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Abstract

The worldwide effort on fusion research aims to realize a means of producing clean and safe

energy for future generations. At the JET tokamak, extensive research is being performed to

help accomplish this goal, but as with all complex machinery, component failures occur. In this

work, two failure cases at JET are addressed with the goal of predictive maintenance by means

of anomaly detection and other machine learning techniques.

The first case concerns turbomolecular pump failures at the JET vacuum system. A solution

for detecting unhealthy pump behaviour is proposed using semi-supervised anomaly detection

based on time series data from sensor signals. Deviations from normal behaviour are flagged

when incoming sensor data are considered too dissimilar to a pool of healthy training data. A

first model using principal component analysis and multivariate Gaussian modeling is devised

that uses the Mahalanobis distance to the center of the healthy distribution as an anomaly score.

A threshold is applied to the anomaly scores, and samples with scores above this threshold are

flagged. A similar approach is taken for a second model, based on auto-encoder neural networks.

Instead of the Mahalanobis distance, the reconstruction error from the auto-encoder network

is used, and a sliding time window approach is used to include time correlations. The network

is again trained only on a pool of healthy data, so reconstruction errors will be larger for data

deviating from this behaviour. An appropriate threshold is set, and error scores for time windows

above this threshold are flagged. Both models show an increase in anomaly scores leading up to

a strong anomalous peak representing the failure. The auto-encoder network, however, flags less

false positives and shows a clearer distinction and transition between healthy and anomalous

data. A discussion of the results and suggestions for implementation in fusion operations are

provided, along with possible extensions of the model.

The second use case deals with the S1 current switch. As a switch ages, failures and slow

operations occur more frequently. Based on the analysis of two voltage signals through time, a

logistic regression model is trained to classify between good, slow and failure operations. The

results of the classifier show promise, with F1-scores above 0.9 for all classes. Still, the model

is trained and tested only on a small and unbalanced dataset. A semi-supervised clustering

approach is therefore proposed to build a more robust classifier by combining the small labeled

dataset with the rest of the unlabeled samples. This approach requires little human effort, while

still making use of all available switch operation samples. Finally, a rudimentary strategy for

predictive maintenance is proposed using the devised classifier and a degradation scoring system.

The results of both cases show potential for the use of machine learning in fusion operations

and serve as an invitation to further investigate the merits of a data-driven approach for problem

solving in device maintenance and fusion research in general.
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GOAL AND MOTIVATION 1

Chapter 1

Goal and motivation

The title of the thesis, ‘Applications of anomaly detection for predictive maintenance at the JET

tokamak’, hints at the interaction of two major subjects: the first one is data science, through the

topic of anomaly detection and predictive maintenance, and the second one is nuclear fusion,

through the use of data from JET (Joint European Torus), the largest operational tokamak

fusion device in the world. Both topics are scientifically engaging and fascinating to work on,

but next to an academic challenge, data science and nuclear fusion might also have a significant

impact on our society. The following few pages will go into some depth about the motivation for

choosing these topics as the backbone of this thesis, and why they concern not only scientists.

1.1 The intersection of two worlds

1.1.1 The fossil world

At the end of the eighteenth century, the industrial revolution reshaped our society. The burning

of coal to power steam turbines proved that parts of manual labor could be automated, and it

ushered in a new age of growth. We moved away from living on farmlands and found a new home

into ever expanding cities. Cars replaced horses, ships no longer needed wind to move forward,

and when the Wright brothers pulled off their impressive feats mid-air, the world looked in awe.

The sky was not even the limit, shown by the Apollo missions, when astronauts ventured beyond

our blue planet. The world had mastered its usage of fossil fuels. Even now, oil, coal and gas

remain the building blocks of our economy, and we have very meticulously been building our

society around them for the last two centuries.

For a while, mankind was convinced that the apparent endless provision of fossil fuels would

pave the way to achieve any goal we aspired to as a species. But with the continued large-scale

usage of oil, coal and gas also came a drawback: the burning of fossil fuels is directly connected

to global warming and the destruction of valuable ecosystems. When these ancient fuels are

burned, carbon-rich byproducts enter our atmosphere and create a strong greenhouse effect,

which slowly heats our globe to temperatures that – if we do not act on this information –

will lead to the widespread occurrence of destructive phenomena like droughts, wildfires, storms
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and floods. Eventually this global warming will cause the mass extinction of many animal and

plant species. Not only will this mean a catastrophic loss for life on this planet, it will also

cause severe economic damage, and especially affect the weakest nations on earth. Migration

caused by climate change will be on a scale that has never been experienced before, as will be

the challenge trying to mitigate it. The rising of global sea levels will effectively reduce land

mass, and weather patterns will be permanently altered. Clean drinking water will become

increasingly scarce, and on top of that, a warmer, wetter world also means more chances for

diseases to spread widely.

While this narrative might sound dramatic, the data does really point to these scenarios

happening in the future [1]. That is, if mankind does not look for ways to avoid or mitigate

the dangers associated with uncontrolled global warming. To help solve this universal problem,

there are many paths one can pursue. One of them is to turn to technological advancements,

for example in the energy supply sector. There is a high agreement amongst climate scientists

that the energy supply sector is the greatest contributor to global greenhouse gas emissions

[2], and thus advancements in this sector would have a significant impact. Nuclear fusion is

a very promising candidate for a future renewable energy source, since fusion produces almost

no CO2, especially when compared to fossil fuels. Fusion has the added benefit of producing

significantly less long-lived radioactive waste, compared to nuclear fission. The development

of fusion is, however, still in the research phase, with scientists and engineers working hard

on solving the remaining challenges that inhibit the production of practical fusion reactors.

The International Thermonuclear Experimental Reactor – commonly known as ITER – is an

ambitious international project currently under construction in the Provence region of France.

There, the next generation of fusion experiments will be performed. The ITER project is not the

first of its kind; it will draw heavily from the knowledge gained at other fusion projects, including

another tokamak device, the Joint European Torus (JET). It is at JET that an impressive part of

the work in fusion research has been – and still is – done. The past few decades of experiments

have led to the accumulation of an extensive amount of data, and it is these data that may

contain unexplored pathways to aid researchers in their future work.

1.1.2 The data world

With catchy terms like ‘deep learning’ or ‘big data’, every business nowadays wants to jump

on the data-driven bandwagon. But many techniques for analyzing data have been around

for ages. A lot of us are probably familiar with classical statistics, but even more advanced

machine learning techniques like artificial neural networks were already rather well-known in

the 1970s. Why is it then that data science is becoming so immensely popular only now? One

likely reason is the exponential increase in computing power that made the efficient execution

of many algorithms possible. But another, probably even more important reason, is the massive

increase in the amount of data we produce and therefore is available for analysis. In 2018, search

engines like Google processed around 5 billion searches per day [3]. In one minute, we send more

than 150 million e-mails, watch more than 4 million YouTube videos, and generate more than
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4 million likes on Facebook. People took more than 1.2 trillion pictures in 2017 alone, mainly

with their smartphone cameras [4, 5, 6, 7]. These are just some of the dazzling numbers of

data we produce, and these numbers are growing exponentially. It is not surprising then that

companies like Google or Facebook invest heavily in data-driven solutions, and enhance their

products with artificial intelligence that eagerly learns from the provided data. Although the

often-cited analogy: ‘data is the new oil’, is not a very accurate one, it does grasp the underlying

notion that data is becoming incredibly valuable in our economy. Organizations that are skilled

at processing data seem to get an edge on competitors.

Besides using artificial intelligence to improve customer services and boost productivity, an

increase in intelligent agents might also put jobs at risk. Carl Frey and Michael Osborne from

the University of Oxford studied 702 occupational groupings and found that “47 percent of U.S.

workers have a high probability of seeing their jobs automated over the next 20 years.” [8] The

advent of artificial intelligence has brought its merits, but also its share of new challenges. All

parties involved must definitely handle the implications of a highly automated world with care.

1.2 Research goal

1.2.1 General outline

So where does this thesis fit in this global story? One of the main advantages of data science

is that it is widely applicable in many fields. There are many examples showing that the

combination of data science and existing expert knowledge form a great combination. This is

exactly what we try to achieve with this dissertation; the data from years of fusion experiments

at JET might deliver additional value by processing it with appropriate algorithms. In this

work, we attempt to introduce some of the approaches from data science to fusion operations.

An introduction to nuclear fusion and machine learning is presented, followed by an exploration

of two use cases at JET: the turbomolecular pumps and the S1 current switches.

As a result of the analysis, an automated approach was devised to aid researchers in managing

these recurrent problems. The focus of the adopted methods was on anomaly detection in the

context of predictive maintenance to predict equipment failures and avoid a possible setback for

fusion operations.

1.2.2 Turbomolecular pumps

The turbomolecular pumps at JET are used for creating a high vacuum for plasma operations,

pumping away gas during or after operations. One particular model of pumps that has been

modified for use in fusion research experiences frequent failures. To avoid such failures in the

future, a model is built to give early indications of deviation from normal behaviour and to

signal to operators that the pump might be working under suboptimal conditions. This is done

to try and prevent a complete failure from happening. The model is kept as general as possible

to provide the possibility of extending it to similar situations in future experiments.
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1.2.3 S1 current switches

The S1 circuit breakers (switches) on JET interrupt the current flowing from the poloidal fly-

wheel generator converter to the central solenoid that is driving the plasma current. When a

switch approaches the end of its lifetime after many operations, its operations become more un-

reliable. We present a roadmap for predictive maintenance for the switches: from the automated

classification of reliable and unreliable behaviour, to semi-supervised labeling of the data, and

finally to the first steps of predictive maintenance.

By working through these cases, we hope that this thesis can show the potential of data

science as a powerful framework supporting fusion operations, and spark further discussion in

applying this framework to solve new exciting problems in research.
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Chapter 2

An introduction to nuclear fusion

This chapter will introduce the reader to the concept of nuclear fusion. The focus here will be on

the tokamak magnetic confinement approach and a deuterium-tritium fuel, and is by no means

a complete account. For a more comprehensive introduction to nuclear fusion, Plasma Physics

and Fusion Energy [9] by Jeffrey Freidberg, is recommended. Still, this section provides the

main theoretical concepts to understand how fusion reactions work and how to build a working

reactor. Some knowledge of Newtonian physics is assumed. A few quantum physics topics are

touched upon, without going into too much detail as to not confuse the perhaps unfamiliar

reader.

2.1 The fusion reaction

An operational fusion reactor harvests the energy of atoms. More precisely the nuclear binding

energy between the protons and neutrons that make up these atoms.1 Protons and neutrons

are collectively also called nucleons. The simplest and most common atom in our universe is

hydrogen, and it consists of one proton2. If the proton has an additional neutron attached

to it, we call it deuterium3. Deuterium is also known as ‘heavy hydrogen’. If the deuterium

manages to add yet another neutron, the result is the radioactive isotope called tritium. Given

the right conditions, a deuterium (D) and tritium (T) atom in close proximity can fuse into a

single neutron and a helium atom consisting of two protons and two neutrons, releasing a large

amount of energy in the process:

D + T −→ 4He + n + 17.6 MeV. (2.1)

It is exactly this release of energy that is of great interest to fusion research. There are other

fusion reactions that release a similar amount of energy, but the deuterium-tritium reaction is

the most probable candidate for an operational fusion reactor, due to optimal reaction condi-

tions that are easier to obtain in a tokamak fusion reactor than for the other reactions. The

1Atoms also consist of electrons, but only the atomic nucleus is considered for now.
2By hydrogen, we mean the hydrogen-1 isotope, also called protium.
3Actually, deuterium without its electrons is called deuteron, but we will stick with deuterium for simplicity.
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word ‘easier’ is perhaps a bit misleading, since optimal conditions are still hard to obtain, and

sustaining these conditions long enough remains one of the main challenges in fusion research.

What exactly is meant by ‘optimal conditions’ will be explained in section 2.2.5 on ignition.

2.1.1 Fusion or fission?

By merging two light elements, fusion exploits the nuclear energy between nucleons. But so does

nuclear fission, by splitting heavy atoms like uranium. Then why does the fusion of deuterium

and tritium also yield energy, instead of consuming it? It seems to be opposite to the process used

in our well-established nuclear fission reactors. To find an answer to this apparent contradiction,

we have to delve a bit deeper into nuclear physics. The opposing energy mechanisms are a direct

consequence of the nature of the forces that bind the nucleons of atoms together. To see how

these nuclear forces have seemingly different effects for different elements, the binding energy

curve from Figure 2.1 is provided for different nucleon numbers. The nucleon number is the

sum of the number of protons and neutrons, and since the masses of both proton and neutron

are so similar, it is also known as the mass number A.

Figure 2.1: Binding energy per nucleon for different nucleon numbers A. The group of elements
around 56Fe are the most stable. 4He corresponds to an interesting peak for lighter elements,
and there is a decreasing tail for heavier elements.

The binding energy curve shows the binding energy per nucleon, not just for every chemical

element of the periodic table, but also for isotopes of these elements. An isotope of a chemical

element has the same amount of protons (which defines the name of a chemical element), but

might have any amount of neutrons. Stable isotopes, however, are configurations of an element

in which the amount of neutrons create a stable state for the atom. For example: 56Fe is a stable

configuration of iron, with 26 protons and 30 neutrons, but 30Fe, with 26 protons and only 4
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neutrons, or 98Fe, with 72 neutrons, are definitely not stable states; the ratio between protons

and neutrons is too imbalanced. The more protons an element contains, the more neutrons it

needs to stabilize it. This is because of the balance between the repulsive electrostatic force

that tries to separate the equally charged protons, and the attractive nuclear force between all

nucleons that compensates this repulsion. This is further discussed in 2.1.2.

A higher binding energy per nucleon means that the nucleons of an element are more strongly

bound together, which means they are less prone to separation, e.g., by external impacts. It is

apparent from Figure 2.1 that the most stable elements are the ones around the 56Fe isotope

of iron, since they need about 8.8 MeV of energy per nucleon to be separated. At the higher

end of nucleon numbers, we find elements like 235U and 239Pu. These isotopes are used in

nuclear fission reactions to produce energy. When these atoms are split into lighter ones, e.g.,

by bombarding them with neutrons, the resulting products are elements that are closer to the

iron group and have higher binding energies per nucleon, which make them more stable. The

difference in binding energies for all the nucleons involved is released as kinetic energy (and

gamma rays). It is this energy that is captured in a nuclear fission plant, and is then used for

commercial electricity production. An example of a very typical reaction is:

n + 235U −→ 140Xe + 94Sr + 2n + ∼ 200 MeV. (2.2)

The amount of energy produced in a fission reaction is about 200 MeV. These energies are

about ten times larger than our deuterium-tritium reaction energies, but keep in mind though

that deuterium and tritium are about a hundred times lighter than uranium. So per unit mass

of reacting input fuel, fusion creates more energy. When the energy outputs are compared,

fusion processes produce about five times more energy from a gram of deuterium-tritium than

fission reactions from a gram of uranium. Both fission and fusion reactions still produce about a

million times more energy per gram of input fuel compared to fossil fuel reactions, since energy

production through the burning of fossil fuels is caused by chemical reactions, not nuclear ones.

Fusion and fission reactions produce very little CO2 compared to the burning of fossil fuels, and

fusion has the added benefit of producing significantly less long-lived radioactive waste compared

to fission.

If we look at the other side of our binding energy curve in Figure 2.1, an interesting peak

occurs at 4He, where the binding energy per nucleon is around 7.1 MeV. This is a large increase in

binding energy from deuterium (2H) and tritium (3H), which have respective binding energies of

about 1.1 and 2.8 MeV per nucleon. It is this interesting property that is used for the production

of energy in fusion reactors. The merging of a deuterium and tritium atom into helium and a

neutron is – just like the fission of uranium – energetically favourable, and the difference between

the binding energies per nucleon is even larger than for fission transformations.
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2.1.2 The binding potential for nucleons

Up until now, we have rather vaguely been talking about ‘nuclear interactions’, but to understand

the process of fusion, a closer look at nuclear forces is required. There are actually two ‘kinds’

of nuclear forces: the weak nuclear force and the strong nuclear force. The strong force holds

the protons and neutrons in atoms together4. It does so rather firmly when nucleons are in close

proximity to each other, as is the case in atoms. The strong force is the strongest fundamental

force known to us today, though it has to be noted that its full strength is most apparent inside

nucleons, instead of between them. Nevertheless, the strength of this force is the reason why

nuclear reactions involve energy differences that are so much larger than chemical reactions

caused purely by the electromagnetic force.

The strong force does not have the ability to change the constituents that make up a nucleon,

called quarks. In more simple terms: it cannot turn a neutron into a proton or vice versa. That

is the domain of the weak force. The weak force is responsible for fundamental processes like

beta decay, where a neutron in the nucleus of an atom decays to a proton, while emitting an

electron and an ultralight particle called a neutrino5.

For deuterium-tritium fusion, the relevant force out of the two nuclear forces is the strong

force. Together with the electromagnetic force and some quantum mechanical effects, it de-

termines the shape of the binding energy curve in Figure 2.1. Every atom internally has an

interplay of the attractive short-range nuclear force between nucleons and the repulsive electro-

static Coulomb force between protons. The nuclear force is called short-ranged, because it is

only felt between two nucleons when they are in very close proximity to each other (about the

order of the nucleon radius). A schematic plot of the nuclear potential is shown in Figure 2.2

as a blue line.

For larger distances between the nucleon centers, there is no nuclear potential, but if the

gap is closed, the potential eventually becomes attractive. The minimum of this potential is the

sweet spot in which nucleons in our atoms operate and stay bound to each other. Although for

the sake of generality no units are shown in Figure 2.2, the minimum of the nuclear potential

between two nucleons typically occurs around a distance of 0.8 fm. If one tries to decrease the

distance even further, a quantum mechanical effect, called Pauli exclusion, creates a very strong

repulsion that inhibits two nucleons from occupying the same space.

The electrostatic Coulomb force, however, is long-ranged. This means that its influence

is felt between two protons even if they are far away. The strength of the Coulomb force

increases quadratically with decreasing distance, which means that protons in close proximity feel

a stronger repulsion force. The Coulomb potential therefore goes as the inverse of the distance.

The Coulomb potential is shown as a red line in Figure 2.2. Even though this potential favours

a separation between protons, the total repulsion from the Coulomb potential is compensated

by the total effect of the stronger nuclear potential for all nucleons in stable atoms, and the

4It is also more fundamentally responsible for interactions between quarks, the small constituents that make
up our protons and neutrons, so the nuclear force between nucleons is actually a residual force.

5Actually, it is an antineutrino, but the difference is negligible here.
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Figure 2.2: A schematic representation of the potentials present between nucleons.

nucleons are thus effectively bound. The sum of the Coulomb and nuclear potential is given as

a purple line in Figure 2.2.

The interaction of the nuclear and Coulomb force is an intuitive start to understand how

nucleons in a nucleus stay bound to each other and why some configurations are more stable

than others. There is, however, more explaining to do when one asks questions like: ‘can we

bind two protons together, given that we bring them close enough?’, ‘is a nucleus solely made

out of neutrons more stable, since there are no Coulomb forces?’. These are some flavourful

cases that are very interesting (e.g., the first question could lead us to the process of fusion in

the Sun, and the second might trigger a discussion on neutron stars), but are out of scope for

this introduction. The interested reader is referred to the literature on nuclear (astro-)physics.

2.1.3 Exploiting the binding energy curve

The previous discussion can now aid in understanding why our binding energy curve from

Figure 2.1 has its typical inverted U-shape. The sum of the potentials of all nucleons is different

for each element. For small elements, the total attractive potential by the strong nuclear force

increases with increasing nucleon number. The repulsive forces are still easily compensated

by the nuclear forces from all nucleons and the result is an even more strongly bound state.

However, since the strong force is so short-ranged (only neighbours attract each other), the

impact of its total binding potential declines compared to the increasing Coulomb potential for

larger elements (all protons repulse all protons). There is an optimal balance around iron, but

after that, the binding effect of the nuclear force saturates, and the repulsive force between

protons starts to weaken the bonds.

How can we use this information to fuse deuterium and a tritium into helium? Since helium-
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4 has a greater binding energy per nucleon, it would make sense that bringing deuterium and

tritium together would initiate the energetically favourable reaction into helium. But in order

to bring these atoms in very close proximity to each other, the strong repulsive force between

the two positively charged nuclei needs to be overcome first. If the nuclei have sufficiently high

kinetic energies, this repulsive force can be overcome and the attractive nuclear forces can kick

in and deliver the final energy profit. Giving particles this amount of energy can be done by

heating them up. This is why temperatures used in experimental fusion devices are typically

above 100 million Kelvin, or more commonly expressed in the field of fusion as about 10 to 15

keV6.

Now that we discussed why fusion reactions produce energy, we need to figure out how to

balance the energy creation and energy loss processes of a reactor. This is discussed in the next

section.

2.2 Power balance

We know what our fusion reaction looks like, and why it produces energy instead of consuming

it. The next step is to know how to capture this surplus of energy and turn it into consumable

electricity. When a fusion reaction between a deuterium and tritium core occurs, the 17.6 MeV of

released energy in the end products is manifested as additional kinetic energy for the neutron and

helium atom. This kinetic energy is apportioned inversely with mass by the laws of conservation

of energy and momentum. Since the helium nucleus consists of four nucleons and the neutron is

a single nucleon, the neutron gets four times as much energy as the helium core. Our 17.6 MeV

is divided by five: four parts are given to the neutron (14.4 MeV) and one to the helium core

(3.5 MeV). The very energetic neutrons from a fusion reaction leave the fuel mixture and are

slowed down in a lithium envelope, transferring their energy to produce steam, which is then

used to drive a turbine to produce electricity, just like a conventional power plant.

To create these energetic neutrons, the Coulomb barrier has to be overcome so that deuterium

and tritium are in close proximity and have a chance to fuse. Overcoming this barrier costs

energy, supplied as heat to the fusion fuel mixture. To create a functional fusion reactor, these

energy costs cannot outweigh the energy gains. In other words: the output power Pout should

be larger than the input power Pin. There are some important processes that have an influence

on the power balance. We will discuss the major ones.

2.2.1 Fusion power density

The first process is an obvious one: the energy production from fusion reactions. Each reaction

produces Ef = 17.6 MeV. If the reaction rate R12, which is the number of fusion collisions per

unit time and per unit volume, is known, it can be multiplied with the reaction energy Ef to

6Very often, in high energy physics, the unnecessary Boltzmann constant kB is omitted in favour of directly
using energies as temperatures with the conversion formula E = kB T. The unit of energy can be chosen freely,
but mostly a multiple of the electronvolt (eV) is used. One eV equals 11 604 K.
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obtain the fusion power density. The complete derivation of the reaction rate will not be given

here, but some heuristic arguments are provided to make it plausible.

