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Abstract

In order to reduce development time, designers are increasingly relying on procedural
methods for automatic generation of content in video games and films. Creating a
procedural rule set that is capable of describing and generating a specific style of
content is a considerable task. It requires extensive knowledge both of procedural
methods and of the exact specifications of the desired content. A potential solution is
to algorithmically induce the procedural rules that describe the style of a number of
provided examples. We propose a method that finds the style elements of voxel-based
example buildings in an iterative process with limited user input. The relationships
between these style elements form a grammar of procedural rules, used to create
and automatically generate new structures in the same style as the examples. Our
method is able to successfully generate new buildings with a grammar induced from
simple example buildings. It is, however, limited in a number of ways and is not
entirely suited for automatic generation because the grammar only considers the
local relationships between the style elements. Finally, we propose an extension of
our method, which will allow the reliable generation of advanced structures that
adhere to both the local and global style of the provided examples. This serves
as a stepping stone to the relatively unexplored field of example-based procedural
generation methods.
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Chapter 1

Introduction

1.1 Problem Statement

The design and creation of content for video games is traditionally done by hand.
The different types of content artifacts are extensive, ranging over three-dimensional
models, textures, sound effects, story elements and even the rules of the game itself
[57, 26]. There are a few important drawbacks that handcrafted content in video
games suffers from [55, 44]. For one, the technical complexity and scope of games
is growing. There is a need for larger amounts of more complex pieces of content.
Consequently, the task of manually creating these artifacts is becoming more difficult
and time-consuming over time. Handcrafted content must often be modified and
discarded when changes in the game or game engine make the content incompatible.
Designers spend a great deal of time performing tedious tasks during the creation
process that provide no creative value by themselves. Fortunately a great deal of
content has a repetitive nature. Most artifacts share their basic structure with other
similar pieces of content. Models of trees exist out of a highly similar structure of
basic elements (trunks, branches and leaves), as do buildings, textures, quests and
most other classes of content. This repetitive structure of artifacts allows us to define
a set of rules that describes a specific piece of content, the style of that piece of
content, or an entire content class. Procedural modeling [4, 53, 49] is the creation
of, specifically, three-dimensional models and textures from a set of procedural
rules. Instead of designing every model and texture from scratch the rule set can
be followed to accelerate the design process. Additionally the rule sets are used to
automatically generate new artifacts. This automated process lies in the field of
procedural content generation (PCG) which is defined as "the algorithmic creation
of game content with limited or indirect user input" [76] or, in other words, "the
(semi-)autonomous generation of game content by a computer" [84]. PCG algorithms
are not limited to three-dimensional models and textures but have been also used
to generate, among others, quests [35, 5], world histories [3] and even entire games
[11, 15, 77]. A significant advantage of procedural modeling and procedural content
generation is the high degree of database amplification [61]. With only a few rules
and parameters a large generative space can be created that allows for the generation
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1. Introduction

of many details. Instead of storing this entire space in a database, it can be recreated
with only those few parameters and procedural rules. This does entail that small
changes in the parameters can cause very large, and possibly unexpected, changes in
the generated model.

Creation or induction of procedural rules Both procedural modeling and PCG
suffer from the issue that the procedural rules and the PCG system must be created
to generate a specific type or style of content. This is, in many cases, an incredibly
complex process that requires extensive knowledge of the content specifications and
of procedural modeling or procedural generation techniques [66, 40]. It is necessary
to accurately specify the basic components and their possible compositions of the
desired content. An important consideration is the strictness of the procedural rules
and the space of allowed variations. It is possible to build an overly specific rule
set or PCG system that is only capable of creating one artifact. On the other hand
an over-generalized set of rules, or PCG system, would model and generate a set of
artifacts that is too broad for the intended artifact style. Describing a specific type
or style of content requires striking a balance between overly specific and general.

Instead of manually creating procedural rules that are capable of creating new
artifacts in a certain style, it is possible to induce the rules from example artifacts in
the desired style. PCG algorithms that utilize machine learning techniques (PCGML)
are able to "generate game content by models that have been trained on existing game
content" [72]. Of course PCGML has its own set of challenges. Games often lack
the amount of data required for many state of the art machine learning techniques
that are highly successful in other domains. A second issue is that many ML
models are difficult to interpret [20], where interpretability for ML is defined as
"the ability to explain or to present in understandable terms to a human". In many
domains an incomprehensible black box approach does not pose a huge problem. But
when generating content for video games, it is necessary to have a large amount
of control over the generative space. Many constraints must be met to follow the
designers’ wishes and, more importantly, to avoid causing bugs and breaking the
game. Many procedural systems will be modified numerous times to change the
output of the system. Trying to tweak a system that is not easily predicted, or
even understood, will be an unnecessarily lengthy and strenuous process. Inverse
procedural modeling (IPM) [40, 8, 66] considers the opposite problem of procedural
modeling for three-dimensional models and textures. Instead of creating new models
from a set of procedural rules, it seeks to find procedural rules and parameter values
for existing example artifacts. Texture [81, 21] and model synthesis [42, 43, 44]
algorithms propose creating new textures or models directly from one or multiple
input texture or model examples. These methods are not limited by the issues of
PCGML. However, while the solutions for textures and two-dimensional models
are abundant [66, 40, 21, 74, 83, 28], the research on finding procedural rules and
creating new artifacts from three-dimensional models is limited [44, 8].
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1.2. Research Questions

Proposed method We propose a method for inferring the style of one or more
three-dimensional voxel-based building examples with procedural rules in the form
of a grammar. We describe a method for finding the basic style features present in
the examples with an iterative process. These components can be used in various
procedural rule specifications for creation and generation of new buildings. We
discuss the additive shape grammar, a simple grammar that consists of a single rule
type. This simple grammar provides limited capabilities for automatically generating
new buildings in the same style. We discuss an extension of our method, inspired by
more advanced grammar specifications, that is more suited for automatic generation,
which is expected to produce better and more reliable resulting artifacts. We want to
use a model that avoids data related issues, by not necessitating enormous amounts
of data, and can be interpreted or explained. Our approach is capable of finding the
style of a single, or multiple, examples. A rule that is not present in an example
will not be able to be induced. Thus inferring a style from multiple examples may
result in a better description of the style, if the examples consist of different style
elements and relationships. There is, however, no need for enormous amounts of
data, as a single example is all that is necessary. Our grammars are interpretable
and modifiable because of the explicit rules and style features.

1.2 Research Questions
• Is it possible for an algorithm to infer the basic style features of one or more

example voxel-based buildings?

• Can these features be used to induce an interpretable procedural rule set that
captures the style of the limited examples and can be used to create and
generate new buildings in the same style?

1.3 Relevance

1.3.1 Usage

The induction of procedural rules from example buildings that allow the generation
of new artifacts is relevant in a number of fields. Outside of video games these
techniques can be used to populate virtual environments in other computer graphics
related fields such as architectural modeling and the film industry. Visual effects
in film have extensively used procedural methods to populate certain scenes with
generated artifacts [53, 30]. Synthesising enormous crowds of people from smaller
crowd examples is another typical case of example-based generation used in films.
Besides the entertainment industry, procedurally generating indefinitely large cities
is a goal pursued for urban planning, traffic, driving and flying simulations [82, 49].
Cities exist out of different neighborhoods with many different types of buildings.
The induction of a generative system from just a few examples could alleviate the
strenuous task of manually creating rule sets for each style of building present in the
cities.
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1. Introduction

1.3.2 Style Inference

Togelius et al. [75] address the challenge of building a PCG system that can create
content in a style that has been somehow learned or inferred among seven other
critical challenges in the field of PCG. A number of previous works have attempted to
tackle this problem. Snodgrass and Ontañón [62], Dahlskog et al. [18] and Dahlskog
and Togelius [16, 17] have built systems to imitate the style of 2D Super Mario Bros.
[52] levels in newly generated levels. The techniques they used were respectively
Markov chains, n-grams and evolutionary algorithms. Dahlskog et al. and Dahlskog
and Togelius explicitly state style imitation as their goal, while Snodgrass and
Ontañón learn patterns from existing levels in order to generate new levels with
Markov chains. Either way, these studies were all relatively successful in imitating
the style of the existing Super Mario Bros. levels. PCGML approaches [84] are,
in essence, undertaking this challenge as well. By training a generator on existing
content it will, deliberately or not, produce new content that imitates the style of
the training data. Style imitation in video games has, as far as we know, not been
addressed in more complex cases such as three-dimensional structures. The fields of
inverse procedural modeling and model synthesis in computer graphics do contain
limited research on imitating or inferring style from more complex three-dimensional
structures [42, 43, 8]. We consider our method a step in the right direction of this
challenge.

1.3.3 Computational Creativity

While humans have the inherent ability of keeping a piece of content structurally and
creatively consistent while adding unique details, artifacts generated by procedural
methods often lack both this consistency and detail [75, 57]. It does not matter if a
PCG system can generate a near infinite supply of unique artifacts, when they are
not perceived as unique by the players. Two nearly identical mazes are considered
unique by the generator but to a player this variation is insignificant. We should
strive to make PCG systems that create content that can be perceived as unique and
can hold the interest of a player. The existence of an actual creative algorithm, that
produces consistent creative content, could drastically change the discipline of PCG.

