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Abstract

Introduction. Since its first use in humans in 1967, Spinal Cord Stimulation (SCS) has

been established as an effective therapy to treat chronic pain conditions. More recently,

new waveforms and frequencies have changed the paradigm of standard SCS to address

SCS long-term failures and to optimize therapy outcomes. The use of High Dose SCS

(HD-SCS) has drastically increased during the last years, with positive preliminary results

in terms of pain relief. However, to increase quality of life of chronic pain patients, one

should not only strive towards a pain reduction but also achieve a decrease in disability

or a reduction in opioid consumption. Therefore, the primary aim of this study was to

evaluate the effectiveness of HD-SCS on disability in patients with Failed Back Surgery

Syndrome (FBSS).

Methods. One hundred eighty-five patients with FBSS were included in this study.

Disability and pain intensity scores were evaluated at baseline (before receiving SCS) and

after 1, 3 and 12 months of neurostimulation with HD-SCS. During the second, third and

fourth visit respectively data of 130, 114 and 90 patients was available. Longitudinal mixed

models were used to evaluate disability over time. Afterwards a tipping point sensitivity

analysis was performed.

Results. HD-SCS significantly decreased disability scores in patients with FBSS.

The sensitivity analysis revealed that the shift parameter was 17. Thus, the conclusion

concerning the time effect under the ’Missing at random’ mechanism is reserved when the

shift parameter for the disability score is 17.

Discussion. Patients with FBSS benefit from HD-SCS not only in terms of pain relief

but also to decrease disability. From a clinical point of view, a shift of 17 points on

disability is not very plausible, wherefore we are tended to accept the conclusions drawn

under ’Missing at random’.
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1 Introduction

Since its first use in humans in 1967 [35], Spinal Cord Stimulation (SCS) has been

established as an effective therapy to treat a wide variety of chronic pain conditions.

One of the conditions in which SCS is often applied as treatment is Failed Back Surgery

Syndrome (FBSS). This condition is characterized by persistent back and/or leg pain of

unknown origin either despite surgical intervention or appearing after surgical intervention

for spinal pain [4]. The incidence of patients that will develop FBSS after lumbar spinal

surgery is estimated in the range of 10-40%, depending on the exact type of surgery [5, 34].

SCS involves the implantation of an epidural electrode, which is connected through

extensions with a subcutaneous implanted pulse generator [35]. Electrical pulses at

different frequencies are generated and delivered to the spinal cord to elicit paresthesia in

the painful area [11]. The goal of SCS is not to cure patients but rather to make chronic

pain tolerable, with benefits on functionality and health-related quality of life [38, 30].

Initially, standard SCS was provided whereby patients are experiencing paresthesia

in the painful areas. Over the last decade, several new waveforms and frequencies

were introduced which are not inducing paresthesia anymore [18]. One of those new

paresthesia-free stimulation paradigms, launched in 2016, is High Dose SCS (HD-SCS).

HD-SCS entails an increase in frequency and pulse width, along with a reduced amplitude,

when compared to conventional SCS [21]. Despite the absence of an exact definition for

the stimulation parameters of HD-SCS, the delivery of energy to neural tissue is the key

concept behind this paradigm [41]. The percentage of active stimulation during a pulse

cycle can be increased up to 20–25% for the maximal available settings, at a subsensory

mode [21, 18]. The first reports on HD-SCS were promising with benefits in terms of pain

relief [26, 6, 12].

When evaluating the success of a treatment in the field of neuromodulation, the

most prominent outcome measurement is a reduction in pain intensity. However, it has

previously been demonstrated that achieving a pre-treatment goal of ’reducing pain’

contributes very little to patient satisfaction in chronic disabled back and/or neck pain

patients [13]. Moreover, achieving “functional goals” was more important for patient

satisfaction than a reduction in self-reported pain [13]. Additionally, a qualitative

exploration towards patients’ expectations on SCS indicated that patients have more

expectations than only obtaining pain relief [14]. These studies, combined with the recent

call in the SCS literature to focus on a combination of several outcome measurements [25],

clearly demonstrates that we should redefine the definition of a successful treatment in SCS.
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Disability is one of the factors that can be proposed as additional self-reporting

measurement for evaluating the treatment effect of SCS. One of the most frequently used

questionnaires to evaluate disability within patients with chronic low back pain, is the

Oswestry Disability Index (ODI) [8]. This questionnaire, initially develop by O’Brien in

1976, consists of ten sections measuring pain intensity, personal care, lifting, walking,

sitting, standing, sleeping, sex life, social life, and travelling. A moderate correlation has

been reported between the ODI the 36-Item Short Form Survey as a measure of health

status [10]. Furthermore, changes in disability will easily affect other outcome domains,

among which quality of life and work status [27].