If there are more deuterium and tritium particles in a given volume, chances of fusion reac-

tions happening will increase, so R12 ∼ n1n2, with n1 and n2 the particle densities of deuterium

and tritium. If the fusion reaction has a high cross-section σ, the reaction rate will increase,

so R12 ∼ σ. If the relative velocity between the two particles is large, then it means there is

more kinetic energy (E = mv2/2) available and it is more likely that the Coulomb barrier will

be surpassed, which explains R12 ∼ v. The fusion power density [W/m3] is finally given by:

Pf = Ef n1n2 〈σv〉. (2.3)

We assume that particle velocities in our fusion reactor are in thermodynamic equilibrium over

timescales longer than the nuclear collision time, and therefore follow a Maxwell distribution7.

This means that the velocities of different particles can vary, even if the temperature of the

mixture is uniform. We are interested in the power density for a statistically relevant amount

of particles, so the right hand side of (2.3) is an average over all possible velocities. Only the

cross-section times the relative velocity, σv, depends on the relative velocity, so this quantity is

averaged.

Equation (2.3) is an important one. The fusion power density should be maximized as much

as possible. There is little that can be changed about Ef (it is already a very high energy release

per reaction), but there exists an optimal partition for the particle densities and an optimal

temperature that corresponds to the largest 〈σv〉. Starting with the former: given an amount of

deuterium-tritium gas, what is this optimal proportion between the two? If we define n as the

sum of the individual densities n1 and n2, we can replace n2 with n2 = n− n1. If the derivative

of the right hand side of (2.3) is taken with respect to n1 and afterwards set equal to zero, the

value of n1 that maximizes the power density can be found. This simple calculation finds that

n1 = n/2. This means that a 50-50 mixture of deuterium and tritium is optimal. One can

find the temperature that produces the largest 〈σv〉 by doing a numerical simulation, assuming

a Maxwell distribution, for every temperature. The results are shown in Figure 2.3. For the

deuterium-tritium reaction, the maximal 〈σv〉 lies around temperatures of 70 keV. However,

this is not the temperature around which to operate our fusion reactor. There are other power

balance considerations that have to be taken into account. The next paragraph will discuss an

important energy loss process: Bremsstrahlung radiation, while 2.2.3 will discuss the general

power balance. The optimal temperature turns out to be about 15 keV, given the ignition

conditions discussed in 2.2.5.

Though the energy release per reaction cannot be altered, the 1/5th energy partition of the

helium core stays inside the reactor and provides additional heating to our deuterium-tritium

mix, which lowers the external heating costs once the fusion reactions have started (cf. section

2.2.3). The neutrons leave the fuel mixture to produce net energy. In a fusion reactor, a part

7Since Coulomb collisions are much more frequent than nuclear collisions in magnetic confinement reactors,
this is a valid assumption.
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Figure 2.3: Velocity averaged σv for several fusion reactions as a function of temperature [9].

of this net energy could in theory be used for the remaining external heating power. In reality,

this will most likely not happen, but it helps to see how the power output can be positive.

2.2.2 Radiation losses

When a force accelerates an electric charge, the charge sends out electromagnetic radiation.

Some kinds of radiation, like cyclotron radiation, can be reabsorbed by fusion particles. In our

reactor, positively charged deuterium, tritium and helium cores accelerate electrons, which then

emit X-rays which are not reabsorbed. This process is called Bremsstrahlung, and is unavoidable.

It means an unfortunate loss of power for our reactor: to keep the reactor environment at

the desired temperature, compensation with extra heating power has to be provided. The

Bremsstrahlung power loss, PBr, scales quadratically with the charge number and scales with

the square root of the temperature:

PBr ∼ Z2 T 1/2. (2.4)

A higher charge number means higher radiation losses, so it is desirable to avoid impurities in

our fusion mix. One example is sputtered material from the wall of the fusion reactor. Another

are helium cores, with Z = 2; they can be removed after transferring their surplus of energy to

the deuterium and tritium cores to avoid part of the radiation losses.

2.2.3 The power balance equation

Finally, the power balance equation can be constructed. The rate of change of the total kinetic

energy W of the fusion mixture over time is given as:

dW

dt
= Pα + PH − PL. (2.5)
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These quantities are not expressed as densities, but as energy rates over the total reactor volume.

PL stands for the rate of energy loss, with contributions from processes like Bremsstrahlung

radiation and thermal conduction. Pα stands for the total heating power of the produced

helium cores, often called alpha particles. Although only a small percentage of the tritium-

deuterium fuel undergoes fusion at a given time, the summed 3.5 MeV energies from the produced

alpha particles are an important contribution to the heating component, since the operating

temperature for fusion is ‘only’ about 15 keV. Finally, PH stands for the extra external heating

power, when the alpha particle heating alone is not enough.

When the fusion reactor starts at room temperature, the deuterium and tritium atoms in

the reactor will need heating to get to their ideal fusion operating temperatures. This means

that
dW

dt
> 0. (2.6)

Since there is almost no fusion at these lower temperatures, the external heating power, PH ,

will be large to compensate the losses and build up the desired temperature (or equivalently,

the total kinetic energy). So Pα ≈ 0, and PH > PL. After a while, the desired temperature is

achieved, which results in
dW

dt
≈ 0, (2.7)

and consequently

Pα + PH = PL. (2.8)

Pα is now contributing significantly, and together with PH compensates the loss term PL.

2.2.4 Break-even operation

One could wonder what happened to the second part of the fusion power: the neutron energies.

The neutrons leave the fuel mixture to produce electricity, and are not directly part of the fusion

system anymore8. Going back to the introduction of this section, we name the useful energy

output of the neutrons Pout, and the external heating power Pin. If Pout is larger than Pin, we

have – in theory – built a successful fusion reactor. One could call the moment that this Pout

becomes equal to Pin ‘break-even’. In fusion circles, though, ‘break-even’ is mostly preserved

for a reactor where the total fusion power of the entire reactor (helium and neutron energies)

outweighs the external heating input power. We will use this definition from now on. Note that

Pin is not a fixed value that is eventually reached by Pout: during the heating of the fuel, more

and more fusion reactions occur, so Pα is gradually taking over a part of the heating and the

need for external heating power decreases.

Fusion operations at JET have reached about two thirds of the break-even point. There

is another, more difficult milestone, for fusion reactors. If this milestone is achieved, or near-

achieved, a commercial fusion reactor could in principle be built. It is the milestone of ignition,

discussed in the following paragraph.

8This is a simplified view, since the neutrons are actually also part of the tritium breeding process.
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2.2.5 Ignition condition

If a fusion reactor could hold enough particles together at a sufficiently high temperature for

a sufficiently long time, eventually the alpha particle heating would be strong enough as to

completely replace the external heating power source. We could then turn off the external

heating, and the fusion reactor would heat itself through the high energy alpha particles. We

would only need to provide new deuterium-tritium fuel to replace the fused ones and keep

the particle density high enough. This self-heating process in thermodynamic equilibrium is

expressed through the power balance equation (2.5), with dW/dt ≈ 0 and PH → 0:

Pα = PL. (2.9)

By ‘a sufficiently long time’, we mean that the characteristic time measure that indicates how

fast the kinetic energy leaves the reactor when all heating is turned off, is sufficiently large.

This time measure is called the energy confinement time τE , and it is formally the characteristic

scale of the exponential energy decay e−t/τE in the reactor, as seen in Figure 2.4. The energy

confinement time can be measured experimentally.

Figure 2.4: Course of the relative kinetic energy through time in a fusion reactor with and
without heating. When the heating is turned off, the energy declines exponentially with a
characteristic energy confinement time τE . Here τE = 1.2s, which is a realistic value for JET.

What is the optimal particle density, temperature and confinement time to reach ignition?

The ignition condition of (2.9) provides the necessary ingredients. Pα is known from the fusion

power density equation (2.3) integrated over the volume of the reactor. The complete fusion

reaction energy Ef is simply replaced by the alpha particle energy Eα. The power loss PL is the

rate of energy loss of the reactor. Even when the heating is on and the total energy W stays at
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the same base level W0, energy is being lost with a rate of dWL/dt as if there was no heating:

PL = − d

dt
WL

= − d

dt
W (no heating)

= − d

dt

(
W0 e

−t/τE
)

=
W

τE
.

(2.10)

The minus sign in (2.10) is due to the convention taken here that powers are expressed as their

absolute values. We define n as the sum of the two densities: n ≡ n1 + n2. If the fusion power

output is maximized, the deuterium and tritium densities are the same, so n = 2n1 = 2n2.

When thermodynamic equilibrium is assumed, the average energy of a particle is 3kBT/2, so

the total energy of the reactor volume is:

W =
3

2
kBT ·N

=
3

2
kBT · 2nV

= 3nT V.

(2.11)

In the last line, the Boltzmann constant was omitted in favour of the convention that tempera-

tures are expressed in energy units. The relaxed assumption was made that the particle densities

and temperatures are uniform throughout the reactor. In reality, this is not necessarily the case,

but if the density and temperature profiles are positive and smooth, one can simply take the

average of the density times temperature to make (2.11) general. Another important remark is

that the factor 2 that appears before n comes from also taking the electrons of the deuterium

and tritium atoms into account. The reason for this will be discussed in the next section.

In light of the previous considerations, the ignition condition (2.9) becomes:

Eα
1

4
n2〈σv〉V =

3nT V

τE
. (2.12)

Divide by the volume and density n, rearrange the terms and multiply both sides by 2T :

2nT τE =
24T 2

〈σv〉Eα
. (2.13)

The ideal gas law, pV = NT , for the deuterium-tritium fuel is p = 2nT , so the ignition condition

in the pressure, temperature and density space finally becomes:

p τE =
24T 2

〈σv〉Eα
. (2.14)

This ignition condition draws a line in the p τE vs. T space, shown in Figure 2.5. For the
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deuterium-tritium reaction, the minimum of p τE is 8.3 atm s, and corresponds to a temperature

of about 15 keV.

Figure 2.5: Critical p τE for ignition as a function of temperature [9].

2.2.6 Triple product

The minimum value of p τE is theoretically the easiest configuration to achieve in a magnetic

confinement reactor. Since p = 2nT , it tells us something about the minimum of the product

between n, T and τE . This nTτE product is called the triple product. For the deuterium-tritium

reaction at the minimum of 15 keV, it is:

nTτE = 3 · 1021 keV s/m3. (2.15)

If ignition conditions are to be achieved, a fusion reactor needs at least 3 · 1021 keV s/m3 as the

value of the triple product. Other temperatures than 15 keV can be used to achieve ignition, as

Figure 2.5 shows, but these increase the triple product value, so are harder to achieve.

2.3 Plasma physics for nuclear fusion

The previous sections dealt with why fusion reactions produce energy and what general power

balance considerations there are to build a viable fusion reactor. Section 2.2 concluded that

the triple product, nTτE , should be at least 3 · 1021 keV s/m3. The easiest way to achieve this

would be at a temperature of about 15 keV. Until now, deuterium-tritium fusion was almost

exclusively discussed with the assumption of pure deuterium and tritium cores, and that they

somehow get heated to their desired temperatures. But in reality, the fuel mixture gets inserted

in the reactor as a neutral gas, which means that there is also an electron attached to each

deuterium or tritium atom. A very important consequence of working at fusion temperatures of

about 15 keV, however, is that the deuterium and tritium atoms are completely ionized due to the
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thermal heating energy. This means that our reactor does not contain a neutral gas anymore, but

a plasma. The total number density of the particles in the reactor is now two times the density

of the summed deuterium and tritium ion densities, so ntot = 2n = 2(n1 + n2). The ionization

means that the electromagnetic force can be used to contain the charged ions and electrons in the

reactor. This is the main principle behind magnetic confinement fusion reactors. This section

will describe some of the characteristics of a plasma and how electromagnetic properties can be

leveraged to keep the plasma inside of the reactor, and thus promote nuclear fusion reactions.

This will be done through the lens of building a magnetic confinement tokamak reactor.

2.3.1 What is a plasma?

When a neutral gas gets energized through heating or a strong electromagnetic field, a partially

or fully ionized gaseous substance with a significant fraction of quasi-free electrons can form.

These electrons make the ionized gas electrically conductive. This state of matter is called

a plasma. It is quasi-neutral, since some – or all – neutral atoms split into equal parts of

positive ions and negative electrons, and the possibly remaining atoms were neutral to begin

with. It features a collective behaviour, imposed by the long-range electromagnetic interactions

in the plasma. Generally, a plasma moves as a whole, with typical length and time dimensions

depending on several important plasma parameters. It is often called ‘the fourth state of matter’.

There are many naturally occurring plasmas. In fact, it is the most abundant form of ordinary

matter in the observable universe. Lightning is an example of a partially ionized plasma, and the

interior of the sun is an example of a fully ionized plasma. The sun is a particularly interesting

example, since its energy production also comes from nuclear fusion, though it involves a different

fusion process called the proton-proton chain.

If an electric field is introduced in a plasma, electrons quickly rearrange themselves and

the electric field is neutralized. As a consequence, no significant large-scale electric field can

exist in the (unmagnetized) plasma. The ability to shield out an external electric field is a

defining characteristic of a plasma, and it is called Debye shielding. To quantify the criteria

that specify an ionized gas as a plasma, the electrical quasi-neutrality, the Debye length, the

plasma frequency and the Debye sphere are discussed. This introduction will give an intuitive

explanation of these concepts, but the interested reader is referred to Introduction to Plasma

Physics by Francis Chen.

Quasi-neutrality

The charge density of a plasma is given by

ρ(r, t) =
∑
i

niqi + neqe, (2.16)

with the subscript i standing for (positive) ions and e for electrons. The sum over possible

different ion species will be omitted from now on, since only deuterium-tritium ions interest us

for practical purposes. They both have the same charge number, Zi = 1, so their densities can
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be summed and written as ni = n1 +n2. When the charge density is averaged over a sufficiently

large space and/or time, it turns out that the plasma is quasi-neutral, meaning that

〈ρ〉 = 〈ni〉qi + 〈ne〉qe ≈ 0. (2.17)

Consequently, 〈ni〉 ≈ 〈ne〉 ≡ n. This n is the ion and electron density that was used in the

previous sections. Small local and temporal deviations from this electrical neutrality occur

often throughout the plasma, but the electrostatic fields between charges react by restoring

the neutrality. These disturbances and restoring processes have the plasma particles fluctuate

around the equilibrium state, and these fluctuations show plasma-characteristic length and time

scales, called the Debye length and plasma frequency.

Debye length

The Debye length is intuitively the characteristic length-scale up to where plasma particles show

deviations from charge neutrality. Above it, quasi-neutrality holds. This is not a hard cut-off: it

is based on the average kinetic energy available to particles in the plasma. Since some particles

have more energy than others, they can also deviate further from equilibrium. Globally though,

the average maximum deviation length will be the Debye length. Another way to look at it, is if

a positive test charge qt is placed in an infinitely large quasi-neutral plasma, electrons will rush

to it to negate the charge. The bare potential of the test charge is

Vt =
qt

4πε0r
, (2.18)

where r is the distance from the charge. But when the electrons in the plasma are gathered

around the charge to negate it, the potential – now called the Debye potential – goes as9:

VD =
qt

4πε0r
e−r/λD . (2.19)

Here, λD is the Debye length, and it is given by

λ2D =
∑
s

ε0Ts
〈ns〉q2s

, (2.20)

with s the different species in the plasma: the ions and electrons. If r is smaller than λD, the

potential practically follows the bare Coulomb potential from (2.18). If r gets larger than λD,

it decays exponentially. The Debye length is the transition length scale for the two regimes. In

the case of a deuterium-tritium fusion plasma, the ion and electron contributions to the Debye

length are equal (same temperature, average density and squared charge), so the total Debye

9No derivation provided here.
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length is expressed as
√

2 times the electron Debye length:

λ2D = 2
ε0T

〈ne〉e2
(2.21)

The Debye length depends on the temperature of the plasma10 and the particle density. If

the temperature increases, particles have more thermal energy and can deviate more easily from

their average positions. If the density increases, the deviation-suppressing background of plasma

particles strengthens its grip: there are more opposite charges pulling the particle back.

If the Debye length is much smaller than the macroscopic length L of the ionized gas con-

tainer,

λD << L, (2.22)

it can be called a plasma. Otherwise, quasi-neutrality is not guaranteed. A tokamak fusion

device has a Debye length of about 10−4 m, and the radius of a tokamak is on the order of

meters, so this criterion is definitely fulfilled.

Debye sphere

For the Debye length to be a statistically relevant concept, there needs to be a sufficient amount

of particles in the sphere spanned by the Debye length. The Debye sphere is simply 4πλ3D/3,

and the amount of particles inside the Debye sphere is

ND = n×
4πλ3D

3
. (2.23)

The amount of particles in the Debye sphere needs to be much larger than one (ND >> 1). Note

that from the definition of the Debye length, the amount of particles actually scales as 1/
√
n,

so if the density increases, the amount of particles in the Debye sphere decreases. This can

be countered by a higher temperature. For typical densities (n ≈ 1020 m−3) and temperatures

(T ≈ 15 keV) in a tokamak, this condition is fulfilled.

Plasma frequency

Just as the Debye length is the characteristic length scale of charge fluctuations around neu-

trality, the plasma frequency indicates the characteristic time scale. If some electrons deviate

from equilibrium due to their thermal energy, and are all slightly displaced in one direction with

respect to the remaining ions, the charge separation will create a temporary electric field that

tries to restore the quasi-neutrality. Electrons will be attracted towards the original positions,

but as they are accelerated towards the original position, they gain inertia and overshoot the

equilibrium position. They will then fluctuate like a harmonic oscillator around the equilibrium

10The temperature of a plasma supposes thermodynamic equilibrium between all particles, which is a good
approximation for fusion plasmas.
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position. Electrons, not ions, fluctuate most, since they are so much lighter than ions and re-

act much faster. The frequency with which an electron will fluctuate around the equilibrium

position is called the plasma frequency ωpe, and is given by:

ω2
pe =

〈ne〉q2e
meε0

. (2.24)

The plasma frequency expression for ions is just the same, and a total plasma frequency can

be acquired by summing the squared contributions and then taking the final square root, but

the mass of the ions in the denominator makes this contribution negligible so only the electron

plasma frequency is used. The total plasma frequency becomes

ω2
p ≈ ω2

pe =
〈ne〉e2

meε0
. (2.25)

It is important to note that the plasma frequency does not depend on the temperature, only

on the density. It indicates a fundamental time scale in a plasma. For an ionized gas to be

qualified as a plasma, the plasma frequency should be much larger than macroscopic frequencies

(e.g., the inverse confinement time or stability frequencies). This is the case in tokamaks with

densities of about 1020 m−3. A typical plasma frequency in a tokamak is about 1012 s−1.

2.3.2 Motion of plasma particles in a tokamak magnetic field

At fusion temperatures, the deuterium-tritium reactor gas gets completely ionized. Since all the

previous criteria are fulfilled, it is a plasma with quasi-neutrality. It is also a hot plasma, with an

approximate thermodynamic equilibrium between ions and electrons at the appropriate scales.

Although Coulomb collisions are, relatively speaking, rare in a hot plasma (collective, long-range

Coulomb behaviour dominates), they still occur frequently enough to achieve thermodynamic

equilibrium at time scales much shorter than periods between fusion reactions. One way to keep

this hot plasma inside of a reactor is to confine it in an engineered magnetic field so that the

outwards directed negative temperature and pressure gradient of the plasma does not diffuse the

particles into the wall of the reactor. This diffusion might not only decrease the temperature

and inhibit fusion reactions from occurring, but also damage the wall of our expensive reactor.

In this section, the motion of a particle is discussed in the engineered magnetic field from a very

prominent nuclear reactor configuration, the tokamak. The JET fusion device has a tokamak

configuration, and so will ITER. The magnetic field is constructed one component at a time,

until a solid confinement field has been built. The mathematical derivations are kept light, and

only the main field components will be discussed, so as to focus on the conceptual idea behind

confinement.

A tokamak is shaped like a torus11. The plasma particles are confined inside the torus by

applying several magnetic fields. In Figure 2.6, a schematic drawing of a tokamak is presented.

11Many tokamak designs deviate in some way from the perfect torus form, but all close in on themselves in a
circular shape in the toroidal direction
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To understand the magnetic field lines in a tokamak, a short introduction to some relevant

electromagnetic phenomena is provided.

Figure 2.6: Schematic view of a tokamak and the main field coils with corresponding magnetic
fields and resulting helical field [11].

Newton’s equation of motion dictates that a particle in an electric and magnetic field obeys

the following equation:

m
d

dt
v = qE(r, t) + q (v×B(r, t)) + Fext(r, t). (2.26)

For a homogeneous12 and stationary13 electric field, this reduces to

m
d

dt
v = qE. (2.27)

From equation (2.27), it can be found that the field accelerates the particles in the plasma. The

equation governing the position r is:

r = r0 + v0t+
1

2

q

m
E t2. (2.28)

If the field is homogeneous and stationary, the acceleration is constant.

12Homogeneous means that the field has the same strength and direction everywhere. This is also often called
a uniform field.

13Stationary means that the field does not change through time.
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Applying a homogeneous and stationary magnetic field B(r, t) = Bzez in the z-direction14

reduces equation (2.26) to

m
d

dt
v = q(v×B). (2.29)

Through dot-multiplication with v, it becomes clear that the kinetic energy remains constant

throughout the motion, so a charged particle does not gain kinetic energy from applying a

stationary magnetic field:

m
d

dt
v · v = q (v×B) · v = 0 =⇒ d

dt
(mv2) = 0. (2.30)

The velocity is split into components parallel (v‖ = vz) and perpendicular (v⊥) to the magnetic

field. The particle’s motion is not altered in the parallel direction, since the cross-product

vz × Bzez = 0. In the direction perpendicular to the magnetic field line, however, a cyclotron

motion occurs, leading to the following circle motion around the cyclotron center:

m
v2⊥
r

= |q|v⊥Bz, (2.31)

with the cyclotron radius (also called gyroradius or Larmor radius) rc given by:

rc =
mv⊥
|q|Bz

. (2.32)

This cyclotron motion, combined with the undisturbed motion parallel to the magnetic field,

results in a helical motion of particles around the uniform magnetic field lines, shown in Fig-

ure 2.7.

Figure 2.7: Movement of a charged particle in a homogeneous and stationary magnetic field.

The helical motion of charged particles in a uniform field is a very useful property for confining

particles. If a sufficiently strong uniform magnetic field is applied to a plasma, the motion of the

14Any direction would have been fine, but the z-direction was chosen without loss of generality.
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plasma particles is confined to a motion parallel to the magnetic field lines. The perpendicular

motion is heavily suppressed, since the particles rotate around their guiding center in (very)

small circles. If one could build an infinitely long tube with a strong uniform field inside,

parallel to the main axis of the tube, (almost all) plasma particles could in theory move through

the tube without colliding with the wall. In reality, though, one cannot build an infinite reactor,

so a practical solution is to bend the tube in a circle and have it close in on itself, forming a

torus. The long magnetic field lines from the tube are now replaced by toroidal field lines. This

principle is one of the main mechanisms of confinement in a tokamak. A schematic view of the

helical motion of the particles is given in Figure 2.8.

