertices and I'(1) as the set of edges, I' is a directed
graph. The set map U(f) gives the starting vertex of an edge, I'(g) gives the ending vertex.

Example 2.5.4. Take C = {0, 1}, two morphisms f,g:0 — 1 as before and now a third
morphism h : 1 — 0 such that ho f = hog =1id. Then I'(0) is interpreted again as a set
of vertices and I'(1) as a set of nodes.

L(f)
Tt
(1) —2= 1(0)
T,
In this interpretation, I'(f) o T'(h) = idp ) and I'(g) o I'(h) = idp(g). This means that
for each v € T'(0), T'(h)(v) serves as a an edge with both starting and ending vertez v.

This means that from every pre-sheaf, a unique directed reflexive graph can be derived.

More examples of pre-sheaves will arise later in the form of cubical sets (see Def. )
or can be found in [Hofl4]. There does exist a concept of sheaves. Pre-sheaves can be
turned into a sheaf in a topological space by a sheaving functor. This implies pre-sheaves
are a generalization of sheaves contrary to the terminology. More specifically, sheaves are
a reflective subcategory of pre-sheaves, see [ST11]. Another related concept is the concept
of a sieve, which arises in the context of cubical type theory [Coql5] and [CCHM16].

The pre-sheaf model

A a concrete category with families can be made using pre-sheaves. This was done in
[Hof97], section 4.1, p. 45, redone in [Hubl6a], Sec. 1.2 and more rigorously in [Ort19],
section 3.2.

Definition 2.5.5. Given a small category C (a category in which the morphisms form

sets), called the base category, there is a specific category with families é\, called the
pre-sheaf model with base category €. This is a model

(@, (Ty, Tm))

where the individual components of this tuple are defined in Props. l25d’ and [255
to é 5.1().




24 CHAPTER 2. INTERPRETATIONS AND MODELS

The construction of the category with families € will be explained step-wise in this
section. Given a base category €, the first thing needed for € to satisfy the definition of
a category with families according to Prop. 2.4.2 is a category of contexts.

Property 2.5.6. The category of contexts in the model C is simply defined as C. The
empty context is the functor 1 mapping all the objects in the base category to a fized set.

Examples of contexts for pre-sheaf models can be found in . The central
example in this text is cubical sets, see Def. B.1.6.

There also has to be a functor from the category of pre-sheaves to families of sets
that satisfies Prop. R.4.4 for types and terms in a category with families. To define this,
another category has to be introduced.

Definition 2.5.7. Given a functor A : € — Set, the category of elements is the category
denoted by fC,A:

e The objects are pairs (c,a) where ¢ is an object of € and a € A(c).

e Take two objects (c,a) and (¢’,a"). Morphisms between these objects are denoted by

(¢ |a) forp:c— ¢ and a’ = A(¢)(a).

If the functor A is contra-variant, define

[+=(L)

The functor & can be constructed as a functor in the category of contexts from
Prop. R.4.4. Let I' be a context in €, this means that I' is a contra-variant functor from
the base category to the category of sets.

Property 2.5.8. The interpretation of the types over a given context I' in C is denoted
by Ty(T') and defined as the category of pre-sheaves jé, Ir.

These pre-sheaves form a set because the base category is small, so the morphisms
form sets. This means that the pre-sheaves can be used as the indexing set of a family of
sets and the definition of Ty in Prop. 2.5.§ makes sense.

When A € Ty (I'), A is called a type over context I' or even use the type theoretical
notation I' = A. But A is not a set of on its own or does not contain any terms. To work
with types, it is necessary to look at the values of A (as a functor) which are written as
Ap given p € I'(I).

Property 2.5.9. The interpretation of the terms over some context I' and type A in
context T in C is denoted by Tm (I', A) and defined as all the elements

ac [] Ad.p)

IeC,pel’(I)

such that Vf € Home(J,I),(ap)f = a(pf). In other words, to every base object I, set
element p € T'(I) a set element ap 1is chosen in the set A(I,p) defined by the given
pre-sheaf A.



2.5. PRE-SHEAVES 25

The definitions in Props. b5§ and b5q make sure that (Ty, Tm) satisfies the require-
ments of Prop. R.4.4 and is an appropriate functor as required in Def. P2.4.1l.

However, to analyse the interpreted object deeper, it is necessary to observe which
values ap, the term a, takes “above” an element p € I'(I) according to Prop. .

'The definition of a category of families also requires to define the extension of contexts
in C.
Property 2.5.10. Given a context I' and type I' = A in a the context extension in C is
as a contra-variant functor: given an object I € C, it takes values

(D.A)(I) = {(p,u) | p € (1), u € A(I, )}
This new functor is denoted by T'.A. Given p € T'(I),u € A(I,p) and a morphism

f € Home(J, 1), (p,u)f is defined as (pf,uf).
The map p in C is defined by

p:TLA—=T:(p,u) — p.

In other words, this is just the projection forgetting the second argument. Similarly, the
term q € Tm(I". A, Ap) is defined in C as a mapping (polymorphic for an implicit object
1)

qg:(IelC)—=Ix(T.A)I)— A, p): (p,u) = u
that forgets the first argument.

The above construction gives an instance of the definition of a category with families
(see Def. ): a pre-sheaf model. The pre-sheaf model € is made using only the objects
and morphisms in the base category and its pre-sheaves. However, the exact representa-
tion depends on the choice of map for Ty and Tm. In very simple cases of base categories,
the choice is limited. For example, the previously mentioned examples of graphs and sets
(see Ex. R.5.4) become categories with families. This means that categories with families
are things that really exist. When the base category is more complicated, the contexts
and types behave very differentli but there is a characterization of types in terms of

context extensions given in Lem. .

Definition 2.5.11. An equivalence of categories between categories C and D is a pair of
functors F : € — D and G : D — € that satisfies the following properties:

e The composition of functors (F o G) : D — D is isomorphic through a natural
transformation with the identity functor L.

e There is a natural equivalence of functors (GoF) = Ip.

Lemma 2.5.12. Take an arbitrary base category €. IfI' € @, then there is an equivalence
between the category of types Ty (I') and the category

U={(A0)|A€Coe Homey,(AT)}

with as morphisms Homy; ((Ay,04), (Ay,05)) the context morphisms ¢ : Ay — A, such
that the following diagram commutes:

A, A,

N

r



26 CHAPTER 2. INTERPRETATIONS AND MODELS

Proof. 1. Let the first functor for the equivalence of categories be given by
F:Ty(I) -U: A~ (IA,p).
The second functor, the candidate for an inverse of G, is given by

G:U—Ty(D): (A,0) = (Ip) = {s € A(D) | as) = p}).

It will now be proven that the composite functor # o G is isomorphic to the identity
functor on U through a natural transformation. Take an object (A,0) € U, it
remains to prove that

(F29)(A,0) = (A, 0).
But by writing out the definition of G,
(F29)(A,0) =F((,p) = {s € A(I) | o(s) = p})
which is in turn equal to

(. ((L,p) = {s € AI) [ a(s) = p}),p)-
This can be further simplified to

(I =A{(p,s) | peT),s € A(I),a(s) = p}),p)-

In summary,

(Fo9)(A,0)= (A p).

To prove (I'.A,p) = (A, o), it is necessary to prove that there is an isomorphism of
contexts ¢ : A — I'. A such that the following commutative diagram commutes:

A ¢ y T.A
N, A
r

Because ¢ should be a morphism of contexts and morphisms of contexts are natural
transformations of functors, ¢ has to be defined by a natural transformation. A
natural transformation is given by morphisms a; : A(I) — I''A(I) for all I € €
that satisfies commutativity properties. Set a; : s + (o(s),s) for every I € C.
Each a; is a bijection with inverse a7t : (p,s) + s. It only remains to prove the
commutativity properties.

2. It still remains to prove the reverse direction. For a type A € Ty (I'), (GoF)(A) = A
in the category of types, being pre-sheaves on the category of elements. Indeed, take
an element (I, p) € f@ I'. It remains to prove that

(G T)A)L, p) = AL, p)
as sets. The left-hand side is by definition
{se @A) [p(s) =p} ={(p";u) | p" €T(I),u € A(L, p),p" = p}

and this is in bijection with A(7, p).
The equivalence has been proven. O



2.5. PRE-SHEAVES 27

Example 2.5.13. If C is chosen to be the category with two objects and three morphisms
as in Fr. , the contexts in the pre-sheaf model become directed reflexive graphs. Given
a context I, a type I' = A forms a dependent or nested directed reflexive graph.

Proof. The Lem. tells that there is some context A and a morphism o : A — I'. To
verify that A is a dependent graph, it has to be proven that the morphism o of pre-sheaves
corresponds to morphism of graphs. For this it is necessary, to show that the pre-sheaf
model of Ex. P.5.4 is equivalent as a category to the category of graphs. Because this has
not been done yet, the claim will be verified directly instead.

A type A in the context I is according to Prop. R.5.8 a functor A from the category
of elements to the category of sets:

o Every vertex in {(0,v) | v € T'(0)} is mapped to a set A(0,v). Every edge in
{(1,e) | e € T'(1)} is mapped to a set A(1,e).

e The morphism (f | e) in the category of elements is mapped to a set map A(f) :
A(l,e) — A(0,T'(f)(e)). The same applies to the morphism g. Let I'(f)(e) = v. f
can be interpreted as sending an edge ¢’ € A(1,e) in a new graph to an endpoint,
a vertex v” which lies in a set A(0, z) above the endpoint v of e in original graph T.

e The morphism (h | v) is a mapped to a set map A(h) : A(0,v) — A(1,T'(h)(v))
which takes a vertex v” and maps it to an edge A(h)(v") = ¢€’.
« The composition property A(ho f) = A(f) o A(h) implies that
id=A(f[T(h)(v)) o A(h|v)
which is a map
A(0,v) = A0, (f) o T'(h)(v)) : v = ".

The same can be done with g. This can be interpreted as before that A(h | v)(v")
is an edge e’ with identical start and end point v’.

This means that a type A is a nested reflexive graph of I', denoted by A with more
vertices and edges, see the upper part of [Fig. 2.3.

A term is according to Prop. E an element of ap in A(I,p) that depends on the
choice of p € I'(I) and satisfies an extra condition:

V.J €€, f € Home (J,1), (a(I, p))T(f) = a(I, p(f)).

o If I =0, then an element p € I'(0) is an edge in I". The morphisms f,g: 0 — 1 act
on terms. Assume for example that f (actually I'(f)) is the morphism giving the
source of edges. It is possible to do the same for g. The condition on terms tells
that (ap)f = (ap)A(f | €) has to be equal to a(pI'(f)). In other words, the source
of ap should be a vertex a(p'(f)) in the graph A of the vertex set that is above
the source pf (formally pI'(f)) of p. See

o If I =1, an element v € I'(1) is a vertex in A and av is a vertex above p. Assume
that pf = v. The only interesting morphism that acts on v is h (or more precisely,
the associated set map I'(h)). vh gives the reflexive edge going from v to v. av
also has a reflexive edge (av)h. Now the condition says that the lift of the lower
reflexive edge a(vh) is the same one as the reflexive edge on the lifted vertex (av)h.



28 CHAPTER 2. INTERPRETATIONS AND MODELS

Figure 2.3: One edge p with endpoints pf and pg in I' together with its lifts to A.
Applying the terms a, b lifts the edge and its endpoints. The action of the morphisms f
and g can be visualized as taking the endpoints of the edges ap and bp described by the
terms a and b. The terms a and b also act on the node v = pf and elevate it to higher
nodes av and bv.

The rules that are required by Props. }244] and }259| tell that the lifting of nodes and
edges is compatible. Taking o as the graph morphism projecting lifted edges ap — p
and vertices av — v, Fig. 2.3 illustrates Lem. R.5.12 by showing that each type in the
pre-sheaf model as defined in Def. ﬁ is a nested or dependent graph A that lifts the
original graph I'. [

The pre-sheaf model on a category with only two elements is in a sense the simplest
example of a category with families there is. As soon more objects are added to the base
category, the resulting category with families can be seen as a complicated dependent
reflexive directed graph.

A category with families supports a certain type if it is closed under the type rules of
this type. It can be proven that every pre-sheaf model supports all types from type theory,
see [Hof97], [Nuyl8], p. 9 or [Hub16a], Sec. 1.2. However, the traditional interpretation
of the intensional identity type in the pre-sheaf model does not satisfy the typing rules
of the intensional identity type in (univalent) type theory, see [Hub164], Sec. 1.2.3. The
traditional intensional identity type is a constrained version that satisfied an extra axiom,
called aziom K stating:

Axiom 2.5.14 (Axiom K). Let X be any type, if Vo : X andp: (x = x), then p = refl,.

Because axiom K is related to the uniqueness of identity proofs principle (a relation
that is covered in detail in [VACT13], Sec. 7.2), it is in contradiction with the univalence
axiom, see Ax. [1.3.2. A pre-sheaf model does not necessary support the intensional
identity type from type theory, an identity type that supports multiple terms. In univalent
type theory the identity type must have multiple terms and does not satisfy Ax. 2.5.1%.
This means that an arbitrary pre-sheaf model is not sufficient any more to model univalent
type theory. To find a pre-sheaf model for univalent type theory, it is necessary to look
further into specific base categories and types.




Chapter 3

The pre-sheaf model of cubical type
theory

A general framework for making models of type theory with pre-sheaves has been discussed
in . However, remember from Sec. 2.3 that the goal is to find a constructive model
in category theory. Such a model would allow to prove the univalence axiom by generating
explicit terms of the univalence axiom. These terms would consist in explicit functions
that can help in further computations related to univalent type theory. The model in
cubical sets was proven to be a model of univalent type theory, so the univalence axiom
holds. When the univalence axiom holds, its function can be explicitly given in terms of
a mapping between the primitives of cubical type theory.

The model with cubical sets can help with computing with terms of the univalence
axiom because it is easier to implement than other models and is completely constructive.
See for a short history of the alternative models. The cubical set model gives
rise to a new type theory called cubical type theory. The goal of cubical type theory is
to make sure that the evaluation of terms in univalent type theory does no get stuck and
can be computed into an expression using the primitives of the cubical set model. Proof
of concept is the recent implementation of cubical type theory in the proof assistant Agda
as a library [MV19] which will be used on later for applications.

3.1 The category of cubes

Cubical type theory is based on cubical sets which are built with cubes (coming from
dimension variables). The vertices of the cubes stand for the steps in applying a chain of
(univalent) equalities as defined in Def. . Computing with equalities in the cubical
set model is done by computing with cubes, so it is necessary to formulate precisely
what a cube is. This can be done with an algebra of faces [Hub16a]. Here, faces are a
generalization of the concept of vertices, edges and faces of 3-dimensional cubes to their
higher-dimensional variants.

Based on [BD77]:
Definition 3.1.1. A De Morgan algebra over a set L is an algebra with:

e two binary operations N\ and \V called connections that are distributive: Vx,y,z €
LixN(yVz)=(@Ay)V(zAz).

29



30 CHAPTER 3. THE PRE-SHEAF MODEL OF CUBICAL TYPE THEORY

e a unary operator — called the involution such that the following laws hold:

— double negation: Vx € L,~—x =,

— De Morgan laws: Vx,y € L,~(x Vy) =—z A—-y,—~(z Ay) =z V —y.

e bottom 0 and top element 1 satisfying Vo € L, e NO=0,zV1=1. Also, =0 =1
and -1 = 0.

Definition 3.1.2. Let A be a set containing at most countably many elements. This set
is called the set of names because the elements x € A serve as names for dimensions of
the cubes.

Consider a De Morgan algebra generated by dimension names. In this algebra, the
individual variables describe the lines of a cube but the composite lattice elements that
are also present in the algebra allow to define values on the interior of a cube.

Definition 3.1.3. Let I C A be a finite subset. The free De Morgan algebra generated
by I is the smallest De Morgan algebra that contains all expressions with elements of I,
the operators V, \,— and the bounding elements 0,1. It can also be denoted by dM (I).

Every bounded distributive lattice (a partially ordered set with relations) gives rise
to a free de Morgan algebra, see Def. (ﬁ This means that the connections can be
interpreted as follows: A corresponds to taking the minimum and V corresponds to taking
the maximum.

The involution of an element z in a free De Morgan algebra is sometimes denoted by
1 —x instead of —z. Viewing a De Morgan algebra as a lattice with extra operations (see
Def. ), the involution can be seen as vertical mirroring within the lattice). When
viewing the dimension variable z as a line in a cube, the involution of x represents the
inverted line.

Definition 3.1.4 (Category of cubes). The category Cb contains as objects the finite
subsets I C A, called dimension names. Morphisms in this category are maps into
De Morgan algebras: given two objects 1,J € Cb, f € Homey(J, 1) if and only if
f:I—dM(J) is a set map.

e If f € Homey (J,1),g € Homey (K, J), the composition g o f, written as fg, is
defined as the composition of set maps go f, where g is the extension of the set map
g to the free De Morgan algebra dM(J).

o The identity morphism in this category is just the identity set map.

