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MHD Magnetohydrodynamics, 3
Mm Megameter, 4
TT Thin tube approximation, 8
TB Thin boundary approximation, 9
TTTB Thin tube and thin boundary approximation, 9

β Plasma beta, 3
pth Thermal pressure, 4
pmag Magnetic pressure, 4, 5
B Magnetic field, 5
µ Magnetic permeability of the vacuum, 5
ρ Density, 5
vS Sound speed, 5
vA Alfvén speed, 5
vC Cusp speed, slow speed, 5
γ Adiabatic index, 5
(r, ϕ, z) Radial, azimuthal, longitudinal coordinates in a cylindrical coordinate system.

When used as subscript these denote the corresponding component of a parameter, 6
t Time, 6
m Azimuthal wave number, 6
kz Longitudinal wave number, 6
ω Frequency, 6
ωS Sound frequency, 7
ωA Alfvén frequency, 7
ωC Cusp frequency, slow frequency, 7
P Total pressure, 5, 7
vvv Velocity, 7
ξξξ Lagrangian displacement, 7
R Cylinder radius, 8
L Cylinder length, 8
l Thickness of the boundary layer in a cylindrical model, 8
Im Modified bessel function of the first kind of order m, 11
Km Modified bessel function of the second kind of order m, 11
rc Radial position of slow resonance, 12
ζ Radial coordinate centered at the position of slow resonance, 12
C Coupling constant, 13, 17
ln Natural logarithm, 13
111 Indicator function, 14
kmax Truncation number of Taylor series, 22
θc Relative position of slow resonance within the boundary layer, 35

iii



Contents

Preface ii

List of symbols and abbreviations iii

Introduction 1

1 Configuration of a magnetic cylinder 3
1.1 Equilibrium configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Perturbed quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Cylinder configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Analytic calculations 11
2.1 Solutions in a uniform region . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Solutions in a nonuniform region . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Numerical study 22
3.1 Parameter profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 General method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Linear profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Sinusoidal profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Divergence of Taylor series . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Possible solutions to the divergence problem . . . . . . . . . . . . . . . . . 40

3.3.1 Change of expansion point . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Different parameter profiles . . . . . . . . . . . . . . . . . . . . . . 43
3.3.3 Complex frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Conclusion 46

Bibliography 49

A Expressions of expansion coefficients 50

iv



Introduction

Magnetohydrodynamic waves occur throughout the solar atmosphere. These waves can
broadly be classified in three groups: slow, fast and Alfvén waves. Classically, research
has focused mostly on transverse waves, as these have been the easiest to observe. These
transverse waves have a predominantly Alfvénic character, see e.g. Goossens et al. (2013).
In recent years, the focus has broadened due to the detection of slow waves in magnetic
pores in the lower atmosphere of the Sun (Dorotovič et al. 2008). Since then, the effect
of the slow waves has been an increasingly relevant object of study.

In order to analytically study a structure such as a magnetic pore, it must be modelled in
such a way that calculations can easily be done. The model used here is that of a magnetic
cylinder. This is a widely used model (see e.g. Goossens et al. 1992) where the structure
is modelled as a cylinder whose density, magnetic field strength and pressure vary from
those of the background plasma. Typically, it is assumed that both the interior and the
exterior regions are uniform. A nonuniform boundary layer can then be included such
that the profiles of all parameters are continuous within the studied domain. A classical
assumption is that this boundary layer is thin in comparison to the radius of the cylinder.
However, it has been shown by Van Doorsselaere et al. (2004) and later by Soler et al.
(2014) that the expressions obtained from this assumption lead to significant errors when
compared to fully numerical calculations. Hence in this thesis the assumption of a thin
boundary layer will be discarded and the boundary layer can have an arbitrary thickness,
which allows for the study of highly nonuniform cylinders.

The slow waves have a characteristic frequency which depends on the plasma density,
pressure and magnetic field strength. By considering a cylinder with a boundary layer,
these parameters and thus also this slow frequency have a continuous variation within the
boundary layer, changing from a uniform internal to a uniform external value. Similarly,
every wave mode of the magnetic pore has a specific frequency. For slow surface wave
modes, this frequency lies between the internal and external slow frequencies, as shown
by e.g. Edwin & Roberts (1983). Hence, because the profile is continuous, there is a point
where the slow frequency is equal to the frequency of the surface mode. As a result, a
resonance will occur at this point. This resonance causes a loss of energy from the global
surface mode to localised modes, resulting in resonant damping of the surface mode (see
e.g. Edwin & Roberts 1983).

Understanding the damping of the slow waves is a crucial part of the study of these
waves. Observations suggest that this damping is quite strong, see e.g. Krishna Prasad
et al. (2014), Grant et al. (2015). Several other mechanisms have been suggested to
explain this strong damping. For example, Mandal et al. (2016) propose a damping by
thermal conduction. In this thesis, only the effect of resonant absorption is considered.
Regarding this resonant damping, it was previously believed that the damping due to the
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INTRODUCTION 2

slow resonance is much weaker than damping due to Alfvén resonance (see e.g. Soler et
al. 2009), however Yu et al. (2017a) show that under magnetic pore conditions this is
not the case.

The equations that govern a system such as a magnetic pore have been known for several
decades (see e.g Goossens et al. 1992). Within the uniform layers they can easily be solved,
but in the boundary layer this calculation is more involved. The method used here will
be based on the method used by Soler et al. (2013) who studied the Alfvén resonance
in the solar corona. This method consists of constructing a Frobenius expansion at the
point of resonance, such that an approximation to the true solution can be found within
the boundary layer. For comparison, the results obtained with this method will then
be studied in the limiting case of a thin boundary. For the limit of a thin boundary,
results have already been obtained by Yu et al. (2017a), who studied the slow resonance
specifically in this thin boundary limit.

When the dispersion relation is known, it can be implemented to study the slow resonance.
Because the dispersion relation is derived from eigenfunctions which are constructed as
Frobenius expansions, this must happen numerically, as shown by Soler et al. (2013). For
a numerical implementation it is then necessary to specify the profiles of all parameters
in order to construct these eigenfunctions. The implementation of these profiles is not
straightforward. The profiles must be implemented as Taylor series and they must be
consistent with each other. As it turns out, the behaviour of this Taylor series cannot
be controlled for simple profiles and they will not always be convergent. As a result, the
solution to the dispersion relation is not found numerically, but several possible solutions
to this divergence problem are proposed.

This Master’s thesis is presented in three chapters. In the first chapter, the general con-
figuration of the system is explained, as well as the governing equations. The second
chapter then covers the analytic calculation of the dispersion relation and relates this to
previous results. Finally, the third chapter is concerned with the numerical implementa-
tion of the analytical results. In this third chapter the methodology is first explained and
then attention is given to the divergent behaviour which limits the method. Finally, three
proposed alternative methods are given which may yield solutions, but none of them are
implemented and a rigorous study of these is left to future research.



Chapter 1

Configuration of a magnetic cylinder

1.1 Equilibrium configuration

The solar atmosphere is a very complex system consisting of three main layers. The first
layer, which can be viewed as the surface of the sun, is the photosphere. It is a relatively
cool and dense region, with a temperature on the order of 6,000 Kelvin. The next layer
is the chromosphere, which is a region where density gradually decreases leading to the
outermost layer, the solar corona. The corona, depending on the degree of activity, may
extend up to three solar radii. It is a very tenuous region, with a density many orders of
magnitude lower than the photosphere. Despite this, the corona is extremely hot, having
a temperature exceeding one million Kelvin. The cause of this high temperature remains
unknown: this problem is known as the coronal heating problem and is the topic of intense
study (Aschwanden 2005).

Since the second half of the 20th century and the advent of space-based telescopes, the
quality of observations of the solar atmosphere has improved immensely. This improve-
ment has been continuing into the 21st century with recent missions such as the Parker
Solar Probe, which launched in 2018. This progress has enabled observational research to
an unprecedented degree. On the theoretical side, progress has been equally remarkable.
The solar atmosphere is a plasma, which is a magnetized fluid. In order to study plasmas,
a framework is needed that can incorporate both the thermal effects from the fluid aspect
of the plasma and the magnetic effects. Such a framework is provided by magnetohydro-
dynamics, or MHD for short. The field of MHD was pioneered by Hannes Alfvén in the
middle of the 20th century. In 1970, Alfvén was awarded the Nobel Prize in Physics for
this contribution (Nakariakov et al. 2016).

Depending on the structure of the plasma, the thermal and magnetic effects can be com-
parable in strength, or one can be stronger than the other. For example, in a plasma
which is only slightly magnetised, the thermal effects outweigh the magnetic, and the
plasma behaves largely as an unmagnetized fluid. A dimensionless parameter which is
often used to quantify the relative difference between the two effects is the plasma beta
β. It is simply defined as the ratio between the thermal and magnetic pressure of the
plasma:

β =
pth
pmag

. (1.1)
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CHAPTER 1. CONFIGURATION OF A MAGNETIC CYLINDER 4

Figure 1.1: Detail of a magnetic pore in the photosphere. The pore size is approximately 10 Mm, which
is on the order of 0.01% of the surface area of the photosphere. Figure taken from Keys et al. (2018).

The value of β gives an immediate qualitative impression of the structure of the plasma.
If β � 1, the plasma is dominated by magnetic effects and vice versa if β � 1. The
thermal and magnetic pressures are not only relevant for classifying different plasmas,
but also play an important role in the study of solar atmospheric structures. Due to the
complicated physics in the atmosphere of the Sun, many structured regions may appear
where the plasma parameters differ from the surrounding, “quiet” Sun. These structures
range from coronal loops, which are long, thin loops that extend deep into the corona,
to massive coronal holes at the north and south poles which are large regions dominated
by open magnetic field lines (Aschwanden, 2005). One structure which will be the main
focus of this study is the magnetic pore, as seen in figure 1.1. This is a fairly small-scale
photospheric structure, on the order of a few Mm in size (Grant et al. 2015, Keys et
al. 2018). It is characterized as a region where the magnetic field is several orders of
magnitude greater than in the surrounding photosphere (Aschwanden, 2005). This has
the interesting effect that inside the pore, the plasma is dominated by magnetic effects
and thus β < 1, while outside the thermal effects are more important and here β > 1.

In order to study structures such as magnetic pores, a simple way of modelling them is
required. Perhaps the easiest model, which has been used in the past (see e.g. Edwin &
Roberts, 1982), is the slab geometry. This models the structure in one dimension with a
simple step function profile. A slightly more accurate version of this is a simple cylinder.
By assuming cylindrical symmetry, this is still a one-dimensional profile, where the only
variation is in the radial direction. The cylindrical model is an effective tool which is still
in wide use today (see e.g. Soler et al. 2013, Yu et al. 2017a).

The atmospheric structures typically have lifetimes on the order of hours to days, hence
they tend to be quite stable. This means that in equilibrium the total pressure, which is
the sum of the thermal and magnetic pressures, is constant over both the in- and outside of
the structure. If this were not the case, the pressure imbalance would cause the structure
to dissipate and there would not be an equilibrium. In the case of a one-dimensional
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cylindrical model, the condition of constant pressure is simply

d

dr

(
pth + pmag

)
= 0. (1.2)

In order to perform calculations with the total pressure, an expression for the magnetic
pressure is needed. To this end, the magnetic field is written as B. Then the magnetic
pressure is expressed as

pmag =
B2

2µ
. (1.3)

Here B2 is defined as B ·B and µ is the permeability of the vacuum, which in SI units has
a value of 4π · 10−7 H/m. In the cylindrical model, it is often assumed that the magnetic
field is straight and aligned with the cylinder axis. The coordinate system is constructed
with the z-axis along the axis of the cylinder. In the one-dimensional case of cylindrical
symmetry, the magnetic field at equilibrium can then be written as B = (0, 0, B(r)).
Together with the magnetic field and the thermal pressure, another parameter of interest
is the plasma density ρ. From these three parameters, three characteristic plasma speeds
can be defined. These are the sound, Alfvén and cusp speeds. Following Goossens et al.
(1992), their squares are defined as

v2S =
γpth
ρ
, v2A =

B2

µρ
, v2C =

v2Sv
2
A

v2S + v2A
, (1.4)

respectively. γ in the expression of the sound speed is the adiabatic index. For a hydrogen
plasma, which is a good approximation for the solar atmosphere, γ has a value of 5/3.
It is further assumed that the plasma is ideal, meaning that the effects of viscosity are
neglected. The sound speed for plasmas is the same as for fluids, where it is the only
nonzero of the three due to the absence of a magnetic field. It arises solely from thermal
effects. The Alfvén speed, named after Hannes Alfvén, can be seen as the magnetic
equivalent to the sound speed. From these two speeds, the cusp speed can be defined.
It is immediately clear from this definition that the cusp speed is always smaller than
the other two, which explains its other name: the slow speed. The cusp speed is most
relevant in plasmas where β ≈ 1: if β is much larger or smaller than 1, then one of the
slow and Alfvén speeds will be much larger than the other and of course also much larger
than the slow speed. The two slower speeds, of which the cusp speed is then always one,
will be negligible compared to the faster speed. Hence in these limits, only one of the
characteristic speeds is relevant and the cusp speed will always be negligible compared to
this more relevant speed. For example, in the solar corona the plasma β is on the order of
10−2 and here a common assumption is vS = vC = 0, since both are much smaller than the
Alfvén speed in this case. Hence only the Alfvén speed is typically studied in the corona.
For magnetic pores, the cusp speed is relevant because the plasma β is smaller than 1 in
the interior of the pore, and larger than 1 in the exterior. Within the transitional region
β will then cross 1, which explains the specific interest in this particular structure.