Figure 2.8: The motion of charged particles in a torus with idealized uniform toroidal magnetic
field lines. The magnitude of the cyclotron radius is not to scale.

The disadvantage of bending the tube into a torus is that the magnetic field is no longer

uniform. The non-uniformity of the toroidal field results in drift velocities that have the plasma

particles drift into the wall once more. Without going into the particular details of the why

and how of these drift velocities15, one solution is to implement a poloidal magnetic field on top

of the toroidal one, resulting in a combined helical-shaped magnetic field. This is illustrated

in Figure 2.6. The helical field negates the outwards directed drift velocity. Still, this is not a

complete solution for confining the plasma. There is still turbulence in the plasma, and magnetic

instabilities can cause massive energy and particle losses to the plasma. Trying to mitigate these

instabilities is still an ongoing research area. One simple reason why ITER is so large is that

the volume of the plasma scales as ∼ R3, but the surface that confines it scales as ∼ R2, so

with increasing R the relative area through which particles and energies can escape through all

possible mechanisms becomes smaller compared to the volume, which improves confinement.

The toroidal field is applied by running a current through the toroidal field coils. The toroidal

field coils are placed symmetrically in the toroidal direction, but the shapes of the coils follow the

poloidal direction around the torus. By running a high current through each of them, magnetic

field lines form inside of the coil, as illustrated left in Figure 2.9. The combined magnetic fields

of the coils produce the total toroidal field, much like a bent solenoid wrapped around the torus.

The poloidal field is induced directly by the current running in the plasma, and indirectly by

15The interested reader is referred to the literature on Hall drift, gradient drift and centrifugal drift velocities.
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Figure 2.9: Left: A current running through a field coil induces a toroidal magnetic field. Right:
A current running in the plasma induces a poloidal magnetic field.

the inner poloidal field coils that create the plasma current. The direct induction of the poloidal

field through the plasma current is illustrated on the right side of Figure 2.9.

ITER will have toroidal magnetic fields up to 5.3 T, and the toroidal magnetic field strength

of JET is about 3.5 T. The 5.3 T from ITER is considered a strong magnetic field: it is induced

by running a current through superconducting coils. To give a scale of the size of the magnets

involved, and of tokamaks in general, a scale model of JET and ITER is shown in Figure 2.10.

2.3.3 Plasma heating

To get a plasma heated to temperatures of about 15 keV, several heating mechanisms can be

utilized on top of each other. The initial one, which gets the plasma to already impressive

temperatures of 1 to 3 keV, is called ohmic heating. Ohmic heating exploits the resistivity of

the plasma when there is a current running through it. This current is induced by the primary

transformer circuit, which basically consists of a large central solenoid in the middle of the

tokamak and the plasma itself as the secondary winding. When a very high current is run

through the central solenoid, a strong magnetic field is created. The plasma will react to a

variation in this magnetic field by producing its own current to try and negate the solenoid

magnetic field. So changes in the central solenoid current increase the plasma current. In

contrast to metallic conductors, the resistivity of a plasma actually decreases when the current

increases, so there is a decreasing ‘return on investment’ to the heating from the plasma current.

Still, a higher possible maximum current in the central solenoid can produce a higher plasma

current and result in a larger ohmic heating, so at first glance one could think to ramp up the

current to produce the desired temperatures. After about 3 keV, though, magnetic instabilities

cause too much power loss, and increasing the plasma current is thus not viable anymore.

To bridge the gap between the 3 keV and the 15 keV temperatures where alpha self-heating

takes over, one needs auxiliary heating processes. Two key auxiliary heating mechanisms are

neutral beam injection and radio frequency heating. Neutral beam injections inject particles with
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Figure 2.10: Left: the Joint European Torus (JET) tokamak. Right: the International Ther-
monuclear Experimental Reactor (ITER). JET’s plasma volume is about 80 m3 and has an
energy output of about 16 MW, on the order of the break-even point. ITER’s plasma volume is
about 800 m3 and will produce some 500 MW of power, ten times its input power. Illustrations
and persons are to scale.

very high energies into the plasma. These highly energetic particles then distribute their energies

throughout the plasma and heat it. An example of how to get such high energy particles, is

to accelerate a positive ion in a particle accelerator, giving it a high kinetic energy, and before

shooting it into the plasma, having it pass through a cold neutral gas so that it strips away an

electron and enters the plasma as a neutral component. A typical energy of such a particle is

about 150 keV.

Radio frequency heating works by sending an energetic wave into the plasma from an antenna

in the wall of the reactor, and have the plasma absorb the energy when the wave is near a

resonance frequency. This technique can target zones in the plasma by adjusting the energy

of the waves to ultimately have the desired resonance frequency when it arrives in the right

plasma zone. Electrons or ions can be targeted in the plasma, each with their own resonance

frequencies.

2.3.4 What lies ahead?

ITER will try and show the world that a commercial fusion reactor is possible. To do that, they

will have to get closer to ignition than has ever been done before16. The biggest challenge lies

in holding a stable plasma long enough without losing the energy to the environment. Magnetic

instabilities and turbulence, together with engineering and cost constraints, make this a very

16Ignition is not required for a practical fusion reactor. It can even be a desirable property of a reactor that it
cools down on its own if the remaining heating power is turned off.
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Figure 2.11: Based on data from previous fusion experiments and the parameters that will be
used to build ITER, a very promising energy confinement time of about 3.7 s is predicted [12].

hard challenge to tackle, but researchers believe an energy confinement time of about 3.7 s will

be achieved and about 500 MW17 of power will be produced with only about 50 MW of input

[12]. Confinement times and power ratios like this have no precedent, and fusion researchers

base their predictions on extrapolations from similar fusion devices, like JET, to gain confidence

in their predictions. A semi-empirical formula was devised that can predict confinement times

for fusion devices. Based on the parameters ITER will have, this formula is used to predict the

confinement time. The extrapolation of the energy confinement time, based on the data of many

previous reactors, is shown in Figure 2.11.

ITER was already being conceptualized in the early eighties, when the JET reactor was not

even finished. Just like then, fusion researchers are now thinking about what the next step will

look like when ITER is in operation. This next step is generally called DEMO, and denotes

the phase of fusion research that provides prototypes for commercial fusion reactors. Although

the timeline and technical specifications vary, the objective is the same for all parties involved:

building the nuclear fusion reactor that will demonstrate industrial-scale fusion. ITER foresees

first plasma around 2025, and DEMO is foreseen to go into operation by 2050 [13]. These

inspiring displays of engineering and international cooperation will hopefully lead the way to

global, clean and safe fusion energy for all.

17A nuclear fission reactor produces about 1000 MW of power.
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Chapter 3

An introduction to machine learning

This chapter aims at introducing the reader to the field of machine learning, with a focus on

algorithms that revolve around the cases treated in the thesis. Machine learning can be consid-

ered an important subfield of data science, which is the research area that contains everything

regarding the methods, processes and algorithms to extract insights and solve problems with

data. There are no well-defined boundaries that cover what comprises machine learning and

what not. For example, there are some who consider the field of statistics to lie outside the

realm of machine learning. Here a more unifying view is adopted, where many of the underlying

principles governing statistics apply to machine learning, and vice versa.

Machine learning can also be seen as part of the field of artificial intelligence. It is certainly

true that machine learning – and especially deep learning – has dominated artificial intelligence

research for quite some time now, but artificial intelligence is comprised of more than just the

machine learning aspect. Optimal search algorithms, Bayesian inference models and game-

playing are just some of the other topics approached by this lively field. Again, the boundaries

between different techniques are vague, and cross-overs between subfields are frequent. An

introduction to the field of artificial intelligence is given in Artificial Intelligence: A Modern

Approach, by Peter Norvig and Stuart Russell [14].

3.1 Supervised learning

In machine learning, one often wants to model the function that governs the relationship between

an input and an output, based on many example inputs and corresponding outputs, also called

labels. Examples of labeled data are pictures with corresponding descriptions, a sentence from

a foreign language with its corresponding translation, or hospital records from patients with

corresponding health status. The modeling of the relationship between the input (e.g., pictures

showing a dog or a cat) and the label (e.g., ‘dog’) by training on many examples, is called

supervised learning. Models that use supervised learning can adjust their internal knowledge

state by getting corrections from the label when they make a wrong prediction.

Most machine learning models start off knowing nothing about the real world. When a

model has to predict if there is a cat or a dog in a picture, its internal state might produce the
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random result of ‘dog: 0.4’ and ‘cat: 0.6’. If the prediction is wrong (the real label was ‘dog’),

the internal state will shift, so that next time it might predict a similar sample correctly. This

process continues for all available training examples, often multiple times. Let’s call f(x) the

true function that maps input samples x to their true labels r, and let’s call g(x|θ) the model

function that tries to approximate the real underlying truth of f(x). θ represents the internal

state parameters of the function that have to be adjusted to resemble f(x) as best as possible.

The difference between the prediction y = g(x|θ) and the true label r = f(x)1 is what makes

the internal state of the algorithm change. If the difference is large, a significant internal shift

happens. If there is only a small difference, or no difference at all (e.g. if the picture is a cat

and was predicted as ‘cat: 1.0’), the internal state will remain about the same. The measure

of the difference between a prediction and the true label is determined by the loss function,

L(r, y), which is tailored to the problem at hand. The purpose of learning is to minimize this

loss function for all training examples in the hope that when the model is presented with new,

unseen data – where this time, the labels are unknown – it will still produce acceptable results.

When a model performs well on data that it has not encountered before, we say that it is able

to generalize what it has learned from the training samples. For this, it is assumed that the

data from the training set adequately represents the data that will be encountered in the ‘real

world’, otherwise the model will not know what to do with new samples and perform poorly.

Minimizing the value of the total loss function for all training samples corresponds to finding a

set of optimal internal parameters θ*, expressed as:

θ* = argmin
θ

∑
i

L(ri, yi), (3.1)

with the sum over all training samples xi with corresponding labels ri. Generally, the more

training data, the better the optimization of the model parameters will be. Of course, much

depends on the choice of the model, and every model has its limitations; there is unfortunately

no one-size-fits-all solution, in machine learning known as the ‘No Free Lunch Theorem’ [15].

Supervised algorithms can broadly be separated into two categories: classification algorithms

and regression algorithms. They mainly tackle different kinds of problems, but they both work

by training on examples with specified labels to minimize a loss function.

3.1.1 Classification

The example of recognizing dogs and cats that has been used up to now is an instance of

a classification problem. Classification algorithms take as input several variables (also called

parameters or features), and based on these variables determine what class a sample belongs to.

Classes are discrete categories, like ‘dog’ and ‘cat’ in our binary classification example.

One simple but important classification algorithm will be discussed here, called logistic re-

gression2. It will serve as a way to introduce some important concepts in machine learning.

1Actually, r = f(x) +n, where n is the real-life noise on the true function. It is often assumed to be Gaussian.
2Make no mistake, logistic regression is a classification algorithm. Admittedly, it is a confusing terminology.
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Figure 3.1: Training samples of two classes, C1 and C2, are to be separated by a straight line.

A simple binary classification problem will be considered. Samples from two classes, C1 and

C2, must be classified correctly based on two available features, x1 and x2. To distinguish one

from the other, an optimal boundary line3 between the two classes is sought. This is illustrated

in Figure 3.1.

When a boundary line is found that separates the labeled training samples, new samples

belonging to either C1 or C2 can then be classified according to their position relative to this

line. The line – or hyperplane in more dimensions – is also called the decision surface, and can

be described by the analytical expression of a flat surface in feature space. Here, this is just the

expression of a straight line in the two-dimensional x1x2 space:

z(x1, x2|w) = w1x1 + w2x2 + w0 = 0, (3.2)

where the elements of the vector w ≡ (w0, w1, w2) represent the inner knowledge state θ of the

model. We have to adjust the weights w by minimizing a loss function until the model correctly

separates all training samples, like Figure 3.1 shows. Perfectly separating all samples is only

possible if a straight line can be drawn between the samples. If this is not possible, the resulting

separation line will be the best possible fit to the data. We call this strategy linear classification,

since the decision surface contains only linear terms4. To gradually minimize the loss function,

the separation boundary can be placed anywhere as a start. This initial boundary predicts a

3In two dimensions, this separation boundary is just a simple straight line, but for more dimensions, the
boundary is more generally called a hyperplane or hypersurface.

4More complex decision surfaces can be considered by introducing higher order terms, or any other non-linear
function, but the space in which to minimize the loss function gets larger, which brings the ‘curse of dimensionality’.
Support vector machines, another branch of machine learning techniques, have an ingenious way of dealing with
this, called the kernel trick.
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Figure 3.2: Two examples of separation boundaries obtained by a squared distance loss function.
The green line represents the true separation between classes, the purple line is the one obtained
by gradient descent with the squared distance loss. When outliers are introduced (right figure),
they skew the boundary and create a model that will produce poor results on new samples.

first estimation of the labels of the training samples, and divides them into two sectors, z > 0

and z < 0. Since the first initialization of the decision boundary will probably get many samples

wrong, an update in the right direction is required. An intuitive idea would be to use the sum

of the squared distances to the decision surface for every sample as the loss function to be

minimized:

Ltot =
∑
i

z2i . (3.3)

The negative gradient of this loss function can be used to adjust the weights in the direction of

the minimum of the loss function:

w −→ w− η ∇wLtot, (3.4)

where η is called the learning rate, which determines how fast the descend to the minimum of

the loss function should be. A too high learning rate might mean we overshoot the minimum at

every update; a too small learning rate might mean it takes forever to approach the minimum,

or for certain loss functions it might get stuck in a suboptimal minimum. This updating of the

weights (and thus of the decision surface) is done until the loss function has been minimized.

This strategy is called gradient descent. When the algorithm has converged to a solution, it is

supposed to be ready to classify new and unseen samples. However, we have to be careful: our

squared distance loss function was actually not a reliable option for our classification problem.

It is not robust to outliers, and it punishes points that are classified ‘too well’, as shown in

Figure 3.2, since their squared distances are also adding to the loss function and thus misdirect

the decision surface.
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Figure 3.3: The logistic function g =
1

1 + e−z
, also called a sigmoid.

To find a more robust loss function, an update to the simple decision boundary classification

algorithm can be implemented. Until now, samples were classified as C1 or C2 based on their

location compared to the decision surface. A measure of how ‘rightly’ or ‘wrongly’ samples

were classified, was until now based on the squared5 distance to that decision surface. The

loss function based on this intuitive measure turned out to be unreliable, so another measure

to express the certainty of the classification prediction has to be introduced. It has to be a

differentiable measure, so the loss function can be minimized during each update, and it has

to be robust. One simple trick is to superimpose a logistic function g = (1 + e−z)−1, shown

in Figure 3.3, on top of the distance z to the decision surface, so g ≡ g(z(x1, x2|w)). This

effectively reduces the infinite range of possible distances to the interval between 0 and 1, and

introduces a variable p = g(z) that softens the boundary between the two classes. p represents

an approximation of the probability that a sample belongs to the C1 class on the z > 0 side of

the decision surface, and 1− p represents the approximate probability of belonging to the other

C2 class. To convert this soft decision boundary back into a discrete classification, we can assign

samples with p > 0.5 into C1, and samples with p < 0.5 into C2.

The introduction of the logistic function and the interpretation of g(z) as approximate prob-

abilities6 p is of little use if we just convert the probabilities back into discrete classifications.

Luckily, the logistic function values are very useful for defining a robust loss function. This loss

5One could use the absolute distance as a measure, and only sum the losses for wrongly classified samples so
that the summed loss function would still be differentiable and the problem of punishing overly good predictions
would be avoided. This is called the perceptron loss function, but has the problem that the boundary obtained
is not optimal, and the solution does not converge if the classes are not linearly separable.

6This interpretation of probabilities has a statistical grounding that is out of scope here. The interested reader
is referred to the literature on maximum likelihood estimation.
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function is called the cross-entropy loss, or the negative log-loss. It is given by:

Lcross−entropy = −
∑
c

rc log pc, (3.5)

where the sum over all classes c (here C1 and C2) is taken. The total loss for all training

samples can then be obtained by summing this expression for every sample. The true labels, rc,

are discrete labels, so they equal 0 or 1 (e.g., ‘r1: 0’ and ‘r2: 1’). The predicted probabilities,

pc, represent a real number between 0 and 1. Only one rc equals 1, the other equals 0, so the

cross-entropy loss for a sample could in principle be reduced to

Lcross−entropy = − rc log pc (yc = 1), (3.6)

but this function is not differentiable, which is a requirement for a practical loss function. In

Figure 3.4, the loss function is shown for the true label rc equal to 1.

Figure 3.4: Cross-entropy error for the true label. If the predicted probability is, e.g., 0.2, the
error is larger than for ‘correct’ probability values above 0.5.

The cross-entropy loss is one of the most widely used loss functions for classification in general.

Up until now, the discussion has been based on a binary classification problem. If the

extension to more classes is made, some adjustments are in order. One possible strategy for

multi-class classification is to adopt a one-vs-all strategy, where a binary problem is solved for

every separate class vs. the rest of the classes, and afterwards for every sample the highest

class probability score is used for the final prediction of its label. Another possibility is to solve

binary classification problems between every combination of two classes, called the one-vs-one

scheme. Here, a sample gets assigned to the class in which it has been classified the most for all

separate binary classifications.

Logistic regression is a widely used linear classification technique, and by going through the

steps of optimizing the decision boundary and using the logistic function to obtain a suitable loss
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Figure 3.5: A regression line (red) is drawn, which should approximate the underlying function
governing the data well.

function, many fundamental concepts in machine learning were touched upon. Besides logistic

regression, many other classification algorithms exist. A notable example are support vector

machines, which in a way can be viewed as an upgrade to the logistic regression model that

maximizes the margin between the decision surface and the closest samples. Another important

branch of algorithms are artificial neural networks, which are discussed in 3.2.2.

3.1.2 Regression

Another major branch in supervised learning is regression. In classification, it was all about

predicting a class label from the feature values. In regression, it is about approximating the

underlying function governing the relation between the features of the samples. An example is

shown in Figure 3.5, where again there are two features, x1 and x2, but now the curve governing

the relation between the features is to be predicted, shown as the red line. An approximation

can be made with arbitrary complexity. A simple linear function

z(x1, x2|w0, w1, 1) = w2x2 + w1x1 + w0 = 0 =⇒ x2 =
w1

w2
x1 +

w0

w2
, (3.7)

is one of the possibilities, where the weights w = (w0, w1, w2) need to be optimized7 to find the

best approximation possible with this complexity. The same supervised optimization approach

is used to find these optimal weights as for the optimization of classification models. We are not

restricted to linear approximations: any order of complexity is possible, as shown in Figure 3.6,

but it is important to use a complexity that is neither too restrictive and therefore underfits the

7There is always one weight that can be eliminated. In equation (3.7), w2 can be set to 1. The actual value
does not matter, since it can be absorbed in the learning rate anyhow.
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data (like both top examples in Figure 3.6), nor a complexity that is too sensitive to the specific

training samples and overfits to the data (like the bottom right example).

Figure 3.6: Different orders of complexity M are used to fit a curve to the data. The green
curve represents the true underlying function governing the data. The top examples show an
underfit to the data, the bottom right example shows an overfit to the data.

Fitting a curve to data requires an optimization strategy. Again, a loss function has to be

minimized in order to obtain an estimation of the true relation between the variables. Suppose

we have a bunch of samples with features x1 and x2, and given the x1 of a new, unseen test

sample, we want to predict what its x2 value will be. To do that, we can fit a curve y =

g(x1|w) = w0 + w1x1 + w′1x
2
1 + ... to the training samples by making sure that the sum of the

squared distances between the estimated curve values, y, and the real values, x2, is minimized.

The total squared distance loss is given by summing over all samples:

L(r, y) =
∑
i

(ri − yi)2, (3.8)

where in our example, r = x2 is the actual value of the sample. This squared distance is defined

in the direction of the to be predicted feature, and not orthogonal to the curve, as in equation

(3.3). This is illustrated in Figure 3.7. The squared distance loss is now an appropriate loss

function, since samples that have a great distance from the curve should be punished by the loss

function. Finally, the weights of the estimate function are updated using gradient descent from

equation (3.4).
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Figure 3.7: Curve fit by minimizing the squared distance loss function to estimate the function
for predicting y, given x.

To obtain the right complexity for function estimates, several techniques for the regularization

of the estimate exist. Regularization makes sure that an estimator does not overfit to the training

samples by learning the training data by heart, with all its noisy irregularities that do not tell

anything about the true underlying function governing all samples in real life. If not, the overly

complex estimate function will not generalize well to unseen data. Regularization is a very

significant part of building a good machine learning model, but the nuances of fine-tuning a

model are out of scope for this introduction. The interested reader is guided to the literature

on ridge regression and other regularization techniques, to explore the tricky concept of the

bias-variance trade-off.

3.2 Unsupervised learning

Supervised learning algorithms have the luxury of working with labeled examples to learn a

mapping function from inputs to outputs. In reality, there are often no labels available for many

datasets. Still, information regarding the patterns in the data can be obtained with unsupervised

learning. For example, the clustering of data into groups of similar samples can be done with

techniques like the k-means clustering algorithm [16] or Gaussian Mixture Models [17]. Another

possibility of unsupervised learning is the reduction of the dimensionality in the data to improve

efficiency and effectiveness of learning algorithms, or to understand or visualize the data better.

Unsupervised learning comprises a wide array of machine learning techniques, but this section

will focus on two major algorithms: principal component analysis [18] and auto-encoder neural

networks [19], since they form an important part of the anomaly detection models devised in

chapter 4.
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3.2.1 Principal component analysis

If input data is high-dimensional, this often brings along many challenges in machine learning.

These challenges are collectively known as the ‘curse of dimensionality’. They concern the

difficult search for optimal solutions in very large feature spaces, or distorted distances between

data samples due to bloated dimensionalities. The common theme of these problems is that when

the dimensionality increases, the volume of the feature space increases so fast that the available

data becomes sparse. To compensate, the amount of extra data needed to obtain statistical

significant results grows exponentially. If structured regions in the data need to be discovered,

the sparsity between samples obstructs an efficient organization. For these situations, models

could benefit from dimensionality reduction techniques. These techniques should keep most of

the predictive information in the data, while significantly reducing the amount of dimensions.

There are many supervised and unsupervised dimensionality reduction techniques available.

Here, one of the most popular dimensionality reduction algorithms will be discussed: principal

component analysis, or PCA.

