

BACHELOR THESIS

Bluetooth in Digital Mobile Forensics

Can pairing requests be found on Bluetooth devices?

Bachelor Applied Computer Science

Specialization Computer & Cyber Crime Professional

Academic Year 2019 - 2020

Student Nick Casier

Internal Mentor Daan Pareit (Howest)

External Promotor Kris Carlier (BeDefence)

BACHELOR THESIS

Bluetooth in Digital Mobile Forensics

Can pairing requests be found on Bluetooth devices?

Bachelor Applied Computer Science

Specialization Computer & Cyber Crime Professional

Academic Year 2019 - 2020

Student Nick Casier

Internal Mentor Daan Pareit (Howest)

External Promotor Kris Carlier (BeDefence)

Toelating tot bruikleen / Permission of use

De auteur (student) geeft de toelating deze bachelorproef voor consultatie beschikbaar te stel-

len en delen van de bachelorproef te kopiëren voor persoonlijk gebruik. Elk ander gebruik valt

onder de bepalingen van het auteursrecht, in het bijzonder met betrekking tot de verplichting

de bron uitdrukkelijk te vermelden bij het aanhalen van resultaten uit deze bachelorproef.

The author (student) gives permission to make this bachelor dissertation available for consul-

tation and to copy parts of this bachelor dissertation for personal use. In all cases of other use,

the copyright terms have to be respected, in particular with regard to the obligation to state

explicitly the source when quoting results, findings and/or conclusions from this bachelor dis-

sertation.

9/06/2020

Preface

When I chose to study Computer and Cyber Crime Professional at Howest in Bruges, my

main motivation was that I wanted to know more about cybercrime. In my opinion, this is one

of the most important domains in the I.T.-world. When security is correctly implemented, a lot

of problems and issues can be avoided.

Over the years I learned that I.T.-security is a broad domain. During my education I came in

touch with the different subdomains within I.T.-security. One of these domains intrigued me

the most. This was Digital Forensics. Being able to find data that seemed lost or that

seemingly does not exist fascinated me.

My fascination for digital forensics was the driving factor to choose a forensic internship at

BeDefence.

This brings me seamlessly to the people I would like to thank.

In the first place I want to thank BeDefence and, in particular, Kris Carlier, Senior Captain

(OF3) from the General Intelligence and Security Service of the CYBER division at

BeDefence for the wonderful internship. Also the digital forensic team of the CYBER division

at BeDefence, in particular Pieter Coeck, digital forensics investigator at BeDefence for

guidance, tips and tricks, advise and information. It were difficult times due to COVID-19. He

did everything in his power to provide me with extra test devices. Unfortunately, this was not

possible and I was forced to perform all test on my own two personal devices. Also, I would

like to thank my internal mentor, Ir. Daan Pareit of HoWest for the guidance during the writing

of this thesis and proofreading it. Furthermore I would like to thank Kawtar Ben Dahman, Nick

Foulon, Dylan Rener and Stijn Tassenoy for the support and friendship during our internship.

As well as my best friend, Mathias Standaert for providing general help and advice and his

creative contributions in helping to create figures as a visualisation for this dissertation. I want

to thank Marc Staelens, for lending me the iPhone. And last but not least, I want to thank my

parents and grandparents for always supporting me and believing in me. Unfortunately,

during the internship and the writing of this thesis, I had to say goodbye to my grandmother.

She will always be remembered.

Nick Casier, Oudenburg – Belgium, 9 June 2020

Abstract

In this document we describe our research to find a Bluetooth artefact. This artefact is the
result of a pairing request between two Bluetooth enabled devices.

We focus on mobile devices (Android smartphones) and the differences between different
(types of) devices. Furthermore, we dive deeper into the differences between a request that
timed-out, got cancelled, denied or accepted.

What we set out to find, we found, and much more. We were able to derive from the artefact
what actions took place. We also determined that the current standard procedure during a
forensic confiscation causes data loss.

During this research, we discovered that adb dumpsys is a potential goldmine for mobile digital
forensics on Android devices.

We discuss what the value of this discovery is and what the impact on the current state of
mobile forensics is.

Key words: Digital Forensics – Mobile Forensics – Bluetooth – Artefact – Android –
Smartphones – Pairing Request – adb

Samenvatting

In dit document gaan we opzoek naar het al dan niet bestaan van een bluetooth artefact.
Dit artefact is het resultaat van een koppelingsverzoek tussen twee bluetooth apparaten.

We spitsen ons in dit onderzoek toe op mobile toestellen (Android smartphones) en wat de
eventuele verschillen zijn tussen verschillende (types) toestellen. We vragen ons verder ook
af of er een verschil is tussen een verzoek waarvan de bevestigingsperiode is verlopen, een
verzoek dat werd geannuleerd, geweigerd of bevestigd.

We hebben een artefact gevonden, maar ook andere informatie die bij een forensisch onder-
zoek een meerwaarde bied. Deze informatie werd nog niet eerder beschreven. De artefact
geeft een duidelijke weergave over het verloop van het koppelingsverzoek. We stelden ook
vast dat de huidige standaard procedures bij een forensische inbeslagname dataverlies
veroorzaken.

Tijdens ons onderzoek hebben we vastgesteld dat adb dumpsys een goudmijn aan forensisch
interessante data bevat.

We beschrijven de waarde van deze vaststelling is en wat de impact op de huidige situatie in
mobile digital forensics is.

Sleutelwoorden: Digital Forensics – Mobile Forensics – Bluetooth – Artefact – Android –
Smartphones – adb – Koppelingsverzoek

Glossary

ADB Android Debug Bridge

DF Digital Forensics

DFIR Digital Forensics and Incident Response

kbits/s kilobit per second

MAC address Media Access Control address. Unique identifier used in network com-
munications.

Mbit/s Megabit per second

OS Operating System

PID Process ID, unique identifier of a process running on a device

RAM Random Access Memory

VM Virtual Machine

Table of Content

Preface

Abstract

Samenvatting

Glossary

1 INTRODUCTION .. 18

1.1 RESEARCH QUESTION ... 18
1.2 WHAT IS BLUETOOTH? .. 18
1.3 WHAT IS DIGITAL FORENSICS? .. 22
1.4 WHAT IS MOBILE DIGITAL FORENSICS? .. 23

2 OVERVIEW OF THE TOOLS ... 25

2.1 ANDROID DEBUG BRIDGE (ADB) .. 25
2.1.1 Logcat ... 26
2.1.2 Dumpsys .. 27

2.2 TSURUGI .. 27

3 TEST DEVICES ... 28

4 TEST SETUP .. 30

5 DETERMINATION OF TEST PROCEDURE... 33

6 THE VALUE OF DUMPSYS .. 36

7 COMMUNICATION BETWEEN IOS DEVICE AND ANDROID (AND VICE VERSA) 37

7.1 TEST 1: IPHONE SENDS REQUEST – TIME-OUT .. 37
7.2 TEST 2: NEXUS 6 SENDS REQUEST – TIME-OUT .. 38
7.3 TEST 3: IPHONE SENDS REQUEST – CANCELLED ... 39
7.4 TEST 4: NEXUS 6 SENDS REQUEST – CANCELLED ... 40
7.5 TEST 5: IPHONE SENDS REQUEST – DENIED .. 41
7.6 TEST 6: NEXUS 6 SENDS REQUEST – DENIED .. 42
7.7 TEST 7: IPHONE SENDS REQUEST – INCORRECT PIN ... 44
7.8 TEST 8: NEXUS 6 SENDS REQUEST – INCORRECT PIN ... 45
7.9 TEST 9: IPHONE SENDS REQUEST – ACCEPTED ... 46
7.10 TEST 10: FORGET DEVICE ... 47
7.11 TEST 11: NEXUS 6 SENDS REQUEST – ACCEPTED ... 48
7.12 TEST 12: RECONNECT DEVICES... 49
7.13 TEST 13: FORGET DEVICE AND ATTEMPT TO RECONNECT .. 50

8 COMMUNICATION BETWEEN TWO ANDROID DEVICES .. 52

8.1 TEST 1: ONEPLUS SENDS REQUEST – TIME-OUT ... 52
8.2 TEST 2: NEXUS 6 SENDS REQUEST – TIME-OUT .. 54
8.3 TEST 3: ONEPLUS SENDS REQUEST – CANCELLED ... 55
8.4 TEST 4: NEXUS 6 SENDS REQUEST – CANCELLED ... 57
8.5 TEST 5: ONEPLUS SENDS REQUEST – DENIED ... 59
8.6 TEST 6: NEXUS 6 SENDS REQUEST – DENIED .. 61
8.7 TEST 7: ONEPLUS SENDS REQUEST – INCORRECT PIN .. 63
8.8 TEST 8: NEXUS 6 SENDS REQUEST – INCORRECT PIN ... 65
8.9 TEST 9: ONEPLUS SENDS REQUEST – ACCEPTED ... 67

8.10 TEST 10: FORGET DEVICE ... 69
8.11 TEST 11: NEXUS 6 SENDS REQUEST – ACCEPTED ... 71
8.12 TEST 12: RECONNECT DEVICES... 72
8.13 TEST 13: FORGETTING DEVICE AND ATTEMPTED TO RECONNECT .. 74
8.14 TEST 14: ACCEPTING THE RECONNECTION REQUEST ... 76
8.15 TEST 15: SENDING A FILE FROM THE ONEPLUS .. 77
8.16 TEST 16: SENDING A FILE FROM THE NEXUS 6 .. 79

9 COMMUNICATION BETWEEN SMARTPHONE AND AUDIO PLAYER 81

9.1 BONDING THE AUDIO PLAYER WITH THE SMARTPHONE ... 81
9.2 RECONNECTING THE AUDIO PLAYER WITH THE SMARTPHONE ... 82
9.3 FORGETTING THE AUDIO PLAYER ... 82

10 COMMUNICATION BETWEEN AN ANDROID SMARTPHONE AND SMARTWATCH . 84

11 ARTEFACT LIFESPAN ... 85

11.1 ACCOUNTS .. 85
11.2 CONTENT ... 85
11.3 BLUETOOTH_MANAGER ... 85

12 CRITICAL REFLECTION ON THE TESTS ... 87

13 DISCUSSION OF TEST RESULTS .. 88

13.1 TIME-OUT OF A REQUEST ... 88
13.1.1 Master device .. 88
13.1.2 Slave device .. 88

13.2 CANCELLATION OF A REQUEST .. 88
13.2.1 Master device .. 88
13.2.2 Slave device .. 89

13.3 DENIAL OF A REQUEST ... 89
13.3.1 Master device .. 89
13.3.2 Slave device .. 89

13.4 ACCEPTANCE OF A REQUEST ... 90
13.4.1 Master device .. 90
13.4.2 Slave device .. 90
13.4.3 Remarks ... 90

13.5 FORGETTING A CONNECTION ... 90
13.6 FILE TRANSFER .. 91
13.7 GENERAL REMARKS ... 91
13.8 VALUE OF THE ARTEFACT .. 91

14 DIFFERENCES BETWEEN ANDROID VERSIONS .. 93

15 CONCLUSION .. 94

15.1 WHAT DID WE DISCOVER WITHIN THIS DISSERTATION? ... 94
15.2 WHAT IS THE IMPACT ON THE CURRENT STATE OF MOBILE DIGITAL FORENSICS? 94

16 BIBLIOGRAPHY ... 95

OVERVIEW OF ATTACHMENTS ... 98

Attachment 1: List of all services that can be issued with “𝒅𝒖𝒎𝒑𝒔𝒚𝒔” on Nexus 6 ..99
Attachment 2: output of the command “𝒂𝒅𝒃 𝒍𝒐𝒈𝒄𝒂𝒕 | 𝒈𝒓𝒆𝒑 − 𝒊 𝒃𝒍𝒖𝒆𝒕𝒐𝒐𝒕𝒉” ...102
Attachment 3: Generalization of the applied test procedure ...103
Attachment 4: Pop-up when sending a request on Android ..106
Attachment 5: Pop-up when receiving a request on Android ..107
Attachment 6: Pop-up on Nexus 6 when pin is incorrect ...108

Attachment 7: Forgetting a paired device on Android ...109
Attachment 8: Photo used in testing to send between devices ...111
Attachment 9: Example script to extract all information from the dumpsys modules ...112

 ¬ 18

Nick Casier academic year 2019-2020

 Bluetooth in Digital Mobile Forensics

 Introduction

1 Introduction

1.1 Research Question

The research question that will be tackled within this dissertation is the following:
“Can a pairing request be found on Bluetooth devices?”

In this thesis we look to find an artefact that is created during the pairing process of two Blue-
tooth-enabled devices. The question whether such artefact exists arose during my internship
at the Belgian Armed Forces (BeDefence).

We focus on Android devices since Android has the greatest market share globally. Depending
on the source, around 75% to 85% of the smartphones worldwide use Android as an operating
system. [1], [2], [3]

To answer this question, we first need to know what Bluetooth is and what the context of our
research is. Since we focus on Android mobile devices, our context is mobile digital forensics.
Mobile digital forensics differs from “classic” digital forensics as we clarify in the following
sections of this chapter.

1.2 What is Bluetooth?

Bluetooth is a well-known open standard for short-range wireless communication technology.
It’s used in a wide variety of electronic devices. Those devices include business and consumer
devices. Examples of those are mobile phones, laptops, tablets, infotainment system in cars,
keyboards & mice, headsets and many more. Recently, medical devices and personal devices
are implementing Bluetooth as well. Examples of these devices are smartwatches, heartrate
monitors, music speakers, home appliances, fitness trackers and many more. [4]

Bluetooth offers a high level of flexibility and scalability between devices. The main advantages
of Bluetooth technology are:

• Eliminating cables. By going wireless you can reduce the amount of cables that are
needed. This can improve flexibility and the ease of use while also providing (in some
cases) a cleaner aesthetic. A great example of this are Bluetooth keyboards and mice.

• Ease of sharing. Bluetooth is an easy and user-friendly way of sharing files, such as
pictures, with another nearby device. For example, sharing a picture shot on a
smartphone with a Bluetooth-enabled computer.

• Synchronization with devices. Bluetooth can be used to easily synchronise between
different kinds of Bluetooth-enabled devices. For instance, Bluetooth is capable of
providing automatic synchronisation of data. Think of the synchronisation between your
mobile phone and the car’s infotainment system or with a smartwatch.

• Bluetooth tethering. One of the lesser known features of Bluetooth is its capability to
share a devices Internet connection via Bluetooth to another Bluetooth-enabled device
that is unable to access the Internet.

As one can deduct from these examples, you may use Bluetooth more often in your daily life
than you would expect. Since Bluetooth is widely used, the technology is actively developed
and maintained. Since the founding of Bluetooth in 1989, it never stopped evolving. In 1998,
the Bluetooth Special Interest Group was founded and Bluetooth was formally announced.
Currently, the most recent version of Bluetooth is Bluetooth 5.2.

 ¬ 19

Nick Casier academic year 2019-2020

 Bluetooth in Digital Mobile Forensics

 Introduction

Here you can find an overview of the different versions and the most important differences
compared to the previous version.