CHAPTER 1. CONFIGURATION OF A MAGNETIC CYLINDER 6

Figure 1.2: Different azimuthal wave modes for integer values of m. From left to right: the sausage mode
m = 0, the kink mode m = 1 and fluting modes for m = 2, 3. The cylinder at equilibrium is drawn in
dashed lines, perturbations are drawn in solid lines.

1.2 Perturbed quantities

The quantities introduced so far are used to describe a stationary equilibrium. To study
the behaviour of MHD waves, a perturbation is imposed on the equilibrium. It is assumed
that this perturbation is small, such that its effects can be linearised and the higher-order
effects can be neglected. A cylindrical model for the pore is considered, as done by e.g.
Yu et al (2017a). Hence the pore can be seen as a flux tube. The coordinate system is
written as (r, ϕ, z), and time is denoted as t. Because in this one-dimensional model the
equilibrium values are assumed to only depend on the radial coordinate r, the perturbed
quantities can be Fourier-analysed with respect to the other coordinates ϕ, z and t. A
detailed explanation of this method is given by Goossens et al. (1992). In this analysis,
every quantity f can be written as

f = f ′(r) exp
(
i(mϕ+ kzz − ωt)

)
. (1.5)

Here ω is the frequency, m is the azimuthal wave number and kz the longitudinal wave
number. Typically only integer values of m are considered, since these give rise to standing
waves, as shown in figure 1.2. The different azimuthal wave modes have distinct behaviour.
When m = 0, the resulting behaviour is an alternating compression and rarefaction of the
plasma inside the cylinder. This is called the sausage mode. For a value of m = 1, the
wave mode is a transverse displacement of the loop axis, which is known as the kink mode.
If m ≥ 2, the wave mode is characterised as a deformation of the shape of the cylinder.
These higher-order modes are called fluting modes and they are typically considered to be
less important, since they have not yet been identified in solar observations (Nakariakov
et al. 2016).

The longitudinal wave number kz also takes on a value that results in standing waves, this
time in the z-direction. Hence the ends of the cylinder are stationary under this condition.
Quantitatively, this means that kz is assumed to be an integer multiple of π/L, where L
is the length of the tube. When kz = π/L, there is only one wave top in the longitudinal
direction. This is called the fundamental mode and is typically the most studied mode.
Furthermore, the longitudinal wave number is used to define different plasma frequencies
from the three characteristic speeds. These frequencies are aptly named the sound, Alfvén
and cusp frequency, corresponding to the respective speed. They are denoted as ωS, ωA
and ωC , respectively. In a region where the oscillation frequency ω is equal to one of the
plasma frequencies, a resonance will occur which will cause an absorption of energy and
a subsequent damping of the oscillation. The focus here will be on the cusp resonance,
which occurs when the frequency is equal to the cusp frequency. The frequencies are
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defined through the characteristic speeds as

ωS = kzvS, ωA = kzvA, ωC = kzvC . (1.6)

The Fourier analysis gives a straightforward treatment of the azimuthal, longitudinal
and time component. The radial component is more involved. Following Goossens et
al. (1992), the calculations for this component start with the total pressure. With the
previously introduced definitions of total and magnetic pressure, the radial component of
the perturbed total pressure, P ′, can be written as

P ′ = p′th +
B ·B′

µ
, (1.7)

where p′th and B′ are the perturbed thermal pressure and magnetic field, respectively.
Another quantity which is used in the calculations is the radial velocity v′r. However, as
shown by Goossens et al. (1992), it turns out that the calculations can be made much
simpler by instead working with the radial component of the Lagrangian displacement ξξξ
instead of vvv′. These two equations are simply related as

vvv′ =
dξξξ

dt
. (1.8)

The current focus lies mostly on the radial component of ξξξ, which will be denoted as
ξr. It has been shown by Goossens et al. (1992) that the perturbed total pressure and
Lagrangian displacement can be related through the following system of equations:

D
d

dr
(rξr) = −C1rP

′, (1.9a)

D
dP ′

dr
= C2ξr, (1.9b)

where

D = ρ(v2S + v2A)(ω2 − ω2
A)(ω2 − ω2

C), (1.10a)

C1 = ω4 − (v2S + v2A)

(
m2

r2
+ k2z

)
(ω2 − ω2

C), (1.10b)

C2 = ρ2(v2S + v2A)(ω2 − ω2
A)2(ω2 − ω2

C). (1.10c)

The expressions of D and C1,2 depend on the radial coordinate r through the density and
characteristic speeds. The system of equations 1.9 will be solved in the next section to
yield expressions for P ′ and ξr.
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fi feftr
B

R

l

Figure 1.3: The general set-up of the cylinder. The subscript i is used for parameters inside the cylinder,
subscript e for outside. These subscripts will be used together with the subscripts denoting sound, Alfvén
or cusp parameters as well. Both regions are connected by a nonuniform boundary layer.

1.3 Cylinder configuration

In order to solve the equations for the total pressure and Lagrangian displacement, some
closer attention should be paid to the configuration of the system. As mentioned before,
the pore is modelled as a cylinder. It is assumed that the background magnetic field is
straight and uniform both in the interior and exterior of the tube. The cylinder can then
be aligned with this magnetic field. Then the cylindrical coordinate system can have its
z-axis aligned with these as well, ensuring that the magnetic field has only a component
in the z-direction, as mentioned before. Next, if the radius of the cylinder is written as
R, it is assumed that kzR� 1. This is the so-called thin tube (TT) approximation, since
it is essentially equivalent to R � L. The TT approximation is often adopted, see e.g.
Van Doorsselaere et al. 2004.

In the one-dimensional model, all parameters are assumed to only have a radial depen-
dence. The simplest form of this dependence would be a step profile, where there is a
constant interior and a constant exterior value with a discontinuous jump in between.
This is not a very realistic profile, however, since the edges of solar atmospheric struc-
tures are typically not sharply defined. A better model then includes a transitional layer
where all parameters change continuously from their internal to their external values.
Of course, within this transitional boundary layer the parameters are not uniform and a
profile for this variation should be specified. Later in this Master’s thesis, two profiles for
the boundary layer are considered: a linear and sinusoidal profile. For now, the specific
shape of this profile is left unspecified. Following Soler et al. (2013) and by denoting the
thickness of the boundary layer as l, any parameter f can then be written as

f(r) =


fi if r ≤ R− l/2,
ftr(r) if R− l/2 < r < R + l/2,
fe if r ≥ R + l/2.

(1.11)

This general set-up is sketched in figure 1.3. An important quantity here is the thickness
of the boundary layer, l. A thickness of l = 0 corresponds to the simple step profile,
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while a thickness of l = 2R would correspond to a fully inhomogeneous cylinder. A
classical assumption which is often made, is l � R. This is the so-called thin boundary
(TB) assumption. The combination of the thin boundary assumption with the thin tube
assumption is called the thin tube and thin boundary (TTTB) assumption.

In the TTTB approach, the system of equations 1.9 is solved in the uniform interior
and exterior layers. Treatment of this system in the nonuniform layer is avoided by
imposing jump conditions across the boundary layer. A more detailed explanation of
this approach can be found in Goossens et al. (1992). The TTTB method allows for
analytical expressions to be found for the frequency and damping rate of the oscillations.
Although the TTTB assumption is often adopted (see e.g. Goossens et al. 1992, Yu et
al. 2017a), it has been shown that this assumption becomes invalid for larger values of
l/R. Van Doorsselaere et al. (2004) compared the analytical results obtained from the
TTTB formula to numerical calculations for arbitrary values of l/R. They found that
for highly nonuniform solar flux tubes the TTTB formula underestimates the damping
rate. In the case of a fully nonuniform tube (l/R = 2), they found that the damping rate
is underestimated by about 25% when compared to numerical results. In their paper, a
sinusoidal profile of the density in the boundary layer was considered. Soler et al. (2014)
subsequently calculated the error of the TTTB approximation for a linear and parabolic
profile. They found that for these profiles the understimation of the damping rate in the
TTTB approximation was even greater. In the case of a fully nonuniform tube, an error
exceeding 50% was found.

In the more general approach of arbitrary boundary layer thickness, the system of equa-
tions is solved not only in the uniform regions, but also in the boundary layer. In this
region, all parameters have a non-constant radial dependence, which can take many dif-
ferent forms. Keeping this in mind, equations 1.9 can be combined into one second-order
ordinary differential equation for P ′, which is

d2P ′

dr2
+
d/dr (Dr/C2)

Dr/C2

dP ′

dr
+
C1C2

D2
P ′ = 0. (1.12)

Substituting the expressions from equations 1.10, this equation can be rewritten as

d2P ′

dr2
+

(
1

r
− d/dr(ρ(ω2 − ω2

A))

ρ(ω2 − ω2
A)

)
dP ′

dr
+

(
(ω2 − ω2

S)(ω2 − ω2
A)

(v2S + v2A)(ω2 − ω2
C)
− m2

r2

)
P ′ = 0. (1.13)

This is the general equation that will be solved in the following chapter. In the uniform
regions, the plasma parameters are constant and this equation reduces to

d2P ′

dr2
+

1

r

dP ′

dr
+

(
(ω2 − ω2

S)(ω2 − ω2
A)

(v2S + v2A)(ω2 − ω2
C)
− m2

r2

)
P ′ = 0, (1.14)

which is the classical equation discussed by Goossens et al. (1992) in a uniform plasma.
A different limit of equation 1.13 is when β → 0. In this limit, the equation reduces to

d2P ′

dr2
+

(
1

r
− d/dr(ρ(ω2 − ω2

A))

ρ(ω2 − ω2
A)

)
dP ′

dr
+

(
ω2 − ω2

A

v2A
− m2

r2

)
P ′ = 0. (1.15)
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This is the equation studied by Soler et al. (2013), who researched the Alfvén resonance
in the limit of β = 0. In any case, from the solution for P ′ an expression for ξr can be
found as

ξr =
1

ρ(ω2 − ω2
A)

dP ′

dr
. (1.16)

In the following chapter, equation 1.13 will be studied to derive the dispersion relation
for the slow surface waves.



Chapter 2

Analytic calculations

2.1 Solutions in a uniform region

Resonance occurs at a point where the frequency of a wave mode is equal to a characteristic
frequency at that point. In the case of the cusp resonance, this means that there is a point
where ω = ωC . The interval between the internal and external cusp frequencies is called
the slow continuum. Because the cusp frequency varies continuously from its internal to
its external value in the transitional layer, it takes on every intermediary value within this
layer. Hence, if there is a wave mode which has a frequency between ωCi and ωCe, there
will be a point at which this frequency is equal to the cusp frequency and cusp resonance
will occur at this position. An important quantity in characterising different modes is

k2⊥ = −(ω2 − ω2
S)(ω2 − ω2

A)

(v2S + v2A)(ω2 − ω2
C)
, (2.1)

which occurs in equation 1.13. For body waves, this quantity is negative. In the case of
surface waves, k2⊥ is positive, as explained by Edwin & Roberts (1983). This explains the
minus sign in equation 2.1: it guarantees that k2⊥ is positive for the surface mode, such
that k⊥ is a real quantity, which will be useful for the upcoming calculations. In figure
2.1 phase speed diagrams are plotted for several of these modes. Here it is clear that
the slow surface mode is of special interest: for this mode the phase speed lies between
the internal and external cusp speeds. It should be noted that in this particular case the
external cusp speed is zero. Because of this, there will be a position where slow resonance
occurs for the slow surface mode. Hence this mode will be focused on from now on.