Computational creativity (CC) or "the philosophy, science and engineering of
computational systems which, by taking on particular responsibilities, exhibit be-
haviours that unbiased observers would deem creative" [14] is a field that should be
taken into account in PCG research. Furthermore, video games are an excellent venue
for exploring CC, because of their multifaceted nature that combines many different
disciplines of art [36]. Many people doubt computational creativity could even ever
be achieved because they hold an inherent bias that machines can not be creative [47].
A system that can take an actual creative leap, that has not been programmed or
encouraged by its designer, is considered highly unlikely by many. We leave further
discussion on the feasibility and evaluation of computational creativity up to other
works. Nevertheless, computation creativity is relevant for this thesis in the following
way. An initial step in many human creative processes is the discovery of other work,
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or elements thereof. A human will learn, and be inspired by techniques and creative
concepts used by others. These ideas can then be explored and combined to produce
new creative work [7]. An assumption is made that in order to generate creative
artifacts certain aspects of human creativity must be simulated [13]. A computer
system with the ability to learn new styles, concepts or techniques could be able to
apply and combine these learned concepts on newly generated artifacts. Ordinary
imitation is certainly not the goal of computational creativity research [79] and, to
be clear, we do not claim any of the methods discussed in this thesis exhibit any form
of creativity. Nonetheless, the ability of an algorithm to infer and imitate the style
of example artifacts could be considered a step in the direction of computational
creativity, just as data mining and machine learning methods could [79]. A system
that can learn different concepts from many different, already existing buildings, and
combine these into new structures seems feasible. If the resulting generated buildings
could actually be considered creative is, of course, still up to discussion.

1.4 Overview
Chapter 2 reviews the relevant background information and related work. This
chapter sketches the state of procedural content generation and procedural modeling
and the methods that served as a direct or indirect inspiration for this thesis.
Additionally related style inference and inverse procedural modeling research is
discussed in more detail. Chapter 3 explores our method for finding the basic style
components of an example building. In chapter 4 we define a simple grammar
specification and discuss its results and limitations in automatic generation. We
additionally propose an extension of our method that is more suited to automatic
generation. Finally, chapter 5 concludes the thesis by summarizing our results and
insights and discussing potential further work.
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Chapter 2

Background and Related Work

This chapter explores procedural modeling and procedural content generation and
touches on a number of relevant methods. We discuss the concepts that served as
an inspiration for this thesis in depth. We further address methods that attempt to
generate new artifacts from provided examples, such as texture and model synthesis
and inverse procedural modeling, which we will compare to our own methods.

2.1 Procedural Modeling and Procedural Content
Generation: Introduction

Procedural modeling is the creation of three-dimensional models or textures from a
set of procedural rules or with a procedure or program [4, 53, 49]. This allows for
accelerated creation and use of models and textures for video games, architectural
models, films and other applications. A set of procedural rules and parameters are
powerful in the sense that with only a few rules and parameters a huge number of
different models can be created. This is an important advantage that leads to a
property known as database amplification [61], where a database of a certain type of
content need not be stored but can be generated from the small set of procedural
rules instead.

Togelius et al. [57] define procedural content generation (PCG) as: "the algorith-
mic creation of game content with limited or indirect user input". Game content refers
to an extensive list of different types of content used in video games. This includes,
but is not limited to, textures, character and object models, music and sound effects,
game levels, quests or missions, story and the game mechanics or rules [31]. PCG
is an autonomous or at least semi-autonomous process. Even though some PCG
techniques allow a certain degree of user input, the highly human-directed algorithmic
creation of content should rather be considered a tool that is used to aid the design
process. Procedural generation algorithms have been used to generate most types of
content in many different games. Even entire, albeit small and simple, games have
been procedurally generated [11, 15, 77]. The LUDI system by Browne [11] has even
generated a board game called Yavalath that has been physically produced and sold
quite successfully. Hendrikx et al. [26] provide a comprehensive taxonomy of types
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2. Background and Related Work

of game content and their respective PCG approaches. Procedural modeling, when
used to automatically generate new textures or models, can be considered a subfield
of procedural content generation. We will use the terms procedural generation and
procedural methods to encompass both procedural modeling and PCG.

Because the scope of video games is constantly growing, the concept of algorith-
mically generating content is becoming an increasingly appealing solution to save
time and money during development [57, 84]. Apart from saving time and money on
a project PCG has a few other benefits. For one it can drastically decrease the file
size of a video game. Only the algorithm must be stored on file while the content can
be generated on the fly. This used to be a more important perk of PCG, as memory
and disk space were significantly smaller. In recent years this is no longer a major
concern for video game designers, but it remains a benefit nonetheless. Another
advantage is the fact that PCG can substantially increase replayability. Many games
use PCG as a tool to keep every single playthrough fresh and interesting. An ever
changing, unpredictable game world has the ability of holding a player’s interest for
a longer time.

The various goals of procedural content generation techniques lead to different
priorities for the generative systems [57]. A system that is designed to generate
new content on the fly, during gameplay, should have much stricter time constraints
than a generator that is used by a designer during development. A number of other
priorities, aside from the speed, are important to consider. These are reliability,
or the ability to guarantee a certain quality of content, controllability for user or
algorithm input, expressivity and diversity of the content and finally the creativity
and believability of the content. Depending on the goals of the generator, trade-offs
will need to be made between these properties.

2.1.1 History of Procedural Content Generation

PCG was used in video games for the first time in the early ’80s. In order to
make every playthrough of Rogue [80] unique and exciting, the idea was conceived
to algorithmically generate dungeons and the content inside them. Rogue birthed
a whole genre of video games heavily reliant on PCG, called roguelikes. In Elite
[10] PCG was used to work with the memory limitations of that time. With a
meagre memory capacity of 22kB Elite planned on providing 248 galaxies which each
contained 256 different planets. The publishers however chose to release the game
with only 8 of these generated galaxies. In recent years PCG is used in a broad
range of commercial and experimental games for many different types of content.
Borderlands [63] and Diablo [23] use PCG to generate a near infinite supply of
weapons. The procedural systems in Dwarf Fortress [3] generate an entire planet and
its history for every playthrough. These systems are intertwined where the history
of the planet leaves its mark on the world with ruins of ancient cities or monuments
honouring legendary figures. The story and conversation with the main characters of
Façade [41] is procedurally generated in response to the players words and actions.
PCG has been used successfully in many different applications, and the prospects
for future games remain exciting.
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2.2. Classic Procedural Methods

2.2 Classic Procedural Methods
There are many different approaches to procedural modeling and procedural content
generation. When used in games, procedural modeling can be considered a subfield
of PCG for three-dimensional models and textures, whereas when used in other
domains, it cannot. We discuss the combination of both fields in this section, under
the overarching term procedural methods. Procedural Content Generation in Games
by Togelius et al. [57], the fourth chapter of Artificial Intelligence and Games
[84] by Yannakakis and Togelius and the work of Hendrikx et al. [26] contain a
summary of basic techniques used in PCG. These include vastly different approaches
for various types of content such as fractal and noise-based methods commonly
used for textures and terrains, solver-based approaches that use constraint solvers
to search for content that satisfies the given constraints, grammar and rewriting
systems used for textual, natural and geometric content, and search-based methods
that search until a sufficiently good artifact is found in the search space. We touch
on the relevant basic methods in these summaries and more complex and specific
approaches in this section.

2.2.1 Grammar-based Procedural Methods

Grammars are inherently suited for procedural modeling and procedural content
generation. The iterative expansion of a rule set on strings, or other elements,
allows the simple generation of artifacts that follow the rule set. Aside from formal
grammars, similar formalisms such as L-systems and shape grammars are well suited
for the generation of different types of content.

Formal Grammars

A formal grammar, as defined by Chomsky [12], is the 4-tuple 〈N,Σ, P, S〉 with:

• N a finite set of non-terminal symbols

• Σ a finite set of terminal symbols

• P a set of production rules of the form (Σ ∪N)∗N(Σ ∪N)∗ → (Σ ∪N)∗

• S a start symbol

Outside of using formal grammars for descriptive and analytical purposes they are
capable of generating new instances by expanding the production rules. Beginning
from the start symbol every iteration step, a string with at least one non-terminal
symbol is rewritten to a new symbol or set of symbols by a production rule. A formal
grammar is therefore also referred to as a string rewriting system.

Grammars have been used to procedurally generate language-based and other
content. Hall et al. [25] use a context free grammar, a grammar that only considers
recursive rules, to generate fables for simulated religions. Aside from the generation
of natural language, other types of content can also be generated through formal
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2. Background and Related Work

grammars. Sportelli et al. [65] use probabilistic context free grammars to generate
sequential levels for an infinite running game. A derivation of the grammar requires
some additional constraints to control the output. Because of the simplicity of
the grammar, they succeeded in introducing these constraints in the probabilistic
grammar without any additional mechanisms. For more complex structures and
grammars, managing these constraints will become increasingly difficult. This is a
significant issue for most grammar-based generative systems. It is not trivial to add
additional constraints into the grammar itself, so that automatic derivation of the
grammar produces a specific set of artifacts. Alternatively the constraints can be
checked during or after the automatic derivation. Either way, the more complex the
grammar and the additional constraints on the output, the more difficult it is to
ensure good results.

Formal grammars are limited in their use in procedural generation because of
the sequential nature of the production rules and the fact that all basic components
need to be reduced to a single symbol.

L-Systems

An L-system is a type of string rewriting system, similar to a formal grammar,
originally designed by Lindenmayer [37] to model the organic growth of plants. An
L-system is a 4-tuple: 〈V, S, ω, P 〉 where:

• V is a set of symbols containing elements that can be replaced, referred to as
variables

• S is a set of symbols containing elements that remain fixed, referred to as
constants

• ω the initial axiom or word existing out of symbols from V

• P is a set of production rules defining the way variables can be replaced with
combinations of constants and other variables. A production consists of two
strings - the predecessor and the successor.

In contrast to formal grammars the production rules P of L-systems are applied
in parallel. A production rule is applied to all symbols in the word at every iteration.
L-systems have proven a very successful graphical procedural modeling method for
many different types of plants and geometric shapes such as fractals [54, 61, 33].
Parish and Müller [53] have extended L-systems to generate street networks of a
city. Streets usually end when they connect with another street or loop back onto
themselves while plant-like structures usually end in dead ends. Therefore, instead
of a tree-like structure the topology of the street maps is more of a net structure.
This modeling task requires a large amount of complex production rules. Whenever
a new constraint is added many of these rules must be revised. Thus they relegate
the setting and modification of the parameters to external functions so that all
constraints can be taken into account at the end of production. Parish and Müller
generate simple three-dimensional buildings with L-systems as well. The actual
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three-dimensional geometry of the buildings is produced by transforming a bounding
box of the buildings area with the rules output by the L-system while its texture is
simply assigned to the building.