• Bluetooth 1.0 and 1.0B
o First iteration of the Bluetooth specification in 1998

• Bluetooth 1.1
o Adaptation of the IEEE Standard 802.15.1-2002
o Added possibility of non-encrypted channels
o Received Signal Strength Indicator support

• Bluetooth 1.2
o Faster Connection and discovery
o Adaptive frequency-hopping spread spectrum to avoid use of overcrowded

frequencies
o Higher transfer speeds up to 721 kbits/s
o Adaptation of the IEEE Standard 802.15.1-2005

• Bluetooth 2.0 + EDR
o Introduction of Enhanced Data Rate (EDR) to improve transfer speeds up to

2.1 Mbit/s

• Bluetooth 2.1 + EDR
o Adopted by the Bluetooth Special Interest Group (SIG) on the 26th of July

2007
o Support for secure simple pairing (SSP)

• Bluetooth 3.0 + HS
o Adopted by the Bluetooth SIG on the 21st of April 2009
o Theoretical maximum transfer speed up to 24 Mbit/s over a collocated 802.11

link (for Bluetooth 3.0 + HS (high speed), not mandatory for the Bluetooth 3.0
standard)

o Introduction of L2CAP Enhanced modes
o Enhanced power control

• Bluetooth 4.0
o Introduced on the 30th of June 2010 as Bluetooth Smart
o Supports Classic Bluetooth (v1.x & v2.x), Bluetooth High Speed (v3) and

Bluetooth Low Energy (BLE) products

• Bluetooth 4.1
o Introduced on the 4th of December 2013
o Incremental software update to v4.0 instead of hardware update
o Mobile Wireless Service Coexistence Signalling
o Train Nudging and Generalized Interlaced Scanning
o Low Duty Cycle Directed Advertising
o L2CAP Connection Oriented and Dedicated Channels with Credit-based Flow

Control
o Dual Mode and Topology

 ¬ 20

Nick Casier academic year 2019-2020

 Bluetooth in Digital Mobile Forensics

 Introduction

o LE Link Layer Topology
o 802.11n PAL
o Audio Architecture Updates for Wide Band Speech
o Fast Data Advertising Interval
o Limited Discovery Time

• Bluetooth 4.2
o Introduced on the 2nd of December 2014
o Mainly focused for the Internet of Things (IoT)
o Low Energy Secure Connection with Data packet Length Extension
o Link layer privacy with Extended Scanner Filter Policies
o Internet Protocol Support Profile version 6 (IPSPv6)

• Bluetooth 5.0
o Introduced on the 6th of December 2016 as Bluetooth 5
o BLE can now burst up to 2 Mbit/s at the expense of range
o Support for location navigation of BLE connections
o Support for Slot Availability Mask (SAM)
o BLE Long Range
o High Duty Cycle Non-Connectable Advertising
o BLE Advertising Extensions
o Removal of Park State

• Bluetooth 5.1
o Introduced on the 21st of January 2019
o Support for Angle of Arrival (AoA) and Angle of Departure (AoD) for use in

location and tracking
o Addition of Advertising Channel Index
o Addition of GATT Caching
o Some minor enhancements compared to Bluetooth 5
o Support for Models and Mesh-based model hierarchy
o Removal of Unit Keys

• Bluetooth 5.2
o Introduced on the 6th of January 2020
o Support for BLE Audio
o Support for Enhanced Attribute Protocol (EATT), improved version of the

Attribute Protocol (ATT)
o BLE Power Control
o BLE Isochronous Channels

The Bluetooth technology resides in the second layer of the OSI-model, the data link layer. It’s
a protocol that operates in the 2.4GHz range. When a connection between two Bluetooth
enabled devices is conducted, a three step progressive process is initiated. This process is
called the Bluetooth handshake. This process is visualised in Figure 1 - Bluetooth Handshake.

 ¬ 21

Nick Casier academic year 2019-2020

 Bluetooth in Digital Mobile Forensics

 Introduction

Figure 1 - Bluetooth Handshake [5]

In the first step, the inquiry, the two Bluetooth devices are unknown to each other. One device
must run an inquiry in an attempted to discover the other. One device sends an inquiry or
pairing request. The other device will respond to this request with some basic information, like
for example its MAC address and name.

The second step, the paging, is the process of connecting the two devices.

The third and last step is when the two devices are connected. While connected, a device can
be either actively participating (e.g. when transferring files) or in a low power mode (e.g. using
a Bluetooth device to dynamically lock a pc when the device is out of range).

Data, more specific, control data that is created by using the Bluetooth technologies can
provide important information when a digital forensic investigation is conducted.

Next, we need to understand what a digital forensics investigation is.

 ¬ 22

Nick Casier academic year 2019-2020

 Bluetooth in Digital Mobile Forensics

 Introduction

1.3 What is Digital Forensics?

When a judicial investigation is conducted, building a timeline of what the person of interest
did during a certain timeframe is crucial. The computer and its data of that person can provide
crucial information when this person is accused of a crime. The research that is committed on
the electronic devices in such situations is called digital forensics.

These situations are the most common use cases for digital forensics, but it’s more than that.
Digital Forensics (DF) is defined as the process of preservation, identification,
extraction and documentation of digital evidence. It’s a subdomain within computer science
that uses scientific investigatory techniques with the goal to preserve data.

Companies rely on forensic investigators when they have become victim to a cyber-attack.
A forensic investigation is conducted to discover the origin of the attack, preserve
non-contaminated data and recover contaminated or lost data.

Figure 2 - Four core fundamentals of Digital Forensics

As one can derive from Figure 2 - Four core fundamentals of Digital Forensics, there are four
core fundamentals in Digital Forensics. These are equally important in a forensics
investigation.

• What device is it and what O.S. does it run?

• What are we looking for? What is the purpose of the investigation?

• What is needed to correctly perform the investigation?

Identification

• Isolate, preserve and if possible copy the data that needs to be
investigated.

Preservation

• Live analysis: Data on the device needs to be investigated (in
running state).

• Post-mortem analysis: A copy of the data is investigated.

Examination

• Document what data is found and what is of importance.

Documentation

 ¬ 23

Nick Casier academic year 2019-2020

 Bluetooth in Digital Mobile Forensics

 Introduction

The first stage in a digital forensic investigation is to identify the device that needs to be
researched and its Operating System (O.S.). We need to know the goal of the investigation.
Are we trying to recover data, looking for traces left on the device caused by malware or human
interaction or do we need to find evidence to be used in court? All these factors need to be
taken into account before starting the investigation. It’s important that we know the context.
For example, when conducting an investigation after a cyber-attack, we want to know how the
malware entered the system and how it spread. When compared to an investigation in a legal
context (for example to the computer of a criminal), we are more interested in what interactions
the person in question had, what sites he/she has visited or what files he/she has created/de-
leted/altered etc...

In both cases we need to make sure that the forensic investigator can perform the investigation
and leaves as little traces on the device as possible. We need to decide what precautionary
measurements have to be considered for the next stage.

The second stage is the preservation of data. The data has to be isolated, so it cannot be
altered (or spread in case of malware). We want to save unsaved data (for example data that
is present in RAM). This can vary from unsaved documents to running programs. In most
cases, a dump of the memory and a full system copy can be made. This copy is used to be
copied as many times as necessary without needing to access the original system and as a
reference. These precautionary measurements are enforced to prevent potential changes to
the data. During the investigations, one of the copies is being used, combined with a write
blocker, to prevent potentially altering the data. Often, after each step in the investigation, the
copy will be compared to a copy which is only intended for reference. This copy is also referred
to as the golden copy. This is done to prevent and document potential changes to the used
copy.

As hinted in the previous stage, the next step is the examination of the data. This can be done
on a copy (post-mortem analysis) or on a live system (for example to analyse the
behaviour of malware or an artefact). During this stage we start gathering proof of what
happened. Commonly screenshots and screen recordings are being made to aid in the next
stage.

The last stage of a digital forensic investigation is the documentation of the findings. The data
that has been found, needs to be described and considered what is of importance depending
on the context. With this data, a timeline can be created that can help a legal investigation or
learn the behaviours of the malware and how it managed to infect the system. The documen-
tation contains the proof that has been discovered in the previous stage and a detailed write-
up of what has been found.

It is intended that further steps can be based on this documentation. In a judicial investigation,
the police officers can use the documentation to identify the criminal. In the case of malware,
improvements can be made based on the documentation to counteract an attack in the future.

1.4 What is Mobile Digital Forensics?

Mobile Digital Forensics is Digital Forensics that is dedicated to mobile devices such as
smartphones and tablets. It is based on the same four core fundamentals but adds a few extra
challenges. We focus within this dissertation on Android Digital Forensics.

Every manufacturer can give Android, and the filesystem that it uses, its own flavour. This
means that even two devices running the same Android version but that are from another

 ¬ 24

Nick Casier academic year 2019-2020

 Bluetooth in Digital Mobile Forensics

 Introduction

brand could have different file structures. For example, pictures shot on an Android device are
by default stored in a folder called DCIM. Manufactures can change the folder where the cam-
era app saves the shot images to, for example, Pictures. The folder DCIM could still be present
but won’t contain (all) the images. Since most apps also have their own home directory, the
file structure on one Android device can be completely different to that from another
Android device that seemed identically at first sight.

Since Android is also based on Unix, only root1 has access to every file and partition on the
device. This means that the forensic investigator needs to become root to access everything.
To become root on an Android device, it has to be ‘rooted’. Since most people do not root their
phones, this means that the investigator needs to root the phone, thus extensively altering the
device. This is contradictory to a correct digital forensics’ investigation.

A user of an Android device has its own user account. With this account, the user can do
everything he/she would want to do with the device. This is comparable to other computer
systems where some sort of account management is in place. In the Unix world it is a good
practice to use the root account only for a limited number of initial configurations. Afterwards,
su and sudo can be used to perform tasks that need a higher privilege then a normal user has.
One of the motivations comes from a security perspective. When an error is made while being
root, the possibility exists that the entire system is bricked2. This is why an Android devices’
user is normally not root, since Android is based on a variant of Unix. Rooting the device can
be defined as the process that lets you access all the settings, sub-settings and files of your
phone. [6] This could potentially have severe consequences when by accident malware has
been downloaded onto the phone.

For a DF investigation, these obstacles need to be overcome. In modern versions of Android,

a lot can be overcome by enabling developer options (see chapter 4 – Test Setup). This can
be done without rooting the device. Every Android user can enable these developer options.

In recent years, there have been tools developed for forensic investigators. These tools help
to overcome the difficulty associated with the filesystems on Android devices. Each tool has
his own strengths and weaknesses. Due to the large variety of structures, the results of the
devices can also vary depending on the brand of the Android device that is being investigated.

Since these challenges require a specific knowledge compared to, for example, Windows
digital forensics, mobile digital forensics is considered to be a separate branch within digital
forensics. The fast evolution of mobile operating systems and the changes to the stock Android
system make it difficult for forensic researches to extensively test their tools on a variety of, let
alone all, mobile devices. Windows, for example, does not have these differences. The
Windows O.S. does not evolve as fast as Android and manufactures do not alter the Windows
O.S. as they do with Android. This means that the tools used to perform a forensic investigation
on Windows are easier to be extensively tested and validated.

1 Root: also called root-user, sometimes referred to as superuser. This user account has the highest
privileges/access rights on a system and has access to all files and commands available on a system.

2 Bricked: To render your device useless, as useless as a brick. Usually the result of tampering with the
insides and doing irreversible damage. Bricking your hardware leaves you with a new paperweight. Can
be the end effect of a faulty flash or firmware update, a modification gone bad for example. Bricked
refers to any hardware that is unable to start up due to bad software. This could be caused by loss of
necessary files due to a trojan that deletes necessary files for example. [40]

 ¬ 25

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Overview of the Tools

2 Overview of the Tools

This chapter describes the tools that are used during testing.

In this overview you can find the tools that were used to perform the test. All tools were
up-to-date at the moment of testing.

Tool Function Version

Android Debug Bridge
Command-line tool for com-
munication with Android De-
vices

29.0.5

Tsurugi LAB
Digital Forensics O.S.
(ran as a VM)

LSB Version: core-
9.20160110ubuntu0.2-
amd64:core-9.20160110ub-
untu0.2-noarch:security-
9.20160110ubunty0.2-
amd64:security-
9.20160110ubunty0.2-no-
arch
Release: 2019.2
Codename: Lastbamboo

VMware Workstation 15.5
Pro

Virtualisation software 15.5.1 build-15018445

2.1 Android Debug Bridge (adb)

Android Debug Bridge (adb) is a versatile command-line tool that lets you communicate with a
device. The adb command facilitates a variety of device actions, such as installing and
debugging apps, and it provides access to an Unix shell that you can use to run a variety of
commands on a device. [7]

Adb is a client-server program. It has three components that build up the entire process.
First there is the client. This is the computer that is used to connect with the Android device.
In most cases, this connection is via USB. The second component is the daemon. This is the
service that is running on the computer (client) as well as on the Android device itself. It allows
the Android device to accept and execute the commands that are given via the client. The third
part of adb is the server. This manages the communication between the client and the daemon.
It sends the commands, that are given on the client, to the daemon. By default, the server runs
on port 5037 as a background process on the client.

Figure 3 - Start-up of adb client-server program. Any adb command can be used to start the tool.

The two commands of adb we will be using are 𝑙𝑜𝑔𝑐𝑎𝑡 and 𝑑𝑢𝑚𝑝𝑠𝑦𝑠.

 ¬ 26

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Overview of the Tools

2.1.1 Logcat

The logcat command-line tool dumps a log of the system. It returns more than just system
messages. It can return full stack traces when a device throws an error or show the messages
that have been written from an app with the 𝑙𝑜𝑔 class.

Since logcat dumps all the logs of a device, this can be a bit overwhelming. Luckily logcat has
some built-in features to help control the output.

There are filter expressions. These restrict the log output based on tags-priority combinations
that you are interested in. They follow the format tag:priority … where tag indicates the tag of
interest and priority indicates the minimum level of priority to report for that tag. An example of
a filter expression is: 𝑎𝑑𝑏 𝑙𝑜𝑔𝑐𝑎𝑡 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑀𝑎𝑛𝑎𝑔𝑒𝑟: 𝐼 𝑀𝑦𝐴𝑝𝑝: 𝐷 ∗: 𝑆. This filter expression
suppresses all log messages except those with the tag “ActivityManager”, at priority “Info” or
above, all log messages with tag “MyApp”, with priority “Debug” or above. The last element of
the expression, *:S, sets the priority for all other tags to silent. By doing this, the output is
restricted to what has been specified.

Another way of controlling the output of the logcat command, is by formatting the log output.
Log messages also contain a number of metadata fields. By modifying the output format for
these messages, you can display specific metadata fields. This can be done as followed:
[𝑎𝑑𝑏] 𝑙𝑜𝑔𝑐𝑎𝑡 [−𝑣 < 𝑓𝑜𝑟𝑚𝑎𝑡 >]. The supported output formats are:

• 𝑏𝑟𝑖𝑒𝑓: Display priority, tag, and PID (process ID) of the process issuing the message.

• 𝑙𝑜𝑛𝑔: Display all metadata fields and separate messages with blank lines.

• 𝑝𝑟𝑜𝑐𝑒𝑠𝑠: Display PID only.

• 𝑟𝑎𝑤: Display the raw log message with no other metadata fields.

• 𝑡𝑎𝑔: Display the priority and tag only.

• 𝑡ℎ𝑟𝑒𝑎𝑑: A legacy format that shows priority, PID, and TID (threat ID) of the thread is-
suing the message.

• 𝑡ℎ𝑟𝑒𝑎𝑑𝑡𝑖𝑚𝑒 (default): Display the date, invocation time, priority, tag, PID, and TID of
the thread issuing the message.

• 𝑡𝑖𝑚𝑒: Display the date, invocation time, priority, tag, and PID of the process issuing
the message.

There are also other log buffers that can be accessed, the so-called alternative log buffers.
The Android logging system keeps multiple circular buffers for log messages. Not all log
messages are sent to the default circular buffer. By issuing the logcat command with the -b
option, you can request viewing an alternate circular buffer. This can be done as followed:
[𝑎𝑑𝑏]𝑙𝑜𝑔𝑐𝑎𝑡 [−𝑏 < 𝑏𝑢𝑓𝑓𝑒𝑟 >]. The alternative buffers are:

• 𝑟𝑎𝑑𝑖𝑜: View the buffer that contains radio/telephony related messages.

• 𝑒𝑣𝑒𝑛𝑡𝑠: View the interpreted binary system event buffer messages.

• 𝑚𝑎𝑖𝑛: View the main log buffer (default). This does not contain system and crash log
messages.

• 𝑠𝑦𝑠𝑡𝑒𝑚: View the system log buffer (default).

• 𝑐𝑟𝑎𝑠ℎ: View the crash log buffer (default).

• 𝑎𝑙𝑙: View all buffers.

• 𝑑𝑒𝑓𝑎𝑢𝑙𝑡: Reports 𝑚𝑎𝑖𝑛, 𝑠𝑦𝑠𝑡𝑒𝑚, and 𝑐𝑟𝑎𝑠ℎ buffers.

 ¬ 27

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Overview of the Tools

2.1.2 Dumpsys

The 𝑑𝑢𝑚𝑝𝑠𝑦𝑠 command-line tool runs on the Android device itself, and provides information
about system services. By calling this tool through adb, you can get diagnostic output for all
system services running on a connected device. You can run the command 𝑎𝑑𝑏 𝑠ℎ𝑒𝑙𝑙 𝑑𝑢𝑚𝑝𝑠𝑦𝑠
to get a diagnostic output for all system services. Since this output is unmanageable large, you
can specify what service you want to examine by including it in the command. Since we are
interested in Bluetooth, we can issue the command 𝑎𝑑𝑏 𝑠ℎ𝑒𝑙𝑙 𝑑𝑢𝑚𝑝𝑠𝑦𝑠 𝑏𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ_𝑚𝑎𝑛𝑎𝑔𝑒𝑟.
A full list of all possible services that can be called can be found in Attachment 1: List of all
services that can be issued with “𝒅𝒖𝒎𝒑𝒔𝒚𝒔” on Nexus 6.