Equation 1.13 can be straightforwardly solved in the internal and external regions. Here
all parameters are uniform, so the equation reduces to

d2P ′

dr2
+

1

r

dP ′

dr
+

(
(ω2 − ω2

S)(ω2 − ω2
A)

(v2S + v2A)(ω2 − ω2
C)
− m2

r2

)
P ′ = 0. (2.2)

This is Bessel’s equation. To determine which Bessel function solves this equation, a
boundary condition is needed. For the interior region, the additional requirement is that
P ′ is regular at r = 0. Because the surface modes are considered, this then means that
the solution is

P ′i = AiIm(k⊥,ir), (2.3)

11
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Figure 2.1: Phase speeds ω/ωSi as a function of kzR for a fast surface (fs), slow surface (ss) and several
slow body (sb) modes. All modes are sausage modes (m = 0). Phase speeds are normalised with respect
to internal sound speed and measured under magnetic pore conditions. Under these conditions, vCe = 0.
Figure taken from Yu et al. (2017a).

as shown by Goossens et al. (1992). Here Im is the modified Bessel function of the first
kind of order m, Ai is an integration constant and

k2⊥,i = − (ω2 − ω2
Si)(ω

2 − ω2
Ai)

(v2Si + v2Ai)(ω
2 − ω2

Ci)
. (2.4)

Solving equation 2.2 in the exterior region is straightforward as well. This time, the con-
dition holds that the perturbation must disappear as r → ∞. Again following Goossens
et al. (1992), the solution in the exterior layer is

P ′e = AeKm(k⊥,er), (2.5)

where Km is the modified Bessel function of the second kind of order m, Ae is a constant
and

k2⊥,e = − (ω2 − ω2
Se)(ω

2 − ω2
Ae)

(v2Se + v2Ae)(ω
2 − ω2

Ce)
. (2.6)

With the expressions for P ′ know, expressions for ξr can be found from equation 1.16.
For the interior and exterior layers, these are
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ξri =
Aik⊥,i

ρi(ω2 − ω2
Ai)

I ′m(k⊥,ir), (2.7a)

ξre =
Aek⊥,e

ρe(ω2 − ω2
Ae)

K ′m(k⊥,er). (2.7b)

Here the prime at the Bessel functions denotes their derivative with respect to the argu-
ment. These expressions will later be coupled to the solution in the boundary layer to
obtain the dispersion relation.

2.2 Solutions in a nonuniform region

Solving equation 1.13 in the boundary layer is more involved than in the uniform regions.
Because now the plasma parameters are no longer constant, the equation needs to be
treated in full. To this end, a change in coordinate is performed. This is similar to the
method used by Soler et al. (2013) for the Alfvén resonance. If the position of the cusp
resonance within the boundary layer is denoted as r = rc, this new coordinate can be
defined as

ζ = r − rc, (2.8)

such that the resonant position is situated at ζ = 0. In this coordinate, the inner and
outer edges of the boundary layer can be defined as

ζi = R− l

2
− rc, (2.9a)

ζe = R +
l

2
− rc, (2.9b)

respectively. It is straightforward to rewrite equation 1.13 in terms of ζ:

d2P ′

dζ2
+

(
1

ζ + rc
− d/dζ(ρ(ω2 − ω2

A))

ρ(ω2 − ω2
A)

)
dP ′

dζ

+

(
(ω2 − ω2

S)(ω2 − ω2
A)

(v2S + v2A)(ω2 − ω2
C)
− m2

(ζ + rc)2

)
P ′ = 0. (2.10)

In order to keep the upcoming calculations reasonably compact, a shorthand notation is
introduced to rewrite this equation. In this notation, equation 2.10 can be rewritten as

ζ2h(ζ)
d2P ′

dζ2
+ ζp(ζ)

dP ′

dζ
+ q(ζ)P ′ = 0, (2.11)

where
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f(ζ) = ρ(ω2 − ω2
A), (2.12a)

h(ζ) = (ζ + rc)
2f(ζ), (2.12b)

p(ζ) = ζ(ζ + rc)

(
f(ζ)− (ζ + rc)

df(ζ)

dζ

)
, (2.12c)

q(ζ) = ζ2
(

(ζ + rc)
2f(ζ)

(ω2 − ω2
S)(ω2 − ω2

A)

(v2S + v2A)(ω2 − ω2
c )
−m2f(ζ)

)
. (2.12d)

To find the solution for P ′ of equation 2.11, the same method is used as Soler et al. (2013)
did for the Alfvén resonance. The perturbed total pressure is expressed as a Frobenius
series around the resonance position ζ = 0:

P ′tr =
∞∑
k=0

p′kζ
k+s. (2.13)

The coefficients p′k in this expression depend on the profiles chosen for the characteristic
speeds and plasma parameters in the transitional layer. s is the index of the expansion.
To find the value of s, equation 2.13 is substituted in equation 2.11. In the resulting
equation, the coefficients of lowest order of ζ determine the so-called indicial equation,
which defines the value of s. In this case, Goossens et al. (1992) show that the indicial
equation is s(s − 1) = 0. Knowing this indicial equation, the solution for P ′tr can be
written as

P ′tr(ζ) = A0P
′
1(ζ) + S0P

′
2(ζ), (2.14)

where

P ′1(ζ) =
∞∑
k=0

αkζ
k+1, (2.15a)

P ′2(ζ) =
∞∑
k=0

σkζ
k + CP ′1(ζ) ln(ζ). (2.15b)

Because there is an integer difference between the two roots of the indicial equation, a
logarithmic term arises in the expression of P ′2. C is a constant, which is called the coupling
constant. The other constants A0 and S0 are arbitrary: P ′1 and P ′2 are linearly independent
solutions of equation 2.11, so any linear combination of them yields a solution as well.
In the following calculations, both P ′1 and P ′2 will occasionally be studied independently.
To this end, P ′1 is called the regular solution and it can in general be studied by taking
A0 = 1, S0 = 0 in the general expression for P ′tr. Similarly, P ′2 will be called the singular
solution and can be found by taking A0 = 0, S0 = 1 in P ′tr. The coefficients αk and σk
can then be determined by substituting the expressions for P ′1 and P ′2 into equation 2.11.
In order to do this, not only is a general expression for P ′tr needed, but also for its first
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and second order derivatives with respect to ζ. Substituting equations 2.15 into equation
2.14, the expressions are

P ′tr =
∞∑
k=0

[
(A0 + S0C ln(ζ))αk−1111k≥1 + S0σk

]
ζk, (2.16a)

∂P ′tr
∂ζ

=
∞∑
k=0

[(
(k + 1)(A0 + S0C ln(ζ)) + S0C

)
αk + (k + 1)S0σk+1

]
ζk, (2.16b)

∂2P ′tr
∂ζ2

=
∞∑

k=−1

[(
(k + 1)(k + 2)(A0 + S0C ln(ζ)) + (2k + 3)S0C

)
αk+1

+ (k + 1)(k + 2)S0σk+2

]
ζk. (2.16c)

In these expressions 111P is the indicator function, which is 1 if P holds and 0 elsewhere.
This indicator function is introduced to allow for the notation of all three quantities as
power series in ζ, which will be useful for ease of future calculations. An interesting result
here is that the second derivative of P ′tr contains a term in ζ−1. This is a consequence of
the ζ ln(ζ)-term that arises in the singular solution. This already points to a difference
with the case of Alfvén resonance. As shown by Goossens et al. (1992), in the case of
Alfvén resonance the indicial equation is s(s − 2) = 0. Hence there is no ζ ln(ζ)-term in
this case and the second derivative of P ′tr will not contain a pole-order term.

The goal is now to write equation 2.11 in its entirety as a power series in ζ. For this
power series expressions of f, h, p and q are needed. To this end, it is assumed that the
profiles of cusp, sound and Alfvén speeds, as well as those of density and magnetic field
can be expanded themselves as Taylor series within the boundary layer. For the density
and magnetic field, these expansions will be denoted as

ρ(ζ) =
∞∑
k=0

ρkζ
k, (2.17a)

B2(ζ) =
∞∑
k=0

B2
kζ

k. (2.17b)

With these expressions, expansions for f, h and p can be readily obtained. The expansion
coefficients of f will be used throughout the upcoming calculations, as f occurs regularly
in the expressions of h, p and q. f is then written as

f(ζ) = ω2

∞∑
k=0

fkζ
k, (2.18)

where

fk = ρk −
k2z
µω2

B2
k. (2.19)
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Using this notation for the coefficients fk, power series expansions for h and p can be
written as

h(ζ) = ω2

∞∑
k=0

(
r2cfk + 2rcfk−1111k≥1 + fk−2111k≥2

)
ζk, (2.20a)

p(ζ) = ζω2

∞∑
k=0

(
rcfk − (k + 1)r2cfk+1 + (fk−1 − 2krcfk)111k≥1

+
(
− (k − 1)fk−1

)
111k≥2

)
ζk. (2.20b)

The expression for q requires some additional explanation. This is due to the term con-
taining −k2⊥, which is also expanded. Because of the presence of the slow resonance, at
ζ = 0 it holds that ω = ωC . Hence k⊥ is unbounded at the resonance position. Like the
second derivative of P ′tr its power series will then also contain a pole-order term. Con-
structing the power series for k2⊥ then starts by taking the power series for v2C , v

2
S and v2A.

From these, the following derived series can be defined:

ω2 − ω2
C =

∞∑
k=0

c′kζ
k, (2.21a)

ω2 − ω2
S =

∞∑
k=0

s′kζ
k, (2.21b)

ω2 − ω2
A =

∞∑
k=0

a′kζ
k, (2.21c)

v2S + v2A =
∞∑
k=0

vkζ
k. (2.21d)

Using this notation, a power series expansion of k2⊥ can be constructed. Unlike the
previous quantities, for k2⊥ only a recursive relation for the coefficients can be found. As
mentioned before, it should also be noted that this expansion has a term in ζ−1. The
expression used is then

−k2⊥ =
∞∑

k=−1

κkζ
k, (2.22)

where

κ−1 =
s′0a
′
0

v0c′1
, (2.23a)

κk =
1

v0c′1

[
k+1∑
j=0

σjαk−j+1 −
k∑
j=0

κj−1

(
k−j+1∑
i=0

vick−j−i+2

)]
for k ≥ 0. (2.23b)
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The expansion is made for−k2⊥ to avoid the minus sign in equation 2.1. Furthermore, these
coefficients show the benefit of considering the profiles for the squares of the characteristic
speeds instead of those for the speeds themselves. Because only the squares occur in the
equation for P ′tr, this choice will not cause any problems later on. The expansion of k2⊥
allows for a series expansion of q, which is then

q(ζ) = ζ2ω2

∞∑
k=−1

[
k−1∑
j=0

fjκk−j−2111k≥1 + 2rc

k∑
j=0

fjκk−j−1111k≥0

+r2c

k+1∑
j=0

fjκk−j −m2fk111k≥0

]
ζk. (2.24)

With this expression, all parts required to solve equation 2.11 are now available. It is
now a matter of substituting equations 2.16, 2.20 and 2.24 into equation 2.11. This
yields an equation with on the left-hand side a power series in ζ, including a term in
ζ−1. The right-hand side of this equation is still simply zero. To equate these then, it
is required that every coefficient of the power series on the left-hand side is itself zero.
This is done twice: once for the regular solution, with A0 = 1, S0 = 0 and once for the
singular solution, with A0 = 0, S0 = 1. The resulting equations can then be solved to
yield expressions for the coefficients αk and σk in equation 2.15. Because equation 2.11
is a second-order ordinary differential equation, there are two degrees of freedom. Hence
two of the coefficients αk, σk can be chosen freely and without loss of generality. Here it
is chosen that α0 = σ0 = 1. The expressions for the coefficients are recursive relations,
so starting with a simple expression for the lowest order terms is a natural choice. This
effectively leads to the coefficients being normalised with respect to the values of P ′1 and
P ′2 at the resonance position. The general recurrence relations are shown in appendix A,
where the value of α0 = σ0 = 1 is not substituted in the expressions for higher values of
k.

Apart from the coefficients αk and σk, the general expression for P ′tr also contains the
coupling constant C that arises in the logarithmic term of P ′2. The value of this constant
can be found by equating the pole-order coefficient of the singular solution in equation
2.11 to zero. The result is that the value of C depends only on the zeroth-order coefficients
α0 and σ0 of P ′1 and P ′2. Because these can be chosen freely, the value of C does not depend
on the expansion of P ′tr. Considering the values α0 = σ0 = 1, the value of C is found to be

C = −κ−1. (2.25)

For future calculations, it will be interesting to consider an explicit formula for this value
of C. The value of κ−1, which is the pole-order term of k2⊥ can be found by multiplying k2⊥
with ζ and subsequently taking the limit of ζ → 0. To this end, the expansion of ω2−ω2

C

is considered first. Because ω = ωC at the resonance position, the zeroth-order term c0 in
equation 2.21a will be zero. As a consequence,

lim
ζ→0

ω2 − ω2
C

ζ
= c′1. (2.26)
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For the other factors in the expression for k2⊥, the limit of ζ → 0 can easily be taken, since
none of them are zero at the resonance position. The result is then that

C = − lim
ζ→0

(ω2 − ω2
S)(ω2 − ω2

A)

(v2S + v2A)
ω2−ω2

C

ζ

= − k4zv
4
Sv

4
A

(v2S + v2A)3c′1
, (2.27)

where the values of vS, vA and ωC are taken at the resonant position. Because c′1 is the
first-order term in a Taylor series expansion, it can be explicitly written as well, which
yields

c′1 =
d(ω2 − ω2

C)

dζ

∣∣∣∣
ζ=0

. (2.28)

With the expressions obtained thus far, it is now possible to find a general dispersion
relation for the slow surface wave. This will be the topic of the following section.