The parallel rule application of L-systems is suited for, but limited to, the
generation of content with growth, such as plants, fractals and road networks.

Shape Grammars

The shape grammar formalism is a grammar of two- and three-dimensional spatial
designs [67]. A shape grammar is a 4-tuple 〈S,L,R, I〉 where:

• S is a finite set of shapes

• L a finite set of symbols

• R a finite set of shape rules of the form α → β where α and β are labelled
shapes (S,L)

• I the initial labelled shape of the form (S,L)

A shape rule consists of a transformation τ from one labelled shape to another.
A shape grammar is able to generate new geometric shapes through these shape
rules. Shape grammars are similar to formal grammars and L-systems but labelled
shapes contain additional data, in the form of symbols, such as their positions and
orientations. A production is not completely predefined because the rules take
these labelled values into account. Productions can be applied either sequentially
or in parallel. Shape grammars have been used as a descriptive model for various
architectural styles such as the Palladian grammar [69] and the Prairie House
grammar [34]. A shape grammar can also be used for procedural generation where
the shapes and shape rules, that describe a specific style, are used to generate new
structures in that same style. A classic shape grammar is not suited for automatic
grammar derivation. Many additional constraints cannot, or are very difficult to,
be defined in the shape grammar itself. Consequently, the derivations are usually
done by hand or with the assistance of a computer. Merrick et al. [45] apply shape
grammars in a PCG application. They discuss how to guarantee that the output
of the grammar follows the designers’ wishes in the form of constraints. This is, as
already discussed, a critical issue for shape grammars, and other grammar-based
procedural generation methods. Aside from introducing the constraints inside the
grammar it is possible to search through the output and only select derived artifacts
that satisfy the constraints. They propose a hybrid approach where some knowledge
is incorporated in the shape grammar, but the final output is selected based on some
additional constraints.

Split grammars A significant problem with using shape grammars in procedural
generation is the fact that automatic rule selection is not guaranteed to produce
good new structures. Inspired by shape grammars Wonka et al. [82] define the
split grammar formalism to be able to effectively use automatic rule selection. The
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split grammar extends the set grammar formalism, which is a simplified shape
grammar defined by Stiny [68] for computer implementations. A split grammar is a
set grammar over a vocabulary of basic shapes (cuboids, cylinders, rectangles, etc.)
with two types of rules. A split rule splits a basic shape into multiple other basic
shapes. These new shapes must fit exactly into the volume of the previous basic
shape. A conversion rule transforms a basic shape into another basic shape that
must fit into the volume of the previous shape. These rules allow for a greater deal of
control over the automatic rule selection process. The final set of basic shapes needs
to be filled in with attributes, such as the textures or materials of the shape, that
must be kept consistent over parts of the structure. A floor of a building, for example,
will be often built out of the same materials or have the same window designs as
the rest of that floor. In addition to the split grammar, that generates the basic
shape structure, a control grammar distributes attributes throughout the structure
in order to keep them consistent. The split grammar follows a strict hierarchy of
rules. This simplifies the process of automatically deriving the grammar such that it
can be controlled quite easily.

CGA grammars Müller et al. [49] introduce Computer Generated Architecture
(CGA) grammars as an extension of and combination of split grammars [82] and the
generation of urban environments with simple mass models [53]. A CGA grammar is
a split grammar with a number of additional rules such as the combination of shapes.
These additional rules, and the addition of new basic shapes such as roofs, invalidate
the strict hierarchy guarantee of the split grammars. Thus, a priority is assigned
to each shape rule according to the detail represented in the rule. This guarantees
that the grammar is derived in a controlled hierarchical manner where low detail
rules are derived before higher detail rules. The CGA grammar is highly successful
at generating large city models with detailed buildings efficiently.

Open shape grammars Emilien et al. [22] define Open Shape Grammars as an
extension of CGA grammars where the application of a shape rule can be undone
if an external constraint is not met. In this particular case rules are undone when
the placement of facade elements such as doors and windows collide with the terrain.
A shape rule, such as placement of a door, is attempted a number of times until a
placement is found that does not break any external constraints. If no placement is
found, the rule execution is eventually abandoned.

Conclusion

Grammar-based procedural methods are capable of reliably generating various types of
content, because of their inherent generative nature. Different grammar specifications
are suited for different types of content: formal grammars for simple and sequential
content, L-systems for content that shows growth and shape grammars for complex
geometrical content.
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2.3 Example-based Procedural Methods

A key challenge for procedural modeling and generation techniques is the definition
of the procedural rules [66, 60]. Finding rules that accurately and correctly describe
a generative space is a difficult task. It requires a lot of knowledge of both the
procedural model and the content to be generated. The fact that with only a few
rules and parameters a huge number of different models can be created is both
the biggest strength and weakness of procedural methods. Just a single, seemingly
insignificant, change in the rules or parameters can have an enormous effect on the
resulting models or textures. Consequently these techniques are often difficult to
predict and control [6, 73]. Designing procedural rules to create a certain type and
style of content is thus often an iterative process of the following steps. After defining
an initial set of rules, the designer executes the procedural system and examines the
results. Next, the designer changes certain rules and parameters, that he expects to
better describe the desired content. In order for the designer to know what rules
to change, the procedural method must be interpretable to a certain degree. This
is a far from ideal process that leads to one of the primary challenges in PCG [75]:
the inference and imitation of style from example artifacts. A PCG system must be
designed to generate exactly what the designer wants from the generator. This is an
exceptionally difficult process that requires a lot of expertise. A PCG system that
can somehow imitate the style of one or multiple example artifacts by inferring or
learning that style could alleviate these issues.

The following example-based methods consider the challenge of generating new
artifacts from example content. Machine learning PCG methods are trained on
example content in order to generate new content in the same style. Texture and
model synthesis methods automatically create large textures or models that resemble
small input examples. Inverse procedural modeling methods induce a rule set from
input model examples. This rule set can be used to generate new artifacts similar to
the examples.

2.3.1 Machine Learning Methods

Summerville et al. [72] summarize procedural content generation methods via the
machine learning domain (PCGML). Generators are trained on existing content
in order to generate new content in the same style [84]. We discuss a number of
methods here that are used to explicitly, or implicitly, infer the style of a type of
content and generate new pieces of content in that style.

Markov Models and Markov Chains

Markov chains [39] are used to model a number of different states and the probabilistic
transitions between them. A Markov chain is defined as:

• a set of states S = {s1, s2, ..., s3}

• the conditional probability distribution P (St|St−1)
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This distribution represents the probability of a transition occurring from St−1 to St
when St−1 is the present state. The Markov property states that this distribution of
the future states is only dependent on the present state. This is also referred to as
memorylessness. A Markov Model is a stochastic model where the Markov property
is assumed. A Markov chain is in fact a simple type of Markov Model.

Snodgrass and Ontañón [62] use Markov chains to generate Super Mario Bros.
[52] levels. They use higher order Markov chains that instead of taking into account
just the present state, also consider a number of k previous states. The states are,
in this case, the building blocks used in the map. The probability distribution is
found by training the model on existing Super Mario Bros. levels and thus the
generated levels will follow the style of these levels. The use of a Markov chain
requires the assumption that the future state is only dependent on the present, or k
previous states. The next building block in the map will depend only on a number
of other blocks around it. The final resulting maps are playable after a cleaning step,
which could be promising for the possibility of generation through Markov chains.
Consistency over the whole level can not be guaranteed with Markov chains because
of the Markov property. While the new examples will locally match the style of the
example levels, the higher-order structure of the level does not necessarily.

N-Gram Model

The n-gram model is a Markov model that uses n-grams to predict the next item
or word in a sequence. N-grams are sequences of n items or words. Every word is
assumed to be independent from every word except the last n. N-grams are typically
used in natural language processing. They have also been used to generate music
[51] by predicting what note should come after the last n notes. The simplicity of
n-grams comes with the same major drawback as other models that assume the
Markov property. As decisions are made while only considering a small number of
current items there will be no greater structure in the generated artifacts. Aside from
notes correctly following other notes there is no notion of recurring themes, unless
accidentally generated by the n-gram. One again guaranteeing stylistic coherence
over the whole artifact is thus not possible with only n-grams.

Dahlskog et al. [18] use n-grams for generating two-dimensional Super Mario
Brothers levels. They attempt to copy a style from a corpus of existing levels. Levels
are split into vertical slices to create an alphabet of slices. The model is trained on
the levels to predict the next vertical slice considering the last n slices. Because these
slices are much larger components of the levels than the separate building blocks
considered in [62], this model generates levels that are quite consistent and clearly
in the same style as the training corpus. The choice of n defines how many states,
or slices, are taken into account for the next state, and thus how locally or globally
similar the generated artifacts will be to the examples.
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Neural Networks

Various neural network architectures have proven useful for many ML issues, including
generative systems. The neural approach has, for example, achieved great success in
the generation of images through generative adversarial networks [24] and variational
autoencoders [32]. A number of works have attempted to apply the neural approach
to PCG.

Jain et al. [29] use autoencoders [32] to generate new Super Mario Bros. [52]
levels. The autoencoders are trained on existing Super Mario Bros. levels. These
networks are then used to discriminate generated levels from original levels. The
network models can generate any number of maps, but there is no certainty that
these will be playable, because of, for example, an impossible jump in the level. This
approach could work for generating two-dimensional content that does not need to
satisfy many (or preferably any) gameplay constraints.