To evaluate the effect of HD-SCS from a more holistic approach, disability was used as

outcome measure in this longitudinal study, in which data was available up to 12 months

after the initiation of the treatment. A specific feature of longitudinal data is that they

are clustered, i.e. clusters are composed of the repeated measurements obtained from a

single individual at different visits, whereby observations in a cluster typically exhibit a

positive correlation [9]. Due to the repeated measures, mixed models were applied to

perform a longitudinal analysis. This enabled the evaluation of the within-subject changes

in the response over time. Afterwards, a sensitivity analysis was performed to estimate the

robustness of the main results. The general aim of this study was to evaluate the long-term

effectiveness of HD-SCS in patients with FBSS on disability.

2 Data

For this thesis, we used data from the ”Discover” project (Clinicaltrials.gov NCT02787265).

This prospective, multicenter registry was designed to assess the effectiveness of HD-SCS

in patients with FBSS. Patients were recruited between October 2016 and August 2018

in 15 Belgian neuromodulation centers and 1 center in France, all with ample HD-SCS

experience. All inlcuded patients underwent a baseline visit which was scheduled before SCS

implantation. After a SCS trial period of 4 weeks, a definitive SCS was implanted (minimal

invasive surgical intervention). All patients were implanted with a RestoreSensor, Intellis

or PrimeAdanced IPG (Minneapolis, MN, USA) and received HD-SCS with a pulse density

of 25% (500 Hz and 500 sec of pulse) in case of the RestoreSensor or Intellis and 11.7%

(450 Hz and 130 sec of pulse width) in case of a PrimeAdvanced IPG. Subsequently, three

visits took place after respectively one month, three months and twelve months of HD-SCS.

At the first visit, patient demographics were recorded. At all study visits, disbility, pain

intensity for leg pain and pain intensity for back pain were recorded. Age was used as a

categorical variable with three age categories namely young patients (25-45 years), middle

aged patients (46-65 years) and older patients (66-85 years). For disability, the Oswestry

Disability Index (ODI) was used. The total score on this questionnaire is ranging from 0
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to 100, with higher values representing more disability. Pain intensity was measured with

the Numeric Rating Scale (NRS) for both leg and back pain separately. The NRS ranges

from 0 to 10 whereby 0 represents no pain and 10 the worst imaginable pain.

According to the protocol of this study, disability is recorded at 4 visits for each patients.

Due to the repeated data, longitudinal mixed models were used to evaluate the effectiveness

of HD-SCS on disability in patients with FBSS.

3 Longitudinal mixed models

This part is based on the books of Fitzmaurice [9] and Molenberghs & Verbeke [22, 40].

3.1 The model

Let Yij denote the response variable for the ith subject (i= 1,...,N) at the jth time point

(j= 1,...,ni). Let Yi be an ni-dimensional vector of all repeated measurements for subject

i (i.e. Yi = (Yi1, Yi2, ..., Yini)
′).

The general form of a linear mixed model can be written as follows:
Yi = Xiβ + Zibi + εi
bi ∼ N(0, D)

εi ∼ N(0,Σi)

b1, ...,bN, ε1, ..., εN independent

whereby β is a (p x 1) vector of fixed effects, bi is a (q x 1) vector of random effects,

Xi is a (ni x p) matrix of covariates, and Zi is a (ni x q) matrix of covariates (often

called the design matrix). D is a (q x q) covariance matrix. Σ is a (ni x ni) covariance

matrix. Note that Σ only depends on i through ni. εi is an ni-dimensional vector of

residual components. Σ is often equal to σ2Ini where Ini denotes a (ni x ni) identity matrix.

Furthermore, a distinction should be made between a conditional and a marginal model.