Principal component analysis does not necessarily reduce the dimensionality of the feature

space. At its core, it is a technique that calculates new uncorrelated feature axes that are

ranked according to the percentage of the variance they explain in the data. An example of the

transformation from original feature vectors into uncorrelated ones is illustrated in Figure 3.8.

It is only when the tail of the new feature axes – those that explain the least amount of variance

– is discarded, that dimensionality reduction has been performed. The underlying assumption

in using PCA is that the remaining principal components will contain most of the information

that was contained in the data in the original feature space. This assumption is however not

necessarily true; there could have been important predictive information in the tail that was

eventually discarded. Nevertheless, principal component analysis is very often used for basic

dimensionality reduction, since it easily provides good results.

To understand the calculation of the principal components, some linear algebra is required.

The first step in finding the principal components is calculating the covariance matrix V of the

original features, based on the data available. Nowadays, many computational libraries exist for

doing this. The covariance matrix expresses the covariance between two separate variables on the

off-diagonal elements, and the variance per variable on the diagonal. Next, the eigenvalues and

eigenvectors of the symmetric covariance matrix V are calculated. Eigenvectors and eigenvalues

are defined by the eigenvalue equation:

V · vi = λi vi, (3.9)

where the eigenvectors vi have the property that they are only rescaled by the eigenvalues λi

when the covariance matrix V is applied to them. The dimensionality of the covariance matrix is

the amount of features squared, so there are as many eigenvectors as there are original features.

Many computational libraries exist for solving eigenvalue equations. An interesting property of

symmetric matrices is that the eigenvectors corresponding to different eigenvalues are orthogonal



3.2 Unsupervised learning 37

Figure 3.8: Two correlated feature axes are transformed to two new orthogonal feature axes,
where the first one is in the direction with maximum variance, and the second is orthogonal to
it. If the second dimension is now discarded, the dimensionality is reduced from 2 to 1, while
keeping as much variance in the data as possible.

to each other (and hence linearly independent). These eigenvectors can be used as an orthogonal

basis to span the same feature space as the original feature vectors. On top of that, the new

orthogonal feature vectors have a covariance matrix with only eigenvalues on the diagonal of the

matrix, so there is no covariance between any two feature vectors. Up until now, there has been

no loss of information, only a change of basis. The eigenvalues on the diagonal still represent

all the variance in the data. If we now want to reduce the dimensionality of the feature space,

we can omit the features that explain the least amount of variance: the eigenvectors with the

smallest eigenvalues/variance.

PCA is a powerful technique to construct new uncorrelated features and reduce dimension-

ality, while still keeping most of the variance in the data. It is again stressed that this is an

unsupervised technique: if it is used to prepare data for a supervised task, careful consideration

on how many dimensions to remove is advised. Also, for PCA to have the desired effect, an

appropriate rescaling of the features is advised before PCA is applied, since large relative scale

differences between features will distort the variances picked up by the PCA algorithm.
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3.2.2 Auto-encoder neural networks

Auto-encoder neural networks are part of a prominent branch of machine learning algorithms,

called artificial neural networks. These neural networks have a structure that is inspired by

the way biological neural networks, like the human brain, process information. Artificial neural

networks have received a lot of attention in machine learning research this past decade, thanks

to the extraordinary results they achieve in fields like computer vision and natural language

processing. Many more advanced artificial neural networks, e.g., convolutional and recurrent

neural networks, are smart adaptations to the baseline neural network architecture of the mul-

tilayer perceptron, or MLP. The multilayer perceptron was historically used in the context of

supervised learning, but by now several applications for unsupervised learning exist.

Figure 3.9: A classic multilayer perceptron architecture. The 6-dimensional input layer is fol-
lowed by two hidden layers that eventually lead to the output layer.

An MLP consists of neurons, which are the building blocks of all neural networks. The

neurons are ordered in layers: an input layer, one or more hidden layers, and an output layer.

The neurons between layers are connected, as illustrated in Figure 3.9, and information from

the input layer can propagate through the network until it reaches the output layer. A neuron

in the first hidden layer receives a signal from every neuron in the input layer. These signals

are weighted, and an activation function is put on top of the (weighted) sum of all signals to

create a new signal that will be forwarded to every neuron in the following layer. This process

continues for every neuron in every layer until the output layer is reached. This way, the fully

connected network maps an input to an output. If we take a closer look at the processing that

happens in one neuron, we find that it is very similar to the logistic regression algorithm that
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we are by now familiar with. The weighted sum z over all the input signals i can be written as:

z =
∑
i

wixi + w0, (3.10)

which corresponds to the familiar sum of the input features, where w0 represents the intercept

value for the neuron. Just like with logistic regression, the weights need to be optimized to obtain

the best approximation to the function that we are trying to model, only now every neuron has

its own set of weights, and neurons from subsequent layers are connected. The output signal of

each neuron is acquired by applying an appropriate activation function on top of the weighted

sum z, as shown in Figure 3.10. This activation function can be the familiar sigmoid function,

or another activation function suited for the problem.

Figure 3.10: Information processing flow of a single neuron. The incoming signals xi from the
previous layer are multiplied with the weights wi and then summed. An activation function f
is then applied to this weighted sum z, and the result is passed to all neurons in the subsequent
layer as an input signal.

The optimization of the weights of all neurons happens by minimizing a loss function with

gradient descent. This shows that the core framework of machine learning introduced in section

3.1 is universally applicable. We consider a classification problem, where the cross-entropy loss

is often a good choice. For classification, the output layer of the MLP will consist of an amount

of neurons equal to the amount of classes8, and for every output neuron, the incoming signals

from the last hidden layer will be weighted and summed and a specific output activation function

will be applied. A commonly used one is the softmax activation function s:

s(zi) =
exp(zi)∑
j exp(zj)

, (3.11)

where zi represents the weighted sum of the current output neuron, and the denominator sums

over the zj of all output neurons, including zi. The softmax activation function can be considered

8For binary classification though, one neuron suffices.
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the multi-dimensional extension of the sigmoid function, and produces normalized probabilities

for every output node. These probabilities represent the predictions of the neural network, and

the class corresponding to the node with the highest probability represents the ‘hard’ prediction

of the model. The soft probabilities are used to calculate the cross-entropy loss. To minimize the

loss, a strategy called backpropagation is used. It is based on the familiar procedure of gradient

descent, but now the weight derivative of the loss function of the output layer is dependent

on the activations of the neurons from the previous layer, which are themselves dependent on

the neurons from the layer before, and so forth. By using the chain rule for derivatives, the

information gathered from the loss function can be backpropagated all the way to the input

layer. As a result, the weights for all neurons can be fine-tuned, and the neural network has an

effective optimization strategy to approximate the function governing the relation between the

inputs and outputs.

One of the greatest strengths of neural networks is the ability to effortlessly capture non-linear

behaviour in the function mapping the input to the output, thanks to the non-linear activations

functions in each layer. Also, neural networks make feature engineering redundant, since the

first layers of the neural network are automatically trained to create adequate representations

of the input. In a way, artificial neural networks incrementally learn more complex features,

and form a feature hierarchy. The drawback of many (deep) artificial neural network models is

that they require a lot of data to train on to model the complex underlying behaviour, while

the often huge parameter space of the networks is prone to overfitting.

Now that the inner workings of the multilayer perceptron are known, the auto-encoder

variant can be considered. An auto-encoder neural network has the same amount of neurons in

its input layer as in its output layer. After the input layer, the first half of the hidden layers

contain gradually decreasing amounts of neurons, so that the input data is compressed into a

smaller subspace. The second half of the hidden layers then have increasing numbers of nodes to

try and reconstruct the data from the compressed subspace. The first half is called the encoder,

the second is called the decoder. The goal of an auto-encoder neural network is to have an

output layer that mimics the input as closely as possible. An example of an auto-encoder neural

network architecture is shown in Figure 3.11.

Auto-encoders are a particular kind of unsupervised learning, since the input data itself is

used to calculate the loss with the output values. They are sometimes called ‘self-supervised’

algorithms. An often used differentiable loss function is the mean squared error (MSE), given

by:

LMSE(xi, x̂i) =
1

n

n∑
i=1

(xi − x̂i)2, (3.12)

with xi the original feature values, x̂i the reconstructed feature values, and n the dimensionality

of the input.

Auto-encoders have many interesting applications in machine learning. One possibility is to

use them as a dimensionality reduction model. The bottle-neck layer of the auto-encoder has
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Figure 3.11: Example of an auto-encoder neural network architecture with three hidden layers.
The input and output layers have the same amount of neurons.

to capture as much of the input information as possible, in order for the decoder to be able to

correctly reconstruct the input. This makes the unactivated output values of the bottle-neck

layer very suitable lower-dimensional features. The entire dataset can be used to train an auto-

encoder, and afterwards every sample can be run through the encoder part only, so that suitable

low-dimensional features emerge. This approach can be very effective, but the drawback is that

a separate auto-encoder has to be trained for most datasets, and resulting encoded feature values

will not make sense if the input to the network does not resemble the training data.

On the decoder side, auto-encoder networks can be used for generating variations on input

data. These algorithms are called variational auto-encoders, and they can, e.g., generate varia-

tions of human faces, or have styles of music blend into each other [20]. Variational auto-encoders

differ from regular auto-encoders in that their bottle-neck layer consists of two encoded vectors

of equal size, instead of one. The first vector contains mean values µ, and the second vector

contains corresponding standard deviations σ. The reason for this, is that regular auto-encoders

produce encoded representations which are discrete points in the reduced feature space. For a

generative model, random variations on the encoded feature vector of an input sample are re-

quired. With only discrete points, this is not feasible. Therefore, distributions of similar groups

in the encoded space are learned instead of discrete points, so that randomness can be intro-

duced for each encoded representation of a sample, or outputs can even be completely randomly

generated from the encoded distributions.
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3.3 Predictive maintenance

Predictive maintenance is a collection of techniques designed to predict equipment failure, with

the goal of acting on this information to prevent the failure from occurring. Monitoring a

system to detect upcoming failures allows maintenance to be planned on designated moments

before an unacceptable high failure chance is reached, while at the same time avoiding costs

associated with performing maintenance too frequently out of caution. The need for predictive

maintenance is increasing in a time where systems become increasingly complex and automated.

A properly structured maintenance strategy can reduce costs, decrease maintenance man-hours,

improve efficiency and increase the total production output overall. The results from predictive

maintenance might also help to understand the operation of the equipment better.

3.3.1 Strategies

Traditionally, maintenance is performed over fixed time intervals, called ‘preventive mainte-

nance’, or worse, by waiting until a failure occurs and then react to it, called ‘reactive mainte-

nance’. The reactive maintenance strategy has no costs up-front, but often leads to high costs

down the road when equipment eventually fails at the most inconvenient times. Preventive

maintenance has the advantage of planned maintenance at convenient times, and may avoid

failures before they happen, but it also leads to an increase in maintenance costs as parts are

replaced even when not required yet. Another risk with frequent preventive maintenance is that

there is a higher risk for human errors when parts are replaced or inspected often. Installing a

defective part or incorrectly reassembling the system will introduce a liability into the system,

and a failure will probably occur before the next scheduled maintenance, resulting in the same

inconveniences of the reactive approach. Predictive maintenance avoids the problems associated

with both by warning ahead of time if the system approaches a failure, so that a convenient time

for maintenance can be planned without causing major disruptions to operations. Of course,

predictive maintenance is no crystal ball: predictions of future trends of the system’s condition

will always have a degree of uncertainty, and no system can be completely spared of unexpected

events. Much depends also on the data available to create predictive algorithms; some data

allow more tailored predictive maintenance approaches than others.

An evaluation of the system’s condition can be done in an offline or online fashion. The

online continuous monitoring is most often applied, and uses real-time sensor measurements like

vibrations, temperatures, electrical signals etc. to assess the condition of the system. When

the condition monitoring indicates a loss in performance or predicts a failure within a certain

time span, operators are warned and maintenance can be scheduled, hereby reducing costs

substantially and increasing the system’s reliability.

When sensor measurements or other relevant data regarding the system are gathered, mon-

itoring the health of the system requires appropriate analysis of the incoming data stream. The

predictive algorithms used for this analysis will recognize patterns and generate insights that

are then supplied to the operators in the form of alarms or other meta-information. These in-
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sights can be investigated to assess a corrective action if needed. Early predictive maintenance

algorithms were mostly rule-based, with specific thresholds on sensor data obtained by careful

analysis of experts of the system. A simple example: when the temperature of a system surpasses

a limit, together with a high motor velocity value, an alarm is triggered. A high motor velocity

or temperature on its own would not have triggered any alarms. These if-then statements are

meticulously built around one specific system, and lack generalizing properties to other systems.

Rule-based systems are labour intensive, and need to be implemented for each system by ex-

perts. In contrast, more general approaches can be found in machine learning. Multiple machine

learning algorithms exist to address predictive maintenance challenges, and these algorithms are

extendable to almost any device given that the proper data is available. Predictive maintenance

machine learning algorithms search for a representation of the health status of the equipment

based on the available data, and use this representation to predict valuable information like the

estimated remaining lifetime of a system, or the probability of failure at that time. More on the

prediction of the remaining lifetime is discussed in chapter 4, and [21, 22] provide more details

on predictive maintenance in general.

3.3.2 Anomaly detection

Many of the machine learning models used for predictive maintenance are based on anomaly

detection algorithms, including the models presented in this thesis. This section will introduce

some of the basic concepts in anomaly detection. For more details, and an overview of anomaly

detection applications, see [23].

Anomaly detection deals with the problem of finding instances in a dataset that do not

represent normal behaviour. These instances are called anomalies or outliers. Anomaly detection

is used in a variety of contexts, of which one is predictive maintenance. Detecting anomalies in

the data can provide important information that triggers an action to respond to the anomalies.

Some examples are anomalous MRI images indicating the presence of a malignant tumor, or

anomalies in credit card transaction data signalling credit card or identity theft. Detecting

anomalies in data has been researched in statistics as early as the 19th century, but over time,

a wide variety of anomaly detection techniques have been developed. Many of these techniques

are domain-specific, while others serve a more general purpose.

Figure 3.12 shows a simple example of anomalies in a two-dimensional dataset. There is a

normal region, indicated by the green boundary, but data far away from this region is flagged as

anomalous. Data is considered anomalous if it differs enough from normal data, but ‘enough’ is

defined by the problem at hand. If new data is introduced with properties that were previously

unobserved, they might at first be flagged as anomalous. However, if enough similar samples

occur and a trend is observed, the data might be added to the pool of normal behaviour. This is

for example done in anomaly detection with auto-regressive approaches like the ARIMA model

[24].

A simple approach to anomaly detection would be to define regions representing normal

behaviour, and indicate any data instance outside of this region as anomalous. This is not an
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Figure 3.12: A simple example of anomalies in a two-dimensional data set.

easy task, however, and several challenges need to be solved before this is possible. Some of

these challenges are:

• The boundary between normal and anomalous behaviour is often unclear. Samples close to

the boundary are difficult to classify, and a simple, yet complete mathematical description

of the normal behaviour region can be hard to obtain.

• In many cases, normal behaviour changes through time, and an update of the notion of

‘normal’ is required in order to maintain accurate anomaly detection.

• The definition of an anomaly depends on the application domain. Applying techniques

developed in one domain to another might not provide good results.

• Often the data contains noise which might mistakenly look like anomalous behaviour.

Noise removal might accidentally remove an informative outlier, which is not desired.

Anomaly detection is a complex problem to solve generally. Most anomaly detection techniques

are built around solving one specific problem by leveraging the data properties and problem

specifics. For example, some techniques are built specifically for dealing with time series data,

where data samples have the contextual attribute of time and often time correlations between sub-

sequent samples exist. Feature values belonging to one context might be considered anomalous,

while in another context are considered completely normal. For example, if high temperatures

are registered in winter they might be flagged as anomalous, while the same temperatures in

summer might be considered normal behaviour. Another distinction between models might be

that some models focus on flagging single samples as anomalous, while other models will only flag
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a collective of samples as outliers, with each sample on its own not being considered anomalous.

An example of a collective anomaly is shown in Figure 3.13.

Figure 3.13: Collective anomaly corresponding to an Atrial Premature Contraction in a human
electrocardiogram output. The red region denotes an anomaly because the same low value exists
for an abnormally long time. The low value by itself is not considered an anomaly [23].

The machine learning distinction between supervised and unsupervised learning also exists

for anomaly detection. Obtaining quality labeled data is often expensive and requires knowledge

from human experts. Covering all types of anomalous behaviour during labeling is often not

feasible, and it can occur that the anomalous behavior is dynamic in nature, e.g., new types of

anomalies might arise for which there are no labeled training examples. Another difficult case

is if anomalous instances correspond to catastrophic events and are therefore extremely rare or

nonexistent. However, if one has the luxury of a fully labeled dataset, the complete arsenal

of supervised learning techniques could in theory be applied to try and classify new samples

correctly. One important problem with a predictive ‘normal’ vs. ‘anomaly’ approach, is that

very often there is a severe class-imbalance between the two classes, which severely complicates a

good optimization of the machine learning model. Dealing with class-imbalance is an important

topic in machine learning, and more details are provided in [25].

The case of a training dataset where all anomalies are labeled is rare, and if it does occur, it

resembles more a traditional classification problem than ‘real’ anomaly detection. Getting labels

for normal behaviour only, however, is often within the possibilities of many datasets, since nor-

mal behaviour is generally more easily recognizable, more abundant, and requires less experience

and knowledge of the specifics of the data than for labeling of the anomalous behaviour. It is

therefore quite usual in anomaly detection to use a semi-supervised learning strategy, where nor-

mal behaviour is labeled, and anomalies are defined as anything that diverges from this pool of
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normal data. The techniques from semi-supervised anomaly detection are therefore more widely

applicable than supervised techniques. It also addresses problems like dynamic behaviour of

anomalies or extremely rare occurrences of anomalies, like for catastrophic events. The prob-

lems with class-imbalance are also conveniently avoided. A typical approach in semi-supervised

anomaly detection is to build a model that recognizes normal behavior, and use the model to

identify anomalies in the test data if a sample diverges from the learned normal behaviour.

Besides semi-supervised learning, dealing with completely unlabeled datasets is also very

common in anomaly detection. When unlabeled data is available, the assumption is made

that normal instances are (far) more frequent than anomalous instances. If this is not true,

unsupervised anomaly detection techniques will suffer from high false alarm rates.

The output of an anomaly detection algorithm can be a continuous anomaly score, or a

discrete label. Anomaly scores can be converted to discrete labels by setting up scoring intervals

and creating a label for every interval. Scoring based anomaly detection techniques allow the

analyst to use a domain specific threshold to select the most relevant anomalies. This is precisely

what the proposed models from chapter 4 will do, based on a semi-supervised learning approach.

Some popular anomaly detection algorithms are:

• One-class support vector machines [26],

• Bayesian networks [27],

• Hidden Markov models [28],

• Cluster-based anomaly detection. [29]

All anomaly detection algorithms have their strengths and weaknesses with regards to the avail-

able data, so an algorithm has to be chosen with care.
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Chapter 4

Anomaly detection for

turbomolecular pump data

4.1 Turbomolecular pumps

The art of building and maintaining an operational fusion device involves making sure millions

of separate parts, with just as many varying functions, form a coherent working entity. If one of

the parts is broken or malfunctions, the reactor as a whole stops functioning. One example of

an important chain in a tokamak fusion device is the vacuum pump system. For a good plasma

operation, a high vacuum has to be obtained. This can be done by combining turbomolecular

pumps and cryopumps to achieve very low pressures. The vacuum pump system is not only

expected to give good operation in high magnetic field conditions, but also to produce the

ultra-clean high vacuum necessary to generate the plasma. It has to remove all detrimental

molecular constituents, and additionally make sure that the remainders of a plasma experiment

are pumped away in a sufficiently short time. Another requirement for the pumping system, is

that it must be able to withstand faultlessly the high working pressures and high gas throughput

for long periods of operation. Turbomolecular pumps are suited as an important core part of

the pumping system for such operational demands: the high compression ratio for gas particles

ensures a clean vacuum by efficiently preventing any backstreaming of pollutants into the vacuum

chamber. Still, operational failures happen, and good maintenance of the pumping system is

required. In this chapter, a data-driven approach will be explored to support this maintenance

and provide new information to operators about the condition of the turbomolecular pumps.

The dataset used here is provided by the Culham Centre for Fusion Energy (CCFE) at Culham,

near Oxford, where the JET tokamak is located.

4.1.1 Workings of a turbomolecular pump

In Figure 4.1, an example of a turbomolecular pump is illustrated. The main body consists of

rotor blades and stator blades. The tilted rotor blades rotate at high frequencies to give kinetic

energy to gas particles in the direction away from the vacuum chamber. The stator blades, which
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are tilted in the opposite direction of the rotor blades, help make sure that gas does not return

to the vacuum vessel. Most turbomolecular pumps work in different stages, where each stage

compresses the gas a bit more, until at the exhaust of the pump, the pressures are acceptable for

the gas to be carried away by more conventional pumps. This is visible in Figure 4.1 as the angle

of the blades shifts throughout the stages. Turbomolecular pumps operate at pressure ranges

where the fluid approximation of a gas is often not applicable anymore, and it is more convenient

to use the free molecular flow regime. The pumps do not necessarily ‘attract’ diffusing gas by

creating an underpressure, but simply process the molecules that eventually hit the rotor blades.

Figure 4.1: Interior view of a turbomolecular pump. Different rotor sizes can be seen.

Part of the performance of a turbomolecular pump is related to the frequency of the rotor.

As the frequency increases, the blades give more kinetic energy to the gas molecules. To increase

speed without causing deformation to the rotor blades, several stiff materials and blade designs

are used. The standard turbomolecular pumps available on the market therefore have a metal

rotor/stator assembly suitable for their intended use, with the rotor shaft supported by metal

or ceramic ball bearings with an organic lubricant, or magnetic levitation bearings.

4.1.2 Adaptation to fusion conditions

When turbomolecular pumps are used in a fusion reactor, they are subject to some rather un-

common conditions. Magnetic fluxes leaking from field coils can cause heating of the rotor blades

and reduce the rotational velocity of the pumps through Eddy currents. Magnetic fields can

also disrupt magnetic levitation bearings. It is therefore desirable to place the turbomolecular

vacuum pumps where they are least affected by the magnetic fluxes. The use of tritium in the

fusion fuel imposes another problem: organic materials are contaminated by the radioactivity,

and they cannot come into contact with the outside of the closed system. Also, high energy

neutrons caused by deuterium-tritium reactions deposit energy in organic materials, causing
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Figure 4.2: The first failure for the turbomolecular pumps: broken rotor blades. (UKAEA)

polymer chains to break and decrease performance of the pump. This accumulation of radioac-

tivity and degradation of the pump performance is undesirable for maintenance of the pumps,

and is hard to manage from a safety point of view. This implies the need for tritium compatible

vacuum pumps in fusion research. To accommodate this need, changes to a commercially avail-

able turbomolecular pump can be made, so as to handle fusion conditions. The turbomolecular

pumps studied in this case are such adapted vacuum pumps. The primary changes that were

implemented are: replacing Viton O-rings with metal seals, changing wire insulation to silicon

rubber, changing electrical lead-throughs to ceramic or glass, and removing any additional purge

or vent ports. This adapted vacuum pump can then safely be used for fusion experiments with

tritium gas.

