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Preface

Dear reader,

Every year students in their second year of master’s start the project which
is feared most by all students: the legendary master’s thesis. If you happen to
encounter them during the year and ask how they are doing, they usually give
a one-word answer: ‘thesis’. It is a period of hard work, sleepless nights and a
lot of coffee. I was however fortunate enough to work on a thesis subject I have
a personal connection with in a research group that welcomed me with open
arms and provided me with everything I needed to succeed. Yes, it was very
hard work, but I would not have wanted it any other way.

First of all, I want to thank prof. dr. ir. Clara-Mihaela Ionescu for provid-
ing me with all the tools necessary to work on my thesis, for encouraging me to
strive for more and for offering me several opportunities. I also want to thank
my mentor, dr. ir. Dana Copot, for answering my many practical questions as
well as providing me with useful feedback. Without her giving me the flexibility
to work on my thesis outside of the office, I could not have combined my thesis
with my work as a student representative. I want to thank the other master
students in the research group for their support and wish them all the best in
their future careers. Special thanks go out to the PhD students Jasper, Kevin,
Maria and Mihaela for helping me navigate the complex world of anesthesia and
for offering advice throughout the year.

Secondly, I want to thank my family and friends for supporting me during
the last few years. I want to thank my twin sister, Nathalie, for being the best
sister any brother can wish for and for keeping up with me even when I am tired
or often absent. I am truly blessed that I have you as my sister. I also want to
thank my parents for being the most supportive, kind and generally awesome
parents in the world. You did not only provide me with emotional and practical
support, but also gave me financial freedom so I could focus completely on my
studies without having the worry about anything else. Thank you for always
giving me good advice. However, as I am a stubborn Kussé, I probably have
done just the opposite.
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I want to thank my godmother for taking care of me and my sister after school
when we were young, making sure we ate healthy and finished our homework.
You taught us the importance of hard work, while being the greatest grand-
mother on the planet. I want to thank my godfather for encouraging me to
explore new things and showing me that the world is bigger than just our coun-
try. I am forever grateful and consider myself extremely lucky to have you as
my godfather. I also want to thank my friends for the many laughs and for
making me realise that there is life outside of the thesis.

Finally, I want to thank you, the reader, for taking the time to read my work.
Automated anesthesia is a very interesting topic with great potential, so I hope
this thesis can inspire you to join the research effort and make it a reality!

Frederik Kussé
Ghent, June 2019
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Abstract

The goal of any anesthesia is to obtain the required anesthetic level while min-
imizing side-effects coming from over- as well as underdosing. By taking ad-
vantage of accurate infusion devices and objective pain assessment, automated
drug delivery increases the safety of the patient, cumulating in reduced recovery
times and a minimization of the healthcare costs. The goal of this thesis is to
build, analyse and control a benchmark model for the closed-loop control of
the complete hemodynamic and anesthetic regulatory problem. Quasi-infinite
Horizon Model Predictive Control is implemented, with special attention given
to the stability of the scheme as well as the online feasibility. The performance
of the designed controller is tested in simulation for varying parameter values
of the patient model, taking into account surgical stimulus and the anticipatory
reaction of the anesthesiologist.

Keywords: closed loop control, model predictive control, stability analysis,
complete anesthesia system, patient safety
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as well as underdosing. By taking advantage of accurate infusion 

devices and objective pain assessment, automated drug delivery 

increases the safety of the patient, cumulating in reduced recovery 

times and a minimization of the healthcare costs. The goal of this 

thesis is to build, analyse and control a benchmark model for the 

closed-loop control of the complete hemodynamic and anesthetic 

regulatory problem. Quasi-infinite Horizon Model Predictive 
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varying parameter values of the patient model, taking into 

account surgical stimulus and the anticipatory reaction of the 
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I. INTRODUCTION 

Studies into the pain evaluation by nurses and the pain 

assessment by patients lead to the conclusion that an objective 

automated drug delivery system would benefit the patient [1], 

[2], [3]. With closed-loop control of general anesthesia, human 

errors are avoided and more accurate drug administration can 

be achieved [4], [5].  Individualised protocols based on actual 

patient parameters can be used to match the drug administration 

profile to the stimulation intensity of each individual surgery 

[6], [7], [8], [9], [10]. Once developed, other applications of 

automated drug delivery include diabetes [11], cancer 

treatment [12], [13], immunodeficiency [14] and hormonal 

treatment [15].  

General anesthesia itself comprises three main parts: 

hypnosis, analgesia and neuromuscular blockade (NMB). 

Hypnosis, measured by Bispectral Index (BIS), is the loss of 

consciousness of the patient, analgesia is the absence of 

perceived pain and neuromuscular blockade represents the 

induction of muscle paralysis [16]. Hypnosis and 

neuromuscular blockade are well understood, but analgesia still 

requires additional research [16]. These three components need 

to be controlled during three phases: induction, maintenance 

and recovery, each with different control objectives. The 

induction phase is a set-point following task, where a set-point 

needs to be reached while avoiding overshoots. In the 

maintenance phase, a fast disturbance rejection is required to 

sustain the desired sedation level. The recovery phase is left out 

of the control problem as the administration of drugs is simply 

stopped once the surgery has been completed [17]. To complete 

the patient model, the hemodynamic parameters cardiac output 

and mean arterial pressure are included. Propofol and 

Remifentanil are used to induce hypnosis and analgesia 

respectively due to their fast onset and recovery times as well 

as their suitability for control [9]. Atracurium is further selected 

for neuromuscular blockade, while Dopamine and Sodium 

Nitroprusside control the hemodynamics. 

The purpose of this thesis is to build, analyse and control a 

benchmark model for the closed-loop control of general 

anesthesia (see Figure 1, taken from [18]). Model predictive 

control (MPC) is chosen to be used in this application as it 

mimics the real-life reaction of the anesthesiologist, therefore 

providing a way of control that can intuitively be understood 

by medical professionals [19], [20]. The designed controller is 

then tested in simulation for varying parameter values of the 

patient model, both between patients (interpatient variability) 

as well as gradually changing within a single patient 

(intrapatient variability). These simulations include the effect 

of a surgical stimulus as well as the anticipatory reaction of the 

anesthesiologist [20]. 

From an ethical point of view, it is essential that the stability 

of the controller is guaranteed during operation to ensure the 

well-being of the patient. Moreover, it is important to know 

when the controller could lose feasibility (i.e. the ability the 

find a possible solution) so the anesthesiologist can intervene 

in time. Hence, a stability and feasibility analysis of the 

designed controller is performed in this thesis. Hitherto, no 

stability analysis of an MPC scheme with a complete patient 

model is available in literature [21].  

Figure 1: Full patient model general anesthesia 



II. MODELS FOR THE CONTROL OF ANESTHESIA 

A. Anesthesia models 

Each model for anesthesia should preserve the mass balance, 

as this implies that the link between physiological and 

mathematical parameters is maintained [22]. To model the 

pharmacokinetics (PK), the body is divided into three 

compartments: blood, muscles and fat. An additional effect-site 

compartment combined with a non-linear relationship is added 

to model the drug pharmacodynamics (PD). The complete PK-

PD model can be found in Figure 2 [16]. 

The PK-PD models for Propofol and Remifentanil used in 

this thesis are the 4th order compartmental models proposed by 

Schnider [23] and Minto [24], see equation 1. The model for 

neuromuscular blockade is taken from Rocha [25], see equation 

2. 

 
𝑑𝑥1(𝑡)

𝑑𝑡
= −(𝑘10 + 𝑘12 + 𝑘13)𝑥1(𝑡) + 𝑘21𝑥2(𝑡)

+ 𝑘31𝑥3(𝑡) + 𝑢(𝑡) 

 
𝑑𝑥2(𝑡)

𝑑𝑡
= 𝑘12𝑥1(𝑡) − 𝑘21𝑥2(𝑡) 

𝑑𝑥3(𝑡)

𝑑𝑡
= 𝑘13𝑥1(𝑡) − 𝑘31𝑥3 (𝑡) 

𝑑𝑥𝑒(𝑡)

𝑑𝑡
 =  −𝑘𝑒0𝑥𝑒(𝑡)  + 𝑘1𝑒𝑥1(𝑡) 

 

 

(1) 

 

𝐶𝑁𝑀𝐵  =  
𝑘1𝑘2𝑘3𝛼

3

(𝑠 + 𝑘1𝛼)(𝑠 + 𝑘2𝛼)(𝑠 + 𝑘3𝛼)
 

 

 

(2) 

 

Both these models are then followed by a non-linear sigmoid 

function, the Hill-curve, of which the formulas can be found in 

equations 3 [26] and 4 [25], [21] respectively (P = Propofol, R 

= Remifentanil, A = Atracurium). Herein is γ [-] the Hill-

coefficient of sigmoidicity, σ [-] a measure for the synergy 

between the two drugs, Ci [μg/ml] is the concentration of the 

drug i at time t and C50i [μg/ml] is the concentration of drug i 

required to obtain 50% of the maximum effect. Note that there 

is a super-additive synergy between Propofol and Remifentanil 

[26].  

 

𝐸𝑓𝑓𝑒𝑐𝑡 =  100
(

𝐶𝑝

𝐶50𝑃  
 +  

𝐶𝑅
𝐶50𝑅
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𝐶𝑝

𝐶50𝑃 
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𝐶50𝑅
)𝛾 

1 + (
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𝐶50𝑃  
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𝐶𝑅
𝐶50𝑅

 +  𝜎
𝐶𝑝

𝐶50𝑃  
𝐶𝑅

𝐶50𝑅
)𝛾

 
 

(3) 

 

𝐸𝑓𝑓𝑒𝑐𝑡 =  100 
𝐶50𝐴

𝛾𝐴

𝐶𝑁𝑀𝐵
𝛾𝐴 + 𝐶50𝐴

𝛾𝐴
 +  

𝐶𝑅

3.4
  

(4) 

Finally, the model in equation 5 is used to link the effect-site 

concentration of Remifentanil to the Ramsay Agitation 

Sedation Score (RASS) [21]. 

 

𝑅𝐴𝑆𝑆 =  
1

0.81 𝐶𝑅  +  0.81
 

−2

𝑠 + 2
 (5) 

B. Hemodynamic models 

The antagonistic effects of Dopamine and Sodium 

Nitroprusside (SNP) on the cardiac output (CO) and mean 

arterial pressure (MAP) are modelled as in equation 6 [27]. The 

additional effect of the effect-site concentration of 

Remifentanil on the mean arterial pressure can be found in 

equation 7 [28].  

 
 

[
Δ𝐶𝑂

Δ𝑀𝐴𝑃
]  =  

[
 
 
 
 
𝐾11𝑒

−𝑇11𝑠

1 + 𝜏11𝑠

𝐾21𝑒
−𝑇21𝑠

1 + 𝜏21𝑠

𝐾12𝑒
−𝑇12𝑠

1 + 𝜏12𝑠

𝐾22𝑒
−𝑇22𝑠

1 + 𝜏22𝑠]
 
 
 
 

 [
Δ𝐷𝑜𝑝𝑎𝑚𝑖𝑛𝑒

Δ𝑆𝑁𝑃
]  

 

(6) 

 

𝑀𝐴𝑃 =  
−1

0.81 𝐶𝑅  +  0.81
 

 

𝐸𝑓𝑓𝑒𝑐𝑡 =  70 
𝑀𝐴𝑃𝛾𝑅,𝑀𝐴𝑃

𝑀𝐴𝑃𝛾𝑅,𝑀𝐴𝑃  +  𝐶50𝑅,𝑀𝐴𝑃
𝛾𝑅,𝑀𝐴𝑃

 

(7) 

C. Approximation time delays 

In the previous section, the hemodynamics are modelled as 

first order systems plus dead time. In practice, there is also 

some delay on the measurement of BIS [29], [9]. In the Laplace 

domain, both these delays are modelled as e-Ts, with T being the 

time delay, which is nonlinear in s. Using Padé approximation, 

these nonlinear first order systems are transformed into linear 

systems of higher order [30]. This system has the same gain but 

a different phase angle for large frequencies. The higher the 

order, the better the approximation is, but also the higher the 

computational complexity is [30]. It is therefore chosen to use 

a 4th order approximation. 

D. Nociception stimulation and anesthesiologist in the loop 

So far, no surgical stimulus has been modelled. Therefore, 

the stimulation profile from [20] is taken and then fed through 

the nociceptor pathway model from [21] (see equation 8). The 

end results can be seen in Figure 3. The signal is added as a 

disturbance to the output of the PK-PD model of Propofol and 

Remifentanil. 

 

Figure 2: PK-PD model for anesthesia 

Figure 3: Nociception stimulation of patient model 



 
𝑁𝑂𝐶𝐼 

=  2
(𝑠² +  90𝑠 +  150²)(𝑠² +  26𝑠 + 165²)(𝑠² + 31𝑠 + 155²)

(𝑠² + 66𝑠 + 149²)(𝑠² + 49𝑠 + 163²)(𝑠² + 31𝑠 + 155²)
 

 

 

(8) 

As this disturbance can be anticipated by the 

anesthesiologist, this needs to be integrated into the closed-loop 

[20]. The signal to model this intervention is adapted from [20] 

for different values of γ (1 to 8) and can be found in Figure 4. 

 

III. ANESTHETIC REGULATORY PARADIGM 

A. Dynamics of pharmacokinetic models 

The bode plots for the PK models described in Section IIA 

can be plotted, while varying their respective parameters within 

the intervals described in [23], [24], [25]. An example of this 

can be found in Figure 5, where the age of male patients is 

varied in the PK model for Propofol. From these bode plots it 

is clear that these pharmacokinetic models are always stable 

(open-loop and closed-loop), independent of variations in their 

parameters. It is as Rocha claimed [25], these models are 

specifically built for control purposes. 

 

B. Dynamics of hemodynamic models 

Within the intervals described in [27], the hemodynamic 

models are open-loop stable as they have no poles in the right 

half-plane. However, in contrast to the PK models, they can 

become unstable in closed-loop. An example of this can be seen 

in Figure 6 (gain variation of the transfer function modelling 

the influence of Dopamine on CO). Because of the unmodelled 

coupling between CO and MAP, there is a large variation in 

gain possible [31], resulting in unstable behavior for large 

gains.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Hill-curve variation 

In this thesis, inter- and intrapatient variability are simulated 

by changing γ. Therefore, the effect of γ on the Hill-curve is 

investigated (see Figure 7). For an effect level (100% means no 

effect, 0% maximum effect) above 50%, the effect-site 

concentration needed to reach a certain level is higher for larger 

γ and the reverse is true for levels below 50%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. Open-loop stability patient model for general anesthesia 

It is assumed that the pharmacokinetic parameters are 

accurate and fixed so that the differences in individual 

responses are solely due to a variation of the (nonlinear) 

pharmacodynamic parameters [32]. Therefore, the dynamics of 

the patient model are linear and time-invariant. The non-linear 

transformation the outputs of these linear models undergo is 

irrelevant for the open-loop stability of the patient model. The 

open-loop stability of the patient model can be proven by 

looking at the open-loop poles (i.e. eigenvalues of the state 

matrix A) of the patient model. As all the models used are open-

loop stable, it is no surprise that, when tested for the patient set 

in [32], all the eigenvalues have strictly negative real parts (i.e. 

all the poles in the left half-plane). Hence, the state matrix is 

Hurwitz and the entire system is asymptotically stable [33]. 

 

 

 

 

 

Figure 4: Anesthesiologist in the loop 

Figure 5: Bode plot PK model Propofol age variation 

Figure 6: Gain variation influence Dopamine on CO 

Figure 7: Hill-curve γ variation 



IV. MODEL PREDICTIVE CONTROL OF COMPLETE 

ANESTHETIC SYSTEM  

A. Introduction to Quasi-infinite Horizon MPC (QIH – MPC) 

The basic principle of MPC is shown in Figure 8, which is 

taken from [34]. At time t, the future states 𝑥̅ until t+Tp are 

predicted using the dynamic model of the system. 

Consequently, the optimal open-loop inputs 𝑢̅ are calculated 

until t+Tc. These optimal inputs are found by iteratively 

minimizing a user-defined cost function. After these 

calculations, the open-loop input is implemented until t+δ, with 

δ being the sampling time. By measuring the states at t+δ, a 

new ‘initial’ state is obtained. It is at this point that the scheme 

is shifted from t to t+δ and the whole iteration starts again [34]. 

In basic MPC, the predicted states have to be exactly equal to 

the equilibrium point after the prediction horizon (terminal 

state equality constraint). Quasi-infinite Horizon MPC (QIH-

MPC) loosens this constraint by only demanding that the states 

are within an invariant terminal region around the equilibrium 

point after the prediction horizon. As the terminal region is 

invariant, a local linear state feedback controller can be applied 

until the equilibrium point is reached exactly after an ‘infinite’ 

amount of time. The distance to the equilibrium point is 

penalized by a terminal penalty matrix included in the objective 

function, which is separate from the state and input weighting 

matrices also used in the objective function. It is important to 

note that the inputs are only calculated for a finite time (Tc), as 

the infinite ‘tail’ with the state feedback controller is never used 

in practice [35]. 

B. Stability, feasibility and robustness of QIH-MPC 

Despite never being used, the terminal penalty matrix, the 

local linear feedback controller and terminal region are 

calculated and included in the objective function because their 

existence and inclusion allows for a Lyapunov-argument to 

prove the stability of the QIH-MPC scheme. Further details can 

be found in [35]. The following procedure for calculating these 

variables has been adapted from [35]. 

1. Calculate the Jacobian linearization (A,B) of the system 

at the equilibrium point 

2. Check the stabilizability of the Jacobian linearization 

(for instance, with the Hautus-test for stabilizability 

[36]). The rest of the procedure is not applicable if the 

linearization is not stabilizable. 