The conditional (or subject-specific) mean of Yi, given bi, is

E(Yi|bi) = Xiβ + Zibi

The marginal (or population-averaged) mean of Yi, averaged over the distribution of the

random effects bi, is:

E(Yi) = µi

= E{E(Yi|bi)}
= E(Xiβ + Zibi)

= Xiβ + ZiE(bi)

= Xiβ
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The marginal density function of Yi is given by:

f(yi) =

∫
f(yi|bi)f(bi)dbi

whereby f(yi|bi) and f(bi) are density functions. As such, the marginal density function

of Yi has a mean vector Xiβ and covariance matrix Vi = ZiDZ
′
i + Σi. Thus, within a

linear mixed effects model, β’s (fixed effects) are assumed to be similar for all individuals

and have an interpretation on the population-averaged level. The bi vector contains

subject-specific regression coefficients (i.e. random effects). When combining bi with the

fixed effects, they are describing the mean response profile for any individual.

Given the full distributional assumptions about the vector of responses Yi, maximum

likelihood (ML) is used for estimation. The main idea behind this approach is to select

those values as estimates for β and Σi that are most likely for the data that are actually

observed. Estimation of β and Σi proceeds by maximizing the likelihood function, i.e.

the probability of the response variables evaluated at the fixed set of observed values and

regarded as functions of β and Σi. The values that maximize the likelihood function are

called maximum likelihood estimates of β and Σi, denoted as β̂ and Σ̂i.

3.2 Statistical inference

Let L be a single row vector of known weights with the null hypothesis (H0) : Lβ = 0

and alternative hypothesis (HA): Lβ 6= 0. To test H0 versus HA the Wald statistic can be

compared to a standard normal distribution:

Z =
Lβ̂√

LĈov(β̂)L′

whereby LCov(β̂)L′ is a single value and the square root is the estimate of the standard error

for Lβ̂. When L has more rows (i.e. r rows which are representing r contrasts of interest),

a multivariate Wald test is used to compare H0 versus HA which has a χ2 distribution with

r degrees of freedom:

W 2 = (Lβ̂)′{LĈov(β̂)L′}−1(Lβ̂)

Alternatively, H0 : Lβ = 0 versus HA: Lβ 6= 0 could be evaluated with a Likelihood

Ratio test (LRT). This test compares the maximized log-likelihoods for two models namely

a full model (defined as an unconstrained model) and a reduced model (constrained model

with Lβ = 0). The reduced model is nested within the full model. The larger the difference

between maximized log-likelihoods, the stronger the evidence that the reduced model is not

adequate. Formally:

G2 = 2(̂lfull − l̂red)
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should be compared to a χ2 distribution with degrees of freedom equal to the difference

between the number of parameters in the full and reduced model.

Restricted (or residual) maximum likelihood (REML) estimation should be applied for

estimating Σi. The main concept of REML estimation is to separate the data that is used

for estimating Σi from β in order to eliminate β from the likelihood estimation of Σi. The

REML estimator will be less seriously biased than the ML estimator for Σi. If the sample

size is substantially larger than p (the dimension of β), then the difference between ML

and REML estimation becomes less important. This approach should be recommended for

comparing nested models for the covariance but not to compare nested regression models for

the mean. When dealing with non-nested covariance models, Akaike Information Criterion

(AIC) could be used. Among several non-nested competing models for the covariance, the

model which minimizes the following expression should be selected.

AIC = -2 (maximized REML log-likelihood) + 2 (number of covariance parameters)

In this framework, the objective is to select a model that has a good fit to the data and a

model that is parsimonious. This is obtained by extracting a penalty for the estimation of

each additional covariance parameter. Thus, AIC can be used to compare models with the

same fixed effects but with different models for the covariance.

4 Methodology

To gain insight in the data, univariate analyses and different plots to evaluate correlations

and (co)variances were constructed. Concerning the model building, we started by fitting

a nearly saturated mean model that includes all main effects, two way- and three way

interaction terms. We started the model building with an unstructured covariance matrix,

allowing different variances on each visit and different correlations between all combinations

of visits. The necessity of random slopes and/or random intercepts was evaluated by

Restricted Maximum Likelihood (REML) estimation. Splines were also considered (REML

estimation). Secondly, the unstructured covariance matrix was compared with other

covariance structures. Model selection was performed with AIC values. If the unstructured

covariance matrix model did not differed significantly from a model with more assumptions,

we replaced it. Thirdly, the fixed part of the model was simplified by dropping unnecessary

predictors using LR tests, starting from the interaction terms. Deletion of a predictor was

allowed if it does not affect the model (p>0.05). If a higher order interaction term needed

to be included, the lower interaction terms and main effects remained in the model as well.

