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Abstract

Sleep stage monitoring is an important tool in the clinician’s arsenal to provide
care for neonates and assess normal brain maturity. Correctly assessing the sleep
wake cycles can direct interventions in the NICU and provide better understanding
of neurophysiological processes in the earliest stages of life. EEG recordings carry
substantial information on these sleep stages and are used to perform sleep stage
monitoring in a noninvasive way. Correctly identifying sleep stages from EEG record-
ings is a challenging task even for experts in the field. Using traditional supervised
deep learning approaches to support clinicians demands major effort up front to
provide annotated EEG segments for the machine learning model to train from.

This thesis investigates methods to improve the current state of the art in neona-
tal sleep stage monitoring based on supervised learning by using unannotated EEG
recordings. An unsupervised method is proposed to automatically extract relevant
features from data and a machine learning classifier is later trained on the extracted
features. A semi-supervised model is proposed to directly combine information from
annotated and unannotated data. Classification using features from unsupervised
learning on the C3-C4 EEG signal reported an average kappa coefficient of 0.47 and
classification using semi-supervised learning on the same data reported an average
kappa coefficient of 0.64.

The proposed unsupervised learning model was not successful at competing with
the state of the art in automated sleep stage classification and is shown to not
disentangle factors of variation in the data corresponding to sleep stages. Semi-
supervised learning proved to be very competitive with the current state of the art
outperforming a supervised deep learning approach using the same data.
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Chapter 1

Introduction

This thesis will study unsupervised deep feature extraction for neonatal sleep stage
classification and and extend the study to semi-supervised methods. This introductory
chapter will shortly illustrate the background of the research problem, will formulate
the goal of this work and will provide an overview of the following chapters.

1.1 Background

Preterm birth carries many risks for an infant. One such risk is related to neuro-
physiological development with longlasting consequences to brain structure as far
as early adulthood. [1] The central nervous system undergoes major changes during
the final weeks of pregnancy, especially the area of the prefrontal cortex. This part
of the brain influences the higher-order cognitive abilities and is late to mature.
The longlasting consequences can manifest themselves in problems related to these
higher-order cognitive abilities with attention-deficit disorder, learning difficulties
and autism as examples. [2]

Adding to the problems is the often necessary stay in the Neonatal Intensive
Care Unit, NICU, of a hospital. The light, sound, diverse set of caregivers and
interventions for potential complications after birth all contribute to a very stressful
environment. The NICU does allow for monitoring of the biophysical processes in the
neonate to adapt care and direct interventions. One such monitoring process is the
electroencephalogram, EEG, measuring voltage fluctuations originating from neurons
firing in the brain. A major benefit of EEG monitoring is the noninvasive nature of
most monitoring setups, consisting of a head cap with electrodes. Analysis of the
EEG signal during sleep can be used to monitor brain maturation: neurophysiological
development is linked with functional reorganization of the different sleep stages.
Identifying sleep stages in neonatal EEG recording constitutes a major challenge and
clinicians have already hinted to applying computer-based analysis routines. [3]

Dereymaeker et al. [4] provide an extensive overview of sleep stage classification
using neonatal sleep-EEG. They list several expected characteristics or features of
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1. Introduction

the EEG signal for the relevant sleep stages over a wide range of gestational age.
The publication also included several examples of EEG recordings corresponding to
the relevant sleep stages. They also indicate the challenge of sleep assessment due to
external factors influencing EEG recording and call for automated analysis tools to
further improve the understanding of brain development in neonates.

Development of such automated analysis tools has been investigated in the past
by looking for patterns in spectral features of EEG recordings [5] [6] or by exploiting
the discontinuous nature of neonatal quiet sleep. [7] A recent publication by Ansari et
al. [8] reported successful development of an end-to-end machine learning algorithm
for neonatal sleep stage classification in quiet sleep and non-quiet sleep. Their work
involved training a supervised convolutional neural network on 500 hours of EEG
recordings annotated by experts. Succesful application of deep learning hinges on
the availability of vast datasets. Substantially improving the performance of existing
algorithms would require expert clinicians to manually label hundreds of hours of
EEG recordings which is a time-consuming process.

1.2 Goal

This thesis aims to investigate the potential for applying unsupervised learning
models to alleviate the reliance on human effort in a machine learning pipeline.
Unsupervised feature extraction aims to consume vast amounts of unlabeled EEG
recordings and to automatically identify relevant characteristics or features of the
data. Whether or not such unsupervised models extract meaningful features from
data can be assessed by using the extracted features to train a classifier on the
limited labeled dataset.

The potential of semi-supervised learning is investigated as well. These models
make use of a combination of labeled and unlabeled data and fullfil the same goal
as unsupervised learning: increase classification performance by using unlabeled
recordings. However, in contrast to unsupervised feature learning the semi-supervised
models directly result in a classification algorithm.

The main goal of this work is using machine learning to leverage unlabeled EEG
recordings to improve on existing sleep stage classification algorithms paving the
way for further developments in automated EEG analysis with a minimal reliance on
labels provided by the medical field.

1.3 Thesis Overview

The remainder of this thesis is organized as follows: Chapter 2 will provide the
necessary background on machine learning, neural networks and two advanced models:
Variational Auto-Encoders and Generative Adversarial Networks. Chapter 3 will
discuss previous work on neonatal sleep stage classification and unsupervised learning

2



1.3. Thesis Overview

on EEG signals. This chapter will also introduce recent advances in unsupervised
and semi-supervised learning. Chapter 4 will introduce the EEG recordings used for
training and testing the models. Chapter 5 will illustrate the proposed unsupervised
and semi-supervised pipelines. Chapter 6 will contain the classification results when
using the trained unsupervised and semi-supervised model. Chapter 7 will compare
the classification performance with other approaches and discuss the extracted
features. Finally, chapter 8 will conclude the work and propose paths for future
study.
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Chapter 2

Machine Learning

This chapter will introduce the theoretical foundation used by the remainder of
this work. It will first discuss the fundamentals of machine learning by using a
mathematical parametric model and how to estimate the parameters of such models.
Next, it will touch upon a popular machine learning model: gradient tree boosting.
Neural networks will be introduced next, starting with the basic building blocks
and how to use them to build more complex architectures. Parameter estimation
for neural networks, the so-called "training", is discussed more in depth for this
specific type of machine learning model. To conclude, two important advanced
machine learning models will be introduced which make heavy use of neural networks:
the Variational Auto-Encoder by Kingma et al. [9] and the Generative Adversarial
Networks as proposed by Goodfellow et al. [10] This chapter is heavily inspired by
the book on Statistical Learning by Hastie et al. [11] and the book on Deep Learning
by Goodfellow et al. [12]

2.1 Learning

Almost all machine learning problems involve a mathematical model with which to
model data. In this thesis such models will be formulated as a function acting on
input x producing output y through the function f(·). The inputs and outputs can
represent scalars, vectors, matrices or higher order tensors and the function f(·) can
produce a deterministic result or have stochastic elements. Many such models exist
in literature with varying degrees of flexibility in adapting to given data with a wide
variety in properties. However, a usual constant is the reliance on parameters θ to
incorporate the flexible nature of the machine learning models. To summarise, data
is modeled as follows.

y = f(x; θ)

A basic illustrative model is a polynomial: y = θ2x
2 + θ1x+ θ0. This polynomial is a

deterministic function of the input x and the behavior can be adapted through the
components of the parameter vector θ = [θ2 θ1 θ0]T .
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2. Machine Learning

2.1.1 Parameter estimation

Models can learn from data by finding the best parameters given a training set. The
notion of "best" parameters is a difficult one. To quantify this notion of "best" a loss
function is introduced. The loss function L[y, f(x; θ)] takes as input both the real
expected output of the model y provided by the training set and the produced output
f(x; θ). It assigns a penalty to quantify the error between the desired result and the
outputted result. The problem of finding the best parameters can be formulated as
follows:

arg min
θ

Ep(x,y)L[y, f(x; θ)] (2.1)

The expectation is taken over the joint distribution p(x, y) representing the true
data distribution of the population for the problem at hand. Calculating the full
expectation is in many cases infeasible. One can approximate Monte Carlo integration
of the expectation by using a training dataset (xn, yn)Nn=1. This in turn changes the
parameter estimation problem to

arg min
θ

1
N

N∑
n=1
L[yn, f(xn; θ)] (2.2)

i.e. minimizing the mean loss calculated over the N datapoints in the training
dataset. Changing from minimizing an expectation of the loss of the population
to a sum over all datapoints allows for easier computation of the loss and a more
straightforward formulation as a standard optimization problem.

Many different formulations of the loss L[yn, f(xn; θ)] exist. What should be
considered "good" values for parameters changes from application to application and
the myriad of loss functions reflects this diversity. However, some broad categories
exist with a standard loss functions, two of which will be introduced below. A
common problem consists of predicting a real output, y ∈ R. This problem is called
regression and its most basic loss function is the mean squared error, MSE.

MSE = 1
N

N∑
n=1

(yn − f(xn; θ))2

The output y can also be limited to discrete values. In this case the problems are
regarded as classification. For a two-class problem one can assume without loss of
generality that y ∈ (0, 1). The mathematical model f(x; θ) can be stated to output
a probability value of y having the value 1 given the input x: f(x; θ) = p(y = 1|x; θ).
For this classification model, a popular loss function is the cross-entropy loss, or log
loss:

−Log loss = 1
N

N∑
n=1

ynloge f(xn; θ) + (1− yn)loge (1− f(xn; θ))

2.1.2 Generalization

Estimating the population loss in equation 2.1 by the training loss in equation
2.2 introduces a statistical error. Minimizing the average loss of the training data
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2.1. Learning

is the only way to estimate the parameters of a model when the true population
distribution p(x, y) is unknown. The best parameters for the training set, however,
do not necessarily minimize the loss on the population. A model that can estimate
its parameters from training data and still perform well on unseen data sampled
from the data population is said to generalize well.