To deal with the common problem that only the local style or local structural
coherence is considered, for example because of the memorylessness of Markov models,
Summerville and Mateas [71] generate Super Mario Bros. levels with Long Short-term
Memory (LSTM) recurrent neural networks. LSTMs [27] are the state of the art
in sequence learning approaches and are thus ideal for generating the sequential
structure of 2D platformer levels. These networks have memory mechanisms that
allow the network to remember or forget and can thus incorporate information about
the entire generated artifact to generate the next states of the levels. Summerville
and Mateas add simulated player path information to the input of the LSTM, which
allows the generator to produce levels that adhere to good geometry and pathing.

2.3.2 Texture Synthesis

Texture synthesis [81] methods produce arbitrarily large textures that are visually
similar to a small input example texture without any unnatural artifacts or repetition.
This simplifies the texture creation process immensely. We discuss a basic texture
synthesis method as an introduction to model synthesis. For further discussion see,
for example, the survey of texture synthesis methods by Wei et al. [81].

Efros and Leung [21] tackle texture synthesis by preserving as much local structure
as possible. Any pixel on the new texture must match a pixel within a square
neighborhood of width w in the example texture. Textures are modeled as a Markov
Random Field where each pixel is characterized by a set of neighboring pixels. New
textures are generated by starting from a single pixel and growing the texture by
finding neighborhoods in the sample texture that are similar and placing a new pixel
from that neighborhood in the example.

2.3.3 Model Synthesis

Inspired by texture synthesis methods, Merrel [42] proposed model synthesis as
a generalization of texture synthesis for higher dimension models. The method
uses simple example shapes as input to automatically generate larger and more
complex models that resemble the input in terms of its shape and local features.
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Model synthesis works in both two and three dimensions. Example models exist
out of a number of base building blocks connected to each other. The technique
uses a three-dimensional lattice of vertices of building blocks connected by edges.
For every vertex the possible building blocks are defined by its neighborhood of
vertices and the rules between the building blocks. These rules define whether a
certain building block is allowed above, below or beside another building block. A
synthesised model consistent with these local rules can still contain conflicts, such as
unwarranted overlapping components. A search for conflicts eliminates the simple
ones, but is unable to remove all conflicts. This can cause issues in the consistency
and quality of the generated models. The technique works reasonably well for two
and three-dimensional models and can be extended to find symmetric, constrained
and even higher-dimensional models. The building blocks are not learned from the
example models, but must be predefined by the user.

Merrel [43] extended the model synthesis method with a continuous approach
that takes any three-dimensional polyhedral structure as an example model. It is
no longer necessary to provide the building blocks of the model. The method relies
on an adjacency constraint, similar to the constraint defined in [21], that ensures
that for every point x in the generated model a point x′ exists in the example model
whose neighborhood matches the neighborhood of x. This constraint guarantees a
local similarity within neighborhoods that are defined by a radius ε. The proposed
technique has its own limitations. Curved or highly tessellated models will perform
inadequately because of increased time and memory requirements. It is also not suited
for generating structures at different scales. Additionally, the adjacency constraint
has the effect of an extended Markov property, limiting the possibilities in every step
according to the current local state, ignoring the higher-order structural coherence.
In a following paper [44] Merrel and Manocha extend the model synthesis algorithm
once again to enforce satisfaction of numerous additional constraints besides the
adjacency constraint defined in [43]. These additional constraints allow the users to
control and increase the quality of the output of the model synthesis method.

2.3.4 Inverse Procedural Modeling

Inverse procedural modeling (IPM) considers finding a set of procedural rules and
parameter values that describe existing graphical models [40]. This procedural rule
set can take on different forms, such as L-systems and shape grammar which were
discussed previously. These discovered rules can be used to procedurally generate
new artifacts similar to the examples. IPM is the inverse of procedural modeling
in the sense that instead of modeling or generating new pieces of content, given
procedural rules, the goal is finding the rules, given the content. While some IPM
techniques consider the rules known and attempt to discover the parameter values,
others attempt to find the entire rule set. We discuss a number of IPM methods in
both the two- and three-dimensional case.
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Two-dimensional Inverse Procedural Modeling

Stava et al. [66] propose a technique to automatically generate L-systems from
two-dimensional image examples. Repeated basic line segments are found and used
as terminal symbols. Their composition is analyzed by calculating the transformation
between all pairs of basic elements. These transformations are stored in clusters
which are weighted and sorted according to user-defined criteria. These clusters
are used to iteratively build a L-system using the most significant clusters, which
represent the rules. This method finds a good description of the input image and can
further be easily edited, by manipulating the L-system parameters and substituting
the symbols for new symbols, to change the resulting generated images.

Teboul et al. [74] utilise shape grammars and reinforcement learning techniques
to segment two-dimensional facade images into predefined style features such as
windows and doors. They find a binary split grammar for a facade by optimizing a
segmentation of the pixels for a merit function that associates style feature labels,
such as wall or window, with pixels. These segmentations form rectangular shapes
that form the basic components of the binary split grammar. This optimization is
framed as a Markov decision process (MDP), an extension of previously discussed
Markov chains, where in every time step the process is in a state st. An action at is
taken on the basis of the state st. This action changes the state st+1 and provides a
reward rt+1. Rewards have the Markov property and depend only on the current
state and action. The goal is to maximise the final reward, and as such to maximise
the MDP which be efficiently solved with reinforcement learning. The merit functions
can be learned from either supervised or unsupervised data.

Martinovic and Van Gool [40] propose an approach that learns two-dimensional
split grammars from labeled building facade image examples. They use Bayesian
Model Merging [70], which adds a Minimum Description Length prior on the grammar
to make the grammar induction problem tractable. The facade images are parsed
into classes of style features. A grammar that connects these features is found by
finding an optimal trade-off between the description length of the grammar and
the likelihood of the input data. This is in other words a search for the simplest
grammar description that fits the data. Their method is capable of generating good
new buildings and even outperforms similar approaches with manually designed
grammar rules.

Three-dimensional Inverse Procedural Modeling

The three-dimensional inverse procedural modeling case is quite a bit more complex
than the two-dimensional case. By enlarging the solution search space with an
additional dimension the time and memory requirements of the algorithms grows
significantly. More importantly it becomes more difficult to guarantee satisfaction of
the more complex constraints.

Aliaga et al. [4] propose a system for creating new buildings in the style of
others. A set of images of a real-world building are mapped to a simple geometric
building model that is built by the user. Following this step, the user subdivides
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the building into its basic style features, such as doors, windows and floors. Next
an algorithm finds a style grammar that captures the repetitive patterns in these
segmented features. Production rules are sought for the base, ground floor, repetitive
floors and the roof. Finally, a user can build a new simple geometrical model and the
style grammar is used to automatically subdivide it. This fills the new model with
style features found in the example images. The system requires users to manually
segment the building images mapped onto a simple geometric structure. They claim
this process takes a few hours for every example building. Automating this process
could simplify it significantly.

Bokeloh et al. [8] tackle the inverse procedural modeling task through partial
symmetry. Inspired by the texture synthesis solution of Efros and Leung [21] their
goal is to keep as much of the local structure of the example structure in the generated
structures. New structures are guaranteed to be r-similar to the example structure:
any new point x must match a point x′ on the example structure within a local
neighborhood of radius r. This constraint is similar to the adjacency constraint
used by Merrel [43, 44], relying on only the local state of a neighborhood. Their
technique cuts the example structure along curves with symmetric areas so that shape
operations can replace, remove or insert shapes into the structure while maintaining
r-similarity with the example structure in every local neighborhood. These shape
operations are combined into a shape grammar that can produce new structures
in the same style or assist a user in designing new structures in the same style.
The r-similarity guarantees that new structures generated from a closed example
structure will always be closed. The technique works on any type of geometry. A
major limitation of this technique is that it can not handle structures that have little
to no symmetry or similarity. The technique is highly successful for extending or
shrinking shapes because it relies on the cuts between symmetric areas.

2.4 Procedural Methods: Challenges and Goals

2.4.1 General Challenges

Procedural methods have a number of significant issues. Creating a procedural
method or rule set that exactly defines a space of possible artifacts is, as previously
discussed, very difficult. This led to the challenge of inferring and imitating the style
of example content, and the field of example-based procedural methods. Aside from
this, procedural methods face a number of other challenges.

To ensure their quality and consistency, most types of content require various
constraints to be satisfied. In video games specifically [72], there are strict structural
constraints that need to be satisfied in order to ensure playability of the game.
These constraints can be introduced into the set of rules although it will often be
exceptionally difficult to do so [64]. Extensive and complex rule sets may need to
be changed completely to be able to ensure satisfaction of just a single constraint.
Tweaking the generation process requires editing the procedural rules and parameters.
The embedded constraints will stand in the way of easy revision for two reasons.
They will complicate and reduce the interpretability of the shape sets. Secondly, the
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rules may no longer ensure satisfaction of the constraints after being modified. This
will need to be reassessed after every revision. When multiple different constraints
need to be satisfied these issues only get worse. A simple solution tests the results
after generation and only selects the ones that satisfy the constraints. This is not
ideal for a number of reasons. There is no guarantee that the process will find an
artifact that is satisfactory in a reasonable time. For generators meant to produce
content on the fly this is entirely unacceptable. Ideally every artifact produced should
satisfy the required constraints, but this is not a necessity. Rewards can be given
to artifacts that satisfy certain constraints fully or to a certain degree. The piece
of content that is eventually picked will be the one with the highest reward. This
is a problem that must be addressed in many PCG systems, but can be addressed
in different ways depending on the specified content [78]. A hybrid approach for
content with a few necessary primary constraints and a number of less important
secondary constraints, can generate a number of artifacts that guarantee satisfaction
of the primary constraints in a limited time. These will be tested on the secondary
constraints where the best performing artifact will be chosen.