All statistical analyses were performed in SAS 9.4 with PROC MIXED.
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5 Results

5.1 Primary analysis

5.1.1 Descriptive statistics

In this study, 89 males (48.1%) and 96 females (51.9%) were included with a mean age of 54

(SD 12.01) years. The mean ODI score at baseline was 56.99 (SD 14.97), 31.26 (SD 17.58)

at 1 month, 30.64 (SD 18.52) at 3 months and 33.34 (SD 16.86) at 12 months. At the first

visit, data of 185 patients was available for the outcome variable. During the second, third

and fourth visit respectively data of 130, 114 and 90 patients was available.

5.1.2 Exploratory data analysis

Overall, there seemed to be a decrease in average ODI score over time (Figure 1). There

seems to be a lower variability in ODI score at baseline compared to the follow-up visits.

The ODI score seems to decrease very fast from baseline to one month of SCS, and

afterwards a more stable ODI score seems to be present. Presumably, a model with a knot

at the first months would be an option to investigate.

When plotting the ODI score at baseline, there seems to be a higher ODI score for

females compared to males. A decrease in ODI score is visible in both groups between

baseline and the first visit. Over time, we do observe a difference between males and

females whereby females seem to demonstrate a linear time effect from 1 month to 12

months and males a slight increase in ODI score from 3 months up to 12 months (Appendix

A1). When plotting the different age categories in function of the ODI, the ODI score in

the group with a middle age category seems to be the lowest at all time points (Appendix

A2).

The individual profiles are plotted in Figure 2, which clearly confirm the fast decrease

in ODI score during the first month. Based on these profiles, a model with a random

intercept seems very plausible.

The scatterplot matrix (Appendix A3) and variance/covariance parameter estimates

(Table 1) suggest a decaying correlation with increasing visit lags. Therefore, both a

compound symmetry and autoregressive covariance matrix (constant variance) as well

as a heterogeneous Toeplitz, heterogeneous autoregressive and heterogeneous compound

symmetry covariance matrix (difference in variance) were fitted.
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Figure 1: Distribution of ODI score per visit. The mean is represented by the square, the horizontal

line is representing the median ODI score at each visit.

5.1.3 Model building

We started with a nearly saturated model for the mean with a unstructured covariance

matrix. The data revealed a fast decrease in ODI score up to 1 month, where after a

slow increase from the first month onward was present (Figure 1). Therefore, a knot was

assumed at the first visit thanks to the creation of an additional variable ’Time1’ which

took the value zero when the observation occurred before the first month. Otherwise, the

new variable took the value of the current month minus one. The model with random

varying slopes was performing better than a model without the additional slope, wherefore

we decided to keep the extra knot in the model. This was tested with a LR test statistic

with a mixture of Chi-squared distributions with 2 and 3 degrees of freedom (LR=10.63,

p=0.009). Next, we compared a model with a single covariance structure to a model where

there is a different structure per sex and age category using a LR test. It was not necesarry

to use a model with different covariance structures per sex compared to a model without
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Figure 2: Individual profile plots.

different structures (LR=15.15, df=10, p=0.13). Similarly for age categories, a model

with different covariance structures and a model without different structures were fitted,

indicating that the model with different structures is favored (LR=39.14, df=20, p=0.006).

Additionally, we controlled whether a random slope and random intercept model would be

defensible compared to a random intercept model using REML estimation. The -2 Res Log

Likelihood equaled 3751.34 and 3775.52 respectively for a model with random intercept and

random slopes versus a random intercept model only, resulting in a Likelihood Ratio test

statistic of 24.19 which was compared to a Chi-squared distribution with a mixture of 9

and 4 degrees of freedom (p=0.002). Therefore, a model with random slopes will be used.

Due to the covariance that decreases with larger differences between visits,

a heterogeneous Toeplitz (TOEPH), heterogeneous compound symmetry (CSH),

heterogeneous autoregressive (ARH(1)), autoregressive (AR(1)) and compound symmetry

(CS) covariance matrix were fitted. The AR(1) model had the lowest AIC (3780.5), followed
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by the UN (3783.3), CS (3784.7), ARH(1) (3790.0), TOEPH (3792.3) and CSH (3796.4).