2.3 Dispersion relation

The dispersion relation of the slow surface wave relates the frequency ω to the longitu-
dinal wave number kz. Considering the fundamental mode with kz = π/L thus fixes the
frequency by means of this dispersion relation. A dispersion relation in the case of a thin
boundary is given by Yu et al. (2017a). To generalise this to the case of arbitrary bound-
ary thickness, the same method as done by Soler et al. (2013) for the Alfvén resonance
is considered. In this method, the dispersion relation is derived from the requirement of
continuity of P ′ and ξr. This continuity can be expressed by matching the solutions of P ′

and ξr in the boundary layer with the solutions in the external regions. In other words,
the following equations must hold:

P ′i (ζi) = P ′tr(ζi), P ′e(ζe) = P ′tr(ζe),

ξr,i(ζi) = ξr,tr(ζi), ξr,e(ζe) = ξr,tr(ζe). (2.29)

The solutions in the uniform layers have already been introduced in equations 2.3-2.7.
For the solutions in the boundary layer, the same notation is introduced as used by Soler
et al. (2013):

Gi,e = P ′1(ζi,e), (2.30a)

Fi,e = P ′2(ζi,e), (2.30b)

Ξi,e =
1

ρ(ζi,e)(ω2 − ω2
A(ζi,e))

dP ′1
dζ

(ζi,e), (2.30c)

Γi,e =
1

ρ(ζi,e)(ω2 − ω2
A(ζi,e))

dP ′2
dζ

(ζi,e), (2.30d)
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where the double subscript i, e denotes that both the internal and the external values can
be used in the expressions. G and F are the values of P ′1 and P ′2, respectively, at the edges
of the boundary layer. Ξ and Γ are then the corresponding expressions for ξr, where Ξ is
the value if P ′1 is considered instead of P ′tr and Γ the value if P ′2 is considered instead of
P ′tr. In this notation, the conditions of continuity can be rewritten as

AiIm(k⊥,i(R− l/2)) = A0Gi + S0Fi, (2.31a)

AeKm(k⊥,e(R + l/2)) = A0Ge + S0Fe, (2.31b)

Aik⊥,i
ρi(ω2 − ω2

Ai)
I ′m(k⊥,i(R− l/2)) = A0Ξi + S0Γi, (2.31c)

Aek⊥,e
ρe(ω2 − ω2

Ae)
K ′m(k⊥,e(R + l/2)) = A0Ξe + S0Γe. (2.31d)

This is a linear, homogeneous system of four equations in the four unknowns Ai, Ae, A0

and S0 that arise in the expressions of P ′tr. Because the system is homogeneous, the only
way a non-trivial solution can exist is if its determinant is zero. This condition gives the
dispersion relation in the form

∣∣∣∣∣∣∣∣∣∣∣∣

Im(k⊥,i(R− l/2)) 0 −Gi −Fi
0 Km(k⊥,e(R + l/2)) −Ge −Fe

k⊥,i
ρi(ω2 − ω2

Ai)
I ′m(k⊥,i(R− l/2)) 0 −Ξi −Γi

0
k⊥,e

ρe(ω2 − ω2
Ae)

K ′m(k⊥,e(R + l/2)) −Ξe −Γe

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(2.32)

This determinant can be calculated to give the dispersion relation in a more useful form.
The result is that we can write it as

k⊥,e

ρe(ω2−ω2
Ae)

K′m(k⊥,e(R+l/2))

Km(k⊥,e(R+l/2))
Ge − Ξe

k⊥,e

ρe(ω2−ω2
Ae)

K′m(k⊥,e(R+l/2))

Km(k⊥,e(R+l/2))
Fe − Γe

−
k⊥,i

ρi(ω2−ω2
Ai)

I′m(k⊥,i(R−l/2))
Im(k⊥,i(R−l/2))

Gi − Ξi

k⊥,i

ρi(ω2−ω2
Ai)

I′m(k⊥,i(R−l/2))
Im(k⊥,i(R−l/2))

Fi − Γi
= 0. (2.33)

This is the general form of the dispersion relation. Remember that so far, no value
of the thickness l has been imposed yet. Similarly, the actual profiles of all plasma
parameters have not yet been imposed, meaning that this dispersion relation has not
lost any generality. A comparison of this equation can now be made with the dispersion
relation found by Yu et al. (2017a), who studied the cusp resonance in the TB limit. To
this end, the limit of l/R ≈ 0 is imposed on equation 2.33. In this limit, it always holds
that r ≈ rc within the boundary layer, since this layer is where the resonant position is
situated. It is then clear that ζ ≈ 0. It is thus possible to approximate all power series by
their term of lowest order in ζ. This has an effect on the values of the parameters G,F ,Ξ
and Γ. All of these will be approximated to zeroth-order to obtain the results in the TB
limit. Because the lowest order term of P ′1 is a linear term, it follows that in the TB limit

Gi,e ≈ 0. (2.34)
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In the definition of P ′2, the logarithmic term is multiplied with P ′1. For small values of ζ,
this term will then always be zero. As a result, P ′2 is approximated in the TB limit by σ0,
which was chosen to be equal to 1. Thus,

Fi,e ≈ 1. (2.35)

For the approximation of Ξ, the derivative of P ′1 is considered. For small values of ζ, it
is clear that this derivative can be approximated by α0, which is also equal to 1. The
derivative is then divided by ρ(ω2 − ω2

A). The approximation up to zeroth-order of this
term in the TB limit is simply the evaluation of this expression at the resonance position.
In other words,

Ξi,e ≈
1

ρ0(ω2
C − ω2

A)
, (2.36)

with the frequencies evaluated at r = rC . The factor between brackets is a0 in the notation
of equation 2.21c. Finally, Γ is considered. The denominator in this expression is the same
as for Ξ. For the numerator, the derivative of P ′2 is considered. The first term of this
derivative can be approximated by σ1, which is 0, as can be seen in appendix A. The
derivative of the product of P ′1 with ln(ζ) can be approximated by 1 + ln(ζ) up to zeroth
order. This means that

Γi,e ≈
C(1 + ln(ζi,e))

ρ0(ω2
C − ω2

A)
. (2.37)

With these approximations, the dispersion relation can be reduced in the TB limit to

k⊥,e
ρe(ω2 − ω2

Ae)

K ′m(k⊥,eR)

Km(k⊥,eR)
− k⊥,i
ρi(ω2 − ω2

Ai)

I ′m(k⊥,iR)

Im(k⊥,iR)
=
C ln(ζe/ζi)

ρ0k2z
v4A

c2+v2A

, (2.38)

where further ω2
C −ω2

A has been expanded as k2zv
4
A/(v

2
S + v2A). The dispersion relation can

be further reduced by introducing the same notation as Yu et al. (2017a):

Qm =
I ′m(k⊥,iR)Km(k⊥,eR)

Im(k⊥,iR)K ′m(k⊥,eR)
, (2.39a)

Gm =
Km(k⊥,eR)

K ′m(k⊥,eR)
. (2.39b)

With these notations, the dispersion relation can again be rewritten as

ρi(ω
2 − ω2

Ai)− ρe(ω2 − ω2
Ae)

k⊥,i
k⊥,e

Qm =
C ln(ζe/ζi)

ρ0k2z
v4A

c2+v2A

ρiρe(ω
2 − ω2

Ai)(ω
2 − ω2

Ae)
Gm

k⊥,e
. (2.40)

One final remark should be made regarding this equation. In the TB assumption it holds
that rc ≈ R, which means that ζe ≈ l/2 and ζi ≈ −l/2. As such, the ratio ζe/ζi that
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appears in this equation is approximately -1. This negative term arises as the argument of
the logarithm in the equation and thus needs to be dealt with. To this end, the complex
logarithm is defined as making a jump of ±iπ when the argument crosses the negative
real axis. This allows for a further rewrite of the dispersion relation. Using the expression
found earlier for C and keeping the sign of c1 in mind, a positive sign is taken for the
jump and the expression ln(ζe/ζi) is approximated as iπ in the TB limit. This reasoning
is equivalent to the reasoning done by Soler et al. (2013) for the case of Alfvén resonance.
With this definition, and by substituting the expression for C, the dispersion relation in
the TB limit is finally written as

ρi(ω
2 − ω2

Ai)− ρe(ω2 − ω2
Ae)

k⊥,i
k⊥,e

Qm =
iπk2z
ρ0|c′1|

(
v2S

v2S + v2A

)2

ρiρe(ω
2 − ω2

Ai)(ω
2 − ω2

Ae)
Gm

k⊥,e
.

(2.41)

This is precisely the dispersion relation found by Yu et al. (2017a), who used the notation
∆c for c′1. This result shows that the calculations made so far consistently revert to
previously known results in the case of a thin boundary. These results are more general,
however, and do not rely on the assumption of a small boundary thickness. Up to this
point, the specific profiles of plasma parameters within the boundary layer has not yet
been considered. The next chapter will consist of a numerical study of these results, where
the specific form of the profiles will be of importance.



Chapter 3

Numerical study

3.1 Parameter profiles

3.1.1 General method

In this chapter, a numerical study of the cusp resonance studied so far is performed. The
method used is the same as the one used by Soler et al. (2013) for the Alfvén resonance.
However, as will be shown, simply copying this method for the slow resonance is not
possible, as the study for the cusp resonance has additional complications that do not
arise in the case of Alfvén resonance. In this first section, the general methodology is
explained. The later sections will then aim to explain the limitations of this method and
propose a possible solution to fix this. However, these are only suggestions and a full
solution is not reached.

For the following study, numerical values for the parameters are needed. As mentioned
before, the present study is concerned with the study of a magnetic pore. The values
used for this are obtained from Grant et al. (2015), based on observations using the
Dunn Space Telescope. In the internal region of the cylinder, these values are vSi = 7
km/s, vAi = 12 km/s and vCi = 6.0464 km/s. The corresponding values for the exterior
region are then vSe = 11.5 km/s, vAe = 0 km/s and vCe = 0 km/s. This corresponds
to the limit of β → ∞ within the exterior region, which is the background photosphere.
This environment does indeed have a magnetic field which is several orders of magnitude
lower than that of the inside of the pore, which makes the taking of this limit a valid
approximation. Within the boundary layer, these values are then connected continuously.
From the values of the characteristic speeds, the values of density, magnetic field strength
and thermal pressure can then be found by inverting equations 1.4. This results in

B2 =
γPv2A

v2S
µ

+ γ
2µ
v2A

, ρ =
B2

µv2A
, pth = P − B2

2µ
. (3.1)

Here P is the total pressure, which is constant in the entirety of the system. Again,
because the photosphere consists mostly of hydrogen, a value of 5/3 is considered for the
adiabatic index γ. The magnetic permeability µ has a value of 4π · 10−4 H/km. The
internal and external values of these parameters are also connected continuously within
the boundary layer, in such a way that these relations hold at every point within this
layer. These relations are the analytic expressions, which will be approximated by Taylor
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series, as explained in chapter 2. For numerical purposes, these Taylor series must be
truncated at a certain point kmax, which defines the desired accuracy. In general, the
Taylor series considered here will be truncated at kmax = 50, which guarantees a very
good approximation of the analytical expression.

In order to perform an in-depth study of the slow resonance, the dispersion relation 2.33
needs to be solved for the frequency ω. This cannot be done analytically, since ω appears
in the coefficients of P ′tr and thus in all of the parameters G, F , Ξ and Γ. Hence, the
dispersion relation is solved numerically through an iterative process. For this process,
at first the entire slow continuum is considered: this is the set of all values for the slow
frequency. In the case of the magnetic pore conditions considered here, the slow continuum
is [ωCe, ωCi]. Then the method consists of iteratively varying the frequency ω within this
interval and checking at each such iteration the value of the dispersion function, which is
the left-hand side of equation 2.33. Based on the values obtained in these iterations, the
search interval is then progressively refined until a sufficiently accurate value is found for
ω, for which the dispersion function is sufficiently close to zero.

Apart from the frequency ω, also the position of the resonance rc arises in the expansion
coefficients of P ′tr. These two parameters are entirely dependent on one another through
the consistency requirement that ω = ωC at r = rc, which simply means that the resonance
happens at the resonant point. Specifying a value of ω within the slow continuum then
also fixes the corresponding value of rc to the position where the cusp frequency is equal
to ω, and vice versa. It is thus also possible to vary rc within the boundary layer. As
will be explained in the next paragraph, the profile of the cusp frequency is one-to-one
so varying rc instead of ω does not change the method in general. The advantage of
changing rc is that its value provides a more visual interpretation of each iteration than
the corresponding value of ω does.