 

 

 

3. Find a linear state feedback matrix K such that AK is 

Hurwitz 

𝑢 =  𝐾𝑥 ∈  𝑈, ∀𝑥 ∈  𝑋 

𝐴𝐾 ∶=  𝐴 +  𝐵𝐾  
(9) 

 

4. Choose a value for κ (smaller than minus the largest 

eigenvalue of AK) as well as positive semidefinite, real, 

symmetric weighting matrices Q and R. Solve the 

following Lyapunov equation to obtain the terminal 

penalty matrix P (with n being the number of states). 

 

𝑄∗  =  𝑄 + 𝐾𝑇𝑅𝐾 ∈  ℜ𝑛𝑥𝑛 
𝜅 < −𝜆𝑚𝑎𝑥(𝐴𝐾), 𝜅 ∈ [0,∞) 

(𝐴𝐾  +  𝜅𝐼) 𝑇𝑃 +  𝑃 (𝐴𝐾  +  𝜅𝐼)  =  −𝑄∗ 

(10) 

 

5. Use the state feedback matrix K to find the largest 1  

(0, ∞) such that  

 

Ω𝛼1
≔ {𝑥 𝜖 ℜ𝑛| 𝑥𝑇𝑃𝑥 ≤  𝛼1} 

𝐾𝑥 𝜖 𝑈, ∀𝑥 ∈ Ω𝛼1
 

(11) 

 

6. Find the largest   (0, 1] such that 

 

𝑥̇ = 𝑓(𝑥,𝐾𝑥) 
𝜙(𝑥) ∶=  𝑓(𝑥, 𝐾𝑥)  −  𝐴𝐾𝑥 

𝐿𝜙  ≔  𝑠𝑢𝑝 {
‖𝜙(𝑥)‖

‖𝑥‖
| 𝑥 𝜖 Ω𝛼 , 𝑥 ≠ 0 } 

𝐿𝜙  ≤  
𝜅𝜆𝑚𝑖𝑛(𝑃)

‖𝑃‖
 

(12) 

 

with Ω being an invariant terminal region, 𝑠𝑢𝑝(∙) the 

supremum and ‖∙‖ the Frobenius norm 

 

   Once this procedure has successfully been completed and the 

results included in the controller, the stability of the QIH-MPC 

scheme is guaranteed if a feasible solution can be found at t=0. 

Feasibility thus requires that at each time step, a solution can 

be found such that the states are within Ω after the prediction 

horizon Tp. This also means robust stability is guaranteed, as 

long as the disturbances are small enough so that the states stay 

within the feasible region, i.e. the region were a feasible 

solution can be found. 

C. Implementation of QIH-MPC 

 

 

Figure 8: Basic scheme Model Predictive Control 

Figure 9: Implementation scheme closed-loop controller 



Because of the inherent non-linearity of the Hill-curves used 

in the patient model (and therefore cost function and 

constraints), a nonlinear MPC scheme is required. 

Unfortunately, the optimization problem now potentially 

becomes non-convex. Hence, solvers which only find a single 

local optimum cannot be used anymore. As the convergence of 

non-convex problems is slow, a solver which could meet the 

above requirements within a reasonable CPU time (i.e. online 

feasible) was not found. Therefore, it was opted to apply 

inverse Hill-curves to the measured outputs of the system to 

estimate the effect-site concentrations. Doing so, the control 

problem that has to be solved by the linear MPC controller is 

now convex as the Hessian matrix of the linear quadratic 

objection function is positive semi-definite (i.e. the objective 

function is convex) [37]. As the constraints are linear, they do 

not affect the convexity of the control problem [38]. The 

constraints are also made adjustable to the current outputs to 

make sure feasibility is preserved. Additionally, the 

nociception stimulation and anesthesiologist in the loop are 

included in the closed-loop. The full implementation scheme of 

the closed-loop controller can be found in Figure 9. 

V. SIMULATION RESULTS AND DISCUSSION 

A. Interpatient variability 

Figure 10: BIS output for interpatient variability - disturbed 

The control performance for patients with different values for 

γ is investigated by varying γ between 1 and 8 (see Figure 10). 

It is assumed that the value of γ is exactly known and the 

closed-loop controller is adapted according to γ. Note: aside 

from BIS were all the setpoints for RASS, CO, MAP and NMB 

also reached (not shown).  

During the induction phase, the setpoint for BIS (50%) is 

reached independently of the value of γ, but it takes longer for 

a larger value of γ. This can be explained by looking at Figure 

7, for a BIS level above 50%, the require effect-site 

concentration to reach a certain level is higher. As the dynamics 

have not changed, it will take a longer time to reach this higher 

concentration.  

Even when the surgical stimulus is applied and the 

intervention of the anesthesiologist is included, performs the 

controller as it should. Because the constraints are adapted 

online based on the current values of BIS and γ, is BIS 

primarily maintained within the 30%-70% range and quickly 

(approximately 25 seconds) returned to the preferred 40%-60% 

range. 

 

It is further clear from Figure 10 that the BIS level after the 

administration of the bolus injection by the anesthesiologist is 

higher for patients with a lower sensitivity (i.e. lower γ). If the 

same surgical stimulus is then applied to all patients, patients 

with a lower sensitivity will generally have a higher resulting 

BIS-level. This means the anesthesiologist needs to take this 

into account while calculating the bolus injection. 

B. Intrapatient variability 

 

Figure 11: BIS output for intrapatient variability – disturbed 

In contrast with the previous section will the value of γ of one 

patient now change from 1 to 8 during the simulation. This 

change is does not happen gradually, but in steps of 1. The steps 

are equally spaced, meaning each value of γ is valid for 1/8 of 

the simulation time. Once again, it is assumed that γ is exactly 

known at each time step and that the closed-loop controller is 

adapted accordingly. 

It can be seen in Figure 11 that the performance of the 

controller is worse, but primarily during the induction phase. 

During the maintenance phase, the performance is very similar 

to the results in Figure 10. This illustrates the issue with 

changing γ during the induction phase as well as that it has to 

be made sure that the maintenance phase has certainly begun 

before any surgical stimulus is applied.  

Additionally, it can be seen in Figure 11 that when a step 

occurs when the BIS level is far above or below 50%, there is 

a jump in the BIS level (for instance, see yellow ellipse in 

Figure 11). This is explained by looking at Figure 7. As the 

effect-site concentrations remain constant, changing γ results in 

a jump in the BIS level. The amplitude of this jump becomes 

larger for BIS levels far above and below 50%, reaches a 

maximum and becomes zero for 100% and 0%. This discussion 

demonstrates that the current level of BIS determines the effect 

a change in γ has. 

C. Stability analysis 

As the dynamics of the system are linear and time-invariant, 

is the Jacobian linearization (A,B) of the system exactly equal 

to the state and input matrix of the system. It was argued in 

Section IIID that the state matrix is Hurwitz. Hence, the system 

is asymptotically stable (and of course, stabilizable). Following 

the procedure described in IVB, a terminal penalty matrix, a 

local linear state feedback matrix and terminal region were 

obtained which fulfil all the requirements of the procedure. It is 

therefore concluded that the designed QIH-MPC controller is 

asymptotically stable within the feasible region. 



VI. CONCLUSIONS AND SUGGESTIONS FOR FURTHER 

RESEARCH 

   The control performance of the designed Quasi-infinite Horizon 

MPC controller is generally as desired, even when considering inter- 

and intrapatient variability as well as nociceptor stimulation and 

interventions by the anesthesiologist. Moreover, it was shown that the 

controller is stable for a variety of patients and an objective way of 

checking stability for other patients has been presented. Further 

research is required to predict the size of the feasible region, to 

determine the robustness properties of the controller and to find a 

solver which can solve the non-convex optimization problem. 

Additionally, adaptive control needs to be implemented and the 

models in the patient model can also be improved to more accurately 

represent reality while maintaining their suitability for control. 
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Chapter 1

Introduction

1.1 Problem Statement
The goal of any anesthesia is to obtain the required anesthetic level while min-
imizing side-effects coming from over- as well as underdosing. As mentioned in
[1], the outcomes of the studies [2], [3], [4] into the pain evaluation by nurses
and the pain assessment by patients, lead to the conclusion that an objective
automated drug delivery system benefits the patient. Especially considering
the danger of significant physiologic consequences in case of inadequate pain
treatment [5]. With a closed-loop control of general anesthesia, the safety of
the patient is increased [6], [7] as human errors are avoided and a lower amount
of drugs is injected. Moreover, by taking advantage of accurate infusion de-
vices, novel monitoring techniques and drug synergies, under- and over-dosing
are even further reduced [8]. If the delivery system would be enhanced with
adaptive control, individualised protocols based on actual patient parameters
could be provided. This is clearly the preferred option when compared to popu-
lation based generic model parameters [8]. When tuned properly, an automatic
controller could match the drug administration profile to the stimulation inten-
sity of each individual surgery [9], [10], [11], [12]. This cumulates in reduced
recovery times and in the end, a minimization of the healthcare costs [13]. Other
possible benefits include the reduction of the workload of the anesthesiologist,
who could focus on supervising in the procedure as well as on critical issues to
the safety of the patient [8], [14]. Once demystified, other applications of au-
tomated drug delivery include for instance diabetes [15], cancer treatment [16],
[17], immunodeficiency [18] and hormonal treatment [19].
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1.2 State of the Art
As stated in [13], general anesthesia comprises three main parts: hypnosis, anal-
gesia and neuromuscular blockade. Hypnosis is the loss of consciousness of the
patient, which is commonly measured with a bispectral index (BIS) signal de-
rived from an electroencephalogram (EEG) [20]. Analgesia on the other hand
is the absence of perceived pain. Currently, it is quantified by a Ramsay Agita-
tion Sedation Score (RASS) by indirect signs such as lacrimation, sweating and
heart rate variability. One should note that heart rate is not a viable indicator
during heart surgery or when additional drugs are taken to alter the patient’s
heart rate [21]. The lack of a direct and objective measurement of pain percep-
tion remains one of the main bottlenecks on the road to a control scheme for
general anesthesia [21]. The recent availability of a nociceptor pathway model
provides however a powerful tool for further research [21]. Finally, neuromuscu-
lar blockade (NMB) represents the induction of muscle paralysis during surgery
as muscle movement is unwanted during surgical procedures. As an electromyo-
graphy measures the activation of muscles, this is used to quantify the level of
NMB [22]. From these three components, hypnosis and neuromuscular blockade
are well understood, with contributions from various authors [23], [24], [25], [26],
[27]. Analgesia however still requires further research.

When designing an automated controller for this task, one needs to realise that
anesthesia consists of three phases (induction phase, maintenance phase and
recovery phase), each with different control objectives. The induction phase is
a set-point following task, where a target needs to be reached as fast as possi-
ble while avoiding dangerous overshoots. In contrast, during the maintenance
phase it is important to have fast disturbance rejection to sustain the desired
sedation level. The recovery phase finally does not pose a control problem as the
administration of all the drugs is stopped after the surgery has been completed
[14]. Administration of analgesic drugs to a conscious patient is not discussed
in this thesis. The presence of two very different control tasks means that a
single tuned controller might not be sufficient to provide adequate safety and
comfort. In case of two controllers, a switching mechanism needs to be de-
signed and implemented to ensure a smooth transition [14]. The ideal controller
for general anesthesia is therefore one that quickly reaches the target without
initial overshoot during the induction phase and is able to sustain the desired
target level during the maintenance phase [28]. Possible control strategies for
this application include PID control [24], adaptive PID control [29], adaptive
polynomial control [30], [31], Bayesian filtering [32], [33] and predictive control
[28], [34], [35]. More intricate optimal and nonlinear robust control strategies
are not being applied due to their high complexity [22].
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In [14], the performance of an optimally tuned PID controller is compared to the
results in [28] and [36], where predictive control strategies were implemented. In
all three papers, the same set of patients has been used, allowing a fair compar-
ison between the simulations. It is observed in [14] that the derivative action of
the PID controller is necessary to outperform the MPC controller. The PID con-
troller namely combines a faster induction phase with a very similar maximum
overshoot and a satisfactory disturbance rejection performance. The author of
that paper therefore concludes that any control strategy for anesthesia should
be compared in performance to optimally tuned PID controllers. However, pre-
dictive control schemes (together with online adaptation) have the advantage
that they mimic the real-life anticipatory reaction of the anesthesiologist, there-
fore providing an intuitive way of control [37], [38].

In order to implement model predictive control (MPC) and deal with the differ-
ent control objectives during separate phases of anesthesia, a patient model is
required. Although a patient model based on neural network modelling would
indeed be a step towards reality, a control law which can provide an analytical
solution is currently still preferred to maintain constraints and guarantee pa-
tient safety by ensuring stability [21]. Hence, it is vital that any designed control
scheme has been subject to a stability analysis. At present, no literature can
be found that examines the stability of a MPC scheme with a complete patient
model [21].

1.3 Objectives of the thesis
The first goal of this thesis is to create a benchmark model for the closed-loop
control of the complete hemodynamic and anesthetic regulatory problem. This
means that the three parts of anesthesia (hypnosis, analgesia, neuromuscular
blockade) will be included as well as two hemodynamic parameters (cardiac
output, mean arterial pressure). Additionally, the real-life synergy between the
hypnotic and analgesic drug will be included in the patient model.

The second goal is to analyse this patient model in open-loop, taking into ac-
count the variation between several patients (interpatient variability). This will
be done by looking up in literature the intervals as well as the nominal values
of the parameters of the separate models used to build the patient model.

The third goal is to control the model in closed-loop using model predictive
control. When implementing model predictive control, special attention will be
given to the stability of the scheme as well as the online feasibility. The designed
controller then needs to be tested in simulation. The performance of the con-
troller for both inter- and intrapatient (gradual change within the same patient)
variability also needs to be investigated. Finally, the real-life case where there
is nociception stimulation and the anesthesiologist is part of the control loop
has to be simulated.
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1.4 Outline of each chapter
In Chapter 2, all the models required for the patient model are presented and
discussed, including the intervals and adaptation schemes for the parameters
in these models. In a separate section, nociceptor stimulation and the antici-
patory intervention by the anesthesiologist are discussed. Further, in Chapter
3 the complete patient model is analysed and open-loop stability is checked.
For these simulations, the parameters of the models are varied within the in-
tervals described in Chapter 2. The actual implementation of model predictive
control (MPC) is discussed in Chapter 4, whereby the chapter begins with an
explanation of the working principle of MPC. Then, the choice for Quasi-infinite
Horizon MPC (QIH-MPC) is argued and its working principle explained. Fur-
ther, the chapter includes a discussion on the stability, feasibility and robustness
of the QIH-MPC scheme. The chapter concludes with the actual implementa-
tion in MATLAB and Simulink. The results of the simulations are discussed in
Chapter 5. These include the choice of the prediction horizon, the effect of the
delay of BIS measurement, the performance for the nominal model, the effect
of nociception stimulation and the anesthesiologist in the loop as well as the
performance of the controller in the case of inter- and intrapatient variability.
Finally, Chapter 6 provides concluding remarks as well as suggestions for further
research.
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Chapter 2

Models for the control of
anesthesia

2.1 Introduction to general anesthesia
Propofol (a hypnotic drug) and Remifentanil (an opioid drug) are commonly
used to respectively induce hypnosis and analgesia, but their usage is also con-
tested [39]. In this thesis, they will be the selected drugs due to their fast onset
and recovery times as well as their suitability for control [11]. These hypnotic
and opioid drugs also have side-effects on the heart rate, respiratory rate, mean
arterial pressure, etc. [21] These side-effects are partly negated by the infusion of
Dopamine and Sodium Nitroprusside. The disadvantage of infusing Dopamine
is that it increases the cardiac output, thereby clearing Propofol faster from
the body. This results in an increase in BIS levels [40]. Currently, however,
no model for this effect is available [21], so it will not be included in the pa-
tient model. The respiratory rate is not relevant in this study as patients are
generally mechanically ventilated during general anesthesia, so a fixed respira-
tory rate is assumed. The full patient model can be seen in Figure 2.1 (taken
from [41]). Cardiac Output (CO) is the amount of blood pumped by the heart
each minute [42] and can be measured by both invasive (for instance, requiring
a catheter) as well as non-invasive techniques (for instance, using ultrasound)
[43]. Mean Arterial Pressure (MAP) is the average arterial blood pressure and
can be calculated using the measured systolic (highest) and diastolic (lowest)
blood pressure [44]. When creating the model, time delays also need to be con-
sidered as they threaten the stability of the closed loop [11], [22], [45], [46].

5



General anesthesia can be subdivided into three subsequent phases: induction
phase, maintenance phase and recovery phase. These three phases also distin-
guish themselves in their specific nature for control. The induction phase is
a set-point following task, where the setpoint needs to be achieved as fast as
possible while avoiding overshoot. The maintenance phase is the phase where
external disturbances related to surgical stimulation are rejected. During the
recovery phase, the administration of the drug is stopped so the patient can
recover consciousness. One should note that there are now two different control
tasks: set-point following and load disturbance rejection, which is challenging
in terms of control [47].

2.2 Models for control of depth of anesthesia

2.2.1 Compartmental models
When creating a model for anesthesia, it is important that the mass balance
holds, as this implies that the link between physiological and mathematical
parameters is maintained [48]. To model the pharmacokinetics (PK), the body
is divided into three compartments: blood, muscles and fat whereby the last
two compartments respectively represent the drug exchange with well and poorly
diffused body tissues [13]. An additional effect-site compartment combined with
a non-linear relationship is added to model the drug pharmacodynamics (PD).
This non-linear relationship is often a sigmoid function [49], more specifically a
Hill-curve according to formula 2.1. In this formula is E [%] the (predicted) effect
of the drug, C [µg/ml] the concentration of the drug at time t, EC50 [µg/ml]
the concentration needed to obtain 50% of the maximum effect Emax[%] and γ
[-] the Hill-coefficient of sigmoidicity [13].