Based on the AIC, we decided to replace the unstructured covariance matrix by a model

with less parameters namely AR(1).

Month 0 1 3 12

0 172.93

1 100.94 169.07

3 90.95 127.97 189.51

12 99.35 111.02 138.35 162.34

Table 1: Estimated covariance parameters of the nearly saturated model with an

unstructured covariance matrix. Diagonal elements represent the variances, while

off-diagonal elements depict covariances.

Continuing with the AR(1) covariance matrix, the model was reduced by excluding

the least significant predictors. None of the three-way interaction terms was necessary to

be included in the model, wherefore they were all excluded (LRT=32.03, df=25 p=0.16).

Starting from a model with all two-way interaction terms, it was possible to remove all

two-way interaction terms (LRT=55.67, df=44 p=0.11). Subsequently, we sequentially

removed the least significant term from the model until no further simplifications were

possible anymore. This has lead to a final model with a random intercept and two random

varying slopes, four main effects namely back pain intensity, leg pain intensity, time and

time1. Additionally, different covariance matrices were allowed per age category. The

regression coefficient estimates of the final model are presented in Table 2. QQ plots for

the raw and scaled residuals were constructed (Appendix 4). There were no real departures

from normality visible and no abundant outlying observations could be detected. The

residuals had a symmetrical distribution around zero and no sign of heteroscedasticity were

visible.

Figure 3: Scatterplot, histogram and QQ plot for scaled residuals.
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5.1.4 Final model

At the first visit, the average ODI score is 25.05 ([20.43;29.66], p< 0.001) for a patient with

a pain intensity score of 0 for both back and leg pain. For 95% of the patients, the average

ODI score before treatment varies between 4.83 and 45.27 (25.05 ± 1.96 *
√

(106.39)).

Per unit increase in NRS back pain score, the average ODI score will increase with 2.32

([1.82;2.81], F = 86.73, p< 0.001). For each unit increase in NRS leg pain score, the

average ODI score will increase with 1.87 units ([1.44;2.30], F = 75.38, p< 0.001). There is

a monthly decrease of 7.68 ([4.98;10.39], F = 31.58, p< 0.001) in average ODI score during

the first month. For 95% of the patients, the average visit change in ODI score before

the first visit varies up to 14.68 units away from the population mean. The percentage of

patients that is experiencing an average decrease in ODI score before the first follow-up visit

84.7%. After the first visit, an increase of 7.61 ([4.84;10.38], F = 29.66, p< 0.001) in ODI

score is revealed per visit. For 95% of the patients, the average change in evolution per visit

after versus before the first month varies up to 14.98 units away from the population mean.

The AR(1) correlation parameter of 0.6639 indicates that, within a middle aged subject,

the correlation between two visits that are 1 time unit apart is 0.6639. The correlation

within older subjects and young subjects is respectively 0.18 and 0.35 between two visits

that are 1 time unit apart.

Variable Regression estimates SE 95% CI Type III test

Intercept 25.05 2.34 [20.43 to 29.66] p<0.001

NRS back 2.32 0.25 [1.82 to 2.81] p<0.001

NRS leg 1.87 0.21 [1.44 to 2.30] p<0.001

Time -7.68 1.37 [-10.39 to -4.98] p<0.001

Time1 7.61 1.40 [4.84 to 10.38] p<0.001

Table 2: Regression coefficient estimates and their 95% confidence intervals, based on the

final model.

Based on these results, it can be concluded that HD-SCS is able to significantly decrease

disability scores over time in patients with FBSS. Nevertheless, we should keep in mind that

not for all patients data was available at each visit. Therefore, this analysis was based on

all data as observed.
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5.2 Sensitivity analysis

5.2.1 Missing data

Missing observations are one of the most common issues that are encountered when

conducting clinical trials, however, often overlooked [15]. Let Ri be an n x 1 vector of

response indicators Ri = (Ri1, Ri2, ..., Rin)′ with Rij = 1 if Yij is observed and Rij = 0

if Yij is missing. Given Ri, the complete set of responses can be partitioned into two

components Y O
i as vector of observed responses on subject i and YM

i the set of responses

that are missing. In 1987, Little and Rubin classified the missing data mechanisms in three

distinct categories namely missing completely at random (MCAR), missing at random

(MAR) and missing not at random (MNAR) [19]. Under the assumption of MCAR,

the observed responses can be seen as a random subsample of the sampled responses.