2.2 Tsurugi

Tsurugi is an Digital Forensics and Incident Response (DFIR) Linux Distribution based on
Ubuntu 64-bit LTS 16.04. As other forensics O.S., it has a plethora of built-in tools for forensic
investigations. Tsurugi is a relative new O.S. and is still actively developed and improved. The
team behind Tsurugi is, as they say themselves, a bunch of Backtrack and Deft Linux veterans
united by the idea of developing a new DFIR O.S. [8].

There are multiple editions of Tsurugi. The version that is used here of Tsurugi Linux is Tsurugi
LAB. This edition is intended to be used as a standalone OS. For live disk acquisitions there
is Tsurugi Acquire. Bento is a portable toolkit designed for live forensics and incident response.

As good practice we used Tsurugi as a virtual machine.

Figure 4 - TSURUGI Linux – the sharpest weapon in your DFIR arsenal [9]

 ¬ 28

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Test Devices

3 Test Devices

This chapter gives an overview of the devices used during the tests that are performed.

All devices are running the most recent software versions that are available at the moment of
performing the test.

The Nexus 6 is connected to the VM via the Dell XPS over USB.

To simulate a real-life scenario, the two Android devices did not receive a factory reset before
testing. The OnePlus is my daily driver and the Nexus 6 my previous phone. Since they did
not receive a factory reset, we discovered some other interesting artefacts that we will touch
later on.

The iPhone 6 Plus was leant to me and received a full factory reset for privacy reasons.

Device Device name Function O.S. Version

Dell XPS 15 9570

Host for Tsurugi
VM and used to
connect with the
OnePlus 7T Pro
via ADB

Windows 10 Home
1909

Build 18363.657

OnePlus 7T Pro
48:01:C5:86:27:CE

Test subject
with Bluetooth
version 5.0

No factory reset

Android 10

Build-number
Oxygen OS
10.0.7.HD01BA

Android security
patch January
2020

Motorola
Nexus 6

44:80:EB:F0:AD:8F

Test subject
with Bluetooth
version 4.1

No factory reset

Android 7.1.1
(Nougat)

Build-number:
N6F27M

Android security
patch October
2017

 ¬ 29

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Test Devices

Apple iPhone 6
Plus

BC:4C:C4:EE:11:9F

Test subject
with Bluetooth
version 4.0

Factory reset

iOS 12.4.5
(16G161)

Fossil Q
Marshal

FC:45:96:6A:35:65

Test subject
with Bluetooth
version 4.1

No factory reset

Wear OS by
Google 2.14

Android security
patch February
2019

UUV Airdot
wireless in-ear
headphones

CA:71:06:FE:ED:A3

Test subject
with Bluetooth
version 5.0

N/A

 ¬ 30

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Test Setup

Orico SHC-U3
USB HUB

Hub to connect
devices to
laptop

N/A

4 Test Setup

In this chapter, we describe our setup and what preparations have to be made in order to do
our testing.

We assume that all required tools and programs (that are not specific to our tests) are already
installed.

Installing Tsurugi is easy. We recommend to assign at least 4GB RAM and, if possible, to
assign 4 cores to the VM. We noticed a huge performance benefit when the VM has access to
these resources. You’ll need at least 25GB storage to be able to install Tsurugi. Once you start
the iso installation file, select the first option, TSURUGI Linux Live (GUI mode), and wait until
you land on the desktop. On the desktop you can double click on “Install TSURUGI” and follow
the steps.

Android Debug Bridge is already pre-installed on Tsurugi, so we do not have to install it.

To be able use adb on the mobile devices, we need to enable developer options so we can
enable USB-debugging. Developer options can be enabled by tapping the build number (see
figure 4) of the O.S. on the Android device seven (7) times. The build number can be found
under settings, about the device.

If successful, you’ll see Developer options in the settings menu (see figure 5).

In the Developer option we need to enable USB-debugging, as visible in figure 6.0.

The last step is to enable Bluetooth and set the device as visible. Some devices require you
to tap a button to make the device visible.

 ¬ 31

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Test Setup

Figure 5 - About Phone Figure 6 - Successful enabled Developer options

 ¬ 32

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Test Setup

Figure 7 - Enable USB debugging under the
debugging section under Developer options

Figure 8 - Bluetooth settings

 ¬ 33

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Determination of Test Procedure

5 Determination of Test Procedure

This chapter describes the procedure we went through to determine our test method.

We started from the simple question that came up: Is there an artefact to be found on a mobile
device when a Bluetooth pairing request has been send to it? Yes or No?

Since we did not know if any artefact existed, we started with a live forensic research. We
hoped to find a change in a memory state or see at least a trace of where an internal process
has been called.

The first thing that came to mind was looking into the RAM what is happening when a request
is received. We used the OnePlus to send a request to the Nexus 6 and monitored the RAM
using the adb command 𝑎𝑑𝑏 𝑠ℎ𝑒𝑙𝑙 𝑑𝑢𝑚𝑝𝑠𝑦𝑠 𝑚𝑒𝑚𝑖𝑛𝑓𝑜. Unfortunately, we could only see that
the Bluetooth process was active (com.android.bluetooth).

Figure 7 - Bluetooth service active visible in memory

This information did not indicate the existence of a potential artefact. If we can’t see changes
in the memory, where could we find potential changes in processes? Logcat can show us
messages created by processes in the Android O.S.. We ran the command
𝑎𝑑𝑏 𝑙𝑜𝑔𝑐𝑎𝑡 | 𝑔𝑟𝑒𝑝 − 𝑖 𝑏𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ. We started off by looking at the default information that logcat
provides, but since we are only interested in the information from the Bluetooth process, we
used grep to extract only the lines where “Bluetooth” was mentioned. The output of this

command can be seen in Attachment 2: output of the command “𝒂𝒅𝒃 𝒍𝒐𝒈𝒄𝒂𝒕 | 𝒈𝒓𝒆𝒑 −
𝒊 𝒃𝒍𝒖𝒆𝒕𝒐𝒐𝒕𝒉”. There are a few interesting things to be seen in the output. We can, for example,
see that there was a Bluetooth connect broadcast send by the OnePlus. We can see that this
triggered a change in bond state.

The message of the BluetoothEventManager, notifying us that the bond state has been
changed, made us wonder if we could access this manager and where we could find the bond
state. Since this is a system service and dumpsys can return the various system services, we
checked what the service was we needed to call in our command. As hinted in section 2.1.2,
we can issue the command 𝑎𝑑𝑏 𝑠ℎ𝑒𝑙𝑙 𝑑𝑢𝑚𝑝𝑠𝑦𝑠 𝐵𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ_𝑚𝑎𝑛𝑎𝑔𝑒𝑟. We discovered that the
name of the service we needed to call was that by calling the list of services that can be called
using 𝑎𝑑𝑏 𝑠ℎ𝑒𝑙𝑙 𝑑𝑢𝑚𝑝𝑠𝑦𝑠 − 𝑙 as shown in Attachment 1: List of all services that can be issued
with “𝒅𝒖𝒎𝒑𝒔𝒚𝒔”.

We issued the command 𝑎𝑑𝑏 𝑠ℎ𝑒𝑙𝑙 𝑑𝑢𝑚𝑝𝑠𝑦𝑠 𝐵𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ_𝑚𝑎𝑛𝑎𝑔𝑒𝑟 and studied the output. We
saw that there was a section “Bond Events”. This seemed interesting since we saw via logcat
that a change in bond state was made when we had sent our pairing request. We ran the
command again and pushed the output to a text file. We issued a new request from the
OnePlus to the Nexus 6, ran the command again and pushed the output to a new text file
(𝑎𝑑𝑏 𝑠ℎ𝑒𝑙𝑙 𝑑𝑢𝑚𝑝𝑠𝑦𝑠 𝑏𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ_𝑚𝑎𝑛𝑎𝑔𝑒𝑟 > 𝑎𝑓𝑡𝑒𝑟𝑅𝑒𝑞𝑢𝑒𝑠𝑡. 𝑡𝑥𝑡). We compared the two files
with the help of diff, a built-in Linux command-line tool, to see if there were any changes made
to the section “Bond Events” (𝑑𝑖𝑓𝑓 − 𝑦 𝑏𝑒𝑓𝑜𝑟𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡. 𝑡𝑥𝑡 𝑎𝑓𝑡𝑒𝑟𝑅𝑒𝑞𝑢𝑒𝑠𝑡. 𝑡𝑥𝑡). As you can see
in Figure 9 – Output of the command 𝑑𝑖𝑓𝑓 − 𝑦 𝑏𝑒𝑓𝑜𝑟𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡. 𝑡𝑥𝑡 𝑎𝑓𝑡𝑒𝑟𝑅𝑒𝑞𝑢𝑒𝑠𝑡. 𝑡𝑥𝑡, we can
clearly see changes made to the bond state, we can see at what time the bond state has been
changed and the MAC-address of the devices that was communication with our device.

 ¬ 34

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Determination of Test Procedure

Have we found an artefact?

Figure 8 - Output of the command diff -y beforeReques.txt afterRequest.txt

As we can derive from Figure 9, this does seem to be an artefact we were looking for. We take
a closer look to the before and after of the section Bond Events.

Figure 9 - before the request

Figure 10 - after the request

We can clearly see the number of Bond Events, at what time these events took place in the

format HH:MM:SS.SSS, MAC-address of the device who is communicating with the test sub-

ject, the called function and the state. The seconds are decimal noted, which means that the

timestamp is accurate up to 0.001 second, thus one millisecond. The displayed time is the

local time of the device.

In the upcoming chapters, we investigate the discovered artefact and its behaviour in

different scenarios. Each test case is organized according to the same clear structure and

was performed at least three times. Each one has the scenario, the devices that were used,

the procedure of testing, monitored devices, how the devices were monitored, what was

monitored, the state of the artefact at the start of the test case, what we expected (with pseu-

docode to clarify our hypothesis), what the behaviour of the artefact was during the test

(where applicable), after the test, what we can see in the artefact and how this translate to

what we expected. A generalisation of the test procedure can be found in Attachment 3:

Generalization of the applied test procedure.

In the next chapters, we discuss what the value of dumpsys is, we clarify this with some ex-

amples. We use the aforementioned artefact as a testcase. The testcases are divided over

five chapters:

• Chapter 6 - The Value of dumpsys

We discuss what the value of dumpsys is for the current state of mobile DF.

• Chapter 7 - Communication between iOS device and Android (and vice versa)

Various scenarios of Bluetooth communication between an iPhone and the Nexus 6

where we discuss the behaviour of the found artefact.

 ¬ 35

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Determination of Test Procedure

• Chapter 8 - Communication between two Android devices

Various scenarios of Bluetooth communication between the Nexus 6 and the

OnePlus where we discuss the behaviour of the found artefact.

• Chapter 9 - Communication between smartphone and audio player

Investigation of the behaviour of the found artefact when an Android device interacts

with an audio player.

• Chapter 10 - Communication between an Android smartphone and smartwatch

We investigate if there is a different behaviour when we connect with a known smart-

watch.

• Chapter 11 - Artefact lifespan

Discussion about the lifespan of the found artefact.

Figure 11 - Visual representation of an iPhone communicating over Bluetooth with an Android phone.

Figure 12 - Visual representation of an Android phone connected to a laptop via USB. Laptop is used for the adb

connection.

 ¬ 36

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 The Value of dumpsys

6 The Value of dumpsys

As mentioned before, one of the greatest challenges in mobile digital forensics is the fast
evolving state of the device, their hardware and their software. For example, Windows 10 was
released on the 29th of July 2015. Since the release of Windows 10, there have four new major
versions of the Android O.S been released. And the 5th version, Android 11, has been
announced.

Building tools for forensic investigations that can overcome all these issues that we covered in
1.4 – “ What is Mobile Digital Forensics?” is challenging. We said that adb could provide a
solution to overcome most of challenges. But how can adb provide a solution?

By using the dumpsys tool, we can retrieve (control) data of many different services of a device.
The different modules can be found in Attachment 1: List of all services that can be issued with
“𝒅𝒖𝒎𝒑𝒔𝒚𝒔”. To reflect the value of this tool, we will highlight a few of these modules.

During a DF investigation in a legal context, one of the goals could be to verify if an account of
interest is known on a device. Via the command 𝑎𝑑𝑏 𝑠ℎ𝑒𝑙𝑙 𝑑𝑢𝑚𝑝𝑠𝑦𝑠 𝑎𝑐𝑐𝑜𝑢𝑛𝑡, you can see all
known accounts.

Figure 13 - Example of registered accounts on a device

As you can see in Figure 13 - Example of registered accounts on a device, the accounts are
displayed in the pattern name=<account name>, type=<application>. The image has been
partially blurred for security and privacy reasons. Furthermore, under the visible output, via the
account module, the accounts history can be seen and the cache. As a security/privacy
measure, these are not screenshotted.

Another module within dumpsys that could be meaningful when researching accounts on an
Android device is content. This module contains all the synchronisation of services and
applications where the accounts visible in the module account are used. As a security
measure, no screenshot of this output was added.

These are just two modules of dumpsys. These modules contains valuable data about the user
of a device. There are over hundred modules within dumpsys on the Nexus 6. On the OnePlus
there are almost two hundred modules. Each containing valuable information that could help
forensic investigations.

In the coming chapters we will dive deeper into the module Bluetooth_manager. We specifi-
cally focus on the section “Bond Events” of this module.

 ¬ 37

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between iOS device and Android (and vice versa)

7 Communication between iOS device and Android (and
vice versa)

In the first series of tests, we used the iPhone and the Nexus 6 as test subjects.

The reason we chose these two devices for the first series is twofold. The iPhone got a factory
reset and should be clean. We also wanted to know if there is a noticeable difference in the
artefact depending on the device’s OS sending the request.

Before each test we rebooted each device.

7.1 Test 1: iPhone sends request – time-out

Test Case An iOS device sends a request to an Android device.

Devices
Apple iPhone 6 Plus & Motorola Nexus 6
(bc:4c:c4:ee:11:9f & 44:80:eb:f0:ad:8f)

Procedure
The iOS device sent a request to the Nexus 6.
We didn’t interact with the devices after the request has been sent.
We waited until the request has timed-out.

Monitored devices Nexus 6

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?
Visible incoming bonding/pairing request.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔

During the process

After the process

What is visible
after the process?

We can see the number of events that took place, at what time the
request is received, and the MAC-address of the sender. We can
also see that the function “bond_state_changed” is being called and
that the bond state is changed to bonding. When the request is
timed-out, we can see that the same function is called again and that
the bonding state has been set to none.
It took about 1 minute before the request has timed-out.

 ¬ 38

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between iOS device and Android (and vice versa)

Is it as expected?
Yes, we expected to see an incoming bond request and we can
clearly see an incoming request.

7.2 Test 2: Nexus 6 sends request – time-out

Test Case An Android device sends a request to an iOS device.

Devices
Apple iPhone 6 Plus & Motorola Nexus 6
(bc:4c:c4:ee:11:9f & 44:80:eb:f0:ad:8f)

Procedure
The Android device sent a request to the Nexus 6.
We didn’t interact with the devices after the request has been sent.
We waited until the request has timed-out.

Monitored devices Nexus 6

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

The visibility that a request has been send to the iPhone. We expect
at least to see the initialization of the request and when it timed-out.
We expected that the request would time-out after about 1 minute as
seen in the previous test.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑏𝑜𝑛𝑑 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑏𝑜𝑛𝑑

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑠𝑒𝑛𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑡𝑖𝑚𝑒𝑜𝑢𝑡

During the process

After the process

What is visible
after the process?

We can see the number of events that took place, at what time the
request has been created and what the MAC-address of the receiver
is. We can see that when the request is created, the function
“btif_dm_create_bond” is called and that this doesn’t affect the bond
state. After the creation of the request, the function
“bond_state_changed” is called and the state is set to bonding. After
four seconds, the same function is called again with the same out-
come. 35 seconds after the last function call, the same function is

 ¬ 39

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between iOS device and Android (and vice versa)

called again, this time the outcome is the change of the bond state to
none.
In this test, it took about 39 seconds before the request is timed-out.

Is it as expected?