E =
Emax.C

γ

ECγ50 + Cγ
(2.1)

The PK-PD models for Propofol and Remifentanil that will be used throughout
this thesis are the 4th order compartmental models proposed by Schnider [50]
and Minto [51], [52] respectively. The complete PK-PD model can be seen in
Figure 2.2 (taken from [22]).
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Figure 2.1: Patient model general anesthesia

Figure 2.2: PK-PD Model with BIS as output
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Deriving the equations from Figure 2.2, the model of equation 2.2 is obtained.

dx1(t)

dt
= −(k10 + k12 + k13)x1(t) + k21x2(t) + k31x3(t) + u(t)

dx2(t)

dt
= k12x1(t)− k21x2(t)

dx3(t)

dt
= k13x1(t)− k31x3(t)

dxe(t)

dt
= −ke0xe(t) + k1ex1(t)

(2.2)

In matrix form:
dx1(t)
dt

dx2(t)
dt

dx3(t)
dt

dxe(t)
dt

 =


−(k10 + k12 + k13) k21 k31 0

k12 −k21 0 0
k13 0 −k31 0
k1e 0 0 −ke0



x1
x2
x3
xe

+


1
0
0
0

u(t) (2.3)

The transfer function is then according to the formula G(s) = C(sI −A)−1B +
D, with the following matrices:

A =


−(k10 + k12 + k13) k21 k31 0

k12 −k21 0 0
k13 0 −k31 0
k1e 0 0 −ke0



B =


1
0
0
0


C =

[
0 0 0 1

]
D = 0

(2.4)

In this thesis it is assumed that the pharmacokinetic parameters (height, weight,
age, gender) are accurate so that the differences in individual responses are solely
due to the variation of the pharmacodynamic parameters. This simplification
is also assumed in [33] and it is important to note if adaptive control is to be
implemented. However, diseases or inaccurate measurement of the pharmacoki-
netic parameters impair a correct identification of the constants in the models
employed [7], [50], [53], [54], [55]. These model uncertainties result in a loss of
control performance. Furthermore, Rocha acknowledges that it is difficult to
accurately estimate the parameters of the pharmacokinetic models as the con-
centration patterns are a mixture of declining exponential functions. This has
led to models that are either specifically built from a control point of view or
just to fit available data sets with parameters that have no physiological mean-
ing [56].
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The biggest challenges for control however are that a Hill-curve is non-linear
and that the curve is subject to intra- and inter-patient variability. This vari-
ability is exemplified in Table 2.1 for the model that describes the effect of
Propofol on the BIS-signal. These values are used in multiple papers in litera-
ture, for instance [28], [33], [36], [57]. Despite the challenges, the Hill-curve is
nonetheless used as it is able to predict the maximum drug effect, which is a
key characteristic describing biological phenomena, and because of its flexibility
to fit measured data, due to the shape parameter γ. That being said, there is a
lot of room for improvement [13].

Id Age H [cm] W [kg] Gender Ce50 γ E0 Emax
1 40 163 54 F 6.33 2.24 98.8 94.1
2 36 163 50 F 6.76 4.29 98.6 86.00
3 28 164 52 F 8.44 4.10 91.2 80.70
4 50 163 83 F 6.44 2.18 95.9 102.00
5 28 164 60 M 4.93 2.46 94.7 85.30
6 43 163 59 F 12.00 2.42 90.2 147.00
7 37 187 75 M 8.02 2.10 92.0 104.00
8 38 174 80 F 6.56 4.12 95.5 76.40
9 41 170 70 F 6.15 6.89 89.2 63.80
10 37 167 58 F 13.70 1.65 83.1 151.00
11 42 179 78 M 4.82 1.85 91.8 77.90
12 34 172 58 F 4.95 1.84 96.2 90.80
13 38 169 65 F 7.42 3.00 93.1 96.58

Table 2.1: Parameter variability Hill-curve Propofol to BIS

If tools from fractional calculus were employed, the problem of the non-linearity
of the Hill curve could be avoided, resulting in a linear system (when represented
on a log-log plot). Hence, linear control strategies could be employed [58], [59].
This makes particular sense as drug assimilation, transport and clearance are
dominated by diffusion, a process well-described by fractional calculus [58], [60].
Super-diffusion (faster process, more uptake) and sub-diffusion (slower process,
less uptake) can respectively be modelled by making the order n of the deriva-
tives greater or lower than one, with n a real number. As the alteration of
the variable n can incorporate many effects, it captures well interpatient vari-
ability [48]. Moreover, the derivatives of non-integer positive order permit the
inclusion of the so-called "memory-effect" [61], allowing the modelling of non-
homogeneous mixed compartments [62]. A possible function for the modelling
of these fractional dynamics is for instance formula 2.5. In this equation, Ce(t)
is the effect-site concentration versus time and BIS(t) the value of BIS versus
time [58].

Ce(t)

BIS(t)
= k.tn (2.5)
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The problem with such a scheme is that the online identification and adapta-
tion of the parameters k and n is challenging as a linear sampling time does
not preserve linearity in this case as the model is only linear on a log-log plot.
To remedy this problem, a logarithmic sample time has been proposed [63].
This however impairs the integration of the fractional order model into a closed
loop control system. Further research needs to go into investigating whether a
logarithmic sampling rate can successfully be applied to the closed loop control
of depth of anesthesia [58]. Due to the complexity of tuning a controller for a
fractional order model and the issues concerning the adaptation to interpatient
variability, fractional order models are not further discussed in this thesis.

From the discussion above it is clear that intra- and interpatient variability
of the PK-PD model poses a real challenge, demonstrating the importance of
adaptive control strategies to ensure the best performance possible. Further-
more, the real-life varying time delay [13] is a big threat to the stability of the
system. As compensating time delay is a struggle in control engineering, it is
assumed in this thesis that all the time delays are fixed.

2.2.2 Synergies
There is a super-additive effect when using Remifentanil in combination with
Propofol [22], reducing the Propofol concentration for loss of consciousness by
25% [8] and hence minimising the risk of over-dosages [64]. The Hill-curve now
becomes a surface, that is modelled according to equation 2.6, with for example
shape factor γ = 8, σ = 8.2 (measure for the synergy between the two drugs)
and the maximum effect Emax = 100. The result of this model can be found in
Figure 2.3.

BIS = Emax.
(Uprop + Uremi + σ.Uprop.Uremi)

γ

1 + (Uprop + Uremi + σ.Uprop.Uremi)γ
(2.6)
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Figure 2.3: BIS interaction surface Propofol and Remifentanil

The issue is that this synergetic relation not only differs between different pa-
tients (i.e. interpatient variability), but also changes within the same patient
(i.e. intrapatient variability) [22]. This means that an identification scheme is
required. Knowledge about the actual synergetic relation can then be exploited
by control engineers to improve the performance of individualised drug dosing
strategies [22]. However, the identification is difficult as the surface is nonlinear
and constraints imposed for the safety of the patient mean the global solution
cannot be used if it is not feasible [11].

Remifentanil also influences the cardiac output, the mean arterial pressure and
neuromuscular blockade. These interactions are currently modelled as simple
linear addition (see discussion below). Dopamine and Sodium Nitroprusside
both have an effect on the cardiac output as well as the mean arterial pressure,
but their synergy is once again modelled in an additive way. In the present
patient model, there is no reducing effect of Dopamine on the effect-site concen-
tration of Propofol.

2.2.3 Parameter nociceptor transfer function
With the nociceptor pathway model (equation 2.7), a link is established between
surgical stimulation and how it is perceived by the patient [21].

NOCI = K.
(s2 + z1s+ z2)(s2 + z3s+ z4)(s2 + z5s+ z6)

(s2 + p1s+ p2)(s2 + p3s+ p4)(s2 + p5s+ p6)
(2.7)
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zeros z1 = 0.6 ∗ 150 z2 = 1502 z3 = 0.16 ∗ 165 z4 = 1652 z5 = 0.2 ∗ 155 z6 = 1552

poles p1 = 0.44 ∗ 149 p2 = 1492 p3 = 0.3 ∗ 163 p4 = 1632 p5 = 0.2 ∗ 155 p6 = 1552

K 2

Table 2.2: Parameter values nociceptor pathway model

The values in Table 2.2 were taken from [21], where it is explicitly stated that
“the values of the model are by no means fixed or precise, they are approxi-
mations to fit clinical observations and measured data (where available)”. Fur-
thermore, in [65] the fitting of the transfer function model to the frequency
response complex impedance data is discussed: “the fitting was obtained using
nonlinear least squares identification with the MATLAB-command lsqnonlin,
with steepest gradient descent, in an iterative manner. Iteration was performed
as to avoid local minimum and the number of iterations between the identi-
fied results varied between #2-#4 in all data. The iteration was stopped when
the model parameters changed less than 5%.” This means the intervals from
literature were determined using a least-squares method on a specific data set.
Hence, they are strictly speaking not representative for a specific patient. They
will however be used nonetheless.

2.2.4 PK parameters of Propofol and Remifentanil
In [20], the following model was used:

PK(s) =
(s+ k21)(s+ k31)

V1(s+ π)(s+ α)(s+ β)

π + α+ β = k10 + k12 + k13 + k21 + k31

πα+ πβ + αβ = k10(k21 + k31) + k31(k12 + k21) + k13k21

παβ = k10k21k31

(2.8)

The values for the variables in this model can be found in Table 2.3 (according
to [50] and [51] respectively).
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Study Poles Zeros
V1 (l) π α β k21 k31
(l/kg) (s−1) (s−1) (s−1) (s−1) (s−1)

Propofol
Adult, 30 years, 50kg, 1.70m 21.5 16.0e-3 14.0e-4 4.95e-5 3.3e-3 5.8e-5
Adult, 30 years, 70kg, 1.70m 30.1 16.5e-3 15.0e-4 4.9e-5 3.3e-3 5.8e-5
Adult, 30 years, 110kg, 1.70m 47.3 20.0e-3 19.0e-4 5.3e-5 3.3e-3 5.8e-5
Elderly, 70 years, 70kg, 1.70m 30.1 12.3e-3 20.0e-4 4.9e-5 3.3e-3 5.8e-5

Remifentanil
Adult, 30 years, 50kg, 1.70m 4.5 20.6e-3 2.0e-3 2.6e-4 4.1e-3 2.7e-4
Adult, 30 years, 70kg, 1.70m 5.3 18.2e-3 1.8e-3 2.6e-4 3.7e-3 2.7e-4
Adult, 30 years, 110kg, 1.70m 6.2 16.3e-3 1.7e-3 2.6e-4 3.3e-3 2.7e-4
Elderly, 80 years, 70kg, 1.70m 4.1 12.0e-3 1.4e-3 0.9e-4 2.2e-3 0.9e-4

Table 2.3: Propofol and Remifentanil PK parameter sets

However, there are in literature formulas available to calculate the constants
required for the model in equation 2.2 as well as the intervals. From [51], both
the following formulas for Remifentanil as well as the intervals are obtained, see
Table 2.4.

V1 = 5.1− 0.0201(age− 40) + 0.072(lbm− 55) [l]

V2 = 9.82− 0.0811(age− 40) + 0.108(lbm− 55) [l]

V3 = 5.42 [l]

Cl1 = 2.6 + 0.0162(age− 40) + 0.0191(lbm− 55) [l.min−1]

Cl2 = 2.05− 0.0301(age− 40) [l.min−1]

Cl3 = 0.076− 0.00113(age− 40) [l.min−1]

k10 =
Cl1
V1

[min−1]

k12 =
Cl2
V1

[min−1]

k13 =
Cl3
V1

[min−1]

k21 =
Cl2
V2

[min−1]

k31 =
Cl3
V3

[min−1]

ke0 = 0.595− 0.007(age− 40) [min−1]

(2.9)
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From [50], the same is done for Propofol, see also Table 2.5.

V1 = 4.27 [l]

V2 = 18.9− 0.391(age− 53) [l]

V3 = 2.38 [l]

Cl1 = 1.89 + 0.0456(weight− 77)− 0.0681(lbm− 59)

+ 0.0264(height− 177) [l.min−1]

Cl2 = 1.29− 0.024(age− 53) [l.min−1]

Cl3 = 0.836 [l.min−1]

k10 =
Cl1
V1

[min−1]

k12 =
Cl2
V1

[min−1]

k13 =
Cl3
V1

[min−1]

k21 =
Cl2
V2

[min−1]

k31 =
Cl3
V3

[min−1]

ke0 = k1e = 0.456 [min−1]

(2.10)

The lean body masses (lbm) for men and women respectively, are calculated
according to equation 2.11 [66].

Male : LBM = 1.1 ∗ weight− 128 ∗ (weight/height)2

Female : LBM = 1.07 ∗ weight− 148 ∗ (weight/height)2
(2.11)

14



No covariates Weight Proportional LBM Proportional
Parameter Value % CV Value % CV Value % CV

Estimated parameters
Volumes (l) (l.kg−1) (l.kg−1)
Central 4.98 37 0.0668 29 0.0894 27

Rapid peripheral 9.01 39 0.124 39 0.165 37
Slow peripheral 6.54 63 0.0655 65 0.0871 65

Clearances (l.min−1) (l.kg−1.min−1) (l.kg−1.min−1)
Metabolic 2.46 23 0.034 23 0.0454 21

Rapid peripheral 1.69 52 0.0242 57 0.0323 55
Slow peripheral 0.065 56 0.000893 67 0.00119 66

Derived parameters
Volumes (l) (l.kg−1) (l.kg−1)

Steady state 20.53 0.263 0.3415
Fractional coefficients (unitless)

A 0.897 0.896 0.895
B 0.103 0.103 0.104
C 0.00056 0.00078 0.00078

Exponents (min−1)
α 0.932 0.975 0.975
β 0.102 0.105 0.105
γ 0.0097 0.0133 0.0133

Rate constants (min−1)
k10 0.494 0.509 0.508
k12 0.339 0.362 0.361
k13 0.013 0.013 0.013
k21 0.188 0.195 0.196
k31 0.010 0.014 0.014

Half-lives (min)
α 0.74 0.71 0.71
β 6.78 6.62 6.60
γ 71.7 52.3 52.2

Table 2.4: Intervals Pharmacokinetic Parameters Remifentanil
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Parameter Value % CV
Volumes (l)
Central θ1 4.04

Rapid peripheral θ2+θ7.(age-53) < 1
Slow peripheral θ3 14.35

Clearances (l.min−1)
Metabolic θ4 + ((weight - 77).θ8) + ((lbm - 59). θ9) 10.05

+ ((height - 177).θ10)
Rapid peripheral θ5 + θ11.(age - 53) < 1
Slow peripheral θ6 11.79

Parameter estimates Value standard error
θ1 4.27 0.278
θ2 18.9 2.330
θ3 238 34.900
θ4 1.89 0.059
θ5 1.29 0.112
θ6 0.836 0.044
θ7 -0.391 0.070
θ8 0.0456 0.009
θ9 -0.0681 0.017
θ10 0.0264 0.009
θ11 -0.024 0.005

Table 2.5: Intervals Pharmacokinetic Parameters Propofol
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2.2.5 PD models of Propofol and Remifentanil
The separate Hill-curve for Propofol is modelled as in equation 2.12, with
C50P = 2.2, γp = 2, E0 = 100 and Emax = 100 [20], [67]. The same thing is
done for Remifentanil in equation 2.13, with C50R = 13.7, γR = 2.4, E0 = 100
and Emax = 100 [20], [67]. These separate Hill-curves are included for reference,
but will not be used in this thesis.

Effect Propofol = E0 − Emax.
CeγPP

CeγPP + CγP50P
(2.12)

Effect Remifentanil = E0 − Emax.
CeγRR

CeγRR + CγR50R
(2.13)

2.2.6 Parameters of the hemodynamic system
The antagonistic effects of Dopamine and Sodium Nitroprusside on the Cardiac
Output and Mean Arterial Pressure are modelled as in equation 2.14. This
equations consists of first order plus dead time models gij(s) with i being the
drug having an effect on hemodynamic parameter j.[

CO
MAP

]
=

[
K11.e

−T11s

1+τ11s
K21.e

−T21s

1+τ21s
K12.e

−T12s

1+τ12s
K22.e

−T22s

1+τ22s

] [
Dopamine

Sodium Nitroprusside

]
(2.14)

The interval values of the parameters for the hemodynamic system come from
[42], see Table 2.6.

Parameter Typical Range Units
K11 5 1-12 ml/µg
τ11 300 70-600 s
T11 60 15-60 s
K12 3 0-9 mmHg.kg.min/µg
τ12 40 30-60 s
T12 60 15-60 s
K21 12 -15-25 ml/µg
τ21 150 70-600 s
T21 50 15-60 s
K22 -15 -50-(-1) mmHg.kg.min/µg
τ22 40 30-60 s
T22 50 15-60 s

Table 2.6: Intervals parameters hemodynamic system

2.2.7 Parameter values of the synergistic relation
To describe the response surface for the interaction of Propofol and Remifen-
tanil, the parameters from [68] are used. This paper also contains the statistical
information of these parameters, see Table 2.7.
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TCI Predicted Drug Concentration Bayesian Predicted Drug Concentration
Parameter Typical Value (%SE) %CV Typical Value (%SE) %CV

C50,remifentanil,hypnosis, ng/ml 19.0 (9) (-) 19.3 (<1) 52
C50,propofol,hypnosis, µg/ml 2.16 (19) 37 1.6 (<1) 45

Steepness 7.94 (33) (-) 5.25 (<1) (-)
Interaction, hypnosis 2.13 (16) (-) 2.55 (<1) 2
Objective function 82.7 83.8

Table 2.7: Intervals parameters synergistic relation

Note: %SE is the standard error of the estimated parameter and CV is the stan-
dard deviation (log domain). (-) means the variability was not distinguishable
from 0.

2.2.8 Parameter values of the NMB model
In the used NMB model (equation 2.15) from [56], k1, k2, k3 and C50 are as-
sumed to be known process parameters. Only α and γ are modelled to be
unknown patient-dependent parameters. A parameter identification procedure
for Atracurium is adapted from [56], where Table 2.8 contains the initial values
that represent the mean values for the population. The procedure is as follows:

NMB =
k1.k2.k3.α3

(s+ k1.α)(s+ k2.α)(s+ k3.α)

Effect = Emax.
CγN50N

NMBγN + CγN50N

(2.15)

k1 k2 k3 C50N α γ
1 4 10 3.2425 0.0374 2.667

Table 2.8: Parameters NMB model

1. Set initial values for the parameters as the mean values for the population
(α0 = 0.0374, γ0 = 2.6677)

2. Based on equations 2.16 and 2.17, compute r(t) for those initial values of
(α,γ) and the dosage u(t) given to the patient.