There is independence of the missing data indicator with both observed and unobserved

measurements (Ri is independent of Y O
i and YM

i ). A more plausible assumption for

clinical trials is the MAR assumption. Under this assumption, the probability of dropout

depends on the observed data, but not on the unobserved data (Ri is conditionally

independent of YM
i , given Y O

i ). Within the context of likelihood inference, MCAR and

MAR are ignorable, wherefore we can ignore the missingness process and obtain valid

estimates. As such, in longitudinal studies with missing data, a mixed model only requires

MAR for the missing data leading to the term likelihood-based ignorable analysis. The

observed data are used without removing values, nor imputing others. This strategy was

applied to the model building for the primary analysis.

A wide variety of methods for handling with missing data are available. Imputation

methods are commonly applied in which the missing observation is filled up with a plausible

value. A commonly used technique in medicine is the ’last observation carried forward’

method whereby the missing value is imputed with the last available observation. The

disadvantage of this single imputation method is that it does not account for uncertainty,

thereby provoking an underestimation of the standard error of the statistical point

estimates [28]. A second type of imputation is multiple imputation in which the main idea

is to replace every missing value by a set of M (≥2) plausible values. The vector of M

values is constructed based on repeated draws from the posterior predictive distribution

of the unobserved values [43]. Generally, a proper imputation of YM
i should be randomly

drawn from f(YM
i |Y O

i , Xi). This implicitly implies that we assume MAR during multiple

imputation because the predictive distribution of the missing data, given the observed

data, does not depend on the observed response pattern Ri, with f(YM
i |Y O

i , Xi, Ri) =

f(YM
i |Y O

i , Xi) [9]. These M values are presenting the uncertainty about the value, in

contrast to simple imputation strategies. By the end of this step, all missing values are

filled in with M values to generate M complete datasets. Standard methods are applied to

analyse each dataset separately where after M inferences are then combined to withheld
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one inference that is properly reflecting the sampling variability due to missing under the

considered model [43]. Multiple imputation assumes MAR, however, the exact missing

mechanism cannot be formally evaluated. It thus becomes clear that performing analyses

on incomplete data requires untestable assumptions, so we need sensitivity analyses to

understand the impact of these assumptions on inferences and conclusions from the

primary analysis. Sensitivity analysis entails the creation of different models with varying

assumptions and evaluating how conclusions are influenced. This rather general definition

encompasses a wide variety of useful approaches [24]. In this thesis, we will focus on

tipping point sensitivity analysis under MNAR.

In a tipping point analysis, the influence of missingsness is explored on the overall

conclusion from the statistical inference by applying a wide spectrum of different

assumptions regarding the missingness mechanisms [28]. The aim is to find the ’tipping

point’ in the spectrum of assumptions at which conclusions from the statistical inference

will be changed [28]. Afterwards, a clinical interpretation can be given to the plausibility

of the assumptions [17].

5.2.2 Sensitivity analysis of primary analysis

In this study, a substantial proportion of the data is missing. Table 3 is providing an

overview of the different types of missing data. In total, 43.78% of the patients were

compliant with all visits, 50.82% exhibited monotone missingness and 5.4% exhibited

non-monotone missingness. Within the group with monotone missingness, a considerable

amount of patients has no follow-up measurements (25.41%), 9.19% has 1 follow-up visit

and 16.22% has 2 follow-up visits.

Type M0 M1 M3 M12 number percentage

Completers O O O O 81 43.78%

Monotone missingness O O O M 30 16.22%

O O M M 17 9.19%

O M M M 47 25.41%

Non-monotone missingness O O M O 2 1.08%

O M O O 2 1.08%

O M O M 1 0.54%

O M M O 5 2.70%

Table 3: Overview of missingness patterns in this study. Abbreviations. M: missing, O:

observed.