From now on, until the rest of this chapter, the symbol Cb will be used to denote
the category defined in Def. . The category Cb can be interpreted as an abstract
higher-dimensional cube on which operations described by a De Morgan algebra can be
applied. As a base category it has much more objects and morphisms than the category
that was used to construct directed and reflexive graphs, see Ex. 2.5.4. As a consequence,
types in a pre-sheaf model over this category will be more complicated than in Fi]g- 2 3

Now a few examples will be given of morphisms that are present in this category and
will be used in the rest of the text.




3.1. THE CATEGORY OF CUBES 31

Figure 3.1: An illustration of the free bounded distributive lattice over generating sets of
dimension variables I = 0,1 = {z}, I = {z,y} and I = {x,y, 2z} by writing edges a — b if
and only if @ < b. A lattice is a partially ordered set in which all nonempty finite subsets
have both a supremum and an infimum. Every free bounded lattice generated by a set I
gives rise to a De Morgan algebra dM (1) by defining A as the infimum of the lattice and
V as the supremum of the lattice. Illustration taken from [Eppl0].



32 CHAPTER 3. THE PRE-SHEAF MODEL OF CUBICAL TYPE THEORY

Example 3.1.5. Let I C J. Ifi & I then the morphism s; : I U{i} — I is defined as
the set map associated to the inclusion I C dM(I U {i}). Giveni € I and r € dM(J),
the morphism (i/r) : I — dM(J) maps the dimension name i on the element r of the
free De Morgan algebra dM (J) and leaves other names untouched. These maps are also
called substitutions although they are not exactly the same as context substitutions.

e The face maps are compositions of substitutions (i/b) where b € {0,1}. These maps
give the sub-faces or edges of a higher-dimensional cube.

e The substitutions (i/1 — i) can be interpreted as reflections along the i-axis or
dimension of a cube. When intensional identity type will be modelled with higher-
dimensional cubes, the terms will correspond with edges on a cube or paths and this
substitution can be used to model the reverse path or equality.

e The substitutions (i/i A j) extend a line parametrized by i to a square depending on
7 as well.

In pre-sheaf models of type theory, the contexts, types and terms of the type theory
are modelled with pre-sheaves. In the cubical set model, the pre-sheaves are taken over

Cb.
Definition 3.1.6. A cubical set I' is a pre-sheaf I' € Cb.

In Def. , the contexts of the pre-sheaf model Cb are defined (see Def. for

the definition of a pre-sheaf model). (/ZB, which is actually a category with families, is
denoted in this notation by only referring to the contexts. A pre-sheaf model that models
a particular type theory should also have type and term functors (see Prop. ) that
model the right types, in this case ( Cb models the types of univalent type theory. These
necessary types and functors of Cb will be described in the next sections. Because Cb
models actually more than just univalent type theory, the type theory modelled is another
type theory, called cubical type theory. This type theory forms an extension of cubical
type theory and is defined in Def. B

First, some consequences of the ch01ce of base category Cb from Def. - in Cb
will be studied. Given two finite sets of dimension variables I,J € Cb and a cubical
set I' € Cb, there is an element p € I'(I). Using the assumption that I' is a covariant
functor, every substitution f € Homgy, (I, J) gives a set map I'(f) : I'(I) — I'(J). The
application of I'(f) to the object u € I'(I) is written on the right and the context I' is
implicit: pf € I'(J).

Example 3.1.7 (Faces of cubes). If I = {z,y}, u € I'(I) has an interpretation as a
square with an edge u(x/0) and corner u(xz/0)(y/0). In general, u € T'(J) behaves like a
|.J|-dimensional cube and the face maps give faces of this cube.

Another example gives an interpretation to the unknowns of polynomial rings as faces
of cubes:

Example 3.1.8 (Polynomial rings). Let R be a commutative ring with a unit element.
Define for I a finite set of unknowns {x,...,xz,}, the set R[I]| of all polynomials in these
unknowns. Then R[—] can be considered as a functor and even a cubical set. For example,
if p(z,y,2) = 1+ 2%y + 2 € R[x,y, 2], then the application of the face map (y/0) gives
(1+2%y+2)(y/0) =1+ 2.



3.2. THE FACE LATTICE 33

3.2 The face lattice

The faces described in Ex. are put into a lattice structure to be able to use them in
computations. Remember that a lattice is a partially ordered set in which all nonempty
finite subsets have both a supremum and an infimum.

Definition 3.2.1. The face lattice | is the distributive lattice generated by the face maps
(which are the substitutions of the form (i/b),i € A,b € {0,1}). These substitutions are
also written as i = b (variations of cubical type theory also allow other values for b, see
). An element of the lattice p € F is called an extent. The top element in
this lattice is denoted by 1 and the bottom element by Op but the reference to [ is often
omitted in literature. The face lattice also satisfies (i = 0) A (i = 1) = O by definition.

Example 3.2.2. The face lattice gives rise to a cubical set. For a set of dimension names
I € Cb, set F(I) to be the subset of extents in F that only contains dimension names
i € I. If there is a morphism f € Homgy (J,I), then by contravariance there is a set
map F(I) = F(J) : o = f(p) where f just substitutes the symbols in @ and applies the
rewriting rules on |Ort19/, p. 89: given r,s € J,

On the other hand, F can also be seen as a type in (/31\), see Def. .

Remember from Def. M and Prop. m that in the presheaf model 6?), contexts
are pre-sheaves and types are pre-sheaves over a category of elements. The contexts in
Cb are by Def. called cubical sets.

The interpretation of the empty context () in this pre-sheaf model is by Prop.
a pre-sheaf denoted by 1 that maps all objects in the base category Cb to the same set
containing one element, for example {x}.

To define F as a type in the empty context within the pre-sheaf model él\), it is
necessary to describe how [ acts on the category of elements. By definition of the category
of elements (see Def. R.5.7),

/ 1={(I,p)| I €Cb,pell} ={(I,*x)| I €Cb}=Cb
Cb

where the last isomorphism is just a bijection that works by sending (I, *) to the set F(I).

Definition 3.2.3. The interval object I represents the unit interval. It is modelled as a
context in Cb which is a functor Cb — Set: I — dM(I). Given an i € I, the morphism
(1/0) acts as a term 1 = (i/0) : F on elements p € dM(I). This term is defined as the
map setting all the occurrences of © in p to 0 and applying the rules of the distributive
lattice.

The interval object (or any other context) can also be seen as a type in the empty
context () I 0. In this interpretation it is a functor be I' - Set: (I,p)—dM(I).



34 CHAPTER 3. THE PRE-SHEAF MODEL OF CUBICAL TYPE THEORY

3.3 Restricting contexts and types

Traditional types that are defined in (univalent) type theory can be interpreted in Cb.
However, the face and interval objects form a more important part of cubical type theory
because they can be used to index and restrict arbitrary contexts.

3.3.1 Indexing contexts by dimensions

Cb contains the context extension as defined in Prop. : if ' = A is a type, then the
context extension is defined by

(D)D) = {(p,u) | p € T(D),u € AL, p)}.

Given T A and an interpretation in Cb, according to Prop. there is always a
term g in

IMAFqg: A

This is used in Cb in combination with the interval object to parametrise terms and types
by dimension variables. For example, if I' is any context, there is the type I' - [ and an
extension I'.l but also a term I'.I + ¢ : [. v (I',q : [) where ¢ is as before but depends on
the context I' and type 1. In this situation and in literature, g is replaced by a letter i, j, k
and written in the context extension part. More precisely one writes I', (i : [) instead of
I.0.

3.3.2 Restricting indexed contexts

In ET), there is another way to form new contexts using extents. But to introduce this
formally, it is necessary to pinpoint how extents are interpreted as terms.

Definition 3.3.1 (The face type). In general, the type T' = [ is defined in Cb by the
contra-variant functor

F:{(L,p)| I € Cbpel(l)} — Set:(I,p)F(I)
where p is just ignored.

Definition 3.3.2 (The face terms). Given a context I' € 6’7), the terms I' = ¢ = T are
defined by a dependent function

:(I:Cb) = (p:TI)) =>F(,p): I pr>ep

where I is implicit.
The following terms have special notation:

e The symbols O, 1r € [ denote the terms
'=0,1:0F

in Cb that are defined by the map Op = 0,1p =1 for all p € T'(1), T € Cb and
I e Cb.



3.3. RESTRICTING CONTEXTS AND TYPES 35

e When ¢ is an extent containing only variables i,j,k € A (for example ¢ = (i =
OAN(G=1)V(k=0)),itisaterm (i:0),(5:0),(k:0)F ¢:F also denoted

(4,4, k:)Fp:F
that is defined in Cb as functor that maps I € Cb and p € (i,7,k : 1) as follows:

— The set p can be rewritten with the definition of a context extension (see
Eec. 8.3.1) as p = ((p;» p), p), where p; € dM(I) and p; € F(I,p;) which
means that p; is an extent that only uses the variables in I.

— Furthermore, by Prop. and the above, py, € F(I, (p;, p;)). Define p(I, p) =
oI, (pi; s pr)) as the extent where every variable i_occurring in ¢ is replaced

by the corresponding p; and apply the rules in Ex. .

o This definition of terms can be generalized from an extent containing only the set
of dimension names i, j,k to any set of dimension names.

Definition 3.3.3. Given a context I € Cb and term T - @ : [, there is a new context
(T', @), called the context restriction by extent ¢, defined as

L)) ={pel()|pp=1 €F(I)}.

Example 3.3.4. Given a context A = (1,(i = 0)), there is an isomorphism of contexts
A == () where () is the empty context .

Proof. It remains to prove that there is a natural transformation between the two func-
tors. First it has to be proven that for all I € Cb, the sets A() and ()(I) = {*}
are isomorphic. In other words, it is necessary prove that the set A(I) exactly con-
tains one element. But by definition of the interval object and the context restriction
A(I)={pedM(I)|(i=0)p=1}. But the only way that this could lead to 1 is when
p = 1. So A(I) contains one element: p = ¢V 1. It is still necessary to verify the
commutativity properties of the natural transformation. [

Similarly, it can be proven that the context (i : [, = 0,7 = 0) is isomorphic to the
context (i: 0,7 =0).

There is an inclusion of the restricted context in the original context using a context
morphism ¢, : (', o) — I'. Intuitively, this restricted context can be used to define types
and terms that are only defined the faces of the higher-dimensional cube I' specified by
the extent .

Example 3.3.5. A termi:1,j:1F a: A can be thought of as a square that is indexed
by dimension variables i and j. The top and left sides of the square are described by the
lattice formula ¢ = (i = 0) V (j = 1). So if the attention is restricted to these sides, it
is clear that a_lies in the restriction of the original context: i,7 : l,o Fa : A. This is
tllustrated in [Fig. 3.4.

The operation of extending (actually restricting) a context by an extent, can be viewed
as a typing rule:

F'ke:F
ok



36 CHAPTER 3. THE PRE-SHEAF MODEL OF CUBICAL TYPE THEORY

i,7:1 1:Lj:Tka: A t:Lj:LEi=0)Vv(=1)Fa:A

Figure 3.2: An illustration of the context restriction by ¢ = (i = 0) V (j = 1) coming
from [Ort19)].

Definition 3.3.6. Let ' A and ' = ¢ : F. A term u is called a partial element of
extent ¢ if it is a term (L', ) Fu : Avy,.

For each ' F u : A and extent ¢, there is a partial element of extent ¢, or term
(I'y¢) Fuey, + Ay, When a term (I, ) = v = Auy, is induced by a restriction by an extent
, or in other words v = ut,,, the term v is called extensible. This can be intuitively seen
as the term v being extendible to v by dropping the restriction by the extent . In type
notation this relation between u and v is written as I' - u : A[p > v] expressing that ¢
extends the term v through (. This can clarify the use of the word extent.

This specific notation for extents does not really state the presence of new types,
contexts or terms in the model but can also be seen as a typing rule:

F'kFv:A FokFv=u:A
F'Fu:Alp v

Definition 3.3.7 (Generalized extent introduction rule). A generalization of extents, in
this text called generalized extent, is given in |Hub16d/, p. 95 and can be summarized as
the typing rule:

kFa:A Ne,Fa=wu;: A, 1=1,..,k
F'Fa:Alp; Uy, ..., pp = uy

Definition 3.3.8 (System introduction rule). Assume that the following terms are given:

e for each 1 <1v <mn, there is a term I', p; = t, : A that is only defined on the extent
()01;7

e the extents cover the whole hypercube: I' = V...V ¢, =1y : |

o the definitions are compatible I',p; =1, =1, A,V1 < 14,5 <n,

Then there exists a term of type A, called a system, which is denoted by [pq t1, ..., 0, t,]
A. This term also has to satisfy

This term also has to satisfy the elimination rules mentioned in [Hub16al], figure 6.4. A
system allows to treat compatible terms, terms that agree at all points of the hypercube,
as a single term. Lem. B.3.9 states that certain compositions can be treated as generalized
extents.




3.4. ADDING OPERATIONS 37

Lemma 3.3.9. Let '@ :F and ' A If o=\, andT Fp; V...V, =1 : [,
then the following types are logically equivalent:

e Afpr= o)ty t]]
(4 A [901 '_> tl’ ...790,”( '_> tn]

It is believed but has not yet been completely verified that this follows from the
definition of generalized extents and the elimination rule in [Hubl6a], p. 95, figure 6.4
which states for any valid expression J:

e, FJ,1<1<n ', V..V, =1 F
'=J
Example 3.3.10. The notation [(i =0)V (i =1) - [(i = 0) u, (¢ = 1) v] can be replaced

by [i =0 wu,i =1 v]. This is done very often in [Hubl6a/ and implementations
[MV19].

3.4 Adding operations

The category theoretical interpretations of other terms and types in Cb will not be studied
yet. In Cb, types have an intuitive description as cylinders. When I' = A is a type in
Cb, it is described by a functor from the category of elements

Ty:/ I' — Set.
Cb

This is noted as A(p) € Set for some |I|-dimensional hypercube p € I'(I). At the same
time the substitutions that apply to objects in Cb and substitute dimension variables can
be lifted by Ty to the level of types.

Example 3.4.1. Let T" € Cb and a type ' = A. If I = {x} is one dimensional and
p € I'(1), substitutions (x/r) that map the dimension variable x on 0 or 1 can be visualized
as mapping p on the endpoints of an edge. The lift A(p) is mapped by (/1) on the faces of
the_cylinder similarly to the action of the morphisms f and g in|Fig. 2.4. This is visualized
mn . Another way to interpret the type A is using Lem. |2. 5.13 by viewing the type
A as a new context A.

The interesting properties of univalent type theory and the consequences of the uni-
valence axiom all follow from the intensional identity type and its typing rules. The
intensional identity type of univalent type theory can be modelled in Cb, but it is special
in the following sense. Given a type A and terms a,b,c : A, the interpretation of the
intensional identity type a =4 b and b =4 c in cubical sets is only transitive if A satisfies
a Kan extension property (see ) This property of types A tells how the terms of
A can be extended from a restricted context cube to a full cube and is made precise with
a composition and filling operation on the types and terms in Cb.

Adding operations to Cb is done by adding axioms stating the existence of certain
structures, sets, functors or elements, satisfying properties that are related to the prop-
erties of the type system that is modelled. Operations will be denoted with another font
type. To arrive at a complete model of univalent type theory, including the univalence
axiom, also a glue operation has to be added to Cb (see Sec. 3.4.4).




38

CHAPTER 3. THE PRE-SHEAF MODEL OF CUBICAL TYPE THEORY

A(p(1)
A(p(0 Al(p(1
GO Lo\ iy fow) AW
A
(i)
p(0) > (1) r

Figure 3.3: Picture taken from []

=

Figure 3.4: Daniel Kan (1927-2013) was a Dutch category and homotopy theorist. He

defined his Ka
| saying how boxes

see his book [Kanb5

predecessor of this property in |l

different flavours such as a version for simplicial sets stating that
filled and the composition operation of cubical type theory, see Def.

in his home in Massachusetts by [Kan05

n extension property in the context of algebraic topology for cubical sets,
-H81

can be filled. | ] mentions that there is a
This Kan extension property later evolved into
“horn” can be

ever
. Picture taken
.



3.4. ADDING OPERATIONS 39

3.4.1 The composition operation

The most important operation in Cb is the composition operation [Ort19]. The semantics
of the composition operation are as follows:

Definition 3.4.2. Let T € Cb be a context. A composition structure for I' = A is an
operation, comp, that depends on the following elements:

e I €Cbyi¢ I pel(IU{i}),p € F(I), wherep can be seen as an (I+1)-dimensional
hypercube.

e u a partial element of A(p) of extent ¢ and ay, € A(p(i/0)) such that for all
f+d =1, A(f)(ag) = ugjop and F(f)(¢) = 1. Here u can be viewed as a set
of values for A on sides ¢ of p that takes values ay on the bottom of p described by
i = 0. The value ay has to agree with the values u on other sides.

Then there is a set element comp(I, i, p, o, u,ay) € A(p(i/1)). This element is uniform
in the sense that for any f:J — 1 and j & J:

e comp (I,i,p,p,u,aq) f = comp(J,j,p(f U (i/5)),of,u(f U (i/j)),asf) where f U
(1/7) : JU{j} — T U{i} is just the extension of f with the substitution (i/j) and
u(fU(i/7)) is the partial element defined for g+ K — J as u(poqui/5))-

e comp(l,i,p,1f,u,ay) = U1y In other words, the values of A on top of the hypercube
p can be extended to to values on top of the faces of the hypercube p for which ¢ = 1.
In other words, the “lid” of the “open” box p can be closed along the side i = 1.