ẋ1(t) = −k3αx1(t) + k3αu(t)

ẋ2(t) = k2αx1(t)− k2αx2(t)

ẋ3(t) = k1αx2(t)− k1αx3(t)

(2.16)

r(t) =
100

1 + (x3(t)
C50

)γ
(2.17)
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3. Obtain
(α, β) = arg min

α,β ∈ <
(
d1
10

+
d2
2

+
d3
5

) (2.18)

by minimizing the loss function Q = d1
2 + d2

2 + d3
5 with r(t) computed

from equations 2.16 and 2.17, subject to the restrictions 0 < α ≤ 0.1 and
0 < γ ≤ 10.

4. If (α, β) satisfy inequalities 2.19, these are the individual parameters. Oth-
erwise, proceed to step 5.

5. Minimize the maximum of (d110 ,
d2
2 ,

d3
5 ) using (α, β) from step 4 as the

initialising value

d1 ≤ 10 for phase 1

d2 ≤ 2 for phase 2

d3 ≤ 5 for phase 3

(2.19)

where the major effect of α is in phase 1 and the major effect of γ is in
phase 3. Phase 2 is an intermediate region.

In [69], the ki (i=1,2,3) values are determined by minimising the normalised
error for a given database. C50 was kept constant during this study as in [70]
was shown that the variability of this parameter does not strongly affect the
identification.

2.2.9 Parameters of the Remifentanil effect on RASS
The Ramsay Agitation-Sedation Score (RASS) is a function that scales from
-5 to 4 and is a measure for the sedation of the patient [71]. The influence of
Remifentanil on this score is modelled as in equation 2.20, with k1 = k0 = 0.81
[72].

RASS =
1

k1.CeR+ k0
.
−2

s+ 2
(2.20)

2.2.10 Parameters of the Remifentanil effect on MAP PK/PD
model

MAP =
−1

k1.CeR+ k0

Effect = Emaxr.
MAP γrMAP

MAP γrMAP + CγrMAP

50rMAP

(2.21)

The parameter values for the model in 2.21 come from [73], see also Table 2.9.
In [73], the mean baseline MAP (Emaxr) is assumed to be 70. This paper also
gives intervals for this parameter which can be found in Table 2.10. As in [73]
and [21], a constant value of 15 for CeR is assumed.
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Parameter Fixed effect %SE
Clearance (l.min−1.70kg−1) 2.99 5.1

V1 (l.70kg−1) 6.35 7.8
Q (l.min−1.70kg−) 3.76 16.8
V2 (l.70kg−1) 9.88 5.4
ke0 (min−1) 0.81 23.6
E0 (mmHg) 69.7 4.9

EC50 (ng.ml−1) 17.1 7.8
γ 4.56 17.6

Pharmacokinetic additive error (ng.ml−1) 4.73 8.7
Pharmacodynamic additive error (mmHg) 4.47 5.5

Table 2.9: Intervals parameters Remifentanil on MAP

Value
Sex (M/F) 5/2
Age (year) 0.743 (0.3-1.0)
Weight (kg) 7.59 (6.6-9.6)
Height (cm) 65.2 (47-82)

Mean arterial blood pressure (mmHg) 71.7 (60-87)

Table 2.10: Intervals Emaxr

Note: the values in Table 2.10 are either of the form mean (range) or mean ±
standard deviation.

2.2.11 Parameters of the Remifentanil effect on NMBmodel
The effect of Remifentanil on neuromuscular blockade is calculated according
to equation 2.22. This effect is simply added to the effect of Atracurium on
neuromuscular blockade [21].

EMG =
CeR

3.4
(2.22)

2.3 Approximation of first order plus dead time
Both the hemodynamic models (Section 2.2.6) and the measurement of BIS
(Section 5.2) are modelled to be subject to time delays. In the Laplace domain,
this dead time is modelled as exp(-Ts), with T being the time delay in seconds,
which is nonlinear in s. Using Padé approximation, this nonlinear first order
system is transformed into a linear system of higher order [74]. This system
has the same gain, but a different phase angle for large frequencies. Assume for
example a system with only dead time. This system can then be transformed by
Padé approximation into a higher order system of which the order can be chosen.
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In Figure 2.4, the phase plot of the original system (red dotted line) is compared
to the phase plots of the Padé approximations of increasing order (from 1st to
10th). The higher the order of the approximation, the higher the frequency is at
which the approximated transfer function cannot follow anymore (i.e. the phase
shift increases faster for the exponential than for the approximated function).
Clearly, the higher the order the better the approximation is but also the higher
the computational complexity is [74]. A compromise needs to be made and it is
therefore chosen to use a 4th order approximation in this thesis.

Figure 2.4: Comparison phase plot real delay with Padé approximation from
1st to 10th order

2.4 Nociceptor stimulation and anesthesiologist
in the loop

So far, no surgical stimulus has been modelled to represent the stimulation
during operation. The stimulation profile used in this thesis is taken from
[38]. This input signal is filtered by a zero-phase digital Butterworth filter
and subsequently passed through the nociceptor transfer function (equation
2.7). The result which will be used throughout this thesis can be found in
Figure 2.5. As this disturbance can be anticipated by the anesthesiologist, the
anesthesiologist might decide to intervene by administrating an additional bolus
of Propofol. Consequently, this intervention needs to be integrated into the
closed-loop [38]. The signal to model this intervention is adapted from [38] for
different values of γ and can be found in Figure 2.6. This figure is constructed
under the assumption that the anesthesiologist will adapt the bolus injection to
the sensitivity of the patient.
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Figure 2.5: Nociceptor stimulation of patient model

Figure 2.6: Anesthesiologist in the loop for γ = 1,2,3,4,5,6,7,8
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Chapter 3

Anesthetic regulatory
paradigm

3.1 Dynamics of the pharmacokinetic models
In Figures 3.1 to 3.6, the bode plots of the pharmacokinetic models for Propofol
and Remifentanil are given. In each plot, one of the parameters of the model
(i.e. age, height, weight) is varied within the intervals from Section 2.2.4. The
parameter which is varied is always mentioned in the caption of the plot. This is
done for male and female patients as the calculation of lean body mass is differ-
ent for both. The phase margins of these bode plots can be found in Appendix
B.1.1. From the bode plots it is however already clear that these pharmacoki-
netic models are always stable, independent of the variation of the parameters
(within the defined intervals). The same is true for the bode plot of the phar-
macokinetic model for neuromuscular blockade (see Figure 3.7). It is as Rocha
claimed [56], these models are indeed specifically built for control purposes.

In Figures 3.1 and 3.4, it can be seen that there is one frequency at which
all bode plots cross, independent of the age of the patient. This originates from
the fact that, fundamentally, these two steady-state models are low-pass filters
with 2 zeros and 4 poles. It is therefore claimed that the intersection of the
bode plots is caused by the fact that the variation in age only affects the damp-
ing factor of the filter and not the natural frequency. The other parameters
(i.e. height and weight) appear to affect both the damping factor and natural
frequency.
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(a) Bode plot Propofol Male Age (years) (b) Bode plot Propofol Female Age (years)

Figure 3.1: Propofol SS PK model Age (years)

(a) Bode plot Propofol Male Weight (kg) (b) Bode plot Propofol Female Weight (kg)

Figure 3.2: Propofol SS PK model Weight (kg)
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(a) Bode plot Propofol Male Height (cm) (b) Bode plot Propofol Female Height (cm)

Figure 3.3: Propofol SS PK model Height (cm)

(a) Bode plot Remifentanil Male Age
(years)

(b) Bode plot Remifentanil Female Age
(years)

Figure 3.4: Remifentanil SS PK model Age (years)
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(a) Bode plot Remifentanil Male Weight
(kg)

(b) Bode plot Remifentanil Female Weight
(kg)

Figure 3.5: Remifentanil SS PK model Weight (kg)

(a) Bode plot Remifentanil Male Height
(cm)

(b) Bode plot Remifentanil Female Height
(cm)

Figure 3.6: Remifentanil SS PK model Height (cm)
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Figure 3.7: NMB SS PK model alpha (-)
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3.2 Dynamics of hemodynamic models
The bode plots and the gain/phase margins of the four hemodynamic models
(g11, g12, g21, g22) of Section 2.2.6 are shown in Figures 3.8 to 3.17. These
figures have been constructed by varying the individual parameters within the
intervals from [42]. Kij (i=1,2, j=1,2) represents the gain of the model, i.e.
the sensitivity of the patient to the drug. Figures 3.8a, 3.11a, 3.14a and 3.17a
demonstrate that this variation is very large (in dB). This is explained by Yu
[75] by the fact that there is an unmodelled coupling between CO and MAP.
This manifests itself in large parameter value changes, especially gain. As the
hemodynamic models are first order plus dead time, varying τij (i=1,2, j=1,2)
corresponds with a shift of the corner frequency and varying Tij (i=1,2, j=1,2)
changes the time delay. This can be seen in Figures 3.9a, 3.12a, 3.15a, 3.18a
and 3.10a, 3.10a, 3.10a, 3.10a respectively. Note that for the intervals described
in Table 2.6, the hemodynamics models are open-loop stable as they only have
poles in the left half-plane. The difference with the pharmacokinetic models is
that the hemodynamic models can become unstable in closed-loop for certain
values within the parameter intervals. This can be due to all three parameters
(K, τ and T).

(a) Bode plot g11 K11 (b) Gain and phase margin g11 K11

Figure 3.8: Bode plot g11 K11 variation
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(a) Bode plot g11 τ11 (b) Gain and phase margin g11 τ11

Figure 3.9: Bode plot g11 τ11 variation

(a) Bode plot g11 T11 (b) Gain and phase margin g11 T11

Figure 3.10: Bode plot g11 T11 variation
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(a) Bode plot g12 K12 (b) Gain and phase margin g12 K12

Figure 3.11: Bode plot g12 K12 variation

(a) Bode plot g12 τ12 (b) Gain and phase margin g12 τ12

Figure 3.12: Bode plot g12 τ12 variation
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(a) Bode plot g12 T12 (b) Gain and phase margin g12 T12

Figure 3.13: Bode plot g12 T12 variation

(a) Bode plot g21 K21 (b) Gain and phase margin g21 K21

Figure 3.14: Bode plot g21 K21 variation
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(a) Bode plot g21 τ21 (b) Gain and phase margin g21 τ21

Figure 3.15: Bode plot g21 τ21 variation

(a) Bode plot g21 T21 (b) Gain and phase margin g21 T21

Figure 3.16: Bode plot g21 T21 variation
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(a) Bode plot g22 K22 (b) Gain and phase margin g22 K22

Figure 3.17: Bode plot g22 K22 variation

(a) Bode plot g22 τ22 (b) Gain and phase margin g22 τ22

Figure 3.18: Bode plot g22 τ22 variation
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(a) Bode plot g22 T22 (b) Gain and phase margin g22 T22

Figure 3.19: Bode plot g22 T22 variation

3.3 Open-loop stability patient model for general
anesthesia

The dynamics of the patient model are linear and time-invariant. The outputs
of these dynamics then undergo a non-linear transformation (Hill-curve) to form
the outputs of the patient model. For the open-loop stability, however, is this
non-linear transformation irrelevant. Therefore, open-loop stability of the pa-
tient model can be proven by looking at the open-loop poles (i.e. eigenvalues of
the state matrix A) of the patient model.

In Tables 3.1 and 3.2, each column represents the real part of the eigenval-
ues of the state matrix of one patient from Table 2.1. As all eigenvalues have
strictly negative real parts, the state matrix A is Hurwitz. Hence, the system is
asymptotically stable [76].
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1 2 3 4 5 6 7
-1.079 -1.09 -1.139 -1.175 -1.101 -1.079 -1.136
-0.2136 -0.2136 -0.2136 -0.2136 -0.2136 -0.2136 -0.2136
-0.2136 -0.2136 -0.2136 -0.2136 -0.2136 -0.2136 -0.2136
-0.03165 -0.0301 -0.02864 -0.04109 -0.02661 -0.03331 -0.03291
-0.456 -0.456 -0.456 -0.456 -0.456 -0.456 -0.456
-0.294 -0.294 -0.294 -0.294 -0.294 -0.294 -0.294
-0.294 -0.294 -0.294 -0.294 -0.294 -0.294 -0.294
-0.2672 -0.2687 -0.274 -0.2749 -0.2706 -0.2669 -0.2729
-1.208 -1.242 -1.225 -1.073 -1.112 -1.172 -0.9645
-0.595 -0.623 -0.679 -0.525 -0.679 -0.574 -0.616
-0.2136 -0.2136 -0.2136 -0.2136 -0.2136 -0.2136 -0.2136
-0.2136 -0.2136 -0.2136 -0.2136 -0.2136 -0.2136 -0.2136
-0.294 -0.294 -0.01578 -0.294 -0.294 -0.294 -0.294
-0.294 -0.294 -0.1101 -0.294 -0.294 -0.294 -0.294
-0.1191 -0.0143 -0.294 -0.1149 -0.1044 -0.1188 -0.1005
-0.01355 -0.1179 -0.294 -0.01164 -0.01583 -0.01298 -0.01419
-0.004509 -0.004509 -0.004509 -0.004509 -0.004509 -0.004509 -0.004509
-0.004509 -0.004509 -0.004509 -0.004509 -0.004509 -0.004509 -0.004509
-0.02882 -0.02882 -0.02882 -0.02882 -0.02882 -0.02882 -0.02882
-0.02882 -0.02882 -0.02882 -0.02882 -0.02882 -0.02882 -0.02882
-0.003333 -0.003333 -0.003333 -0.003333 -0.003333 -0.003333 -0.003333
-0.004509 -0.004509 -0.004509 -0.004509 -0.004509 -0.004509 -0.004509
-0.004509 -0.004509 -0.004509 -0.004509 -0.004509 -0.004509 -0.004509
-0.02882 -0.02882 -0.02882 -0.02882 -0.02882 -0.02882 -0.02882
-0.02882 -0.02882 -0.02882 -0.02882 -0.02882 -0.02882 -0.02882
-0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025

-0.005411 -0.005411 -0.005411 -0.005411 -0.005411 -0.005411 -0.005411
-0.005411 -0.005411 -0.005411 -0.005411 -0.005411 -0.005411 -0.005411
-0.03459 -0.03459 -0.03459 -0.03459 -0.03459 -0.03459 -0.03459
-0.03459 -0.03459 -0.03459 -0.03459 -0.03459 -0.03459 -0.03459
-0.006667 -0.006667 -0.006667 -0.006667 -0.006667 -0.006667 -0.006667
-0.005411 -0.005411 -0.005411 -0.005411 -0.005411 -0.005411 -0.005411
-0.005411 -0.005411 -0.005411 -0.005411 -0.005411 -0.005411 -0.005411
-0.03459 -0.03459 -0.03459 -0.03459 -0.03459 -0.03459 -0.03459
-0.03459 -0.03459 -0.03459 -0.03459 -0.03459 -0.03459 -0.03459
-0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025
-0.374 -0.374 -0.374 -0.374 -0.374 -0.374 -0.374
-0.1496 -0.1496 -0.1496 -0.1496 -0.1496 -0.1496 -0.1496
-0.0374 -0.0374 -0.0374 -0.0374 -0.0374 -0.0374 -0.0374

Table 3.1: Real part eigenvalues state matrix A - part 1
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8 9 10 11 12 13
-1.215 -1.146 -1.116 -1.101 -1.145 -1.139
-0.2136 -0.2136 -0.2136 -0.2136 -0.2136 -0.2136
-0.2136 -0.2136 -0.2136 -0.2136 -0.2136 -0.2136
-0.03661 -0.03534 -0.03196 -0.03382 -0.03182 -0.03354
-0.456 -0.456 -0.456 -0.456 -0.456 -0.456
-0.294 -0.294 -0.294 -0.294 -0.294 -0.294
-0.294 -0.294 -0.294 -0.294 -0.294 -0.294
-0.2792 -0.2734 -0.2711 -0.2691 -0.274 -0.2731
-1.039 -1.089 -1.168 -0.962 -1.155 -1.119
-0.609 -0.588 -0.616 -0.581 -0.637 -0.609
-0.2136 -0.2136 -0.2136 -0.2136 -0.2136 -0.2136
-0.2136 -0.2136 -0.2136 -0.2136 -0.2136 -0.2136
-0.294 -0.294 -0.294 -0.294 -0.294 -0.294
-0.294 -0.294 -0.294 -0.294 -0.294 -0.294
-0.1063 -0.1116 -0.1142 -0.1025 -0.1112 -0.1118
-0.01397 -0.01338 -0.01413 -0.01322 -0.0147 -0.01395
-0.004509 -0.004509 -0.004509 -0.004509 -0.004509 -0.004509
-0.004509 -0.004509 -0.004509 -0.004509 -0.004509 -0.004509
-0.02882 -0.02882 -0.02882 -0.02882 -0.02882 -0.02882
-0.02882 -0.02882 -0.02882 -0.02882 -0.02882 -0.02882
-0.003333 -0.003333 -0.003333 -0.003333 -0.003333 -0.003333
-0.004509 -0.004509 -0.004509 -0.004509 -0.004509 -0.004509
-0.004509 -0.004509 -0.004509 -0.004509 -0.004509 -0.004509
-0.02882 -0.02882 -0.02882 -0.02882 -0.02882 -0.02882
-0.02882 -0.02882 -0.02882 -0.02882 -0.02882 -0.02882
-0.025 -0.025 -0.025 -0.025 -0.025 -0.025

-0.005411 -0.005411 -0.005411 -0.005411 -0.005411 -0.005411
-0.005411 -0.005411 -0.005411 -0.005411 -0.005411 -0.005411
-0.03459 -0.03459 -0.03459 -0.03459 -0.03459 -0.03459
-0.03459 -0.03459 -0.03459 -0.03459 -0.03459 -0.03459
-0.006667 -0.006667 -0.006667 -0.006667 -0.006667 -0.006667
-0.005411 -0.005411 -0.005411 -0.005411 -0.005411 -0.005411
-0.005411 -0.005411 -0.005411 -0.005411 -0.005411 -0.005411
-0.03459 -0.03459 -0.03459 -0.03459 -0.03459 -0.03459
-0.03459 -0.03459 -0.03459 -0.03459 -0.03459 -0.03459
-0.025 -0.025 -0.025 -0.025 -0.025 -0.025
-0.374 -0.374 -0.374 -0.374 -0.374 -0.374
-0.1496 -0.1496 -0.1496 -0.1496 -0.1496 -0.1496
-0.0374 -0.0374 -0.0374 -0.0374 -0.0374 -0.0374

Table 3.2: Real part eigenvalues state matrix A - part 2
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3.4 Hill-curve variation
In this section, the effect of changing parameters on the Hill-curve is studied.
Intuitively, a larger C50 value corresponds with a shift to higher effect-site con-
centrations for the same level of BIS (see Figure 3.20). The effect of changing γ
is shown in Figure 3.21. The resulting Hill-curves are steeper for larger values
of γ. For a BIS level above 50%, the effect-site concentration needed to reach
a certain BIS level is higher for larger γ and the reverse is true for BIS levels
below 50%.