To test for generalization capabilities during training of a model a separate
dataset is usually introduced for validating the model. This validation set is kept
separate from the core training process and only after completion of training is the
validation dataset fed to the model to calculate its average loss. The validation loss
can be compared to the training loss at the end of the training process to gauge
the generalization capabilities of a model. When the training loss is significantly
lower than the validation loss the model is said to overfit to the training data. This
happens when the model mainly has memorized the training dataset and failed to
find general patterns generalizable to the data population. When the validation loss
is less than or somewhat equal to the training loss it is considered an indication that
the model generalizes. Another important notion related to training is underfitting.
A trivial solution to the problem of overfitting is to only have a superficial look at the
data and not allow the model to extract difficult patterns. In this case the training
and validation loss might be alike but the model does not fit sufficiently to any data,
training or validation.

Figure 2.1 illustrates these concepts for fitting a polynomial on noisy data. Data
has been generated by using a third order polynomial and applying normally dis-
tributed noise to points on the polynomial. The first illustration contains a model
underfitting to the data; a linear regression model is clearly not suited to represent
polynomial data. The second illustration estimates parameters for a third order
polynomial which is clearly a good fit to the data and expected to perform well on
out of sample data points. The final illustration performs parameter estimation for a
polynomial of order 15 which clearly deviates from the underlying data model and
overfits to the training data.

Figure 2.1: Illustration of Under- and Overfitting

One has to take care when using a validation set to gauge generalization capabil-
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2. Machine Learning

ities. In most machine learning pipelines an iterative approach is taken to model
building. A model is proposed and the validation loss for the model is calculated.
This loss is compared to previous models and the model with the best validation
loss is retained. Modifications are made to the current best model and tested again.
This process falls prey to a data snooping bias in the sense that the machine learning
engineer is fitting the model to the validation data by manually performing optimiza-
tion steps for the validation loss. This has a negative impact on the generalization
capabilities of the model. To this end a given dataset is usually split in three parts,
not just training and validation. One part is the training set, a second part the
validation set an a third part is called the test set. At the end of all model iterations
a final test of the generalization power of the model is performed with this test set.
It is imperative that this dataset is not used in any other part of the pipeline or the
test result will also fall prey to the same data snooping bias.

2.1.3 Performance Metrics

While the loss function for a given learning process can already be perceived as
a measure of performance more informative metrics exist. A classifier cannot be
adequately assessed on one evaluation dimension alone; multiple performance metrics
are usually reported. This section will discuss common performance metrics for a
binary classification into two categories: true and false. Different proportions can
be considered for such a problem. The true positives, TP , which is the proportion
of samples corresponding to true which the learner correctly classifies. The true
negatives, TN , which is the proportion of samples corresponding to false which
the learner correctly classifies. The false negatives, FN , which is the proportion of
samples corresponding to true which are incorrectly labeled false and finally the false
positives, FP , which is the proportion of samples corresponding to false incorrectly
given the label true by the learner.

• Accuracy: corresponds to the amount of samples labeled correctly.

Accuracy = TP + TN

TP + FP + TN + FN

• Precision: the proportion of correctly labeled samples in all positively classified
samples.

Precision = TP

TP + FP

• Recall: the proportion of samples corresponding to true that are correctly
classified

Recall = TP

TP + FN

• F1-score: a more abstract measure calculated as the harmonic mean of precision
and recall

F1 = 2TP
2TP + FP + FN
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2.1. Learning

• Cohen’s kappa coefficient: a statistical measure of inter-rater agreement for
categorical variables. In a machine learning context the inter-rater agreement
can be viewed as the agreement between the ground truth and the outputted
labels by the classifier. It takes into account the label distribution to better cope
with an unbalanced dataset. To calculate it two values have to be computed.
Firstly, the observed agreement po wich corresponds to the accuracy of the
classifier. Secondly, the expected agreement by chance pe. This value is
calculated taking into account the distribution of the labels hence the coefficent
naturally takes the unbalance in a dataset into account.

κ = po − pe
1− pe

• Sensitivity: is equal to recall but is mentioned here again explicitly due to the
widespread use in medical applications.

• Specificity: the proportion of samples corresponding to false that are correctly
classified.

Specificity = TN

TN + FP

2.1.4 Feature Space Visualization

Performance metrics as described above rely on a ground truth for comparison.
Unsupervised learning models lack such a ground truth and are more intiutively
assessed on qualitative results. One such evaluation approach is visualizing the
extracted feature space and checking for structure. Two methods are used later in
this thesis and are introduced below.

Principal Component Analysis, PCA, is a wellknown technique for dimensionality
reduction. For visualization in a 2-D plane the problem is stated as dimensionality
reduction using the first two principal components. This corresponds to projecting
the high-dimensional data on the plane that captures most of the variance of the
total dataset out of all orientations of a plane in the high-dimensional space. It is a
linear embedding method.

t-Distributed Stochastic Neighbor Embedding, t-SNE for short, is a nonlinear
dimensionality reduction algorithm introduced by van der Maaten et al. [13] It is
mainly designed for visualization of high-dimensional space, transforming data from
its original space to two or three dimensions. t-SNE aims to find a nonparametric
mapping from data in the original high-dimensional space to the lower-dimensional
visualization space respecting the relative pairwise distances. Clusters in the high-
dimensional space should show up as clusters in the mapping and separated points
in high-dimensional space stay separated in visualization space. It is a stochastic
iterative algorithm without a guarantee that these properties hold when the algorithm
terminates. In practice t-SNE is a very popular visualization algorithm and it often
succeeds in finding the natural clusters present in the data. [14] [15] [16]
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2. Machine Learning

2.1.5 Gradient Tree Boosting

Gradient tree boosting is a highly effective and widely applied machine learning
algorithm. [17] For a tree boosting classifier the method combines many classifiers
which on their own do not perform well but when combined in a boosting ensemble
achieve impressive results. For base learners fk the total tree boosting classifier F
calculates its result as

F (x) =
K∑
k=1

γkfk(x)

The set of base learners (fk)Kk=1 is constructed iteratively incorporating the results
of the previous classifier. The first learner f1 is constructed in a regular fashion and
its performance on the training set is calculated. The following learner is given a
weighted training set with more weight placed on the samples classified incorrectly
by the first learner. This process is repeated for all learners, each focussing on the
errors of the previous one. Building an ensemble in this way this allows to combine
many weak learners to form a well performing total classifier.
The base learners in gradient tree boosting are decision trees. These algorithms
perform binary partitions on the training set based on the values of its features a
fixed number of times. A new data sample being classified is moved to one of the two
partitions at every step in the decision tree and is assigned the label of the majority
class of the training data of the final partition it is placed in. The depth of a decision
tree is an important hyperparameter for a tree boosting classifier and specifies the
amount of partitioning steps a base learner is allowed to perform.

2.2 Neural Networks
Neural networks are highly flexible models that consist of a hierarchy of basic
building blocks: neurons. Two main kinds of neurons exist: densely connected ones
and convolutional ones. Especially the convolutional neural networks, CNNs, have
been used to great succes in recent image processing tasks, both on general image
classification [18] [19] and in more specialized medical imaging tasks [20].

2.2.1 Dense Neuron

The basic building blocks of neural networks are based on the classical perceptron
classifier. An input vector x ∈ RI is fed as input to these basic blocks and the
neuron outputs a single scalar y based on a nonlinear transformation. The specific
mathematical formulation goes as follows

y = f(wTx+ b)

Trainable parameters for the neuron are the weight vector w and the bias term
b. For notational ease the input vector is usually appended with a constant scalar
value to include the bias term as a component of the weight vector and express the
mathematical model as a single inner product: y = f(wTx)

10



2.2. Neural Networks

The nonlinear character of the transformation stems from the use of an activation
function f(·). Many different activation functions have been proposed in literature
and are still in use. In this work the Rectified Linear Unit, ReLU, is used by most of
the learners.

ReLU(x) = max(0, x)

It is the activation function of choice for building very deep architectures as illustrated
in [12]. The sigmoid activation function was originally the main nonlinearity in
neural networks but fell out of favor. Currently it is still in use for the final part of a
network architecture when the learner has to represent a probability due to its range
being contained to (0, 1).

Sigmoid(x) = σ(x) = 1
1 + ex

A third activation function is the identity function despite removing the nonlinear
character of the neuron. This activation function occurs infrequently and is used when
a linear transformation of the input is desired while still fitting into the formulation
of a neuron.

2.2.2 Convolutional Neuron

Discrete convolutions arise in neural network models due to the need of locally
connected units. The basic neurons are very flexible building blocks but use the
entire input to compute the outputted values. In both signal processing and image
processing it is interesting to use local information instead of relying on models that
are forced to cope with the global context. Instead of using a complete inner product
one can rely on discrete convolutions to compute the output resulting in locally
connected units compared to the global connections of the normal neuron. For an
input signal, the vector x ∈ RI , the convolutional neuron applies the filter S ∈ RL to
result in the output signal, x̂ ∈ RI . To ensure the edge values can be computed the
input vector is padded, either with zero values or the edge components are copied.

x̂ = S ∗ x

The neuron output can be formulated as

y = f(S ∗ x)

For a convolutional neuron the filter components are the trainable parameters. The
method can also be applied when the input consists of multiple channels. In this case
the filter S is generalized to a spatio-temporal filter instead of a purely temporal
filter as introduced above.