No, as we expected, we can see the creation of the request and we
can also see, based on the MAC-address, that the iPhone is the
receiver of the request. We can also see when the request has
timed-out. We did not expect to see a difference in time-out time. In
this test, the time-out happened almost half a minute earlier than in
test 1. We also did not expected to see the function
“bond_state_changed” being called within 4 seconds. We have no
idea why this happens.

7.3 Test 3: iPhone sends request – cancelled

Test Case
An iOS device sends a request to an Android device.
The iOS device cancels the request.

Devices
Apple iPhone 6 Plus & Motorola Nexus 6
(bc:4c:c4:ee:11:9f & 44:80:eb:f0:ad:8f)

Procedure

The iPhone sent a request to the Nexus 6. When the Nexus 6 has re-
ceived the request, we cancelled the request on the iPhone (similar
to Android, see Attachment 4: Pop-up when sending a request on
Android).

Monitored devices Nexus 6

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

We expected to see that a request has been send to the Nexus 6.
We expected to see a different behaviour in the artefact when the
request was cancelled compared to test 1 when the request
timed-out.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐𝑎𝑛𝑐𝑒𝑙 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒

During the process

 ¬ 40

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between iOS device and Android (and vice versa)

After the process

What is visible
after the process?

We can see when the request is received and that the sender was
the iPhone. We see that the bond state is set to bonding when the
request is received. We see that when we cancelled the request (±10
sec. after receiving) that the bond state is changed to none. Since
this timeframe is shorter compared to a time-out, this means that the
Nexus 6 actually knows that the request has been cancelled.

Is it as expected

No, we expected to see a different behaviour in the bonding state of
the artefact when we cancelled the request. This is not the case.
It could be possible that this is the case between two Android devices
or devices running the same O.S. version. Further testing will answer
this.

7.4 Test 4: Nexus 6 sends request – cancelled

Test Case
An Android device sends a request to an iOS device.
The Android device cancels the request.

Devices
Apple iPhone 6 Plus & Motorola Nexus 6
(bc:4c:c4:ee:11:9f & 44:80:eb:f0:ad:8f)

Procedure
The Nexus 6 sent a request to the iPhone. When the iPhone had re-
ceived the request, we cancelled the request on the Nexus 6.
(see Attachment 4: Pop-up when sending a request on Android)

Monitored devices Nexus 6

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is it
monitored?

Bond events

Start scenario

What is expected?

We expected to see the creation of the request, change of the bond
state, destruction of the request and finally a change of the bond
state to none.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑑𝑒𝑙𝑒𝑡𝑒 𝑏𝑜𝑛𝑑 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

 ¬ 41

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between iOS device and Android (and vice versa)

During the process

After the process

What is visible
after the process

We can see the creation of the request, together with the
corresponding timestamp and the MAC-address of the iPhone. We
see twice the change in bond state to bonding. Between the two calls
there is about 2 seconds. When we cancelled the request, we see
the function “Invalid value” being called. This triggered the function
“bond_state_changed” to set the state to “BOND_STATE_NONE”.

Is it as expected

No, we did not expect to see twice the function
“bond_state_changed” to be called. We did expect to see the other
behaviours of the artefact. We expected to be able to extract this
info, such as the MAC-address and timestamp. We expected to see
the destruction of the request. The function “Invalid value” seems to
be taking care of this. Afterwards, we see as expected, the change to
“BOND_STATE_NONE”.

7.5 Test 5: iPhone sends request – denied

Test Case
An iOS device sends a request to an Android device.
The Android device denies the request.

Devices
Apple iPhone 6 Plus & Motorola Nexus 6.
(bc:4c:c4:ee:11:9f & 44:80:eb:f0:ad:8f)

Procedure

The iPhone sent a request to the Nexus 6. Once the request has
been received on the Nexus 6, we pressed cancel on the pop-up
screen (similar to Attachment 4: Pop-up when sending a request on
Android) and thus denying the request.

Monitored devices Nexus 6

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

 ¬ 42

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between iOS device and Android (and vice versa)

What is expected?

We expected to see the incoming request as before, followed by a
change in the bond state and some other function or state that
indicates the denial of the request.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

During the process

After the process

What is visible
after the process?

We can see that when de request is received, the bond state
changes as expected. When we denied the request, the function
“Invalid value” was called. This function doesn’t seem to effect the
bond state. After the “Invalid value” function, the function
“bond_state_changed” is called once again to set the bond state to
none.

Is it as expected? Yes, we expected to see this behaviour.

7.6 Test 6: Nexus 6 sends request – denied

Test Case
An Android device sends a request to an iOS device.
The iOS device denies the request.

Devices
Apple iPhone 6 Plus & Motorola Nexus 6.
(bc:4c:c4:ee:11:9f & 44:80:eb:f0:ad:8f)

Procedure

The Nexus 6 has sent a request to the iPhone. Once the request has
been received by the iPhone, we pressed cancel on the pop-up
screen (similar to the pop-up screen in Attachment 5: Pop-up when
receiving a request on Android) and thus denying the request.

Monitored devices Nexus 6

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

 ¬ 43

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between iOS device and Android (and vice versa)

What is expected?

We expected to see the creation of the request, change of bond
state, and some state of the artefact that indicated the denial of the
request.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑏𝑜𝑛𝑑 𝑑𝑒𝑛𝑖𝑒𝑑 − 𝑛𝑜𝑛𝑒

During the process

After the process

After half a minute we got a notification that the pairing failed and there is an
extra entry.

What is visible
after the process?

We can see when the request has been created and what the
receivers MAC-address is. We see again twice that the bonding is in
progress. This time there was an eight second interval.
After declining the request on the iPhone, we do not see any
changes on the Nexus 6. It took approximately half a minute before
the Nexus 6 knew that the request had failed. This behaviour is
remarkable.

Is it as expected?

No, we did not expected that the Nexus would have such behaviour.
We expected that it would look like a time-out or that the Nexus knew
immediately that the iPhone cancelled the request. Due to the notifi-
cation, it seems a special time-out. The notification hints that there is
some function that is called when there is an issue with the request.
Further research to this function is needed.

 ¬ 44

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between iOS device and Android (and vice versa)

7.7 Test 7: iPhone sends request – incorrect pin

Test Case
iPhone sends request. iPhone approves the pin, Nexus 6 does
not approve the pin.

Devices
Apple iPhone 6 Plus & Motorola Nexus 6
(bc:4c:c4:ee:11:9f & 44:80:eb:f0:ad:8f)

Procedure

We used the iPhone to send a request to the Nexus 6.
We confirmed the request on the pop-screen on the iPhone (similar
as on Android, see Attachment 4: Pop-up when sending a request on
Android).

On the Nexus 6 we decline the request by pressing “cancel”
(see Attachment 5: Pop-up when receiving a request on Android).

Monitored devices Nexus 6

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

We expected to see the arrival of the request on the Nexus 6 with the
time it has arrived accompanied with the MAC-address of the sender
(in this case the iPhone). We expected to see the function “Invalid
value” to be called when the request was declined, followed by a
change in bond state to none.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

During the process

After the process

What is visible
after the process?

We can see the arrival of the request, accompanied by the
MAC-address of the sender and the timestamp of arrival. We see
that the arrival caused the bond state to be bonding. We see that
when we pressed cancel, the function “Invalid value” being called
followed by a change in bond state to none.

Is it as expected? Yes, we expected to see this behaviour.

 ¬ 45

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between iOS device and Android (and vice versa)

7.8 Test 8: Nexus 6 sends request – incorrect pin

Test Case
The Nexus 6 sends a request and approves the pin.
The iPhone receiving the request declines it.

Devices
Apple iPhone 6 Plus & Motorola Nexus 6
(bc:4c:c4:ee:11:9f & 44:80:eb:f0:ad:8f)

Procedure

We used the Nexus 6 to send a request to the iPhone.
We confirmed the request on the pop-screen (similar as seen in
Attachment 4: Pop-up when sending a request on Android).

On the iPhone we decline the request by pressing “cancel” (similar
as seen in Attachment 5: Pop-up when receiving a request on An-
droid).

Monitored devices Nexus 6

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

We expected to see the creation of the request with its timestamp
and the MAC-address of the receiver. We expected to see a change
in bond state to bonding followed by the function “Invalid value” being
called causing a change in bond state to none.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

During the process

After the process

What is visible
after the process?

We can see when we created the request and who the receiver was
based on the MAC-address. We see again twice the change in bond
state. When the iPhone declined the request, we just see that the
bond state has been set to none. However, we received a

 ¬ 46

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between iOS device and Android (and vice versa)

notification on the screen of the Nexus telling us that the pin was in-
correct (see Attachment 6: Pop-up on Nexus 6 when pin is incorrect).

Is it as expected?
No, we did not see any behaviour in the artefact indicating specifi-
cally that the request was declined or that the pin was incorrect.

7.9 Test 9: iPhone sends request – accepted

Test Case
An iOS device sends a request to an Android device.
The request is accepted and the two devices are bond/paired.

Devices
Apple iPhone 6 Plus & Motorola Nexus 6
(bc:4c:c4:ee:11:9f & 44:80:eb:f0:ad:8f)

Procedure
The iPhone sent a request to the Nexus 6. We accepted the
request on both devices. By doing so, both devices are now
bonded/paired via Bluetooth.

Monitored devices Nexus 6

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

We expected to see an incoming request, a change in bond state
and some form of confirmation that the request has been accepted.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑛𝑎𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑

During the process

After the process

What is visible
after the process?

We can see when the incoming request has been received, we can
see the MAC-address of the sender of the request and that the
incoming request caused a change in the bond state. We can see
that when the bond request has been accepted that the bond state is
changed to “BOND_STATE_BONDED”.

Is it as expected? Yes, we expected to see the incoming bond request and some form
of confirmation that the two devices are bonded. We hypothesized if

 ¬ 47

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between iOS device and Android (and vice versa)

the confirmation and the bond state would be the same entry or not,
but as you can see, it is the same entry.

7.10 Test 10: Forget Device

Test Case
Both devices are connect. We forget the connection between
both.

Devices
Apple iPhone 6 Plus & Motorola Nexus 6
(bc:4c:c4:ee:11:9f & 44:80:eb:f0:ad:8f)

Procedure

Both devices are at the beginning of the test connect with each other.
In the Bluetooth settings of the Nexus 6, we look for the
iPhone and pressed “forget” (see Attachment 7: Forgetting a paired
device on Android).

Monitored devices Nexus 6

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

We expected to see a change in the state or a function that is called
that indicates that a bonded/paired device is forgotten/deleted.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑟𝑒𝑚𝑜𝑣𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

During the process N/A

After the process

What is visible
after the process?

We can see that the function “btif_dm_remove_bond” has been
called. The name of the function indicates that this functions removes
the known connection between the two devices and sets the state to
none.

Is it as expected?
Yes, we expected to see a change in the artefact indicating that we
forgot the Bluetooth connection between the two devices;

 ¬ 48

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between iOS device and Android (and vice versa)

7.11 Test 11: Nexus 6 sends request – accepted

Test Case
An Android device sends a request to an iOS device.
The request is accepted and both devices are bonded/paired.

Devices
Apple iPhone 6 Plus & Motorola Nexus 6
(bc:4c:c4:ee:11:9f & 44:80:eb:f0:ad:8f)

Procedure
We used the Nexus 6 to send a request to the iPhone.
We accepted the request on both devices. By doing so, both devices
are now bonded/paired.

Monitored devices Nexus 6

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

We expected to see the creation of the request, change in bonding
state (probably twice to bonding), and a bonding state change to
bonded.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑

During the process

After the process

What is visible
after the process?

We can see when the request was created, and who the receiver is
based on the MAC-address. We see a change in the bonding state to
bonding and when the request has been accepted to bonded.

Is it as expected?
Yes, we expected to see this behaviour. We still do not know why
there is twice a change in bonding state to bonding. This time the
time difference is about 2 seconds.

 ¬ 49

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between iOS device and Android (and vice versa)

7.12 Test 12: Reconnect devices

Test Case
Both devices are bonded/paired with each other.
The devices are initially not in range of each other. When they
are in range, they are reconnected.

Devices
Apple iPhone 6 Plus & Motorola Nexus 6
(bc:4c:c4:ee:11:9f & 44:80:eb:f0:ad:8f)

Procedure
Both devices were already bonded/paired but not in range of each
other to be connected. We brought them back in each other range
and connected them.

Monitored devices Nexus 6

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?
We expected to see a change in bond state to be bonded.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑

During the process N/A

After the process

What is visible
after the process?

Nothing, there is nothing visible in the artefact when two devices
that already have been paired are reconnecting. Reconnecting two
phones is not a convenient way to test this scenario, so we’ll come
back to reconnecting devices in other scenarios in the coming
chapters.

Is it as expected?
No, we expected a change in the bond state, but we see no change
in the artefact.

 ¬ 50

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between iOS device and Android (and vice versa)

7.13 Test 13: Forget Device and attempt to reconnect

Test Case
The iPhone forgot the connection and the Nexus 6 wants to
reconnect

Devices
Apple iPhone 6 Plus & Motorola Nexus 6
(bc:4c:c4:ee:11:9f & 44:80:eb:f0:ad:8f)

Procedure

Via the Bluetooth settings we forget the connection on the iPhone.
(similar to Android, see Attachment 7: Forgetting a paired device on
Android). With the Nexus 6 we tried to reconnect with the iPhone via
Bluetooth. We denied the request on the iPhone when we received
a new request.

Monitored devices Nexus 6

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

We expected to see a change in bond state to bonding followed by a
similar behaviour as observed when the request sent by the Nexus 6
was denied (see Test 6: Nexus 6 sends request – denied).

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑖𝑃ℎ𝑜𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

During the process
of reconnecting

After the process of
reconnecting and
sending the new
request

After deny

What is visible
after the process?

We see when we send the new request to the iPhone that the bond
state is changed to bonding. When the request was denied, we see
that the state has been changed to none. However, the iPhone is no
longer listed between the paired devices.

 ¬ 51

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between iOS device and Android (and vice versa)

Is it as expected?
No, we expected to see a traces of the attempt to reconnect, as well
as the creation of a new request when the iPhone received a new
pairing request.

 ¬ 52

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

8 Communication between two Android devices

In this series of test, all the test of chapter 7 - Communication between iOS device and Android
(and vice versa) have been redone. The test are now between two Android devices. Here, we
used the OnePlus 7T Pro and the Nexus 6 as test subject.

We wanted to verify if there was any difference in the artefact when the request got cancelled
or denied. We specifically hoped to see a different behaviour with the sender of the request
when the receiver of the request denies the request. We suspected that there will be no
difference when the request is timed-out or accepted.

As previously mentioned, these two devices are my personal devices. The OnePlus is the
successor to my previous daily driver, the Nexus 6.

In the screenshots of the output, the output we got with the Nexus 6 is in the black font, the
output with the OnePlus is in the blue font. The first screenshot will always be from the Nexus 6
and the second one from the OnePlus.

8.1 Test 1: OnePlus sends request – time-out

Test Case
An Android device (device A) sends a request to another
Android device (device B). The request is timed-out.

Devices
Motorola Nexus 6 & OnePlus 7T Pro
(44:80:eb:f0:ad:8f & 48:01:c5:86:27:ce)

Procedure
We used the OnePlus to send a request to the Nexus 6. We didn’t
interact with the devices once the request was sent and we let the
request time-out.

Monitored devices Nexus 6 & OnePlus

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario
Start scenario on Nexus 6:

Start scenario on OnePlus:

What is expected?

On the Nexus 6 we expected to see the a change of bond state to
bonding when the request has been received. When the request has
timed-out, we expected to see a change in bond state to none.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

 ¬ 53

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

We expected to see the creation of the request on the OnePlus with
the time it was created and the MAC-address of the Nexus 6. We ex-
pected to see a change in bond state to bonding and a change to
bond state none.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

During the process

After the process

What is visible
after the process?

We can see on the output from the Nexus 6 when the request has
been received and what the MAC-address of the sender was. We
can also see that the request was timed-out after about half a minute
or 30 seconds.

On the OnePlus we can see when the request was created and the
MAC-address of the receiver. We see twice a change in bond state
to bonding. This time it takes about ten seconds. If we compare
these timestamps to the timestamps of the Nexus 6, we can derive
that the second time we see the bonding state being set to bonding
is around the same time as the Nexus 6 is in bonding state.
On the OnePlus we can also see that the request is timed-out after
the same time period as we saw on the Nexus 6, about half a minute
or 30 seconds.

Is it as expected?

Yes, we expected to see these results.
We can see when the artefact is created, we see the change in bond
state on the OnePlus, we can see the arrival of the request based on
the bond state on the Nexus 6. We can see on both devices when
the request timed-out after 30 seconds.