4.1.3 Failures

There are nine turbomolecular pumps of the same model under study here. They have been

adjusted for fusion conditions and have ceramic ball bearings (in contrast to magnetic levitation

bearings). The period of operation of the vacuum pumps spanned about nine months, with sensor

measurements of the pumps dating from December 2017 to August 2018. Without failures, only

four pumps would have been required for the entire operational period, since there are only four

positions around JET where the pumps are to be placed. Unfortunately, five critical failures

occurred during the time the pumps were operational, and thus five replacements had to be

purchased. Failures are manifested as the inability of the rotor to turn at the correct operational

frequency: the rotational frequency of the blades rapidly declines to zero in a matter of seconds,

mostly joined by excessive noise. In the case of the first failure, it was a rotor blade loss incident,

illustrated in Figure 4.2, that caused the failure. The other four failures appear to be due to

a failure of the upper and/or lower ceramic bearings, shown in Figure 4.3, inhibiting the rotor

from turning. The root cause of each failure is currently unclear, but it is suspected that an
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Figure 4.3: Example of a typical bearing failure for the turbomolecular pumps. The bearing is
indicated with the blue rectangle. (UKAEA)

adaptation to fusion conditions might have introduced a weakness in the pump. These five costly

and unexpected failures are investigated in the following sections, to see if machine learning can

provide some new insights and, more importantly, if a general approach to preventing failures

like these can be developed and used for future operations.

4.2 Data properties

4.2.1 Samples and feature description

Eleven sensors monitor each turbomolecular pump. The first six sensors are sampled every

30 seconds. These are the rotational frequency (Hz), the bearing temperature (°C), the body

temperature (°C), the current (A), the power (W) and the voltage (V) of the pump, and temper-

atures are only measured in integers. The last five sensors are sampled every 5 seconds. These

are two Penning gauge pressures (mbar) and three Pirani gauge pressures (mbar). There are

four positions around the tokamak where the turbomolecular pumps are placed, called TT01,

TT02, TT03 and TT04, each with their own sensors that provide readings to a controller unit.

Data from all these sensors is available from December 2017 until August 2018, spanning about

6500 hours for every position. An example of a clean period of data for the first six sensors is

provided in Figure 4.4 for the TT01 position. The fragment starts at March 1, 2018 and shows

the next 100 days of sensor data. The pump is almost continually on, indicated by the 555 Hz

rotational frequency, except for the last part; on June 2, 2018 (∼2246 h), a failure occurred in

the installed turbomolecular pump, leaving it unable to operate any further. The failure can be

recognized in Figure 4.4 as a sharp peak for the temperatures and smaller peaks for current and

power. The frequency rapidly decreases, and so does the voltage.

The complete data from Figure 4.4 is an unusually good sequence of quality data and will be
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Figure 4.4: The first six sensor measurements (sampled every 30 s) for TT01 from March 1, 2018 and the following 100 days. The pump is
mostly working, indicated by the 555 Hz rotational frequency, but a failure occurs around 2250 h, leaving the pump unable to operate any
further.



4.2 Data properties 52

used as the main sample during the exposition of the different machine learning approaches. It

is not required to thoroughly study other data samples to follow the concepts in the remainder

of this chapter, so for the sake of readability these are omitted here. The pressures are also

omitted: they are not used in any of the models. The reason for this is to make the models

easily extendable to new datasets without pressure readings and to avoid difficulties regarding

electrical noise in the pressure data. A discussion on this decision is provided in the feature

analysis section.

Useful data from other sequences will be presented throughout this chapter in accessible

formats. Still, for the sake of completeness and to provide an overview of the full dataset to

the interested reader, plots for every position and for every time period are presented in the

appendix. A few main remarks to take away from the other sequences are:

• Extreme temperature spikes (that are not failures) sometimes occur. These are most

likely due to a temperature read-back disconnection. If an open circuit occurs (e.g., a

disconnected cable), then the output will look like an infinitely high temperature which

the pump controller unit interprets as ∼250 °C, its highest possible reading.

• Zero readings everywhere mean the controller has been powered off or disconnected.

• The Penning pressure gauge only works at pressures smaller than 10−3 mbar, so anything

above this threshold can look like electronic noise. Above 10−3 mbar, one should use the

Pirani pressure gauges for informative measurements.

• JET experiments – also called pulses – last about a minute. During and after this time,

the pumps need to work harder to maintain vacuum vessel conditions. As a result, sud-

den peaks appear in the data, especially for the power/current and the pressures; higher

pressures mean the pumps need to work harder and thus need more power. Some of the

peaks in Figure 4.4 around 1700 h are examples of reactions of the pump to such pulses.

The data fragments from the first three remarks represent uninformative data, which are to be

disregarded. These discontinuities impose some restrictions on the models we can use. The data

from the pulses, however, represent a physical process and need to be handled accordingly in

the analysis. We will come back to this in the next sections.

4.2.2 Inspection of the data for failures

The dates of the five failures are:

First failure: December 3, 2017 – Rotor blade loss incident at TT02

Second failure: January 22, 2018 – Bearing failure at TT01

Third failure: June 2, 2018 – Bearing failure at TT01

Fourth failure: August 2, 2018 – Bearing failure at TT01

Fifth failure: August 22, 2018 – Bearing failure at TT02
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Figure 4.5: Close-up for all five failures, chronologically represented in reading order: December
3, 2017; January 22, 2018; June 2, 2018; August 2, 2018 and finally August 22, 2018. Blue lines
represent position TT01, yellow lines TT02.
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Let us take a closer look at how the failures unfold up close. In Figure 4.5, the failures are illus-

trated in chronological order. The second, third and fifth failures appear to be alike. Although

the first failure is a rotor blade loss incident that happened almost immediately after starting

the pump, the failure itself looks rather similar to these three failures. In fact, the data shows

divergent behaviour for the fourth failure, compared to the other failures, which would indicate

a different kind of malfunctioning based solely on visual analysis.

The three similar failures (2nd, 3rd and 5th failure) all have a spike in bearing temperature

and body temperature. They have sharp increases for current and power, and a drop in voltage.

An intuitive buildup to a failure can be seen in the data sequence leading up to the third failure

in Figure 4.4. From 0 h to about 600 h, the data is quiescent (except for the single spike around

280 h). The period between 600 h and 1000 h could be called a transitional period. From 1000 h

onward, increasingly variable behaviour is observed. The last two hundred hours before the

failure show clearly visible fluctuations for all features, and before that, strong peaks in current,

power and voltage are visible. A comparison between the quiescent period and the last variable

period leading up to the failure is presented in Figure 4.6.

4.2.3 Feature analysis

Sensor readings are only informative when the pumps are on, otherwise zero readings or ambient

temperatures are registered. Since the frequency is at a constant 555 Hz in Figure 4.4 when the

pumps are on, this feature is not very informative. It is therefore left out in the feature analysis;

we are more interested in the conditions leading up to the failure, rather than the aftermath.

Rotational frequency might, however, be an informative feature for failure detection, since one

of the main characteristics of a failure is the rapid decline of rotational frequency compared

to a normal powering down of the pump, due to the inability of the rotor to turn correctly.

Normally, while turning off the pump, the frequency should decrease gradually from 555 Hz to

100 Hz over 20-30 minutes. During most failures, it rapidly declines from 400 Hz to 0 Hz in a few

seconds. The models for anomaly detection that will be presented in the next sections clearly

recognize a failure anyhow, even without frequency as a feature. Another important remark

is that, even though the pumps work at a constant 555 Hz, this can still mean the pumps are

not working properly. In response to a degradation, the pumps could use more power to keep

the rotors turning at the desired 555 Hz frequency, which can also bring about changes in the

temperatures. A degradation pattern would then emerge in the non-frequency data.

The five remaining features (pressures not included) can be checked for correlations. A

correlation matrix using the Pearson correlation coefficient is plotted in Figure 4.7. There

seems to be a strong correlation between power and current, and both are also rather strongly

correlated to the voltage. These correlations are visible on an intuitive level in the time series.

The temperatures are correlated, and body temperature seems to correlate with current, power

and voltage too.
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Figure 4.6: Top (0 h to 600 h): healthy behaviour of a pump after a fresh installment. Bottom
(2050 h to failure at 2246 h): all features show non-subtle fluctuations and heavy noise.
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Figure 4.7: Correlation matrix for the sensor measurements.

4.3 Development of anomaly detection models

This section will describe the development of the models that were used for anomaly detection

in the turbomolecular pump dataset. The choice of a model is dependent on three main factors:

the problem definition, the quantity and quality of the data, and a trade-off between complexity

and time/hardware constraints.

4.3.1 Data quality

Building a model to assess failures requires enough data to capture the degree of information that

is needed to provide a sufficiently accurate answer to our problem. Besides the measured data

(e.g., the sensor data for the pumps), information regarding the environment of the machine,

mechanical properties and the way the machine is used are also valuable. Expert knowledge

on physical processes that influence the workings of the machine can greatly weigh on certain

model building decisions and help fine-tune a model where the data is too uninformative to use

an automated approach. It is important to make note of the following:

• What does the failure process look like? Is it a slow degradation process or an acute

failure? In our case, the failure seems rather acute, but prior to the failure, divergent

behaviour can be seen.

• Are there different kinds of failures? Which ones are important to us? Most failures seem

to be the same, with small variations. This would mean the model can reasonably be

targeted to one kind of failure, or one can opt for a model that finds deviations from

normal behaviour in general.
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• How often and how accurate do the measurements need to be performed? Right now, the

measurement sample rate is once every 30 seconds. Since we are interested in information

on the scale of hours or days, this sampling rate should suffice. The accuracy of the

temperature measurements, however, is very crude: only integers are provided. This is

inconvenient and might disturb some subtle patterns in the data.

For degradation processes, often data has to be available for a longer period of time to

capture the subtleties of the degradation. Besides the length of the data, the quality and

quantity of the measurements are also of great importance. In an ideal scenario, data scientists

work together with domain experts and machine operators to prepare a plan for data collection

with the appropriate sensors that will serve as input to the best possible model for the problem

at hand. Unfortunately, in real life, the data has often already been captured, and a model has

to be built with what is at hand to address the specific problem. This does, however, provide an

opportunity to use the experience from the limited dataset to plan data collection for the same

– or new – problems that are foreseen for the future.

Depending on the quality and quantity of the available data, restrictions are imposed on

what models can be built and with what accuracy.

4.3.2 The Holy Grail: estimating Remaining Useful Lifetime

One of the best possible scenarios for a predictive maintenance scheme would be to have an

accurate estimate at every time step of how long it will take before the machine fails and cannot

be used in operations anymore. This estimate is known as the Remaining Useful Lifetime,

or RUL. The Remaining Useful Lifetime would provide very insightful information of when to

schedule maintenance for the system. Unfortunately, our turbomolecular pump dataset does not

provide the means necessary to build a good RUL estimator. The reason for this is that many

degradation life times leading up to a failure are required to build a reliable RUL algorithm.

When a statistically relevant amount of degradation life times are available, a notion of the

remaining lifetime of the system can be obtained.

A practical use case of this technique is to predict the remaining useful lifetime for recharge-

able batteries. If the amount of charging cycles a battery undergoes until it fails is recorded for

thousands of batteries, one could calculate the probability of a new battery surviving or failing

during its next energy depletion cycle. The prediction could be based on the prior probabilities

of failure from the other batteries at that cycle, as illustrated in Figure 4.8. This is a very simple

but effective estimation of remaining life time, where time is expressed as number of charging

cycles. Once enough failures are recorded, a curve like the one in Figure 4.8 can be drawn.

Operators can choose to replace batteries after a fixed amount of charging cycles when failure

is becoming too likely based on a probability threshold. Having this kind of information can

enable industry to implement preventive maintenance after an amount of cycles where the costs

of replacing working batteries are less than the previous occurrences of battery failure during

operations. Failures still happen, but much less frequently, and the large costs associated with

frequent failures are avoided.
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Figure 4.8: Probability of survival per charging cycle, based on the prior amount of batteries
that survived that cycle. At the 75th cycle, the probability of the battery’s survival is only 0.1
[30].

Another common case for RUL estimation is to use incoming sensor data from machine op-

erations and build a condition monitoring system. In order to determine if a system is healthy

or not, an appropriate condition indicator can be evaluated for the system, which can be as

simple as a carefully chosen weighted sum of the input sensor values. Another more sophis-

ticated example of a condition indicator is a reconstruction error of incoming sensor data. If

an algorithm, trained to faultlessly compress and reconstruct healthy sensor data, signals an

increase in reconstruction errors, the incoming sensor data probably do not represent a healthy

condition of the system anymore1. If there is historical sensor data available from many similar

systems, the condition indicator curves until failure can be stored for each of them. The initial

curve from a new system can then be compared to the other curves, and the one that resembles

the new curve the most can be taken for the prediction of the failure. This is illustrated in

Figure 4.9. Another strategy is to fit a regression curve to the initial condition indicator values

of an operational system, and extrapolate it to see when it crosses a threshold indicating unsafe

operations. In the example of Figure 4.9, the threshold could be placed at 0.6, before any prior

failure occurred. This threshold can be used as an indicator that maintenance is required. The

estimated time until maintenance can then be obtained via the extrapolation.

Since for the turbomolecular pumps we are dealing with, at best, a few degradation cycles,

our problem is not suited for RUL prediction. We can however, build a model using the next

best thing: anomaly detection, which monitors the life time of every pump separately. Just

like the previous case, a condition indicator based on the sensor data will be used to signal

how healthy the system is. Although the obtained condition indicator curve cannot be linked

1Or the sensors are degrading themselves, which is a use case on its own.
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Figure 4.9: Condition indicator curves for several historical systems over time. The curve from
an operational system can be compared to find an estimate of the RUL [30].

to a prediction of the RUL anymore, it still provides useful information to operators. To aid

in the distinction between indications of healthy and unhealthy behaviour, a threshold can be

applied. The threshold value does not contain any information on how much remaining lifetime

the pump still has, but it does indicate a regime of anomalous behaviour or a ‘danger zone’ of

operational conditions. This threshold, which separates the two regimes, is not categorized as a

traditional classification method as it does not use labels for every time step during the pump’s

lifetime. Instead, we can designate a period, mostly at the beginning of the pump’s lifetime, to

be used as healthy data, and compare the data from every subsequent time to this healthy data

by means of an appropriate condition indicator. This is a typical semi-supervised strategy used

for anomaly detection, where anomalies are not put into designed classes, but are simply defined

as being different from healthy data. In practice it is often possible to hand-pick a period of

healthy data after the installation of a system, but not to differentiate the many complex regions

that might or might not contain anomalies later on.

4.3.3 Failed approaches

Before describing the proposed models, we will briefly discuss some approaches that were consid-

ered, but eventually dismissed. One such approach was to build a recurrent neural network with

memory, particularly a long short-term memory (LSTM) neural network [31], for time series

forecasting. Essentially, the model is used to predict the next sensor measurement(s) based on

the sensor data up to that point. The network is set up for the prediction of healthy behaviour,

so if predictions of subsequent data samples significantly diverge from the actual measured sensor

values, an anomaly is flagged. Divergent behaviour is defined by a setting a practical threshold.

Unfortunately, our dataset contains too little and too erratic data to be used for training such
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complex models.

A classification approach was originally considered using labeled data split into two cate-

gories: ‘normal’ and ‘failure’. The main problem with training a classifier to make a distinction

between these categories is that there is usually much less failure data than there is normal data,

known as class-imbalance. Also, the classification of a failure during or after it has happened is

not very useful for predictive maintenance. One could solve this by introducing gradations in the

data, and labeling data based on categories between the limits of ‘healthy’ and ‘failure’, so that

action could be taken if, e.g., many ‘near-failure’ classification results occur. The problem with

this approach is that it was not feasible to accurately classify every sample in the turbomolecular

pump time series without extensive knowledge of the pump and its conditions.

Another classification approach that was implemented but deemed not suitable, was to use

a balanced dataset of healthy behaviour and near-failure behaviour, and train a classifier on

separating both categories. If a soft classification approach is taken, with a probability as

output instead of a discrete label, the increase in near-failure probabilities from 0 to 1 should

in theory be observed during the pump’s lifetime. Although a shift in probabilities was indeed

observed, using a simple logistic regression classifier, the results were subpar to the final models

developed in this chapter, and they are therefore omitted.

A different strategy was based on the matrix profile technique [32], a recent time series motif

discovery tool with a lot of potential. One of the great advantages of the matrix profile is that

it is very general, and once it has been calculated for a time series it can be paired with many

applications. The matrix profile values indicate for every time window in the time series how

similar (or dissimilar) it is to the rest of the time window. The highest peaks in the matrix profile

are called discords, and they indicate the time windows that are most uncommon. Discords can

then be treated like anomalies, and it is assumed that a time period with high matrix profile

values signals an upcoming failure. The matrix profile for the turbomolecular pump dataset was

calculated, but deemed not informative due to it being too erratic (e.g., discords were not clear

or intuitive). According to De Paepe et al. [33], the reason for the odd matrix profile is the

flatness of the time series presented here. This flatness causes small perturbations around the

flat equilibrium to be greatly enlarged in the matrix profile calculation, and thus the results of

the matrix profile appear distorted. Extensions to counteract this unwanted phenomenon are

proposed in the paper, but have not yet been implemented for the pumps dataset. More details

about the very promising matrix profile technique are found on the site of the University of

California [34].

4.3.4 Model 1: PCA and Mahalanobis distance

The first model is a combination of principal component analysis (PCA) [18] and multivariate

Gaussian modeling of the resulting features, with the Mahalanobis distance to the center of

the distribution as a measure for the anomaly score. It is a combination of several anomaly

related techniques discussed in the anomaly detection survey of Chandola et al. [23]. From this

paper, the idea originated to combine robust spectral anomaly detection with the Mahalanobis
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distance2.

Principal component analysis is one of the most known dimensionality reduction techniques.

It performs a linear mapping of the data into a lower-dimensional space, while maximizing the

amount of variance that is kept. More on principal component analysis, including a visual rep-

resentation, is given in the introductory chapter on machine learning. PCA actually converts

possibly correlated features into a set of maximally linearly uncorrelated features, called the

principal components, with the same dimensionality. To reduce the dimensionality of the data,

a part of the tail of the principal components is dismissed, and only the components that capture

the greatest amount of variance in the data remain. One has to keep in mind though that prin-

cipal component analysis is an unsupervised technique, and that the components that capture

the greatest amount of variance do not necessarily represent the most informative features for

the task at hand. Nevertheless, PCA is a widely used dimensionality reduction technique, and

will serve as the first step in this model. There are other linear and non-linear dimensional-

ity reduction techniques available, and the interested reader is invited to explore the ‘manifold

learning’ documentation from the popular scikit-learn machine learning library [35].

The dimensionality of each input sample is five, since only the bearing temperature, body

temperature, current, power and voltage are kept as features. A practical reason for not using

the pressures was already briefly discussed: measurements of the pressure gauges often contain

electrical noise when the readings surpass a certain threshold. When one pressure gauge reading

gets too large, the algorithm needs to switch to another gauge for reliable information. This

is a challenge to implement in an algorithm, because it is often hard to separate noise from

useful data and to have an algorithm learn the transition. If the model works without pressure

measurements, and if it is kept as general as possible, this would be a good indication that the

model is extendable to other pumps at JET and even other devices.

This model takes the features for each new time step as input, reduces their dimensionality

with PCA, and further gives as output an anomaly score based on the Mahalanobis distance of

the lower dimensional features to the center of the multivariate Gaussian distribution. If the

score surpasses a threshold, it is registered as anomalous. The dimensionality reduction and

the multivariate Gaussian modeling are based solely on healthy data. It is then assumed that

unseen healthy data instances will be positioned in high probability regions of the distribution,

while anomalies will occur in the (very) low probability regions, or are simply modeled by a

different distribution. As mentioned earlier, a collection of healthy data has to be hand-picked

to fit the Gaussian distribution on, so this is a semi-supervised technique. This selection of

healthy data has to be reconsidered for every pump by an operator in the field. A general

guideline, however, is to take data starting a little after the initial start-up of a new pump (to

make sure that possible start-up fluctuations are not taken into account) and end the healthy

data segment early enough, at a time where the operator believes the data is still healthy. This

2Chapter 9 from Chandola et al. shows the equivalence of summing the (eigenvalue weighted) squared projec-
tions of a sample on the principal components, to the Mahalanobis distance from the multivariate Grubb’s test.
This is a real mouthful, but basically comes down to the fact that squared Mahalanobis distances from randomly
sampled data of a multivariate Gaussian follow a χ2 distribution.



4.3 Development of anomaly detection models 62

is to minimize the chance that anomalous behaviour is brought into the healthy distribution,

as this might distort the predictions of the model and make it less robust. The healthy data

can in some cases be as little as a few percent of all the data from start to failure, especially

for datasets where it is known that the degradation is already significant close to the moment

of start-up, in contrast to systems where degradation mainly occurs during later stages in the

system’s life. It is of course important to have a statistically relevant amount of samples in the

healthy data, and in some cases there is a trade-off between the purity of the healthy dataset

and the amount of samples it contains.

Figure 4.10: Intuitive visualization of the Mahalanobis distance for a two-dimensional Gaussian
distribution. Both the orange and green sample have a similar Euclidean distance to the center
of the distribution, but the orange sample has a greater Mahalanobis distance; the probability
that it belongs to the multivariate Gaussian is smaller.

The main assumption that the data is structured according to a multivariate normal distri-

bution is often a good approximation, even when the data is not strictly Gaussian. There are

certain ways to check if this approximation is justified, like a visual inspection of the reduced

data or checking if the squared Mahalanobis distance from the center follows a χ2 distribution.

The multivariate Gaussian distribution for a collection of data is obtained by calculating the

mean and covariance matrix of the samples. In theory, if large amounts of data are available,

they should form ellipsoid shaped probability shells for a perfect normal distribution. Since the

distribution is modeled on the healthy data, new data samples that are also healthy will have

a high probability of being in proximity to the center of the multivariate distribution. Here,

the distance measure used for this ‘proximity’ is the Mahalanobis distance. It is expressed as

the Euclidean distance to the center of the distribution, divided by the width in the sample’s

direction of the characteristic ellipsoid that is spanned by the covariance matrix of the distribu-

tion. This characteristic ellipsoid can be seen as a multidimensional extension of the standard



4.3 Development of anomaly detection models 63

deviation. The mathematical definition for the Mahalanobis distance is

Md(r) =
√

(r− µ)T Σ−1 (r− µ), (4.1)

with µ the mean and Σ the covariance matrix of the distribution. An intuitive visual example is

given in Figure 4.10, where both the green and orange samples have a similar Euclidean distance

to the center of the normal distribution, but the orange sample has a greater Mahalanobis

distance: it is further from the center in terms of the spread of the ellipsoid in that direction.