Figure 3.20: Hill-curve C50 (µg/ml) variation

Figure 3.21: Hill-curve γ (-) variation
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Chapter 4

Model Predictive Control of
complete hemodynamic and
anesthetic system

4.1 Quasi-Infinite Horizon (Nonlinear) Model Pre-
dictive Control (QIH-MPC)

4.1.1 Introduction to MPC
As stated by Rawlings and Mayne [77], Model Predictive Control (MPC) is
based on optimal control. When implementing optimal control in open loop,
one tries to find off-line the optimal input sequence that would make sure the
equilibrium point is reached (taking into account constraints) while minimizing
the control effort (when required). This is then used as an input to the system.
However, model mismatches and disturbances cause the control performance to
deteriorate, resulting in an inability to properly maintain the equilibrium point
and possibly even instability (if the open-loop system is unstable). Closed-loop
optimal control on the other hand is able to deal with open-loop instability,
disturbances and model mismatches. However, in real-life applications, a closed
solution is hard if not impossible to find [78].

To remedy the problems with both open-loop and closed-loop optimal control,
model predictive control was conceived. At each time step, it solves an open-
loop optimal control problem, but with the measured states as the new initial
states. It can therefore be best described as repeated open-loop optimal control
in feedback fashion [77], [78].
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Figure 4.1: Basic scheme Model Predictive Control

The basic principle of MPC is shown in Figure 4.1, which is taken from [79]. At
time t, the future states x until t+Tp are predicted using the dynamic model
of the system. Tp is called the prediction horizon of the MPC algorithm and is
an important tuning parameter for feasibility and stability, see further. Conse-
quently, the optimal open-loop inputs u are calculated until t+Tc, where Tc is
called the control horizon. For the remainder of the discussion, it will always be
assumed that the prediction horizon is equal to the control horizon [79]. These
optimal inputs are found in an iterative manner by minimizing a user-defined
(often quadratic) cost function, where the number of iterations determine the
(sub)optimality of the solution. After these calculations, the open-loop input
is implemented until t+δ, with δ being the sampling time. By measuring the
states, a new ’initial’ state is created. It is at this point that the scheme is shifted
from t to t+δ and the whole iteration (prediction and optimisation) starts again
[77], [79].

The MPC problem is formulated mathematically as follows (adapted from [79]):

min
u(•)

J(x(t), u(•);Tc, Tp)

J(x(t), u(•);Tp, Tc) :=

∫ t+Tp

t

F (x(τ), u(τ))dτ
(4.1)
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with

ẋ(τ) = f(x(τ), u(τ)), x(t) = x(t)

u(τ) ∈ U ,∀τ ∈ [t, t+ Tc]

u(τ) = u(τ + Tc),∀τ ∈ [t+ Tc, t+ Tp]

x(τ) ∈ X ,∀τ ∈ [t, t+ Tp]

(4.2)

In this thesis, box constraints are considered:

U := {u ∈ <m| umin ≤ u ≤ umax}
X := {x ∈ <n| xmin ≤ x ≤ xmax}

(4.3)

It is assumed that U ⊂ <m is compact, X ⊆ <n is connected and that the
equilibrium point is an element of X × U .

The optimal solution (input), which minimises the objective functional in 4.1,
can be written as:

u∗(τ) := u∗(τ ;x(t), Tp, T c), τ ∈ [t, t+ δ]

V (x;Tp, Tc) = J(x, u∗(•;x(t));Tp, Tc)
(4.4)

In the paper by Findeisen and Allgöwer, the origin is assumed to be the steady
state that needs to be stabilized and all the results are derived using the origin
as the equilibrium points. This does not result in a loss of generality as the
results do not change under a linear transformation [79]. It is with this argu-
ment that it is defended that the results of this paper still hold when realistic
equilibrium points for anesthesia are used in this thesis. As this point needs to
be feasible, it does have to be in the interior of X x U .

Note that the values of the variables with bar (•) represent the variables used
internally in the controller and are not the real values of the variables of the
real system. This is clear from the fact that at each iteration, the input is re-
calculated and the internal values are updated [79].

The function F is often referred to as the stage cost, often as a quadratic func-
tion of the states and the inputs [79]. Here, the inputs will not be included into
the stage cost as economising drugs is not the goal at this point. The function
F will we written as a quadratic function in the outputs, with the outputs being
a nonlinear function of the states.

In 4.4, the value function with as input the optimal input as calculated at time
t, can be used as a Lyapunov function. This realisation can be used to great
effect when proving the stability of an MPC scheme (see discussion below). Also
note that the optimal solution to the optimisation problem is dependent on the
value of the states at time t (the ’current’ time).
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The requirement to have a connected set of feasible states originates from the
fact that a connected feasible region is necessary to prove asymptotic stability
for each point in that feasible region, making it a region of attraction for the
equilibrium point [80]. As in this application only box constraints are considered
(i.e. inputs and states need to remain within certain bounds) and not nonlin-
ear state constraints for example, it is expected that the region will indeed by
connected. This however remains to be proven thoroughly.

4.1.2 Stability and feasibility of QIH-MPC
From an ethical and patient safety point of view, it is essential that the controller
is stable during operation to guarantee the well-being of the patient. Further-
more, if the non-linear controller loses feasibility (the ability to find a possible
path to the equilibrium point), the controller needs to switch to manual mode
where the anesthesiologist will intervene until the controller is once again in a
feasible region. It is therefore clear that one needs to have a clear understanding
of when the controller is stable and feasible and more importantly, when not.
Ideally, this does not depend on the performance parameters in order to make
the scheme more robust to inter- and intrapatient variability while maintaining
computational feasibility, a considerable issue for nonlinear model predictive
control (NMPC) [79].

Changing the terminal state equality constraint with a terminal state inequality
constraint means the calculated state after the prediction horizon does not have
to be exactly equal to the equilibrium point but can be within a terminal re-
gion Ω around the equilibrium point. The terminal cost then provides an upper
bound for the fictitious situation where one starts from x(t + Tp) and uses a
local linear state feedback until the equilibrium point is reached exactly. The
cost function from equation 4.1 is therefore extended with a terminal cost (see
equation 4.5), assuming all the costs are quadratic with respective weighting
matrices Q, R and P. These weighting matrices will be further discussed in the
procedure below. It is important to note that the inputs are only calculated for
a finite time, as the infinite "tail" with the state feedback controller is never
used in practice [80]. Hence, no switching mechanisms are needed, which is the
main difference with the dual-mode receding horizon control scheme presented
by Michalska and Mayne [81].

min
u(•)

J(x(t), u(•);Tc, Tp)

J(x(t), u(•);Tp, Tc) :=

∫ t+Tp

t

‖x(τ)‖2Q + ‖u(τ)‖2R dτ + ‖x(t+ TP )‖2P
(4.5)
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In the paper by Chen and Allgöwer, a method is proposed to determine off-line
a penalty matrix for a quadratic terminal cost as well as an invariant terminal
region. This is done by solving the appropriate Lyapunov equation and using
the unique, positive-definite and symmetric solution (the penalty matrix) to
iteratively construct an invariant region around the equilibrium point. It is fur-
ther shown that this setup will guarantee asymptotic stability if the Jacobian
linearization (evaluated at the equilibrium point) of the (nonlinear) system is
stabilizable and the problem is feasible at time t=0. This does not depend on
the choice of the performance parameters and is claimed to be more compu-
tationally attractive than other MPC schemes that also guarantee asymptotic
stability. Furthermore, the globally optimal input profile does not need to be
found to have asymptotic stability, only a feasible solution is required. These
results hold for both stable and unstable constrained systems [80]. The method
of Chen and Allgöwer provides an objective tool for determining the stability of
the MPC scheme. Using a patient model, the stability of the given MPC con-
troller can be checked off-line for a database of patients. During operation the
anesthesiologist can be kept updated on the stability of the closed-loop using
the available patient model. Further research is however required to determine
the feasibility regions for the control of depth of anesthesia. This includes the
variation of model parameters as well as the influence of disturbances and mod-
el/plant mismatches (for instance, intrapatient variability).

The following procedure has been adapted from [80] to determine the termi-
nal penalty matrix and construct the invariant terminal region. This procedure
is written using the origin as the equilibrium point. Keep in mind that the
states x are thus actually the difference between the "real" states of the system
and the "real" equilibrium point. As stated in section 4.1.1, the results do not
change under a linear transformation.

1. Calculate the Jacobian linearization at the equilibrium point:

A =
∂f

∂x
|xeq

B =
∂f

∂u
|xeq

(4.6)

2. Use the Hautus-test for stabilizability [77]. (A,B) is stabilizable if and
only if

rang[λI −A|B] = n ∀λ(A) : Re(λ(A)) ≥ 0 (4.7)

with λ(A) being the eigenvalues of the matrix A and I the unit matrix
with the same size as A (equal to n × n, with n being the number of
states).

If the Jacobian linearization is not stabilizable, the following steps are
not applicable as it is an explicit requirement for this procedure to work.
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3. Find a linear state feedback matrix K such that AK is asymptotically
stable with:

u = Kx ∈ U ∀x ∈ X
AK : = A+BK

(4.8)

4. Solve the following Lyapunov equation and obtain a unique, positive-
definite and symmetric solution P. P is the terminal penalty matrix and Q
∈ <n×n, R ∈ <m×m are chosen positive semidefinite, symmetric weighting
matrices.

Q∗ = Q+KTRK ∈ <nxn

κ < −λmax(AK), κ ∈ [0,∞)

(AK + κI)TP + P (AK + κI) = −Q∗
(4.9)

5. Using the state feedback matrix K found in step 3, find the largest α1 ∈
(0,∞) such that

Ωα1
:= {x ∈ <n|xTPx ≤ α1}

Kx ∈ U ∀x ∈ Ωα1

(4.10)

6. Find the largest α ∈ (0, α1] such that

ẋ = f(x,Kx)

φ(x) := f(x,Kx)−AKx

Lφ := sup{ ‖φ(x)‖
‖x‖

| x ∈ Ωα, x 6= 0}

Lφ ≤
κ λmin(P )

‖P‖

(4.11)

with Ωα being an invariant terminal region, sup(•) the supremum and ‖•‖
the Frobenius norm.

Note that the terminal region above is not necessarily unique as it is dependent
on the obtained state feedback matrix K and the choice of κ. It is therefore not
guaranteed that this region is the largest possible region that can be determined
[80]. Obviously, a larger terminal region makes it easier to find a feasible solu-
tion, increasing the feasible region. Looking at the Lyapunov-equation in step 4,
it is clear that the terminal penalty matrix P will increase when κ does. For the
example used in the paper by Chen and Allgöwer, it is noted that the terminal
region first rises with κ but shrinks as κ approaches |λmax(Ak)|. For a value
of κ near the absolute value of the largest eigenvalue of Ak, the matrix P will
also be large, exemplified by the (Frobenius) norm of the matrix. From the cost
function in equation 4.5, it is clear that a large terminal penalty matrix (com-
pared to weighting matrices Q and R) will be detrimental for the performance of
the controller. There will therefore be a trade-off between control performance
and the size of the terminal region [80]. Further research is required to find the
optimal situation, inherently depending on inter- and intrapatient variability.
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4.1.3 Robustness of QIH-MPC
So far, only the control problem using the nominal patient model and without
disturbances has been discussed. Furthermore, it is assumed that the system
states x can either be measured or calculated exactly. In a realistic situation,
where model uncertainties and both measured as well as unmeasured distur-
bances exist, robust stability is not automatically guaranteed. When a non-
ideal state estimator (as is always the case in practise) is explicitly or implicitly
needed, both asymptotic stability and good closed-loop performance cannot be
guaranteed anymore [79]. As this thesis does not considers adaptive control, it
is assumed throughout this thesis that no model uncertainties exist. Further, it
will still be assumed that all states for prediction are exact because an in-depth
comparison and evaluation of state estimators (for instance, extended Kalman
filter or moving-horizon estimation) when applied in a QIH-MPC control scheme
falls out of the scope of this thesis. Results in literature on chemical reaction
networks however suggest that moving-horizon estimation provides more accu-
rate state estimation and greater robustness in return for a lower computational
efficiency [82]. As a surgical stimulus as well as the anesthesiologist in the loop
are considered in this thesis, the robustness of the QIH-MPC control scheme
with nominal model and (un)measured disturbances will be discussed below.

The implementation of robust NMPC schemes such as min-max MPC, H∞-
NMPC or optimising the feedback controller during each sampling time is either
computationally expensive or so conservative that no feasible solution can be
found [79]. Hence, it is of interest to study the inherent robustness properties
of the controller designed for the nominal model without disturbances. In the
paper by Yu and Allgöwer [83], the inherent robustness properties for QIH-MPC
are discussed for persistent but bounded disturbances. As the surgical distur-
bance is also modelled as a persistent but bounded disturbance, the results in
this paper apply to general anesthesia. In [83], an upper bound for the distur-
bances is constructed that will guarantee robust stability. This upper bound
is dependent on the terminal set Ωα, the prediction horizon Tp, the sampling
time δ and the Lipschitz constant v. Equation 4.12 is adapted from [83] and
represents the method to determine the upper bound β0 of the disturbances,
using the variables calculated in section 4.1.2. With this method, the maximum
disturbance can be found that guarantees the stability of the controller designed
for the nominal patient model.

dr
0(Xf ,Ωα) :=

√
λmin(P−1)(α1/2 − (e−πδα)1/2)

β0 :=
v dr

0(Xf ,Ωα)

ev(Tp+δ) − 1

(4.12)
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A more pragmatic approach to investigate robust stability for a system with
disturbances (but without model uncertainties) is to repeat the proof of stability
with the current output (including the disturbance) as the new initial point. As
long as this output is within the feasible region, the controller will not lose
stability as the (linearized) system is still stabilizable.

4.2 Implementation of predictive control

4.2.1 (Non)linear QIH-MPC scheme
For the implementation of predictive control, the Quasi Infinite-Horizon MPC
scheme with guaranteed stability from Allgöwer and Chen [80] has been selected.
Because of the inherent nonlinearity of the Hill-curves used in the patient model
(and therefore cost function and constraints), a nonlinear MPC scheme was first
selected to be used as the controller for the system. Nonlinear MPC is however
only introduced in MATLAB and Simulink in the R2018b version [84] and at
the time of writing, it is not possible to add terminal weights or constraints to
the MATLAB-object or Simulink-block. Therefore, a custom .m-file was written
to implement the QIH-MPC scheme, based on examples in the book Nonlinear
Model Predictive Control written by Grüne and Pannek [85]. In this .m-file,
the nonlinear solver fmincon is used based on [85] and the fact that it is the
default solver for nonlinear MPC in MATLAB [86]. Due to the nonlinearity of
the setup, the optimisation problem is now possibly non-convex with multiple
local optima. This is not a problem for the QIH-MPC algorithm as convexity
is not required, only compactness [79]. However, fmincon is a solver of the
Optimization ToolboxTM in MATLAB and the solvers in this toolbox only find
local optima [87]. This means that when the starting point of the solver lies
in the basin of attraction of a local optimum outside the feasible region, the
solver will converge to that local optimum as it does not search for other local
optima (or the global optimum) within the feasible region. Since this can be the
case after initialisation as well as during operation (for instance, because of a
disturbance), it cannot be guaranteed that the solver converges to a path within
the feasible region. As finding at least one feasible solution is a key argument in
the proof of stability of QIH-MPC, stability cannot be guaranteed. Moreover,
the setpoint will not be reached. Finally, even when all constraints except the
equality constraints for the dynamics (i.e. at each timestep the states need to
follow the system dynamics) were removed, a feasible could not be found. These
constraints can also not be further relaxed as adhering to the system dynamics
is a fundamental requirement.

It is clear from the discussion above that a solver must be selected which under
any circumstances can find an optimum within the feasible region, assuming
of course that there is one. As general anesthesia is a real-life application, a
feasible region without a solution means the problem is not well-formulated, so
it can always be assumed that there is at least one. Also note that the global
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optimum does not have to be within the feasible region to guarantee stability, a
feasible local optimum suffices [80]. Due to the time constraints for this thesis, it
was not possible to find a solver which can meet the above requirements within
a reasonable CPU time (i.e. online feasible) as the convergence for non-convex
systems is slow. Rather, it was investigated whether linear MPC with a linear
patient model can provide a solution. The objective function to be minimised
and the constraints will then both be linear. As the objective function is now a
continuous quadratic linear function (with positive semidefinite weighting ma-
trices), its Hessian matrix is positive semidefinite. Hence, the objective function
is convex [88]. Because the constraints are linear is the optimisation problem
also convex [89]. In this case, fmincon is able to find the global optimum and,
using the same reasoning as above, it can be assumed that this optimum is
within the feasible region.