 ¬ 54

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

8.2 Test 2: Nexus 6 sends request – time-out

Test Case
An Android device (device B) sends a request to another
Android device (device A). The request is timed-out

Devices
Motorola Nexus 6 & OnePlus 7T Pro
(44:80:eb:f0:ad:8f & 48:01:c5:86:27:ce)

Procedure
We used the Nexus 6 to send a request to the OnePlus. We didn’t in-
teract with the devices once the request was sent and we let the re-
quest time-out.

Monitored devices Nexus 6 & OnePlus

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

We expected to see the creation of the request on the Nexus 6 with
the time of creation and the MAC-address of the OnePlus.
We expected to see a change in bond state to bonding followed with
a second change in bond state to bonding when the OnePlus has re-
ceived the request. We expect to see a last change in bond state to
none when the request is timed-out.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

On the OnePlus we expected to see a change in bond state to
bonding indicating that the OnePlus has received the request. When
the request is timed-out, a change of bond state to none.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

During the process

 ¬ 55

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

After the process

What is visible
after the process?

On the Nexus 6 we can see the creation of the request and at what
time it was created. We can also derive the receiver of the request
based on the MAC-address. After the creation of the request, we can
see twice the change in bond state to bonding followed by the
change in bond state to none. The time between the two bonding
states is now four seconds. After about half a minute (30 seconds)
the request is timed-out. As in the previous test of this series, we can
now derive why we see twice the change in bond state on the send-
ing device.

The output of the OnePlus shows when the request is received and
from who based on the MAC-address. We can see that this causes a
change in bond state, setting the state to bonding. After about half a
minute we can see here too that the request is timed-out and the
state has been set to none.

Is it as expected?
Yes, we expected to see this behaviour. This verifies also the
suspicion of what the meaning is of the returning change in bond
state “BOND_STATE_BONDING” on the sending device.

8.3 Test 3: OnePlus sends request – cancelled

Test Case
An Android device (device A) sends a request to another
Android device (device B). The request is being cancelled on
device A.

Devices
Motorola Nexus 6 & OnePlus 7T Pro
(44:80:eb:f0:ad:8f & 48:01:c5:86:27:ce)

Procedure

We used the OnePlus to send a request to the Nexus 6. Once the
Nexus 6 has received the request, we cancelled the request on the
OnePlus (see Attachment 4: Pop-up when sending a request on An-
droid).

Monitored devices Nexus 6 & OnePlus

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

 ¬ 56

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

Start scenario

What is expected?

On the Nexus 6 we expected to see when the request is received,
who the sender was and the change in bond state. We hoped to see
that when the OnePlus has cancelled the request, we see a new
behaviour indicating that the request has been cancelled.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑒𝑑
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

On the OnePlus we expected to see the creation of the request, what
time it is created and the receiver’s MAC-address. We
expected to see the bond change twice. We expect something
similar to the “Invalid value” we saw in the previous series of test
(Chapter 7 – Communication between iPhone and Android).

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

During the process

After the process

What is visible
after the process?

On the Nexus 6 we see when and from what device, based on the
MAC-address, we received the request. We can see that this causes
the state to change to bonding. We can also see that the state has
been set to none after five seconds. When we compare these

 ¬ 57

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

timestamps to the once of the OnePlus, we see that this is when we
pressed cancel.

On the OnePlus we see the creation of the artefact, when it has been
created and the MAC-address of the receiver. We can see the two
bond state changes and when we pressed cancel, we can see that
the function “Invalid value” has been called. We see that afterwards
the state is set to none again.

Is it as expected?

No, we expected to see a difference in the artefact on the Nexus 6
when the request got cancelled. We see the same behaviour as we
saw with the iPhone, indicating that even if the Nexus 6 knows that
the request is cancelled, the state is just set to none and no further
attention is given to the event.

8.4 Test 4: Nexus 6 sends request – cancelled

Test Case
An Android device (device B) sends a request to another
Android device (device A). The request is being cancelled on
device B.

Devices
Motorola Nexus 6 & OnePlus 7T Pro
(44:80:eb:f0:ad:8f & 48:01:c5:86:27:ce)

Procedure

We used the Nexus 6 to send a request to the OnePlus. Once the
OnePlus has received the request, we cancel the request on the
Nexus 6 (see Attachment 4: Pop-up when sending a request on An-
droid).

Monitored devices Nexus 6 & OnePlus

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

We expected to see when the request has been created and who the
receiver is based on the MAC-address. We expected to see twice the
change in bond state to bonding. We expect to see the destruc-
tion/deletion of the request on the Nexus 6.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔

 ¬ 58

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝐼𝑛𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

On the OnePlus we expected to see the arrival of the request, with
the according timestamp and the MAC-address of the sender. We
hoped to see a new behaviour indicating the annulation of the
request instead of a change of bonding state.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑒𝑑
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

During the process

After the process

What is visible
after the process?

On the Nexus 6 we can see the creation of the artefact, with the
MAC-address of the receiver of the request and when the request
was issued. We can see that this is followed by a change in bond
state, indicating that the receiver is ready to pair. After about four
seconds we see once again a change in bond state, indicating that
the receiver is ready to bond. When we pressed cancel we can see
that the function “Invalid value” is called, this is followed by a change
in bond state to none.

On the OnePlus we can see when we received the request,
accompanied with the MAC-address of the sender. When we
cancelled the request, we see on the OnePlus a change in bond
state to “BOND_STATE_NONE”.

Is it as expected?

No, we expected to see a new behaviour on the OnePlus when we
cancelled the request. The other observed behaviours were as
expected. We expected to see at the sender’s end the MAC-address
of the receiver accompanied with the creation of the request, the
bonding states, and the cancellation. All with their timestamps.

 ¬ 59

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

We saw at the receiver’s end the receival of the request with the
sender’s MAC-address and the timestamp, causing the bond state to
change to bonding.

8.5 Test 5: OnePlus sends request – denied

Test Case
An Android device (device A) sends a request to another
Android device (device B). The request is being declined on
device B.

Devices
Motorola Nexus 6 & OnePlus 7T Pro
(44:80:eb:f0:ad:8f & 48:01:c5:86:27:ce)

Procedure

We used the OnePlus as a sender for the request. We send the
request to the Nexus 6. Once received on the Nexus 6, we declined
the request by pressing “cancel” (see Attachment 5: Pop-up when
receiving a request on Android).

Monitored devices Nexus 6 & OnePlus

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

We expected to see the receival of the request on the Nexus 6,
accompanied with the sender’s MAC-address (the OnePlus’
MAC-address) and the timestamp of when the request has been
received. We expected to see the “Invalid value” function being
called when we denied the request on the Nexus 6. Lastly we
expected to see the bond state being set to none.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝐼𝑛𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

On the OnePlus we expected to see the creation of the request,
accompanied with the receiver’s MAC-address and the timestamp of
when the request was created. After the creation we expected to see
the change in bond state to boning twice, followed by a new
behaviour indicating that the request has been declined. Finally we
expected to see the destruction of the request on the OnePlus.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔

 ¬ 60

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑑𝑒𝑛𝑖𝑒𝑑
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

During the process

After the process

What is visible
after the process?

On the Nexus 6 we can see when the request has been received
and who sent it based on the MAC-address. We can see when we
declined the request and that in order to do so, the function “Invalid
value” is called. This causes a change in bond state to none.

On the OnePlus we can see when we created the request and that,
based on the MAC-address, the Nexus 6 is the receiver of the
request. We can see when the OnePlus was ready to bond in the
first entry where the bond state is changed to bonding and when the
Nexus 6 was ready based on the second entry of
“BOND_STATE_BONDING”. This was after approximately four sec-
onds. When the Nexus 6 has declined the request, around the
14:37:46 mark. It took 30 seconds before the OnePlus’ bond state
changed. This indicates that the OnePlus did not know that the
request has been denied.

Is it as expected?

No, we expected that the OnePlus would know when the Nexus 6
declined, thus causing an entry in the bond events section. We did
not see this behaviour, similar to a cancelation.
We expected to see the other entries to the section.

 ¬ 61

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

8.6 Test 6: Nexus 6 sends request – denied

Test Case
An Android device (device B) sends a request to another
Android device (device A). The request is being declined on de-
vice B.

Devices
Motorola Nexus 6 & OnePlus 7T Pro
(44:80:eb:f0:ad:8f & 48:01:c5:86:27:ce)

Procedure

In this test we used the Nexus 6 to send a request to the OnePlus.
Once the OnePlus received the request, we declined the request by
pressing “cancel” (see Attachment 5: Pop-up when receiving a re-
quest on Android).

Monitored devices Nexus 6 & OnePlus

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

We expected to see the creation of the request on the Nexus 6 with
the timestamp of creation and the receiver’s MAC-address
Followed by twice the change in bond state to bonding and a new
behaviour indication that the request has been denied causing the
bond state to be set to none.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑏𝑜𝑛𝑑 𝑑𝑒𝑛𝑖𝑒𝑑 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

On the OnePlus we expect to see receiving the request,
accompanied with the MAC-address of the sender and the
timestamp of arrival. We expected to see the function “Invalid value”
to be called when we cancel the request, followed by a change in
bond state to none.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝐼𝑛𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

 ¬ 62

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

During the process

After the process

What is visible
after the process?

On the Nexus 6 we can see the creation of the request, along with
the timestamp and MAC-address of the receiver. We can see when
the Nexus 6 is ready to bond and when the OnePlus has received
the request based on the second bond state change to bonding. This
is after approximately 24 seconds. Another 14 seconds later we see
that the bond state has been set to none. This corresponds with the
denial on the OnePlus of the request.

On the request we see when we received the request and who the
sender is based on the MAC-address. We see that when we pressed
cancel, the function “Invalid value” is being called. After which the
bond state is set to none. Afterwards, we see that the bond request
is being removed. This is done by the function
“btif_dm_remove_bond”. Thereupon, we see twice that the function
“bond_state_changed” is being called. The state stays on
“BOND_STATE_NONE”.

Is it as expected?

No, what we thought we would see with the Nexus 6 as well as with
the OnePlus are incorrect. The behaviour is even different compared
to the previous test.

On the Nexus 6 we expected to see some new behaviour when the
request has been cancelled. In a way we see this, since the bond
state is changed when we declined the request on the OnePlus. In
the previous test we had similar behaviour to an time-out on the
sending device. We did not see a new function being called or a new
state when the request was denied.

 ¬ 63

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

On the OnePlus we see a completely new behaviour of the artefact.
We can see, as expected, the receival of the request and all its info,
as well as the denial of the request based on the function “Invalid
value” being called followed by the change in bond state. What we
see afterwards is unexpected. The OnePlus removes the bond re-
quest. This can be derived from the function “btif_dm_remove_bond”
that is being called. Subsequently, twice the function
“bond_state_changed” is being called with no effect on the bond
state. We let to believe this is a new behaviour on Android 10 that is
similar to when this function is being called immediately after the
creation of a bond request. We expect that this causes the sender to
know that the request has been denied and that the final call of this
function is to finalise the process.
Further research, preferably with two devices running Android 103, to
this behaviour is needed.

8.7 Test 7: OnePlus sends request – incorrect pin

Test Case
An Android device (device A) sends a request to another
device (device B). Device A accepts the request pin,
but device B rejects the request.

Devices
Motorola Nexus 6 & OnePlus 7T Pro
(44:80:eb:f0:ad:8f & 48:01:c5:86:27:ce)

Procedure

We used the OnePlus to send a request to the Nexus 6.
We accepted the pin on the screen (see Attachment 4: Pop-up when
sending a request on Android) of the OnePlus (the sender).

When the pin was confirmed on the OnePlus, we declined the re-
quest on the Nexus 6 by pressing cancel (see Attachment 5: Pop-up
when receiving a request on Android).

Monitored devices Nexus 6 & OnePlus

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

3 Android 10 is at the moment of writing the most recent edition of the Android operating system.

 ¬ 64

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

What is expected?

On the Nexus 6 we expected to see the receival of the request with
the according timestamp and the sender’s MAC-address. When can-
celling the request, we expected to see the function “Invalid value”
being called, followed by a change in bond state to none.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝐼𝑛𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

On the OnePlus we expected to see the creation of the request, with
the MAC-address of the receiver of the request and the timestamp,
followed by the change in bond state to bonding twice. We expected
to see no change when we confirmed the request on the OnePlus.
We expected to see the function “Invalid value” or a similar function
to be called when we declined the request on the Nexus 6.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝐼𝑛𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

During the process

After the process

What is visible
after the process?

On the Nexus 6 we see when we received the request and who was
the sender. When we pressed cancel on the Nexus 6, we see the
function “Invalid value” being called, followed by a change in bond
state to none.

On the OnePlus we can see when we created the request and who
the receiver was based on the MAC-address. We see twice the

 ¬ 65

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

change in bond state. When the pin was rejected, we do not see any
change in behaviour.

Is it as expected?
No, we expected to see a change in the artefact when the pin was
rejected. We see no trace of an incorrect pin, the only indication that
something went wrong is that the bond state is change to none.

8.8 Test 8: Nexus 6 sends request – incorrect pin

Test Case
An Android device (device B) sends a request to another
device (device A). Device B accepts the request pin,
but device A rejects the request.

Devices
Motorola Nexus 6 & OnePlus 7T Pro
(44:80:eb:f0:ad:8f & 48:01:c5:86:27:ce)

Procedure

In this testcase we used the Nexus 6 as the sender of the request.
The OnePlus operated as receiver. We accepted the pin of the sent
request (see Attachment 4: Pop-up when sending a request on An-
droid) on the Nexus 6.

Once we confirmed the pin on the Nexus 6, we declined the
request on the OnePlus by pressing cancel (see Attachment 5: Pop-
up when receiving a request on Android).

Monitored devices Nexus 6 & OnePlus

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

We expected to see the creation of the request on the Nexus 6
accompanied with the MAC-address of the OnePlus and the
timestamp of creation. We expected to see the change in bond state
to bonding twice. We expected to see a similar behaviour to the
function “Invalid value” being called when we denied the request on
the OnePlus.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 − 𝐼𝑛𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

 ¬ 66

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

On the OnePlus we expected to see the arrival of the request, with
the timestamp and the sender’s MAC-address, followed by a change
in bond state to bonding. When declining the request, we expected
the function “Invalid value” to be called, followed by a change in bond
state, the removal of the request and the
finalisation of the procedure designated with twice calling the
function “bond_state_changed”.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝐼𝑛𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑟𝑒𝑚𝑜𝑣𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

During the process

After the process

What is visible
after the process?

On the Nexus 6 we can see the creation of the request, with the
timestamp and who the receiver is. We can see twice the change in
bond state and when we declined the request on the OnePlus, based
on the timestamps. The only effect visible in the artefact is that the
bond state has been changed to none. Remarkably, we saw a notifi-
cation on the Nexus 6 screen when we cancelled the request that
mentioned that the pin was incorrect (see Attachment 6: Pop-up on
Nexus 6 when pin is incorrect).

On the OnePlus we can see when we received the request and who
the sender of the request was based on the change in bond state.
We can see when we denied the request based on the function

 ¬ 67

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

“Invalid value” being called. This causes a change in bond state to
none. As we observed in Test 6: Nexus 6 sends request – denied,
we can see that the OnePlus starts a procedure of removing the
bond request, followed by twice a change in bond state. If we as-
sume that, when we have send a request, the double change in bond
state is once on the sender/creator of the artefact and once for the
receiver, is the returning of the change in bond state similar to this
and does this cause the notification we saw in Attachment 6: Pop-up
on Nexus 6 when pin is incorrect? Further research with two devices,
that are preferably running Android 10, is needed.

Is it as expected?
No, we expected a different behaviour on the Nexus 6 when we
declined the request on the OnePlus. Our other assumptions
concerning the behaviour of the artefact are correct.

8.9 Test 9: OnePlus sends request – accepted

Test Case
An Android device (device A) sends a request to another
Android device (device B). Both devices accept the request.

Devices
Motorola Nexus 6 & OnePlus 7T Pro
(44:80:eb:f0:ad:8f & 48:01:c5:86:27:ce)

Procedure
We used the OnePlus to send a request to the Nexus 6.
We accepted the request on both devices. Both devices are now
paired/bonded.

Monitored devices Nexus 6 & OnePlus

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

On the Nexus 6 we expected to see the arrival of the request,
accompanied with its timestamp and the MAC-address of the sender.
We expected to see, once the request has been accepted, a change
in bond state to bonded.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑

On the OnePlus we expected to see the creation of the request with
accordantly the MAC-address of the Nexus 6 and the timestamp on
which the request was created. We expect to see twice the change in

 ¬ 68

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

bond state to bonding. When the request has been accepted, we
expect to see a change in bond state to bonded.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑏𝑜𝑛𝑑 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑

During the process

After the process

What is visible
after the process?