The Mahalanobis distance is a quantitative expression of the notion that the probability of the

orange sample belonging to the multivariate Gaussian is smaller than the probability of the

green sample.

Given the estimated multivariate Gaussian distribution for the healthy data, one can assess if

new test samples are considered healthy by calculating their Mahalanobis distance and compare

it with a specified threshold. The threshold can be defined with statistical methods, or fine-

tuned empirically, e.g. with knowledge of domain experts. The squared Mahalanobis distances

from randomly drawn samples belonging to a multivariate Gaussian follow a χ2 distribution,

so a statistical approach to obtain a threshold might be to calculate the value for which the

cumulative χ2 distribution amounts to 0.975 (which means a randomly drawn sample from a

multivariate Gaussian has only a 2.5% chance of having a larger squared distance than this

calculated value, see also Figure 4.11) and then take the square root of this value to get the

Mahalanobis distance threshold. This is an approach frequently used in statistics. However,

whether to take 0.975, or another value as a hard cut-off, is up to the expert, so in the end the

decision again relies on domain knowledge, albeit perhaps more guided and explainable by the

use of statistical confidence intervals.

Figure 4.11: A χ2 distribution, where the percentage of the cumulative tail P has to be specified
in order to obtain a value for the Mahalanobis distance threshold.

We have built in the idea of only modeling the distribution on selected healthy data from

the start. This is actually a simple form of robust outlier detection, as described in the paper

by Rousseeuw et al. [36]. It contrasts with traditional outlier (anomaly) detection, where a

distribution is modeled on the complete dataset, and the samples with the highest anomaly

score are flagged. Including outliers in the distribution is dangerous, because it makes the

anomaly detection sensitive to masking, which means the algorithm will not recognize some

new outliers. This is not as obvious as it might seem at first, and the interested reader is

referred to a more subtle explanation in the aforementioned paper by Rousseeuw et al. Besides
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avoiding the outlier masking problem, using a small healthy dataset for the distribution has

a fundamental reason when used in predictive maintenance: we are not only looking for rare

outliers to one distribution, but we are also trying to pick up a shift in the distribution from

healthy to unhealthy. An illustrated example of this for the pump dataset will be given in the

results.

4.3.5 Model 2: Auto-encoder neural networks

The second model is based on auto-encoder neural networks [19]. An auto-encoder neural

network has the same amount of nodes in its input layer and output layer. In between the

input and output layers are the so-called hidden layers. The first half of the hidden layers

contain a gradually decreasing amount of nodes, so that the input data is compressed into

a smaller subspace. The second half of the hidden layers then have increasing numbers of

nodes, to reconstruct the data from the subspace to its original space. The auto-encoder neural

network architecture has several possible applications, and more information on auto-encoders,

and neural networks in general, is provided in the introductory chapter to machine learning.

We are interested in building an auto-encoder network that can reconstruct healthy data

as precisely as possible. If new incoming test samples are compressed and reconstructed and

deemed similar enough to the original, they are considered healthy. To get a measure of the

similarity to the original input sample, the mean absolute error (MAE) between the input and

output vectors is calculated. If this reconstruction error surpasses a certain threshold, it is

flagged as an anomaly. The mean absolute error between an n-dimensional input vector x and

its reconstructed output vector x’ is given by:

MAE =
1

n

n∑
i=1

|x′i − xi|. (4.2)

The anomaly flagging routine follows the same principles as for the statistical model with the

Mahalanobis distance. The auto-encoder neural network is trained on healthy data until the

reconstruction error is minimized. For new incoming test samples, the reconstruction error will

be small if the sample is healthy, and large if it deviates from normal behaviour. A threshold to

separate the two regimes is implemented. If the pumps are degrading or operate in dangerous

conditions, anomalous behaviour should be flagged by the algorithm.

The threshold can be estimated with a heuristic method. Like the Mahalanobis distance, the

reconstruction error can be considered a random variable, but now with an unknown underlying

distribution. In the first approach, the assumption that the squared Mahalanobis distance follows

a χ2 distribution was inherent to the model from the beginning. An appropriate statistical

confidence interval could then be chosen by the operator and a threshold was obtained. Still,

the boundary of the confidence interval posed a degree of freedom that replaced the freedom of

choice of the threshold value. It is the same for the reconstruction error of the auto-encoder: an

approximate distribution of the mean absolute error can be obtained (this is done in the results

section with a simple error histogram), but will still only give an indication of a minimum value
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for the reconstruction error threshold. In reality, the threshold is ideally optimized with a data-

driven estimate derived from many degradation cycles (which are not available for the pumps),

or with fine-tuning based on experience.

One of the main strengths of neural networks is the ability to inherently model non-linear

relations between the input variables. The network does not assume anything about the un-

derlying distribution, but simply models an approximation of the real underlying function that

describes the relation between input and output nodes. This is a great improvement compared

to the linear mapping3 and assumed normal distribution from the previous approach. At the

smallest inner hidden layer, the auto-encoder network has effectively reduced the dimensionality

of the input space. It has learned a (non-linear) relation that captures as much of the original

information as possible. The following reconstruction part is then responsible for learning a

second function that is tailored to the compressed information from the inner hidden layer. The

network is most powerful when it can compress and decompress one kind of data. It can then

really fine-tune its weights to make a correct abstraction of that data. The more underlying

types a dataset consists of, the more complex the auto-encoder’s architecture has to be to model

all relationships. Avoiding over- or underfitting on the data is a constant challenge in machine

learning, and this is no different here.

Our contribution is inspired by the 2016 paper from Kuzin and Borovicka [37] on early

failure detection for predictive maintenance of sensor parts. The paper deals with several failure

detection methods, from which the model based on auto-encoder neural networks was deemed

appropriate for the turbomolecular pump dataset at hand. The general proposed outline of

the model was implemented for the pump dataset and used as a baseline model from which

modifications were made.

The algorithm from Kuzin and Borovicka uses raw sensor values from a sliding window as

input to the neural network. If there are ns sensors and the sample window size is nw, then the

amount of input nodes is ns × nw. With the aim of ingesting more temporal information, the

model is extended by introducing the first and second time derivatives of the samples as new

possible features. Each derivative can be used as the sole input, or they can be combined with

the raw input values. If the raw values and both derivatives are used, the input size becomes

3× ns × nw.

It is important to stress that here, in contrast to the single-sample approach from the Ma-

halanobis model, a sliding time window is used. A time window is a simple way of taking time

correlations into account4. Each sample now has the nw − 1 previous samples attached to it, so

that the context of a sample can help determine whether it is considered healthy or anomalous.

Another additional feature that was implemented in the model is the possibility of varying the

hop size h of the time window. The hop size indicates how many samples are skipped between

two time windows. This is another parameter to make the model as general as possible and to

3Although non-linear feature mappings were also possible for our first approach, here the neural network does
all of that automatically without the need for extensive feature engineering.

4Advanced models, like long short-term memory neural networks, or attention-based models, are especially
proficient at taking time correlations between samples into account; even between very distant samples. The
simple sliding time window used here is restricted to shorter time correlations.
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keep the possibility open for future applications. Window size and hop size are shown visually

in Figure 4.12.

Figure 4.12: Illustration of the window size and hop size. Each dot represents a sensor mea-
surement. The blue window is used as the first input sample to the algorithm, the green as the
second, and the yellow as the third, and so on. For this figure, the window size is 10, the hop
size 3 and the amount of sensors is 4.

4.4 Results

This section presents the results obtained with the models described in the previous section.

Some thought is given to the model parameters, but an extended discussion of the model choices

is kept for the discussion part in section 4.5. Results are shown for the third failure (data from

March 1, 2018 until June 2, 2018, cf. Figure 4.4), since it is the most informative one. Results

for another failure are presented in the appendix.

4.4.1 PCA and the Mahalanobis distance

The 5-dimensional feature input is reduced to two dimensions by means of principal component

analysis. This is done because the correlation matrix in Figure 4.7 indicates that two engineered

features could capture most of the information. Two dimensional data also provides a way to

visualize the data. In Figure 4.13, this is done for healthy data samples, data samples that

are already considered anomalous, and some samples right before the failure. A shift in the

distribution can be seen from healthy to anomalous. Some data samples seem to form lines in

the plot; these are caused by the discrete integer values from the temperatures. Before applying

PCA, the original features were rescaled to values between 0 and 1.
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Figure 4.13: PCA reduced feature values for healthy data, less healthy data and data right
before a failure.

As healthy data, the first 500 hours of the TT01 dataset from March 1, 2018 + 100 days

(Figure 4.4) are used. This range is confirmed as healthy data, and represents the pump in

operation not long after its installation. The data is downsampled to focus on the general

trend, and the PCA transformation is learned on this healthy data. All subsequent samples are

subjected to the same learned transformation.

Next, the mean and (inverse) covariance matrix of the multivariate normal distribution are

fitted to the healthy data. For every sample up until the failure, the Mahalanobis distance to

this distribution is calculated. A distribution for the Mahalanobis distance and for the squared

Mahalanobis distance for the healthy data is shown in Figure 4.14. Based on the tail of the

Mahalanobis distance for healthy data, a threshold of about 5 is taken. Next, all samples are

checked against this threshold. The final anomaly flagging result is shown in Figure 4.15.

4.4.2 Auto-encoder neural network

While for the previous model only a variation in parameter values was possible for the dimen-

sionality reduction and the threshold, for the auto-encoder neural networks more degrees of

freedom are present. The amount of input nodes equals the input size of a sample, which de-

pends on the window size, the amount of features and if time derivatives are taken into account.

The neural network basic architecture follows the general structure suggested by Kuzin and

Borovicka. It contains five layers: one input layer, a first hidden layer with 75% of the input

nodes, an inner hidden layer with 50% of the input nodes, a reconstruction hidden layer with

75% of the input nodes, and a final layer with the same amount of nodes as the input layer.

Model hyperparameters besides these were not specified by Kuzin and Borovicka.
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Figure 4.14: Probability distribution of the Mahalanobis distance (top) and squared Mahalanobis
distance (bottom) for healthy samples. The dark lines are a fit to the data to guide the eye.
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Figure 4.15: Anomaly detection by means of principal component analysis and multivariate Gaussian modeling. The Mahalanobis distance
is chosen as the anomaly measure for the turbomolecular pump at position TT01 from March 1, 2018 until the failure on June 2, 2018. The
green samples represent training samples, the blue dots are flagged as anomalies. The threshold is shown as an orange line.
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Figure 4.16: Probability distribution of the mean absolute error for healthy samples obtained
with the auto-encoder neural network. The dark line is a fit to the data to guide the eye.

The activation function is the ‘exponential linear unit’ (ELU). The popular ‘Adam’ optimizer

has been used for training the neural network. A train-test split of 4:1 is chosen. The loss function

used is the mean squared error (MSE). This is because it is a differentiable function, and the

mean absolute error is not. More discussion of the model parameters is provided in section

4.5. The learning rate and number of epochs depend on the input parameters, but generally a

learning rate of about 0.001 and 120 epochs are used. The batch size is 16 samples. Features

are again first rescaled to values between 0 and 1 and downsampled for noise reduction.

Finally, the results for the anomaly detection algorithm with auto-encoder neural networks

are shown in Figure 4.17. A window size of ten hours and a hop size of two hours are applied.

No time derivatives are included, only the classic input values. In Figure 4.16, the distribution

for the mean absolute error is shown for the healthy samples (0 to 500 hours). The threshold is

chosen to be 0.5.

Similar results for the second failure are shown in the appendix. The first, fourth and fifth

failure are not eligible for analysis with the previous techniques, due to too little healthy data

prior to the failure.

4.5 Discussion

This section analyses the results and assumptions made about the model. The multivariate

Gaussian assumption from model 1 will be analyzed, and a comparison between the two models

is made. The auto-encoder model is deemed most versatile and powerful, and the discussion

continues focused on this model. Since model 2 depends on multiple parameters, their influence

is discussed. Next, a possible application of the model in operations is explored. The model of

course still has some shortcomings, and the origins of those are discussed together with possible
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Figure 4.17: Anomaly detection by means of an auto-encoder neural network. The mean absolute error is taken as the anomaly measure
for the turbomolecular pump at position TT01 from March 1, 2018 until the failure on June 2, 2018. The green samples represent training
samples, the blue dots are flagged as anomalies. The threshold is shown as an orange line.
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extensions.

4.5.1 Multivariate Gaussian assumption

The first model assumed that the data is distributed according to a multivariate Gaussian dis-

tribution, or at least approximates this. To get an idea of the soundness of this assumption, the

distribution of the squared Mahalanobis distance for healthy data can be studied in Figure 4.11.

A χ2 distribution depends on the dimensionality of the data, as illustrated in Figure 4.18. The

fitted distribution from Figure 4.11 seems to correspond to a two-dimensional χ2 distribution,

which validates our assumption of an approximate multivariate Gaussian distribution. This is,

however, only a crude test, and the plot of the healthy data from Figure 4.13 shows that the

underlying distribution might be described by an approximate joint normal distribution, but the

discrete rounding of the temperature values already distort the symmetry of the distribution.

Figure 4.18: χ2 distributions for several dimensionalities k.

4.5.2 Comparison of the models

From the two-dimensional plots of different health regimes in Figure 4.13, a shift from a healthy

regime to an increasingly unhealthy regime is visible in the two principal dimensions. This

suggests that the statistical Mahalanobis distance model should be able to find some distinction

between the samples. This is indeed the case, as the Mahalanobis anomaly detection results show

in Figure 4.15: a general rising trend in the anomaly score can be seen, leading up to a strong

peak at the end for the actual failure. Still, the distinction between normal and anomalous

behaviour is rather modest. When the auto-encoder result in Figure 4.17 is inspected, the

distinction between the regimes is much clearer. The anomalous regime begins only after about

1000 hours, which corresponds to a more intuitive notion of change in the sensor measurements,

as seen in the plot of Figure 4.4. This suggests that the auto-encoder network has learned to



4.5 Discussion 73

recognize healthy behaviour quite well, and makes a more informed decision about flagging data

as anomalous. This is not unexpected, since the auto-encoder network has the main advantage

of taking time correlations into account, and also better captures the non-linear interactions

between the variables, compared to PCA. The model also flags less false positives, in contrast

to the first model. An increasing trend in mean absolute error is visible, eventually leading

to the failure at 2246 h. Both models recognize the moment of failure really well, with a

strong anomalous peak indicating behaviour that is not even remotely similar to what has been

encountered before.

Based on the comparison between both models, the first model can be considered as the

baseline model, while the auto-encoder neural network is more advanced and yields better re-

sults. The first model was interesting for exploring the data, being able to visualize what is

happening under the hood and by working with intuitive concepts like normal distributions and

the Mahalanobis distance. In contrast, what a black box model like the neural network actually

learns is hard to explain, since knowledge is captured through adjusting the multiple weights.

Even though the auto-encoder model is a more hermetic approach, it delivers clear results and is

superior to the first model. From now on, we will focus on the second model for further analysis.

4.5.3 Model parameters for the auto-encoder neural network

There are several adjustable parameters present in the auto-encoder model. Their impact will

be discussed here. First, the amount of nodes and layers in the neural network depends on the

complexity of the task at hand. If a very complex relation is to be learned, or different relations

are to be learned in the same model, the complexity of the neural network needs to increase.

Generally, this leads to an increase of the amount of layers in the network. This is also one of the

main ideas behind deep learning. Here, the option of a modest depth was chosen, as proposed by

Kuzin and Borovicka [37], as the complexity of modeling the relations in the healthy data seems

not complicated enough for deep architectures. As for the amount of nodes per layer, a similar

reasoning applies. The main question to address is: ’how much data compression is needed to

achieve the desired result?’. A strong compression means a smaller amount of hidden nodes.

This forces the network to learn more abstract relations, and not have it rely on just memorizing

samples. But if too much compression is required, the model will underperform, simply because

it cannot capture enough of the complexity of the relations in the small amount of nodes it has.

Again, the settings from [37] were implemented, since they provided good results compared to

other settings.

The exponential linear unit (ELU) was used as an activation function for the hidden layers.

The advantage compared to traditional ReLU activations, is that ELU allows negative values

[38]. The ELU activation function is drawn in Figure 4.19. It is suggested [39] that ELU might

give better results for reconstruction in auto-encoders.

The size of the sliding time window influences how many previous samples are taken into

account. Increasing the size might give to some extent more context to the algorithm, but the

neural network size increases at the same time, which is not optimal. Another effect of increasing
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time window size, is the smoothing of the results. This helps to show a more general trend with

reduced noise. Of course, this effect is only helpful to some extent, since certain large-scale

‘noise’ is actually valuable information for analyzing the results, and thus not everything can be

smoothed out.

Figure 4.19: ELU activation function.

Another time window parameter is the hop size h (h ≤ nw). Increasing the hop size, in our

case, does not seem to alter the anomaly detection trend much, only the interval between the

assessment of subsequent samples is increased.

The first or second time derivatives were not used for the results shown in the previous

section (yet, they were implemented for generality purposes). The time derivatives on their

own are not very informative, as shown in Figure 4.20 for the first time derivatives (the second

derivatives look very similar). However, both derivatives combined with the original input values

are shown in Figure 4.21 and provide meaningful results, albeit very similar to the results without

derivatives. This would suggest that the neural network focuses mostly on the original inputs

anyhow. Therefore, as the machine learning adage goes, the simplest solution was chosen that

explains the observations well, which also has a three times smaller network size compared to the

combination with the derivatives (and more importantly, about 35 = 243 times less connections

to optimize between neurons).

4.5.4 Application of the model in operations

In order to implement the anomaly detection model to aid in fusion operations, some adjustments

need to be made. One way the algorithm would not be practical for real-life use, is when one

or a few sporadic registered anomalies already trigger an alarm for the operator. To combat

such false positives, a basic voting system can be implemented on top of the algorithm that only

triggers an alarm when, e.g., 7 out of 10 subsequent samples are flagged as an anomaly. As a

result, the model becomes more robust to possible false positives.
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Figure 4.20: Anomaly detection results obtained with only the first time derivatives of the sliding
window as input. Results are shown for position TT01 from March 1, 2018, until June 2, 2018.

Figure 4.21: Anomaly detection results obtained with the combination of raw input values and
the first and second time derivatives of the sliding window. Results are shown for position TT01
from March 1, 2018, until June 2, 2018.

After careful consideration of the results, it seems like the increase in anomalies in later life

stages of a pump does not exclusively signal a process of degradation; it is also an indication

of conditions in which it becomes dangerous for the customized pumps to operate in. When

these ‘danger zones’ are combined with the subtle degradation of the pump, the chances of

failure increase. As mentioned in section 4.3.2 on Remaining Useful Lifetime, equipment failure

is a random process, with chances of failure increasing with every time step. However, the

probability curves from the examples in 4.3.3 were calibrated on systems working in the same

operating conditions. When the operating conditions change throughout a system’s lifetime,

another probability curve applies. In this case, certain operating conditions increase the chance

of failure compared to an earlier environment and shorten the expected life time of a pump. The

regions of high anomaly scores appear to be linked with periods of experiments being performed.
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To check this, a list of JET experiments with time stamps was used. This suggests that the

extensive stress of multiple experiments being performed in a small period of time most probably

increases the chances of failure. It also appears that the significant effects of the experiments

linger on even after they have ended.

Although experiments appear to have lasting effects on the condition of the pump and its

degradation, the question arises if they are to be flagged as anomalies themselves. Indeed, some

of the peaks in the original sensor data are the pump responding to experiments (as was already

mentioned in the data properties section) and these peaks are often flagged as anomalies. It

comes as no surprise that experiments are seen as anomalies: to the algorithm, they represent

seemingly random radical changes in the sensor data. So in a way, experiments are also false

positives. Their expression in the sensor data is too erratic and does not represent normal –

as in standard operational – behaviour. Therefore, a strategy to omit or soften the impact of

experiments on the anomaly detection algorithm is adopted. This enables the model to focus

on the lasting effects from the aftermath of experiments and spot a more general trend in the

data towards failure. A few ways to implement this are:

• Create a separate classifier algorithm that detects experiments and passes this information

to the primary algorithm, which then omits flagged anomalies around that time period.

• When JET starts a new experiment, an automatic signal can be sent to the primary algo-

rithm, which then omits flagged anomalies around that time period. While the previous

example is more illustrious, this approach is favored over the previous one; although it

is not machine learning, it is highly accurate (∼100% correct), while a machine learn-

ing algorithm will report lower accuracies (say, about 90%) and thus might miss some

experiments.

• As discussed already, an alarm will only be triggered when, e.g. 7 out of 10 subsequent

samples are flagged as anomalies. As a result, even without using the previous proposals,

a single experiment will not influence the alarm very much and cause a false positive (if

it does not have too great of a lasting impact on the pumps, of course, because it is the

intention to catch these changes).

• The auto-encoder algorithm uses a sliding time window as input. This means it also takes

temporal correlations into account. If a time window contains one or more experiments,

they will be softened by the other non-experiment data points. Sliding time windows seem

to smooth the anomaly curve in general.

One last important element that influences the alarm is the threshold value. Since the

auto-encoder algorithm learned to get very good at reconstructing healthy behaviour, the mean

absolute errors for healthy samples are small. Consequently, the error distribution is much more

dense, as shown in Figure 4.16, while the variable behaviour leading up to the failure is further

removed from this dense distribution as a result5. It seems more natural then to only start

5In contrast to the Mahalanobis model, where both error regions seem to connect more.
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flagging samples as anomalous if the reconstruction errors are further away from the healthy

distribution, so as to not flag acceptable behaviour. Based on a visual inspection of the sensor

data, together with the anomaly results of the second failure and the natural transition of the

error pattern around ∼1000 h, a threshold of 0.5 is obtained. The statistically obtained threshold

of the Mahalanobis distance was also used as a guide. This is a heuristic way of determining the

threshold, based on what is available from the data. It can certainly be fine-tuned by people

with expert knowledge of the operations of the pumps. An even better approach would be to

use data from more pumps with long-term operations that eventually led to a failure. The latter

would be a rather costly gathering of new experimental data, if done for the sole purpose of

fine-tuning a model parameter. However, if a general threshold could be obtained from many

pump failures, and it provides a reliable average guess of the remaining useful lifetime6, a more

advanced form of predictive maintenance is attained. Another possibility might be to do away

with thresholds as a whole, and simply use the error curve as extra information for operators to

base decisions on.