In the neural network context several hyperparameter of the building blocks can
be tweaked. A clear hyperparameter is the filter size L. However, convolutional
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2. Machine Learning

layers usually also operate with a specific stride k. Instead of the usual discrete
convolution operation one can calculate an output signal x̂ ∈ RI/k as follows:

x̂[n] =
L/2∑

l=−L/2
S[l]x[kn− l]

Using this calculation the normal discrete convolution corresponds to a stride of 1.
Strided convolutions can be used to downsample an input and aggregate information.
Many recent network architectures follow the all-convolutional approach proposed
by Springenberg et al. [21] and use strided convolutions as replacement for the
traditional pooling operation.

2.2.3 Layers

Neurons on their own are not flexible models. The power of neural networks only
arises when neurons are stacked and combined into deep architectures with hidden
layers. Multiple neurons can operate on the same input and their outputs can be
combined in an output vector y in the case of a densely connected neuron. For
convolutional units acting on a signal multiple neurons result in a multi-channel
output. Multiple such layers can be appended together with the output of a layer
used as the input of the next one. For densely connected networks it can be showed
that neural networks making use of at least one hidden layer between input and
output are universal approximators. [22]
Figure 2.2 illustrates one such architecture for two hidden layers. The input x ∈ R3

is transformed to the output y ∈ R2 by

y = f(W2f(W1x+ b1) + b2)

with W1 ∈ R4×3,W2 ∈ R2×4 and the nonlinearities f(·) applied elementwise. It
should be noted that the identity function should not be used throughout the entire
network since the model would then reduce to a single linear operation.

Figure 2.2: A Multilayer Architecture
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2.2.4 Training

The training process of a neural network involves minimizing the average loss
on the training data as formulated in equation 2.2. Neural networks are usually
trained using first-order derivative based optimization routines. The step size for
the optimization routine is commonly called the learning rate. For these gradient
descent methods the gradient of the loss L with respect to the model parameters θi
is needed. Backpropagation is a commonly known technique based on the chain rule
for derivatives to calculate this gradient starting from the final layer of a network.
The derivatives of the parameters of the layers closer to the input of the network are
formulated as the product of many terms due to the chain rule and can suffer from
exploding or vanishing gradients. In very deep networks this repeated multiplication
can result in numerical over- or underflow if left unchecked.
Using the complete training set to calculate the gradient can result in a prohibitive
computational cost due to neural networks having a large number of trainable
parameters and datasets growing into the millions and billions of datapoints. The
common solution is using Stochastic Gradient Descent, SGD, with minibatches of
size M much smaller than the complete dataset. The average loss is calculated for
the minibatches and the gradient computed and applied to the model. An added
benefit, apart from faster convergence in total time, is the regularizing effect of SGD.
The network sees new datapoints in every minibatch making it harder to overfit to
the training data.
SGD is, however, not without its limitations. Using minibatches can result in
oscillitations in parameter space that do not settle down to a desirable result and is
very dependent to the user-provided learning rate to converge to a desirable region
in parameter space. Kingma et al. [23] propose an extension to classical SGD called
Adam, short for adaptive moment estimation. By keeping track of the first and
second moments of the gradient during minibatch updates the oscillatory nature of
SGD is mitigated and the method accepts a wide range of learning rates.

2.2.5 Advanced Layer Types

Several specialized layer types have been introduced and can be situated throughout
a network. For this thesis two specific layer types are of interest, mainly aimed at
increasing generalization capabilities.

Batchnormalization Ioffe et al. [24] introduced batchnormalization as a way of
reducing internal covariate shift during training. Due to the highly nonlinear nature
of neural networks and the use of stochastic gradient descent the distribution of the
inputs to an intermediate layer in the network can change drastically from minibatch
to minibatch. The layer not only has to learn patterns from the minibatch but also
has to cope with this change in distribution of the input data. Batchnormalization
aims to solve the problem of internal covariate shift by normalizing layer inputs using
minibatch statistics. Ioffe et al. report faster training, less dependence on choosing a
specific learning rate and a regularizing effect due to batchnormalization. For this
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thesis batchnormalization is applied within a layer by normalizing the inputs to the
activation function of a layer as described in the original paper.

Dropout Dropout is another specialized layer introduced by Srivastava et al. [25]
Their approach consists of randomly dropping a fraction of the units in a neural
network during training to force the network to learn robust features. During testing
all units remain active and the results are averaged. One can think of this method
as being an ensemble of many different network architectures all training at once. It
is a very popular method of preventing overfitting in a neural network.

2.3 Advanced Models

This thesis focusses on two advanced models making use of neural networks. The Vari-
ational Auto-Encoder [9] is later used for unsupervised learning and the Generative
Adversarial Network [10] is used in adapted form in the context of semi-supervised
learning.

2.3.1 Variational auto-encoders

Kingma et al. [9] introduced a class of models suitable for unsupervised learning:
Variational Autoencoders, VAEs. Their aim was to provide methods of efficient
learning for directed graphical models and efficient posterior inference. General
parametrizations for the different distributions can be used in their approach but
the experiments were carried out using neural networks; further publications also
leaned heavily on neural networks.

Data points x are assumed to be drawn from a distribution with a hidden latent
random variable z. The true prior and likelihood distributions are assumed to corre-
spond to the prior pθ(z) and likelihood pθ(x|z) with parameter vector θ. Barring
very simplistic models the true posterior distribution pθ(z|x) is intractable. They
approximate the true posterior by a new distribution qφ(z|x). In the context of
feature extraction the approximate posterior can be viewed as a probabilistic encoder
defining a conditional distribution over the feature space z. The approximate model
parameters φ are trained jointly with the model parameters θ.

The approach taken by the authors to estimate the parameters of their models is
linked to maximum loglikelihood estimation.

log pθ(x(i)) = DKL(qφ(z|x(i))||pθ(z|x(i))) + L(θ,φ;x(i))

The full loglikelihood is not maximized but the variational lower bound L(θ,φ;x) is
maximized instead.

log pθ(x(i)) ≥ L(θ,φ;x(i)) = Eqφ(z|x)[−log qφ(z|x) + log pθ(x, z)]
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When factorizing the joint and working out the expectation operator a more con-
venient form can be found for the variational bound. This formulation of the loss
function can be linked to the training of regular auto-encoders. The second term
is a measure for the reconstruction error and the first term can be interpreted as a
regularization term on the encoder.

L(θ,φ;x(i)) = −DKL(qφ(z|x(i))||pθ(z)) + Eqφ [log pθ(x(i)|z)] (2.3)

In a variational auto-encoder the approximate posterior is formulated as

qφ(z|x(i)) = N (z;µ(i),σ2(i)I)

with µ(i) and σ2(i) both being the result of applying a neural network to the datapoint
x(i). When the prior is defined as

pθ(z) ∼ N (0, I)

the KL-divergence term can be worked out analytically and an estimator for equation
2.3 can be formulated,

L(θ,φ;x(i)) ' 1
2

J∑
j=1

(1+ log (σ(i)
j )2)−(µ(i)

j )2−σ(i)
j )2)+ 1

L

L∑
l=1

log pθ(x(i)|z(i,l)) (2.4)

with z(i,l) = µ(i) + σ(i) � ε(l) and ε(l) ∼ N (0, I). The summation in the first term is
over all J dimensions of the vector z and the second over L samples being drawn
from the approximate posterior distribution. When minimizing −L(θ,φ;x) as loss
function for the samples in a minibatch the usual training procedures described
above for regular neural networks can be followed. As described by Kingma et al.
setting L = 1 is sufficient to train the VAE.

2.3.2 Generative Adversarial Networks

Generative Adversarial Networks, GANs for short, were introduced by Goodfellow
et al. [10] as a way of training deep generative models. They learn a generator
distribution pg(x) by first defining a prior noise distribution pz(z), usually pz(z) ∼
N (0, I), as input to a generator neural network G(z; θg) with parameters θg. In order
to train the generator network a second network is introduced, the discriminator
D(x; θd) with parameters θd. This discriminator acts as a classifier and represents
the probability that a sample x originates from the training data instead of being
drawn from the generator distribution pg. The discriminator is trained to maximally
discern real samples from generated ones while the generator aims to "fool" the
generator by minimizing log (1−D(G(z)). This can be summarized in a two-player
minimax game.

min
G

max
D

V (D,G) = Epdata(x)logD(x) + Epz(z)log (1−D(G(z))) (2.5)

Training the GAN involves an iterative process alternating between training the
discriminator and generator. The discriminator is shown a batch of real data samples
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and a batch of generated samples and updates its weights to better classify the two.
Afterwards the discriminator’s weights are kept fixed and the generator updates its
own weights to better fool the discriminator in the next training iteration. Goodfellow
et al. show that this training scheme has a fixed point for D and G where pg = pdata
when both functions have sufficient capacity. At the fixed point the discriminator is
as accurate as a coin flip and the generator outputs perfect data samples. Figure 2.3
illustrates the GAN training setup.

Figure 2.3: Illustration of the GAN setup. The generator transforms noise into a data
sample and the discriminator has to distinguish between samples from a database
and generated samples.
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Chapter 3

Related work

This chapter will introduce previous related work, both on deep learning for EEG
and on more general machine learning applications. The part on deep learning for
EEG applications will discuss sleep stage classification for neonates and unsupervised
feature learning for EEG in adults. Next several general works on unsupervised
feature learning will be elaborated on and the chapter will conclude with a discussion
on recent works in semi-supervised learning.