Again, this operation can be written as aa introduction rule telling the existence of
the category theoretical interpretation in Cb of a specific term with a specific type.

Definition 3.4.3 (Composition introduction rule). The notation comp(1,1i,p, p,u,ay) is
written with a shorter syntaz and with application to p implicit as comp® A [p > u] ay.

THo:F T,i:lFA T,pi:lFu:A TFag: Ai/0)[p - u(i/0)]
I comp® A > ulag : A(i/1)[p = u(i/1)]

If o : A — T is a context substitution, then this morphism acts on terms as follows:

(comp® Al = ulay) o
comp’ A(a,i/5)[po + u(o,i/j)]ago

where 7 does not appear as a dimension variable in a syntactical representation of A
yet. For types the morphism acts analogously.

The existence of a composition structure for all types in Cb cannot be taken for
granted. Its existence depends on the choice of context and type.

Definition 3.4.4. A Kan type or fibrant type A is a type for which there exists a
composition structure comp .



40 CHAPTER 3. THE PRE-SHEAF MODEL OF CUBICAL TYPE THEORY

3.4.2 The path type

The use of the identity type in cubical type theory is replaced by the use of a path type.
There is also a naming problem because cubical type theory is modelled by Cb which is
a pre-sheaf models and the standard pre-sheaf model of the identity type is defined as a
functor Id: f ' A, 'Fa: Aand ' Fb: A, then

(Tda(a, b)) p = {* [ ap = bp}

However, the type modelled by the functor Id does not satisfy the properties of the
intensional identity type in univalent type theory. It does for example only admit at most
one term and satisfies the uniqueness of identity proofs principle (and also Ax. R.5.14).
This means it is incompatible with the univalence axiom and insufficient to model univa-
lent type theory. -

To solve these problems in Cb and other pre-sheaf models, another interpretation is
given to the identity type. This interpretation is done with a functor that models the
intensional identity type between terms a,b : A correctly (up to the computation rule
Prop. @) is called Path 4 (a,b).

Definition 3.4.5. Given terms I' b a,b : A, the path type Path,(a,b) is defined as
follows:

e Given p € I'(I),Path 4(a,b)(p) is the set of equivalence classes generated by pairs
(t,w) withi ¢ I and w € A(ps;) such that w(i/0) = a(p) and w(i/1) = b(p), where
(1,w) is identified with (i’,w") if and only if w' = w(i/j).

e The action of Path 4(a,b) on a morphism f: (J,p, f) — (I,p) is given by (i,w)f =
(J,w(f N (i/4)) forj & J.

The equivalence class of (i,w) is also denoted by (i) w where w implicitly depends on a
choice of p. Formally, using typing rules and natural deduction:

r-A ri:l-t:A Li:lFti/0)=a:A Cyi:l-t(i/1)=b: A
'k (i)t: Path, (a,b)

Fl_t:PathA (Uo,ul>

I'Ft:Pathy (ug,uq)
THtl=u,:A

of the intensional identity type (see Prop. ), the identity type of Swan [Swal4] has
to be used instead of the path type in Def. B.4.5. The identity type of Swan does exactly
have the elimination rule of Prop. . However, the difference between the path type
in Def. @ and the identity type of Swan is only minor (up to paths) and will not be
covered thoroughly in this text. Both Swan’s identity type and the path identity type in
Def. % are logically equivalent, meaning that they can be substituted by each other.
See [Hub16a|, p. 114 for a comparison of both types and the more advanced text [Swal§]

To obtain a model for intensional identity type that also satisfies the computation rule
2.8
4.5




3.4. ADDING OPERATIONS 41

Figure 3.5: Transitivity can be modelled in Cb by a composition of paths along the
edges of a square. Assume that ¢ is the horizontal axis and j the vertical axis, then

the composition operation comp gives the closing lid: p - ¢, proving transitivity. Diagram
inspired by [CCHM16], section 4.3.

about a general framework for choosing identity types. In this text, the notation a =4 b
or simply a = b will be used for both Swan’s identity type (constructed by Swan) and the
path identity type between terms a, b : A defined in this section.

The standard term of the path type Path4(a,a) between a term a : A and itself is the
reflexive term refl,(a)(I, p) = (i,a(ps;)) for some i ¢ I. It is in [Hubl6a], p. 90 also
denoted by 1,.

This definition applies to any type but to have that the path type is Kan type and
satisfies all the properties of the intensional identity type in univalent type theory, it
is necessary that the original type to which the path type is applied has a composition
structure or is Kan. If the original type was not Kan, the path type would for example
not necessarily be transitive. It is proven in Ex. B.4.¢ that it is enough to make the path
type transitive.

Example 3.4.6. The transitivity property of equality, in this case the transitivity of the
path type, states that if T' € Cb, T'F a,b,c: A, p: Path,(a,b) and q : Path 4(b,c), there
is a term 1 : Path(a,c). If A is Kan, then Path , is transitive.

Proof. The proof is illustrated in .

If A is a Kan type, by definition, it has a composition operation. The term u = [i =
0 a,i =1 q j] can be viewed as a term that is only defined on three sides:

o The extent ¢ = (i = 0) V (i = 1) defines two sides of the hypercube. On these sides
the values of u vary along a second dimension j. This is written as I", (i = 0) V (i =
1),7:0Fu.

e On the side j = 0 the values of u coincide with the values of the path p. This means
that for fixed 4, in type notation I' - (p i) : A(j/0)[p > u(j/0)]

For fixed ¢, take ay = p ¢. The composition operation now gives a term that extends
u along the remaining side j = 1:

comp? A [(1/0 > a, (i/1) = q J](p i)
which can be rewritten using Lem. m as
comp? A[(i/0) + a, (i/1) = q jl(p i) = 2.

The term z is of type A(j/1)[i =0+ a,i =1+ ¢|.



42 CHAPTER 3. THE PRE-SHEAF MODEL OF CUBICAL TYPE THEORY

If this term depends on i, the introduction rule of a path can be applied to return a
term denoted by (i) z that has type Path4 (a,c). To verify this, it is necessary to check
that the endpoints of this path (i) z are indeed a and c.

The endpoints are obtained by applying the context morphisms

(¢/0), (i/1) : (C.(j: 1)) = (I.(5 : 1).(z = 1))
to the generalized extent judgement
(T.(j:0D.(i:0)F2z:A(/Di=0a,i=1F c|.

The application of a context morphism o is just the application of ¢ to each judgement
contained in the generalized extent, which are by Def. 3.3.% (omitting (I'.(j : 0).(2 : 1))):

« OFz:A@/1)
« (i=0)Fz=a:A®j/1)

e (i=1)Fz=c:A(j/1)

These judgements and the introduction rule of the path type in Def. prove that
z is the right path, making the transitivity property hold for Path.
O

If A is Kan, it can be proven that the path type Path4(a,b) not only satisfies tran-
sitivity_but also all the typing rules of the intensional identity type (as mentioned in
Def. or [Ortl9], p. 35) except for the computation rule. However, it is not known
if the Kan property and the composition structure are necessary for this property of the
identity type to hold in Cb, and whether the _composition operation can be weakened.
In [CM19], the composition operation of Cb is weakened to a weak composition op-
eration. This allows to develop a type theory in which the mathematical properties of
the different cubical type theories can be studied simultaneously, see for example the
alternative theory described in Sec. 5.2.

3.4.3 The filling operation

The composition operation of a Kan type extends the definition of a partial term from
one that defined only on one endpoint of a dimensional variable to one that is also defined
on the other endpoint of the dimension variable. It however only gives the lid of the box
as described in Ex. B.4.G which is actually the example on [CHM1§], page 10.

Complementary to the composition operation, there is a filling operation in Cb that
not only “fills” the endpoints but also covers the interior of partial terms that are defined
on hypercubes by introducing a new variable dependency in the context. This operation is
used in [CHM1§] for the definition of higher inductive types. The filling operation makes
use of the lattice structure that is defined in Def. .

For Def. , the lattice structure defined in Def. has to be used. The use of

the A lattice combinator is illustrated in [Fig. 3.6.




3.4. ADDING OPERATIONS 43

Figure 3.6: Take two terms a,b : A and a path p : Path, (a,b), then the term p(i/i A j)
is a two-dimensional path that takes two arguments 4, j and returns values based on the
interpretation of ¢ A j as min(, j). The two-dimensional path p(i/i A j) can be illustrated
as a square taking ¢ as a horizontal axis and j as a vertical axis.

Definition 3.4.7. Let A be a Kan type. The Kan filling operation on A is an operation
that returns a term. More specifically, set fill" A [¢ > ag] ag to be the term

comp? A(i/i A7) [+ u(ifiAj), (i =0) agl ag: A
in context T'.(i,7 : ).

Using the definition of extents, the filling term can be decomposed v into judgements
(omitting I, 7,5 : [):

o The judgements () Fv: A(i/i Aj) and ¢ - v =wu(i/i A j): A(i/i A j). This means
that the term v is defined on the interior A(i/i A j). Applying the substitution (j/7)
gives the usual composition term.

o There is a judgement (i = 0) - v =a, : A(i/i A j) that is equivalent with

() Fv(i/0) = ag = A(i/0).

Now ap is on the left side of the hypercube p € T" ({4, j}).

The filling is the composition plus something else, also called the interior, but the
interior in this context is not the interior in a topological sense because there is no concept
of continuity or topology present in Cb. In Cb it is only possible to compute with a finite
amount of (subsets of) corners of standardized hypercubes.

The existence of Kan types, types with a composition operation is not so straightfor-
ward. For each type that is used in a type system and has a valid interpretation in Cb,
the composition operation has to be defined. Examples of such composition structures
for natural numbers and path types can be found in [Hub16a], Sec. 6.4.5, p. 97-98. Once
these composition structures are given for all basic types in intensional type theory, in-
cluding paths, the category with families model is strong enough to model univalent type
theory. However, the univalence axiom is an axiom about universes of intensional type
theory and universes are also types. So it is necessary to define a composition structure
for universes in Cb. This composition structure is defined in [Hub16a] with the help of a
Glue type which will be introduced in .



44 CHAPTER 3. THE PRE-SHEAF MODEL OF CUBICAL TYPE THEORY

3.4.4 The Glue type

Now that the path type of intensional type theory has been modelled in Cb (omitting
the definitions of dependent product and sum types that are given for general pre-sheaf
models in [Hubl6a], Sec. 1.2), the concepts from Def. can be translated to their
analogue in Cb. This will be done by treating Cb as a type theory (cubical type theory)
with the help of typing rules (syntax). The definition of a term of contractibility in
intensional type theory is

isContr A= (z: A) x ((y: A) — Path, (z,y))

and is a valid expression in cubical type theory because sum types and path types have a
valid interpretation in cubical sets.

Similarly, a function f : T"— A is an equivalence if and only if the following type is
inhabited

isEquivT A f = (y: A) — isContr((x : T) x Pathy (y, f =)
and an equivalence in general is a term of the type
EquivT A= (f:T — A) x isEquiv T A f.

There is a semantic interpretation of the Glue type given in [Hubl6a], but this will
be skipped because it is quite complicated and does not add much intuition for the value
of this type in the context of the proof of univalence. The text [Ort19], Ch. 5-6, tries to
simplify the semantics of the Glue type using topoi. The introduction of the Glue type is
given in [Ort19], p. 30.

Definition 3.4.8 (Glue introduction rule). Assume that a (total, not necessarily partial)

type I' = B is given together with another type that is partial T'; o = A for some extent

. If the partial type is equivalent to the total type I',p &= f : Equiv A B as far as it is

defined, there is a type T' - Glue [¢ = (A, f)] B that satisfies certain elimination rules.
This can also be expressed with natural deduction as:

F'Fe:F I'-B Mo A ok f:Equiv A B
I'tGlue [p— (A, f)] B

Another way to phrase this is as follows: the introduction rule of the Glue type tells
that given an element of the face lattice F expressing the sides of a square on which f is
defined as an equivalence A — B, there is a bigger type that “glues the sides together”. It
is a bigger type because by one of the eliminating typing rules as mentioned on [Hub16a],
figure 6.5, the Glue type extends the partial type A. More precisely, it says that for
@ = 1p, there is '+ [1y = (T, f)] B = A. Terms of the Glue type come into two forms:

o If it is known whether B has a particular partial type, there is a typing rule giving
a glue term. More precisely, if t is a term of A, f is the equivalence and I' F b :
B [¢ > f a], then there is a term denoted by glue [¢ > a] b of the glue type.

o The unglue term functions as an inverse of this term, a computation typing rule.
For example, given a Glue term c : Glue [p — (A, f)] B, the term unglue c is of

type B [p — f c].



3.4. ADDING OPERATIONS 45

Example 3.4.9. Take ¢ = (i =0) V (i = 1). Then the type A is only defined for i =0
or i = 1, so there are two sides of the hypercube on top of which the type A and the
partial equivalence f are defined. The values of A on top of these sides are called A, and
A;y. The values of B are computed with substitutions. The partial equivalence f also has
values fy and f;. Let G = Glue [i = 0  (B(i/0), fy),t = 1 — (B(i/1), f1)], then this
can be illustrated:

|1 |5

B(i/0) —— B(i/1)

As it goes for all the types that are introduced in cubical type theory, it is also necessary
to introduce a composition operation for the Glue type. This is done on [Hubl6a], Sec.
6.6.2 and makes the Glue type into a Kan type. .

The only remaining step to do is to prove that the universe type of Cb is also Kan,
which is done in [Hub16a], Sec. 6.7.2. Once the composition and glueing operations are
defined for the universe types, they are defined for all types. As explained in Ex. B.4.6, this
implies that the path type over universes also satisfies transitivity. This means the model
described in this section supports all types from intensional type theory, the Glue-type
and a composition structure:

Definition 3.4.10 ( [Hubl6a]). A cubical type theory is an extension of intensional type
theory (see Def. |1.2.1() with the following properties:

o All types from intensional type theory, including natural numbers, dependent sum
and product types, are modelled in Cb (see Def. |3.1.4) by defining them as functors
(see also [Hubl6al, p. 28-30).

e The intensional identity type is modelled bii modifying the path type of which the

semantics and typing rules are given in |Sec. 3.4.4.

e There are the following additional objects that are not present in intensional type
theory or homotopy type theory:

— The objects E_and | introduced in Defs. |3 211 and L? 23* and the context restric-
tion Def. |3.3.9.

— The Glue type from allows the construction of a proof of univalence,
see .

e Ewery type (excluding F,1 has a composition operation (is a Kan type), satisfying
the typing rules (and semantics) in Def. |3.4.4, allowing the path identity type (and
the intensional identity type constructed from the path identity type) to be transitive
which makes cubical type theory a proper extension of intensional type theory.

The theory in Def. n which the univalence axiom is provable) satisfies canon-
icity of numerals (see Th. )

The proof of univalence described in was not established in one paper, but it
took a while until the right syntax and semantics was found to be able to speak of cubical

type theory as in Def. B.4.10.




46 CHAPTER 3. THE PRE-SHEAF MODEL OF CUBICAL TYPE THEORY

3.4.5 Historical development of cubical set models

The first time dimension variables or cubes were used in type theory was in [BM12]. The
theory of nominal sets which is introduced in [Pit13] introduced a way of working with
dimension variables as objects in a category. In [BCH14], this idea was extended to a
categorical model of type theory in cubical sets together with Kan extension properties.
The way nominal sets were used in [BCH14] was discussed in [Pit14]. Cubical sets were
however already discussed in [GMO03]. The model was extended in [Hubl15] to include
more detailed proofs and semantics of the universe. In [Coql34] it was suggested how this
model could be allow a proof of the univalence axiom. By that time there was already an
implementation of [Hubl15] available in [Hubl14] and later [CCHM15]. A formal written
proof of univalence with this model was given in [BCH18] but slightly more complicated
than in later models and higher inductive types could not yet be modelled.

This earlier model was however valuable because it proved the consistency of cubical
type theory relative to the framework of category theory in cubical sets. It also did not
use choice principles which made it the first constructive model of the univalence axiom
and univalent type theory. Models of type theory in type theory that do not use any extra
structure on the base category are called monoidal or sub-structural because they can be
represented using only products_of an interval object.

The lattice structure in Def. was the first step in allowing higher inductive types
and simplifying operations. It was was historically later introduced by [CCHM16] and
slightly corrected in [Hubl6a] for simplifying composition and using higher inductive
types. There is still research going on on whether the lattice structure is necessary in
the base category and other models such as [AK15] do not make used of it. There is an
unpublished comparative study in [Awol6] on choices of base categories that are related
to the base categories used in [BCH14| and [Hub16a]. Each choice of a variation of the
base category can lead to more desirable properties of the type theory being modelled but
no better alternative has been found yet (a choice that results in a more efficient cubical
type theory). For example, [PK19] uses twisted cubes to model directed (cubical) type
theory.