4.5.5 Shortcomings and possible extensions

There are likely still more inventive ways to approach the problem presented here, but one

hurdle in machine learning that is difficult to overcome with any approach, is the challenge of

working with imperfect data. In an ideal world, data is always gathered specifically with analysis

in mind. For the presented algorithms, it would be advised that in the future, each pump is

first employed under quiescent conditions after installation, to gather at least an acceptable

pool of healthy data to ground the algorithm on. Another possibility would be to gather data

under different controlled conditions, each for a sufficiently long time, and compare the obtained

models to see if different patterns emerge. This might eventually lead to more information

for fine-tuning model parameters, or even do root cause analysis. Another interesting addition

would be the implementation of a widely used predictive maintenance sensor: the vibrational

sensor. An overview for predictive maintenance with vibrational sensors is provided in [40]. An

interesting excerpt from the overview is the following:

“Interpreting the vibration signal obtained is an elaborate procedure that requires spe-

cialized training and experience. It is simplified by the use of state-of-the-art tech-

nologies that provide the vast majority of data analysis automatically and provide

information instead of raw data. One commonly employed technique is to exam-

ine the individual frequencies present in the signal. These frequencies correspond

to certain mechanical components (for example, the various pieces that make up a

rolling-element bearing) or certain malfunctions (such as shaft unbalance [sic] or

misalignment). By examining these frequencies and their harmonics, the [condition

monitoring] specialist can often identify the location and type of problem, and some-

times the root cause as well. For example, high vibration at the frequency correspond-

6It could, e.g., be set close to the failure, or multiple thresholds can be set: one indicating a near-failure, and
an earlier one indicating suboptimal working conditions.
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ing to the speed of rotation is most often due to residual imbalance and is corrected

by balancing the machine. A degrading rolling-element bearing, on the other hand,

will usually exhibit vibration signals at specific frequencies increasing in intensity as

it wears. Special analysis instruments can detect this wear weeks or even months

before failure, giving ample warning to schedule replacement before a failure which

could cause a much longer down-time. Beside all sensors and data analysis it is

important to keep in mind that more than 80% of all complex mechanical equipment

fail accidentally and without any relation to their life-cycle period.”

The data from vibrational sensors is often combined with temperature and power data, so

they would be a fitting addition to the existing arsenal of sensors and open up a range of new

techniques.

Both presented models use direct sensor features. Although features are engineered through

PCA and the encoding part of the auto-encoder neural network, several direct feature engineering

options exist that could have been used on top of the original features. Some examples are:

Fourier transforms, wavelet filters, window statistics, etc.

A drawback of both presented models is the need for healthy data at each new installment.

Combining or cross-using sets of healthy data from different pump installments was tested and

produced no sensible results. This might indicate that data properties are different for every

pump installation, or this is simply a shortcoming of the models. Since the first, fourth and

fifth failure have a short ‘runway’ before they fail, they were not eligible to be used by these

models due to a lack of healthy data. The first failure was a rotor blade loss accident, and could

be considered unrelated to an underlying degradation process. However, if we look at, e.g., the

fourth failure, the fast build-up to a failure appears to be a reaction to immediate subjection to

intensive experiments.

Another limitation presented by the data is the challenge to validate the model with an

appropriate validation metric. Mainly heuristic arguments are used to assess if a model does

well, largely based on the expectations imposed on the model. For example, the idea that the

auto-encoder model is better than the Mahalanobis model is partly based on the notion that

there should be a smooth transition into a more anomalous region, and partly by comparing it

with what is seen visually for the raw sensor values and what is known from operation conditions

and experiments. However, the core of the techniques presented here have proven their value

on several datasets not unlike these. On top of that, they assume very little about the data and

therefore generalize well to many settings. The main challenges seem to be dealing with limited

data, fine-tuning the model parameters and correctly interpreting the results.
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Chapter 5

Predictive maintenance for S1

current switches

Besides the turbomolecular pump failures from the previous chapter, other parts from JET also

experience failures and might benefit from a predictive maintenance approach. In this chapter,

the example of S1 current switches is discussed1. The available data is visualized, and based on

an exploratory analysis, suggestions for future predictive maintenance strategies are provided.

5.1 S1 current switches

The S1 current switches (also known as circuit breakers) on JET interrupt the current flowing

from the Poloidal Flywheel Generator Converter (PFGC), which provides power during a JET

experiment, to the central solenoid (P1), which uses this power to drive a current into the

plasma (see also the introductory chapter on nuclear fusion). A schematic overview of the

circuit between the PFGC and the P1 central solenoid is given in Figure 5.1. When the S1

switch is expected to interrupt the current, a capacitor bank is discharged as a counter to

the switch current to generate a brief (∼1 ms) zero current period at the S1 switch to reduce

the arc energy and make the switch more reliable at interruption time. This second opposite

discharge creating the interruption window is called the counter-pulse. The operation of the

S1 switch usually takes about 7 ms (5-8 ms) from the time a command is given, to when the

switch interrupts. However, this interruption time varies throughout the lifetime of a switch,

and depends on the number of previous executed interruptions and how recently maintenance

was carried out. Following a maintenance, a jitter measurement is taken to get an estimate for

the operation time and the variation on this estimate. The obtained opening time of the switch

is then programmed into the JET control system to fall soon after the start of the counter-

pulse. For good switch operation, the interruption of the current happens very shortly after the

opening of the switch, so that the whole operation happens well in the time window provided

by the counter-pulse. However, due to degrading health of a switch, the opening time is often

1The first and part of the second section of this chapter are largely based on a first analysis of the switches
provided by J. Stephens [42].
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Figure 5.1: The circuit through which current is delivered from the Poloidal Flywheel Generator
Converter to the central solenoid. The S1 current switch is visible in red [42].

later than planned. On top of that, a delay can happen between the opening and interruption

time (typical delays are about ∼0.5 ms). Both the later opening time and the delay of the

interruption can cause the interruption mechanism to fall outside the counter-pulse window.

This results in the inability to interrupt the current successfully. The change in opening time

can be programmed into the control system reactively over the operational life of a switch, so

that the current interruption (hopefully) happens within the 1 ms time window. A trained

operator can observe the data following an experiment and extract information on the health

of the switch. However, this requires training, and time in between experiments, which is often

not available, so an automated approach would be desirable. If failures and slow – but still

successful – operations could be detected automatically in the future, this would provide useful

information to the operator, signalling, e.g., signs of an aging switch, or multiple failures that

need addressing.

5.2 Data properties

5.2.1 Signals

A number of signals are recorded from the circuit that are relevant to S1 behaviour:

CT506 records S1 current, sampled at 10 kHz,

CT401 records R3 current, sampled at 10 kHz,

CT301 records the sum of S1 and R3 currents, sampled at 10 kHz,

VT503 records the S1 voltage at the PFGC terminal, sampled at 50 kHz,

VT504 records the S1 voltage at the P1 terminal, sampled at 50 kHz.

CT signals represent a current, VT signals a voltage. Besides these signals, CT503 and CT402
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Figure 5.2: A successful current interruption. The switch opens at around 40.0004 s and clears
the current promptly. Afterwards, the VT503 signal returns to the pre-counter-pulse voltage.

can be used for further validation or calibration of the above, but do not directly indicate S1

conditions. The higher sampling rate of the VT signals will provide more accurate information

regarding the switch opening behaviour, and will be the main features used in the proposed

models.

5.2.2 Switch behaviour

When the S1 switch is open, the VT503 and VT504 voltage signals will be separated by the

voltage across the R3 resistance. In contrast, the voltage signals should be similar when the S1

switch is closed. This pattern is shown in Figure 5.2 for a successful current interruption. The

time is expressed in seconds from the beginning of the JET pulse (experiment).

The VT503 signal is determined by the circuit condition relating to the PFGC, while the

VT504 signal can either be related to the PFGC or to the P1 central solenoid, depending upon

the position of the S1 switch. This dependence of the VT504 signal on the switch position is

the key feature that can be used to asses the operation of the switch. If VT504 departs more

suddenly from VT503, it can be assumed that at the same time there is a sharper transition in

switch state. As the switch ages it is more common to see these abrupt current transitions, as

the switch mechanism no longer takes full benefit of the counter-pulse. The opening of a switch

is defined by the point at which the two VT voltages start to diverge. The interruption event

is defined as the point when VT503 and VT504 each follow their independent curves (shown in

Figure 5.2). An example of a slow opening and late interruption is given in Figure 5.3. This is

not ideal behaviour, but still acceptable, since the current gets cleared and both voltages from

then on follow their own independent curves.

The behaviour of the VT503 signal is similar for an early and late clearing of the current; it
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Figure 5.3: Slow opening and late interruption from the switch: the interruption is visible just
before 40.0010 s. This is typical behaviour for an aging switch.

is the VT504 curve that sets them apart. For a switch failure, however, both VT503 and VT504

show a different behaviour. A failure occurs when the switch is unable to interrupt the current,

or when a restrike2 happens during the interruption. If at the end of the counter-pulse, VT503

does not follow a damped profile towards a similar voltage as the pre-counter-pulse level (like

Figure 5.2 and Figure 5.3), a failure can be assumed. A typical failure where VT503 and VT504

show oscillating behaviour after the interruption window, is shown in Figure 5.4.

5.2.3 Inspection of the labeled available data

Thousands of pulses have been performed at JET the past few decades, with corresponding

thousands of switch operations. An individual switch is used for ∼1200 pulses before it is

swapped out and refurbished. Sometimes a switch will work without failure for its entire lifespan,

other times it has to be removed after only a few pulses due to constant failures. The ratio for

successful vs. total failure operations is about 100-200:1 across every JET pulse to date. The ideal

to marginal performance ratio is about 10:1 for the full switch history. By ideal performance,

the opening of the switch soon after the beginning of the counter-pulse (∼40.0004 s) is meant,

while the opening at the end (∼40.0008 s) is seen as marginal performance. When a switch

opens very late, a failure becomes more likely.

The dataset used to conduct this exploratory research contains 291 samples (pulses), of

which 128 are conveniently labeled by an expert. Out of the 128 samples, 7 were visually

deemed uninformative outliers, and were removed from the dataset. The 121 remaining samples

can roughly be labeled into four categories:

2A restrike is an interruption that was followed by a breakdown that restored the current flow, so the inter-
ruption was not successful.
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Figure 5.4: A failed interruption. Too late to open and too slow to clear the current, leading to
arcing after the interruption window.

0 – Good: ‘A good operation. Fast to open and fast to clear current.’

1 – Intermediate: ‘Typical of an aging switch. A bit slow to clear current.’

2 – Slow: ‘Typical of an aging switch. Slow to clear current.’

3 – Failure: ‘A failed interruption. Too late to open and too slow to clear current.’

The class count is given in Figure 5.5. Note that the class imbalance for this dataset is artificial,

and unfortunately not representative for the entire pulse collection. This dataset is labeled

exactly because it contains a high percentage of failures and slow openings and was chosen for

manual inspection to learn about aging switch behaviour.

Figure 5.5: Histogram of the switch interruption classes.
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Figure 5.6: VT503 and VT504 voltage signals of good switch operations.

5.2.4 Comparison of classes

This section will give a comparison of the classes, so that a feeling of the differences between

switch behaviour can be established.

In Figure 5.6, all 17 good operations are shown. Two dense line regions can be distinguished.

This distinction is caused by the different circumstances under which switch operations take

place, mainly different pre-magnetization currents. These circumstances essentially rescale the

voltage vs. time pattern, but the behaviour of the switches stays the same. The noisy area

of seemingly imperfect openings from 40.0007 s to 40.0009 s comes from operations where the

switch was successfully opened, but still had a high resistance arc between the contacts, which

shows up as a temporary closing of the voltage gap. Since these are still successful runs, a model

will have to deal with this noise.

A comparison between the good switch operations, and the complete failures is provided in

Figure 5.7. Again, several dense lines are formed, corresponding to different operating conditions.

From now on, lighter colours represent VT503 signals, darker variants represent VT504 signals.

A comparison between slow and failure behaviour is given in Figure 5.8, and a comparison

between good and slow behaviour is given in Figure 5.9. The data from the intermediate

operations will not be shown here: they resemble slow behaviour, and can be treated as a small

extra class besides the ‘regular’ slow operations. In the predictive maintenance discussion of the

next section, they can always be added to the general framework as an extra class.
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Figure 5.7: VT503 and VT504 voltage signals of good (green) vs. failure (red) switch operations.

Figure 5.8: VT503 and VT504 voltage signals of slow (yellow/orange) vs. failure (red) switch
operations.
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Figure 5.9: VT503 and VT504 voltage signals of good (green) vs. slow (yellow/orange) switch
operations.

5.3 Suggestions for predictive maintenance

5.3.1 A simple classification model

When the signals from the three main categories – good, slow and failures – are compared,

an immediate distinction between the failures and other signals is apparent (see Figure 5.7

and Figure 5.8) when the measurements from 40.0015 s and onward are considered. A simple

threshold for the VT503 and VT504 signal at 40.0020 s would classify every failure vs. non-

failure correctly. This simple solution can classify future failures without the need for more

complex machine learning, assuming that the failures in the dataset are representative for the

whole switch distribution, which is confirmed by [42].

Since the case ‘failure vs. non-failure’ is solved, the ‘good vs. slow’ classification still remains.

This is more complex, as shown in Figure 5.9. Since there is very little data available, intricate

solutions that learn the subtle nuances between the two regimes very well (like artificial neural

networks), are out of scope. The problem is made even more challenging due to the different

scaling of the curves, caused by the different operating conditions. One possibility is to find

out how the initial conditions of a pulse relate to the scaling of the VT503/504 curves relative

to others, and then rescale every curve accordingly so they become comparable. This might

ease the classification, but requires research into the details governing the relation between

operating conditions and the corresponding scaling. Another approach that does not require

such knowledge, is to do a simple form of feature engineering by subtracting the VT504 with the

VT503 signal and look at the relative growth of the voltage gap. The result of this subtraction

for all good and slow switch operations is provided in Figure 5.10. The tails of the differences

still are hard to distinguish correctly, but the time window from about 40.004 s until 40.0011 s
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Figure 5.10: Difference between VT504 and VT503 voltage signals of good (green) vs. slow
(orange) switch operations.

shows a clearer intuitive separation between the two classes. A close-up of this region is provided

in Figure 5.11, where a separation between the two classes has emerged. Perfect openings and

interruptions follow the arched concentration of green lines at the top. The green lines that show

more irregular behaviour are the ones where the switch was successfully opened but still had

a resistance arc between the contacts. We will leave these samples in the dataset to make the

model more robust, since such occasions are likely to happen again in the future. Still, there is

an intuitive difference visible even between the noisy good operations and the slow operations.

A simple logistic regression classifier was trained on the time window between 40.0004 s and

40.00105 s, where every time step is considered as a new dimension in a constructed feature

space. The resulting classification problem is 32-dimensional, due to the 50 kHz sampling

rate. Every point in this 32-dimensional space represents a complete time window and thus

one switch operation. It is assumed that the good operations will occupy a different region

in this space than slow operations. The model was cross-validated and used ridge regression

for regularization. It made a 50/50 stratified train-test split, so that the test results would

hold some statistical significance. The resulting accuracy of the model is 98%. Since we are

dealing with a strong class-imbalance, accuracy unfortunately is not a very good performance

measure: a naive classifier could just assign every test sample to the ‘slow’ class and still get

82% accuracy. Therefore, results for more reliable performance measures are shown in Table 5.1.

We are neither more interested in the recall, nor the precision, so the F1-score3 is taken as the

general performance measure for both classes. With only 10 good and 39 slow operations as

training samples, attaining F1-scores of 0.92 and 0.99 respectively is already a promising result.

Still, some caution is warranted, since the results are only based on 7 good and 42 slow test

3The F1-score is the harmonic mean of the precision and recall.
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Figure 5.11: Difference between VT504 and VT503 voltage signals of good (green) vs. slow
(orange) switch operations from 40.0004 s until 40.0011 s.

samples. Different dimensionalities, train-test splits, and cross-validations were tried, and all

obtained comparable results. However, it would be desirable to try this approach on a dataset

with at least three times the amount of good samples. In general, more data is always better.

Table 5.1: Precision, recall and F1-scores of the good and slow test samples.

Class Precision Recall F1-score

0: Good 1.00 0.86 0.92
2: Slow 0.98 1.00 0.99

The final classifier is a hierarchical model, where the first layer classifies failures vs. non-

failures (probably with ∼100% accuracy), and if the sample is a non-failure, a further distinction

can be made by the second classifier. For the first layer, the separation between failures and

non-failures is even clearer for the VT504/503 difference plots, as shown in Figure 5.12.

5.3.2 Semi-supervised learning with historical pulses

The logistic regression classifier presented here has only a very limited dataset to train on. On

top of that, the dataset is not representative of the real ratios between the categories. There

is, however, a vast dataset of switch operations available, and these unlabeled samples can be

used to enhance the performance of the simple classifier proposed in the previous section. This

is a form of semi-supervised learning, and this section will explore the basic outlines of a few

possible approaches.

One simple idea is to use the classifier from the previous section to classify all thousands of
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Figure 5.12: Difference between VT504 and VT503 voltage signals of failures (red) vs. non-
failures.

remaining samples. By using soft classifications (probabilities as output), a part of the samples

with very high class probabilities (high ‘certainty’) can be added to the labeled dataset. This

larger labeled dataset can then be used to train a new classifier. This process is repeated until

enough samples have been included and the classifier has been improved and made more robust.

This is a simple form of an expectation-maximization [43] algorithm. The problem with this

approach is that errors from the initial model might be ingrained more firmly in the resulting

model by the process.

Another approach starts off with a clustering approach. If there are k known classes in

the data, an unsupervised clustering algorithm can search for k clusters, which are afterwards

classified by the human-labeled samples that each clusters contains. Then, a new classifier can be

trained on this complete dataset which should obtain a better estimate of the decision boundary

compared to only using the labeled data. An intuitive example is illustrated in Figure 5.13.

Some assumptions are made when this form of semi-supervised learning is applied. Two often

used assumptions are smoothness and the cluster assumption. Smoothness assumes that points

that lie close to each other in feature space, are more likely to share the same label. The

cluster assumption says that data points that belong to the same class are more likely to form a

well-defined cluster in feature space. If these assumptions are true, it is likely that the classifier

obtained with semi-supervised learning will outperform the one trained only on the small labeled

dataset.

Some noteworthy clustering algorithms are k-means clustering [16] and expectation–maximization

clustering using Gaussian Mixture Models (GMM) [17]. The k-means clustering algorithm starts

with k random cluster centers spread through the data. The samples closest to each cluster-

center are assigned to this cluster. Now, the mean point in feature space for all the obtained
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Figure 5.13: Semi-supervised learning tries to increase the generalization of classification per-
formance by placing the decision boundary in between the dense regions in presence of both
labeled and unlabeled data points. (a) The decision boundary in presence of labeled data points
only, and (b) the decision boundary in presence of both labeled and unlabeled data. [44].

clusters is calculated, and these means are used as the new cluster centers. This process is

repeated until convergence is attained. This alternation between the two steps of calculating

the mean of a cluster and then defining new clusters based on this mean is another form of

the expectation-maximization strategy. The GMM model uses the same approach, only more

sophisticated. Instead of a simple mean, a multivariate Gaussian distribution is fitted to the

clustered datapoints, and samples are assigned to probability distributions with a ‘soft’ proba-

bility score. A more complete and visual explanation of several popular clustering algorithms,

including these two, is given in [45]. One advantage of the GMM model is that it models proba-

bility distributions. This means that samples are not restricted to one cluster, but are assigned

to all clusters with varying probabilities. This might help to identify difficult cases: samples that

have high uncertainty of belonging to one cluster can be manually inspected and labeled. This

in turn will improve the final classification algorithm. Manually labeling only these few edge

samples concentrates human efforts on the difficult samples and greatly reduces time require-

ments, while still obtaining a large reliable training dataset. The soft labeling can also address

the more realistic scenario for the switches where samples are not strictly ‘good’ or ‘slow’, but

somewhere in between.

The above approach supposes that the clustering algorithm has correctly converged to the

real underlying clusters in a short amount of time. This is not always the case. A challenge for

both models, especially the GMM model, is that in a high-dimensional space, the convergence

of the algorithms is slow, and often many iterations of the algorithm are done using different

random initializations to make sure that the algorithm does not converge on a suboptimal local

minimum. A possible solution to avoid this time delay, is to do a warm start of the algorithm by

using the means and possible standard deviations of the labeled examples as the initial cluster
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starting points. By guiding the clustering, a faster convergence can be attained. This might also

help to avoid the clustering algorithms from converging on the ‘wrong’ clusters, by giving them

a hint for where to start searching. In a highly-imbalanced dataset, the possibility also exists

that the small cluster is not recognized by the clustering algorithm, and gets absorbed in a large

cluster, especially when the distributions have a smooth transition into one another. Since we

are dealing with a ∼10:1 optimal to marginal performance, a class imbalance definitely exists.

A warm start could help combat this problem. On top of that, the clusters can be weighted

with the 10:1 ratio to hopefully avoid the problems posed.

5.3.3 Discussion and applications for predictive maintenance

Suppose a robust classifier has been built, and the historical switch data is reliably labeled.

Then what are some of the possibilities for predictive maintenance? First of all, since the ratio

of failures to non-failures is about 1:100-200, it would be meaningful for operators to receive

a notification after every failure. On top of that, a condition monitoring system can be built,

using an appropriate condition indicator signaling the health status of the switch. A degradation

score is proposed based on the classification of the switch operations. Since there are about ten

times more slow operations than failures, it would be reasonable to give a higher degradation

score to failures than to slow operations. One implementation could be to add 1 to the score

output for each registered slow operation, and, e.g., 5 for a failure. If the classifier measures

one or more good operations, no degradation score should be added, but the degradation scores

from previously detected slow and/or failure operations should not be dismissed immediately.

To balance these considerations, an exponential decay is proposed for the degradation score.

The strength of this decay function is determined by a set characteristic decay time τd, but also

needs to be weighted by the original height of the score, s0. If not, decaying scores would rapidly

converge to almost the same small value after just a few operations, as illustrated in Figure 5.14.

The proposed decay function D(∆n) is given by:

D(∆n) = s0 exp

(
−∆n

s0 τd

)
, (5.1)

with ∆n representing integer numbers starting from the moment the first good operation is

measured. From the historical data of the switches, an optimal threshold can be determined

and tested for when to signal an alarm to the operators, indicating that maintenance is required.