3.1 Deep Learning for EEG

Sleep Stage Classification The main inspiration for this thesis was the work
performed by Ansari et al. [8] This work applied a convolutional neural network on
multichannel EEG recordings for sleep stage classification in preterm neonates using
the same dataset as the one used in this thesis. Eight channels were used in the study,
corresponding to the F1, F2, C3, C4, T3, T4, O1 and O2 electrodes compared to the
reference Cz. EEG segments of 30s from all the different channels were combined
in a matrix to operate on a temporal dimension and a channel dimension. The
proposed CNN architecture alternates applying 1D-convolutions along the temporal
and channel dimension.

The authors’ proposed CNN forms the first application of CNNs for neonatal
sleep stage classification. Such end-to-end machine learning pipelines are still rare
compared to the more classical machine learning pipeline where authors define hand-
crafted features and train a machine learning algorithm on top of these features, an
example being the algorithm proposed by Koolen et al. [6] Ansari et al. also reported
their own results for applying a classification model on top of handcrafted features.
The used features are the spectral features identified as relevant to neonatal sleep
stage classification by Piryatinska et al. [5] These features consisted of the spectral
power in the δ, θ, α and β bands corresponding to 0.5 − 4Hz, 4 − 8 Hz, 8 − 12Hz
and 12− 15(30)Hz respectively; the 90% and 75% spectral edge frequency; the first
spectral density moment; the spectral density entropy and the amplitude entropy.
Ansari et al. applied a radial basis function support vector machine, SVM, to these
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features computed for every channel and reported results for both the CNN and SVM.
A postprocessing step was applied and consisted of a moving average filter of length 6.

Ansari et al. provided an updated algorithm [26] which performs sleep stage
classification for both term and preterm infants and extended the classification to
four sleep stages for term babies. The effect of decreasing the number of channels
used by the classification algorithm is investigated and results for preterm sleep stage
classification are reported for single channel (C3-C4), two channel (C3,C4), four
channel (C3,C4,O1,O2) and the full eight channel data.

Unsupervised EEG Feature Extraction Previous works have applied deep un-
supervised learning algorithms to automatically extract features from EEG data. [27]
[28] [29] These previous applications had mixed success. Lin et al. [27] used a stacked
sparse auto-encoder to perform feature learning and applied logistic regression on
their extracted features to perform the final classification. While the final classifier
performed well, it failed to outperform the state of the art algorithms they referenced.

Ren et al. [29] applied a convolutional deep belief network to learn representations.
The network input was not the raw signal but rather the Fourier transform of the
signal segments using only the signal in the 8− 30Hz frequency band. They used a
high number of channels, 118 in one case, and used Principal Component Analysis,
PCA, to extract lower dimensional signals. The learned features were compared with
relevant handcrafted features from literature using an SVM on a BCI competition
dataset and the number of training data points was varied through their experiments.
The learned features consistently outperformed the handcrafted features when enough
training data was available for the feature learning algorithm.

All these applications performed unsupervised learning on EEG data recorded
from adults. No publications were found that perform feature learning on neonatal
EEG. Migrating the models applied to adult EEG to neonatal EEG is not straight-
forward due to high rate of change in the EEG characteristics during infancy. [3]

3.2 Unsupervised Feature Learning

Feature learning in images is a more widely studied subject. Kingma et al. [9]
explored the feature space of the MNIST dataset in their original paper introducing
the VAE. Pu et al. [30] applied a VAE to extract a latent code out of images and
applied an SVM to classify images into different classes. They also used the extracted
features as input to a Recurrent Neural Network to automatically generate captioning
belonging to an image. GANs implicitly learn data features in their discriminator
network and these are used by Radford et al. [31] as input to a linear SVM to classify
the CIFAR-10 and SVHN image dataset.
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Other models have also been applied to great success. Convolutional deep belief
networks as introduced by Lee et al. [32] are a classical approach to representation
learning and suffer from a convoluted training process. The method does allow
for explicit modeling of a (non-normalized) probability distribution and allows for
efficient exact inference both from data to latent space and back in comparison to
VAEs which only allow for approximate inference.

Valpola [33] introduced an extension to deep autoencoders by allowing shortcut
connections between corresponding layers in the encoder and decoder. Valpola
showed that even a regular autoencoder can be seen as a directed graphical model
with a single latent variable vector and that his Ladder network is able to learn a
hierarchy of latent stochastic variables where the top latent variables represented
high-level abstract features and by moving down the ladder the stochastic layers
could add fine-grained information to the internal representation, moving from ab-
stract to detailed information. Valpola also showed an intuitive link between his
unsupervised learning approach and supervised learning. He hinted to extending the
Ladder network with supervised learning to steer the representation learning process
to features relevant for the supervised learning problem.

Salimans et al. [34] improved upon the existing GAN training process with several
innovations. One in particular is relevant in the context of this thesis. They observed
that one of the major modes of failure in GANs is the collapse to similar generator
outputs. Every generator input in a mini-batch is processed independently so the
generator can transform all its inputs to a point in data space that is rated highly by
the discriminator. When this occurs the following discriminator update recognizes
the collapsed generator sample as fake and the generator update starts moving the
single output around in data space. This common output is never disentangled due
to the independent processing of samples. Salimans et al. propose a method for
the discriminator to account for the similarity in a mini-batch allowing for easy
identification of generator collapse and potentially a means to escape this collapsed
mode.
Their method involved taking the features outputted by an intermediate layer of
the discriminator and stacking them in the vector f(x) ∈ RA. B different matrices
Mb ∈ RC×A are applied to the feature vectors for samples xn in the mini-batch. A
similarity function is associated with every matrix defined as follows:

cb(xi,xj) = exp(−||Mb(xi − xj)||L1) ∈ R

The mini-batch discrimination layer defines its output component as follows for a
mini-batch of size J : o(xi)b =

∑J
j=1 cb(xi,xj) The total mini-batch discrimination

output vector is then defined as the B different components:

o(xi) = [o(xi)1 o(xi)2 · · · o(xi)B] ∈ RB

The mini-batch discrimination layer is combined with the intermediate features
corresponding to sample xi and is fed to the next layer in the neural network as one
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single vector vi:
vi = [f(xi)T o(xi)T ]T

In the experiments by Salimans et al. on learning generative models for images the
mini-batch discrimination allowed the generator to output visually pleasing results
in only a few epochs.

3.3 Semi-supervised Learning
A common application of unsupervised feature learning is learning informative repre-
sentations from a large database of unlabeled data to improve a supervised learning
task. This stands in contrast with directly training a supervised model on the
data samples provided with labels. Common in these applications is the limited
amount of labeled data being available compared to the unlabeled data set size.
However, one can directly combine the two tasks and use a single model to both learn
relevant features from the large amount of unlabeled data and perform classification
based on the small amount of labels. An intuitive way of looking at this machine
learning problem is to use available labels to steer the feature extraction model to
features relevant for the classification task compared to learning features without
any guidance. This problem is known as semi-supervised learning in literature.

Kingma et al. [35] extended the original VAE for use in such a semi-supervised
learning context. The first approach applies a regular VAE to the unlabeled data
and later uses the encoder to extract features for the labeled data points to train
a classifier. Kingma et al. named this approach M1 in their publication and does
not differ from the regular pipeline of unsupervised feature learning and training a
classifier on the extracted features. The second approach involved a minor change
to the graphical model underlying the VAE formulation. The regular formulation
p(x, z) = p(x|z)p(z) is changed to use an additional stochastic variable y representing
the class label for use in a classification task:

p(x, z, y) = p(x|z, y)p(z)p(y)

The original approximate posterior distribution q(z|x) is extended to include the
class label and is factorized as follows:

q(z, y|x) = q(z|x)q(y|x)

Kingma et al. adapted the variational lower bound to incorporate the new formulation
for the posterior distribution. After training the model can still be used as a genera-
tive model by generating a sample for z and specifying a class label. The distribution
q(y|x) can be used as classifier for new data points. This approach is named M2.
Kingma et al. also provided an extension to the M2 model called M1+M2 by adding
an additional stochastic layer. They reported very competitive results outperform-
ing the state of the art semi-supervised learning algorithms at the time of publication.
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Salimans et al. [34] extended the regular GAN formulation to also include a
classifier. This allows using GANs for semi-supervised learning. In their work the
discriminator D(x) was extended to produce two outputs: one output corresponding
to the regular probability of a sample being real and another output corresponding
to the desired classifier. One can change the final loss function to jointly train the
GAN and the classifier allowing both training modalities to share information. The
training process is changed to include the classifier and it now consists of three steps.
The generator and discriminator still compete which each other to learn a generating
distribution corresponding to the unlabeled dataset but are alternated by a training
step for the classifier which shares part of its network with the discriminator. The
classifier is able to leverage the features learned by the discriminator during regular
GAN training to improve its own performance. This approach is still considered to
be a very competitive semi-supervised learning algorithm.

Rasmus et al. [36] further built upon the ladder networks introduced by Valpola
and extended them for semi-supervised learning. They reported even better classifica-
tion results than using GANs. Introducing the algorithm is considered to be outside
of the scope of this thesis due to the complexity of their method. Semi-supervised
ladder networks and the Virtual Adversarial Training routine introduced by Miyato
et al. [37] are considered the current state of the art in semi-supervised learning.
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Chapter 4

Data

This chapter discusses the dataset used for later model training. The dataset consists
of a part labeled by expert clinicians and a part that only contains the EEG recordings
without labels. First, the labeled data is discussed and secondly the unlabeled data.
The chapter concludes with an explanation on the split in training, validation and
testing data.