Many procedural generators produce generic and unoriginal content [75]. These
artifacts are highly similar, with insignificant variation and detail. After witnessing
a limited number of generated artifacts, a human can often already guess what all
other generated artifacts will be like. A point is reached where any variation of the
generated artifact will not elicit any surprise or interest. While not guaranteed, human
designers are capable of the creation of much more surprising and interesting content.
Generated content should strive to reach human-designed qualities, without any
discernible difference between computer and human designed content. As previously
mentioned, solving this issue is related to the far-off goal of reaching computational
creativity [36].

2.4.2 Machine Learning Challenges

Aside from a summary of the PCGML field in [72] Summerville et al. give an overview
of current and future goals and challenges specific to PCGML.

The most relevant challenge in using ML generators is the scarcity of data. For
some types of content, this is not a significant issue, while for others, such as video
game content, it is. Most games have exceptionally small amounts of data to train the
machine learning model. Even large games provide very limited datasets compared
to, for example, image datasets. The small amount of data could be artificially
enlarged, data could be sought from alternative sources or techniques could be used
and developed that do not require such large datasets.

Another important challenge is allowing input into the generation process. Letting
designers edit parameters or constraints in the system gives them a chance to expose
and explore the generative space. Controlling the generative space is a considerable
issue for black-box machine learning models in particular. Trying to change the
output of a model that is not interpretable, or difficult to predict, through parameters
is hardly an easy task.
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Yannakakis and Togelius [84] discuss the additional difficulty ML methods have
with satisfying constraints. This is a difficulty in designing any PCG system, but
is greatly amplified when working with ML generative models such as generative
adversarial networks and variational autoencoders. They can generate images that
clearly look like the content they have been trained on but contain subtle faults. These
faults can invalidate important constraints and must be examined after generation
to ensure the constraints are satisfied. For example, when generating a maze from
example mazes there is no guarantee that an exit or entrance will be present in every
generated artifact. For these reasons highly successful machine learning methods in
other fields are less interesting than methods with more direct control over constraints
for most procedural generation applications.

2.4.3 Other Example-based Challenges

Many inverse procedural modeling techniques predefine types of rules and features.
This allows more control over the rule set that will be found but limits the possible
generative space significantly. The methods by Teboul et al. [74] and Martinovic
and Van Gool [40] parse a facade image into specific feature classes such as windows,
walls and doors. If these feature classes are not inclusive to all possible types of
features they could be misrepresented and as such misused in the generated artifacts.

Some methods require the manual definition of basic elements or the manual
parsing of the examples [4]. Ideally all steps of an example-based method can be
automatised, requiring little to no interaction with the user. A central motivation
for these methods was simplifying the difficult process for the users.

The limited, and arguably, most successful example-based procedural methods
for three-dimensional structures of Merrel [43, 44] and Bokeloh et al. [8] both rely on
a highly similar constraint to ensure similarity between the generated and example
models. This constraint ensures that the local neighborhood of any point x in the
generated artifact matches a neighborhood of a point x′. This limits these methods
to exact symmetry and similarity in the examples and require exactly matching
parts to generate structures that differ sufficiently from the examples. Additionally,
every step of the generation process relies entirely on the current state of a local
neighborhood, not taking the higher-order structure of the buildings into account.
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Chapter 3

Shape Inference

Inspired by the inverse procedural modeling techniques that induce a shape grammar
from two-dimensional facades [74, 40], this thesis proposes a method for inducing a
set of rules from one or multiple three-dimensional example building structures. The
method relies on finding the basic features, or shapes, for the style of the example
and finding the relationships, or rules, between them. These rules resemble a shape
grammar [67] with a number of additional limitations on both the shape and rule set.
The grammar can be used to construct new artifacts in a similar style as the examples,
by manual or automatic derivation. We discuss the grammars and generation of new
structures in chapter 4.

Overview This chapter explores finding the set of features, or shapes, from example
buildings. We provide a specification for the input examples, the shapes and an
algorithm for finding a suitable set of shapes. Instead of segmenting the examples
into predefined feature classes [40, 74], we describe a cost function for the suitability
of shapes and use a local search algorithm [1] to minimize the total cost of the
shape set. Finally, we perform experiments on a number of algorithm and parameter
variations and discuss their effects on the final set of shapes. In chapter 4 we discuss
the grammar specifications, finding rules and the generation of new buildings from
the grammar.

3.1 Problem Statement

Given a number of example building artifacts E, we want to find a set of basic style
features, or shapes, S that describe the style of E. The specifications of shapes in S
and examples in E are described in this section.

3.1.1 Example Building Structures

Input examples E are composed of a set of elementary components placed at certain
positions in the example. In a two-dimensional case, where style features and
procedural rules are found for textures or images, these elements could be considered
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(a) E1: a basic example.

(b) E5: a highly complex example.

Figure 3.1: Minecraft building examples.

pixels or larger sets of pixels. In a three-dimensional case these components can, for
example, be polygons, larger sets of polygons or voxels. Specifically, this thesis will
attempt to find the style features for existing Minecraft [48] structures, such as in
Figure 3.1. The reasons for this choice are as follows. First of all, Minecraft inherently
exists out of simple voxel-based building blocks that can easily be manipulated by an
algorithm. There is no need for a complex pre-processing of the input example or to
translate the output of the final generation algorithm to a visual artifact in the game
world. MCEdit [19] is a framework for Minecraft that provides a simple interface
into the game world. Filters can be written in python code and directly applied to
extract information or edit the world. There is no need to build our own interface
into Minecraft. Finally, Minecraft provides a simple and intuitive way to construct
example structure in a small amount of time. This facilitates a straightforward
process for testing out different types and variations of example structures. The
enormous amount of community created content can be used as well.

As Minecraft structures are composed of voxels, so are our input example artifacts.
A voxel is a 1x1x1 cuboid block placed at a certain position p in the three-dimensional
coordinate space. Every voxel, or block, has a type t that defines the texturing and
behaviour of the block. The set of all Minecraft block types is T . An example artifact
e in E is defined as a set of blocks, where a block bi is a tuple (ti, pi) with a type
ti ∈ T and a position pi defined as (xi, yi, zi) in the three-dimensional coordinate
space and xi, yi, zi ∈ Z. The position pi of a block bi is unique:

∀bi¬∃bj(pi = pj)

3.1.2 Shape Specifications

We are looking for a set of shapes S that describe the style of example E. Thus, a
shape s in S ideally describes a part of the style of an example e in E, such as a
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wall, window, awning or any other building style feature. The shapes are not limited
to any predefined feature classes. Instead the algorithm discussed in section 3.2 is
encouraged to find shapes that are likely style features. It will search for what the
cost function considers a suitable set of shapes. There is, however, no guarantee that
a shape will represent or be recognizable as a style feature. This section provides a
formal specification of shapes and touches on a few related concepts and additional
considerations.

Specification A style feature, or shape, s is a segment of an example building e
in E. It is a subset of the blocks in example e: s ⊆ e. All blocks in s are connected
such that they form coherent segments of the example artifact e. Consider a shape
s a graph g where the vertices vi are the blocks bi in s and blocks whose positions
are directly adjacent form an edge between their vertices. Two blocks bi and bj are
directly adjacent if their Manhattan distance is equal to 1:

d(bi, bj) = ‖bi − bj‖1 = 1

We enforce that all vertices in the graph g must be reachable from all other vertices.
So for all pairs of vertices (v0, vk) there is a sequence of vertices v0, v1, v2, ..., vk where
the edge (vi−1, vi) is in the set of edges for 1 ≤ i ≤ k. If there is a path from every
block to every other block in the shape it is ensured to form cohesive segments
without any excess unconnected blocks.

Restrictions This specification allows a shape to take on highly complex three-
dimensional forms, such as the entire example structure, if all blocks in the example
structure are connected. We can limit the complexity of shapes by restricting them in
a number of ways. By enforcing that all blocks in the shape share the same position
on a single axis, we limit shapes to a single plane. In this case all positions pi of
blocks bi in a shape s are either (d, yi, zi), (xi, d, zi) or (xi, yi, d) where d ∈ Z. This
allows three types of shapes in the xy, yz and xz planes. Additionally, these planar
shapes could be limited to rectangular shapes, where the blocks form a rectangle
without any missing or protruding blocks. As rectangular shapes may suffice as
a description for two-dimensional facades [74], these may as well suffice for three-
dimensional buildings consisting of facades. We leave the possibility of diagonal, or
other, shape specifications as future extensions. This leaves us with three distinct
shape specifications:

• the three-dimensional specification without additional limitations (as in Figure
3.8)

• the planar specification, where shapes are limited to a single plane (as in Figure
3.7)

• the rectangular specification, where planar shapes are limited to a rectangular
form (as in Figure 3.6)
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Not one specification is chosen over the others because they each have their possible
merit for specific example structures. Simple structures will benefit from a simpler
description, while more complex parts of structures are more difficult to model with
a simpler shape specification. Describing slanted roofs with only rectangular shapes
will give a large amount of small shapes, as no diagonal shapes are allowed. It might
be more interesting to describe a slanted roof as one or more larger three-dimensional
shapes.

Matching shapes Two shapes are considered to match when they contain the
same blocks types in the same configuration.

(a) Matching vertical shapes in the xz and yz planes rotated along
the z axis.

(b) Matching horizontal shapes in the xy plane rotated along the
z axis.

Figure 3.2: Examples of possible matching shape rotations. Shapes that are rotated
along the z axis are considered matching.

The position and orientation of the blocks in the examples E do not matter, only
the positions of the blocks in a shape s relative to the other blocks in s. In other
words two shapes si and sj are matching shapes if a transformation τm exists that
maps all blocks bk from si onto their corresponding block bk in sj . If applying τm to
all blocks in si results in sj , these two shapes are deemed matching shapes. This
transformation is of the form:

τm(

xkyk
zk

) = R

xkyk
zk

 +

∆x
∆y
∆z

 (3.1)
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where ∆x,∆y,∆z ∈ Z and R a rotation matrix along the z axis:

R =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (3.2)

with:
θ ∈ {±π2 ,±π,±

3π
2 }

Figure 3.2 shows the possible rotations with R. This rotation is only possible along
the z axis because other rotations would result in, what we consider, different style
features. The two shapes in Figure 3.3 are not considered to match, because the
vertical and horizontal versions of the window represent different style features,
although their relative positions and block types do match.