There are six different parameters for which profiles are considered: the cusp, sound and
Alfvén speeds, the density, magnetic field and the thermal pressure. Because at every
point within the considered domain equations 1.4 and 3.1 must hold, it is only necessary
to specify the profiles of two of these six parameters: the profiles of the other four can
then be derived from these equations. A choice must then be made regarding which two
parameters are chosen to be defined first. One of these two must be the cusp speed.
This is because the Frobenius method used in chapter 2 assumes that there is only one
resonant point. There can thus be only one position where the frequency is equal to the
cusp frequency, which is proportional to the cusp speed. If the profile for the cusp speed is
not one-to-one, it is possible that there are multiple such positions. Hence the cusp speed
should be specified upfront, to guarantee that it is one-to-one. Of course, physically it is
possible that vC has a profile which is not one-to-one. Yu et al. (2017b) show that in this
case the resonance is situated in one of the a priori possible resonance points. However,
the general Frobenius method has no way of determining which of these points will contain
the be the ultimate resonance point, so this possibility is not investigated further. The
second parameter to be specified can then be chosen freely. For the following calculations,
it is assumed that the sound speed is the other parameter which is specified upfront. The
Alfvén speed, density, magnetic field and thermal pressure are then derived from these
two, where the formula for the Alfvén speed can be found from equation 1.4 to be
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v2A =
v2Sv

2
C

v2S − v2C
. (3.2)

The other parameters can simply be found from equation 3.1. An interesting question is
how the Taylor series of v2A, ρ, B

2 and pth can best be constructed from those of v2S and
v2C . As can be seen from equations 3.1 and 3.2, products and quotients of parameters
arise regularly in these expressions. One option would be to calculate the terms of the
derived series directly from the terms of the given series. This is done as follows: given
two power series

f =
∞∑
k=0

fkζ
k and g =

∞∑
k=0

gkζ
k, (3.3)

the power series of fg can be constructed by multiplying these two series and sorting the
terms by degree of ζ to obtain again a power series in ζ. Writing the coefficient of degree
k in this product series as (fg)k, the following formula can be found:

(fg)k =
k∑
j=0

fjgk−j. (3.4)

Similarly, a formula can be found for the coefficients of the reciprocal of a power series.
Starting from the coefficients of f , the aim is to construct a power series for 1/f . Unlike
the terms of the product series, this time only a recursive relation can be found for the
terms. Writing the coefficient of degree k in this series as (1/f)k, the relation found is

(
1

f

)
0

=
1

f0
,

(
1

f

)
k

= −

∑k
j=1 fj

(
1
f

)
k−j

f0
. (3.5)

In these expressions it is assumed that f0 6= 0, otherwise the reciprocal of f is not defined
at ζ = 0 so a power series is impossible to construct. With the formulas for Taylor
series of the product and reciprocal, Taylor series for all parameters can be constructed
from the series for v2C and v2S. However, calculating the coefficients in this manner is not
numerically stable. An illustration of this instability is shown in figure 3.1, where the
coefficients of B2 are calculated according to this method. Clearly, for values of k higher
than 20 the coefficients diverge, making this method not useful for considering high orders
of accuracy. For comparison, an analytic calculation of the coefficients is plotted together
with the numerically calculated ones. For low degrees of k both methods show the same
values, but for higher degrees only the analytic method is valid. Hence, calculating the
coefficients of the derived series directly from the coefficients of the other series is not
a good approach. Instead, the analytic expressions of the derived parameters will be
calculated first, and the Taylor series will then be constructed from these formulas. This
method has the downside that it is less flexibly adapted to different profiles and that
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Figure 3.1: Comparison of an analytical and numerical calculation for the coefficients in the power series
expansion of B2. For low values of the degree k both methods agree, but the numerical method becomes
unstable as k grows. The value of the coefficients is based on a sinusoidal profile for v2C and v2S .

more complicated profiles may not be easily adapted at all. The upside is that this more
analytical approach is much more stable, since an explicit formula for all coefficients can
be constructed. In the rest of this section, two profiles will be studied: a linear profile
and a sinusoidal profile.

3.1.2 Linear profile

The simplest possible profile that can be considered for the nonuniform layer is a linear
one. This linear profile is considered specifically for the squares of the cusp and sound
speeds. The other parameters then have profiles which are derived from these two, which
will not be linear. When one of these derived profiles is referred to as linear, this will always
mean that it is derived from the linear profile for the squares of cusp and sound speed,
not that the profile itself is linear. This is to easily distinguish from the sinusoidal profiles
that are studied next. To find expressions for all profiles, some notation is introduced:

ṽ2C =
v2Ce − v2Ci

l
, v̂2C =

(
1

2
+
R

l

)
v2Ci +

(
1

2
− R

l

)
v2Ce, (3.6a)

ṽ2S =
v2Se − v2Si

l
, v̂2S =

(
1

2
+
R

l

)
v2Si +

(
1

2
− R

l

)
v2Se. (3.6b)

In this notation, the profiles for sound and cusp speed in the boundary layer can be very
simply written as
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Figure 3.2: Linear profiles for the squares of cusp and sound speed. The gray region represents the
nonuniform boundary layer which is defined here for l/R = 1.5. Outside this region the profiles are
constant. All distances are normalised with respect to the cylinder radius R.

v2C = ṽ2Cr + v̂2C , (3.7a)

v2S = ṽ2Sr + v̂2S. (3.7b)

By defining ṽ2C,S and v̂2C,S as in equation 3.6, these profiles guarantee that the sound
and cusp speeds are continuous in the entire domain. It can be easily checked that at
r = R − l/2 these profiles give the interior value of the speeds and at r = R + l/2 they
give the exterior value. It should be noted that these profiles are given in the variable
r instead of ζ. To construct the power series from them, the transformation r = ζ + rc
still needs to be considered. Performing this transformation, it is easy to see that the
coefficients in the series expansion are

(
v2C
)
0

= ṽ2Crc + v̂2C ,
(
v2C
)
1

= ṽ2C ,
(
v2C
)
k

= 0 if k ≥ 2, (3.8a)(
v2S
)
0

= ṽ2Src + v̂2S,
(
v2S
)
1

= ṽ2S,
(
v2S
)
k

= 0 if k ≥ 2. (3.8b)

Throughout this chapter, the notation (f)k will denote the coefficient in the Taylor series
of any parameter f corresponding to ζk. These linear profiles are shown in figure 3.2.
From equations 3.8 it is clear that as the resonant position changes, the profiles remain
the same, hence this formula can be used in any iteration to construct a linear profile
which is expanded around the resonant position. From the profiles for the cusp and
sound speeds a profile can then be constructed for the square of the Alfvén speed as well.
A fairly straightforward calculation yields that

v2A =
ṽ2S ṽ

2
C

ṽ2S − ṽ2C
r +

v̂2C

(
ṽ2S

)2
− v̂2S

(
ṽ2C

)2
(
ṽ2S − ṽ2C

)2 +

(
v̂2C ṽ

2
S−v̂

2
S ṽ

2
C

ṽ2S−ṽ
2
C

)2

(ṽ2S − ṽ2C)r + v̂2S − v̂2C
. (3.9)
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Figure 3.3: Profiles for the squares of the Alfvén speed and magnetic field strength, based on linear
profiles for the squares of cusp and sound speed. Again, l/R = 1.5 and all distances are normalised with
respect to the cylinder radius R. Values of B2 are normalised with respect to P .

The first two terms in this expression describe a linear function in r. The third term
is rational however, which means that this function has a pole. Because within the
boundary layer vS and vC are nowhere equal, this pole will lie outside the boundary layer.
The precise position depends on the thickness which is chosen. For a value of l/R = 1.5
as is chosen in e.g. figure 3.2, the boundary layer spans the region of [0.25R, 1.75R] and
the pole would be situated at r = 0.09R, which is in the interior region. Regardless of
the value of l, this pole never lies in the boundary layer, so v2A is properly defined in
the entire domain, since in the interior and exterior regions a constant value is imposed.
However, the presence of this pole will cause the convergence radius of the Taylor series
to be limited, which will be further investigated later.

Postponing the discussion of the convergence radius, the general Taylor series for v2A within
the convergence disk can be constructed. The terms in the expression can be simply
converted to Taylor series coefficients as before, where the transformation r = ζ+ rc must
be considered. The result is that the Taylor series of v2A can be written as

Tv2A(ζ) =
ṽ2S ṽ

2
C

ṽ2S − ṽ2C
ζ +

ṽ2S ṽ
2
C

ṽ2S − ṽ2C
rc +

v̂2C

(
ṽ2S

)2
− v̂2S

(
ṽ2C

)2
(
ṽ2S − ṽ2C

)2

+

(
v̂2C ṽ

2
S−v̂

2
S ṽ

2
C

ṽ2S−ṽ
2
C

)2

(ṽ2S − ṽ2C)rc + v̂2S − v̂2C

∞∑
k=0

(
− ṽ2S − ṽ2C

(ṽ2S − ṽ2C)rc + v̂2S − v̂2C

)k

ζk. (3.10)

With the profiles of the sound, cusp and Alfvén speeds, it is now possible to construct
profiles for the magnetic field, density and thermal pressure. These can be found from
equations 3.1. To keep these expressions simple, some extra notation is introduced:
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Figure 3.4: Profiles for the thermal pressure and density, based on linear profiles for the squares of cusp
and sound speed. Again, l/R = 1.5 and all distances are normalised with respect to the cylinder radius
R. Values of pth are normalised with respect to P .

V1 =
1

µ

(
v̂2S −

v̂2C ṽ
2
S

ṽ2C

)
, (3.11a)

V2 =
1

µ

(
ṽ2S

ṽ2C

− 1 +
γ

2

)
. (3.11b)

Now the magnetic field can be written as

B2 =
γP

V2

(
1− V1

ṽ2CV2r + V1 + v̂2CV2

)
. (3.12)

Like the Alfvén speed, this formula also contains a rational function. Again, the pole of
this rational function does not lie within the boundary layer but its presence will cause
the convergence radius to be limited. Plots of the profiles of v2A and B2 can be found in
figure 3.3. Within the region where it is convergent, the Taylor series of B2 can be written
as

TB2(ζ) =
γP

V2
−

γP V1
V2

ṽ2CV2rc + V1 + v̂2CV2

∞∑
k=0

(
− ṽ2CV2

ṽ2CV2rc + V1 + v̂2CV2

)k

ζk. (3.13)

Now only the profiles of density and thermal pressure remain. From equation 3.1 it is
clear that the formula for pth can be very easily derived by dividing the expression for
B2 by −2µ and adding the total pressure. Because the total pressure is a constant, the
coefficients of the resulting Taylor series for pth are simply scalar multiples of those of
TB2 , with P added to the zeroth-order term. For completeness, the expression for pth and
its Taylor series Tpth are given here:

pth = P +
γP

2µV2

(
V1

ṽ2CV2r + V1 + v̂2CV2
− 1

)
, (3.14)
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Tpth(ζ) = P − γP

2µV2
+

γP V1
2µV2

ṽ2CV2rc + V1 + v̂2CV2

∞∑
k=0

(
− ṽ2CV2

ṽ2CV2rc + V1 + v̂2CV2

)k

ζk. (3.15)

Finally, the profile for the density is considered. Again from equation 3.1, it can be
calculated to be

ρ =
γP

µ

(
ṽ2S − ṽ2C

)
r + v̂2S − v̂2C

ṽ2S ṽ
2
CV2r

2 +
(
ṽ2SV1 + v̂2C ṽ

2
SV2 + v̂2S ṽ

2
CV2

)
r + v̂2SV1 + v̂2C v̂

2
SV2

. (3.16)

The resulting equation is again a rational function, which this time has two poles. As can
be seen from figure 3.4, this profile is not one-to-one. As mentioned before, depending on
which two parameters are chosen first, a different parameter can yield a profile which is
not one-to-one. This is an illustration that backs the choice of specifying the cusp speed
first. The profile for ρ has two poles, which are found at

r1,2 =
1

2ṽ2S ṽ
2
CV2

[
−
(
ṽ2SV1 + v̂2C ṽ

2
SV2 + v̂2S ṽ

2
CV2

)
±
√(

ṽ2SV1 + v̂2C ṽ
2
SV2 + v̂2S ṽ

2
CV2

)2
− 4ṽ2S ṽ

2
CV2

(
v̂2SV1 + v̂2C v̂

2
SV2

)]
. (3.17)

Neither of these poles lie within the boundary layer. For the values considered in this
study, both are found for values of r < R− l/2. This means that, again, the profile is well
defined within the boundary layer but the presence of the pole will cause a smaller con-
vergence radius. Since both poles lie at positions r < R− l/2, the pole at the largest value
of r will determine the size of the convergence radius. With these two poles determined,
the Taylor series of ρ within the convergence disk can be written as

Tρ =
γP

µṽ2C ṽ
2
SV2


(
ṽ2S − ṽ2C

)
r1 + v̂2S − v̂2C

(rc − r1)(r1 − r2)

∞∑
k=0

(
−1

rc − r1

)k
ζk

+

(
ṽ2S − ṽ2C

)
r2 + v̂2S − v̂2C

(rc − r2)(r2 − r1)

∞∑
k=0

(
−1

rc − r2

)k
ζk

 . (3.18)

This concludes the list of profiles and Taylor series for all parameters in the case of a
linear profile for the cusp and sound speeds. In the next section, a similar derivation will
be made for the case of sinusoidal profiles for v2C and v2S. The rest of this chapter will then
focus on the numerical aspects of implementing these profiles, where it will be shown that
the limited convergence radii for these parameters do indeed pose a significant problem
for solving the dispersion relation.
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3.1.3 Sinusoidal profile