4.1 Labeled Data

The labeled data used to train models was the same as utilized by Ansari et al. [8]
in their study of an end-to-end supervised learning approach to sleep stage classifi-
cation. The data was recorded at the Neonatal Intensive Care Unit, NICU, of the
University Hospitals in Leuven, Belgium. The Ethics Committee of the University
Hospitals provided approval for the recordings and informed parental consent was
obtained. In total the recordings of 26 preterm infants were used all born before
32 weeks of gestational age. For each infant at least two recordings were performed
during the stay in the NICU with the number of recordings resulting in a total
of 97 multichannel recordings and 492 hours of EEG data. Signals were recorded
for infants in a range of 27 and 42 weeks of postmenstrual age, PMA. As reported
by Dereymaeker et al. [7] the infants had a normal neurodevelopmental outcome
score at 9 and 24 months corrected age (Bayley Scales of Infant Development-II,
mental and motor score >85). No subjects were under the influence of sedative or
anti-epileptic medication during recording or suffered from severe cerebral lesions
(normal cerebral ultra-sonography or intraventricular haemorrhage grade ≤II, no
periventricular leukomalacia or ventricular dilatation >p97).

The recordings were provided as an 8-channel signal making use of the F1, F2,
C3, C4, T3, T4, O1 and O2 electrode with Cz as reference according to the modified
international 10-20 system as explained in the work by Cherian et al. [38] Their
publication included an illustration of the placement of the electrodes. The data
was acquired using BrainRT equipment from OSG bvba, Belgium. Initial filtering of
the recordings was performed with a bandpass filter between 0.3 and 70Hz using a
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sample rate of 250Hz. Two independent expert clinicians annotated the quiet sleep
segments upon consensus. Wakefulness, active sleep and indeterminate sleep were
merged and labelled as non-quiet sleep. This results in a severely unbalanced dataset
with only 122 hours of recordings corresponding to quiet sleep and 370 hours with
the combined non-quiet sleep. The challenge for the machine learning algorithm will
be to classify a given recording segment into quiet sleep or non-quiet sleep with this
unbalanced dataset.

Additional preprocessing is performed on the data to make it more suited for use
in a machine learning context. The sampling rate of 250Hz results in data with a
dimensionality too high for realistic computing times. Another bandpass filter is
applied to the data between 1 and 15Hz before downsampling to 30Hz. All frequency
bands identified as relevant for sleep stage classification by Piryatinska et al. [5]
remain present in the decimated signal, only the β band (12 − 30Hz) is severely
affected. The EEG recordings are split into 30s segments resulting in a signal of
30Hz× 30s = 900 datapoints to be classified by a machine learning algorithm. Figure
4.1 shows a quiet sleep and non-quiet sleep segment with the preprocessing steps
applied to it. Finally, the quiet and non-quiet sleep annotations are mapped to a
scalar y ∈ (0, 1) with 0 corresponding to non-quiet sleep and 1 to quiet sleep.

Figure 4.1: Quiet Sleep segment compared to Non-Quiet Sleep
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4.2 Unlabeled Data

Seven additional recordings are included in the dataset for this thesis. These
recordings combine to form an extra 109 hours worth of EEG signals. They also
originate from the NICU of the University Hospitals in Leuven and were recorded
under the same modalities as the labeled data above. The 8-channel signal was subject
to all preprocessing steps as described above: bandpass filtering and downsampling to
30Hz. Nonoverlapping 30s segments were formed resulting into an additional 13 154
datapoints to leverage in learning algorithms to improve sleep stage classification.
It should be explicitly noted that no information is known on the balance between
quiet and non-quiet sleep for these recordings as they are unlabeled, these are raw
EEG recordings. None of the infants recorded for the unlabeled dataset are included
in the original labeled dataset.

4.3 Training/Validation/Test Split

Ansari et al. [8] already split up their data into a partition used for building the
model and for testing. They made their split based on the patient being recorded and
not purely based on the recordings to avoid leakage of patient-specific information
from training set to test set. 54 recordings from 13 patients were used for training
and 43 recordings from 13 different patients used for testing. This thesis makes use
of the same split to make direct comparison possible. The split results in 69h quiet
sleep and 200h non-quiet sleep for the training set. The test set consisted of 53h
quiet sleep and 170h non-quiet sleep.

Both the training and testing set cover a wide range of infant PMA. Histograms
to illustrate the available data at a specific PMA are computed. Due to the high
diversity in recording duration the histograms are not computed based on the number
of recordings but they take into account the number of segments at a specific PMA.
Figure 4.2 shows the PMA histogram for both the training data and the test data.
Both datasets span the range of 28− 42 weeks PMA but are clearly centered in the
middle of this range.

A good machine learning pipeline also makes use of a validation set to test inter-
mediate results. Ansari et al. made a random 80/20 split into training and validation
from their original dataset respecting the ratio between segments corresponding
to quiet and non-quiet sleep. This thesis makes use of another training/validation
split. Out of the 13 total infants in the training set three are separated from the
training set and their recordings are used for validation. This new split is made to
avoid the potential leakage of patient- or even recording-specific information from
training to validation and make the validation results more representative of the
general recording population. Unlabeled recordings are added to the training set for
unsupervised and semi-supervised learning. The full overview of amount of quiet
and non-quiet segments for each of the training, validation and test set can be found
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in table 4.1.

Training Validation Test Unlabeled

Quiet Sleep 6 319 1 908 6 303 /
Non-Quiet Sleep 18 780 5 265 20 433 /

Total 25 099 7 173 26 736 13 154

Table 4.1: Training, Validation and Test Segments
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4.3. Training/Validation/Test Split

Figure 4.2: PMA Distribution
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Chapter 5

Proposed Models

This chapter will discuss the proposed models for unsupervised feature extraction
and semi-supervised learning. The main focus has been on single channel data
to allow for faster experimentation and visualization. To this end, the algorithms
were trained on the difference between electrodes C3 and C4. Training on single
channel data also benefits from better numerical stability: fewer problems with
exploding or vanishing gradients were encountered. The focus on C3-C4 also has
clinical relevance. While the data was recorded in the University Hospitals in Leuven
using recording equipment with nine electrodes not all medical centers can make use
of such equipment. C3-C4 is a commonly used signal in cerebral function monitoring
setups, CFM, [26] making the proposed algorithms relevant for such an environment.
First, the data preprocessing steps are introduced. Secondly, the unsupervised
learning algorithm is discussed. This chapter concludes with proposing a semi-
supervised learning algorithm.

5.1 Data Preprocessing

Segmentation The original labeled dataset and additional unlabeled recordings
are combined into 38 253 segments for the training set. This amount of datapoints
was insufficient for training the unsupervised models and resulted in severe overfitting.
The solution was a preprocessing step on the dataset to artificially increase the number
of datapoints. Segments belonging to the same recording were all concatenated to
recreate the original recordings. A window of 900 points is applied to the recordings to
obtain datapoints with the same dimensionality as the originally provided segments as
shown in figure 5.1. The window is applied with a stride < 900 to obtain overlapping
segments resulting in a large increase of available datapoints while still only using
the original recordings. Setting a stride of 900 results in the original recordings
being extracted while setting a stride of 1 would result in an approximate 900 times
increase in the number of datapoints, albeit with severe overlap. For the following
models a stride of 10 was found to be a good tradeoff between increasing the dataset
size sufficiently for training proper representations and increasing computation time.
This resulted in an approximate 90 times increase in training set segments to about
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3 million segments.

Normalizing The data already is centered by the filtering applied beforehand.
The standard deviation however remained untouched compared to the original raw
recording. For all models below the total standard deviation is calculated across the
training set and all data (training, validation and testing) is divided by this standard
deviation in an effort to normalize the recordings.

Figure 5.1: Window applied to an EEG recording

5.2 Unsupervised Feature Extraction
For unsupervised learning a variational auto-encoder is proposed. Experiments
showed it performed better on later sleep stage classification compared to features
extracted by an unsupervised Generative Adversarial Network, even using the im-
provements to training proposed by Salimans et al. [34]

5.2.1 Setup

Before discussing the specific architectures and training routines the more general
setup of the utilized VAE is introduced. A VAE needs initial choices to be made
before it can be cast into a general training routine, namely the latent space dimension
and the specification of the likelihood distribution pθ(x|z). As indicated by Kingma
et al. [9] a VAE is quite insensitive to the latent space dimensionality as long as the
space is large enough to allow for storing the necessary information for reconstruction.
Experiments showed a latent space z ∈ R50 to have a slight edge in later sleep stage
classification while being large enough to represent data segments.
The likelihood distribution can take any general form to model the data and in this
thesis is specified as a Gaussian with parameters based on the latent variables:

pθ(x|z) = N (x;µθ(z),σθ(z)2I)

Specifying the likelihood in this way allows for easy calculation of the log pθ(x(i)|z(i,l))
term in Equation 2.4 for the training loss.
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5.2.2 Network Architectures

Encoder

The probabilistic encoder qφ(z|x) is specified as N (z;µφ(x),σφ(x)2I). Both µφ(x)
and σφ(x) are parametrized by a CNN with a dense layer as the final layer. The
networks share a common feature extraction part and have a separate final dense
layer. The common part is specified in Table 5.1. Every convolution is followed by
a batchnormalization layer and afterwards a ReLU nonlinearity is applied to the
features.
For µφ(x) a dense linear layer with 50 neurons is applied to match the dimensionality
of z. A separate dense linear layer with the same dimensionality is applied for σφ(x).
A linear activation however cannot directly be used to model a standard deviation
since this output would have to be guaranteed to be nonnegative. The network
instead outputs the logarithm of the variance used for the specification of qφ(z|x)
for an easier implementation while still following the theoretical VAE formulation.