The previously constructed mixed model is valid under MAR. However, one cannot

explicitly test which mechanism is operating if only the observed data is available.
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Robustness of the results under the MAR assumption was assessed by comparing the

magnitude of the main effect estimated from the primary analysis to the estimates obtained

from a method that assumed a MNAR mechanism. Therefore, the main inference (i.e.

time effect) was explored with different assumptions about the missing data mechanism.

First, a dataset without missingness was created using multiple imputation strategies.

Two approaches were consecutively performed: 1) create a dataset with only monotone

missingness 2) create a dataset without missingness by regression-based imputation (PROC

MI procedure). The former is achieved with a Markov Chain Monte Carlo method using a

multivariate normal model [33]. The advantage of the latter is that a sequential approach

with univariate models with a number of predictor variables is used. This enables first

imputing data from the earliest visit, whereby the outcome can then be used as predictor

for imputations at later visits [31]. The imputation model included the previous outcomes

of the dependent variable combined with covariates age and pain intensity scores. Ten

imputations were created for each missing value. In table 4 the main effects of the primary

analysis under multiple imputation are presented. Both time effects remained significant.

Variable Regression estimates SE 95% CI p-value

Intercept 25.65 2.26 [21.19 to 30.12] <0.001

NRS back 2.27 0.23 [1.81 to 2.73] <0.001

NRS leg 1.83 0.20 [1.81 to 2.73] <0.001

Time -8.51 1.44 [-11.39 to -5.63] <0.001

Time1 8.46 1.49 [5.49 to 11.43] <0.001

Table 4: Regression coefficient estimates and their 95% confidence intervals, based on the

final model with multiple imputation.

Secondly, we assumed a wide spectrum of shifts for the values that were missing,

ranging from a decrease of -30 on the ODI up to + 30 at each visit. Next, the same

steps as above are conducted to generate multiple imputed datasets, with a specified

shift parameter that adjusts the imputed values. Thereafter, the imputed datasets were

analyzed by using the same likelihood analysis as in the primary analysis (PROC MIXED

procedure). Inferences are then combined for each shift parameter until a p-value of 0.05

or higher is revealed for the main study inference (PROC MI ANALYSE procedure). The

basis for this analysis was the SAS macro by Yang (2013) for RCT’s, available from the

SAS help center.

In table 5 the results of the tipping point analysis are presented. A shift of zero

corresponds to a standard MAR-based multiple imputation analysis. When ODI is shifted

with a value of slightly less than 18 (meaning patients with missing values experience

more disability), the conclusion becomes different from the likelihood based analysis. More
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specifically, for a two-sided error level of 0.05, the tipping point for the shift parameter is 17

for time effect and 18 for time1 effect. Thus, the study conclusion under MAR is reversed

when the shift parameter is 17. This means that if the shift parameter of 17 is plausible,

the conclusion under MAR is questionable. Visually, the results are presented in Figure 4.

(a) Time effect

(b) Time1 effect

Figure 4: Tipping point analysis for shift parameters ranging from -30 to 30.
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Shift p-value Time p-value Time1

-30 0.0087 0.0536

-27 0.0010 0.0082

-24 0.0001 0.0009

-21 <0.0001 0.0001

-18 <0.0001 <0.0001

-15 <0.0001 <0.0001

-12 <0.0001 <0.0001

-9 <0.0001 <0.0001

-6 <0.0001 <0.0001

-3 <0.0001 <0.0001

0 <0.0001 <0.0001

3 <0.0001 <0.0001

6 <0.0001 <0.0001

9 0.0001 0.0001

12 0.0013 0.0009

15 0.0142 0.0081

18 0.1018 0.0537

21 0.4237 0.2375

24 0.9702 0.6724

27 0.3914 0.7435

30 0.0997 0.2918

Table 5: Tipping point sensitivity analysis with p-values for time effects with shifts ranging

from -30 to 30.

6 Discussion

Since 2016, a new concept in SCS has found its way in the treatment for FBSS. Spinal

cord stimulation at higher current dose delivered below the sensation threshold, previously

described in the literature as “high-density SCS”, was demonstrated to be effective not

only in pre-screened patients, but also in patients habituated to conventional SCS [41, 26].

Although the exact parameters of HD-SCS are not defined, the concept behind this new

paradigm is based on the delivery of energy to neural tissue. Therefore the term ”high

density” became ”high dose”. Electrical energy may be viewed as akin to a pharmacological

agent that is titrated to produce optimal pain relief [21]. The total charge delivery per unit

of time (charge per pulse) seems to be a better way to describe stimulation parameters,

rather than indicating a specific SCS frequency.