A linear profile is the simplest possible profile that can be considered for the nonuniform
region. However, it has a few downsides. Perhaps the most obvious of these is that it
gives rise to rational functions in the derived profiles. These rational functions may not
have their poles within the boundary layer itself, but they are close enough to influence
the convergence radius of the corresponding Taylor series. An attempt can be made at
fixing this problem by considering a different profile. To this end, a sinusoidal profile is
considered here for the squares of the sound and cusp speed. To study these profiles,
again some new notation is introduced:

v2C =
v2Ce + v2Ci

2
, v2C =

v2Ce − v2Ci
2

, (3.19a)

v2S =
v2Se + v2Si

2
, v2S =

v2Se − v2Si
2

. (3.19b)

The sinusoidal profiles are then constructed in such a way that the boundary layer spans
exactly one half of a period. This guarantees that the profile is one-to-one and that the
heights of the top and crest of the sine wave correspond to the values in the interior and
exterior regions. This not only makes the profile itself continuous, but also its derivative,
resulting in a smoother profile than the linear case. Using the notation in equation 3.19,
the profiles of cusp and sound speed can be written as

v2C = v2C + v2C sin
(π
l

(r −R)
)
, (3.20a)

v2S = v2S + v2S sin
(π
l

(r −R)
)
. (3.20b)

These profiles are shown in figure 3.5. Here it can be clearly seen that the nonuniform
layer spans exactly one half period. The sinusoidal profiles are similar in shape to the
linear ones, where the main difference is that the sinusoidal profiles are smooth at the
edges of the boundary layer. Now, Taylor series will be constructed for these profiles and
for those of v2A, ρ, B

2 and pth. The method will be somewhat different from before: because
the sinusoidal profiles are more complicated, especially taking derivatives of the profiles
is less straightforward. Therefore, the coefficients of the Taylor series will be calculated
from the coefficients of v2S and v2C themselves, which can still be easily found. Unlike the
purely numerical method explained in the beginning of this chapter, this will still be based
on analytic profiles of the parameters. Hence this method is still more stable than the
numerical method which used several intermediary steps to obtain coefficients, leading to
an unstable result.

First the Taylor series for the squares of sound and cusp speed are constructed. For this,
the Taylor series of the sine function is considered. This is written as

sin
(π
l

(r −R)
)

= sin
(π
l

(ζ + rc −R)
)

=
∞∑
k=0

skζ
k. (3.21)
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Figure 3.5: Sinusoidal profiles for the squares of cusp and sound speed. Similar to before, the gray
region represents the nonuniform boundary layer, which is again defined for l/R = 1.5. All distances are
normalised with respect to the cylinder radius R.

The coefficients in the Taylor series of sin are well known, so sk can be calculated easily.
The general formula is

sk =
(−1)bk/2c

k!

(π
l

)k [
sin
(π
l

(rc −R)
)

111k≡0mod2 + cos
(π
l

(rc −R)
)

111k≡1mod2

]
. (3.22)

It is then very simple to obtain the coefficients in the expansions of v2C and v2S:

(v2C)k = v2Csk + v2C111k=0, (3.23a)

(v2S)k = v2Ssk + v2S111k=0. (3.23b)

From the cusp and sound speeds, again an analytic formula for the Alfvén speed can be
found. This is written as

v2A =
v2Cv

2
S +

(
v2Cv

2
S + v2Sv

2
C

)
sin
(
π
l
(r −R)

)
+ v2Cv

2
S sin2

(
π
l
(r −R)

)(
v2S − v2C

)
sin
(
π
l
(r −R)

)
+ v2S − v2C

. (3.24)

Unlike the linear case, the denominator in this expression is nowhere zero, so this for-
mula has no poles. Taking derivatives of this expression is clearly not very simple, so as
mentioned the Taylor series will be constructed from the Taylor series of its constituent
parts. There is a term containing sin2 in this expression, for which the Taylor series must
be first constructed. Similar to the Taylor series for sin, this is written as

sin2
(π
l

(r −R)
)

= sin2
(π
l

(ζ + rc −R)
)

=
∞∑
k=0

s2kζ
k. (3.25)
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To avoid confusion in notation, it should be noted that here the coefficients s2k are the
coefficients in the Taylor expansion of sin2 and not the squares of the coefficients sk. The
Taylor series of sin2 can easily be calculated, yielding formulas for s2k:

s20 = sin2
(π
l

(rc −R)
)
, (3.26a)

s2k =
(−1)1+dk/2e

2k!

(
2π

l

)k [
sin

(
2π

l
(rc −R)

)
111k≡1mod2

+ cos

(
2π

l
(rc −R)

)
111k≡0mod2

]
if k ≥ 1. (3.26b)

With the coefficients of the Taylor series of sin and sin2 obtained, a formula can be
found for the coefficients (v2A)k of the Taylor series for the Alfvén speed. This is done
by substituting all Taylor series in equation 3.24 and equating all coefficients of equal
degree in ζ left and right, then solving each resulting equation for (v2A)k. This way, the
coefficients (v2A)k are given according to the recursive formula

(v2A)0 =
v2Cv

2
S +

(
v2Cv

2
S + v2Sv

2
C

)
s0 + v2Cv

2
Ss

2
0(

v2S − v2C
)
s0 + v2S − v2C

, (3.27a)

(v2A)k =

(
v2Cv

2
S + v2Sv

2
C

)
sk + v2Cv

2
Ss

2
k −

∑k−1
j=0

(
v2S − v2C

)
sk−j (v2A)j(

v2S − v2C
)
s0 + v2S − v2C

. (3.27b)

The next parameter to be considered is the square of the magnetic field strength, B2.
The notation introduced so far allows the calculation of B2 for the sinusoidal profile to
be done entirely analogously to the calculation for the linear profile: first the notation

W1 =
1

µ

(
v2S −

v2Cv
2
S

v2C

)
, (3.28a)

W2 =
1

µ

(
v2S

v2C
− 1 +

γ

2

)
(3.28b)

is introduced, which allows the magnetic field to be written similar to equation 3.12:

B2 =
γP

W2

(
1− W1

v2CW2 sin
(
π
l
(r −R)

)
+W2 + v2CW2

)
. (3.29)

Either this formula can be used to construct the Taylor series for B2, or the coefficients
can be determined from equation 3.1, now that the coefficients of the sound and Alfvén
speed profiles are known. It turns out that both methods are numerically stable. Here,
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Figure 3.6: Profiles for the squares of the Alfvén speed and magnetic field strength, based on sinusoidal
profiles for the squares of cusp and sound speed. l/R = 1.5 and all distances are normalised with respect
to the cylinder radius R. Values of B2 are normalised with respect to P .

the coefficients are calculated from those of the sound and Alfvén speeds which yields a
more compact form, but a calculation from the analytic formula 3.29 works just as well.
Calculating from the coefficients for v2A and v2S yields

(B2)0 =
γP (v2A)0

(v2S)
0

µ
+ γ

2µ
(v2A)0

, (3.30a)

(B2)k =

γP (v2A)k −
∑k−1

j=0

(
(v2S)

k−j

µ
+ γ

2µ
(v2A)k−j

)
(B2)j

(v2S)
0

µ
+ γ

2µ
(v2A)0

. (3.30b)

The profiles of v2A and B2 are plotted in figure 3.6. They are clearly not pure sine waves
like those of v2C and v2S but are still constructed based on periodic functions with their
minimum and maximum aligned with the uniform interior and exterior values. From the
magnetic field it is again simple to find a formula for the thermal pressure, as they are
closely related through the total pressure:

pth = P +
γP

2µW2

(
W1

v2CW2 sin
(
π
l
(r −R)

)
+W2 + v2CW2

− 1

)
. (3.31)

The coefficients of the power series for pth can also be easily recovered from those of B2:
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Figure 3.7: Profiles for the thermal pressure and density, based on sinusoidal profiles for the squares of
cusp and sound speed. Again, l/R = 1.5 and all distances are normalised with respect to cylinder radius
R, pressures normalised with respect to P .

(pth)0 = P −
γP (v2A)0

2 (v2S)0 + γ (v2A)0
, (3.32a)
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Finally, the profile of the density ρ is considered. Because of the way the notation is
introduced, this is again very similar to the linear case. The analytic formula for the
density is

ρ =
γP

µ

[(
v2S − v2C

)
sin
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l

(r −R)
)

+ v2S − v2C

][
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2
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2
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2
CW2

)
sin
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)

+ v2SW1 + v2Cv
2
SW2

]−1
. (3.33)

Much like the magnetic field, it will be simpler to construct the coefficients of the Taylor
series of ρ directly from the previously obtained coefficients and equation 3.1. This gives
a recursive relation for the coefficients (ρ)k, which is

(ρ)0 =
(B2)0
µ(v2A)0

, (3.34a)

(ρ)k =
(B2)k −

∑k−1
j=0 µ(v2A)k−j(ρ)j

µ(v2A)0
. (3.34b)
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The final two profiles of thermal pressure and density are shown in figure 3.7. Again, the
profiles are similar to the linear case but smoother due to the choice of sinusoidal profiles
for v2C and v2S. This concludes the description of the profiles used in the numerical study.
The following sections then deal with the numerical behaviour of the Taylor series of these
profiles. First the divergent behaviour is researched, along with the possible causes of this
behaviour. The last section then covers a proposition for future research to construct a
more numerically valid method for the solution of the dispersion relation.

3.2 Divergence of Taylor series

The Frobenius method explained in chapter 2 assumes that Taylor series expansions of
all parameters within the nonuniform boundary layer can be made and that these series
converge. However, this section will aim to show that convergent behaviour of the Taylor
series in the boundary layer depends on the position of the resonance, meaning that it
cannot be guaranteed everywhere. This poses a significant problem: because the coeffi-
cients αk and σk in P ′tr essentially depend on all parameters, P ′tr can only be convergent
if all these parameters are convergent as well. If only a solution to the dispersion relation
was desired, this problem might be circumvented by using locally convergent solutions,
because the dispersion relation 2.33 only depends on the values of P ′tr at the edges of
the boundary layer. However, a study of the eigenfunctions of P ′tr and ξr should be con-
ducted as well, for which the entire boundary layer is relevant. Hence a study of the slow
resonance is impossible if no convergent profiles for the plasma parameters can be found.

Because the profiles for the parameters are defined consecutively, once divergent behaviour
occurs in one profile, it will also occur in all subsequent profiles. For example, by choosing
the profiles of v2C and v2S as default profiles, the profile for v2A will become divergent and
as a result those of B2, ρ and pth will be too. Changing the choice of default profiles
will also change the order in which the four derived profiles are constructed and this will
not remove the divergent behaviour, which will simply emerge in a different profile. For
example, choosing v2C and v2A as default profiles makes the profile for v2A convergent, but
also causes the profile for v2S to diverge. The same reasoning can be made for B2, ρ and
pth as well. Hence the choice of default problems can be made arbitrarily. As mentioned
before, here the profiles of v2C and v2S will always be chosen as default profiles. As a result,
the profile of v2A will be the first to diverge. Because of this, the study of the divergent
behaviour will be made regarding the profile of v2A.

For the linear profile, it is analytically clear that the convergence radius of the Taylor
series of v2A is limited, due to the presence of the pole. As an illustration, figure 3.8 shows
the rational function that is used in the transitional region, this time continued in the
entire domain. Of course, negative values of v2A and r have no physical meaning here,
this function can only be considered physical within the shaded region. As calculated
before, for a value of l/R = 1.5 the pole is situated at r = 0.09R and the boundary layer
spans the region of [0.25R, 1.75R]. As is known for rational functions, the size of the
convergence radius is then determined by the distance between the pole and the center
of the expansion. For iterations where the resonance position is situated sufficiently close
to the interior edge of the boundary layer, this convergence radius will then be smaller
than the boundary layer, resulting in divergent behaviour towards the outer edge of this
layer. For example, if the resonant position were to be taken at r = 0.5R, the distance to
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Figure 3.8: Plot of the profile used for v2A as based on linear profiles for v2C and v2S , continued in the
uniform regions. For illustrative purposes, the domain is extended to include negative values of r which
of course has no physical interpretation. Within the shaded region this function is exactly equal to v2A,
outside uniform values are imposed for v2A. The position of the pole is plotted as a dashed line.

the pole is 0.41R and convergence would only be expected in the region of [0.09R, 0.91R]
which clearly does not cover the boundary layer. Overall, because the pole is so close to
the inner edge of the boundary layer, convergence within the entire boundary layer can
only really be expected when the resonance position is assumed to be beyond r = 0.92R.
At r = 0.92R the pole is equally distant from the resonant position as the outer edge
of the boundary layer, meaning that this is the most inward position for which there is
convergence in the entire boundary layer.

It should be noted that this divergence does not depend on the thickness of the boundary
layer. This is again most easily seen when looking at the pole of v2A in the linear profile.
This pole arises due to the term v2S − v2C in the denominator of v2A, as seen in equation
3.2. Because here v2S and v2C are linear functions with different slopes, they will always
intersect. When taking values for these parameters typical for magnetic pore conditions,
this intersection lies close to the inner edge of the boundary layer. If the thickness of the
boundary layer changes, the slopes of these linear functions change accordingly, in such a
way that the distance between the pole and the boundary layer does not change relative
to the thickness of this boundary layer, meaning that the same fraction of this layer will
have divergent behaviour, regardless of the value of l/R.