Simply linearizing the patient model around a certain operating point is an
option. The induction phase is well-documented and controllers for this phase
can be found in literature. During the maintenance phase, the controller is op-
erating in a small area around the setpoint. Therefore, the Hill-curves can be
assumed to be linear in this area. With this method a switching mechanism
will have to be provided as different controllers will be used for the induction
and maintenance phase. The current states will then provide a new initial point
for the controller. As long as this point is in the feasible region for the sec-
ond controller, this can be used as a new initial point and there will not be any
problem for stability. In case this point is outside the feasible region, a predeter-
mined set op inputs needs to be applied until the controller is in a feasible region.

Another option is to use inverse Hill-curves to calculate certain states start-
ing from the measured outputs. This is possible as the dynamics of the patient
model itself are linear (this fact will also be used to check the stability of the
system, see Section 5.6). It are the "outputs" (i.e. effect-site concentrations)
of this linear system which then undergo a non-linear transformation to pro-
vide the outputs that are measured. If it is possible to calculate the outputs of
the linear system by inversing the non-linear transformation, a linearization of
the patient model is not required and an exact linear (pharmacokinetic) model
can be used in the MPC controller. The inverse non-linear (pharmacodynamic)
transformation is applied to the measured outputs of the non-linear system.
In practise, the pharmacodynamics and pharmacokinetics are effectively decou-
pled. A schematic of the full closed-loop control system using this method can
be found in Figure 4.2.
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Figure 4.2: Full closed-loop control system for the QIH-MPC scheme

The choice for this scheme also has implications for implementing adaptive con-
trol. As assumed in Section 2.2.1 of this thesis, the pharmacokinetics models
are accurate and not subject to intrapatient variability. This means the patient
model within the MPC controller remains constant during operation and only
the non-linear "state observer" needs to be adapted. To then study the robust
stability of the system, model uncertainties can be ruled out. However, the ro-
bustness against incorrect calculated states needs to be investigated thoroughly,
especially considering intrapatient variability. A possible way to do this is to
model the deviations as disturbances on the states.

The problem with this method is that the effect-site concentration of Remifen-
tanil has to be known due to its influence on the BIS-surface as well as neu-
romuscular blockade and mean arterial pressure. The effect-site concentration
can be calculated from the measured RASS, but a simple inversion of the RASS
transfer function leads to an improper system (the order of the numerator is
greater than the order of the denominator). Therefore, the RASS transfer func-
tion is simplified (for the calculation) to only its steady-state gain. This is
normally only valid during the maintenance phase for the nominal model with-
out disturbances (of RASS), but it will nevertheless be used in this thesis to
simplify the problem.
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4.2.2 Dynamic state constraints
The box constraints for the states depend on the value of the sensitivity param-
eter γ. Assuming the exact value of γ is known, the required box constraints
can be calculated. Consider the contour plot of the BIS-surface for γ = 1 in
Figure 4.3. During the maintenance phase in general anesthesia, the combined
effect of Propofol and Remifentanil is preferably kept between 40% (0.4) and
60% (0.6) with an ideal setpoint of 50% (0.5). To start the calculation one of the
borders needs to be chosen (i.e. a degree of freedom). The minimal effect-site
concentration of Remifentanil has been chosen in this thesis to be slightly below
the required concentration to reach the RASS-setpoint during the maintenance
phase (using the gain of the RASS transfer function). The intersections of this
fixed concentration with the 0.4 and 0.5 curves in the contour plot then gives
the values for the minimal and maximal effect-site concentration of Propofol
respectively. The maximum effect-site concentration of Remifentanil can then
be calculated by fixing the maximal effect-site concentration of Propofol and
finding the intersection with the 0.6 curve. During the induction phase, the
minimal concentrations are initially set to zero whereas the maximal concen-
trations are already set to the values calculated by the procedure above. The
minimal concentrations are also set to their calculated values as soon as the
measured BIS crosses the 0.4 curve, ensuring the value of BIS stays within the
interval 0.4-0.6. Whenever the value of BIS leaves this preferred interval (for
instance, due to a disturbance), the constraints are loosened to make sure the
controller can find a feasible solution and the BIS value returns to the interval
as quickly as possible. The extent to which the constraints are loosened (a fixed
number subtracted from the minimal concentration and added to the maximal
concentration) is a parameter that can be tuned. The results of this method
during simulation are further discussed in Section 5.3.2.

In the case of inter- and intrapatient variability, the constructed box (see Figure
4.3) can be shrunk or expanded depending on the evolution of the sensitivity
parameter γ. The contour plots of the nominal BIS-surface for different values
of γ can be found in Appendix B.2.1. Should the value of γ be not known, it is
recommended to use the box constraints of a conservative (i.e. large) value of
γ, but the loosening of a smaller value. It is important to note that the choice
for the smaller value of γ is also dependent on the delay to measure the value
of BIS. In any case, control performance will be worse depending on the extent
to which γ is unknown.
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Figure 4.3: Contour plot BIS-surface for γ = 1

4.2.3 Nociceptor stimulation and anesthesiologist in the
loop

The ’Nociceptor stimulation’-block in Figure 4.2 consists of an input from the
workspace which is then passed through the nociceptor transfer function of Sec-
tion 2.2.3. The input from the workspace is an example of a surgical stimulus.
For all simulations in Chapter 5, the surgical stimulus from Section 2.4 was
used. The output of the block is then added to the BIS-output of the system
as an unmeasured output disturbance. Unmeasured because the current state
of art does not yet allow a separate measurement of this disturbance.

The anticipatory reaction of the anesthesiologist is realised by the ’Anesthe-
siologist in the loop’-block (see Figure 4.2), implementing the signal defined in
Section 2.4. This signal is modelled to be a measured input disturbance and
added to the Propofol input signal calculated by the controller. Although the
anesthesiologist manually injects additional Propofol, it is reasonable to assume
that this dose can be measured by the device. The case in which this cannot be
assumed is further discussed in Section 5.3.2.
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Chapter 5

Simulation results and
discussion

Note: only the figures relevant for the discussion are included in this chapter.
The complete results of the simulations can be found in Appendix B.3.

5.1 Selection of prediction horizon
First of all, the prediction horizon Tp of the mpc controller is tuned depending
on the simulated control performance for the nominal model (using the nominal
values for the models in Chapter 2 and setting γ = 4). Although the nominal
model is not representative for all patients, it does provide a general indication
for the value of the prediction horizon. The sampling time δ for all simulations
is chosen to be 1 second as the controller needs to be able to respond quickly to
ensure the wellbeing of the patient.

When only hypnosis is controlled, a prediction horizon of 10 seconds is often
chosen (for instance, in [90]). Because the hemodynamic models now included
in the patient model have larger time constants, the prediction horizon also
needs to be larger to guarantee feasibility. In Figures 5.1 to 5.5, the prediction
horizon is varied between 10 and 500 seconds. From Figure 5.1 it is clear that
the setpoint for BIS will be reached for all values of Tp larger than 10. Only
the time in which the setpoint is reached varies, as the controller is tuned more
aggressively for smaller values of Tp. Looking however at Figures 5.2 to 5.5,
one can conclude that small values of Tp lead to instability of CO and MAP.
Furthermore, it is observed that the transition from instability to stability is
somewhere between 50 and 100 seconds. The simulation is therefore repeated
with prediction horizons between 50 and 100 seconds (see Figures 5.6 and 5.9.
From these figures it is evident that the prediction horizon needs to be at least
60 seconds to avoid instability in the induction phase. Note that this is only
valid for the nominal model (i.e. γ = 4) and only gives the border value.
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Thus, a more conservative choice of Tp = 150 seconds is chosen for this thesis
as Figures 5.2 to 5.5 show that from 150 seconds on the oscillations in CO and
MAP are much less profound. Moreover, 150 seconds is approximately the time
it takes for the value of BIS to reach its setpoint. Future research into the size
of the feasible regions will however allow for a much more precise estimation of
the prediction horizon (see Section 6.2).

Figure 5.1: BIS output for Tp ∈
[
10,50,100,150,350,500

]
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Figure 5.2: CO output for Tp ∈
[
10,50,100,150,350,500

]

Figure 5.3: MAP output for Tp ∈
[
10,50,100,150,350,500

]
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Figure 5.4: Dopamine input for Tp ∈
[
10,50,100,150,350,500

]

Figure 5.5: Sodium Nitroprusside for Tp ∈
[
10,50,100,150,350,500

]

53



Figure 5.6: CO output for Tp ∈
[
50,60,70,80,90,100

]

Figure 5.7: MAP output for Tp ∈
[
50,60,70,80,90,100

]
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Figure 5.8: Dopamine input for Tp ∈
[
50,60,70,80,90,100

]

Figure 5.9: Sodium Nitroprusside for Tp ∈
[
50,60,70,80,90,100

]
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5.2 Effect of the delay on a BIS-measurement
Any delay on the measurement of the value of BIS has a negative effect on the
performance of the controller. For very large delays, the controller can even lose
feasibility (and stability). In reality, there is indeed some delay on the measure-
ment of BIS because of the smoothing algorithms used by the BIS monitor as
well as the delay in adaptation of the artifact rejection pre-processing steps [92],
[11]. In this section, the effect of this delay on the control performance is inves-
tigated. The delay is varied between 0 (no delay) and 100 seconds (Figures 5.10
and 5.11). A larger delay than the latter results in a loss of feasibility for a pre-
diction horizon of 150 seconds. Apart from taking longer to reach the setpoint,
the curve is also much less smooth for larger delays. According to [93], the 95%
confidence interval for this delay is 12.7-27.6 seconds with a nominal value of
19.7 seconds. This nominal value will be used for the rest of the simulation in
this chapter.

Figure 5.10: BIS output for a delay on the measurement of BIS of 0,5,10,25
seconds
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Figure 5.11: BIS output for a delay on the measurement of BIS of 50,75,100
seconds

5.3 Nominal model
The nominal model uses the nominal values for the parameters of the models in
Chapter 2. Additional parameters for the controller, setpoints and constraints
can be found in Table 5.1 and equation 5.1 (weighting matrices for states and
inputs respectively). The performance of this controller is further discussed in
Sections 5.3.1 (setpoint following) and 5.3.2 (disturbance rejection).

Q =


50 0 0 0 0
0 50 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 50

 . βmpc

R =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


(5.1)
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Additional parameters Setpoints
γ(-) 4 BIS (%) 50

Tp (s) 150 RASS (-) -1.26
Tc (s) 1 CO ( ml

kg∗min ) 75
BIS delay (s) 19.7 MAP (mmHg) 85
βmpc (-) 0.38289 NMB (%) 10
κ (-) 0.0033

Constraints
Minima Maxima

BIS (%) 40 BIS (%) 60
RASS (-) -5 RASS (-) 4

CO ( ml
kg∗min ) 65 CO ( ml

kg∗min ) 110
MAP (mmHg) 65 MAP (mmHg) 110

NMB (%) 0 NMB (%) 100
Propofol infusion ( µg

kg∗min ) 0 Propofol infusion ( µg
kg∗min ) 3.5

Remifentanil infusion ( µg
kg∗min ) 0 Remifentanil infusion ( µg

kg∗min ) 2.5
Dopamine infusion ( µg

kg∗min ) 0 Dopamine infusion ( µg
kg∗min ) 10

SNP infusion ( µg
kg∗min ) 0 SNP infusion ( µg

kg∗min ) 10
Atracurium infusion ( µg

kg∗min ) 0 Atracurium infusion ( µg
kg∗min ) 15

Propofol concentration ( µgml ) 1.8655 Propofol concentration ( µgml ) 1.9737
Remifentanil concentration ( µgml ) 0.95 Remifentanil concentration ( µgml ) 1.0430

Table 5.1: Parameters, setpoints and constraints for nominal model

58



5.3.1 Control performance for the undisturbed nominal
model

As can be seen in Figures 5.12 to 5.16, the controller is able to reach all the
setpoints of the outputs with acceptable accuracy. There is only a deviation
from the setpoint for CO and MAP. As these deviations mirror each other, this
is explained by the antagonistic relation between CO and MAP. Furthermore, a
damped version of the oscillations present in the MAP output can also be found
in the CO output. To have a clearer view on the oscillations of BIS during the
induction phase, the same model is simulated for a shorter simulation time (see
Figures 5.17). It is evident that the oscillations during the induction phase are
caused by the delay on the measurement of BIS (see Figure 5.10).

For NMB, it is clinical practise to administer a bolus of 500 µg kg−1 at the
beginning of the surgery before the automatic controller is connected. The goal
is to achieve a rapid decline in muscle activity [91]. Therefore, it can be assumed
that the NMB is at 10% level at the beginning of the induction phase. Although
the NMB output of the patient model is initialised to be 10%, the states within
the steady-state NMB PK model are not (i.e. according to their internal states,
the NMB level is still 100%). This means that it takes some time before the
states have catched up. In reality, however, this is not the case. Hence, the
oscillation in Figure 5.16 will be much lower. This therefore presents a clear
shortcoming of the current simulator, but it can be remedied by initialising the
internal states of the steady-state PK model. The values for this initialisation
can be found by simulating the PK model separately and finding which state
values correspond to a steady-state NMB level of 10%.

Figure 5.12: BIS output for undisturbed nominal model
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Figure 5.13: RASS output for undisturbed nominal model

Figure 5.14: CO output for undisturbed nominal model

60



Figure 5.15: MAP output for undisturbed nominal model

Figure 5.16: NMB output for undisturbed nominal model
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Figure 5.17: BIS output for undisturbed nominal model - zoom
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5.3.2 Control performance for the disturbed nominal model
In this section, the nociceptor stimulation and anesthesiologist in the loop from
Section 2.4 are added to the same controller and model as simulated in Section
5.3.1. Figure 5.18 shows that the BIS output does leave the preferred interval
(indicated by the red lines) because of the disturbance, but not for long (ap-
proximately 25 seconds). Because the constraints are loosened as soon as the
value of BIS crosses one of the red lines, it is quickly controlled back to the
interval. After the BIS output has entered the interval, it is then gradually
controlled to the setpoint. Figure 5.19 also clearly demonstrates the advantage
of integrating the anesthesiologist in the loop as a measured disturbance. The
Propofol infusion calculated by the controller is immediately adapted to the
intervention by the anesthesiologist. In case the additional Propofol infusion
was only added as an unmeasured disturbance, the controller would adapt more
slowly. This would result in a more sluggish response, a larger deviation from
the setpoint and longer periods outside the preferred interval. As in Section
5.3.1, the simulation is repeated for a shorter simulation time (see Figures 5.20
and 5.21). These two figures demonstrate that the anticipatory reaction by the
anesthesiologist decreases the BIS output and that the reaction on the measured
disturbance is indeed instantaneous.

Figure 5.18: BIS output for disturbed nominal model
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Figure 5.19: Propofol input for disturbed nominal model

Figure 5.20: BIS output for disturbed nominal model - zoom

64



Figure 5.21: Propofol input for disturbed nominal model - zoom
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5.4 Interpatient variability
The nominal model of Section 5.3 is now varied by changing γ between 1 and
8. Each new value of gamma is treated as a separate patient for which the
simulation is repeated, either with (Section 5.4.2) or without (Section 5.4.1)
disturbance. It is assumed that the value of γ is exactly known and the closed-
loop controller is adapted according to γ.

5.4.1 Control performance for interpatient variability with-
out disturbances

The controller is able to reach to setpoint for BIS, independent of the value of
γ (see Figure 5.22). It can be seen that during the induction phase it takes
longer to reach a certain BIS-level for a larger γ. This can be explained by
looking at Figure 3.21: for a BIS-level larger than 50%, the required effect-site
concentration is higher for a larger value of γ. As the linear patient dynamics
are independent of γ, they have not changed. It will therefore take a longer
time to reach this higher concentration.

Figure 5.22: BIS output for interpatient variability - undisturbed

66



5.4.2 Control performance for interpatient variability in-
cluding disturbances

If the value of γ is exactly known so the controller can be adapted, the control
performance is very similar for all values of γ (see Figure 5.23). However, for
BIS-levels lower than 50%, patients with smaller values of γ will have a slower
decline in BIS-level than patients with larger values of γ. This means that
if the bolus injection administered by the anesthesiologist is calculated as is
done in this thesis, the BIS-level after the administration will be higher for
smaller values of γ. When the same surgical stimulus is then applied to all
patients, patients with a lower sensitivity will have a higher resulting BIS-level
than patients with a higher sensitivity. Other methods to calculate the bolus
injection can be explored, but this is ultimately completely dependent on the
anesthesiologist. From Figure 5.24, it is confirmed that the Propofol infusion
signal calculated by the controller is different for different values of γ.

Figure 5.23: BIS output for interpatient variability - disturbed
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Figure 5.24: Propofol for interpatient variability - disturbed

5.5 Intrapatient variability
In contrast to Section 5.4, the γ-value of one patient changes during the simula-
tion. This will be simulated for a change in γ from 1 to 8, with (Section 5.5.2)
or without (Section 5.5.1) disturbance. During the simulation, the change in γ
is not gradual but in steps of 1. The steps are equally spaced, i.e. a single value
of γ has a period of Tsim/8, with Tsim being the total simulation time. Once
again, it is assumed that the value of γ is exactly known at each time instant
and that the closed-loop controller is adapted according to γ.

5.5.1 Control performance for intrapatient variability with-
out disturbances

Despite the variation of γ, the setpoint for BIS is reached and maintained (see
Figure 5.25). Note that there is now an overshoot of the setpoint during the in-
duction phase. This leads to the conclusion that the induction phase is sensitive
to changing values of γ.
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Figure 5.25: BIS output for intrapatient variability - undisturbed

5.5.2 Control performance for intrapatient variability in-
cluding disturbances

Identical to the previous section, there is an overshoot of the setpoint during the
induction phase due to changing γ. These oscillation disappear at the beginning
of the maintenance phase but this does confirm the potential issue of changing
γ values during the induction phase. Consequently, it has to be made sure that
the maintenance phase has certainly begun before any surgical stimulus is ap-
plied.