On the Nexus 6 we can see when we received the request, and who
the sender was based on the MAC-address. We observe twice a
change in bond state to bonded when the request was accepted.

On the OnePlus we can see when we created the request, and who
the receiver was based on the MAC-address. We see twice a change
to bonding and twice a change to bonded when we accepted the re-
quest.

Based on previous findings, we can assume that the phenomenon of
the double changes in bond state to bonded is once to communicate
to the other device that the request has been accepted and once to
change to bond state itself on the device.

Is it as expected?
No, we did not expect to see the double change in bond state to
bonded. Our other assumptions about the behaviour of the artefact
are correct.

 ¬ 69

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

8.10 Test 10: Forget Device

Test Case
Both Android devices are connected. We forget the
connection between both devices.

Devices
Motorola Nexus 6 & OnePlus 7T Pro
(44:80:eb:f0:ad:8f & 48:01:c5:86:27:ce)

Procedure

We forget the connection between the two devices. This is done first
on the Nexus 6. We go into the Bluetooth settings and search for the
OnePlus. We pressed the advanced options (gear button) and chose
to forget the device (see Attachment 7: Forgetting a paired device on
Android).

Afterwards, we do the same on the OnePlus since the device do not
know that the other device deleted the know device.

Monitored devices Nexus 6 & OnePlus

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

We expected to see the same on both devices.
We expected to see the removal of the bond and a change in bond
state to none on both devices.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑟𝑒𝑚𝑜𝑣𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑟𝑒𝑚𝑜𝑣𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

 ¬ 70

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

After the process
of forgetting the
connection on
Nexus 6

After the process
of forgetting the
connection on
OnePlus

What is visible
after the process?

On the Nexus 6 we see the removal of the bond, followed by twice the
change in bond state.

On the OnePlus we do not see any behaviour indicating that the bond
has been deleted. However, after we removed the bond on the
OnePlus, we see only one change in bond state.

Is it as expected?
No, we expected to see the same behaviour on both devices, but we
do not see the same behaviour. On the Nexus 6 we see twice the
change in bond to none. This is remarkable.

 ¬ 71

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

8.11 Test 11: Nexus 6 sends request – accepted

Test Case
An Android device (device B) sends a request to another
Android device (device A). Both devices accept the request.

Devices
Motorola Nexus 6 & OnePlus 7T Pro
(44:80:eb:f0:ad:8f & 48:01:c5:86:27:ce)

Procedure
With the Nexus we have sent a request to the OnePlus.
We accepted the request on both devices.

Monitored devices Nexus 6 & OnePlus

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

We expected to see the creation of the request on the Nexus 6
accompanied with the timestamp of creation and the MAC-address
of the OnePlus. We expected this to be followed by twice a change
in bond state to bonding. When the request is accepted we expected
a change in bond state to bonded.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑

On the OnePlus we expected to see the arrival of the request, with
the MAC-address of the Nexus 6 and the timestamp of arrival. We
expected to see a change in bond state to bonded when the
request is accepted.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑

During the process

 ¬ 72

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

After the process

What is visible
after the process?

On the Nexus 6 we see the creation of the request accompanied
with the timestamp and the MAC-address of the receiver. We see
twice the change in bond state to bonding. Once the request has
been accepted, we see once the change of bond state to bonded.

On the OnePlus we see the arrival of the request with its timestamp
and the MAC-address of the sender. Once the request is accepted,
the bond state is set to bonded.

Is it as expected? Yes, we expected this behaviour.

8.12 Test 12: Reconnect devices

Test Case
Both devices are connected but out of range of each other. We
bring them back together and try to connect them again.

Devices
Motorola Nexus 6 & OnePlus 7T Pro
(44:80:eb:f0:ad:8f & 48:01:c5:86:27:ce)

Procedure

For this test, we did not reboot the devices.

Both devices were coupled before the start of the test. We brought
the device out of the range. We then brought them out of range and
back in range and connected them with each other again.

We checked if the Nexus 6 was out of range of the OnePlus based
on the connection of a smartwatch (Fossil Q Marshal) that was
connected to the OnePlus.

Monitored devices Nexus 6 & OnePlus

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

 ¬ 73

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

Start scenario

What is expected?

We expected to see on both device the same. We expected to see a
change in bond state to none when they are out of range. Once they
are in range again and connected, we expect to see a change in
bond state to bonded.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑

After losing
connection

After the process

What is visible
after the process?

We see no change in the artefact.

Is it as expected? No, we expected to see changes in the artefact.

 ¬ 74

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

8.13 Test 13: Forgetting Device and attempted to Reconnect

Test Case
Both devices (A&B) are connected. We forget the connection on
device A and try to reconnect with device B.

Devices
Motorola Nexus 6 & OnePlus 7T Pro
(44:80:eb:f0:ad:8f & 48:01:c5:86:27:ce)

Procedure

For this test, we did not reboot the devices.

At the start of the test, both devices were connected. On the OnePlus,
we forgot the connection (see Attachment 7: Forgetting a paired de-
vice on Android). Afterwards, we tried to connect both
devices again via the Nexus 6. We did not interact with the request
(this is done in the next test case, test 14).

Monitored devices Nexus 6 & OnePlus

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

We did not expected to see a change on the Nexus 6 when the
OnePlus forgot the connection, with the exception of the bond state
changing to none. When the Nexus 6 tries to connect again, we
expected first to see a change in bond state, followed by the
creation of a bond request with twice the function
“bond_state_changed” to be called.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔

We expected to see on the OnePlus the removal of the bond
followed by a change in bond state. Once the Nexus 6 tries to bond
again, we expect to see the same as we saw in the other tests when
the Nexus sent a request to bond to the OnePlus.

 ¬ 75

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑟𝑒𝑚𝑜𝑣𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔

After forgetting
the
connection

After the process
(when request is
send)

What is visible
after the process?

We see that the Nexus 6 does not know that when the OnePlus forgot
the connection. When the Nexus 6 tries to reconnect, we see a
change in state to bonding. We see the same on the OnePlus when
the request arrives.

We can clearly see on the OnePlus what function is called when we
forget the request (btif_dm_remove_bond) and that afterwards the
function bond_state_changed has been called, changing the state to
none.

Is it as expected?

No, we expected to see a change on the Nexus 6 when the bond was
removed on the OnePlus. When the request to reconnect was sent,
we expected to see the creation of a new request, but we do not see
this. We see only once the change in bond state to bonding.

This behaviour is remarkably different than what we expected, bases
on the previous tests.

 ¬ 76

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

8.14 Test 14: Accepting the reconnection request

Test Case Device A accepts the request of device B.

Devices
Motorola Nexus 6 & OnePlus 7T Pro
(44:80:eb:f0:ad:8f & 48:01:c5:86:27:ce)

Procedure
We accepted the reconnect request from the previous test.
Thus the devices were not rebooted.

Monitored devices Nexus 6 & OnePlus

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

On both devices we expect to see a change in bond state to bonded
twice.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑

After the process

 ¬ 77

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

What is visible
after the
process?

On the Nexus 6 we see twice a change in bond state to bonded. The
same is visible on the OnePlus. When we compare the timestamps,
we see that that both are approximately 1 second apart. This is within
margin of error in time between the two devices and may be linked to
latency with Bluetooth communication. The fact we see twice the bond
state changing to bonded indicates that both devices know when the
other device has accepted the connection, following our conclusion of
Test 9: OnePlus sends request – accepted.

Is it as expected? Yes, we see the expected behaviour.

8.15 Test 15: Sending a file from the OnePlus

Test Case
Both devices are connected with each other via Bluetooth. We
transfer a photo over Bluetooth from device A to device B.

Devices
Motorola Nexus 6 & OnePlus 7T Pro
(44:80:eb:f0:ad:8f & 48:01:c5:86:27:ce)

Procedure
Both devices were connected via Bluetooth before the start of the
test. We share a photo (see Attachment 8: Photo used in testing to
send between devices) from the OnePlus’ gallery to the Nexus 6.

Monitored devices Nexus 6 & OnePlus

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

On the Nexus 6 we expect to see the arrival of a special bond
request for file sharing. We expected to see a change in bond state
to bonded and transfer the file. Once the file is transferred,
we expected to see a change in bond state to none.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔

 ¬ 78

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

On the OnePlus we expected to see the creation of a special bond
request for file transferring. Followed by twice a change in bond state
before an indication of the file transfer. After the file transfer, we ex-
pect to see the bond state to be set to none.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

During the process

After the process

What is visible
after the process?

When we chose the receiving device of our photo, the two devices
went to the bonding state. When the device has accepted the incom-
ing request to receive a photo, the state was set to none.

Is it as expected?
No, we expected to see a new behaviour when the photo was trans-
mitting and when the photo was received the change in bond state to
none.

 ¬ 79

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

8.16 Test 16: Sending a file from the Nexus 6

Test Case
We share a photo from device B to device A. The devices are
not connected with each other.

Devices
Motorola Nexus 6 & OnePlus 7T Pro
(44:80:eb:f0:ad:8f & 48:01:c5:86:27:ce)

Procedure

We shared a photo from the Nexus 6 gallery with the OnePlus over
Bluetooth. The devices were not connected and not present in the
list of known Bluetooth devices.
The photo can be found in Attachment 8: Photo used in testing to
send between devices.

Monitored devices Nexus 6 & OnePlus

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

We expected to see the creation of a special bond request on the
Nexus 6, followed by twice a change in bonding state to bonding fol-
lowed by a change to bonded, before transferring the photo. After
the photo is transferred, we expected to see a change in bond state
to none.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑂𝑛𝑒𝑃𝑙𝑢𝑠 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

On the OnePlus we expected to see the arrival of the request,
followed by a change in bond state to bonding. Then a change to
bonded followed by an indication that a file is being transferred. After
the transfer, we expected that the bond state is set to none.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑁𝑒𝑥𝑢𝑠 6 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑜𝑛𝑒

 ¬ 80

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between two Android devices

During the process

After the process

What is visible
after the process?

When we chose our receiving device, on both device, the bonding
state was set to bonding. When we accepted the incoming request to
receive a photo, the bond state was set to none.

Is it as expected?

No, we expected to see a new behaviour when the photo was trans-
mitting and when the photo was received, the change in bond state
to none. We also expected to see the creation of a bond request
since the two devices were not connected at the start of this test.

 ¬ 81

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between smartphone and audio player

9 Communication between smartphone and audio player

Since testing the behaviour of the artefact when two mobile phones that are trying to reconnect
is not easily observable, we test this case with a Bluetooth enabled audio player. For this test-
case we used the UUV Airdot wireless in-ear headphones.

Between each testcase we reboot the smartphone.

9.1 Bonding the audio player with the smartphone

Test Case An Android device is paired with the audio player

Devices
Motorola Nexus 6 & UVV Airdot wireless in-ear headphones
(44:80:eb:f0:ad:8f & ca:71:06:fe:ed:a3)

Procedure
The Nexus 6 Bluetooth settings were opened in order to be able to
pair with the Airdots. When the Airdots showed up, we connected the
devices.

Monitored devices Nexus 6

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?

We expected to see the creation of a pairing request, followed by a
change in bond state. We expected to see a similar behaviour as we
saw between two smartphones. Once paired, we expected to see the
bond state to be set to bonded.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑎𝑢𝑑𝑖𝑜 𝑝𝑙𝑎𝑦𝑒𝑟 − 𝑐𝑟𝑒𝑎𝑡𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑎𝑢𝑑𝑖𝑜 𝑝𝑙𝑎𝑦𝑒𝑟 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑎𝑢𝑑𝑖𝑜 𝑝𝑙𝑎𝑦𝑒𝑟 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑖𝑛𝑔
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑎𝑢𝑑𝑖𝑜 𝑝𝑙𝑎𝑦𝑒𝑟 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑

After the process

What is visible
after the process?

We can see the timestamp when we created the bond request and
the MAC-address of the receiver (audio player). We can see that
twice the change in bond state to bonding and when paired, the
change in state to bonded.

Is it as expected? Yes, we expected to see this behaviour.

 ¬ 82

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between smartphone and audio player

9.2 Reconnecting the audio player with the smartphone

Test Case
The audio player is powered on and is connection with the
smartphone

Devices
Motorola Nexus 6 & UVV Airdot wireless in-ear headphones
(44:80:eb:f0:ad:8f & ca:71:06:fe:ed:a3)

Procedure
The Airdots were powered on and connected automatically with the
Nexus 6.

Monitored devices Nexus 6

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?
We expected to see the bond state changing to bonded.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑎𝑢𝑑𝑖𝑜 𝑝𝑙𝑎𝑦𝑒𝑟 − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑

After the process

What is visible
after the process?

We see no change in the artefact.

Is it as expected? No, we expected to see a change in the bond state to bonded.

9.3 Forgetting the audio player

Test Case Smartphone forgets the audio player being bonded

Devices
Motorola Nexus 6 & UVV Airdot wireless in-ear headphones
(44:80:eb:f0:ad:8f & ca:71:06:fe:ed:a3)

Procedure
Via the advanced settings in the Bluetooth menu of the Nexus 6 we
forgot the connection with the Airdots (see Attachment 7: Forgetting a
paired device on Android).

Monitored devices Nexus 6

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

 ¬ 83

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between smartphone and audio player

What is expected?

We expected to see the removal of the bond and the bond state to be
none.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑎𝑢𝑑𝑖𝑜 𝑝𝑙𝑎𝑦𝑒𝑟 − 𝑟𝑒𝑚𝑜𝑣𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑎𝑢𝑑𝑖𝑜 𝑝𝑙𝑎𝑦𝑒𝑟 − 𝑟𝑒𝑚𝑜𝑣𝑒 𝑏𝑜𝑛𝑑 − 𝑛𝑜𝑛𝑒

After the process

What is visible
after the process?

We can see the removal on the bond and the bond state being set to
none.

Is it as expected? Yes, we expected this behaviour.

 ¬ 84

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Communication between an Android smartphone and smartwatch

10 Communication between an Android smartphone and
smartwatch

This test is to observe what happens when an Android smartphone and a Wear OS smartwatch
reconnect with each other and if we can see this in the discovered artefact.

It was mainly preformed since we wanted to know what happens with known devices, espe-
cially devices that communicate over Bluetooth and have a variety of functions like smart-
watches and the infotainment system of a car. We wanted to know if we could see the devices
reconnecting in the artefact that we are studying. Since we have no car at our disposal that
has such infotainment system, we conducted this test with a smartwatch.

Test Case
Smartwatch and smartphone are connected with each other
but out of range. The two devices are back in range and con-
nect automatically with each other.

Devices
OnePlus 7T Pro & Fossil Q Marshal
(48:01:c5:86:27:ce & fc:45:96:6a:35:65)

Procedure

Both devices were connected before the start of the test. At the
start of the test, both devices were out of range of each other. We
bring them back into each other’s range and they connect
automatedly.

Monitored devices OnePlus

How is it
monitored?

$ adb shell dumpsys bluetooth_manager

What is
monitored?

Bond events

Start scenario

What is expected?
We expected to see the bond state change to bonded.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝐵𝐷𝑎𝑑𝑑𝑟 𝑜𝑓 𝑠𝑚𝑎𝑟𝑡𝑤𝑎𝑡𝑐ℎ − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 − 𝑏𝑜𝑛𝑑𝑒𝑑

After the process

What is visible
after the process?

Nothing is visible in the section of Bond Events.

Is it as expected?
No, we expected to see a change in bond state when the two de-
vices reconnected.

 ¬ 85

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Artefact lifespan

11 Artefact lifespan

The value of an artefact for DFIR heavily depends on the lifespan of that artefact.
When an artefact, for example, has a lifespan of a few minutes, the value of that artefact is
negligible.

To determine the value of dumpsys, we analysed the lifespan of the aforementioned modules

in chapter 6: The Value of dumpsys, namely the modules accounts, content and

Bluetooth_manager.

11.1 Accounts

The module accounts, we saw all the accounts known on a device with their respective
services and applications. These entries stay present as long the app is installed. If an app is
installed, but not signed in (cfr. Figure 13 - Example of registered accounts on a device, entry
WhatsApp), we can see the presence of the application without an account.

These observations translate to a valuable artefact in a DFIR investigation. Usually when an
application is used, the user signs in the first time that he/she uses the application. Afterwards,
the user stays logged in. When a device is confiscated, the possibility that the user is not
signed in to an app, is slim.