The effect of the pole on the convergence radius is shown in figure 3.9. This figure
shows the Taylor series approximation together with the analytic profile for v2A for varying
positions of the resonance. It is clear from this figure that the interval of convergence
increases as rc moves away from the pole and that rc is always in the middle of this interval.
The bottom plot shows the limiting case of rc = 0.92R, where indeed the Taylor series
is a good approximation of the function in a region that just covers the boundary layer.
It is clear from this figure that the resonance position must be at least as far as 0.92R
to guarantee convergent behaviour within the boundary layer. In order to generalise this
value of rc to arbitrary thickness l, it is easier to instead use a dimensionless parameter
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θc ∈ [0, 1] defined through

rc = R− l

2
+ θcl. (3.35)

Figure 3.9: Comparison of the Taylor approximation for v2A in the linear case depending on varying
positions of the resonance position. From top to bottom: θc = 0.05 (rc = 0.325R), θc = 0.2 (rc = 0.55R),
θc = 0.447 (rc = 0.92R). All values are taken for thickness l/R = 1.5.
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Figure 3.10: Plot of the profile used for v2A as based on sinusoidal profiles for v2C and v2S , continued in
the uniform regions. For illustrative purposes, the domain is extended to include negative values of r
which again has no physical interpretation. Within the shaded region this function is exactly equal to
v2A, outside uniform values are imposed for v2A.

θc is then the relative position of rc within the boundary layer. θc = 0 corresponds to the
inner edge of the boundary layer, θc = 1 to the outer edge. Using this parameter instead,
the critical position of rc = 0.92R is found for θc = 0.447 which now holds for arbitrary
thickness l.

The linear case clearly gives rise to divergent behaviour due to the presence of a pole. It
could then be argued that this problem might be solved by instead of considering a Taylor
series expansion, a Laurent series expansion could be be considered, which includes an
extra term to deal with the pole. After all, this is how the treatment of k2⊥ was done.
However, it should be noted that k2⊥ has a pole at ζ = 0, which is the expansion point.
The pole for v2A instead lies somewhere else than the expansion point, so considering this
would mean performing an expansion at another point than ζ = 0. While this idea is not
a priori wrong and changing the center of expansion is to some extent possible, in the
final section of this chapter it is shown that this may not be the best solution.

Next, the sinusoidal profile is considered. Again, the study of the divergence of the Taylor
series is done by studying the profile for the square of the Alfvén speed. This profile is
plotted in figure 3.10, where again the profile is continued in the uniform regions for
illustrative purposes. Again, the domain is extended to include negative values of r which
do not have any physical meaning. This profile, which is now periodic with a period of
2l, does not contain a pole, unlike the linear one. Similarly, the profiles of ρ,B2 and pth
will also not contain a pole.

Although there is now no pole, it seems that the wave top at the inner edge of the
boundary layer now causes the convergence radius to be limited, as can be seen in figure
3.11. Similar to the pole in the linear profile, the closer the resonance position is taken to
this top the smaller the convergence domain. Because the function is now still well-defined
in the vicinity of this top, it can still be locally approximated by the Taylor series, albeit
with a smaller convergence radius. As the resonance position moves away from the inner
edge of the boundary layer, the region where the Taylor series is convergent moves along
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Figure 3.11: Comparison of the Taylor approximation for v2A in the sinusoidal case depending on varying
positions of the resonance position. From top to bottom: θc = 0, θc = 0.2, θc = 0.5. All plots are made
for thickness l/R = 1.5.

with it and increases.

If this series of plots were continued, the largest convergence radius would be obtained
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at θc = 1, for which an entire period is well approximated and divergence would occur
at the wave tops situated at θc = 0 and (hypothetically) θc = 2. Because this top by
construction lies precisely at the inner edge of the boundary layer, the critical value for
which convergence is reached within the entirety of this layer occurs now for θc = 0.5,
which coincides with rc = R for all values of l. For larger values of θc there will always be
divergence at the inner edge of the boundary layer as in the bottom plot of figure 3.11,
which is just far enough to approximate the profile within the entire boundary layer.

The cause of the divergence in the sinusoidal case is less straightforward to pinpoint than
the linear case, because now the profile and all its derivatives are well-defined throughout
the domain. Because the profile is bounded and everywhere differentiable, the cause of
the divergence presumably lies in the higher-order derivatives which may have very large
values at the inner edge of the boundary layer. Either way, the convergence radius of
the Taylor series is always limited even though for some values of θc it is large enough to
cover the entire boundary layer. This convergence radius is largely independent of kmax.
In figure 3.11 kmax = 50 is chosen, but a higher value of kmax will still give similar results,
there will always be divergent behaviour and the critical value of θc does not depend on
the chosen value for kmax. The code used to calculate the Taylor series is accurate up to
kmax ≈ 120. For higher values, overflow occurs and the calculation is no longer possible.

The problem of divergent behaviour is unique to the study of plasmas where β ≈ 1.
For example, in the study performed by Soler et al. (2013) for the Alfvén resonance,
this problem did not occur. This is because in the coronal regimes they study β � 1
which means that the approximation of vS = vC = 0 is valid. In this limit the magnetic
field strength is constant everywhere and the entire system can be described through a
variation of only density. Then the profile for ρ is the only profile that occurs, so bad
behaviour of derived profiles will not happen because there are no derived profiles, only
the profile of ρ which can be specified upfront.

The final section of this chapter will propose several solutions to this problem of di-
vergence. However, none of these solutions are fully developed and a solution for the
dispersion relation will not be reached. Future research will then have to consider and
implement these solutions, to hopefully arrive at a more stable method which can solve
the dispersion relation 2.33 and study the eigenfunctions and damping rate of the slow
surface mode.

3.3 Possible solutions to the divergence problem

3.3.1 Change of expansion point

The Frobenius method consists of expanding P ′tr at the singular point ζ = 0. As can be
seen on figures 3.9 and 3.11, the position of this singular point can pose problems when
constructing Taylor series expansion of the constituent parameters of P ′tr. However, there
is no requirement that the Taylor series of these parameters are themselves expanded at
ζ = 0. A possible solution could then consist of expanding the parameters at a different
position ζ0, such that the Taylor series are convergent in the entire boundary layer. As
investigated before, an example of such a position would be ζ = R−rc, which corresponds
to θc = 0.5. For both the linear and sinusoidal cases this yields convergent behaviour
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within the entire boundary layer. Some additional calculations are then needed to make
a general expansion point for the plasma parameters compatible with the expansion of
P ′tr which is always performed at ζ = 0.

Changing the coefficients of the Taylor series considered earlier in this chapter to allow
expansion at an arbitrary point ζ0 is not too difficult to do. For the linear case, the
coefficients were obtained by explicitly calculating a general form of the k-th derivative of
the profile, from which the Taylor series is easily constructed. Changing from an expansion
at ζ = 0 to one at ζ = ζ0 then simply means evaluating this derivative at r = rc + ζ0
instead of evaluating it at r = rc. This yields a Taylor series in (ζ − ζ0) instead of in
ζ without much extra effort. For the sinusoidal case, all profiles were derived from the
profiles of sin and sin2. In this case it then suffices to adapt the coefficients of the Taylor
series for these two functions. Profiles for all parameters then follow from these two using
the same formulas as before. Generalising the coefficients sk and s2k for these sinusoidal
profiles is very straightforward and yields

sk =
(−1)bk/2c

k!

(π
l

)k [
sin
(π
l

(ζ0 + rc −R)
)

111k≡0mod2 + cos
(π
l
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)
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]
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(3.36)

and
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)
, (3.37a)
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These also yield Taylor series in (ζ− ζ0). It can be seen that if the center of the boundary
layer r = R is chosen as expansion point, then ζ0 = R − rc and all sines and cosines
in these expressions become 0 and 1, respectively. These new, more general profiles can
then be used to find a profile for P ′tr which is convergent everywhere. However, this still
requires the expressions for h, p and q in chapter 2 to be adapted to these profiles as well,
since those profiles currently assume that the power series of the parameters are expressed
as series in ζ. With such new expressions for h, p and q the same calculations can be made
as were done in chapter 2 to arrive at slightly altered expressions for αk and σk in the
formula for P ′tr.

In order to freely change the expansion point, a conversion formula is needed, to allow
coefficients to be changed from any expansion point ζ0 to any other expansion point ζ ′0.
Given two such series

∞∑
k=0

fk(ζ − ζ0)k and
∞∑
k=0

gk(ζ − ζ ′0)k, (3.38)

the coefficients fk and gk can be related by the formula
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Figure 3.12: Plot of the Alfvén speed in the sinusoidal case, with the boundary layer divided in regions
based on the accuracy of equation 3.39. Initial kmax = 100, colours show where a final accuracy of 20
degrees is attainable.

fk =
∞∑
j=k

gj

(
j
k

)
(ζ0 − ζ ′0)j−k. (3.39)

Using for example ζ0 = 0 and ζ ′0 = R−rc or vice versa gives the conversion formula for the
specific case mentioned before. An important remark with this formula should be made
regarding its accuracy. Equation 3.39 itself is exact, but can of course not be implemented
exactly due to the infinite sum in the expression. As is done with all other series, when
numerically implemented a sufficiently large truncation number kmax is chosen. Then all
infinite sums are truncated at kmax. However, unlike the series used so far, this sum
only starts at k when considering the coefficient fk. This means that if the conversion
is attempted for a number k which is close to kmax, this will not give an accurate result,
especially if the convergence of the coefficients is slow. Hence this formula limits the
maximal accuracy that can be obtained. This limit can be pushed further by considering
a greater value of kmax prior to the shift to retain a few extra degrees of accuracy, but
this happens at a significant computational cost. Furthermore, the distance between ζ0
and ζ ′0 also limits the accuracy of this formula, since for greater distances this sum will
converge more slowly meaning that more accuracy is lost due to the truncation.

Figure 3.12 illustrates the loss of accuracy of equation 3.39 in the case of a sinusoidal
profile. It is assumed here that an expansion is performed at ζ0 = R − rc and with
a truncation number kmax = 100. This time, the boundary layer is coloured according
to the loss of accuracy of equation 3.39 when this formula is used to convert from an
expansion at ζ0 to an expansion around the resonance point itself. If the resonance point
lies in the green region, then the profile for the Alfvén speed is always convergent as has
been shown before. Hence a conversion is not necessary, and calculations can simply be
made with an expansion at ζ = 0. Within the yellow region, the expansion at ζ = 0 will be
divergent within the boundary layer, so this conversion is necessary. The maximum value
of k for which equation 3.39 yields accurate values decreases as the resonance position
moves to the left, but within the yellow region it is still acceptable (a maximum value for
k of at least 20). Within the red region, the loss of accuracy is too great and even an
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initial kmax of 100 will result in a final accuracy of less than 20 degrees. Using a smaller
value of kmax will increase the size of the red region. A larger value of kmax should decrease
the size of this region, but a value significantly larger than 100 is in practice unrealistic
since this will cause overflow.

With this proposed method of shifting the expansion point it should be possible to find
convergent results for about 90% of iterations of the resonance point as shown in figure
3.12. Hence a priori it is very likely that within this region a solution to the dispersion
relation can be found and the eigenfunctions of P ′tr and ξr can be studied. However, as
illustrated by figure 2.1, the phase speed of the slow surface mode lies very closely to the
internal cusp speed for the magnetic pore conditions. Hence it is likely that the resonance
position actually lies close to the inner edge of the boundary layer, which is precisely
where the red region is situated. It might be possible that this position lies close to the
yellow region so the shift method might yield acceptable results. Furthermore, for the
linear case the red region is smaller as the optimal position to perform the expansion is
found at θc = 0.447 which lies somewhat closer to the inner edge than the optimal position
θc = 0.5 of the sinusoidal case. However, it is not guaranteed that this shift method will
yield satisfactory results, as even then the resonance position might be too close to the
inner edge. Some other methods may be better suited to deal with this.

3.3.2 Different parameter profiles

Changing the expansion point may or may not yield desirable results, but maybe an
entirely different and simpler approach could bring more insight. So far, only linear and
sinusoidal profiles have been considered. While these are certainly the simplest and most
commonly researched profiles, in theory any profile which guarantees continuity within
the domain can be chosen. Here, two other candidate profiles are shown, which may give
better results than the linear and sinusoidal profiles. These two candidate profiles are the
parabolic profile, and the hyperbolic tangent profile.

The parabolic profile is a very simple alteration of the linear profile. For the square of
the cusp speed this profile takes on the form

v2C = v2Ci −
v2Ci − v2Ce

l2

(
r −R +

l

2

)2

. (3.40)

Removing the square of the term in brackets and writing l instead of l2 yields the linear
profile that has been used before. Instead of a linear connection of the internal and
external parameters, this now gives a parabolic shape of the profile, in such a way that
the top of the parabola is situated at the inner edge of the boundary layer. For the sound
speed, an equivalent profile is then again considered. The other four parameters can again
be derived from these two, but these profiles are not given here. The left plot in figure
3.13 shows the parabolic profile.