There are several more possibilities to consider with the switch dataset. One example is

survival analysis, e.g. with the Kaplan-Meier curve [46], where also the dependence of failures

on operating conditions can be checked. Another possibility is Remaining Useful Lifetime (RUL)

prediction, based on the similarity of a degradation curve to historical operational curves. The

degradation score proposed in this section will probably not lend itself very well to this approach,

so a new and smoother way of degradation should be devised for RUL predictions. Another

workaround is to create a custom similarity measure between degradation curves, instead of

relying on euclidean distance between the curves.
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Figure 5.14: Decay of initial decaying scores of 3 and 1. (a) The decaying scores for the proposed
decay in equation 5.1. (b) The decaying scores for the unadjusted decay s0 exp (−∆n/τd). The
scores in (b) for both decays are almost the same after only 4 good operations. The higher
original degradation scores for (a) linger on longer. To illustrate the principle, τD is set to 1.2
here, but a larger value is probably advised during actual operations.

One last application is a proposal for an automatic adjustment of the opening time pro-

grammed into the JET console. By once again using the difference between the VT504 and

VT503 measurements, a threshold from 40.0004 s onwards can be implemented which signals

the moment of switch opening. The program can take into account the classification of the

operation, and might adapt the programmed opening time after a specified amount of opening

times differed significantly from the programmed time.
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Chapter 6

Conclusion and outlook

6.1 Conclusion

The worldwide effort on fusion research aims to realize a means of producing clean and safe

energy for future generations. At the JET tokamak, extensive research is being performed to

help accomplish this goal. By taking an in-depth look at two engineering problems at JET,

the possibilities of data science as a valuable asset to fusion research were explored. As a

result of the analysis, an automated approach was devised to aid researchers in managing these

problems. The focus of the adopted methods was on anomaly detection in the context of

predictive maintenance to predict equipment failures and avoid a possible setback for research

operations. Next to the practical benefit of the models, the analysis of the available data and

the discussion of the algorithms also provided insight into the underlying processes governing

the problematic behaviour.

This section will provide brief overviews of the main points made in this thesis, and put

forward the conclusions drawn from the results and discussions.

6.1.1 Turbomolecular pumps

The first use case handled the unexpected component failures for an important part in the JET

vacuum system: the turbomolecular pumps. By analyzing the time series data from the pump

sensor readings, it was established that Remaining Useful Lifetime prediction was not feasible

with the available data. Two semi-supervised anomaly detection models were proposed and

tested on suitable parts of the dataset.

The first model was based on dimensionality reduction with principal component analysis

and multivariate Gaussian modeling, the second model used an auto-encoder neural network.

Both models were trained on healthy data, and used an appropriate error measure to indicate

the (dis)similarity of new data samples to the healthy data. For the first model, this resulted

in an intuitive look at the evolution of the sensor data by means of the Mahalanobis distance

and a visual inspection of the data distribution throughout time. The anomaly detection results

identified a trend of anomalous behaviour leading up to a failure, but still flagged a number
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of probable false positives. The results from the auto-encoder model also provided a general

trend towards failure, but with a clearer distinction between healthy and anomalous regions and

with less false positives produced. Both models recognize the moment of failure well, with a

strong anomalous peak representing behaviour that has not been encountered before. Since the

auto-encoder model produced better results and was implemented with more general features,

it is chosen as the main model for the turbomolecular pumps.

After consideration of the results, it can be concluded that the increase in anomalies in later

life stages of a pump does not exclusively signal a process of degradation; it is also an indication

of conditions in which it becomes dangerous for the pump to operate in. When these ‘danger

zones’ are combined with the subtle degradation of the pump, chances of failure increase. The

regions of high anomaly scores appear to be linked with periods of experiments being performed,

and it is assumed that the extensive stress of multiple experiments being performed in a small

period of time most probably is one of the major contributions to a pump failure.

Some suggestions to mitigate the effects of pulses (experiments) were provided, since pulses

can be seen as a form of false positives to the anomaly detection algorithms. They manifest as

a random sudden change in sensor measurements, and it is more informative to focus on the

aftermath of the pulses and see how they have a lasting influence on the anomaly results of

the model (and by extension, the condition of the pump). With a practical implementation for

fusion operations in mind, managing these pulses is desirable and will lead to an improvement

in the correctness of the results acquired.

In conclusion, the devised anomaly detection model provides indications of a deviation from

healthy behaviour, and signals to operators that a pump is working under suboptimal conditions.

The model is kept as general as possible to allow extensions to other situations with similar

available data, in accordance with the proposed research goals. Information of the kind provided

by the models can benefit operations by sending warning signals ahead of time, and possibly

avoiding a costly and inconvenient failure of the pumps.

6.1.2 S1 current switches

For the second use case, another significant component of the JET tokamak was discussed:

the S1 current switch, which interrupts a high electrical current from the poloidal flywheel

generator converter to the central solenoid. As a switch ages, unintended slow and/or failed

current interruptions occur. Two signals are important to assessing the operation of a switch:

the VT503 and VT504 voltage signals. By comparing these signals for different kinds of switch

operations, a classifier was built that can distinguish between good, slow and failed operations,

with possible extensions to more fine-tuned categories. The classifier used a simple form of

feature engineering: by subtracting the two voltage signals, a clearer distinction between classes

emerged, almost independent from the operating conditions (in contrast to the original signals).

A semi-supervised approach to building a more precise classifier was proposed. By using

the small available dataset of labeled switch operations, all samples from the large unlabeled

historical switch operation dataset can in theory be reliably labeled. Clusters obtained with
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an unsupervised clustering algorithm for all thousands of samples could use the small labeled

dataset for identification, and with this new large and labeled dataset, a better classifier can be

built. Some problems with the clustering mechanisms can be addressed by providing a warm

start to the unsupervised algorithms based on the small labeled dataset. The samples on the

verge of two clusters can be assigned for manual labeling by an expert, creating a robust labeled

dataset with little human effort. Finally, a proposal for a rudimentary predictive maintenance

strategy was discussed based on a condition monitoring system that uses this robust classifier.

By carefully examining the switch dataset provided, the relations and distinctions between

the different switch operations could be established. Simple feature engineering and visual rep-

resentation of the VT503/504 signals paved the way to a classifier that will probably lie at the

center of any predictive maintenance strategy. Even without an optimized predictive mainte-

nance program, the automatic classification of switch behaviour will provide researchers with

valuable information during operations, which might avoid failed experiments and effectively

reduce downtime and costs.

6.2 Recommendations

The models proposed here are not necessarily complete. To further improve them, several

steps can be taken. For the turbomolecular pump models, more data could provide a means

to robustly test the model and apply statistically significant performance measures. Besides

actually gathering this data, simulated data might also offer an intermediate solution. More data

would also pave the way to a data-driven fine-tuning of certain important model parameters,

like the anomaly threshold. It could also open up possibilities with regards to ‘true’ predictive

maintenance, with potential applications in Remaining Useful Lifetime prediction.

Another data-related improvement for the anomaly detection models would be an adjustment

of the way data is gathered. The coarse integer measurements of the current temperature sensors

could be replaced by more precise sensors, and vibrational sensors could be added to the arsenal

of pump monitoring. Vibrational sensors especially are suspected to hold great potential for

the condition monitoring of the pumps, with many possible applications and analysis techniques

available. Even root-cause-analysis might be possible, since for many standard mechanical

components, like the bearings used in the turbomolecular pumps, lots of experience has by now

been gathered on analyzing vibrational signals and relating specific patterns to common failures.

One major drawback of the proposed anomaly detection models is the need for a pool of

healthy data for every pump installation. A model that could learn abstractions of healthy data

could suffice with a healthy dataset that is gathered once, and could then be applied without

restrictions to any pump operation, supposing that all normal samples are identically distributed

from the same underlying distribution, or at least from very similar distributions.

As for the S1 current switches, a good first improvement of the model would be to train

the initial classifier on a dataset with a balanced representation of the classes. Also, a larger

dataset would be advised to obtain more statistically relevant results. Since the dataset already
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contains multiple slow and failure operations1, only samples representing good operations need

to be added, which are easy to find and recognize. Another possibility would be to further

subdivide the classes into more nuanced categories. For example, failures could be further

divided into ‘regular failures’ and restrikes, or different gradations of slow operations can be

implemented.

Due to time constraints, the proposed clustering techniques and the subsequent rudimentary

predictive maintenance strategy could not be implemented, and therefore remain mere sugges-

tions. The only way to know for sure if these approaches would work, is to implement them and

do a careful analysis of the results. This might be an opportunity for future work.

6.3 Final words and outlook

This work was carried out in the spirit of investigating the possibilities of data science in fusion

operations. By tackling two interesting use cases head-on, an illustration of the potential of

data science as a powerful framework was provided. It was shown that, even with limited data,

results can be obtained that might help operators to evaluate the condition of fusion equipment

in the future, therefore adding to the streamlining of fusion research in general. Hopefully

this modest exploration will spark interest in other fusion enthusiasts to try and improve the

methods proposed here, or even better, to extend the framework of machine learning to new

exciting problems and help clear the path to achieve global fusion energy for all.

1As was shown in chapter 5, the classification of failures vs. non-failures was the easiest to accomplish. There-
fore, not many failures are required. The real challenge lies in classifying good vs. slow behaviour.
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Appendix

Turbomolecular pump data

Frequency, bearing temperature, body temperature, current, power and volt-

age (sampled every 30s)

Figure 6.1: TT01 from December 1, 2017 and the following 100 days. The second failure is
visible at about 1263 h.
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Figure 6.2: TT01 from March 1, 2018 and the following 100 days. The third failure is visible at
about 2246 h.

Figure 6.3: TT01 from June 1, 2018 and the following 100 days. The fourth failure is visible at
about 1491 h.
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Figure 6.4: TT02 from December 1, 2017 and the following 100 days. The first failure is visible
at about 62 h.

Figure 6.5: TT02 from March 1, 2018 and the following 100 days.
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Figure 6.6: TT02 from June 1, 2018 and the following 100 days. The fifth failure is visible at
about 1978 h.

Figure 6.7: TT03 from December 1, 2017 and the following 100 days.
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Figure 6.8: TT03 from March 1, 2018 and the following 100 days.

Figure 6.9: TT03 from June 1, 2018 and the following 100 days.
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Figure 6.10: TT04 from December 1, 2017 and the following 100 days.

Figure 6.11: TT04 from March 1, 2018 and the following 100 days.
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Figure 6.12: TT04 from June 1, 2018 and the following 100 days.
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Pressure sensor measurements (sampled every 5 s)

Figure 6.13: TT01 from December 1, 2017 and the following 100 days.
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Figure 6.14: TT01 from March 1, 2018 and the following 100 days.

Figure 6.15: TT01 from June 1, 2018 and the following 100 days.
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Figure 6.16: TT02 from December 1, 2017 and the following 100 days.

Figure 6.17: TT02 from March 1, 2018 and the following 100 days.
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Figure 6.18: TT02 from June 1, 2018 and the following 100 days.

Figure 6.19: TT03 from December 1, 2017 and the following 100 days.
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Figure 6.20: TT03 from March 1, 2018 and the following 100 days.

Figure 6.21: TT03 from June 1, 2018 and the following 100 days.
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Figure 6.22: TT04 from December 1, 2017 and the following 100 days.

Figure 6.23: TT04 from March 1, 2018 and the following 100 days.
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Figure 6.24: TT04 from June 1, 2018 and the following 100 days.
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Auto-encoder anomaly detection results for the second failure.

Figure 6.25: Anomaly detection by means of an auto-encoder neural network. The mean absolute
error is taken as the anomaly measure for the turbomolecular pump at position TT01 from Dec.
23, 2018 until the failure on Jan. 22, 2018. The green samples represent training samples, the
blue dots are flagged as anomalies. The threshold is shown as an orange line. It is worth noting
that the prior period of healthy signals is shorter than for the third failure. To optimally train
the neural network, the period of healthy data was chosen up to a moment close to the intuitive
change in data patterns (∼700 h).
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Nederlandse samenvatting

This summary is in Dutch.

Wereldwijd onderzoek naar kernfusie is gericht op het realiseren van een schone en veilige

energiebron voor toekomstige generaties. Uitgebreid onderzoek wordt momenteel gevoerd aan de

JET-tokamak met oog op het bereiken van dit ambitieuze doel. Onderdelen aan de JET-tokamak

gaan soms onverwacht stuk, net zoals bij elke complexe machine met veel componenten. In dit

werk worden storingen bij twee JET-onderdelen behandeld met als doel het predictief onderhoud

van deze componenten door gebruik te maken van anomaliedetectie en andere technieken uit

machinaal leren.

Het eerste geval betreft verschillende mislukte werkingen bij de turbomoleculaire pompen in

het JET vacuümsysteem. Een oplossing voor het tijdig opsporen van ongezond gedrag wordt

voorgesteld met behulp van semi-gecontroleerde anomaliedetectie op basis van tijdreeksgege-

vens van sensorsignalen. Afwijkingen van normaal gedrag worden gesignaleerd wanneer bin-

nenkomende sensorgegevens als te verschillend worden beschouwd van een verzameling gezonde

trainingsdata. Een eerste model dat gebruik maakt van hoofdcomponentenanalyse en multivari-

ate Gaussiaanse modellering wordt ontwikkeld waarbij de Mahalanobis afstand tot het centrum

van de gezonde distributie gebruikt wordt als anomaliescore. De anomaliescores worden ver-

geleken met een drempelwaarde, en metingen met scores boven deze drempelwaarde worden

gemarkeerd. Een soortgelijke benadering wordt gebruikt bij een tweede model, gebaseerd op

auto-encoder neurale netwerken. In plaats van de Mahalanobis afstand wordt de reconstructie-

fout van het auto-encoder neurale netwerk gebruikt en wordt een glijdend tijdvenster ingezet

om tijdscorrelaties mee te nemen in het model. Het netwerk wordt opnieuw alleen getraind op

een verzameling van gezonde data, dus de reconstructiefouten zullen groter zijn voor metingen

die afwijken van dit gedrag. Er wordt opnieuw een geschikte drempelwaarde ingesteld en als

de reconstructiefout voor een tijdvenster boven deze drempel valt, wordt ze gemarkeerd. Beide

modellen tonen een toename van de anomaliescores die leidt tot een sterke anomalie-piek die het

moment van een gefaalde werking van een turbomoleculaire pomp voorstelt. Het auto-encoder

neurale netwerk markeert echter minder vals-positieven en toont een duidelijker onderscheid en

een vlottere overgang tussen gezond en abnormaal gedrag. Een bespreking van de resultaten en

suggesties voor een implementatie in kernfusie-onderzoek worden gegeven, samen met mogelijke

uitbreidingen van het model.

Het tweede scenario gaat over de S1 stroomschakelaar. Naarmate een schakelaar ouder

wordt, komen fouten en te trage operaties steeds vaker voor. Op basis van de analyse van
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twee spanningssignalen doorheen de tijd wordt een logistisch regressiemodel getraind om een

onderscheid te maken tussen goede, langzame en mislukte operaties.

De resultaten van de classificator zijn veelbelovend, met F1-scores boven 0,9 voor alle catego-

rieën. Het model wordt wel slechts getraind en getest op een kleine en ongebalanceerde dataset.

Een semi-gecontroleerde clusteranalyse wordt voorgesteld om een meer robuuste classificator

te bouwen door de kleine gelabelde dataset te combineren met de rest van de niet-gelabelde

werkingen. Deze aanpak vereist weinig menselijke inspanning, terwijl er gebruik gemaakt wordt

van alle beschikbare datasamples voor schakelaars. Ten slotte wordt een rudimentaire strategie

voor predictief onderhoud voorgesteld met behulp van de ontwikkelde classificator samen met

en een degradatiescoresysteem. De resultaten van beide scenario’s tonen potentieel voor het

gebruik van machinaal leren in kernfusie en dienen als uitnodiging om de voordelen van een da-

tagestuurde aanpak voor de oplossing van problemen in machineonderhoud – en fusieonderzoek

in het algemeen – verder te onderzoeken.
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Science popularization

The following article is in Dutch. It is part of the effort of the Faculty of Sciences at Ghent

University to communicate scientific research to the general public.



OP WEG NAAR EEN BETROUWBARE
KERNFUSIEREACTOR MET BEHULP VAN 
ARTIFICIËLE INTELLIGENTIE

Hoe kunnen we onze snel groeiende wereld voorzien van schone en veilige energie? Het is een

vraag die vandaag meer dan ooit relevant is. Kernfusiewetenschappers proberen een antwoord te

bieden door de energieopwekkende processen uit de zon na te bootsen in een fusiereactor op

aarde. In een ideale wereld zijn alle element in zo'n complexe machine perfect op elkaar

afgesteld en doet elk onderdeel zijn werk naar behoren. Maar hoe voorkomen we dat er in de

werkelijkheid toch iets fout loopt en een duur experiment mislukt? In dit onderzoek wordt

artificiële intelligentie naar voren geschoven als nieuwe bondgenoot.

 

De Joint European Torus, of JET, is de grootste werkende experimentele kernfusiereactor in de

wereld, gelegen in Culham, nabij Oxford. Wat daar gebeurt, kan vergeleken worden met het

recreëren van wat zich afspeelt in het binnenste van een ster. Al sinds 1983 wordt bij JET

fundamenteel onderzoek verricht naar kernfusie door wetenschappers uit wel 28 verschillende

landen. Kernfusie is het proces waarbij twee zware waterstofkernen samengebracht worden bij

heel hoge temperaturen om ze te fusioneren tot helium. Tijdens dat proces komt heel veel energie

vrij: een kilogram fusiebrandstof vormt het equivalent van ongeveer zeven miljoen kilogram olie.

Deze brandstof kan voor een deel eenvoudig gewonnen worden uit zeewater, en wordt voor het

andere deel geproduceerd in de reactor zelf. Bovendien is kernfusie ook nog eens een nagenoeg

CO2-neutrale bron van energie en worden er geen langlevende radioactieve stoffen geproduceerd,

zoals wel het geval is bij traditionele kerncentrales. De reden waarom we nog geen gebruik
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kunnen maken van deze veelbelovende energiebron, zit in de moeilijkheid om de fusiebrandstof

lang genoeg op de ongelooflijk hoge temperaturen te houden die vereist zijn voor een

winstgevende operatie van de reactor. Voor kernfusie spreken we dan ook over temperaturen van

meer dan 100 miljoen graden Celsius. Een manier om ervoor te zorgen dat deze extreem hete

deeltjes niet in contact komen met hun omgeving, is ze op te sluiten in een sterk magnetisch veld.

Dat is ook precies wat in JET gebeurt: miljoenen onderdelen werken er minutieus samen om de

fusiebrandstof op te warmen in het magnetische veld, en ze daarna ook weer weg te voeren uit de

reactor. Soms gaat er iets fout in dit complexe proces en laat een onderdeel in de machine het

afweten op een cruciaal moment. Dit leidt niet alleen tot een mislukt experiment, maar brengt

ook vaak frustraties met zich mee bij de onderzoekers. Herstellingen van deze fouten kunnen veel

geld kosten en nemen vaak een lange tijd in beslag, wat het onderzoek naar kernfusie uiteindelijk

vertraagt. 

 

   "Voor kernfusie spreken we dan ook

   over temperaturen van meer 

   dan 100 miljoen graden Celsius."

 

 

Artificial intelligence to the rescue

 

Om dergelijke tegenslagen in de toekomst te voorkomen werd onderzocht of slimme algoritmes

al dan niet in staat zijn om afwijkende datapatronen in de fusiereactor op te sporen. Wanneer

deze algoritmes vervolgens zo'n afwijkend patroon vaststellen, kunnen de onderzoekers

gewaarschuwd worden zodat tijdig kan worden ingegrepen.

 

Twee onderdelen van de experimentele JET reactor werden tijdens dit onderzoek onder de loep

genomen, en voor elk van hen werd een specifiek algoritme gebouwd. Het eerste luik van het

onderzoek focust op enkele frequente mankementen bij de JET turbomoleculaire pompen. Die

vormen een deel van het systeem dat instaat voor het ultrahoge vacuüm in de reactor. Zo'n hoog

vacuüm is nodig om ervoor te zorgen dat het kernfusiemengsel niet vervuild raakt met andere

stoffen. Bovendien zorgt het vacuümsysteem er ook voor dat na een experiment alle fusiedeeltjes

netjes verwijderd worden uit de reactor. 

 

De eerste stap in het voorkomen van nieuwe fouten in het vacuümsysteem bestaat uit het bouwen

van een neuraal netwerk. Neurale netwerken zijn geavanceerde machine learning algoritmes

bestaande uit kunstmatige neuronen die samen informatie kunnen verwerken, gelijkaardig aan

de manier waarop ons brein dat doet. Hier werd het neuraal netwerk getraind in het zo goed



mogelijk herkennen van gezonde datapatronen afkomstig van sensoren die het systeem

monitoren. Wanneer het neurale netwerk vervolgens na een tijdje nieuwe binnenkomende data

niet meer herkent, wordt een signaal verzonden. Het resultaat is een algoritme dat onderzoekers

kan waarschuwen wanneer afwijkend gedrag zich voordoet, zodat een opknapbeurt van het

systeem ingelast kan worden en het vacuümsysteem niet op een onverwacht moment stopt met

werken. 

 

Ook kernfusie heeft al eens wat warmte nodig

 

Het tweede onderzochte onderdeel maakt deel uit van het centrale systeem dat de fusiebrandstof

opwarmt. Om de hoge temperaturen te bereiken die nodig zijn voor kernfusiereacties is veel

energie nodig. Die energie wordt geleverd vanuit een zware ronddraaiende schijf, een

zogenaamde 'vliegwiel generator'. Voor de verplaatsing van de hoge elektrische stroom van

duizenden Ampères zijn stevige geleiders en schakelaars nodig die tegen een stootje kunnen. Er is

één belangrijke schakelaar die het vaak zwaar te verduren krijgt tijdens dit proces: de zogenaamde

S1-schakelaar. Na vele experimenten werkt deze schakelaar soms niet meer, waardoor de

stroomtransitie niet correct meer kan verlopen. Om onderzoekers te waarschuwen wanneer een

schakelaar aan vervanging toe is, werd een algoritme ontwikkeld dat de typische

ouderdomsverschijnselen van een vermoeide schakelaar leert herkennen. Hiervoor werd gekeken

naar twee belangrijke spanningssignalen. Wanneer het verschil tussen beide signalen gedurende

een specifieke halve milliseconde uitgezet wordt in een 32-dimensionale ruimte, kan het

algoritme een duidelijk onderscheid maken tussen gezonde data en data geproduceerd door een

vermoeide schakelaar. Als resultaat kan het algoritme nu opnieuw een waarschuwingssignaal

versturen wanneer te veel onnauwkeurigheden worden waargenomen, om uiteindelijk erger te

voorkomen.

 

Wat nu?

 

Met de resultaten van beide onderdelen wil dit onderzoek het potentieel van artificiële

intelligentie aantonen in de zoektocht naar een operationele kernfusiereactor. Hopelijk voelen

fusie-enthousiastelingen zich aangesproken om de fascinerende methodes uit de artificiële

intelligentie verder toe te passen in het onderzoek naar kernfusie, en zo mee bij te dragen aan de

ontwikkeling van een schone en veilige energiebron voor de hele wereld.
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