The latest version of cubical type theory that is implemented in proof assistants has
slightly different operation than described in [Hubl6a]. To allow working with higher
inductive types, [Hub17h] suggested to decompose the composition operation in a homo-
geneous composition and a generalized transport. This idea was worked out in [CHM18§].
Since then, no big changes were made to the semantics, but there is still research on mod-
els that can unify the semantics of cubical type theory and variations such as two-level
(cubical) type theory in [Uem19] and [CM19)].



Chapter 4

Proof of univalence

Cubical type theory was invented to give a “computational interpretation of the univalence
axiom” which would allow to compute with expressions in univalent type theory. In this
section, an overview will be given of historical attempts to this proof and one of the most
recent versions of the proof.

4.1 The univalence theorem

Remember from Ax. that the univalence theorem in cubical type theory (which is
an axiom in univalent type theory) states:

Theorem 4.1.1. Given two types A, B : U of the same universe, there is an equivalence
between the types A = B and A ~ B.

Because it can be proven in certain models such as [KL12] and cubical type theory as
in Def. 5.4.10, the axiom can also be called a theorem within a particular model. In this
section, the proof of the theorem in [MV19] will be discussed.

4.1.1 History of the proof

In this section, the development of the most recent revision of the proof in [MV19],
Cubical.Foundations.Univalence as of writing this text will be discussed. For a history
of the development of the semantics, see Sec. 3.4.5.

The first model in which this theorem became provable was simplicial sets [KL12].
The proof in simplicial sets used the ideas such as the Glue type that were reintroduced
in later proofs in cubical sets, see [Hub16a|, p. 103-104 and p. 122-123 or [BCH1§| for an
approach without lattice structure (mentioned in )

The proof in [Hubl6a] was the first one that was formally verified in a type theory,
more specifically cubical type theory. The first part of this proof has since been rewritten
in [Weil6]. The formalization has been continuously worked on since [CCHM15] and
[CCHM16] in [MV19]. Recently, this library code was surveyed in [M618a], but later
revisions of the files in this library can have made this explanation less up-to-date. In the
following sections the different parts of the implementation the proof will be discussed.

47



48 CHAPTER 4. PROOF OF UNIVALENCE

4.2 Proof of the univalence theorem

4.2.1 Contractibility of equivalence singletons

Theorem 4.2.1 (ungluelskquiv). Let I'yo = f: T — A be a partial equivalence with
extent @. The function

unglue : Glue [p— (T, f)] A— A

is an equivalence.

Another proof is [Hub16a], p. 103, Thm 6.7.2 and uses two extra lemmas to construct
to proof the equivalence.

Proof. As mentioned in Def. and Ax. , an equivalence is a function with con-
tractible fibres (pre-images). So, to prove that unglue is an equivalence amounts to
proving that for any b in the co-domain A, the fibre fiber unglue b is contractible. In
other words, the following proofs have to be given:

o A point x : fiber unglue b.
o A proof that given y : fiber unglue b, x = y.

The point x is constructed by constructing the glue term on top of hcomp u b : A where
u is a partial term. It has to be proven that this term is indeed in the fibre. For the
second part, an arbitrary element of the fibre y is taken. Now a path is constructed that
is point-wise defined with a partial term u' and glue terms. The end points of this path
are indeed x and y because u” extends u. There also have to be proofs that the terms on
the path are in the fibre (or pre-image of b). These proofs are built with an application
of hfill, a formalization of the filling operation described in . [

Now unglueEquiv expresses that any partial family of equivalences can be extended
to a total one.

The following theorem is an intermediate statement of the univalence axiom that is
more directly provable than the traditional statement. It will function as a lemma for
proving the more traditional version of the univalence axiom.

Theorem 4.2.2 (EquivContr).
VA : U, isContr (Z (T:U,) (T~ A)) .
The proof in [Hub16a], p. 104, Cor. 6.7.3 uses an extra lemma.

Proof. Tt is necessary to give a term = : Y T : U (T ~ A) and a proof that there is an
equality between x and any other term y of the same type. Take the trivial equivalence
(A, idEquiv) for z. It remains to prove that every other term is equal to this one. So take
another term

y:Z (Set 1) (AT —» T=~A))

then it can be shown with unglueIsEquiv that there is a path (A, idEquiv A) = y. O]



4.2. PROOF OF THE UNIVALENCE THEOREM 49

According to [Hubl16a], [VAC'13], Thm. 5.8.4, it should follow that the equivalence
type forms an identity system. The statement of the univalence theorem is however not
immediate.

The path type in cubical type theory can be slightly modified (see ) such
that it satisfies the J-eliminator, see Prop. [L.2.8. Equivalences also satisfy an eliminator,
called equivalence induction.

Theorem 4.2.3 (Equivl). Given a property P: (A B:U) — (e: B~ A) — U, a proof
of the base stepr: (A:U) — P A A (idEquiv A), then there is a proof of P any A B : U :

P A Be.

Proof. For the proof, some lemmas are needed:

e The lemma idIsEquiv : VA € U, isEquiv (A = + z) proves that the identity map
is is an equivalence. This also an immediate proof of the reflexivity of equivalences
which is formalized in idEquiv : VA : U, A ~ A.

o Applying Th. to some type B gives a proof of contractibility of a sum type
depending on B. More precisely, there is a (C,C ~ B) with C : U such that
every other C” gives an equality (C,C ~ B) = (C’,C" =~). Contractibility is
very similar to being an h-prop. The theorem isContr — isProp which is stated
in Cubical.Foundations.HLevels converts proofs of contractibility into proofs of
being an h-prop using the composition operation. It shows that any terms of this
particular sum type over B are connected by a path or equality.

o Assuminge : A ~ B, the above theorem is applied to connect the tuples (B, idEquiv B)
and (A, e) by an equality in the proof of theorem contrSinglEquiv.

e Transport is used in the form of
subst: (B: A—U)(p:x=y)— Bx— By.

This theorem is part of a few theorems that are all formalizations of univalent type
theoretical transport in defined with the composition operation in Cubical.Core.Prelude.

Eventually the J-combinator for equivalences is defined by transporting the base case
r over the equality returned by contrSingleEquiv e).
]

This construction of the map ua is based on the one defined in [Hubl6a], Ex. 6.6.2,
p- 101.

Definition 4.2.4. va:V A B: U,A ~ B — A = B is defined with the Glue type. The
definition can be illustrated with a diagram:



20 CHAPTER 4. PROOF OF UNIVALENCE

The implementation of the definition takes a partial equivalence e and type A, a
dimension variable or parameter i and maps it on a term ua e of type Glue [(i = 0) —
(Aye), (i = 1) — (B,idequiv B)|] B. By the elimination rules of the Glue type given
on [Hubl6a/, Fig. 6.5, ua e is a path with endpoints A and B.

ualdEquiv : VA, ua (idEquiv A) = refl, where refl is the reflexive path or equality.
It tells that the reflexive equivalence is mapped onto the reflexive identity by ua.

Definition 4.2.5. An isomorphism (or homotopy equivalence, quasi-inverse [VACT13])
is defined in Cubical.Foundations.Isomorphism as a function f: B — A with a pseudo-
inverse g : B — A such that fog and go f are both homotopic to the identity map.

The theorem isoToIsEquiv is a proof that any isomorphism f: A — B is an equiva-
lence.

Example 4.2.6. Let A = Bool and B = Fin 2, then A = B. This holds because every
bijection between A and B which is also an isomorphism. Such an isomorphism is also
an equivalence and applying the map ua returns path of type A = B.

4.2.2 Conclusion of the proof

Using the previous lemmas and results, the statement and proof of the univalence theorem
is now much easier.

Theorem 4.2.7 (Univalence.thm). Given a function
au:A=B—+A~DB

and a proof that au maps the refl : A = A identity type constructor onto the constant
equivalence A — A, the theorem Univalence.thm states that au is an equivalence.

Proof. First, it is shown that the given map au has to be an isomorphism with as inverse
the previously constructed map ua. An isomorphism is the homotopy type theoretic
variant of a homotopy equivalence or more precisely, a bi-invertible map as in chapter 4
of [VACT13]. To prove that au is a isomorphism, it is necessary to prove the left-inverse
and right-inverse properties (up to a path). Both proofs use that compPath is just the
transitivity property of “=" and congruence.

o The left-inverse is proven with equivalence induction Equiv] on the property that
au is a left-inverse for equivalences e: au (ua e) = e).

e The right-inverse is proven with equality induction J on the property that ua is a
right-inverse for paths p: ua (au p) = p.

Although an isomorphism is not well-behaved (it is for example not a proposition), it
contains more information than equivalence and from an isomorphism, an equivalence
can be extracted. Applying isoToIsEquiv gives that ua : A = B — A ~ B is an
equivalence or isEquiv ua. Il

The theorem of univalence is then a simple consequence of an application of Univa-
lence.thm



4.3. APPLICATIONS OF THE PROOF OF UNIVALENCE 51

Theorem 4.2.8 (univalence). Given any A, B : U, there is an equivalence (A = B) =~
(A~ B).

Proof. The function lineToEquiv : A = B — A = B that maps paths directly on an
equivalence serves as a candidate for the inverse au in Univalence.thm. The necessary
condition that is still needed to apply Univalence.thm is the fact that lineToEquiv maps
the reflexive equality onto the trivial equivalence. This follows by proving that the un-
derlying maps of the image under lineToEquiv, pathToEquiv refl and idEquiv A are
equal with transport and using the fact that the property of being an equivalence is a
proposition, which means there can only be one such proof, such that the the equiva-
lences also have to be equal and pathToEquiv refl = idEquiv A. The proof is formalized
in pathToEquivRefl. Applying Univalence.thm to the map and this fact, gives a proof
that pathToEquiv is an equivalence. Assembling this into an equivalence gives a term of
the equivalence type (A = B) = (A = B), which is a proof of univalence. [

4.2.3 Univalence with topoi

The language of topoi can be used to discover more fundamental models of cubical type
theory and univalence [Ort19]. A topos is a category that behaves like the category of
sets. Examples of topoi are the category of sets and pre-sheaves.

First, the cubical type theory as presented in [Hubl6a] and this text is translated in
the language of topoi [Ort19], Sec. 5.3. Some definitions become much simpler such as
the De Morgan algebra used for the base category and the face lattice that were presented
in Def. B.2.1] become [Ort19], figure 5.4. This results in an alternative proof of univalence
that can be more insightful [Ort19]. Sec. 5.5. An overview of related foundational work
can be found in [Pit18] and [LOPS1§].

4.3 Applications of the proof of univalence

In , it was shown that the univalence axiom holds in cubical type theory. The
theorem of univalence allows to use all the concepts from univalent type theory, also called
homotopy type theory, in cubical type theory. Cubical type theory was implemented in
Cubical.Core.HoTT-UF of [MV19].

In combination with the standard library of Agda [DDG*19], concrete examples in
univalent type theory of reasoning with univalence can be produced.

4.3.1 Isomorphism invariant algebra

In the theories of groups and other algebraic structures, proofs are preferably done for only
one structure in an isomorphism class. The proofs for other structures in the same class
are not considered valuable because they do not add information. With the univalence
axiom, different proofs for properties of isomorphic structures are equal. In [Danl2] this
was proven already but not yet for a constructive interpretation of the univalence axiom.

Definition 4.3.1. A monoid A is a set A with an associative binary operation + 4 and
neutral element 0,4. A monoid without neutral element is called a semigroup and a
semigroup that is not necessarily associative is a magma. Given two monoids A and B,
an isomorphism f: A — B is:



52 CHAPTER 4. PROOF OF UNIVALENCE

opz2 : Opz2 No
opz2 (suc x , _) (sucy , ) = ((suc (x +vy)) , true)

s2 : myMagma _ lzero
s2 = record {
Carrier = Ne ;
_%_ = 0p:2

}

Figure 4.1: A magma s, in Agda is a term of the record type myMagma. This record
contains the carrier set, the operator and groups them into one object.

e a bijective set map A — B.

e structure-preserving, f(x +,vy) = f(x) +5 f(y) and f(04) =0p
Example 4.3.2. The following two objects are monoids:

e The usual natural numbers: s; = (N, (m,n) — m +n,0).

e The natural numbers without zero: sy = (Ng, (m,n) —»m+mn—1,1).
Between these two monoids there is an isomorphism f:s; —s_2:n+>n+ 1.

This example is mentioned in the introduction of [CD13], but it has not been verified
if their specific encoding of isomorphisms makes transport of properties work.

The goal of this section is to prove Th. in cubical type theory based on the
progress of [Danl2]. There encoding in the standard library (file Algebra.Structures
of [DDG'19]) contains definitions for monoids and other algebraic structures as record
types but uses an equivalence relation, also called setoid encoding. Because of the number
of laws that need to be supplied to define a monoid, the example was reduced to a custom
definition of magmas. In the case of magmas, the setoid encoding is overcomplicated, so
a simple custom definition of magmas was used instead, see Elé 4.1

Theorem 4.3.3. Let M be the type of magmas. Given two magmas S;, S, and_an
isomorphism f : s, — So, there is a term of the path type s, =,; Sy (from Prop. 123)
and proof of properties M — U can be transported along this path.

More specifically, if there is a proof of the fact that s; is commutative, there is also a
proof of the fact that s, is commutative.

Defining a path between structures

In this section, Th. will be proven. More precisely, it will be explained how a term
algPath of the type s1 = s2 can be defined in Agda. Such a term is path with endpoints s,
and s, that coincides at time ¢ with a “point-wise defined” algebraic structure, a magma.
So defining such path is equivalent with defining a magma at every time 7 that coincides
with the given s; and s, on its endpoints. To understand how this works, look at the
definition of magmas as record types. Record types are nested dependent sums and a path



4.3. APPLICATIONS OF THE PROOF OF UNIVALENCE 53

— 1
\

N No
fEq 1

-
>

Figure 4.2: A visualization of the transports that are implemented in .

zeroPath : (i : I) - (fEq i) = N
zeroPath i = A j - fEq (i A (~ j))

opi' : PathP (A i - Opz2 (fEq i)) op1' op2'
opi' 1 x y = transport (sym (zeroPath 1))
(op1 (transport (zeroPath i) x) (transport (zeroPath i) y))

Figure 4.3: The definition of an intermediate operator. Here, zeroPath is a function used
to return arguments to the space N defined with the help of a connection A.

between two terms of a dependent sum is composed of paths between the components
of the dependent sum. So for each component of the record type there should be path,
including the carrier sets and operators on both structures.

It can be proven using the map f : n +— n + 1 that there is an equivalence between
N and N, which gives by the univalence axiom (proven to hold in Def. B.4.1( by bh. 4) a
path N = Ne. This gives a path between one component in the term of the record types
of magmas.

Another component is the operator. In this case, the operator is actually a path be-
tween the two given operators op: and op2. This means that a point-wise defined operator
has to be defined such that coincides with the respective operators on its endpoints. The
construction of such an operator op:' at time i is illustrated in [Fig. 4.2 and implemented
in Fié. 43 by:

1. Transport the arguments of the operator opi' i over zeroPath i from the interme-
diate carrier set fEq i to the carrier set fEq 10 which is just N.

2. Apply the usual summation of N defined by op:.

3. Transport the result of the computation back to fEq i.

However, the operator op: ' from does not have the operator op: at its ending
point. It is necessary to proof that opi' il = opz2' = opz2. The proof of op2' = op: is
given in .

The rest of the definition of the intermediate point-wise defined algebraic structure
algPath of type s1 = s: is straightforward and can be seen in [Fig. 4.5.




o4 CHAPTER 4. PROOF OF UNIVALENCE

endLemma : op:2' = op:
endLemma i x y =
(op2' X vy
=( refl )

transport fEq (op: (transport (sym fEq) x) (transport (sym fEq) y))
=( transpR (op:1 (transport (sym fEq) x) (transport (sym fEq) y)) )
f (op1 (transport (sym fEq) x) (transport (sym fEq) y))
=( congz (A xy - T (op1 x y)) (transpL x) (transpL y) )
f (op1 (g x) (g vy))
=( gIsMorphism x y )
op2 xy ) 1

pathLemma : (PathP (A i - Op2 (fEq 1)) opi' opz2"')
= PathP ((A 1 - Op2 (fEq 1))) op: op:
pathLemma =
congz (PathP (A i - Opz2 (fEq i))) startLemma endLemma

opi : PathP (A i - Op2 (fEgq i)) op: op:
opi = transport pathLemma opi'

Figure 4.4: This lemma proves that the endpoint of the original intermediate operator
opi' is (path) equal to opz. This is used to define a new intermediate operator op: for
which op: il = op:.

algPath : s1 = s
algPath = A i - record {
Carrier = (fEq 1) ;

+ =op:i i

}

Figure 4.5: A term of the intensional identity type between the two algebraic structures is
a structure depending on a parameter i that has components depending on the parameter
i. Each component was point-wise defined before and can be assembled into a point-wise
structure.