Decoder

The decoder or likelihood distribution pθ(x|z) also uses two neural networks in its
formulation. Following the idea of the encoder a common part is used for µθ(z) and
σθ(z). This common part is specified in Table 5.2. The upsampling is performed by
copying the values present in the original tensor, no bilinear or cubic interpolation is
performed, and is not followed by batchnormalization or an activation function. The
convolutional layers are followed by batchnormalization and a ReLU activation.
The decoder follows the same idea of the encoder with a large shared network and
the final layer performing the split between the parameters for the required Gaussian.
For the decoder this is performed by adding a convolutional layer for both µθ(z) and
σθ(z) with one filter of size 1 followed by a linear activation. Following the encoder
the final layer responsible for modeling σθ(z) is considered to output the logarithm
of the variance instead of the standard deviation directly.

Layer # Filters Filter size Stride Output shape

1 16 15 1 (900, 16)
2 32 15 15 (60, 32)
3 32 15 1 (60, 32)
4 64 15 15 (4, 64)
5 128 4 4 (1, 128)

Table 5.1: VAE Encoder Common Architecture
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Layer # Filters Filter size Stride Output shape

4× upsampling (4, 50)
1 128 4 1 (4, 128)

15× upsampling (60, 128)
2 64 15 1 (60, 64)

15× upsampling (900, 64)
3 32 15 1 (900, 32)
4 32 5 1 (900, 32)

Table 5.2: VAE Decoder Common Architecture

5.2.3 Training

Basic training process

The training process involves calculating Equation 2.4 for every segment in a mini-
batch. For the encoder µφ(x) and σφ(x) are computed for a data segment and
are used to compute the KL-divergence term between the encoder distribution and
the latent prior. A sample from latent space is drawn from qφ(z|x) and used to
calculate the second term of Equation 2.4. Such a setup allows for easily applying
backpropagation through the encoder and decoder network.

Warmup

Directly using the full variational lower bound as a loss function does not lead to a
useful model. In all experiments this led to the decoder collapsing to a zero-centered
Gaussian and the encoder failing to extract meaningful features for later classification,
the classifiers barely performed better than random. An example of such a collapsed
reconstruction together with a random sample drawn from the decoder distribution
can be found in figure 5.2. Sønderby et al. [39] encountered a similar collapse in
working with directed graphical models similar to a VAE but with more stochastic
layers. In their work the deeper stochastic layers all collapsed to the prior and
failed to learn meaningful representations. Changing the loss function in the first Nt

training epochs alleviated the problem and avoided collapse. The variational lower
bound was formulated with an additional parameter β:

L(θ,φ;x(i)) = −β ·DKL(qφ(z|x(i))||pθ(z)) + Eqφ [log pθ(x(i)|z)]

Sønderby et al. linearly increased β from 0 to 1 in the first Nt training epochs as a
"warmup" stage and reported a substantial drop in feature collapse during training
in the stochastic layers.
In this work the training process also involved 5 epochs of using warmup. Slowly
increasing the influence of the KL-divergence term had a positive effect on the
training process and allowed the decoder distribution to better follow the original
input segment; the mean was observed to mimic a smoothed copy of the EEG segment
compared to being zero-centered.
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Figure 5.2: VAE Decoder Collapse

Optimization

Training was performed using the Adam optimizer with a default learning rate of
0.001. A significantly higher or lower learning rate resulted in the same collapse as
reported above for training without warm-up. The gradient L2-norm was clipped to
a value of 1 during training and was also a necessity to avoid collapse of the decoder.
The idea of clipping the gradient to stabilize training was originally proposed in the
work by Sutskever et al. [40] A single batch consisted of 512 segments.
After performing five warm-up epochs the networks were trained for 100 epochs
while monitoring the variational lower bound of the validation data. Early stopping
was not used but the network parameters corresponding to the lowest validation loss
were stored and used for future calculations.

5.2.4 Results

The final encoder and decoder can be assessed on their ability to reconstruct a given
segment. Sampling a point in latent space from the encoder distribution and taking
the mean values of the decoder distribution given this latent point should in an
ideal case mimick the original segment when the VAE has finished training. Figure
5.3 shows several reconstructions for segments in the training set and figure 5.4
for segments in the validation set. Both figures show reconstructions as smoothed
versions of the original EEG segments.
The decoder network should in theory also be able to generate new EEG samples
when provided with inputs drawn from a unit Gaussian. Figure 5.5 shows two
such samples, each with the decoder mean and a random sample drawn from the
decoder distribution. The mean of the random samples can be regarded as a smooth
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approximation of a real EEG signal and as such the generative character of the
decoder is quite decent. The true samples drawn from the decoder distribution leave
a lot to be desired. These samples are very noisy and appear to contain a larger high
frequency component compared to the ground truth signal segments.

5.3 Semi-Supervised Learning

The proposed semi-supervised learning algorithm is a GAN inspired by the work
by Salimans et al. [34] making use of Mini-Batch Discrimination. Salimans et al.
introduced two different approaches to improving and stabilizing the GAN training
process: Feature Matching and Mini-Batch Discrimination. They reported better
semi-supervised performance using Feature Matching but experiments showed that
in the context of sleep stage classification Mini-Batch Discrimination provided a
better performing classifier. The final architecture for use in semi-supervised learning
is elaborated on below.

5.3.1 Mini-Batch Discrimination Implementation

Before introducing the semi-supervised learning algorithm a software implementation
aspect has to be discussed. The Keras library which is used extensively throughout
this thesis does not contain a layer type to perform mini-batch discrimination. GitHub
user mcgibbon has extended the Keras Layer class with his own implementation [41].
A small modification had to be made to make it work in the context of this thesis.
The minibatch discrimination layer is added after the convolutional part of the
discriminator, it thus acts on the highest extracted features which are also used
later for sleep stage classification. Setting the number of mini-batch kernels to 10
and their dimension to 20 was found to be a good setting for generating visually
pleasing samples. The number of mini-batch kernels corresponds to the B matrices
being generated and the kernel dimension to the dimension C of feature vectors after
transformation with a matrix Mb as explained in Chapter 3.

5.3.2 Network Architectures

Discriminator

The discriminator network is split up into a feature extraction part making use of
convolutional layers which is shared for sleep stage classification and distinguishing
between real and generated samples. Table 5.3 shows the architecture of this feature
extraction part. As proposed by Radford et al. [31] a LeakyReLU activation function
is used throughout this part of the discriminator with a slope of 0.2 and dropout with
a dropout rate of 0.2 is applied after every activation function. They also proposed to
perform batchnormalization with momentum of 0.8 before every activation function
except for the first layer of the network. Sleep stage classification is performed by
placing a densely connected neuron with sigmoid activation function on top of the
feature extraction part without using batchnormalization or dropout. The feature
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extraction part is also appended with a mini-batch discrimination layer which adds
10 additional mini-batch features. A second densely connected neuron with sigmoid
activation function acting on the new feature vector including the mini-batch features
performs the classification between real and generated samples.

Generator

The generator makes use of a sample z ∈ R500 drawn from a Gaussian with an
identity covariance matrix. Table 5.4 contains the generator architecture. The
network uses a regular ReLU activation function throughout except for the final layer
which uses an identity activation function. Batchnormalization with momentum of
0.8 is applied before every activation function except in the final layer.

Layer # Filters Filter size Stride Output shape

1 16 15 1 (900, 16)
2 32 15 15 (60, 32)
3 32 15 1 (60, 32)
4 64 15 15 (4, 64)
5 128 4 4 (1, 128)

Table 5.3: GAN Discriminator Architecture

Layer # Filters Filter size Stride Output shape

4× upsampling (4, 500)
1 128 4 1 (4, 128)

15× upsampling (60, 128)
2 64 15 1 (60, 64)

15× upsampling (900, 64)
3 32 15 1 (900, 32)
4 32 5 1 (900, 32)
5 1 1 1 (900, 1)

Table 5.4: GAN Generator Architecture

5.3.3 Training

Two different kinds of minibatches have to be provided during training: labeled and
unlabeled. Both the labeled and unlabeled batches had a size of 512. The labeled
batches respected the label proportion in the larger dataset, every batch contained
one Quiet Sleep segment for every three Non-Quiet Sleep segments. A single epoch
is finished when the full unlabeled dataset has been presented to the networks, the
labeled dataset is shuffled whenever it has been traversed completely to generate
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new batches during the entire unlabeled epoch.

As advised by Salimans et al. the positive labels are smoothed to 0.9 to avoid
overconfidence in the discriminator. Training makes use of the Adam optimizer with
learning rate set to 0.0002 and the β1 momentum term set to 0.5 as advised by
Radford et al. [31] Training was performed for 20 epochs and during training Cohen’s
Kappa coefficient is monitored on the validation set. The weights corresponding to
the best Kappa coefficient during training are stored.