Like the linear profile, the parabolic profile is not everywhere differentiable and will result
in poles for the other profiles. However, the position of these poles may be significantly
different this time. If the poles are further away from the edge of the boundary layer,
the convergence radius will be larger, leading to convergent behaviour for more iterations.
Furthermore, this profile has most of the variation of the cusp speed situated towards
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Figure 3.13: Parabolic and hyperbolic tangent profiles for the square of the cusp speed. The scaling
factor for the hyperbolic tangent profile is F = 8/l.

the outer edge of the boundary layer. This will result in the resonance position mov-
ing outward, further into the region where convergent behaviour is more likely. This is
specifically interesting if this profile were coupled with the shift method, because for this
profile it is more likely that the resonance position will be somewhere the loss of accuracy
in equation 3.39 is still acceptable. These claims have not yet been investigated, but the
parabolic profile may give a possible solution.

A second candidate profile is the hyperbolic tangent profile shown in the right plot of
figure 3.13. This profile takes on the form

v2C = v2Ci +
(
v2Ce − v2Ci

)(1 + tanh (S(r −R))

2

)
, (3.41)

where S is a scaling factor that depends on the steepness of the profile. To guarantee
continuity (in a numerical sense), S needs to be larger than some threshold value. This
is because tanh(x) only goes to ±1 in the limit for x → ±∞, hence this limiting be-
haviour must be sufficiently captured. A value of S = 8/l appears to be sufficient for
this threshold. Larger values may be considered, but these will lead to a steeper profile,
which is essentially equivalent to assuming a lower value of l/R. Similar to before, the
sound speed will follow an equivalent profile and the other parameters can be derived
from those of the cusp and sound speeds, but these profiles are not given here. The hy-
perbolic tangent profile has a similar advantage as the parabolic profile, where most of
the variation is situated in the center of the boundary layer. This again has the effect of
pushing the resonance position outwards, into a region where convergence of the Taylor
series is more likely. The hyperbolic tangent profile may also result in derived profiles
that are better behaved than those derived from the sinusoidal profile, but this claim has
not been investigated.

The problem of divergent behaviour might simply be a problem confined to the linear
and sinusoidal profiles. If this were the case, a smart choice of profile would be a very
simple way to fix all problems encountered in this chapter. However, this claim requires
further investigation since the profiles of Alfvén speed, magnetic field, density and thermal
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pressure are obtained in a nontrivial way from the initial profiles. This makes their
behaviour, and especially the behaviour of their Taylor series difficult to predict. After
all, the Taylor series of a simple sinusoidal profile are very well-behaved, but these already
give rise to divergent behaviour. The same may easily be true for these two suggested
profiles.

The two options proposed thus far are not mutually exclusive: it could, for example, be
possible to consider a parabolic profile where convergent behaviour is obtained in some
regions only by considering a change in expansion point. It seems that in any case the
parabolic and hyperbolic tangent profiles are better suited for a combination with the
shift method than the linear or sinusoidal profiles, because they have little variation of
the cusp speed near the inner edge of the boundary layer. This pushes the resonance
point, which is close to this inner edge for the linear and sinusoidal profiles, more to the
center of the boundary layer where convergent behaviour is more likely.

A drawback of this proposed solution, were it to work, is that this limits the study to a
specific profile. In general it is desirable that the method should work for an arbitrary
profile. As shown by Soler et al. (2014), the chosen profile for the parameters in the
boundary layer significantly affects the frequency obtained with the method. If either
the parabolic or the hyperbolic tangent profile yields solutions, then these solutions are
only valid for this specific profile and more general solutions cannot be obtained. In the
last section then, an entirely different possible solution is proposed which allows for any
profile to be considered.

3.3.3 Complex frequencies

An important goal of studying the resonance of waves in solar structures is to study the
effect of resonant damping. Resonant damping occurs when the solution frequency of
the dispersion relation has a negative imaginary part. So far, however, the frequency ω
has always been studied as a real frequency in the real interval [ωCe, ωCi]. This may seem
strange, especially since the study of the dispersion relation in the TB assumption showed
explicitly that the dispersion relation then contains an imaginary part. This imaginary
part also shows up in the full dispersion relation 2.33, specifically in the logarithmic term
of P ′2 for negative values of ζ. This term is present in the expressions Fi and Γi. The study
of ω as a real frequency throughout chapters 2 and 3 is a deliberate choice, where only the
real part of the dispersion relation is considered. The idea is to first consider the solution
for the real part and then searching for the corresponding imaginary part of the frequency.
This makes the search algorithm considerably faster, since it involves a one-dimensional
grid as search domain instead of a two-dimensional one. Because the divergence problem
made it impossible to find the real solution, the search for the imaginary part was never
started. Within this work, priority was given to first solve the problem for the real part,
after which the imaginary part could be solved. Unfortunately this solution, as shown
extensively before, was not reached.

A different approach would then be to consider the frequency as a complex quantity from
the start and solving the dispersion relation in its entirety. This does not change the
divergent properties of the quantities themselves, but might have the effect of placing the
resonance position somewhere in the complex plane where the series expansions are better
behaved. It is unlikely that this method in itself solves the problem, since in general the
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imaginary part is considerably smaller than the real part (see e.g. Yu et al. 2017a).
Hence the inclusion of the imaginary part may only have a small effect on the position
of the resonance, which will likely remain somewhere the series expansions are divergent.
However, this method can be combined with the shift method or with other profiles. This
combination may yield a solution if the inclusion of the imaginary part is insufficient in
itself.

As mentioned, none of these three proposed solutions are mutually exclusive. It is possible
that one of them may be sufficient to find a solution to the dispersion relation. If none
of them are sufficient by themselves, perhaps a combination of two or even all three
may yield a solution. It is unclear to what extent a combination of these propositions
improves the behaviour. It may only be a very marginal improvement, or they may yield
much better results when combined. Everything proposed in this last section consists of
claims that have not been fully explored, so it will be up to future research to investigate
them further. It is also not guaranteed that a solution can be reached with any of these
propositions. Again, future research may yield entirely new methods which may be better
suited than any of the proposals mentioned in this section.



Conclusion

The study of the slow resonance performed in this thesis consisted of two main parts:
an analytical derivation of the dispersion relation and a numerical study of this relation.
Overall the analytical calculations yielded results that were consistent with previous re-
search. The numerical part on the other hand, gave complications which led to a study
of the numerical behaviour of the profiles considered and several proposals that may give
a solution in future research.

The method used to find a dispersion relation was based on previous work performed
by Soler et al. (2013). This method consists of solving the equations that describe the
system explicitly within the interior and exterior layers of the cylinder, which are assumed
to be uniform. In the nonuniform boundary layer, these equations cannot be easily solved,
so a Frobenius expansion is considered at the resonance point. The coefficients of this
expansion can be found by considering power series for the three characteristic plasma
speeds, as well as the magnetic field, density and thermal pressure. By connecting the
solutions in the uniform layers to those in the nonuniform layer the dispersion relation
can then be found.

Previous results often assumed that the thickness of the boundary layer is much smaller
than its radius, the so-called TB assumption. The method considered here is a more
general approach which yields results that are valid for arbitrary thickness of the boundary
layer. The TB case was then studied as a limiting case of the general solution. As
expected, in this limit the results by Yu et al. (2017a), who studied the slow resonance
for magnetic pores in the TB limit, were recovered. This confirms the usefulness of the
method, which now yields more general results.

The numerical implementation of these results proved to be more difficult. Complications
arose in the form of divergence of the Taylor series for several parameters. Such com-
plications are unique to the study of the slow modes. For example, in the study of the
Alfvén resonance done by Soler et al. (2013) these did not occur because for the Alfvén
resonance, the β = 0 approximation is valid which makes the profile for the density the
only relevant profile. For the slow resonance, profiles of six different parameters occur
in the expressions. Because all these profiles must be consistent with each other, some
profiles are less well-behaved.

Two profiles were studied in detail: a linear and sinusoidal profile. These both showed
the divergence, albeit in a different way. For the linear profile, the cause clearly lies with
a pole for the derived profile of the Alfvén speed. The sinusoidal profile on the other hand
does not contain poles but has different behaviour that also leads to a shape that cannot
be accurately approximated by a Taylor series.

Finally, three possible solutions were proposed. First the possibility of constructing Taylor
series of the profiles at a different point was considered, which allows for the expansion
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point to be chosen in such a way that the profile is convergent. For both the linear and
sinusoidal profiles, the center of the boundary layer is a good choice for such a point.
Another possible solution may be as simple as changing the profile. Here the parabolic
and the hyperbolic tangent profiles were proposed, but perhaps an even different profile
yields better results. The last proposed solution is to include the imaginary part of the
frequency already at the start of the calculations. This may also make it easier to find a
solution to the dispersion relation.

All three proposed solutions are no more than proposals. It will be up to future research
to investigate the validity of these claims or maybe propose new options. Regardless of
what method is used, if the dispersion relation can be solved, the further implementation
of the method is very straightforward. Once this problem of divergence is solved, it will
be possible to perform a study of the eigenfunctions and the damping rate due to the slow
resonance.
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[3] Edwin, P., Roberts, M. 1982, Sol. Phys., 76, 239

[4] Edwin, P., Roberts, M. 1983, Sol. Phys., 88, 179

[5] Goossens, M., Hollweg, J., Sakurai, T. 1992, Sol. Phys., 138, 233

[6] Goossens, M., Van Doorsselaere, T., Soler, R., Verth, G. 2013, ApJ, 768, 191

[7] Grant, S., Jess, D., Moreels, M., Morton, R., Christian, D., Giagkiozis, I., Verth, G.,
Fedun, V., Keys, P., Van Doorsselaere, T., Erdélyi, R. 2015, ApJ, 806, 132
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Appendix A

Expressions of expansion coefficients

α0 = 1 (A.1)

α1 = −rcf0 − r
2
cf1 + r2cf0κ−1
2r2cf0

α0 (A.2)

α2 = − 1

6r2cf0

[
α1(6rcf0 + r2cf0κ−1) + α0

(
− 2r2cf2 − rcf1 + f0 + 2rcf0κ−1

+r2c (f0κ0 + f1κ−1)−m2f0

)]
(A.3)

αk = − 1

k(k + 1)r2cf0

[
k−1∑
j=0

(
(2j + 1)(j + 1)rcfk−j−1 − (j + 1)(k − 2j)r2cfk−j

)
αj

+
k−2∑
j=0

(
(j + 1)2fk−j−2 − 2(j + 1)(k − j − 1)rcfk−j−1

)
αj

+
k−3∑
j=0

−(k − j − 2)(j + 1)fk−j−2αj +
k−1∑
j=0

αjr
2
c

k−j−1∑
i=0

fiκk−j−i−2

+
k−2∑
j=0

αj

( k−j−2∑
i=0

2rcfiκk−j−i−3 −m2fk−j−2

)

+
k−3∑
j=0

αj

k−j−3∑
i=0

fiκk−j−i−4

]
if k ≥ 3. (A.4)
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σ0 = 1 (A.5)

σ1 = 0 (A.6)

σ2 = − 1

2r2cf0

[
C
(
3rcf0α0 + 3r2cf0α1

)
+ σ0

(
2rcf0κ−1 + r2c (f0κ0 + f1κ−1)−m2f0

)]
(A.7)

σ3 = − 1

6r2cf0

[
C
(
α0(−r2cf2 + rcf1 + 2f0) + α1(2r

2
cf1 + 7rcf0) + α2(5r

2
cf0)

)
+ σ2(6rcf0 + r2cf0κ−1) + σ0

(
f0κ−1 + 2rc(f0κ0 + f1κ−1)

+ r2c (f0κ1 + f1κ0 + f2κ−1)−m2f1

)]
(A.8)

σk = − 1

k(k − 1)r2cf0

[
(2k − 1)r2cf0αk−1C

+
k−2∑
j=0

(
(3j − k + 2)r2cfk−j−1 + (4j + 3)rcfk−j−2

)
Cαj

+
(

(j + 1)(2j − k + 1)r2cfk−j−1 + (j + 1)(2j + 1)rcfk−j−2

)
σj+1

+
k−3∑
j=0

(
(2j + 2)fk−j−3 − 2(k − j − 2)rcfk−j−2

)
Cαj

+
(

(j + 1)2fk−j−3 − 2(j + 1)(k − j − 2)rcfk−j−2

)
σj+1

+
k−4∑
j=0

(
Cαj + (j + 1)σj+1

)(
− (k − j − 3)fk−j−3

)

+
k−1∑
j=0

σj

k−j−1∑
i=0

r2cfiκk−j−i−2 +
k−2∑
j=0

σj

(
2rc

k−j−2∑
i=0

fiκk−j−i−3 −m2fk−j−2

)

+
k−3∑
j=0

σj

k−j−3∑
i=0

fiκk−j−i−4

]
if k ≥ 4. (A.9)
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