4.3. APPLICATIONS OF THE PROOF OF UNIVALENCE 95

isCommutative : V {a 1} - (myMagma a 1) - Set a
isCommutative m =

(x y : (myMagma.Carrier m)) -

((myMagma. ¢+ m) x y) = ((myMagma. ¢+ m) y X)

com: : isCommutative s:
com: = +-comm

comz : isCommutative s:
comz transport (A i - isCommutative (algPath i)) com:

Figure 4.6: A magma is defined to be commutative if its operation is commutative on the
carrier type. Commutativity for natural numbers has already been proven in the standard
library. This proof can be transported along the term of equality s1 = s2 to give a proof of
commutativity of s.. Unfortunately, normalizing com2 results in a memory leak that may
be caused by the implementation of cubical type theory in the underlying library [MV19].
This also fails for concrete small values for com:, for example com: 4 6 but is currently
being resolved.

Transporting proofs

An application of the path s1 = sz between the two magmas, is that the proof of com-
mutativity of the first magma si can be transported to a proof of the commutativity of
the second magma sz, defined as

comz = transport (A i - isCommutative (algPath i)) coma.

See for the full code fragment. Although the property of being commutative is
very simple, it can be generalized to more complicated properties and algebraic structures.
The complete code of this implementation can be found on [Vanl9] and verified with the
installation instructions.

Conclusion

This example shows that “isomorphism-invariant” mathematics is (partially) possible as
claimed in [VACT13] in practice with magmas using a constructive interpretation of the
univalence axiom.

The core requirements to be able to implement this example were

o The construction of a homotopy type equivalence f between the carrier types. This
is roughly a bijection for discrete set-like types or h-sets as defined in Def. .1.2.15.

o A proof that the inverse to g is a morphism

e The proof of univalence and more specifically the ua map constructed with the Glue
type.

The construction in this example works by constructing a path of magmas. The paths
between the components of the magmas are:



o6 CHAPTER 4. PROOF OF UNIVALENCE

transpR : (z : N) - transport fEq z = f z
transpR z = Univalence.uaB fEquiv z

baseIndLemma : (A : Type ) -
(A 1 - ua (idEquiv A) (~ 1)) = ua (invEquiv (idEquiv A))
baseIndLemma A =
sym ( ua (idEquiv A) ) =( ualdEquiv )
sym refl =( refl )
refl =( sym ualdEquiv )
ua (idEquiv A) =( cong ua (equivEq (idEquiv A) (invEquiv (idEquiv A)) refl) )
ua (invEquiv (idEquiv A)) n

transpLLemma: : sym (ua fEquiv) = (ua (invEquiv fEquiv))
transpLLemma: = Equiv]
(AM_ e - sym (ua e) = ua (invEquiv e)) (A A - baseIndLemma A)  fEquiv

transpL : (z : No) - transport (sym fEq) z = g z
transpL z =
transport (sym fEq) z =( (cong (A p » transport p z) transpLLemma:i) )
transport (ua (invEquiv fEquiv)) z =( refl )
transport (ua gEquiv) z =( (Univalence.uaB gEquiv z) )
gzl

Figure 4.7: These lemmas proof that the transport used in are just applications
of the given maps that are morphisms. To prove this lemmas it was necessary to use
equivalence induction (based on a hint in [Vez19] and meanwhile implemented in [MV19)])
and the computation rule for univalence uap.

e a path between the carrier types constructed using ua.

« an operator that starts and ends at the operators of the given algebraic structures
defined using characterizations of left and right transport (see )

This means that this implementation of two specific magmas could be likely general-
ized to general magmas, monoids and isomorphisms between these structures. For this
intermediate proofs for properties such as associativity and the neutral element could be
defined with the lemmas of and a similar proof as in . However, due to a
lack of time this has not been tried explicitly yet.

Applying a (weak form of) the structure invariance principle in cubical type theory is
not the easiest approach for proving algebraic properties up to isomorphism. However,
not all structures in mathematics are as well-known as natural numbers and the structural
and overly rigorous approach that such type theories require can be more beneficial in a
general setting, see also the discussion in . At least in this case of simple traditional
algebra, it seems easier to use specialized software such as [HBJ 18] to carry out algebraic
computations and proofs. There are other examples of property transports such as the
implementation of a transport of properties between unary and binary encodings of natural
numbers in the file Data/BinNat/BinNat.agda in [MV19].



4.3. APPLICATIONS OF THE PROOF OF UNIVALENCE o7

N. Name Day Month Year
4 John 30 5 1956

42 Sun 20 3 1980

N. Name Month Day Year
4  John 5 30 1956

42 Sun 3 20 1980

Table 4.1: The European and American databases on [Licl13b], p. 47.

4.3.2 Generic datatypes

Apart from mathematical applications, there are also more practical applications. Datatypes
in mainstream programming languages such as Java can be parametrized by parameters.
For example, a list can be parametrized by the type of its contents. The resulting datatype
is then called generic, the approach is called generic programming. There might be mul-
tiple ways of implementing a datatype and several implementations might be equivalent.
This is were the univalence axiom comes into play.

Assume two date representations are given: “(month, day)” and “(day, month)”. These
representations are equivalent by the swapping map. Univalence gives a path between the
equivalent representations. Assume databases are generically defined for a certain date
representation. For example, the type of databases is defined as List (NxStringx (X xN))
where X = N x N is any type of date representation. The goal is to prove that the
databases given in table @ are equal.

The path between representations is lifted to a path on the level of the type of
databases. The lifted path becomes a path between two different databases using two
different but equivalent representations. Because paths behave like equality, the two
databases are equal. The example has been implemented in the file Cubical.Experiments.Generic
of [MV19].

This simple example shows that the implementation of univalence in cubical type the-
ory allows a programmer to treat generic datatypes as the same datatype up to equivalence
of the parameter type.

4.3.3 Formalizing algebraic topology
Higher inductive types

Higher inductive types are a concept coming from [VACT13|. A higher inductive type
is a type that has formation and construction rules as other types, but these rules are
accompanied by additional typing rules stating how to produce terms of the path types
between its terms. In other words, the type is generated by constructors and equalities.
Higher inductive types are useful in synthetic homotopy type theory.

The first attempts at using higher inductive types in the cubical pre-sheaf model date
from [LB15], [Hubl6a] and [CCHM16] but it was only until recently that the semantics
were worked out in [LS17] and [CHM1§].



o8 CHAPTER 4. PROOF OF UNIVALENCE

Figure 4.8: A topological representation of the torus [Din05].

Example 4.3.4. The circle S' as a topological object is defined as line of which the
endpoints are identified. In the language of higher inductive types this becomes two con-
structors: base : S', loop : base = base.

Example 4.3.5. The torus is defined similarly, but now there is an extra loop which is
introduced with an extra constructor. In addition, both loops intersect, meaning that doing
one loop is topologically equivalent to taking the other loop. This is written as a path that
starts and ends at the second loop: square : PathP (A i —ai=a i) b b. See|Fig. 4.8
Another way to construct the torus is given in [VACT13], Sec. 6.6.

Algebraic topology

Based loop spaces in algebraic topology contain the loops in a topological space that start
and end at a particular point. Because there can be many loops, the spaces become
very big. An operation can be added to a loop space that composes two loops, called
concatenation. This type of space can be generalized to higher-dimensional based loop
spaces by iterating the loop space construction. These higher-dimensional loop spaces can
be interpreted as spaces that contain loops between loops and also have a concatenation
operation. Loop spaces with such an operation in a topological space X are denoted by
Q,(X) (omitting the base point), but the operation does not have to be well-behaved.
This is were homotopy comes into play. Loops can be considered up-to path-homotopy.
This means in practice that an equivalence relation is defined on the loop space, identify-
ing the loops that can be deformed without tearing into each other. The resulting space
with this equivalence relation based on continuous deformations retains the concatena-
tion operation but is more well-behaved. The concatenation operation is invertible and
also commutative in higher-dimensional loop spaces with such an equivalence relation, a
result that is called the Eckmann-Hilton theorem (see [VACT13], 2.1.6. Because the con-
catenation is invertible, the loop spaces form groups for this operation, called homotopy
groups. Given a topological space X, this is denoted by m;(X) where the base point is
often omitted for path-connected topological spaces. Homotopy groups are the same for
homotopy equivalent spaces, they are homotopy invariants. The first homotopy group is
called the fundamental group. For more information on general algebraic topology, see
the text [HatO1].

As mentioned in , types in univalent type theory behave like topological spaces.
Equalities in univalent type theory correspond to paths and this interpretation can be
extend to more concepts of algebraic topology. Loop spaces can be defined and studied
in univalent type theory in the same way they are defined in algebraic topology.

Example 4.3.6. The first loop space of S is formalized in Cubical.HITs.S1.Base as
Q(S!) = (base = base) for a fized base. So this type consists of all the identifications of



4.3. APPLICATIONS OF THE PROOF OF UNIVALENCE 59

the base point with itself through a term of the path type. In the context of the univalence
axiom, this path type can have multiple terms that represent paths. So the terms correspond
to closed paths which are loops in S' as a topological space. The loops are generated by
iterating the reflexive lLoop from the definition of S' as a higher inductive type. Because
there are Z ways of iterating this loop, it can be shown that Q;(S') ~ 7.

General loop spaces of types are defined by iterating the {2 construction. In for-
mal homotopy type theory, general loop spaces are denoted by ,(X). However, these
type-theoretic loop spaces can be turned into homotopy groups m;(X) using a truncation
operation. The resulting homotopy spaces are quite complicated to compute for high
values of 7. The proofs use the Hopf fibration and long exact sequences. Many cases were
already proven in homotopy type theory in [VAC*13], Ch. 8. See also [Licl3a] for a
survey of most results that have been proven in homotopy type theory and the methods
used. One important result that was proven is:

Theorem 4.3.7 ( [VAC*13], Th. 8.10.1). There exists a k such that for all n > 3,
7Tn+1<5n) = Zk

A special case is the following theorem from homotopy type theory:
Theorem 4.3.8 ( [Brul6]). Q,(S%) ~7/7,

In the presence of the univalence axiom, the equivalence is also an equality. The proof
of this theorem uses advanced concepts such as the Blakers-Massey theorem, the James
construction and Gysin exact sequences. See [Brul6| for the complete proof.

A summary of the concepts used in this constructive proof compared to the proof
in classical algebraic topology is given on [Brul6], p. 123. The author mentions in the
conclusion that cubical concepts are not always perfectly suited for this proof.

Nevertheless, there have been attempts at implementing the proof in cubical type
theory based on the sketch in [Brul6], Ap. B. The first implementation was in the
module Examples.Brunerie of the library [CCHM15] but is very long. The latest version
is implemented in Agda and can be found in the file Cubical.Experiments.Brunerie
of [MV19].

In these implementations, the definition of n in the expression Q,(S%) ~ Z/nZ is
formalized as an Agda expression called brunerie or the “Brunerie number” that makes
use of the univalence axiom. The expression is the application of a composition of several
complicated functions to a representation of S3 as a higher inductive type. Some of
these functions use the concepts necessary for the proof of univalence such as gluing but
do not reference the theorem of univalence explicitly. There are signs that the proof
of canonicity in cubical type theory (see Th. @) can help in computing or reducing
brunerie. Unfortunately the expression brunerie does not reduce to the number 2 after
hours of computation time. The process of reducing was sped up, but the length of the
shortest reduced form of brunerie was only reduced from a length in characters of order
108 to 105 when rewriting the original formalized proof [CCHM15] in [MV19], according
to [Brulg].

Recently, there has been a lot of ongoing activity in the development of the Agda Cu-
bical library and bug-fixes can have eliminated some reasons for the lack of normalization
of brunerie, but it still does not normalize. Although this example still has problems, it
shows how univalence could be used to formalize proofs of algebraic topology and verify
their correctness, at least for relatively low order homotopy groups.




60

CHAPTER 4. PROOF OF UNIVALENCE



Chapter 5

Related work

5.1 Other applications

Until now, most applications of cubical type theory are related to implementing simple
inductive types and higher inductive types. Most mathematical concepts from univalent
type theory are defined in part two of [VACT13]. These chapters only use higher inductive
types which are already implemented in cubical type theory and some applications of
univalence. So more advanced concepts can also be formalized in cubical type theory.
Concepts from univalent type theory that_can be useful and have not been implemented
with the help of cubical type theory and [MV19] include:

o Structuralism is a view in the philosophy of mathematics that states that isomorphic
structures are equal. Structuralism in topology is called synthetic topology and
its use in homotopy type theory is discussed in [Shul7|. Structuralism for general
mathematics in relation to univalent type theory is discussed in [Awol4] and [Tsel6].
The structure identity principle defined in [VACT13], Th. 9.8.2 and [Acz12] is a
version of this principle in homotopy type theory that should enable the transport
of proofs between isomorphic structures. This principle could also be seen as a
generalization of the simple example in Eec. 4.3.1] to any category. The principle
has not been formalized in all generality yet in cubical type theory, but if this was
done, it would be much easier for a practising mathematician to identify isomorphic
structures and proofs, one of the “main benefits” of homotopy type theory. Right
now, software such as [HBJ" 18] has to be used to reason about isomorphic algebraic
structures in practice.

e The application in needs the use of the univalence axiom. The theory of
algebraic topology has some other theorems that can be formulated in homotopy
type theory and have proofs using univalence such as Freudenthal, Blakers-Massey
and Seifert-Van Kampen. These theorems can be used to compute homotopy groups
in algebraic topology by putting information about smaller parts of a space together.
The proofs have been formulated in the programming language Agda as a library
[HBC*1§], based on the theorems that were more informally presented in [VAC™13],
Ch. 8. For now, shows that computations do not succeed for the fourth
fundamental group of S2, but computations of other homotopy groups of topological
spaces could be more efficient when [HBCT18§] is combined with an interface to
cubical type theory, for example through [MV19].

61



62 CHAPTER 5. RELATED WORK

o Next to homotopy groups, there are homology groups of topological spaces as well.
For a fixed topological space, these do not necessarily have to be the same as the
homotopy groups. Recently, synthetic homology groups have been studied in homo-
topy theory with filling operations of cubical type theory in [Gral8al], based on the
initial approach to synthetic homotopy theory in [LB15]. The results in [Gral8a]
have not been completely formalized in cubical type theory because the reasoning
with higher-dimensional paths in cubical type theory posed some challenges. There
exist computational systems for computing homology (and homotopy) groups that
do not make use of type theory such as [GSST99]. The text [Gral8a] uses type
theory to improve on this. Type theory may be be better suited for solving com-
plex new problems in computational topology than just trying to do this with the
algorithms in [GSS*99].

A list of open problems for univalent type theory is on [SRvD"19] and contains subjects
such as semantics, some of which have been solved with cubical type theory. There are
also other open problems that remain relevant for future improvements on cubical type
theory because cubical type theory is an extension of univalent type theory.

5.2 Cartesian computational type theory

A completely different approach is taken in Pittsburgh to cubical type theory and proving
the univalence axiom in Pittsburgh. This version does have a different syntax and does
not (directly) make use of categorical semantics but also admits a proof of univalence. The
Pittsburgh approach is called cartesian cubical computational type theory and discussed
in [ABC*17], [AHH18]. This version of cubical type theory is based on an extensional
variant of intuitionistic type theory and has an identity type, denoted by “=" that is
more like “equality by definition”. The identity “=" is called the extensional identity type
and satisfies the uniqueness of identity proof principle opposed to the intensional identity
type Def. and the path type of cubical type theory. Another path identity type is
introduced on top of the theory that is similar to the path type in Prop. IME

5.2.1 Computational type theory

Cartesian cubical computational type theory is based on computational type theory. This
theory extends type theory with quotients of types, set comprehension types, partial re-
cursive function types, intersection types and other special types [Conl1], p. 6. Computa-
tional type theory has been implemented in the proof assistant NuPRL and the underlying
formal theory was described using partial equivalence relations (PERs) in [AlI87] accord-
ing to [AHH18], which was later generalized to a set-theoretic semantic model in [Har91].
A historical overview of the relation between computational type theory and Def.
is given in [Con03] and [Conl5]. A computational type theory is usually built as follows:

o First, there is a definition of a set of “closed terms” which are like the terms of the
intensional type theories, but they are not typed, in the sense that the introduction
of types comes later. If M and N are closed terms, then new closed terms are
formed by constructors such as

Ax.M,M(N),fst(M),snd(M),0,M, ...



5.2. CARTESIAN COMPUTATIONAL TYPE THEORY 63

o There are operational semantics defined on the closed terms to specify how they
compute. Operational semantics describe how evaluation of terms influences evalu-
ation of other terms, evaluation of the term M to M, is denoted by M + M. The
expression M || M’ denotes that both terms M and M’ reduce to the same normal
form. Examples of operational semantics are given on [Har91], p. 75.

o A type A is introduced as a partial equivalence (transitive and symmetric), called
a PER and denoted by [A] over the terms. Then the term a is of type A if and
only if [A](a,a), also denoted a € A. In that case a is called a canonical value of
type A. So types are defined by all the closed terms that are reflexive according to
a particular PER.

o Every type A has an identity for terms a, b defined by setting a = b if and only if
[A](a,b). In this case, a,b are said to have equal canonical values.