The training process of the generator is revised compared to the original algorithm
by Goodfellow et al. [10] During training the generator would often struggle to
maintain a diverse mix of output modes and collapse to a single mode despite using
mini-batch discrimination with a negative effect on the final classification performance.
Performing multiple generator optimization steps on newly generated noise samples
for every discriminator step lessened the likelihood of mode collapse and improved
classification performance. Regular GAN training resulted in a validation kappa
coefficient of 0.637 and the revised training scheme with three generator iterations
resulted in 0.643.

Results

The main goal of GAN training in this work is obtaining a good classifier. Despite
this the GAN can still be assessed on its ability to generate realistic samples. Figure
5.6 shows generated samples for regular GAN training and Figure 5.7 shows samples
for the revised training scheme. The revised scheme overall resulted in a larger
amount of realistically looking samples to an untrained eye but both training routines
should clearly be substantially improved when the goal would be to generate realistic
EEG segments.

5.4 Implementation
All models and auxiliary routines are implemented in Python. The Keras [42] and
Tensorflow [43] libraries were used to build models and test algorithms. Performance
metrics were calculated making use of the methods provided by the scikit-learn
library [44]. Tree boosting was performed using the XGBoost library [17] using the
Python wrapper.
Computations were performed on a system with an Intel i5-6500 CPU and 8GB
of RAM. Neural networks were trained on a Nvidia GTX 1080Ti GPU. Using this
hardware the VAE epochs ran for 40 minutes each and the GAN epochs took 30
minutes each.
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Figure 5.3: VAE Training Reconstructions
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Figure 5.4: VAE Validation Reconstructions
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Figure 5.5: VAE Random Samples
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Figure 5.6: Results for Regular GAN Training
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Figure 5.7: Results for Revised GAN Training
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Chapter 6

Sleep Stage Classification
Results

This chapter will show the final sleep stage classification using the features extracted
by the unsupervised training routine and the classification performance of the semi-
supervised routine. Both algorithms were trained on the difference between the C3
and C4 channel. The classification performance using only C3-C4 information is
reported and an extension is proposed for use in the full 8-channel context.

6.1 C3-C4 Classification Results
This section will discuss the classification results using only signals coming from
the difference between the C3 and C4 electrode. The GAN classifier is used as-is
since it directly learns to classify segments. For the VAE the probabilistic encoder is
used to extract features. The mean value of the approximate posterior distribution
µφ(x) represent the extracted features for a given segment. Features are calculated
for both the training set and test set. A tree boosting classifier [17] is trained on
the training features and used for the final classification. The tree ensemble consists
of 5 000 trees with a maximum depth of 6 nodes. Similar to the work by Ansari et
al. [8] a moving average filter is used for both algorithms as postprocessing, PP. Here
a filter of length 5 is used on the estimated probability values. Table 6.1 contains the
results for classification only using C3-C4 for the full test set. Results are computed
for every recording and reported as average(standard deviation) over all recordings.
Both algorithms show a substantial boost in performance using the moving average
filter. The features extracted by the VAE do still not result in a strong classifier.
The semi-supervised algorithm performs very well with AUC over 0.90 and a kappa
coefficient in excess of 0.60.

6.2 8-Channel Classification Results
Despite not being trained on the full dataset the trained networks can still be applied
to a multichannel input. For the VAE the probabilistic encoder is applied individ-
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Metric No PP PP

VAE GAN VAE GAN

F1 0.52(0.14) 0.66(0.16) 0.59(0.20) 0.71(0.21)
Accuracy 0.77(0.09) 0.85(0.08) 0.81(0.11) 0.86(0.08)
Precision 0.55(0.14) 0.75(0.16) 0.69(0.21) 0.84(0.16)
Recall 0.53(0.19) 0.61(0.19) 0.61(0.26) 0.65(0.23)
AUC 0.78(0.09) 0.88(0.11) 0.85(0.10) 0.92(0.12)
Kappa 0.37(0.16) 0.57(0.19) 0.47(0.22) 0.64(0.23)

Sensitivity 0.53(0.19) 0.61(0.19) 0.61(0.26) 0.65(0.23)
Specificity 0.84(0.12) 0.93(0.07) 0.85(0.18) 0.95(0.05)

Table 6.1: C3-C4 Classification Performance Metrics

ually to every channel and the extracted features are combined in a single vector.
A tree boosting ensemble is used for final classification containing 5 000 trees with
a maximum of 15 nodes. The GAN classifier is also applied individually to every
channel and the final predicted value is obtained by averaging the output for every
channel. The same moving averaging filter of size 5 as for the single channel case is
used here. Table 6.2 reports the performance metrics averaged over the recordings of
the test set.
Using multiple channels has a strong positive effect on the unsupervised feature
extraction algorithm with an increase of 0.10 for the kappa coefficient after post-
processing. It remains still a weaker classifier than the GAN on C3-C4 data. The
gain for GAN-based classification is negligible with only an 0.01 increase in kappa
coefficient after postprocessing.

Metric No PP PP

VAE GAN VAE GAN

F1 0.64(0.12) 0.71(0.15) 0.67(0.18) 0.73(0.16)
Accuracy 0.82(0.09) 0.87(0.08) 0.85(0.10) 0.88(0.07)
Precision 0.64(0.15) 0.77(0.18) 0.75(0.18) 0.83(0.16)
Recall 0.69(0.17) 0.68(0.18) 0.67(0.23) 0.68(0.21)
AUC 0.86(0.10) 0.90(0.12) 0.90(0.10) 0.92(0.12)
Kappa 0.52(0.17) 0.62(0.19) 0.57(0.22) 0.65(0.19)

Sensitivity 0.69(0.17) 0.68(0.18) 0.67(0.23) 0.68(0.21)
Specificity 0.85(0.13) 0.92(0.08) 0.90(0.14) 0.95(0.06)

Table 6.2: 8-Channel Classification Performance Metrics
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Chapter 7

Discussion

This chapter will place the classification performance reported in chapter 6 in more
context. First, it will compare the performance of classification using C3-C4 and
the 8-channel signal with the current state of the art models as proposed by Ansari
et al. [8] [26] Secondly, it will explore the feature space of handcrafted spectral
features, features extracted by the VAE probabilistic encoder and intermediate
features extracted by the GAN. Thirdly, it will discuss the importance of the VAE
features for sleep stage classification. Finally, the performance of the specific methods
will be linked with the PMA of the neonates.

7.1 Benchmarking

The final classification results are compared to two approaches. Firstly, the spectral
features proposed by Piryatinska et al. [5] are used as example of handcrafting
features. Secondly, the end-to-end machine learning algorithm by Ansari et al. [26] is
used to represent a more recent machine learning pipeline. Their work presents the
results of applying a CNN on both the C3-C4 signal and the full 8-channel dataset
using the same data as was provided for this thesis.
The spectral features involve the spectral power in the δ, θ, α and β frequency bands
of the EEG, the spectral edge frequency at 90% and 75%, the first spectral density
moment, the spectral density entropy and the amplitude entropy. For C3-C4 these
features are classified using a tree boosting ensemble consisting of 1 000 trees with a
maximum of 2 nodes. For the full 8-channel dataset the results of the SVM applied
to these same spectral features by Ansari et al. [8] is used. All reported results
use a moving average filter for postprocessing. The proposed VAE and GAN based
models use a length of 5 segments for the moving average, as well as the tree boosting
ensemble on C3-C4. The results by Ansari et al. are reported for a filter of length 6.

The overview of different approaches to classifying C3-C4 can be found in table 7.1.
While implementing an unsupervised feature extraction step clearly is not competitive
with end-to-end machine learning pipelines it slightly outperforms a classifier based
on hand-crafted features. One can also expect the unsupervised feature extraction
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capabilities of the algorithm to improve given more data where the performance of
a classifier based on spectral features will always be limited by the expressiveness
of these features. Unfortunately, unsupervised feature extraction does not seem to
be on the same level as the current state of the art in preterm sleep stage classification.

Semi-supervised learning using GANs on the other hand is shown to be very
competitive and is even shown to outperform the CNN by Ansari et al. This supports
the conclusion that using a combination of labeled and unlabeled data in a semi-
supervised learning setting allows for improving sleep stage classification compared
to a pure supervised learning setting. When removing the final layer of the classifier
the semi-supervised algorithm is also able to extract significantly more meaningful
features than the ones known in literature. [5]

As already shown in Chapter 6 classification performance does not increase
substantially when applying the proposed algorithms to all eight channels. Using
spectral features on eight channels does allow to formulate a powerful classifier and
both the CNN by Ansari et al. and the SVM using spectral features outperform the
proposed algorithms on the full channel data.

Metric VAE GAN Spectral features Ansari et al. [26]

AUC 0.85(0.10) 0.92(0.12) 0.83(0.11) /
Kappa 0.47(0.22) 0.64(0.23) 0.43(0.20) 0.60(0.31)

Sensitivity 0.61(0.26) 0.65(0.23) 0.66(0.23) /
Specificity 0.85(0.18) 0.95(0.05) 0.79(0.20) /

Table 7.1: C3-C4 Benchmarking Results

Metric VAE GAN Spectral SVM [8] Ansari et al. [26]

AUC 0.90(0.10) 0.92(0.12) 0.93 0.95
Kappa 0.57(0.22) 0.65(0.19) 0.77(0.23) 0.76(0.22)

Sensitivity 0.67(0.23) 0.68(0.21) 0.83(0.28) 0.90(0.22)
Specificity 0.90(0.14) 0.95(0.06) 0.97(0.07) 0.88(0.16)

Table 7.2: 8-Channel Benchmarking Results

7.2 C3-C4 Feature Space Exploration
The feature space used by the different methods for classification of the C3-C4
signal is discussed next. 2-D visualizations are shown for the spectral features, the
features extracted by the VAE and the inputs to the final layer of the classifier
used by the GAN training procedure. These different feature spaces are projected
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from high-dimensional space unto two-dimensional manifolds through PCA and
t-SNE. This projection is performed for the training data and testing data with
the datapoints getting their respective labels: Quiet Sleep and Non-Quiet Sleep.
These plots show the ability of the feature space to naturally separate the two sleep
stages. It should be noted that the t-SNE visualizations are not directly compa-
rable, they only show the relative structure in the data the mapping was derived from.