11.2 Content

The module content includes mainly the synchronisation history of the services with the known
accounts. Only the most recent synchronisation is recorded. When this synchronisation was,
depends on the service that is present.

These (control) data stays present, which means that it is a valuable source for a DFIR.

11.3 Bluetooth_manager

Since Bluetooth_manager is a module within dumpsys that is specific to one service, namely
the Bluetooth service, we expect an influence to the artefacts of Bluetooth_manager when the
service is stopped. Stopping this service can be done in different ways. One could switch off
Bluetooth, aeroplane mode could be enabled or the device could be powered off or restarted.

We observed that when the Bluetooth process was stopped, Bluetooth_manager is resetted.
This means that all information contained in the dumpsys module Bluetooth_manager is lost,
except for, among other things4, the list of bonded devices.

On the OnePlus, we observed a different behaviour compared to the Nexus 6. When the
OnePlus entered a power saving state when the device wasn’t in use, for example during the
night on battery power when its user is sleeping and not using the device, the Bluetooth
process was stopped, causing Bluetooth_manager to reset. This behaviour is observed even
when the device was connected over Bluetooth with a smartwatch. Due to the limited number
of devices, we were unable to verify if this behaviour is caused by new power saving

4 Not all section of Bluetooth_manager have been researched. Not all sections contained relevant data
for our research. This also means that no attention was given to these sections when researching the
lifespan of the sections we were interested in.

 ¬ 86

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Artefact lifespan

measurements in Android 10, or if it is a characteristic of the device itself, caused by an
optimisation performed on the software of the OnePlus. Further research concerning this
matter has to be undertaken. Preferably with devices running Android 10.

The value of the studied artefact, the section “Bond Events” within the dumpsys module
Bluetooth_manager, heavily depends on the device. Nevertheless it is definitely worth of
considering investigating when conducting a DF investigation.

 ¬ 87

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Critical reflection on the tests

12 Critical reflection on the tests

There are some remarks about our testing procedure to be made, and why certain choices
were made.

We didn’t use the Tsurugi VM for the tests with the OnePlus. This is because Linux has no
supporting drivers at the moment of testing for this device. This forced us to use the Win-
dows O.S. of the host machine (Dell XPS). There is a benefit to use a Windows VM instead.
Since we had a separate machine to communicate with each device, it was better managea-
ble to communicate to the devices using adb. If both devices were connected to the same
machine, it could have been a potential point of error. We could communicate to the wrong
device.

Another remark that we have to make is the following. We saw a noticeable difference in the
information we received out of the output of Bluetooth_manager between the two Android de-
vices. We could extract more information out of the dump from the OnePlus compared to the
one of the Nexus 6. Since we had only a limited number of devices, that both run almost va-
nilla5 Android, it could be beneficial to compare the output with other devices. Potentially other
manufactures made changes on how Bluetooth works on their device and could some artefacts
behave differently. We dive deeper in the differences in the dump between the two test devices
in chapter 14 - Differences between Android versions.

Of all the sections that are present in the output of Bluetooth_manager, we focused us only on
bond events. We didn’t look for other changes in the output in any test case. The test with
unexpected behaviour, especially those where we saw no change in the artefact, may had an
influence on other data of the output of Bluetooth_manager. It might be possible that useful or
interesting data could be found in these scenarios elsewhere in Bluetooth_manager. As we
set out to determine if an artefact could be found when a connection attempt was conducted,
this was out of scope of the current research and we did not investigate this possibility.

It might be noticed that there were no tests between the Nexus 6 and iPhone regarding sending
a file between these over Bluetooth. We could not find an obvious way to do this. That is the
reason that there were no test cases regarding this matter.

We do not expect noteworthy changes caused by using adb that could impact the systems
integrity.

During our research, we did not look into the filesystem and file structure of the devices.

As mentioned earlier, both Android devices are my personal devices. They did not receive a
reset before testing. This was done to recreate a real investigation. The benefit in our research
is that we discovered the possibilities of dumpsys, e.g. how all accounts that are known on the
device could be found as mentioned in chapter 6 - The Value of dumpsys.

5 Vanilla Android: stock Android. The OnePlus’ OxygenOS has a few extra features compared to vanilla
Android, but is not heavily modified compared to devices of some other manufactures.

 ¬ 88

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Discussion of test results

13 Discussion of test results

In this chapter, we discuss the various results. We make a generalization of the various

scenarios and describe the corresponding behaviour of the section Bond Events within the

module Bluetooth_manager of dumpsys. We’ll describe both master6 and slave7 devices

separately. Each scenario will be clarified with the help of a generalized example.

13.1 Time-out of a request

13.1.1 Master device

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑙𝑎𝑣𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑡𝑖𝑓_𝑑𝑚_𝑐𝑟𝑒𝑎𝑡𝑒_𝑏𝑜𝑛𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝑁𝑂𝑁𝐸

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑙𝑎𝑣𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐼𝑁𝐺
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑙𝑎𝑣𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐼𝑁𝐺

+30s
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑙𝑎𝑣𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝑛𝑜𝑛𝑒

When encountering this scenario, it means that you are observing an artefact of a master
device who sent a request that timed out.

13.1.2 Slave device

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑚𝑎𝑠𝑡𝑒𝑟 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐼𝑁𝐺
+30s

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑚𝑎𝑠𝑡𝑒𝑟 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝑁𝑂𝑁𝐸

When encountering this scenario, it means that you are observing an artefact of a slave device
who received a request that timed out.

13.2 Cancellation of a request

13.2.1 Master device

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑙𝑎𝑣𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑡𝑖𝑓_𝑑𝑚_𝑐𝑟𝑒𝑎𝑡𝑒_𝑏𝑜𝑛𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝑁𝑂𝑁𝐸

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑙𝑎𝑣𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐼𝑁𝐺
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑙𝑎𝑣𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐼𝑁𝐺

+<30s
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑙𝑎𝑣𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝐼𝑛𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐼𝑁𝐺

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑙𝑎𝑣𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝑁𝑂𝑁𝐸

When encountering this scenario, it means that you are observing an artefact of a master
device who sent a request and cancelled that request.

6 Master device: a.k.a. sender, the device issuing the change in bond state, e.g. issuing a bond request.
7 Slave device: a.k.a. receiver, the device receiving the connection requests. See Figure 1 - Bluetooth
Handshake.

 ¬ 89

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Discussion of test results

13.2.2 Slave device

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑚𝑎𝑠𝑡𝑒𝑟 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐼𝑁𝐺
+<30s

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑚𝑎𝑠𝑡𝑒𝑟 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝑁𝑂𝑁𝐸

When encountering this scenario, it means that you are observing an artefact of a slave device
who received a request that got cancelled by the master.

13.3 Denial of a request

When a request was denied, we see a different behaviour depending on the version of the
Android O.S. that the device is running.

13.3.1 Master device

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑙𝑎𝑣𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑡𝑖𝑓_𝑑𝑚_𝑐𝑟𝑒𝑎𝑡𝑒_𝑏𝑜𝑛𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝑁𝑂𝑁𝐸

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑙𝑎𝑣𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐼𝑁𝐺
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑙𝑎𝑣𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐼𝑁𝐺

+30s/+<30s
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑙𝑎𝑣𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝑁𝑂𝑁𝐸

During our testing, we saw strange behaviour on the master when the request was denied.
When the slave was running Android 7.1, we saw an identical behaviour to a time-out on the
master who was running Android 10. When the slave was running Android 10 and the master
was running Android 7.1, we saw that when the slave had rejected the request, a change in
bond state to none. This indicates that there is a difference in Bluetooth communication.

13.3.2 Slave device

Older8 versions of Android:

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑚𝑎𝑠𝑡𝑒𝑟 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐼𝑁𝐺

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑚𝑎𝑠𝑡𝑒𝑟 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝐼𝑛𝑣𝑙𝑎𝑖𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐼𝑁𝐺
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑚𝑎𝑠𝑡𝑒𝑟 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝑁𝑂𝑁𝐸

Newer9 versions of Android:

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑚𝑎𝑠𝑡𝑒𝑟 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐼𝑁𝐺
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑚𝑎𝑠𝑡𝑒𝑟 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝐼𝑛𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐼𝑁𝐺

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑚𝑎𝑠𝑡𝑒𝑟 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝑁𝑂𝑁𝐸
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑚𝑎𝑠𝑡𝑒𝑟 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑡𝑖𝑓_𝑑𝑚_𝑟𝑒𝑚𝑜𝑣𝑒_𝑏𝑜𝑛𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝑁𝑂𝑁𝐸

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑚𝑎𝑠𝑡𝑒𝑟 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝑁𝑂𝑁𝐸
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑚𝑎𝑠𝑡𝑒𝑟 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝑁𝑂𝑁𝐸

On newer versions of Android we see that when the request has been declined, the bond is
removed. Afterwards we see twice the change in bond state, indicating that a slave running a
newer version of Android will notify the master that the request has been rejected. Expected is
that this will influence the behaviour of the master and create a new scenario that the artefact

8 In our testing, this older version of Android was Android 7.1 (Nexus 6).
9 In our testing, the testing was done on the most recent version of Android, Android 10, at that time.

 ¬ 90

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Discussion of test results

could reside in when the master is running a newer version of Android. It is not expected that
the variation in Bluetooth version would influence this, since a master running an older version
of Android knows immediately that the request was denied. Further research to this behaviour
is recommended with devices running newer versions of Android, and if possible, with different
Bluetooth versions.

If one of these scenarios is encountered, it means that you are observing an artefact of a slave
device who received a request that was denied.

13.4 Acceptance of a request

13.4.1 Master device

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑙𝑎𝑣𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑡𝑖𝑓_𝑑𝑚_𝑐𝑟𝑒𝑎𝑡𝑒_𝑏𝑜𝑛𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝑁𝑂𝑁𝐸

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑙𝑎𝑣𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐼𝑁𝐺
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑙𝑎𝑣𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐼𝑁𝐺

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑙𝑎𝑣𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐸𝐷
(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑙𝑎𝑣𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐸𝐷)

When encountering this scenario, it means that you are observing an artefact of a master
device who sent a request that got accepted.

13.4.2 Slave device

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑚𝑎𝑠𝑡𝑒𝑟 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐼𝑁𝐺
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑚𝑎𝑠𝑡𝑒𝑟 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐸𝐷
(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑚𝑎𝑠𝑡𝑒𝑟 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐸𝐷)

When encountering this scenario, it means that you are observing an artefact of a slave device
who received a request that was accepted.

13.4.3 Remarks

As we saw a difference between Android versions when a request was rejected, we see a
similar difference when a request has been accepted. The only difference we saw is that when
the master is running a newer version of Android, the master has twice the entry where the
bond state is changed to bonded and on the slave twice a change in bond state to bonded,
hence we put the last line between the brackets.

13.5 Forgetting a connection

When forgetting a connection, this is only visible on the device that forgot the connection. This
makes sense since it is possible that the other device is out of range.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑑𝑒𝑣𝑖𝑐𝑒 − 𝑏𝑡𝑖𝑓_𝑑𝑚_𝑟𝑒𝑚𝑜𝑣𝑒_𝑏𝑜𝑛𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝑁𝑂𝑁𝐸

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑑𝑒𝑣𝑖𝑐𝑒 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝑁𝑂𝑁𝐸
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑑𝑒𝑣𝑖𝑐𝑒 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝑁𝑂𝑁𝐸

As you can observe in the pseudocode, the change in bond state is present twice. At this
moment, we don’t have a possible explanation why this is and what the function of it is.

 ¬ 91

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Discussion of test results

When the forgotten device tries to reconnect with the device who forgot the connection, this
will fail, and a new connection request will be created (see Test 13: Forget Device and attempt
to reconnect). A possible explanation is that the pin code used in the original request is no
longer valid for a connection between the two devices.

13.6 File transfer

When a file is transferred between two devices, we see the same behaviour in the artefact of
the two devices.

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑑𝑒𝑣𝑖𝑐𝑒 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐼𝑁𝐺

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑑𝑒𝑣𝑖𝑐𝑒 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝑁𝑂𝑁𝐸

The changes in the bond state happens within a second.

13.7 General remarks

We observed that when a change in bond state is conducted, the master device has twice a
change in bond state. For example, when a new connection request is conducted, the master
will have twice the entry 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑙𝑎𝑣𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 −
 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝑁𝑂𝑁𝐸. When comparing the timestamp of the second entry to the entries on
the slave device, the slave will have the entry 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑚𝑎𝑠𝑡𝑒𝑟 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 −
𝑏𝑜𝑛𝑑_𝑠𝑡𝑎𝑡𝑒_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 − 𝐵𝑂𝑁𝐷_𝑆𝑇𝐴𝑇𝐸_𝐵𝑂𝑁𝐷𝐼𝑁𝐺 around that timestamp. We can deduct that
the second entry on the master device is when the slave has received the request and its bond
state is being changed to be able to bond. There is some variation in the timestamp to be
expected due to the fact we are communicating wirelessly and that the devices are not time
synced to the millisecond. A variation in timestamp around the one to two second mark is thus
expected.

It is suspected that the differences mentioned between the different devices are due to the
difference in Android versions and not the difference in Bluetooth version. This is found on the
observation that the behaviour on the Nexus 6 changed compared to the tests with the iPhone.

With the test scenarios where we simulated an incorrect pin, we wanted to know if something
went wrong during a connection request, what the behaviour of the artefact was. Since we
accepted the request on the sender and rejected it on the receiver, we had in essence the
same scenario as when the request was denied.

13.8 Value of the artefact

As stated previously, the value of an artefact for DFIR depends heavily on its lifespan.

In chapter 11 - Artefact lifespan, we determined its value based on the lifespan of the artefact.
We did not determine if the information that the artefact contains is valuable.

To decide if the information of our described Bluetooth artefact has a value during an investi-
gation, we will compare this to a real-life case that has been described in the paper of Panag-
iotis Andriotis, George Oikonomou and Theo Tryfonas form the Bristol Cryptography Group at
the University of Bristol [10].

They described a case where images were classified as child pornography. The images were
transferred via Bluetooth form a mobile phone to a computer. Since the question that we set
out to answer in this thesis was whether we could find an artefact indicating if an attempt to

 ¬ 92

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Discussion of test results

connect over Bluetooth could be found, this case is applicable to our described Bluetooth
artefact. To send an image via Bluetooth, a Bluetooth connection must be conducted (see Test
15: Sending a file from the OnePlus and Test 16: Sending a file from the Nexus 6).

Figure 14 - Visualisation of the transferring process over Bluetooth

As the performed tests showed, we could in fact prove if a file was sent via Bluetooth. The
typical properties of the artefact when transferring a file deviates greatly compared to other
observed behaviours of the artefact. This means that yes, our found artefact is valuable in a
digital forensic investigation.

 ¬ 93

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Differences between Android versions

14 Differences between Android versions

As mentioned in the previous chapter, there are some differences between the two Android
versions that were used in our testing.

It can be suspected that the Bluetooth service on Android 10 is more advanced compared to
Android 7.1. Furthermore, there are some differences visible in Bluetooth_manager. Some
subtle differences, for example the difference between “BD-addr” and “address” in the studied
artefact where the address of the other device could be seen. Other, larger differences, that
we observed were that the OnePlus had all music streaming services present in
Bluetooth_manager.

This section, where these streaming services are visible, is called “Media Players”, see Figure
15 - Output of the section "Media Players" of the dumpsys module Bluetooth_manager. As
you can see, even the last played song is present. We’ve observed this artefact and noticed
that the asterisk indicates which service was last active. It defaults to Google Play Music. As
you can see in the attachment, it has defaulted to the default service, but knows what song
was last streamed via Spotify. The visible song was playing at that

moment via the Dell XPS (the laptop that was used during testing, see chapter 3 - Test Devices)
and the OnePlus knew this. Probably due to Spotify Connect, but has not been verified.

The benefit of this artefact is that when certain Bluetooth speakers are connected to the device,
the music resumes automatically where the music was stopped during the last session of the
service.

Figure 15 - Output of the section "Media Players" of the dumpsys module Bluetooth_manager

Since this output is very long (wide), separate screenshots were made and placed under

eachother. The output for each “Media Player” is one line.

 ¬ 94

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Conclusion

15 Conclusion

15.1 What did we discover within this dissertation?

Mobile digital forensics is a fast evolving domain within an already fast evolving world. For
digital forensic investigators it is cat-and-mouse game to keep up with the changes in the world
of mobile devices. The flavours that each manufacturer implements on the fast evolving base
is not helping with this. It’s a hunt for the forensic researchers to find a tool that is able to assist
them with as many as possible devices in different scenarios.