5.2.2 Cubical extensions

Cartesian cubical computational type theory is based on results in the technical report
[AHH17] and [AHH18]. The more informal text [Benl§] gives an introduction in the
style of [VACT13]. The base category of cartesian cubical computational type theory is
not explicitly mentioned because dimension variables are not considered as independent
objects. This implies that the theory is not formally proven to be consistent in a pre-sheaf
model which was done for the cubical type theory, introduced in earlier chapters of this
text, in [Hub16al], part 2. Instead, dimension names such as x, y, z are treated as variables
that can be substituted by dimension terms r, where r is either an endpoint of the unit
interval (0 or 1) or a dimension name. This alloes substitutions of the form (z/y) (or
in alternative notation x = y) that can be considered as diagonals in a square. This
can also be seen as adding terms of the form ¢ = (z = y) to the face type [ of cubical
type theory [Hubl6a]. This is where the name “cartesian” comes from. Dimension names
are grouped in dimension contexts ¥ and types are PERs that are indexed by dimension
contexts. Opposed to the theory in previous chapters (based on [Hub164]), there is no
lattice structure on the dimension variables occurring in a dimension context W, which
means that substitutions A(i/i A j) do not make sense any more.

Operations from cubical type theory that are crucial for applications use the lattice
structure such as the filling operation given in Def. . According to [M618d], the solu-
tion is to give a different composition operation, a stronger one. This operation is defined
in [AHH18], Sec. 4 or [M618d]|, p. 18. This new composition operation generalizes the fill-
ing and composition operation. It is however split up into two operations: homogeneous
composition hcomp and coercion coe. According to [M618d], this splitting, makes certain
implementations shorter.

5.2.3 Univalence

There is also an intensional path equality type defined in [AHH1§] as is done in [Hub164].
To turn equivalences between types of some universe into paths between those types and
prove the univalence axiom, there are two possibilities in cartesian cubical computational
type theory:



64 CHAPTER 5. RELATED WORK

« Introduce Glue types as in , after [Hub16a]. This approacht was also taken in
a previous version of cartesian cubical computational type theory [ABC*17].

o In [AHH1S]|, the Glue type is weakened to a type called V-type with simple typing
rules. On top of the V-type, instances of the hcomp and coe composition operations
can be defined.

Together with the extensional equality that comes with all computational type theories
and the proof of univalence, this turns cartesian cubical computational type theory into
the first two-level homotopy type theory. Other such two-level type theories did not,
but this theory satisfies canonicity of booleans according to [AHH18|. This canonicity
is however equivalent to canonicity of numerals (see Th. p.3.2). The theory was also
extended to include definitions for higher inductive types in [CH18] and [CH19]. The
biggest advantage of this theory seems according to [M618d] to be that the proof of
univalence with V-types can be more efficient and allow an easier computation of the
Brunerie number that was introduced in Sec. 433

5.2.4 Implementations

Cartesian cubical computational type theory was implemented in Haskell [MA18] and in
the language RedPRL [SHA 18] with a proof of univalence that is slightly longer than the
one in [MV19]. Development was continued on a successor called RedTT [SHC" 18] which
has many similarities but also extra features such as extension types according to [M618al].
Development on RedTT stopped by the end of 2018, but the library code in [SHC'1§]
still contains an alternative proof of univalence. The syntax of RedTT is different from
[IMV19], but the structure of the libraries is very similar. The composition and composition
operations used in [SHC"18] have also been implemented in Agda Cubical in [MV19] in

the file Foundations.CartesianKanOps.

5.3 Open challenges

5.3.1 Strongly normalizing

Type theories are very expressive formal theories. It is important to know whether a type
theory exhibits nice behaviours when implemented. The type theory in Def. , which
was described in [MI75] is a “nice” theory because it is strongly normalizing: there is no
infinite sequence of reductions. This implies decidability of type checking, the procedure
of checking whether a term does inhabit a certain type. The property of being strongly
normalizing has not been proven at all for cubical type theory. It is noted in [CCHMI16]
that this could be done with resizing rules and in [Hub16a] it is conjectured that the proof
of canonicity could be somehow adapted, see Th. . The method of “computation and
evaluation” in [Abel3] can be useful but this has not been verified yet.

The confluence of terms means that two sequences of reductions starting from the
same term can be made to converge again. It is mentioned in the context of homotopy
type theory in [HC11]. Confluence always holds in a strongly normalizing type theory
but has also not been proven yet.




5.3. OPEN CHALLENGES 65

5.3.2 Canonicity

A weaker property of type theory than strongly normalizing is the property of canonicity.
It says that every term can be written (uniquely) as a reduced form, containing only a
finite amount of applications of the constructors of its type. Canonicity does not imply
strongly normalizing and is usually stated for the types of natural numbers or booleans.
Canonicity for general types is never proven because it does not even hold for function
types in most type theories.

Canonicity for homotopy theory was conjectured by Voevodsky according to [Brul§]:

Conjecture 5.3.1 (Homotopy canonicity). Given a term t : N constructed using the
univalence axiom, there are two terms u: N and p : t = u (that can involve univalence)
such that u does not involve the univalence axiom.

This conjecture can fail to hold when axioms such as function extensionality (see
Ex. ) or univalence are added to the type theory. The conjecture was not solved for
homotopy type theory but was solved for its extension, cubical type theory, in [Hub16a]
and [Hub174]. The proof was improved by removing a necessary condition for path lifts
in [CHS19].

This makes cubical type theory into an example of a theory in which both canonicity
and univalence holds. The statement of canonicity for cubical type theory is slightly
different from the original conjecture (see [Hubl6a], p. 125):

Theorem 5.3.2 (Cubical canonicity). given a context I of the form iq,...,i; : | and a
derivation of I F u : N (where N is an inductive type), there is a unique n € N (in a
meta-theory) with I = u = suc™ zero : N for some n € N. This n can more-over be
effectively calculated (in a meta-theory).

There is also_another version of canonicity in literature called canonicity of booleans
(see [AHH1§] or Eec. 5.2), but because numeral values give rise to boolean expressions and
the other way around, canonicity of booleans is equivalent with canonicity of numerals.
When cubical canonicity holds, at least every basic type (the numerals and similar types)
has a standard form that can be computed, but in practice, computing this standard form
does not always work.

For example, in , the proof of canonicity tells that there is a term

Idy(brunerie, suc”zero)

and that n can be computed to be 2. However, the computation of the expression brunerie
does not result (quickly enough) in a numeral that uses only a finite number of applications
of suc. This can be because the process of reducing a term of the N type is not the most
effective way of computing the number n of the standard reduced form and the most
effective implementation for the effective procedure for computing the number 2 in the
meta-theory (or internally) is not given explicitly in [CHS19].



66

CHAPTER 5. RELATED WORK



Conclusion

This text gave an overview of the concepts behind the cubical set model and cubical type

theory (see ) which is an extension of univalent type theory. With the help of the
Glue construction that is part of the cubical set model (see there is a proof the

univalence axiom in cubical type theory. This was discussed in (Ch. 4. The application
of the proof of univalence in cubical type theory to isomorphic algebraic structures in
was not immediate and required defining severa new constructions. The eventual
application returned a path between algebraic structers over which properties of structures
could be transported. However, due to bugs in the implementation of numerals in the
library, this transports could not be tested out. In standard univalent type theory it
would not be possible to even define the transports of such properties, but with the help
of cubical type theory this became (partially) possible.

Studying these formalized proofs in cubical type theory can give a topological intuition
about using the structure identity principle (see [Acz12]) in computer assisted proofs.
Having this intuition becomes very useful with the implementation of cubical type theory
because it allows to improve and understand the theorems from homotopy type theory
using the primitives of the cubical set model which are in essence cubes together with a
composition and glueing operation.

However, it is still an open challenge to prove normalizability and use canonicity in
practice for formalizing fundamental theorems coming from homotopy theory, see Sec. 5.3.
There also seem to be problems with the current implementations of Glue types and there
is ongoing work on trying to replace them with more efficient alternatives such as V-types
(see Eec. 5.2.3), but cubes may not be a perfect solution after all according to [M(18b].

Univalent foundations of mathematics (see for future applications Eec. 1.3. l and Sec. 5.1))
might be useful in the future, but without computational interpretation, not every proof
that uses univalence can be verified, or at least not by computation. The implementation
of the primitives in cubical type theory will have to be optimized to increase the overall
efficiency of the normalization process.

67



Index

oo-groupoid, @

abstract nonsense, EI
axiom K,
axiom of choice, EI

base category,

canonical value, @
canonicity, @

canonicity of booleans, % @

canonicity of numerals

cartesian cubical computational type the-

ory,
categories with families @

category of elements, %
category with families,

circle,

coherence laws, @
composition structure, @
computation rule,
computational type theory, @
concatenation, ﬂo

confluence,

connections,

constructivism,

constructor,

context,

context category,

context extension,

context morphism,

context restriction by extent ¢, @
contractible

cubical set,

cubical type theory, @, @
Curry-Howard correspondence, E

decidability,
decidability of type checking, @
dependent product,

De Morgan aﬁllgebra, @

dependent property, E
dependent sum,
dependent type,
dependent types,
dimension context
dimension names
dimension term

directed graph,

directed reflexive graph, %
directed reflexive graphs,
discrete types,

eliminator, H

empty context,

equal canonical values, @
equivalence, [15,
equivalence induction, @
equivalence_of categories,
extensible,

extensional

extent, ,

face latticeg

face maps,

families of sets @

fibrant type, @

filling, @

formal type theory, H

formation rule,

free De Morgan algebra, @
function extensionality axiom, @
fundamental group, é

generalized extent, @
generic programming,
groupoid, @
groupoid model, Iﬁ

h-level,
h-prop
h-set,

68



INDEX

higher inductive type,
homotopy equivalence,

homotopy fibre,
homotopy groups,
homotopy hypothesis @
homotopy of paths, @

homotopy type theory, [15, @
Hopf fibration,

implicit arguments, H
indiscernibility of identicals, @, @
inhabited,

intensional identity type, @
interval object, @y

intuitionism

involution,

isomorphism,

judgement, E
judgemental equality, @

Kan extension property, @
Kan type,

language of topoi
lattice structure
loop spaces, b,

magma, EI

membership judgement, E
modal homotopy type theory, @
monoid,

monoidal,

natural deduction, B

nested directed reflexive graph, @
nominal sets,

normalizability,

NuPRL,

operations, @

partial element of extent ¢, @
path induction,

path type,
PER,
pre-sheaf,

pre-sheaf model with base category, @
principle of excluded middle,
program extraction,

69

propositional equality, @
quasi-inverse, @

reflective subcategory, @
reflexivity,

restriction,

Russell paradox, H

semigroup,

set of names,

setoid encoding,
sheaves,

simple types,

strongly normalizing, @
structure identity principle, EI
substitutions, ﬁ,@
sum type,

symmetric,

system,

term,

terms,

torus,
transitive,
transitivit
two-level,

type,

type theory, @
types,

typing rules, E

uniqueness of identity proofs principle, I@
univalence, [14],

univalent,

univalent type theory, @, @

universal extension property, @

universe,

weak composition operation, @



70

INDEX



Bibliography

[ABC*17]

[Abel3]

[ACD*+19]

[Acz12]

[ADH'19]

[AHH17]

[AHH18]

[AK15]

[AL187]

Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Kuen-bang Hou,
Robert Harper, and Daniel R. Licata. Cartesian cubical type theory. 2017.

Andreas Abel. Normalization by evaluation: Dependent types and impred-
icativity. March 2013. Available at http://www2.tcs.ifi.lmu.de/~abel/
habil.pdf.

Andreas Abel, Jesper Cockx, Nils Anders Danielsson, Ulf Norell, An-
drés Sicard-Ramirez, et al. Agda 2.5.4.2: dependently typed program-
ming language / interactive theorem prover, April 2019. Available at
https://github.com/agda/aqgda.

Peter Aczel. Homotopy type theory and the structure identity principle,
February 2012. Available at https://www.newton.ac.uk/files/seminar/
20120207160016301-153011.pdf.

Emilio Jestus Gallego Arias, Maxime Dénes, Hugo Herbelin, Pierre-Marie
Pédrot, Matthieu Sozeau, Enrico Tassi, et al. Coq 8.9.0: a formal proof
management system, January 2019. Available at https://github.com/coq/
cog.

Carlo Angiuli, Kuen-Bang Hou, and Robert Harper. Computational higher
type theory iii: Univalent universes and exact equality. December 2017.
Available at https://arxiv.org/pdf/1712.01800.pdf.

Carlo Angiuli, Robert Harper, and Kuen-Bang Hou. Cartesian cubical
computational type theory: Constructive reasoning with paths and equali-
ties. In 27" EACSL Annual Conference on Computer Science Logic (CSL
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. Available
at https://www.cs.cmu.edu/~rwh/papers/cartesian/paper.pdf.

Thorsten Altenkirch and Ambrus Kaposi. Towards a cubical type the-
ory without an interval. 2015. Available at https://akaposi.github.io/
towards a cubical tt without interval.pdf.

Stuart Allen. A non-type-theoretic definition of martin-16f’s types.

April 1987.  Available at nuprl-web.cs.cornell.edu/documents/Allen/
NonTypeTheoreticDefinition.ps.

71


http://www2.tcs.ifi.lmu.de/~abel/habil.pdf
http://www2.tcs.ifi.lmu.de/~abel/habil.pdf
https://github.com/agda/agda
https://www.newton.ac.uk/files/seminar/20120207160016301-153011.pdf
https://www.newton.ac.uk/files/seminar/20120207160016301-153011.pdf
https://github.com/coq/coq
https://github.com/coq/coq
https://arxiv.org/pdf/1712.01800.pdf
https://www.cs.cmu.edu/~rwh/papers/cartesian/paper.pdf
https://akaposi.github.io/towards_a_cubical_tt_without_interval.pdf
https://akaposi.github.io/towards_a_cubical_tt_without_interval.pdf
nuprl-web.cs.cornell.edu/documents/Allen/NonTypeTheoreticDefinition.ps
nuprl-web.cs.cornell.edu/documents/Allen/NonTypeTheoreticDefinition.ps

72

[Al£17]

[Awo14]

[Awo16]

[Bael7]

[Bau09]

[Baul3]

[BCAMHIS]

[BCH14]

[BCH18]

[BD77]

[Ben18§]

[BG70]

[BGL*16]

[BLOS]

BIBLIOGRAPHY

Thorsten Altenkirch. Introduction to Homotopy Type theory, lecture notes.
2017. Available at http://www.cs.nott.ac.uk/~psztxa/ewscs-17/notes.
pdf.

Steve Awodey. Structuralism, invariance, and univalence. March 2014. Avail-
able at https://www.andrew.cmu.edu/user/awodey/preprints/siu.pdf.

Steve Awodey. Notes on cubical models of type theory. June 2016. Available
at https://github.com/awodey/math/blob/master/Cubical/cubical.pdf.

John Carlos Baez. Vladimir voevodsky 1966-2017. Blog
post on https://johncarlosbaez.wordpress.com/2017/10/06/
vladimir-voevodsky-1966-2017/, October 2017.

Andrej Bauer. Constructive gem: irrational to the power of irrational that
is rational, December 2009.

Andrej Bauer. Socio-technological aspects of making the hott book, 2013.
Available at https://www.ias.edu/ideas/2013/bauer-hott-book.

Edwin Brady, David Thrane Christiansen, and Jan de Muijnck-Hughes.
Idris 1.3.1: Code generation. Available at http://docs.idris-lang.org/
en/latest/tutorial/miscellany.html#c-target, April 2018.

Marc Bezem, Thierry Coquand, and Simon Huber. A model of type theory
in cubical sets. In 19" International Conference on Types for Proofs and
Programs (TYPES 2013), volume 26, page 107-128, 2014. Available at www.
cse.chalmers.se/~coquand/modl. pdf.

Marc Bezem, Thierry Coquand, and Simon Huber. The univalence axiom
in cubical sets. Journal of Automated Reasoning, June 2018. Available at
https://arxiv.orqg/pdf/1710.10941.

Raymond Balbes and Philip Dwinger. Distributive lattices. 1977.

Bruno Bentzen. Cubical informal type theory: the higher groupoid structure.
arXiv, June 2018.

De Bruijn and Nicolaas Govert. The mathematical language automath, its
usage, and some of its extensions. In Symposium on automatic demonstra-
tion, page 29-61. Springer, 1970.

Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Mike Shulman,
Matthieu Sozeau, and Bas Spitters. The hott library: A formalization
of homotopy type theory in coq. December 2016. Available at https:
//arxiv.orqg/pdf/1610.04591.