7.2.1 Spectral Feature Space

The spectral features by Piryatinska et al. [5] represent data in nine dimensional
space. Figure 7.1 shows the 2-D embeddings for the training data and figure 7.2
shows the embeddings for the test data. No significant differences between the two
visualizations should be expected since the features are not learned from data and
cannot overfit in the training set. Note that in the PCA plots a substantial portion of
points corresponding to non-quiet sleep is hidden behind the quiet sleep projections.
PCA shows the impossibility to classify sleep stages using a linear 2-D projection.
The t-SNE embedding shows some amount of quiet sleep clusters naturally emerging
from the data. These clusters are small or contaminated by a large portion of
non-quiet sleep segments. Note that the embeddings do not imply classification to
be impossible or hard, they just show that a classification algorithm cannot rely on
the natural structure of the data.

Figure 7.1: C3-C4 Spectral Feature Space for Training Data

7.2.2 VAE Feature Space

The VAE feature space contains points in R50. These points are used directly in
the t-SNE algorithm. The embeddings for the training data can be found in figure
7.3 and the embeddings for the test data in figure 7.4. No natural clusters seem
to appear, not in a linear or nonlinear embedding. This seems to indicate that
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Figure 7.2: C3-C4 Spectral Feature Space for Test Data

classification cannot rely on the natural structure of the data, even more so than the
spectral feature space.

Figure 7.3: C3-C4 VAE Feature Space for Training Data

7.2.3 GAN Feature Space

The GAN classifier represents signal segments in R128 in its final layer. This space is
regarded as feature space for the GAN. The PCA embedding is directly computed on
the 128-dimensional dataset while for t-SNE it is first reduced to R50 using PCA as
advised by the original publication. [13] One can apply t-SNE directly on the original
features but as indicated by the authors the additional runtime of the algorithm is
often not warranted. Figure 7.5 and figure 7.6 hold the results for the training set and
test set respectively. Contrary to the previous results the visualizations show natural
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Figure 7.4: C3-C4 VAE Feature Space for Test Data

structure in the feature space splitting quiet sleep and non-quiet sleep segments,
even in the test data. This is partly unsurprising due to the strong classification
results in the GAN classifier with what is in essence a logistic regression model on
top of these features.

Figure 7.5: C3-C4 GAN Feature Space for Training Data

7.3 Feature Importance
Sleep stage classification based on the VAE model makes use of tree boosting. Such
models allow for easy assessment of relative feature importance in the final classifica-
tion. Figure 7.7 shows such a plot of the relative importance for the features extracted
by the VAE probabilistic encoder. The horizontal axis in this plot represents the
different extracted features. The importance is calculated as the proportion of total
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Figure 7.6: C3-C4 GAN Feature Space for Test Data

accuracy gained by performing splits on this feature. Feature #46 clearly is the
most informative feature for sleep stage classification but is not solely responsible for
the classification performance. Training a logistic regression model on this feature
resulted in a kappa coefficient of 0.14(0.22) averaged over the test set indicating the
need for the additional features. Nonlinear classification models did not increase the
kappa coefficient.

All features being important for sleep stage classification combined with the
feature space plots leads to the conclusion that the VAE struggles to disentangle
factors of variation linked to sleep stage classification from other factors of variation
present in an EEG signal. The GAN succeeds better in this task as evidenced by the
stronger performance on sleep stage classification and the natural clustering in the
data for segments representing the same sleep stage.

Figure 7.7: VAE Feature Importance
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Figure 7.8: Kappa Coefficient for Neonate Age

7.4 Age Factor
The review by Dereymaeker et al. [4] indicates major differences in neonatal EEG
patterns related to age. One can expect age to also have a substantial impact on the
feature extraction step and the final sleep stage classifications due to the changing
patterns. To test the effect age has on classification the kappa coefficient for the
different recordings is plotted against PMA of the recorded subject in figure 7.8. This
figure is based on classification using C3-C4 for the tree boosting ensemble on the
spectral features, for the tree boosting ensemble using VAE features and on the GAN
classifier. The results are very scattered but a constant can be identified: average
performance is higher for the middle range of PMA values. This middle range also
corresponds to most of the training segments as seen in figure 4.2. Whether these
results can be attributed to the middle range of PMA being easier to classify or to
the inbalance of the training set remains to be seen.
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Chapter 8

Conclusion

This final chapter formulates a conclusion to the work and proposes several ideas for
future work.

8.1 Conclusion

This thesis proposed an unsupervised deep feature extraction algorithm for neona-
tal sleep stage classification. It discussed the necessary theoretical background in
machine learning, neural networks and variational auto-encoders. Related work was
introduced, both on EEG processing and on more general machine learning problems.
The dataset used for training is illustrated and split up into a training, validation and
test set. A variational auto-encoder making use of convolutional neural networks is
trained on the dataset and used to extract descriptive features from the data. Sleep
stage classification is carried out using a tree boosting ensemble. Unfortunately, this
approach failed to outperform the current state of the art for sleep stage classification
using the C3-C4 signal.

Motivated by the underlying goal of the project, using unlabeled recordings to
improve classification performance, an additional algorithm is proposed making use
of semi-supervised learning. A generative adversarial network is trained on the
combination of labeled and unlabeled data and shows superior performance on C3-C4
compared to the state of the art as proposed by Ansari et al. [26]

The lackluster performance of the unsupervised training routine compared to
the strong performance of semi-supervised learning leads to the conclusion that the
unsupervised learning routine struggles to extract features from the raw data that
correspond well with the sleep stage and that providing label information allows a
learner to better focus on relevant features. It remains to be investigated whether
the unsupervised learning performance stays the same when more data is available
to train from. Currently the possibility still exists that the unsupervised algorithm
lacks a patient pool diverse enough to properly learn invariant EEG features.
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8.2 Future Work

The effect of using the unsupervised training routine as pretraining for a later neural
network has not been investigated and can be a first avenue to investigate. While
having fallen out of favor recently, unsupervised pretraining stood at the basis of the
deep learning boom starting in 2006. [12]

Current models were only trained on C3-C4. All training routines can be ex-
tended to include all channels available in a dataset. It should be noted however
that applying a comparable variational auto-encoder architecture to the full dataset
has been attempted and always led to exploding gradients or collapse as reported in
chapter 5. Direct application of the proposed GAN architecture to the full dataset
resulted in comparable performance as a GAN trained on C3-C4 resulting in a kappa
coefficient of around 0.65 leaving much room for improvement.

The temporal dimension of EEG recordings makes them a natural candidate for
applying recurrent neural networks in a processing pipeline. Using LSTMs in an
auto-encoder based architecture has been attempted and showed the same decoder
collapse as reported in chapter 5. Using shorter segments or applying LSTM modules
for semi-supervised learning might still prove to be successful.

The current dataset provides sleep stage labels for a 30s segment sampled at
30Hz. Longer or shorter segments and a higher or lower sampling rate might prove
to be more suited for automated sleep stage classification. The current VAE used
for unsupervised learning can struggle with processing larger segments resulting in
more datapoints due to its inherent need for compressing the data to feature space
and relying on gradient flow through the combination of decoder and encoder. More
complex networks turn out to be infeasible to use for a VAE. The semi-supervised
GAN is expected to show less problems for higher-dimensional inputs. The generator
and discriminator are trained separately and the same compression to feature space
as for the VAE case is not inherent to the model. The noise distribution used to
generate samples needs a high enough entropy to be transformed in a meaningful gen-
erator distribution but its easy to sample from a higher-dimensional noise distribution.

Variational auto-encoders are far from the only unsupervised learning algorithms
in literature. GANs have also been applied on images for unsupervised automated
feature extraction [31] but applying them to the EEG signals proved unsuccessful. A
straightforward candidate is the Ladder network by Valpola [33] due to its ability to
extract a hierarchy of features. Sleep stage classification might turn out to mainly
rely on high-level or fine-grained features and the ladder network should be able
to disentangle the two and identify a spectrum of features going from abstract to
fine-grained. In the context of semi-supervised learning other algorithms exist that
consistently outperform GANs on the artificial benchmarks used by the machine
learning community. Both semi-supervised Ladder networks [36] and virtual adver-
sarial training [37] are straightforward candidates. It remains to be seen whether
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8.2. Future Work

these algorithms also perform better on EEG data.

Chapter 2 already discussed the lack of good performance metrics for unsupervised
learning algorithms. Domain-specific analysis can be investigated in collaboration
with medical experts in an effort to assess performance for a clinical context. A
first step in such joint analysis might be found in identifying and visualizing the
structures a neural networks looks for in the data. Zeiler et al. [45] investigated the
intermediate activations in a CNN aimed at image processing. The methodology can
be adapted to fit EEG processing and specific features can be visualized.

A final point of future work is investigating the factor of patient characteristics
in feature extraction and sleep stage classification. Models can be extended to
incorporate this additional information and move to multimodal representations or
different models can be considered for specific types of patients after identifying
major groups in the patient population.
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