The discovery of the potential that dumpsys has is in that aspect unseen. Dumpsys has over
a hundred different modules, each specialized in a certain aspect of an Android device. A very
important one is the module account where we are able to see all accounts and the
corresponding service of that account that are known on the device.

In our case study we observed one section of such module and were able to determine what
happens in different scenarios where Bluetooth is used. Since that module,
Bluetooth_manager, also contains what known device correspondents to what Bluetooth
address, we can easily and quickly identify connected devices.

We started from a live investigation, but found a way quickly that we were able to examine the
information via a copy of the data, a.k.a. post-mortem.

15.2 What is the impact on the current state of Mobile Digital Forensics?

Currently, the first step that is undertaken when a mobile device is confiscated is to make sure
it is unable to communicate to the outside. This means that all networking options of the device
are turned off. This is done by ether enabling aeroplane mode or switching the device off. The
intent of these actions are to prevent a remote wipe of the device and destroy potential proof.

Unfortunately, valuable information is lost by doing so as e.g. the entries in Bluetooth_manager
are reset as a consequence. This means that the current procedures during a confiscation are
destroying data. From this point of view, there are issues and questions that can be raised.
When a forensic investigation is conducted, the goal is to work as forensically sound as possi-
ble. This mean that altering the subject is reduced to a minimum and that data is preserved.
Destruction of data needs to be prevented, no matter what. This is where the
current state of digital forensics, to be more specific, the seizure procedure falls short.

A new seizure procedure need to be put in place. The solution is very simple. When seizing a
device, a copy of the information from dumpsys can be made, preferably from each module
separately. When this has been successfully done, the device can preferably be placed in a
Faraday enclosure. Only when this is not possible, it could be turned off or enable aeroplane
mode, as done currently. It goes without saying that preferably the copy is made whilst the
device is already in a Faraday cage. By doing so, the possibility that the device is wiped during
the copy process is eliminated.

An example script to extract all information out of the dumpsys services can be found in
Attachment 9: Example script to extract all information from the dumpsys modules. In this at-
tachment we also describe what a possible improved seizure procedure could be.

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Bibliography

16 Bibliography

[1] Statcounter, “Mobile Operating System Marktet Share Februari 2020,” February 2020.
[Online]. Available: https://gs.statcounter.com/os-market-share/mobile/worldwide.

[2] Statista, “Mobile Operating Systems' Market Share Worldwide,” January 2020. [Online].
Available: https://www.statista.com/statistics/272698/global-market-share-held-by-
mobile-operating-systems-since-2009/.

[3] hostingtribunal.com, “Mobile and Desktop Operating System Market Share,” 2020.
[Online]. Available: https://hostingtribunal.com/blog/operating-systems-market-
share/#gref.

[4] J. Padgette, R. Smithbey, J. Bahr, L. Chen, M. Batra, K. Scarfone and M. Holtmann,
“Guide to Bluetooth,” NIST, Gaithersburg, 2017.

[5] Lynxbee, “Understanding Bluetooth Basics – Pairing and Handshaking process,” 2020.
[Online]. Available: https://www.lynxbee.com/understanding-bluetooth-basics-pairing-
and-handshaking-process/.

[6] M. McLaughlin, “How to Root Your Android Phone,” Lifewire, 16 March 2020. [Online].
Available: https://www.lifewire.com/how-to-root-your-android-phone-121676.

[7] Android Developers, “Android Debug Bridge (ADB),” 9 March 2020. [Online]. Available:
https://developer.android.com/studio/command-line/adb.

[8] Tsurugi, “About us,” March 2020. [Online]. Available: https://tsurugi-
linux.org/about_us.php.

[9] Tsurugi, “Your DFIR Linux Disctribution,” 9 March 2020. [Online]. Available:
https://tsurugi-linux.org/.

[10] P. Andriotis, G. Oikonomou and T. Tryfonas, “Forensic Analysis of Wireless Networking
Evidence of Android Smartphones,” University of Bristol, Bristol, 2012.

[11] Android Developers, “Logcat command-line tool,” 9 March 2020. [Online]. Available:
https://developer.android.com/studio/command-line/logcat.

[12] Android Developers, “dumpsys,” 9 March 2020. [Online]. Available:
https://developer.android.com/studio/command-line/dumpsys.

[13] Linux Freedom, “Tsurugi LInux,” 9 March 2020. [Online]. Available:
http://linuxfreedom.com/tsurugi/.

[14] M. Rutnik, “What is stock Android?,” 20 January 2019. [Online]. Available:
https://www.androidauthority.com/what-is-stock-android-845627/.

[15] D. Tobok, “What Is Digital Forensics?,” 15 Februari 2018. [Online]. Available:
https://cytelligence.com/resource/what-is-digital-forensics/.

[16] I. Spais, “Introduction to Digital Forensics,” 18 December 2019. [Online]. Available:
https://www.cipsec.eu/content/introduction-digital-forensics.

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Bibliography

[17] M. Sonntag, Introduction to Computer Forensics, Linz: Johannes Kepler University, 2012.

[18] P. Marjie T. Britz, Computer Forensics and Cyber Crime - An Introduction, Clemson:
Pearson, 2013.

[19] J. Lyle, Digital Forensics or Your trail is easier to follow than you think, NIST, 2015.

[20] S. L. Ksander, Introduction to Digital Forensics, West Lafayette, Indiana: Purdue
University, 2020.

[21] K. Kent, S. Chevalier, T. Grance and H. Dang, “Guide to Integrating Forensic Techniques
into Incedent Response,” NIST, Gaithersburg, 2006.

[22] P. Greg Gogolin, “Digital Forensics Explained,” Taylor & Francis Group, Boca Raton,
2013.

[23] J. Fruhlinger, “What is digital forensics? And how to land a job in this hot filed,” 25 January
2019. [Online]. Available: https://www.csoonline.com/article/3334396/what-is-digital-
forensics-and-how-to-land-a-job-in-this-hot-field.html.

[24] M. Al-Hadadi and A. Al Shidhani, “Smartphone Forensics Analysis: A Case Study,”
International Journal of Computer and Electrical Engineering, vol. Vol. 5, no. No. 6, pp.
576-580, December 2013.

[25] Guru99, “What is Digital Forensics? History, Process, Types, Challenges,” 19 April 2020.
[Online]. Available: https://www.guru99.com/digital-forensics.html.

[26] XDA Developers, “What is ADB? How to Install ADB, Common Uses, and Advanced
Tutorials,” 2020. [Online]. Available: https://www.xda-developers.com/what-is-adb/.

[27] Information Security and Forensics Society (ISFS), “Computer Forensics - Part 1: An
Introduction to Computer Forensics,” april 2004. [Online]. Available:
http://www.isfs.org.hk/publications/ComputerForensics_part1.pdf.

[28] P. Coeck, Interviewee, Digital Forensic Researcher. [Interview]. March 2020.

[29] Bluetooth SIG, “Bluetooth,” 2020. [Online]. Available: bluetooth.com.

[30] Bluetooth SIG, “Bluetooth Core Specification v5.0,” Bluetooth SIG, Kirkland, Wachington,
2016.

[31] Bluetooth SIG, “Our histery,” 2020. [Online]. Available: https://www.bluetooth.com/about-
us/our-history/.

[32] IEEE, “802.15.1-2002 - IEEE Standard for Telecommunications and Information
Exchange Between Systems - LAN/MAN - Specific Requirements - Part 15: Wireless
Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless
Personal Area Networks ...,” 14 June 2002. [Online]. Available:
https://ieeexplore.ieee.org/document/1016473.

[33] IEEE, “802.15.1-2005 - IEEE Standard for Information technology-- Local and
metropolitan area networks-- Specific requirements-- Part 15.1a: Wireless Medium
Access Control (MAC) and Physical Layer (PHY) specifications for Wireless Personal
Area Networks (WPAN),” 14 June 2005. [Online]. Available:
https://ieeexplore.ieee.org/document/1490827.

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Bibliography

[34] M. Woolley, “Bluetooth Core Specification Version 5.2,” Bluetooth SIG, Kirkland,
Wachingoton, 2020.

[35] S. Vafaei and M. Henney, “Bluetooth Versions Comparison & Profiles,” RTINGS.com, 6
July 2017. [Online]. Available: https://www.rtings.com/headphones/learn/bluetooth-
versions-comparison-profiles.

[36] David, “What's the Difference between Bluetooth Versions 2.x, 3.x, 4.x and 5.x,” The
Droid Guy, 9 April 2020. [Online]. Available: https://thedroidguy.com/whats-difference-
between-bluetooth-versions-2-x-3-x-4-x-5-x-1065792.

[37] J. Flynt, “What's the Difference between Bluetooth Versions 2, 3, 4 and 5?,” 3DInsider,
12 January 2019. [Online]. Available: https://3dinsider.com/bluetooth-versions/.

[38] I. A. Nguyen, “Bluetooth 1.0 vs 2.0 vs 3.0 vs 4.0 vs 5.0 - How They Compare,” 18 April
2018. [Online]. Available: https://www.semiconductorstore.com/blog/2018/Bluetooth-1-0-
vs-2-0-vs-3-0-vs-4-0-vs-5-0-How-They-Differ-Symmetry-Blog/3147/.

[39] SSH.com, “Root User,” SSH.com, 2020. [Online]. Available:
https://www.ssh.com/iam/user/root/.

[40] Urban Dicrionary, “Urban Dicrionary: Bricked,” 2020. [Online]. Available:
https://www.urbandictionary.com/define.php?term=bricked.

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Attachments

Overview of attachments

1 List of all services that can be issued with dumpsys on Nexus 6

2 Output of the command “𝑎𝑑𝑏 𝑙𝑜𝑔𝑐𝑎𝑡 | 𝑔𝑟𝑒𝑝 − 𝑖 𝑏𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ”

3 Generalisation of the applied test procedure

4 Pop-up when sending a request on Android

5 Pop-up when receiving a request on Android

6 Pop-up on Nexus 6 when pin is incorrect
7 Forgetting a paired Bluetooth device on Android
8 Photo used in testing to send between devices
9 Example script to extract all information from the dumpsys modules

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Attachments

Attachment 1: List of all services that can be issued with “𝒅𝒖𝒎𝒑𝒔𝒚𝒔” on Nexus 6

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Attachments

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Attachments

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Attachments

Attachment 2: output of the command “𝒂𝒅𝒃 𝒍𝒐𝒈𝒄𝒂𝒕 | 𝒈𝒓𝒆𝒑 − 𝒊 𝒃𝒍𝒖𝒆𝒕𝒐𝒐𝒕𝒉”

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Attachments

Attachment 3: Generalization of the applied test procedure

Generalization of a
Test Procedure
when using
Android Debug
Bridge’s Dumpsys
adb dumpsys

Nick Casier
04 May 2020

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Attachments

Introduction

This document describes an generalization of a possible test procedure for the different modules
within adb dumpsys. This is specific to Android devices.

The described procedure was used in my bachelor dissertation where we covered one specific section
of the module Bluetooth_manager of dumpsys.

We aimed to create a general procedure that can be used as a template for further investigation of the
different modules of dumpsys and the info that can be found in these modules.
An explanation about adb and dumpsys can be found in the aforementioned thesis.

Preparations

The first, and most important, decision that has to be made that will determine if the results are suc-
cessful and usable or not is whether to start from a clean, factory reset device or not. In some cases,
the data that has been gather during the use of device, is the data that you want to research. If a device
is clean, this data is not yet present. Researching this data on a clean device will be unsuccessful.

When this decision has been made, the developer options need to be enabled on the test subject.
USB-debugging has to be activated. A detailed description can be found in chapter 4 of my bachelor
dissertation.

To connect with the test subject, the used computer needs to be able to run Android Debug Bridge
and have this installed.

Once these conditions are fulfilled, you can determine what module(s) and section(s) of the module(s)
will be monitored. This depends on your testcase.

Testing

When conducting these test, you first need to have a baseline. Before each testcase it is recommended
to determine the state of each section that is monitored. When this has been performed, you can
compare the state of the sections that you are monitoring during and after each one of the tests.

It’s recommended to push the output from the adb command to a text file. This can easily be done as
shown in the following example. Android and adb are Unix based. Most of the Unix commands work
via adb. When this has been done, you can easily go back to review the results and discover potential
changes in other sections that are applicable to the testcase that you originally did not monitor.

adb shell dumpsys [module] > file. txt

Naturally, you can specify the path where the file needs to be created if adb is not ran from the direc-
tory where you wish to save the file.

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Attachments

It’s recommended to perform each test multiple times to make sure that the result is consistent. For
example, you can decide that if a certain behaviour occurs for three consecutive tests, it will always
occur.

During testing you also have to research the lifespan of the artefact that is being researched. Do certain
processes influence the artefact? What happens to the artefact when the device is rebooted? What
happens to the artefact when a certain process is stopped?

Reporting

After testing, the findings need to be reported. This can be done as you desire. A good rule of thumb
is to create for each test individually an overview what has happened. This makes it clear for whoever
wants to interpret your results or wants to know what happened in each testcase.

A possible overview could look like this:

Test Case Description of the testcase.

Devices
Identifiable names of the used devices during the test.
If necessary with configuration details.

Procedure Synopsis of the steps that were performed during the test.

Monitored devices Identifiable name of the monitored device(s).

How is it
monitored?

$ adb shell dumpsys <module>

What is
monitored?

Section of the module that is monitored.

Start scenario Screenshot of the monitored section(s) before testing.

What is expected?
Hypothesis of the expected outcome after testing.

Clarified with pseudocode if possible.

During the process
Screeenshot of the monitored section(s) during testing when
applicable.

After the process Screenshot of the monitored sectoin(s) after testing.

What is visible
after the process?

Detailed description of what is visible on the screenshots.

Is it as expected? Yes/No. Motivation why it is or is not as expected.

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Attachments

Attachment 4: Pop-up when sending a request on Android

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Attachments

Attachment 5: Pop-up when receiving a request on Android

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Attachments

Attachment 6: Pop-up on Nexus 6 when pin is incorrect

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Attachments

Attachment 7: Forgetting a paired device on Android

Step 1: In the Bluetooth settings, press the gear icon next to the device you want to go into the

advanced settings.

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Attachments

Step 2: To forget the selected device, press “FORGET”.

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Attachments

Attachment 8: Photo used in testing to send between devices

This photo was shot with the OnePlus 7T Pro. When sending the file from the Nexus 6 to the

OnePlus, the received photo from the previous test was used.

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Attachments

Attachment 9: Example script to extract all information from the dumpsys modules

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Attachments

Side note:
This script was intended to run at start-up
on a Raspberry Pi.
There are probably optimisations or
cleaner code possible. The line 𝑏𝑎𝑠ℎ
/ℎ𝑜𝑚𝑒/𝑝𝑖/𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠/𝑑𝑢𝑚𝑝𝑠𝑦𝑠. 𝑠ℎ &
was added to the file /etc/rc.local in order
to start the script when the Raspberry Pi
is booted.

Nick Casier academic year 2019-2020

 Bluetooth in Digital mobile Forensics

 Attachments

Proposal for new seizure procedure

A potential seizure procedure is proposed. The context for this proposal is when a search in a
suspects house is conducted. The detectives find an Android device
belonging to the suspect. In order to keep the example simple, the suspect is in his house and
willing to cooperate.

• What is needed?

➢ Operational Raspberry Pi with the latest version of Rasbian installed
➢ Power source for the Raspberry Pi
➢ USB-C and micro-USB cables to connect Android device to the Raspberry Pi
➢ Example script is present on the device and configured as mentioned in the side notes.

• What needs to be done?

The detectives invade the house and arrest the suspect. They find an Android phone in the
pocket of the suspect. The suspect is willing to cooperate and gives the code to unlock the
device. The detectives write it down10. Now, USB-debugging can be enabled as explained in

chapter 4: Test Setup.

The Raspberry can now be powered on and the device can be connected. The aforementioned
script will be executed and all modules of dumpsys will be copied. When the process is done,
the Raspberry powers itself off, notifying the executor that the process is completed. The
Android device is now placed in a Faraday Bag (and can be powered off) to transport it to the
Digital Forensics Investigation Lab.

In the copied files, the Digital Forensics Investigators found in the module accounts an account
that was used to sign-in onto a known chatroom where child pornography is exchanged. In the
module Bluetooth_manager the investigators found the MAC-address of another
device that was used in a different child pornography case, thus linking the two cases together.

10 The screen lock is not removed. Certain services and/or applications no longer work when there is no
screen lock in place (think of Android Pay). When the screen lock has been removed. The officers/de-
tectives have altered the device, thus not working forensically sound.

	Text6