Furthermore, jumps can be clearly seen in Figure 5.26 (see for instance yellow
ellips) if the BIS-level is above or below 50% whenever the value of γ changes.
When a step to a higher γ value occurs, there is an almost instantaneous jump
to higher BIS-levels. The amplitude of these jumps are smaller for BIS-levels
closer to 50%. Once again, this can be explained by looking at Figure 3.21. As
the effect-site concentrations remain constant, the amplitude of the jump when
changing γ increases for BIS-levels higher and lower than 50%, reaches a max-
imum and becomes zero for BIS-levels close to 100% and 0%. This discussion
demonstrates that the current level of BIS determines the effect a change in γ
has.
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Figure 5.26: BIS output for intrapatient variability - disturbed

5.6 Stability analysis
The stability of the nominal model is checked according the procedure described
by Chen and Allgöwer [80], as described in Section 4.1.2. Note that the Jacobian
linearization (A,B) of the system is exactly equal to the state and input matrix
of the system as the system is linear and time-invariant. It was shown in Section
3.3 that the state matrix for all patients in Table 2.1 is Hurwitz. Hence, the
system is asymptotically stable. This should not come as a surprise as it was
shown in Chapter 3 that the hemodynamic models are open-loop stable and the
pharmacokinetic models open- and closed-loop stable. Following the procedure
of Section 4.1.2, the subsequent results for α, K and P were obtained. Due to
its size, the matrix P can be found in Appendix B.4. As these results fulfil
all requirements described in [80], it is concluded that the resulting closed-loop
QIH-MPC controller is asymptotically stable within the feasible region.

α = 2.3119 ∗ 1020

eig(P ) ∈



3269.0 3184.0 2196.0 1951.0 1889.0
1729.0 1774.0 1352.0 1291.0 1219.0
740.9 706.3 564.0 572.2 436.2
410.5 299.6 262.2 156.4 136.6
173.1 99.0 147.5 92.42 40.03
76.29 64.11 52.32 35.83 0.8651
1.501 3.925 17.84 6.839 14.75
12.53 9.839 6.957 7.664


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KT =



−0.9022 0 0 0 0 −0.9022
−0.2085 0 0 0 0 −0.2085
−0.1818 0 0 0 0 −0.1818
−2.468 0 0 0 0 −2.468
−0.9815 0 0 0 0 −0.9815
−0.9934 0 0 0 0 −0.9934
−0.6437 0 0 0 0 −0.6437
−0.3646 0 0 0 0 −0.3646

0 −2.104 0 0 0 0
0 −0.2636 0 0 0 0
0 −0.025 0 0 0 0
0 −8.113 0 0 0 0
0 −3.109 0 0 0 0
0 −3.737 0 0 0 0
0 −3.668 0 0 0 0
0 −6.002 0 0 0 0
0 0 −0.7552 0 0 0
0 0 −1.386 0 0 0
0 0 −1.158 0 0 0
0 0 −0.8059 0 0 0
0 0 −0.6601 0 0 0
0 0 −1.007 0 0 0
0 0 −1.574 0 0 0
0 0 −1.691 0 0 0
0 0 −1.449 0 0 0
0 0 −0.8393 0 0 0
0 0 0 −1.029 0 0
0 0 0 −1.397 0 0
0 0 0 −1.38 0 0
0 0 0 −1.006 0 0
0 0 0 −0.7331 0 0
0 0 0 −0.5966 0 0
0 0 0 −1.104 0 0
0 0 0 −1.29 0 0
0 0 0 −1.163 0 0
0 0 0 −0.7008 0 0
0 0 0 0 −3.494 0
0 0 0 0 −7.563 0
0 0 0 0 −7.069 0


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Chapter 6

Conclusions

6.1 Concluding remarks
Automated drug delivery minimises the side-effects from over- and underdosing
by eliminating human errors and taking advantage of accurate infusion devices.
This results in reduced recovery times, more efficient drug usage and in the end,
a minimization of the healthcare costs [13]. In this thesis, the models for the
multiple effects of general anesthesia are discussed and evaluated in open-loop
to gain insight into the full patient model. Further, a Quasi-infinite Horizon
MPC algorithm has been devised to control the full patient model. In a last
step, this controller was tested in simulation, providing a proof-of-concept for
the automated control of general anesthesia.

Quasi-infinite Horizon MPC was chosen as it offers a computationally effec-
tive way of controlling general anesthesia. Moreover, it provides a clear path
to verify the stability of the controller using the individual model of the pa-
tient. The stability of the controller can be checked in simulation studies for
a database of patients, something which has already been done in this thesis
for a limited set of data. Furthermore, Quasi-infinite Horizon MPC is suited
for adaptive control and has inherent robustness against disturbances, elimi-
nating the need for robust MPC schemes. Using dynamical constraints for the
effect-site concentrations, setpoints are reached and the control performance is
generally as desired, even when considering inter- and intrapatient variability.
Further research is however required to investigate the size of the feasible region
of the controller as both stability and robustness fundamentally depend on the
controller being able to find a feasible solution.
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6.2 Suggestions for further research
In this section, some suggestions for further research are given based on the
results of this thesis.

1. Modelling the effect of Dopamine on the effect-site concentra-
tion of Propofol and integrating it in the patient model
There is one component still missing from the patient model of general
anesthesia, namely the effect of Dopamine on the effect-site concentration
of Propofol. With Dopamine, the cardiac output is increased, thereby in-
creasing the clearance of the Propofol from the patient’s body [40]. Cur-
rently, no model for this effect is available [21]. Therefore, this effect still
needs to be modelled and integrated in the patient model.

2. Models based on fractional calculus
Current research (for instance [65]) indicates fractional calculus can be
used to model effects in anesthesia. New fractional models for the depth
of anesthesia can be developed. Afterwards, they can be integrated in the
simulation to compare their performance with the traditional models.

3. Feasible regions
As stated above in Section 6.1, both stability and robustness depend on
the ability of the controller to find a feasible solution. It is therefore
important to be able to determine how large the feasible region is in any
given situation and which parameters mostly affect the feasibility of the
control problem. This means a formal method to determine the feasible
region needs to be derived and a sensitivity analysis needs to be conducted.
From the work of Yu and Allgöwer [83], it is already clear that this will
certainly depend on the performance parameters of the controller (i.e.
prediction horizon, control horizon) as well as the choice of the terminal
set and terminal penalty function. As described in Section 4.1.2, the
terminal region is not unique. It depends on the obtained state feedback
matrix K and the choice of κ. It is claimed in [80] that it is very difficult
or even impossible to find the largest feasible region for a given nonlinear
system. For this application, it is however not the goal to find the largest
feasible region, but to find a method to predict the size of the feasible
region. This way, it can be tuned taking into account the desired control
performance.

4. Robustness properties of QIH-MPC
The robustness properties of the QIH-MPC scheme are discussed in Sec-
tion 4.1.3. Further research is required to determine how robust it is,
taking into account the feasible region. Model uncertainties and inaccura-
cies of the chosen state estimator demand extra attention, especially when
implementing adaptive control.
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5. Adaptive control
As explained in Chapter 2, a patient gradually changes during operation
(i.e. intrapatient variability). This means one cannot hope to attain
the desired control performance using a controller with a nominal patient
model. Hence, adaptive control is required [21].

6. Non-convex optimisation within the feasible region
In Section 4.2, it is explained that a normal local solver cannot be used for
QIH-MPC of a non-convex nonlinear system as the local optimum may
be outside the feasible region. Rather, a local solver which uses multi-
ple starting points (ideally in the region of attraction of multiple optima
within the feasible region) or a global solver need to be used. Further
research has to determine which solver can ideally be used, considering
the required computation time for each iteration.

7. Computational performance (CPU time)
So far, no thought has been given to the real-time feasibility of the con-
trol scheme. As stated in [79], this is one of the major challenges facing
(nonlinear) MPC. Considering the identification algorithms that will be
added when implementing adaptive control, the computation time for one
iteration will only increase. Therefore, it is good to check the employed
algorithms for their computational efficiency. The prediction and control
horizon can also be tuned to achieve real-time feasibility. Note that in
that case the choice of these two horizons not only affects the real-time
feasibility, but also the stability and robustness of the controller.
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Appendix A

User manual for the Simulink
model

A.1 Introduction
The goal of this appendix is to provide an overview and explanation of all

functions blocks in the patient model for general anesthesia. To start, please
make sure you have the following files in your folder: ’Initialisation_main.m’,
’hypnosis_model.m’, ’hemodyn_model.m’, ’dist_model.m’, ’BISsurface.m’,
’General_Anesthesia_Patient_Model.mdl’. In case some of these files are miss-
ing or have been renamed, please refer to your mentor or predecessor for more
info. A detailed description of the purpose of each file is given below.

A.2 Initialisation
Before the first simulation, run ’Initialisation_main.m’. This will initialise

all constants as well as the state space models used in the Simulink model.
More specifically, it initialises the controller sampling time, simulation time and
certain parameters necessary for the calculation of the surface (more informa-
tion can be found in the section on the calculation of this surface). Finally,
it performs the constant declaration for all the anesthetic, hemodynamic and
disturbance models implemented in ’hypnosis_model.m’, ’hemodyn_model.m’
and ’dist_model.m’, which are run subsequently. If a set of patients needs to
be simulated, it suffices to alter the constants in this file. They do not have to
be changed by ’hand’ in the files with the models itself. Currently, the values of
the variables are taken from literature and corresponds to the population mean.
Adaptation schemes and parameter intervals are available in literature and can
be found in chapter 2 of this thesis.

In case of errors such as ’The expression x has a syntax error’ or ’Undefined
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function or variable y’, the initialisation has been forgotten. To remedy this,
simply run ’Initialisation_main.m’.

A.2.1 Hypnosis_model.m
This .m-file initialises all the transfer functions and state space models nec-

essary for the modelling of the three parts of anesthesia: hypnosis, analgesia
and neuromuscular blockade (in that order). Every line in the MATLAB-file is
commented in order to be clear as to what each line does.

The only exception is the transfer function from the Remifentanil effect-site con-
centration to the RASS sedation score. There is a concentration-dependent gain
which is implemented directly in Simulink. To alter this gain, the MATLAB-
function in the subsystem ’RASS PK model’ needs to be adapted.

A.2.2 Hemodyn_model.m
This .m-file initialises all the transfer functions for the Cardiac Output (CO)

and Mean Arterial Pressure (MAP).

The transfer function from the Remifentanil effect-site concentration to MAP
also has a concentration-dependent gain. Once again, this is implemented di-
rectly in Simulink, in the subsystem ’MAP PK model’.

A.2.3 Distmodel.m
This last .m-file provides all the transfer functions for the modelling of dis-

turbances. A signal is created, which is filtered both in the forward and reverse
direction, to be passed through the nociceptor pathway model (also provided).
Finally, there is the option of an additional bolus signal , which could be a bolus
administered by the anesthesiologist before a surgical stimulus. At present, the
code for this bolus is added as a comment in the bottom of the file.
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A.3 Inputs
There are six inputs in the Simulink-model: stimulation (nociception), Propo-

fol, Remifentanil, Dopamine, Sodium Nitroprusside and Atracurium.

A.3.1 Stimulation (Nociception)
The input disturbance (see Figure A.1) is fed through the nociceptor pathway
model, which was initialised in the previous section.

Figure A.1: Stimulation input

A.3.2 Propofol

Figure A.2: Propofol input

The Propofol input (see Figure A.2) is passed through the state space PK-model
defined in the previous section. The ’To Workspace’ block ’CePrs’ exports the
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evolution of the Propofol-concentration in the blood to the MATLAB-workspace
after the simulation is complete.

A.3.3 Remifentanil

Figure A.3: Remifentanil input

The implementation of Remifentanil is exactly the same as for Propofol (see
Figure A.3). The Simulink model also has PK-models from Remifentanil to
RASS and MAP. Once again, these models were defined in the previous section.

A.3.4 Dopamine and Sodium Nitroprusside
As the Cardiac Output in a normal patient is different from zero, the cardiac
output is initialised at a constant value (70 ml/(kg*min)). The same is true for
the Mean Arterial Pressure (80 mmHg). The Dopamine and Sodium Nitroprus-
side inputs are passed through the transfer functions gij, with i = 1,2 and j =
1,2 (see Figure A.4).
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Figure A.4: Dopamine and Sodium Nitroprusside inputs

A.3.5 Atracurium
Just as for Propofol and Remifentanil, Atracurium is passed through a PK-
model initialised in the previous section (see Figure A.5).
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Figure A.5: Atracurium

A.4 Hill functions
All the Hill functions in the model (Propofol, Remifentanil, Remifentanil

to MAP, Remifentanil to NMB, Atracurium) are Fcn-blocks. The expression
is hard-coded in the block itself, the values for the variables were set during
initialisation. Together with the concentration-dependent gain in the second
section are these the only models that are just implemented in the Simulink-
model itself.

A.5 Outputs
The system has seven outputs, i.e. ’Nociception output’, ’Bispectral index’,

’RASS’, ’Cardiac Output’, ’MAP’, ’NMB’ and the ’Surface Plots’. The calcula-
tion of these outputs is done in a straightforward way, summing the appropriate
output signals of the corresponding Hill functions. This is done in the two user-
defined MATLAB-functions. All the outputs are visualised using Scope-blocks
(except the ’Surface plots’ which are terminated, more information about their
calculation and plotting below).
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A.6 Surface Calculation
The surface is calculated using the same model for the interaction between
Propofol and Remifentanil as in Section 2.2.2. The calculation is done in a sub-
system block to keep the overview. The range for which the surface is calculated
depends on the maximum concentration of the past time steps. This means that
at each time step, it needs to be checked whether there is a new maximum and
if so, it needs to be stored. Note that the output port for the 3D plot is being
plotted at runtime and the values of the corresponding matrix are exported to
the workspace at the end of the simulation. To change the parameters of this
3D Hill curve, one can easily change the constants initialised in section 2.

A.6.1 Subsystem ’Surface calculation’
Open the subsystem. The system itself has two inputs (the effect-site concentra-
tions of Propofol CeP and Remifentanil CeR) and two outputs (Bispectral index
BIS and 3D Plot). Here, CeP, CeR and BIS are signals versus time whereas
3D Plot is a 3D-matrix (i.e. the requested surface). In the middle, there is a
MATLAB-function which will update the maximum concentrations if necessary
as well as calculate the new surface.

At each time step, the current values of CeP and CeR, the known values for
the maximum concentrations CePmax and CeRmax (remember that they were
initialised in ’Initialisation_main.m’), the current simulation time and the nec-
essary constants are used as an input for the MATLAB-function. For computa-
tional efficiency, the surface is only recalculated at certain timesteps. It has a
default value of 1 (i.e. no timesteps are skipped).

Using the constants as an explicit input is unavoidable as a user-defined MATLAB-
function in Simulink cannot read them directly from the workspace. The only
constants still hard-coded in the MATLAB-function itself are the sampling time,
simulation time and the step size needed for computational efficiency. The rea-
son being that they determine the size of the 3D-matrix, which is required to
be known for plotting.

90



The MATLAB-function outputs the (new) values of CePmax and CeRmax as
well as the current value of the BIS-signal (using only the current values of CeP
and CeR) and the ’surface’. Using ’To Workspace’ blocks, these signals are
exported as timeseries to the MATLAB-workspace after the simulation so that
they can be used for debugging or comparison.

It is however crucial to note that Date Store Read/Write/Memory blocks are
used for the online transmission of the values of CePmax and CeRmax. This
is necessary as Simulink does not allow workspace-variables to change during
simulation and a simple feedback loop results in an error. These blocks are
therefore to the author’s knowledge the only ones that can be used to update
the parameters while the simulation is ongoing.

A.6.2 MATLAB-function ’3D-calculations’
Open the MATLAB-function within the subsystem. The code for the MATLAB-

function is divided into four sections: ’adaptation of maxima’, ’constant dec-
laration’, ’2D calculations’ and ’3D calculations’. The first section determines
whether the maxima need to change. In the second section, the constants for
the models as in Section 2.2.2 are initialised. The third section calculates the
current value of the BIS-signal (note: this is a single value). Finally, the fourth
section determines the 3D-matrix which gives the surface when plotted.

The first three sections do not involve real calculations, but this is different
for the fourth section. In the fourth section, there are two row vectors created
(CePr and CeRr), corresponding with the possible values of CeP and CeR re-
spectively. The resolution of these two vectors depends on both the simulation
time and the sampling time. Using the model from Section 2.2.2 and a for-loop,
the resulting BIS-values are calculated for every combination within CePr and
CeRr. This result is then concatenated with the corresponding values within
CePr and CeRr to create the 3D-object that is the surface.
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To confirm that the surface is being calculated correctly and that it indeed
corresponds with those found in literature, a real-time visualisation should be
used. Alternatively, a Stop Callback-function could be used to call upon an
external MATLAB .m-file (i.e. ’BISsurface.m’ see section 1) to calculate the
surface after the simulation and this is also implemented, but that surface is
not online available. There is however a problem when trying to implement a
real-time 3D visualisation as Simulink does not support the necessary plotting
capabilities from MATLAB. This results in the following error: ’The function
X is not supported for standalone code generation’.

In order to circumvent this problem, one needs to understand how the Simulink
coder works at runtime. When compiling, the Simulink model is converted
into C/C++ code. The real problem is that the Simulink coder does not
generate code for functions from the MATLAB engine. Therefore, if these
functions could be neglected during code generation, there wouldn’t be an
error. This is done by declaring the plotting function (for example ’surf’)
as an extrinsic function (for more info about extrinsic functions, please refer
to https://nl.mathworks.com/help/simulink/ug/calling-matlab-functions.html)
with the command coder.extrinsic(’function X’). Now, the function will not re-
sult in code generation and the MATLAB engine will instead execute the call,
resulting in a real-time 3D visualisation.
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Appendix B

Complete results simulation
study

In this appendix the full results of all the simulations discussed in the different
chapters of this thesis are included for future reference.