Figure 3.3: Example shapes that contain the same block types in the same config-
uration but are not deemed matching shapes.

Matching shapes can be reduced to a single shape with multiple possible positions
and orientations. They represent style features that are present in multiple locations
in the example structure. Matching shapes will play an important role in the first
grammar specification discussed in section 4.2. Their existence allows the grammar
to model a space of artifacts that is larger than just the example structures, while
a grammar without any matching shapes will only be able to model copies of the
example structures. Additionally, when multiple examples in E are used to model a
style, matching shapes between two structures ei and ej will allow the combination
of shapes and rules from both examples.

Overlap Finding a set of shapes S could be considered a pure segmentation of the
example structures E where every block is present in one, and only one, shape. In
this case it follows that:

∀b(b ∈ E → ∃si(b ∈ si)) (3.3)
∀b(¬∃si, sj(si 6= sj ∧ b ∈ sj)) (3.4)

25



3. Shape Inference

(a) Two shapes from example 3.1a
without overlap.

(b) Two shapes from example 3.1a
with overlap.

Figure 3.4: Both shapes in both figures represent two perpendicular walls with
a shared corner in example 3.1a. This is an example of why we consider allowing
overlapping shapes, or the inclusion of blocks in multiple shapes. In some cases it
makes sense for blocks to be shared among multiple shapes. Additionally, these
shapes match with overlap, allowing them to be reduced to a single shape.

Intuitively we can see that in some cases, such as Figure 3.4 it makes sense for blocks
to belong to multiple shapes in the example. Shapes are thus not necessarily disjoint,
but can overlap [46]. Here equation 3.4 does not apply to every block b, but 3.3 still
does. The corner between two perpendicular walls has as much reason to belong
to either shape. From this perspective a pure segmentation of the structure will
result in a worse shape set because one shape is chosen over the other to contain
these blocks. Additionally, allowing overlap could promote a higher percentage of
matching shapes in the shape set, as in Figure 3.4. Two matching perpendicular
walls cannot match in a pure segmentation unless the shared blocks are part of a
separate shape. If this is the case, allowing blocks to be part of multiple shapes is
not necessary and may have a detrimental effect instead, needlessly complicating the
shapes. Both options have merit in certain situations. We expect shape sets with
overall larger shapes to benefit more from allowing overlapping blocks.

3.2 Finding a Shape Set
In order to infer the shapes present in the examples we discuss an algorithm for
finding a set of shapes that should comply with the shape specifications defined in
the previous section. Apart from making sure shapes meet these requirements we
want to find good shapes that form a suitable description of and cover the entire
example.

Ideally the shapes in the final grammar will describe the style features present
in the example structure. We assume that most style features will exist out of only
a few block types. The window in Figure 3.5a consists of glass, the windowsill of
wood and the surrounding wall of stone blocks. These small style features consist
of a single block type and the combined feature that covers the entire wall only
consists of three block types. However, this does not apply to certain features such
as intricately tiled walls and floors, as in Figure 3.5b. A shape that describes the
entire building is likely too complex whereas a shape consisting of a single block will
be too simple, but the exact boundary between too simple and too complex is hard
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(a) Simple feature. (b) Complex tiling.

Figure 3.5: A simple (small amount of block types) and more complex (many block
types) feature. Most style features consist of a limited amount of block types. In
some cases, such as a more complex tiling of a wall or floor in 3.5b, this does not
hold.

to define and will vary per example structure. We strive to find shapes that are
simple, yet complex enough to still have merit as a shape. Larger and more complex
features, such as an entire wall, could be considered a single shape, or decomposed
into smaller, less complex, shapes. Unlike the work of Martinovic and Van Gool [40]
this is not a search for the simplest description that fits our examples, but a search
for a balance between a simple components and a simple description consisting of
these components.

3.2.1 Cost Function

In order to find a suitable set of shapes, we define a cost function that gives a lower
cost for better shape sets while giving a higher cost for worse shape sets. What
exactly constitutes a better shape set will specify the cost function. This cost function
will be minimized by applying operations that modify the shape set and decrease
the cost.

Basic Cost: Simple Shapes and Small Shape Sets

As mentioned earlier, a suitable set of shapes consists of shapes that are neither
too simple nor complex. Shapes should be large and complex enough to represent
an actual style element, but should be kept small and simple enough to avoid
representing too many style elements in a single shape. Two concrete measures are
introduced to find this balance.

We limit the complexity of shapes by increasing the cost of complex shapes.
As a measure for this complexity, we use the entropy Es [59], or the measure for
the information content, of a shape s. The entropy rate will favor compact and
homogeneous shapes, while favoring shapes overlapping with only a single style
feature [38]. A shape that consists of only blocks of a single type does not contain
much information, whereas more complex shapes that consist of multiple block types
contain more information. Because style features are expected to have a small amount
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of block types, shapes that represent style features are expected to have a lower
entropy than more complex shapes. The entropy of a shape is defined as:

Es = −
n∑
i=0

P (ti)log2P (ti) (3.5)

where ti is a block type present in the shape s and n the amount of block types in
the shape. The entropy for a shape with a single block type is 0, and will increase
for every additional type. Aside from the number of block types in a shape, the
occurrence rates of the types will adjust the entropy values. The entropy value will
increase for more even distributions of the block types in the shape.

If our cost function is simply the sum of all shape entropy values, a perfect cost
of 0 is achieved when every shape consists of a single block type. Thus a large shape
set consisting exclusively of minimal shapes, that contain a single block, will be
considered a suitable set. To counterbalance the entropy, we introduce a cost for the
amount of shapes in the set. The shape set with minimal shapes will no longer be
optimal when the cost for the size of the shape set outweighs the minimal cost of
the shapes. The description length or DL is defined as the number of shapes in the
shape set:

DL = #S

The cost function to be minimized is:

cost = (1 +DL)α
DL∑
i=0

Esi (3.6)

where si is a shape present in the shape set S and α is a weighting parameter that
provides a balance between the importance of simple shapes and the size of the shape
set. The description length is increased by one to remove a strong bias for shape sets
of size one. Otherwise shape sets of size 1 would not be affected by the α parameter
and could skew the cost function in favor of just a single shape.

This final cost function in equation 3.6 can be minimized to find a small set of
simple shapes. This entropy and description length based cost function is considered
the basic cost function. The basic cost can be modified to take other attributes into
account. We address a few extensions of the cost function here.

Discount for Matching Shapes

Matching shapes represent style features that are present in multiple locations in
the example artifact. They give us much more information about how to describe
a style. A shape set that consists of exclusively unique shapes provides insight
into one possible configuration of the shapes, while shapes used multiple times in
different locations are able to give more information about various other possible
shape arrangements. These insights into the configuration of the style are important
when finding a grammar for describing the style of the examples in chapter 4. The
basic cost function gives no incentive to find matching shapes. We can introduce a
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discount in the cost function for matching shapes, or the number of matching shapes,
in order to promote the discovery of more shapes that can be reduced.

As any matching duplicate shapes are redundant in the shape set they can be
removed from it. However, they must be kept in the shape set as long as the algorithm
for finding a shape set has not finished and information about their original positions
and orientations must be kept in order to find the set of rules at a later time. The
cost of an arbitrary amount of matching shapes is equal to solely the cost of one of
these shapes. The discount is applied by temporarily removing any matching shapes,
while keeping one copy, from the shape set before calculating the cost. This new
shape set is Sr. The cost function to be minimized is the basic cost function 3.6
where si is a non-duplicate shape in Sr and the description length is the number of
remaining shapes in the shape set after removing duplicates:

DL = #Sr

A potential issue is that small shapes, such as shapes that consist of one block,
are more likely to match another shape. The cost function will turn strongly in favor
of these small shapes, when this discount is applied. This issue can be dealt with
by strongly increasing the α parameter to increase the importance of a small set of
shapes.

Increase Focus on Less Complex Shapes

The basic cost function 3.6 increases for more complex shapes that contain more
block types. This growth is, however, not very large and does not increase more when
a new block type is added to an already complex shape then when it is added to a
simple shape. The shapes in Figures 3.5a and 3.5b contain one and seven different
block types respectively. The entropy cost of the former is 0 and 0.286 with an
additional block type added, whereas the entropy cost of the latter is 2.733 and 2.871
when appended with an additional block type. The entropy cost difference when
adding new types is limited and shapes that become more and more complex do not
incur an increasingly higher cost because of it. In some cases it might be interesting
to explicitly increase the cost of more complex shapes, so that the number of block
types make a significant difference in the cost. This can be achieved in various ways,
such as multiplying the entropy of a shape with the number of block types present
in that shape. The cost function to be minimized becomes:

cost = (1 +DL)α
n∑
i=0

EsiT
β
si

(3.7)

where Tsi is the number of block types present in shape si and β a weighting
parameter for the amount with which the amount of block types increase the entropy
cost.

It must be noted that in most cases this cost function will be redundant in the
sense that the same resulting shape sets can be achieved with the basic cost function
and a certain α value.
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(a) α = 1.0

(b) α = 0.5

Figure 3.6: Resulting shape sets for example 3.1a for different α values and the
basic cost function. The rectangular shape specification was used and overlap
allowed. Duplicate shapes are removed.

Additional Cost Functions

It is possible for the user to design an additional cost function with additional
considerations that he deems important. We mention a few possibilities here.