The primary effectiveness outcome was defined as a mean disability reduction over

time by HD-SCS, measured by the ODI. Based on a longitudinal mixed model, the mean

disability reduction reached a strong statistical significance over time. Moreover, the final
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model contained a knot which indicated that there is a different slope from baseline to 1

month and from 1 month onward. Another approach that could have been used in this

dataset was to model an exponential time curve instead of creating a knot. Approximately

20-40% of SCS patients suffer from a decline in initial effectiveness of SCS due to a central

nervous system tolerance, as already reported in 1993 by LeDoux [16]. This decline is often

reported for pain relief [39], however, in this study we also observed this phenomenon for

ODI. Drastic improvements in ODI scores were visible up to 1 month, where after a slight

decrease becomes visible. This trend was also mentioned in a study with health-related

quality of life after 6 months of SCS [32]. This suggests that habituation might be an issue

in SCS in general but also on the level of disability, which could potentially have a major

influence on the long term clinical effects and therefore also in terms of salvage therapy

and system explants [29].

The decrease in disability in FBSS patients who are treated with HD-SCS was not that

surprising. In a study with multicolumn SCS, a significant decrease in ODI scores was

found between baseline and 6 months of SCS [30]. In the SENZA RCT, the efficacy of high

frequency SCS (another recently launched paresthesia-free SCS paradigm) was explored

whereby the ODI was measured as secondary outcome variable. A significant change in

ODI score was revealed after 12 months [3]. In the SENZA trial, the authors also used the

ODI as an ordinal outcome measure whereby 5 distinct categories are defined based on

the total ODI score. Future studies could evaluate whether the current decrease in ODI

score over time is strong enough to reveal a change in category, i.e. whether the decrease

is sufficiently large to reclassify patients into a lower disability category.

The International Classification of Functioning, Disability and Health (ICF) is a widely

accepted framework for measuring health and disability at both individual and population

levels that encompasses behavioral, physical, and integrated medical approaches [36].

Recently, the International Association for the Study of Pain Taskforce for chronic pain

highlighted the importance of measuring functioning or disability based on the ICF [23]

to obtain a holistic “image” of the clinical presentation of patients and to enable a better

monitoring of treatment effects. In the final model of this study, pain intensity scores

for low back pain and leg pain were used as predictors for disability. Several authors

already focused on the association between disability and pain reportings [37, 1, 2]. In a

population of patients with FBSS who are treated with HD-SCS, the degree of disability

revealed a good association measures of pain intensity [7]. This study seems to confirm

that pain intensity scores are important to evaluate disability in this population.

In this multicenter registry, a rather large amount of missing data was present wherefore

a sensitivity analysis was performed after the primary analysis. Only one possible sensitivity

analysis was performed namely the tipping-point analysis. Within this type of analysis, we
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explored how severe departures from MAR must be in order to reverse conclusions from

the primary analysis. In this study, a shift parameter of 17 was needed to change the main

conclusions of the longitudinal mixed model. A departure of 17 is rather large, moreover,

it is well above the minimal clinical important difference of the ODI which is 10 points

[42]. Therefore, we can be more confident in the results obtained with statistical methods

under the MAR assumptions namely the mixed model repeated measurements and multiple

imputation; both pointing towards a significant time effect. Given the lack of a universally

determined best MNAR method [20], one should ideally explore a variety of sensitivity

analysis in order to better evaluate the consistency of results across the various assumptions

that are made with different techniques.

7 Conclusion

This is the first study to report longitudinal data on disability in patients with FBSS who

are treated with HD-SCS. In patients with FBSS, HD-SCS is an effective treatment option

to decrease disability. Sensitivity analysis indicated that the results are maintained when

the shift parameter is 17. From a clinical perspective, this shift does not seem very realistic

wherefore the conclusion under MAR seems plausible.
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9 Appendix

Figure A1: Mean profile plots (with 95% confidence intervals) for ODI in function of visit according

to sex.
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Figure A2: Mean profile plots (with 95% confidence intervals) for ODI in function of visit according

to age category.
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Figure A3: Scatterplot matrix of the correlations of ODI scores between visits.
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