B.1 Chapter 3

B.1.1 Dynamics of pharmacokinetic models

Figure B.1: Bode plot Propofol Male Age
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Figure B.2: Phase margin Propofol Male Age

Figure B.3: Bode plot Propofol Male Height
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Figure B.4: Phase margin Propofol Male Height

Figure B.5: Bode plot Propofol Male Weight
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Figure B.6: Phase margin Propofol Male Weight

Figure B.7: Bode plot Propofol Female Age
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Figure B.8: Phase margin Propofol Female Age

Figure B.9: Bode plot Propofol Female Height
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Figure B.10: Phase margin Propofol Female Height

Figure B.11: Bode plot Propofol Female Weight
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Figure B.12: Phase margin Propofol Female Weight

Figure B.13: Bode plot Remifentanil Male Age
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Figure B.14: Phase margin Remifentanil Male Age

Figure B.15: Bode plot Remifentanil Male Height
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Figure B.16: Phase margin Remifentanil Male Height

Figure B.17: Bode plot Remifentanil Male Weight

101



Figure B.18: Phase margin Remifentanil Male Weight

Figure B.19: Bode plot Remifentanil Female Age
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Figure B.20: Phase margin Remifentanil Female Age

Figure B.21: Bode plot Remifentanil Female Height
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Figure B.22: Phase margin Remifentanil Female Height

Figure B.23: Bode plot Remifentanil Female Weight
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Figure B.24: Phase margin Remifentanil Female Weight

Figure B.25: NMB SS PK model alpha
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B.1.2 Dynamics of hemodynamic models

Figure B.26: Bode plot g11 K11

Figure B.27: Gain and phase margin g11 K11
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Figure B.28: Bode plot g11 τ11

Figure B.29: Gain and phase margin g11 τ11

107



Figure B.30: Bode plot g11 T11

Figure B.31: Gain and phase margin g11 T11
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Figure B.32: Bode plot g12 K12

Figure B.33: Gain and phase margin g12 K12
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Figure B.34: Bode plot g12 τ12

Figure B.35: Gain and phase margin g12 τ12
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Figure B.36: Bode plot g12 T12

Figure B.37: Gain and phase margin g12 T12
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Figure B.38: Bode plot g21 K21

Figure B.39: Gain and phase margin g21 K21
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Figure B.40: Bode plot g21 τ21

Figure B.41: Gain and phase margin g21 τ21
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Figure B.42: Bode plot g21 T21

Figure B.43: Gain and phase margin g21 T21
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Figure B.44: Bode plot g22 K22

Figure B.45: Gain and phase margin g22 K22
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Figure B.46: Bode plot g22 τ22

Figure B.47: Gain and phase margin g22 τ22
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Figure B.48: Bode plot g22 T22

Figure B.49: Gain and phase margin g22 T22
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B.1.3 Hill-curve variation

Figure B.50: Hill-curve C50 variation

Figure B.51: Hill-curve γ variation
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B.2 Chapter 4

B.2.1 Contour plots BIS-surface

Figure B.52: Contour plot BIS-surface for γ = 1
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Figure B.53: Contour plot BIS-surface for γ = 2

Figure B.54: Contour plot BIS-surface for γ = 3

120



Figure B.55: Contour plot BIS-surface for γ = 4

Figure B.56: Contour plot BIS-surface for γ = 5
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Figure B.57: Contour plot BIS-surface for γ = 6

Figure B.58: Contour plot BIS-surface for γ = 7
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Figure B.59: Contour plot BIS-surface for γ = 8
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B.3 Chapter 5

B.3.1 Selection of prediction horizon
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Figure B.60: BIS output for Tp ∈
[
10,50,100,150,350,500

]

Figure B.61: RASS output for Tp ∈
[
10,50,100,150,350,500

]
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Figure B.62: CO output for Tp ∈
[
10,50,100,150,350,500

]

Figure B.63: MAP output for Tp ∈
[
10,50,100,150,350,500

]
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Figure B.64: NMB output for Tp ∈
[
10,50,100,150,350,500

]

Figure B.65: Propofol input for Tp ∈
[
10,50,100,150,350,500

]
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Figure B.66: Remifentanil input for Tp ∈
[
10,50,100,150,350,500

]

Figure B.67: Dopamine input for Tp ∈
[
10,50,100,150,350,500

]
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Figure B.68: Sodium Nitroprusside input for Tp ∈
[
10,50,100,150,350,500

]

Figure B.69: Atracurium input for Tp ∈
[
10,50,100,150,350,500

]
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Figure B.70: BIS output for Tp ∈
[
50,60,70,80,90,100

]

Figure B.71: RASS output for Tp ∈
[
50,60,70,80,90,100

]
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Figure B.72: CO output for Tp ∈
[
50,60,70,80,90,100

]

Figure B.73: MAP output for Tp ∈
[
50,60,70,80,90,100

]
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Figure B.74: NMB output for Tp ∈
[
50,60,70,80,90,100

]

Figure B.75: Propofol input for Tp ∈
[
50,60,70,80,90,100

]
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Figure B.76: Remifentanil input for Tp ∈
[
50,60,70,80,90,100

]

Figure B.77: Dopamine input for Tp ∈
[
50,60,70,80,90,100

]
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Figure B.78: Sodium Nitroprusside input for Tp ∈
[
50,60,70,80,90,100

]

Figure B.79: Atracurium input for Tp ∈
[
50,60,70,80,90,100

]
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B.3.2 Effect delay BIS-measurement
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Figure B.80: BIS output for a delay on the measurement of BIS of 0,5,10,25
seconds

Figure B.81: RASS output for a delay on the measurement of BIS of 0,5,10,25
seconds
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Figure B.82: CO output for a delay on the measurement of BIS of 0,5,10,25
seconds

Figure B.83: MAP output for a delay on the measurement of BIS of 0,5,10,25
seconds
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Figure B.84: NMB output for a delay on the measurement of BIS of 0,5,10,25
seconds

Figure B.85: Propofol input for a delay on the measurement of BIS of 0,5,10,25
seconds
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Figure B.86: Remifentanil input for a delay on the measurement of BIS of
0,5,10,25 seconds

Figure B.87: Dopamine input for a delay on the measurement of BIS of 0,5,10,25
seconds
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Figure B.88: Sodium Nitroprusside input for a delay on the measurement of
BIS of 0,5,10,25 seconds

Figure B.89: Atracurium input for a delay on the measurement of BIS of
0,5,10,25 seconds

140



Figure B.90: BIS output for a delay on the measurement of BIS of 50,75,100
seconds

Figure B.91: RASS output for a delay on the measurement of BIS of 50,75,100
seconds
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Figure B.92: CO output for a delay on the measurement of BIS of 50,75,100
seconds

Figure B.93: MAP output for a delay on the measurement of BIS of 50,75,100
seconds
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Figure B.94: NMB output for a delay on the measurement of BIS of 50,75,100
seconds

Figure B.95: Propofol input for a delay on the measurement of BIS of 50,75,100
seconds
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Figure B.96: Remifentanil input for a delay on the measurement of BIS of
50,75,100 seconds

Figure B.97: Dopamine input for a delay on the measurement of BIS of 50,75,100
seconds
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Figure B.98: Sodium Nitroprusside input for a delay on the measurement of
BIS of 50,75,100 seconds

Figure B.99: Atracurium input for a delay on the measurement of BIS of
50,75,100 seconds
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B.3.3 Undisturbed nominal model
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Figure B.100: BIS output for undisturbed nominal model

Figure B.101: RASS output for undisturbed nominal model
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Figure B.102: CO output for undisturbed nominal model

Figure B.103: MAP output for undisturbed nominal model
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Figure B.104: NMB output for undisturbed nominal model

Figure B.105: Propofol input for undisturbed nominal model
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Figure B.106: Remifentanil input for undisturbed nominal model

Figure B.107: Dopamine input for undisturbed nominal model
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Figure B.108: Sodium Nitroprusside input for undisturbed nominal model

Figure B.109: Atracurium input for undisturbed nominal model

151



Figure B.110: BIS output for undisturbed nominal model - zoom

Figure B.111: RASS output for undisturbed nominal model - zoom
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Figure B.112: CO output for undisturbed nominal model - zoom

Figure B.113: MAP output for undisturbed nominal model - zoom
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Figure B.114: NMB output for undisturbed nominal model - zoom

Figure B.115: Propofol input for undisturbed nominal model - zoom
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Figure B.116: Remifentanil input for undisturbed nominal model - zoom

Figure B.117: Dopamine input for undisturbed nominal model - zoom
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Figure B.118: Sodium Nitroprusside input for undisturbed nominal model -
zoom

Figure B.119: Atracurium input for undisturbed nominal model - zoom
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B.3.4 Disturbed nominal model
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Figure B.120: BIS output for disturbed nominal model

Figure B.121: RASS output for disturbed nominal model
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Figure B.122: CO output for disturbed nominal model

Figure B.123: MAP output for disturbed nominal model
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Figure B.124: NMB output for disturbed nominal model

Figure B.125: Propofol input for disturbed nominal model
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Figure B.126: Remifentanil input for disturbed nominal model

Figure B.127: Dopamine input for disturbed nominal model
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Figure B.128: Sodium Nitroprusside input for disturbed nominal model

Figure B.129: Atracurium input for disturbed nominal model
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Figure B.130: BIS output for disturbed nominal model - zoom

Figure B.131: RASS output for disturbed nominal model - zoom
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Figure B.132: CO output for disturbed nominal model - zoom

Figure B.133: MAP output for disturbed nominal model - zoom

164



Figure B.134: NMB output for disturbed nominal model - zoom

Figure B.135: Propofol input for disturbed nominal model - zoom
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Figure B.136: Remifentanil input for disturbed nominal model - zoom

Figure B.137: Dopamine input for disturbed nominal model - zoom
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Figure B.138: Sodium Nitroprusside input for disturbed nominal model - zoom

Figure B.139: Atracurium input for disturbed nominal model - zoom
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B.3.5 Interpatient variability without disturbance

Figure B.140: BIS output for interpatient variability - undisturbed

Figure B.141: RASS output for interpatient variability - undisturbed
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Figure B.142: CO output for interpatient variability - undisturbed

Figure B.143: MAP output for interpatient variability - undisturbed
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Figure B.144: NMB output for interpatient variability - undisturbed

Figure B.145: Propofol input for interpatient variability - undisturbed
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Figure B.146: Remifentanil input for interpatient variability - undisturbed

Figure B.147: Dopamine input for interpatient variability - undisturbed

171



Figure B.148: Sodium Nitroprusside input for interpatient variability - undis-
turbed

Figure B.149: Atracurium input for interpatient variability - undisturbed
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B.3.6 Interpatient variability with disturbances

Figure B.150: BIS output for interpatient variability - disturbed

Figure B.151: RASS output for interpatient variability - disturbed
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Figure B.152: CO output for interpatient variability - disturbed

Figure B.153: MAP output for interpatient variability - disturbed
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Figure B.154: NMB output for interpatient variability - disturbed

Figure B.155: Propofol input for interpatient variability - disturbed
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Figure B.156: Remifentanil input for interpatient variability - disturbed

Figure B.157: Dopamine input for interpatient variability - disturbed
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Figure B.158: Sodium Nitroprusside input for interpatient variability - disturbed

Figure B.159: Atracurium input for interpatient variability - disturbed
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B.3.7 Intrapatient variability without disturbance

Figure B.160: BIS output for intrapatient variability - undisturbed

Figure B.161: RASS output for intrapatient variability - undisturbed
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Figure B.162: CO output for intrapatient variability - undisturbed

Figure B.163: MAP output for intrapatient variability - undisturbed
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Figure B.164: NMB output for intrapatient variability - undisturbed

Figure B.165: Propofol input for intrapatient variability - undisturbed
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Figure B.166: Remifentanil input for intrapatient variability - undisturbed

Figure B.167: Dopamine input for intrapatient variability - undisturbed
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Figure B.168: Sodium Nitroprusside input for intrapatient variability - undis-
turbed

Figure B.169: Atracurium input for intrapatient variability - undisturbed
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B.3.8 Intrapatient variability with disturbances

Figure B.170: BIS output for intrapatient variability - disturbed

Figure B.171: RASS output for intrapatient variability - disturbed
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Figure B.172: CO output for intrapatient variability - disturbed

Figure B.173: MAP output for intrapatient variability - disturbed
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Figure B.174: NMB output for intrapatient variability - disturbed

Figure B.175: Propofol input for intrapatient variability - disturbed
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Figure B.176: Remifentanil input for intrapatient variability - disturbed

Figure B.177: Dopamine input for intrapatient variability - disturbed
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Figure B.178: Sodium Nitroprusside input for intrapatient variability - dis-
turbed

Figure B.179: Atracurium input for intrapatient variability - disturbed
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B.4 Stability analysis

P (:, 1 : 7) =



55.26 7.634 4.844 −6.004 −17.31 −41.08 −10.37
7.634 55.17 8.37 4.245 15.69 3.789 −30.76
4.844 8.37 4.258 2.412 5.797 −5.469 −13.15
−6.004 4.245 2.412 8.514 11.85 −4.409 −8.362
−17.31 15.69 5.797 11.85 34.14 −1.735 −38.9
−41.08 3.789 −5.469 −4.409 −1.735 75.28 −2.594
−10.37 −30.76 −13.15 −8.362 −38.9 −2.594 115.9
1.151 −54.11 −3.73 2.847 −0.2034 −29.82 −7.616

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


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P (:, 8 : 14) =



1.151 0 0 0 0 0 0
−54.11 0 0 0 0 0 0
−3.73 0 0 0 0 0 0
2.847 0 0 0 0 0 0
−0.2034 0 0 0 0 0 0
−29.82 0 0 0 0 0 0
−7.616 0 0 0 0 0 0
96.68 0 0 0 0 0 0

0 1181.0 254.7 6.752 33.11 −62.79 −507.7
0 254.7 517.2 31.24 160.3 266.8 158.9
0 6.752 31.24 55.2 6.231 8.595 9.131
0 33.11 160.3 6.231 120.5 185.3 −26.37
0 −62.79 266.8 8.595 185.3 517.7 −11.59
0 −507.7 158.9 9.131 −26.37 −11.59 1244.0
0 −266.8 −186.7 16.58 −174.4 −635.4 −25.7
0 −144.4 −393.9 −29.12 −64.69 −16.15 −465.0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


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P (:, 15 : 21) =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−266.8 −144.4 0 0 0 0 0
−186.7 −393.9 0 0 0 0 0
16.58 −29.12 0 0 0 0 0
−174.4 −64.69 0 0 0 0 0
−635.4 −16.15 0 0 0 0 0
−25.7 −465.0 0 0 0 0 0
1703.0 −362.1 0 0 0 0 0
−362.1 680.0 0 0 0 0 0

0 0 632.3 −71.1 −916.4 149.6 104.5
0 0 −71.1 903.9 −124.8 −995.2 49.52
0 0 −916.4 −124.8 2008.0 −225.3 −318.0
0 0 149.6 −995.2 −225.3 1884.0 −804.7
0 0 104.5 49.52 −318.0 −804.7 1688.0
0 0 120.9 44.53 123.9 −107.2 −28.22
0 0 −91.27 −309.7 308.9 374.9 −66.72
0 0 298.5 −249.8 −856.5 298.6 109.3
0 0 47.74 426.4 −237.1 −467.8 −108.6
0 0 −128.1 27.16 156.9 262.1 −137.2
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


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P (:, 22 : 28) =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

120.9 −91.27 298.5 47.74 −128.1 0 0
44.53 −309.7 −249.8 426.4 27.16 0 0
123.9 308.9 −856.5 −237.1 156.9 0 0
−107.2 374.9 298.6 −467.8 262.1 0 0
−28.22 −66.72 109.3 −108.6 −137.2 0 0
252.1 −30.39 −328.7 36.84 61.44 0 0
−30.39 624.6 −92.45 −605.5 69.7 0 0
−328.7 −92.45 1166.0 −158.4 −500.2 0 0
36.84 −605.5 −158.4 1030.0 −255.2 0 0
61.44 69.7 −500.2 −255.2 950.2 0 0

0 0 0 0 0 209.2 −26.79
0 0 0 0 0 −26.79 567.4
0 0 0 0 0 −295.4 −70.02
0 0 0 0 0 30.09 −451.5
0 0 0 0 0 19.14 16.72
0 0 0 0 0 59.45 58.52
0 0 0 0 0 −52.54 −346.9
0 0 0 0 0 166.8 −146.0
0 0 0 0 0 7.755 298.0
0 0 0 0 0 −44.84 −4.383
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


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P (:, 29 : 35) =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−295.4 30.09 19.14 59.45 −52.54 166.8 7.755
−70.02 −451.5 16.72 58.52 −346.9 −146.0 298.0
886.0 −130.5 −157.1 151.5 184.3 −633.0 −67.55
−130.5 931.0 −469.7 −70.22 288.9 64.92 −165.0
−157.1 −469.7 879.1 −23.06 −27.78 42.94 −137.3
151.5 −70.22 −23.06 247.8 −28.88 −385.8 42.35
184.3 288.9 −27.78 −28.88 757.6 −83.52 −601.3
−633.0 64.92 42.94 −385.8 −83.52 1178.0 −111.9
−67.55 −165.0 −137.3 42.35 −601.3 −111.9 703.0
54.89 23.76 219.0 66.32 50.24 −347.8 −140.7

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


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P (:, 36 : 39) =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−44.84 0 0 0
−4.383 0 0 0
54.89 0 0 0
23.76 0 0 0
219.0 0 0 0
66.32 0 0 0
50.24 0 0 0
−347.8 0 0 0
−140.7 0 0 0
440.5 0 0 0

0 343.2 −29.46 −163.9
0 −29.46 110.7 −50.47
0 −163.9 −50.47 147.7


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