In order to limit very large shapes being found, one could enforce a certain size
limitation for shapes by adding an additional cost for large shapes starting from a
certain size. If the user defines certain block types that do not match and are not
expected to be present in the same style features, their inclusion in the same shape
could incur a higher cost. One could, for example, define that stone blocks do not
match with wood blocks because shapes that share both are expected to represent
multiple style features. These shapes will be avoided during the optimization of the
cost function because of this extra cost. What shapes do or do not match depends
on the example structures, and the knowledge the designer has about the style of
the examples.

3.2.2 Minimize the Cost

The cost is minimized by repeatedly executing operations on the shape set that
decrease the cost until convergence. This optimization is a local search [1] in which
every operation makes a local change that modifies the set of shapes into a neighboring
set of shapes. This process resembles a region growing procedure used to segment
images [2] and three-dimensional meshes [58]. We use a hill-climbing algorithm, as
defined in algorithm 1, that guarantees convergence to a local optimum. The shape
set will thus converge to a locally optimal set. Hill-climbing does not guarantee
convergence to a global optimum so an entirely optimal resulting set of shapes is
not assured. The resulting locally optimal shape sets will often be sufficient but it is
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(a) α = 1.0

(b) α = 0.75

(c) α = 0.5

Figure 3.7: Resulting shape sets for example 3.1a for different α values and the
basic cost function. The planar shape specification was used and overlap allowed.
Duplicate shapes are removed.

possible to find better local optima through more advanced optimization techniques
[1, 9]. Even though hill-climbing will get stuck in bad local optima at times, it will
lead us too far to tackle this problem. For now we prefer a simple and fast algorithm
that finds sufficient local optima. Figure 3.6, 3.7 and 3.8 show the shape set results
returned by the local search algorithm for different α values and shape specifications.
The shape set in Figure 3.8b is an example of a bad convergence, where a shape got
stuck in a sub-optimal situation.

Operations

We define two distinct operations on shapes that can be applied by the algorithm.

Merge The merge operation merges two shapes si and sj into a single new shape
sn by combining both sets of blocks into one. This results in a new set of shapes S′:

S′ = (S\{si, sj}) ∪ {sn}
sn = {si ∪ sj}

This new shape s must meet all requirements defined for shapes. All blocks in
the shape must be reachable from all other blocks, so si and sj require directly
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(a) α = 0.25

(b) α = 0.1

Figure 3.8: Resulting shape sets for example 3.1a for different α values and the basic
cost function. The three-dimensional shape specification was used and overlap
allowed. Duplicate shapes are removed. Figure 3.8b shows a shape set that is clearly
not optimal and has reached a local optima. The third shape from the right got
stuck in a more complex shape than necessary.

neighboring blocks to be merged. Depending on the chosen specification, the shape
must remain rectangular or fixed on a single axis. This limits the possible shapes
that can be merged together.

Split The split operation splits a shape s into two new shapes, resulting in a new
set of shapes S′:

S′ = (S\{s}) ∪ {si ⊂ s, sj ⊂ s}

where si ∪ sj = s and si ∩ sj = ∅. Once again these two new shapes must meet all
requirements specified in the previous section. Rectangular shapes must be split
into two new rectangular shapes, while planar and three-dimensional shapes have no
additional limitations. Every possible way of splitting a planar shape will produce
shapes fixed in the same axis, as will splitting three-dimensional shapes always
produce three-dimensional shapes.

Use During the execution of the optimization algorithm, it is possible to use a
combination of both operations or exclusively the merge or split operation. These
schemes require different shape set initializations at the start of the optimization
algorithm.
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Initialization

Before the start of the optimization algorithm the shapes are initialized from the
input examples E.

Merge When limited to merge operations the shape set is initialized to a minimal
shape set: each shape is a size 1 shape with just a single block from the examples in
E:

∀bi ∈ E : si = {bi}

During execution of the hill-climbing algorithm these minimal shapes will be combined
in an agglomerative fashion, akin to an agglomerative clustering procedure [56].

When using the rectangular or planar shape specification a shape is limited to a
single axis. Once we merge two shapes one axis is no longer fixed. This may not be
an ideal merge that will not lead to a good shape describing a style feature. This
locks the block out of other potential good shapes. In order to improve the resulting
shape sets we initialize each shape three times, belonging to every plane, and limit a
merge operation to only merge shapes of the same plane, even if they would produce
a shape that follows the specifications. At the end of the hill-climbing algorithm we
ensure all blocks in E are part of the shape set S and remove the redundant shapes
that are entirely covered by other larger shapes. Similarly, when overlap is allowed a
block can be present in multiple shapes. With this initialization, once a block is part
of a shape it can no longer be added to any other shapes. Thus, when overlap is
allowed, once a shape is merged with another it is not immediately removed from the
set of shapes. It can again be merged with another shape, as long as this does not
form a duplicate shape already in the set. At the end of the hill-climbing algorithm
we, once again, ensure that all blocks present in E are present in S and remove
redundant shapes. This process makes it possible to easily allow overlapping blocks
in multiple shapes.

Split When only executing split operations the shape set is initialized to a maximal
shape set, where each shape contains as many blocks as possible, in accordance
with the shape specification. For the three-dimensional specification this is simply
a single shape consisting of all blocks in the example. The planar and rectangular
specifications require a more complex initialization, where all initial shapes adhere
to the conditions. This initialization is performed by executing the hill-climbing
algorithm with only merge operations on a minimal shape set with the following cost
function, that looks for the shape set with the least amount of shapes:

cost = (1 +DL)

The maximal shape set is split during execution in a divisive manner, akin to a
divisive clustering procedure [56].

There is no need to duplicate the initial shapes in different planes, because the
maximal shapes are already fixed to a certain plane. When overlap is allowed it is
possible to split a shape into two shapes with a number of shared overlapping blocks.
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Combination The combination of both operations could start with any initial-
ization of the shape set. Starting from a minimal shape set will see the merge
operation performed exclusively at first, whereas the maximal set will require splits.
An initialization anywhere in between these two extremes will work as well. Our
implementation and further experiments use the minimal initialization.

Data: E an example artifact, args a list of algorithm arguments (operations,
shape specifications, cost function,...).

Result: S a set of shapes for which the cost has been minimized.
S ← initialize_shapes(E, args[operation]);
while operation applied do

for op ← possible operations on S do
new_shapes ← apply_operation(op, S, args[operation]);
new_cost ← shapes_cost(new_shapes, args[cost]);
if cost ≥ new_cost then

S ← new_shapes;
cost ← new_cost;

end
end

end
Algorithm 1: Hill-climbing pseudo-code. The method initialize_shapes(E)
initializes the shapes from the examples E, apply_operation(S) applies an
operation on the shape set S. The first operation that decreases the cost
is applied. The best operation, that decreases the cost by the most, is not
sought during every iteration. When no operation can be applied that does
not increase the cost, the algorithm has converged and the resulting shape
set is returned.

3.2.3 Limitations

This method of finding style features has a number of limitations. As previously
discussed, the resulting shape sets are not guaranteed to be globally optimal and
can get stuck in bad local optima. Furthermore, shapes are not guaranteed to
be good representations of style features. The algorithm relies on style features
being recognizable because they exist out of a small amount of block types, which
differ from the other features. This is limiting for a certain subset of features as in
Figure 3.5b. Our method is limited to a single shape specification. It is thus not
possible to describe an example with a set of rectangular and planar shapes with, for
example, a three-dimensional shape for the slanted roof. The combination of different
specifications could provide much better descriptions of the example structures.

Split on intersecting shapes One flaw of the entropy-based cost function is the
fact that walls or other features such as in Figure 3.9a will form one single large
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(a) Results in a single shape. (b) Split on intersecting shapes.

Figure 3.9: Entropy issue and possible solution with the use of domain knowledge.
A wall as in Figure 3.9a clearly exists out of four different matching segments, but
will result in a single large and simple shape, because this type of shape benefits from
both the description length and the entropy components of the basic cost function.

shape, even though they contain a number of matching smaller features that could be
reduced to a single smaller shape. This is exactly the type of shape the hill-climbing
algorithm with the basic cost function is looking for: a large shape with a small
amount of block types. This does not necessarily pose a problem if the wall is meant
to function as a single large style feature, but otherwise it can. Applying the discount
for matching shapes can form a solution, but this issue is not limited to compositions
of matching features, as it also pose a problem for compositions of various features
with similar block types. Simply applying this discount, or balancing the α value
of the cost function will not deal with every case. Limiting the size of shapes, as
discussed for an extension of the cost function in section 3.2.1, is another possible
solution. However, there is no guarantee that the ideal shapes, as in 3.10a, will be
found because another possible set of shapes, such as in Figure 3.10b, that makes
even less sense than the initial shape is just as likely. We could look for matching
shapes residing in the found shapes and split these up. There are many smaller
matching shapes contained in most larger shapes: every two adjacent blocks of the
same type form matching shapes. This method will necessitate us to somehow choose
which matching shapes to split on. A possibility is to check for smaller shapes that
are already present in the shape set, but there is no guarantee that the components
of a large shape are present somewhere else in the example building.

In many cases two intersecting features, such as a wall and a floor in Figure 3.9b,
will split the features into two distinct sections. We can use this domain knowledge
to split large shapes after the execution of the hill-climbing algorithm. Depending
on whether overlap of blocks in multiple shapes is allowed or not, the shapes are
split accordingly. With overlap, this method will produce the ideal set of shapes as
in Figure 3.10a. If there are no intersecting features this operation will, of course,
change nothing. Shapes with many different intersecting shapes will likely be split
up excessively, unnecessarily fragmenting good shapes. This operation is limited to
the rectangular and planar shape specifications and should only be used with sets of
large shapes.
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(a) The ideal split. (b) Maximum size constraint of 20
blocks per shape.

Figure 3.10: Possible splits for the feature in figure 3.9a.