Daniel Bienstock and Michael A. Langston. Chapter 8 algorithmic implica-
tions of the graph minor theorem. In Network Models, volume 7 of Handbooks
in Operations Research and Management Science, page 481-502. Elsevier,
1995.


http://www.cs.nott.ac.uk/~psztxa/ewscs-17/notes.pdf
http://www.cs.nott.ac.uk/~psztxa/ewscs-17/notes.pdf
https://www.andrew.cmu.edu/user/awodey/preprints/siu.pdf
https://github.com/awodey/math/blob/master/Cubical/cubical.pdf
https://johncarlosbaez.wordpress.com/2017/10/06/vladimir-voevodsky-1966-2017/
https://johncarlosbaez.wordpress.com/2017/10/06/vladimir-voevodsky-1966-2017/
https://www.ias.edu/ideas/2013/bauer-hott-book
http://docs.idris-lang.org/en/latest/tutorial/miscellany.html#c-target
http://docs.idris-lang.org/en/latest/tutorial/miscellany.html#c-target
www.cse.chalmers.se/~coquand/mod1.pdf
www.cse.chalmers.se/~coquand/mod1.pdf
https://arxiv.org/pdf/1710.10941
https://arxiv.org/pdf/1610.04591
https://arxiv.org/pdf/1610.04591

BIBLIOGRAPHY 73

(BM12]

[Bro05]

[Brul6]

[Bruls§]

[BVO6]

[CCHM15]

[CCHM16]

[CD13]

[CFLO5]

(CH1S]

[CH19]

[CHM18]

[CHS19]

Jean-Philippe Bernardy and Guilhem Moulin. A computational in-
terpretation of parametricity. In 2012 27" Annual IEEE Sympo-
sium on Logic in Computer Science, page 135-144. IEEE, 2012.
Available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.908.7845&rep=repl&type=pdf.

Luitzen Egbertus Jan Brouwer. Life, art and mysticism, 1905. Available at
https://projecteuclid.org/download/pdf 1/euclid.ndjfl/1039886518.

Guillaume Brunerie. On the homotopy groups of spheres in homotopy type
theory. PhD thesis, 2016. Available at https://arxiv.org/pdf/1606.05916.
pdf.

Guillaume Brunerie. Experiments in cubical type theory. Slides from a talk
given at UCSanDiego available at https://quillaumebrunerie.github.io/
pdf/cubicalexperiments.pdf, January 2018.

John Michael Boardman and Rainer M. Vogt. Homotopy invariant algebraic
structures on topological spaces, volume 347. Springer, 2006.

Thierry Coquand, Cohen Cyril, Simon Huber, and Anders Mortberg. Cubi-
caltt: Experimental implementation of cubical type theory. GitHub reposi-
tory available at https://github.com/mortberg/cubicaltt, February 2015.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mértberg. Cubi-
cal type theory: a constructive interpretation of the univalence axiom. arXiv
preprint arXiv:1611.02108, 2016.

Thierry Coquand and Nils Anders Danielsson. [somorphism is
equality. Indagationes — Mathematicae,  24(4):1105-1120,  2013.
Available at http://www.cse.chalmers.se/~nad/publications/

coquand-danielsson-isomorphism-is-equality.pdf.

Luiz Cruz-Filipe and Pierre Letouzey. A large-scale experiment in executing
extracted programs. 2005. Available at https://www.irif.fr/~letouzey/
download/lcf pl extr05.pdf.

Evan Cavallo and Robert Harper. Computational higher type theory iv:
Inductive types. January 2018. Available at https://arxiv.org/pdf/1801.
01568.

Evan Cavallo and Robert Harper. Higher inductive types in cubical compu-
tational type theory. https://www.cs.cmu.edu/~rwh/papers/higher/paper.
pdf, January 2019. (Accessed on 05/12/2019).

Thierry Coquand, Simon Huber, and Anders Mortberg. On higher inductive
types in cubical type theory. arXiv preprint arXiv:1802.01170, 2018.

Thierry Coquand, Simon Huber, and Christian Sattler. Homotopy canonicity
for cubical type theory. February 2019. Available at https://arxiv.org/abs/
1902.06572.


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.908.7845&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.908.7845&rep=rep1&type=pdf
https://projecteuclid.org/download/pdf_1/euclid.ndjfl/1039886518
https://arxiv.org/pdf/1606.05916.pdf
https://arxiv.org/pdf/1606.05916.pdf
https://guillaumebrunerie.github.io/pdf/cubicalexperiments.pdf
https://guillaumebrunerie.github.io/pdf/cubicalexperiments.pdf
https://github.com/mortberg/cubicaltt
http://www.cse.chalmers.se/~nad/publications/coquand-danielsson-isomorphism-is-equality.pdf
http://www.cse.chalmers.se/~nad/publications/coquand-danielsson-isomorphism-is-equality.pdf
https://www.irif.fr/~letouzey/download/lcf_pl_extr05.pdf
https://www.irif.fr/~letouzey/download/lcf_pl_extr05.pdf
https://arxiv.org/pdf/1801.01568
https://arxiv.org/pdf/1801.01568
https://www.cs.cmu.edu/~rwh/papers/higher/paper.pdf
https://www.cs.cmu.edu/~rwh/papers/higher/paper.pdf
https://arxiv.org/abs/1902.06572
https://arxiv.org/abs/1902.06572

74

[CM19]

[Con03]

[Conll]

[Conlb]

[Coql3a]

[Coql3b)]

[Coql5]

[Cur34]

[Dan12]

[DDG*19]

[Din05)

[Eil39)

[Epp10]

[Esc18]

BIBLIOGRAPHY

Evan Cavallo and Anders Mortberg. A unifying cartesian cubical type
theory.  2019. Available at http://www.cs.cmu.edu/~ecavallo/works/
unifying-cartesian.pdf.

Robert L. Constable. Naive computational type theory. http://nuprl.org/
documents/Constable/naive.pdf, February 2003. (Accessed on 04/28/2019).

Robert L. Constable. The triumph of types: Creating a logic of com-
putational reality. 2011. Available at https://ncatlab.org/nlab/files/
ConstableTriumphOfTypes.pdf.

Robert L. Constable. Two lectures on constructive type theory.
https://www.cs.uoregon.edu/research/summerschool/summerl5/notes/
OPLSS-Short-2015-2.pdf, July 2015. (Accessed on 04/28/2019).

Thierry Coquand. A property of contractible types. December 2013.

Thierry Coquand. Type theory and univalent foundation, October 2013.
Available at http://www.cse.chalmers.se/~coquand/russell.pdf.

Thierry Coquand. A category of cubical sets. September 2015. Available at
http://www.cse.chalmers.se/~coquand/vv.pdf.

Haskell Brooks Curry. Functionality in Combinatory Logic. PNAS,
20(11):584, November 1934.

Nils Anders Danielsson. [somorphism implies equality, Septem-
ber 2012. Available at https://homotopytypetheory.org/2012/09/23/
isomorphism-implies-equality/.

Nils Anders Danielsson, Matthew Daggitt, Guillaume Gallais, Ulf Norell,
Nicolas Pouillard, et al. The agda standard library. Available at https:
//9ithub.com/agda/agda-stdlib, 2019.

Jonathan Dinkelbach. Fundamental group of torus, February 2005. Avail-
able at https://commons.wikimedia.org/wiki/File:Fundamental group |
torus2.png.

Samuel Eilenberg. On the relation between the fundamental group on a space
and the higher homotopy groups. Fundamenta Mathematicae, 32(1):167-175,
1939.

David Eppstein. The free distributive lattices of monotonic boolean func-
tions on up to three variables. March 2010. Available at https://commons.
wikimedia.org/wiki/File:Monotone Boolean functions.svg.

Martin Hotzel Escardd. A self-contained, brief and complete formulation of
voevodsky’s univalence axiom. October 2018. Available at https://arxiv.
org/pdf/1803.02294.pdf.


http://www.cs.cmu.edu/~ecavallo/works/unifying-cartesian.pdf
http://www.cs.cmu.edu/~ecavallo/works/unifying-cartesian.pdf
http://nuprl.org/documents/Constable/naive.pdf
http://nuprl.org/documents/Constable/naive.pdf
https://ncatlab.org/nlab/files/ConstableTriumphOfTypes.pdf
https://ncatlab.org/nlab/files/ConstableTriumphOfTypes.pdf
https://www.cs.uoregon.edu/research/summerschool/summer15/notes/OPLSS-Short-2015-2.pdf
https://www.cs.uoregon.edu/research/summerschool/summer15/notes/OPLSS-Short-2015-2.pdf
http://www.cse.chalmers.se/~coquand/russell.pdf
http://www.cse.chalmers.se/~coquand/vv.pdf
https://homotopytypetheory.org/2012/09/23/isomorphism-implies-equality/
https://homotopytypetheory.org/2012/09/23/isomorphism-implies-equality/
https://github.com/agda/agda-stdlib
https://github.com/agda/agda-stdlib
https://commons.wikimedia.org/wiki/File:Fundamental_group_torus2.png
https://commons.wikimedia.org/wiki/File:Fundamental_group_torus2.png
https://commons.wikimedia.org/wiki/File:Monotone_Boolean_functions.svg
https://commons.wikimedia.org/wiki/File:Monotone_Boolean_functions.svg
https://arxiv.org/pdf/1803.02294.pdf
https://arxiv.org/pdf/1803.02294.pdf

BIBLIOGRAPHY 75

[Esc19]

[Eurl3]

[FT63]

[GAA*13]

[Gen35]

[GMO3]

[GralT]

[Gral8al

[Gral8b]

[GSBT11]

[GSS*99]

[GT90]

[Har91]

[Hat01]

[HBC*1§]

Martin Ho6tzel Escardo. Introduction to wunivalent foundations
of mathematics with agda. https://www.cs.bham.ac.uk/~mhe/
HoTT-UF-in-Agda-Lecture-Notes/index.html, May 2019.

Academia Europeia. Member page: Per martin-16f. Available at http://
www.ae-info.org/ae/User/Martin-L%C3%B6f Per, 2013.

Walter Feit and John Thompson. Chapter i, from solvability of groups of odd
order, pacific j. math, vol. 13, no. 3 (1963. Pacific journal of mathematics,
13(3):775-787, 1963.

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Co-
hen, and Et Al. A machine-checked proof of the odd order theorem, 2013.

Gerhard Gentzen. Untersuchungen tiber das logische schlielen. i. Mathema-
tische Zeitschrift, 39(1):176-210, December 1935.

Marco Grandis and Luca Mauri. Cubical sets and their site. Theory and
Applications of Categories, 2003. Available at http://www.tac.mta.ca/tac/
volumes/11/8/11-08.pdf.

Daniel R. Grayson. Vladimir voevodsky, 4 june 1966 — 30 september 2017.
Memorial webpage at http://www.math.ias.edu/Voevodsky/, 2017.

Robert Graham. Synthetic homology in homotopy type theory. https://
arxiv.org/pdf/1706.01540.pdf, December 2018. (Accessed on 05/14/2019).

Daniel R. Grayson. An introduction to univalent foundations for mathe-
maticians. Bulletin of the American Mathematical Society, 55(4):427-450,
March 2018. Available at https://arxiv.org/pdf/1711.01477.

Jason Gross, Mike Shulman, Andrej Bauer, Peter LeFanu Lumsdaine, Assia
Mahboubi, Bas Spitters, et al. 2011.

Julio Rubio Garcia, Francis Sergeraert, Yvon Siret, et al. Kenzo: a symbolic
software for effective homology computation. April 1999. Available at https:
//www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/Kenzo-doc.pdf.

Jean-Yves Girard and Paul Taylor. Proofs and types. 1990. Available at
http://www.paultaylor.eu/stable/prot.pdf.

Robert Harper. Constructing type systems over an operational semantics.
https://core.ac.uk/download/pdf/82210261.pdf, November 1991. (AC—
cessed on 05/14/2019).

Allan Hatcher. Algebraic Topology. Cambridge University Press, 2001. Avail-
able at http://www.math.cornell.edu/~hatcher/AT/ATpage.html.

Kuen-Bang Hou, Guillaume Brunerie, Evan Cavallo, Andrej Bauer, Guil-
laume Brunerie, et al. Homotopy type theory in agda: Development
of homotopy type theory in agda. October 2018. Available at https:
//github.com/HoTT/HoTT-Aqgda.


https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/index.html
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/index.html
http://www.ae-info.org/ae/User/Martin-L%C3%B6f_Per 
http://www.ae-info.org/ae/User/Martin-L%C3%B6f_Per 
http://www.tac.mta.ca/tac/volumes/11/8/11-08.pdf
http://www.tac.mta.ca/tac/volumes/11/8/11-08.pdf
http://www.math.ias.edu/Voevodsky/
https://arxiv.org/pdf/1706.01540.pdf
https://arxiv.org/pdf/1706.01540.pdf
https://arxiv.org/pdf/1711.01477
https://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/Kenzo-doc.pdf
https://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/Kenzo-doc.pdf
http://www.paultaylor.eu/stable/prot.pdf
https://core.ac.uk/download/pdf/82210261.pdf
http://www.math.cornell.edu/~hatcher/AT/ ATpage.html
https://github.com/HoTT/HoTT-Agda
https://github.com/HoTT/HoTT-Agda

76

[HBJ 18]

[HC11]

[Hey30]

[Hof97]

[Hof14]

[HS9g]

[HSM*16]

[Hub14]

[Hub15]

[Hub16a]

[Hub16b]

[Hub17a]

[Hub17b]

[Jacl7]

BIBLIOGRAPHY

Max Horn, Reimer Behrends, Christopher Jefferson, Markus Pfeiffer,
Alexander Konovalov, Alexander Hulpke, Steve Linton, et al. Gap - groups,
algorithms, programming - a system for computational discrete algebra.
Downloads available at https://www.gap-system.org/, November 2018.

Simon Huber and Thierry Coquand. Towards a computational justification
of the axiom of univalence. September 2011. http://www.cse.chalmers.se/
~simonhu/slides/typesll. pdf.

Arend Heyting. Die formalen regeln der intuitionistischen logik, 1930.

Martin Hofmann. Syntax and semantics of dependent types. In Fxtensional
Constructs in Intensional Type Theory, page 13-54. Springer, 1997.

Pieter Hofstra. Presheaves of sets. Online notes available at http://mysite.
science.uottawa.ca/phofstra/MAT5147/presheaves.pdf, 2014.

Martin Hofmann and Thomas Streicher. The groupoid interpretation of
type theory. Twenty-five years of constructive type theory (Venice, 1995),
36:83-111, 1998.

Michael Hardy, Charles Stewart, Charles Matthews, Mark Jason Domi-
nus, et al. Curry-Howard correspondence, April 2016. Available at https:
//en.wikipedia.org/wiki/Curry%E2%80%93Howard correspondence [Online;
accessed 12. Apr. 2019].

Simon Huber. Cubical: Implementation of univalence in cubical sets. 2014.
Available at https://github.com/simhu/cubical.

Simon Huber. A model of type theory in cubical sets. PhD thesis, Chalmers
University of Technology, 2015. Available at http://www.cse.chalmers.se/
~simonhu/misc/lic.pdf.

Simon Huber. Cubical Interpretations of Type Theory. PhD thesis, University
of Gothenburg, Gothenburg, Sweden, November 2016. Available at http:
//www.cse.chalmers.se/~simonhu/misc/thesis.pdf.

Simon Huber. Cubical interpretations of type theory: Phd defense. Novem-
ber 2016. Available at http://www.cse.chalmers.se/~simonhu/slides/
defense. pdf.

Simon Huber. Canonicity for cubical type theory. Journal of Automated Rea-
soning, page 1-38, 2017. Available at https://arxiv.org/pdf/1607.04156.
pdf.

Simon Huber. A cubical type theory for higher inductive types. August
2017. Available at http://www.cse.chalmers.se/~simonhu/misc/hcomp.pdf.

Konrad Jacobs. Nicolaas govert de bruijn in oberwolfach. Available at https:
//opc.mfo.de/detail?photo id=541, 2017.


https://www.gap-system.org/
http://www.cse.chalmers.se/~simonhu/slides/types11.pdf
http://www.cse.chalmers.se/~simonhu/slides/types11.pdf
http://mysite.science.uottawa.ca/phofstra/MAT5147/presheaves.pdf
http://mysite.science.uottawa.ca/phofstra/MAT5147/presheaves.pdf
https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://github.com/simhu/cubical
http://www.cse.chalmers.se/~simonhu/misc/lic.pdf
http://www.cse.chalmers.se/~simonhu/misc/lic.pdf
http://www.cse.chalmers.se/~simonhu/misc/thesis.pdf
http://www.cse.chalmers.se/~simonhu/misc/thesis.pdf
http://www.cse.chalmers.se/~simonhu/slides/defense.pdf
http://www.cse.chalmers.se/~simonhu/slides/defense.pdf
https://arxiv.org/pdf/1607.04156.pdf
https://arxiv.org/pdf/1607.04156.pdf
http://www.cse.chalmers.se/~simonhu/misc/hcomp.pdf
https://opc.mfo.de/detail?photo_id=541
https://opc.mfo.de/detail?photo_id=541

BIBLIOGRAPHY 77

[Kan55]

[Kan05]

[KL12]

[LB15]

[Lic13a)

[Lic13b]

[LOPS18]

[LP16]

[LS17]

[Lum10]

IMA18]

[M175]

[MV19]

Daniel M. Kan. Abstract homotopy. Proceedings of the National Academy
of Sciences, 41(12):1092-1096, 1955.

Jonah Kan. A picture of daniel kan at his home in waban, massachusetts.,
October 2005. Available at https://commons.wikimedia.org/wiki/File:
Daniel Kan.JPG.

Chris Kapulkin and Peter Lefanu Lumsdaine. The simplicial model of uni-
valent foundations (after voevodsky). arXiv preprint arXiv:1211.2851, 2012.

Daniel R. Licata and Guillaume Brunerie. A cubical approach to synthetic
homotopy theory. In Proceedings of the 2015 30" Annual ACM/IEEE Sym-
posium on Logic in Computer Science (LICS), page 92-103. IEEE Com-
puter Society, 2015. Available at https://quillaumebrunerie.github.io/
pdf/lbl5cubicalsynth. pdf.

Daniel R. Licata. Homotopy theory in type theory: Progress report.
May 2013. Available at https://homotopytypetheory.orqg/2013/05/20/
homotopy-theory-in-type-theory-progress-report/.

Daniel R. Licata. Programming and proving in homotopy type the-
ory, August 2013. Available at http://dlicata.web.wesleyan.edu/pubs/
L13jobtalk/113jobtalk. pdf.

Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. Internal uni-
verses in models of homotopy type theory. arXiv preprint arXiv:1801.07664,
2018.

James Ladyman and Stuart Presnell. Does homotopy type theory provide a
foundation for mathematics? 2016. Available at https://philpapers.org/
rec/LADDHT - 2.

Peter LeFanu Lumsdaine and Mike Shulman. Semantics of higher induc-
tive types. https://arxiv.org/abs/1705.07088, May 2017. (Accessed on
05/18/2019).

Peter Lefanu Lumsdaine. Higher categories from type theories. PhD thesis,
PhD thesis, Carnegie Mellon University, 2010.

Anders Mortberg and Carlo Angiuli. Yet another cartesian cubical type
theory. https://github.com/mortberg/yacctt/, June 2018.

Per Martin-16f. An intuitionistic theory of types: Predicative part. In H. E.
Rose and J. Shepherdson, editors, Logic colloquium ’73: proceedings of the
Logic Collogquium, Bristols, volume 80 of Studies in Logic and the Founda-
tions of Mathematic, page 73—118. Elsevier, Amsterdam, 1975.

Anders Mortberg and Andrea Vezzosi. Cubical: An experimental library for
cubical agda. Github repository, May 2019. Available at https://github.
com/agda/cubical.


https://commons.wikimedia.org/wiki/File:Daniel_Kan.JPG
https://commons.wikimedia.org/wiki/File:Daniel_Kan.JPG
https://guillaumebrunerie.github.io/pdf/lb15cubicalsynth.pdf
https://guillaumebrunerie.github.io/pdf/lb15cubicalsynth.pdf
https://homotopytypetheory.org/2013/05/20/homotopy-theory-in-type-theory-progress-report/
https://homotopytypetheory.org/2013/05/20/homotopy-theory-in-type-theory-progress-report/
http://dlicata.web.wesleyan.edu/pubs/l13jobtalk/l13jobtalk.pdf
http://dlicata.web.wesleyan.edu/pubs/l13jobtalk/l13jobtalk.pdf
https://philpapers.org/rec/LADDHT-2
https://philpapers.org/rec/LADDHT-2
https://arxiv.org/abs/1705.07088
https://github.com/mortberg/yacctt/
https://github.com/agda/cubical
https://github.com/agda/cubical

78

[M&18a)

[M518b)]

[M618c]

[Nuy18]

[Ort19]

[Pall4]

[PCZF*18]

[PeaT9]

[Pit13]

[Pit14]

[Pit18]

[PK19]

[PW14]

[Reh17]

BIBLIOGRAPHY

Anders Mortberg.  Cubical agda. Blog post available at https://
homotopytypetheory.org/2018/12/06/cubical-agda/, December 2018.

Anders Mortberg. Cubical variations: Hits, m,(s3) and yacctt. http://www.
cs.cmu.edu/~amoertbe/slides/Mortberg-MURI18.pdf, March 2018. (Ac—
cessed on 05/18/2019).

Anders Mortberg. Yet another cartesian cubical type theory. http://www.
cs.cmu.edu/~amoertbe/slides/MortbergBonn.pdf, June 2018.

Andreas Nuyts. Presheaf models of relational modalities in dependent type
theory. Avalable at https://arxiv.org/pdf/1805.08684, May 2018.

Richard Tan Orton. Cubical Models of Homotopy Type Theory-An Inter-
nal Approach. PhD thesis, University of Cambridge, 2019. Text avail-
able at https://www.repository.cam.ac.uk/handle/1810/289441 and code
on https://doi.org/10.17863/CAM.35681.

Erik Palmgren. Lecture notes on type theory, January 2014. Available at
http://staff.math.su.se/palmgren/lecturenotesTT.pdf.

Clément Pit-Claudel, Théo Zimmermann, Jim Fehrle, Maxime Dénes,
et al. Coq 8.9.0: Reference manual, December 2018. Avail-
able at https://coq.inria.fr/refman/addendum/extraction.html#
a-detailed-example-euclidean-division.

Giuseppe Peano. Arithmetices principia, nova methodo exposita. English
translation in 1899, page 83-97, 1879.

Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science.
Cambridge University Press, New York, NY, USA, 2013.

Andrew M. Pitts. Nominal presentation of cubical sets models of type theory.
2014. Available at http://drops.dagstuhl.de/opus/volltexte/2015/5498/
pdf/12.pdf.

Andrew M. Pitts. Axiomatizing cubical sets models of univalent foundations,
September 2018. Available at https://hott-uf.github.io/2018/slides/
PittsHoTTUF2018. pdf.

Gun Pinyo and Nicolai Kraus. From cubes to twisted cubes via morphisms
in type theory. May 2019. Available at https://arxiv.org/pdf/1902.10820.
pdf.

Alvaro Pelayo and Michael Warren. Homotopy type theory and voevod-
sky’s univalent foundations. Bulletin of the American Mathematical Society,
51(4):597-648, 2014.

Julie Rehmeyer. Vladimir voevodsky;, revolutionary
mathematician, dies at 51. September  2017. Avail-
able on https://www.nytimes.com/2017/10/06/obituaries/

vladimir-voevodsky-revolutionary-mathematician-dies-at-51.html.


https://homotopytypetheory.org/2018/12/06/cubical-agda/
https://homotopytypetheory.org/2018/12/06/cubical-agda/
http://www.cs.cmu.edu/~amoertbe/slides/Mortberg-MURI18.pdf
http://www.cs.cmu.edu/~amoertbe/slides/Mortberg-MURI18.pdf
http://www.cs.cmu.edu/~amoertbe/slides/MortbergBonn.pdf
http://www.cs.cmu.edu/~amoertbe/slides/MortbergBonn.pdf
https://arxiv.org/pdf/1805.08684
https://www.repository.cam.ac.uk/handle/1810/289441
https://doi.org/10.17863/CAM.35681
http://staff.math.su.se/palmgren/lecturenotesTT.pdf
https://coq.inria.fr/refman/addendum/extraction.html#a-detailed-example-euclidean-division
https://coq.inria.fr/refman/addendum/extraction.html#a-detailed-example-euclidean-division
http://drops.dagstuhl.de/opus/volltexte/2015/5498/pdf/12.pdf
http://drops.dagstuhl.de/opus/volltexte/2015/5498/pdf/12.pdf
https://hott-uf.github.io/2018/slides/PittsHoTTUF2018.pdf
https://hott-uf.github.io/2018/slides/PittsHoTTUF2018.pdf
https://arxiv.org/pdf/1902.10820.pdf
https://arxiv.org/pdf/1902.10820.pdf
https://www.nytimes.com/2017/10/06/obituaries/vladimir-voevodsky-revolutionary-mathematician-dies-at-51.html
https://www.nytimes.com/2017/10/06/obituaries/vladimir-voevodsky-revolutionary-mathematician-dies-at-51.html

BIBLIOGRAPHY 79

[Rod18]

[Ros84]
[Rus03]

[ST11]

[Sch19]

[SCST18]

[SHA*18]

[SHC*18]

[Shul7]

[Shul§]

[SRvD"19]

[Str06]

[Swald]

[Swal§]

Sigrid Roden. Prof. martin hofmann, phd. Message on the website
of Ludwig-Maximilians-Universitdt Miinchen https://www.tcs.ifi.lmu.de/
people/martin-hofmann, 2018.

Murray Rosenblatt. Erret bishop: Reflections on him and his research. 1984.

Bertrand Russel. The principles of mathematics. Cambridge Univer-
sity Press, 1903. Available at http://fair-use.org/bertrand-russell/
the-principles-of-mathematics/.

Urs Schreiber et al. Sheafification. January 2011. Available at https://
ncatlab.org/nlab/show/sheafification.

Urs Schreiber. Modern physics formalized in modal homotopy type the-
ory. May 2019. Available at https://ncatlab.org/schreiber/show/Modern+
Physics+formalized+in+Modal+Homotopy+Type+Theory.

Urs Schreiber, David Corfield, Mike Schulman, David Roberts, Praphulla
Koushik, and Others. Homotopy hypothesis, 2018. Available at https:
//ncatlab.org/nlab/show/homotopy+hypothesis.

Jonathan Sterling, Kuen-bang Hou, Carlo Angiuli, Evan Cavallo, James
Wilcox, et al. The people’s refinement logic. https://github.com/RedPRL/
sml-redprl, 2018.

Jonathan Sterling, Kuen-bang Hou, Evan Cavallo, Carlo Angiuli, et al.
Redtt: a core language for cartesian cubical type theory with extension
types, November 2018. File available at https://bit.ly/2FxsTyl.

Michael Shulman. Homotopy type theory: the logic of space. March 2017.
Available at https://arxiv.org/pdf/1703.03007.pdf.

Michael Shulman. Brouwer’s fixed-point theorem in real-cohesive homotopy
type theory. Mathematical Structures in Computer Science, 28(6):856-941,
2018.

Bas Spitters, David Roberts, Floris van Doorn, Mike Shulman, Steve
Awodey, Ulrik Buchholtz, Urs Schreiber, et al. Open problems in homo-
topy type theory. https://ncatlab.org/homotopytypetheory/show/open+
problems, May 2019.

Thomas Streicher. Identity types vs. weak w-groupoids. Talk given at
the Work- shop “Identity Types — Topological and Categorical Structure”
(Uppsala, November 13-14, 2006), November 2006. Available at https:
//www2.mathematik.tu-darmstadt.de/~streicher/TALKS/uppsala.pdf.qgz.

Andrew Swan. An algebraic weak factorisation system on 0l-substitution
sets: A constructive proof. arXiv preprint arXiv:1409.1829, 2014.

Andrew Swan. Identity types in algebraic model structures and cubi-
cal sets. https://arxiv.org/abs/1808.00915, August 2018. (Accessed on
05/12/2019).


https://www.tcs.ifi.lmu.de/people/martin-hofmann
https://www.tcs.ifi.lmu.de/people/martin-hofmann
http://fair-use.org/bertrand-russell/the-principles-of-mathematics/
http://fair-use.org/bertrand-russell/the-principles-of-mathematics/
https://ncatlab.org/nlab/show/sheafification
https://ncatlab.org/nlab/show/sheafification
https://ncatlab.org/schreiber/show/Modern+Physics+formalized+in+Modal+Homotopy+Type+Theory
https://ncatlab.org/schreiber/show/Modern+Physics+formalized+in+Modal+Homotopy+Type+Theory
https://ncatlab.org/nlab/show/homotopy+hypothesis
https://ncatlab.org/nlab/show/homotopy+hypothesis
https://github.com/RedPRL/sml-redprl
https://github.com/RedPRL/sml-redprl
https://bit.ly/2FxsTyl
https://arxiv.org/pdf/1703.03007.pdf
https://ncatlab.org/homotopytypetheory/show/open+problems
https://ncatlab.org/homotopytypetheory/show/open+problems
https://www2.mathematik.tu-darmstadt.de/~streicher/TALKS/uppsala.pdf.gz
https://www2.mathematik.tu-darmstadt.de/~streicher/TALKS/uppsala.pdf.gz
https://arxiv.org/abs/1808.00915

30

[Tarb1]

[Tsel6]

[Uem19|

[VAC*13]

[VAG*10]

[Van19|

[Vez19]

[Voe09]

[Voel0)|

[Voeld]

[Voel6]

[Weil6]

BIBLIOGRAPHY

Alfred Tarski. A decision method for elementary algebra and geometry. 1951.
Available on https://www.rand.org/content/dam/rand/pubs/reports/2008/
R109. pdf.

Dimitris Tsementzis. Univalent foundations as structuralist foundations.
May 2016. Available at https://link.springer.com/content/pdf/10.1007%
2Fs11229-016-1109-x.pdf

Taichi Uemura. A general framework for the semantics of type theory. April
2019. Available at https://arxiv.org/pdf/1904.04097.pdf.

Vladimir Voevodsky, Steve Awodey, Thierry Coquand, et al. Homotopy type
theory: Univalent foundations of mathematics. Institute for Advanced Study
(Princeton), 2013.

Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. Unimath-a
library of formalized mathematics, 2010. Available at https://github.com/
UniMath/UniMath.

Willem Vanhulle. Transport of magmas. May 2019. GitHub repository on
https://qgithub.com/wvhulle/transport-magmas.

Andrea Vezzosi. Answer to question on the issue tracker of agda cubi-
cal, May 2019. Available at https://github.com/agda/cubical/issues/146#
issuecomment-496145420.

Vladimir Voevodsky. Notes on type systems. Unpublished note available
at https://qgithub.com/vladimirias/old notes on type systems/raw/
master/old notes on type%20systems.pdf, September 2009.

Vladimir Voevodsky. The equivalence axiom and univalent models of type
theory. Notes from a talk at Carnegie Mellon University available at http:
//www.math.ias.edu/vladimir/files/CMU talk.pdf], 2010.

Vladimir Voevodsky. Univalent foundations—mew type-theoretic foun-
dations of mathematics. Slides from a talk at IHP, Paris, on April
22, 2014, available at https://math.ias.edu.vladimir/files/2014 04 22
slides.pdf, 2014.

Vladimir Voevodsky. Unimath - a library of mathematics formal-
ized in the univalent style. Talk at ICMS, Berlin available at
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/
files/2016 07 14 Berlin ICMS short.pdf, July 2016.

Jonathan Weinberger. The cubical model of type theory. Master’s the-
sis, November 2016. Available at https://jonathanweinberger.files.
wordpress.com/2016/10/msc-weinberger.pdf.


https://www.rand.org/content/dam/rand/pubs/reports/2008/R109.pdf
https://www.rand.org/content/dam/rand/pubs/reports/2008/R109.pdf
https://link.springer.com/content/pdf/10.1007%2Fs11229-016-1109-x.pdf
https://link.springer.com/content/pdf/10.1007%2Fs11229-016-1109-x.pdf
https://arxiv.org/pdf/1904.04097.pdf
https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath
https://github.com/wvhulle/transport-magmas
https://github.com/agda/cubical/issues/146#issuecomment-496145420
https://github.com/agda/cubical/issues/146#issuecomment-496145420
https://github.com/vladimirias/old_notes_on_type_systems/ raw/master/old_notes_on_type%20systems.pdf
https://github.com/vladimirias/old_notes_on_type_systems/ raw/master/old_notes_on_type%20systems.pdf
http://www.math.ias.edu/vladimir/files/CMU_talk.pdf
http://www.math.ias.edu/vladimir/files/CMU_talk.pdf
https://math.ias.edu.vladimir/files/2014_04_22_slides.pdf
https://math.ias.edu.vladimir/files/2014_04_22_slides.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/2016_07_14_Berlin_ICMS_short.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/2016_07_14_Berlin_ICMS_short.pdf
https://jonathanweinberger.files.wordpress.com/2016/10/msc-weinberger.pdf
https://jonathanweinberger.files.wordpress.com/2016/10/msc-weinberger.pdf

BIBLIOGRAPHY

81



DEPARTMENT OF MATHEMATICS
Celestijnenlaan 200B

3001 LEUVEN, BELGIE

tel. +32163270 15

ttps://wis.kuleuven.be/englis

N

(GSE0ES



https://wis.kuleuven.be/english

	Introduction
	Foundations of mathematics
	Constructivism
	Type theory

	Intuitionistic type theory
	Judgements and contexts
	Informal type theory
	Natural deduction
	Propositions as types
	Universes
	Dependent types
	Equality

	The univalence axiom
	Univalent foundations of mathematics
	Multiple proofs of identity


	Interpretations and models
	Groupoid interpretation
	Homotopy type theory
	Simplicial model
	Categorical semantics
	Pre-sheaves

	The pre-sheaf model of cubical type theory
	The category of cubes
	The face lattice
	Restricting contexts and types
	Indexing contexts by dimensions
	Restricting indexed contexts

	Adding operations
	The composition operation
	The path type
	The filling operation
	The Glue type
	Historical development of cubical set models


	Proof of univalence
	The univalence theorem
	History of the proof

	Proof of the univalence theorem
	Contractibility of equivalence singletons
	Conclusion of the proof
	Univalence with topoi

	Applications of the proof of univalence
	Isomorphism invariant algebra
	Generic datatypes
	Formalizing algebraic topology


	Related work
	Other applications
	Cartesian computational type theory
	Computational type theory
	Cubical extensions
	Univalence
	Implementations

	Open challenges
	Strongly normalizing
	Canonicity


	Index