3.3 Evaluation

We perform an evaluation on the shape inference method discussed in the previous
sections. The following methods discussed in chapter 4 rely on the inference of a
shape set from the examples. These methods do not require an ideal shape set, but
could in theory work with any shape inference results, as long as they exist out
of a satisfactory amount of shapes of reasonable size. We consider a shape set as
unsatisfactory when the example is covered by just a single shape or a shape for
every block in the example. In spite of this, shape sets that better describe the
style elements present in the examples will result in more interpretable generators,
which lead to a more understandable generation process and simpler modification
process. This evaluation is an exploration of the resulting shape sets rather than
an evaluation of either the correctness or value of the different specifications and
parameters of the algorithm described in the following section. We apply a set of
procedures with different algorithm choices and parameters, discussed in sections 3.1
and 3.2, on a set of examples. We discuss the effects, side-effects and limitations of
these procedures in regard to the results of the experiments.

3.3.1 Examples Used

The example structures used in these experiments, as seen in Figure 3.1 and 3.11,
were chosen to encompass a wide test set of various complexities and structural
features. This set consists of example structures frequently tested during development
and various other structures built by Minecraft community members 1. The examples
created by community members were considerably sized structures with many similar
floors and a variety of additional details, such as furniture, spread throughout the
buildings. In order to reduce the complexity of the resulting shape sets and the time
spent on executing our procedures on highly complex examples we removed excess
details and reduced the size of these structures by removing floors.

1retrieved from https://www.planetminecraft.com/projects/
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(a) E2: multi-floor
with railings.

(b) E3: simple slanted
roof. (c) E4: more complex

multi floor with flat
roof and railings.

(d) E6: more com-
plex multi floor with
slanted roof. (e) E7: cylindrical

tower.

(f) E8: office building
with more complex fa-
cade.

(g) E9: diagonal walls. (h) E10: simple, but
large, empty structure
with slanted roof.

Figure 3.11: Additional Minecraft building examples.
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3.3.2 Experiments

The procedures that were explored during these experiments consider a number
of different algorithm options and parameter choices that we expect to have a
considerable effect on the resulting shape set. These are:

• shape specification: rectangular, planar and three-dimensional

• hill-climbing operation: merge, split and the combination

• cost function: basic, increased cost for multiple block types (surcharge) with β
set to 1, discount for matching shapes

• allowing intersecting shapes to split each other: on or off

• α parameter: {0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2, 5, 10, 100}

Shape attribute measurements on these sets allow the estimation of the effects of these
various procedures. Attributes such as the number, size and complexity of shapes
describe the overall composition of a shape set and the number of matching shapes
give an idea of the procedure’s ability to find matching shapes. As a measure for
complexity of a shape, in these experiments, we use the ratio of the number of block
types present to the size of the shape. The number of shapes and matching shapes
are taken over every shape set, and the shape size and complexity are averaged
over all shapes in that set. In the following experiments, we execute the shape
inference algorithm for all other algorithm choices and parameters and take note
of the aggregate measurements of the results. We compare our expectations to
these results and discuss the effects and limitations of certain parameter values and
algorithm options. Our algorithm is deterministic, in the sense that performing
shape inference on the same example with the same procedure will always lead to
the same results, thus requiring a single execution for every example and procedure
combination.

The effect of splitting on intersecting shapes The operation that splits shapes
on intersections with other shapes was defined in section 3.2.3 to take advantage of
domain knowledge that walls and floors cut other features into separate components.
Example buildings without significant intersecting features, such as 3.1a and 3.11h,
should barely be affected by this operation. We expect that in more complex
buildings, such as example 3.1b and 3.11g with a lot of intersecting shapes, this
optional operation will result in a disintegration of the shape set, decreasing the
quality of the shape set instead. For relatively simple examples with a few possible
intersecting shapes, such as example 3.11a and 3.11c, we expect the operator to
perform well when the shape set consists of large shapes, decreasing the size of shapes
and increasing the percentage of matching shapes in the set.

We compared the results of a number of relevant examples with and without
the use of this operation in table 3.1. As we have not defined the application of
this operation on three-dimensional shapes, we only consider the rectangular and
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Example Split # Shapes % Matching Shape size CR
E1(3.1a) No 23.41 46.6% 12.504 0.365

Yes 25.458 46.7% 12.331 0.383
E2(3.11a) No 49.595 54.3% 20.498 0.355

Yes 56.896 61.1% 14.6 0.383
E4(3.11c) No 82.301 43.9% 19.102 0.382

Yes 106.979 50% 12.037 0.44
E5(3.1b) No 217.511 49.5% 15.645 0.424

Yes 368.28 60.2% 8.298 0.541
E9(3.11g) No 110.468 55.6% 21.117 0.338

Yes 134.329 61.2% 14.638 0.38
E10(3.11h) No 121.331 64.5% 28.682 0.327

Yes 130.417 64.7% 21.531 0.354

Table 3.1: Results for a set of relevant examples with and without splitting on
intersecting shapes. Measurements are averaged over the results of all examples
and all procedure combinations, except for the three-dimensional shape specification
for which this operation was not defined. CR refers to the complexity ratio, or the
amount of block types over the size of a shape.

planar shape specifications. As expected, examples without any interior features,
such as 3.1a and 3.11h, see little to no change. Because this operation relies on
specific domain features, if these are absent it will have little effect. In spite of this,
the number of shapes are slightly higher when shapes are split by other intersecting
shapes. In cases where, for example the walls of these examples consist of many small
shapes, it is possible that these intersect and split each other into even smaller shapes.
We see that all other examples are affected to a much greater extent, decreasing the
size of shapes and increasing the percentage of matching shapes.

Median size Split # Shapes % Matching Shape size CR
s < 3 No 237.309 88.1% 2.2 0.76

Yes 246.296 86.2% 2.08 0.743
3 ≤ s < 10 No 53.974 46.6% 8.735 0.225

Yes 96.678 46.5% 7.226 0.271
10 ≤ s No 9.109 22.7% 42.389 0.1

Yes 15.225 30.5% 33.102 0.125

Table 3.2: Results with and without splitting on intersecting shapes for dif-
ferent median sizes of shapes in the shape sets. Measurements are averaged over
the results of all examples and all procedure combinations, except for the three-
dimensional shape specification for which this operation was not defined.

In table 3.2 we see that on average only relatively small shapes sets with a median
shape size above 10 result in a higher matching percentage from this operation.
These shape sets have reason to be split after the hill-climbing algorithm, while sets
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with on average smaller shapes will be fragmented into even smaller shapes without
increasing the percentage of matching shapes.

This operation should only be used on shape sets consisting of relatively large
shapes to refine potential unnecessarily large shapes.

Cost functions We considered a number of different cost functions in section
3.2.1: the basic cost, the block type surcharge and the matching shapes discount.
We compare the results of these three cost functions. The cost function that applies
a surcharge for the number of types in a shape should result in less complex shapes.
The cost function that introduces a discount for matching shapes is expected to
result in more matching, but smaller shapes.

Operation Cost # Shapes % Matching Shape size CR Types
All Basic 39.137 29.5% 95.294 0.152 3.641

Surcharge 48.749 36.9% 60.062 0.171 2.64
Discount 208.829 71.1% 36.534 0.698 2.061

Split Basic 28.888 20.5% 106.542 0.12 4.133
Surcharge 28.515 20.8% 90.92 0.123 3.641
Discount 28.862 20.9% 106.38 0.122 4.145

Table 3.3: Results for all three cost functions. Measurements are averaged over
the results of all examples and all procedure combinations.

The resulting average measurements in Table 3.3 show that the cost increase for
the number of block types results in on average less block types per shape but a larger
complexity ratio, because the size of shapes has decreased significantly. Whether or
not this cost function can result in significantly different shape sets than by balancing
the basic cost function remains up for debate. The percentage of matching shapes
increases drastically when using the discount in all operations. When the shape set is
initialized to the minimal set of shapes the identical cost function rapidly converges
to an optimal cost for a large set of very small shapes. The shape set is not initialized
minimally when using the split operation. When only considering this operation the
percentage of matching shapes barely increases, occasionally finding a split that adds
additional matching shapes.

These more advanced cost functions do not generally give very different resulting
shape sets because of the optimization scheme that, in every step, executes the first
operation that decreases the cost function. The potential of these more detailed cost
functions is not revealed with our simple local search algorithm.

Hill-climbing operations The operation that minimizes the cost of the shape
set during the hill-climbing algorithm together with the initialization of the shapes
form various alternatives.

• Starting from a minimal initial shape set, with one block per shape, a merge
operation is executed at every step.
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• Starting from a maximal initial shape set, with as many blocks as possible in
the shapes, a split operation is executed at every step.

• A choice is made between executing a merge or split operation at every step.
The shape initialization can be minimal, maximal or somewhere in between. It
is minimal in our implementation.

The expectation is that the combination of both operations will provide the most
fine tuned shape sets. If a shape has been overmerged it is possible that it can
be split at a later time. Because the merge and combined operations start from a
minimal shape set, it is more likely for these to converge soon, resulting in large
shape sets with small shapes. Conversely the split operation starts from maximal
shapes and will be more likely to converge with on average larger shapes.

Cost Operation # Shapes % Matching Shape size CR
All Merge 137.609 58.5% 44.81 0.449

Split 28.755 20.7% 101.281 0.122
Both 131.741 58.7% 45.104 0.455

No Matching Merge 54.25 39.6% 66.703 0.183
Discount Split 28.702 20.7% 98.731 0.122

Both 49.056 39.5% 67.271 0.181

Table 3.4: Results for all three hill-climbing operation possibilities. Measure-
ments are averaged over the results of all examples and all procedure combinations.

The results in Table 3.4 confirm that on average the minimally initialized sets
are more likely to converge to large sets of small shapes, while maximally initialized
shape sets converge to smaller sets of larger shapes. We notice that the merge and
combined operators produce very similar results. Performing hill-climbing with the
combined operations, starting from a minimally initialized shape set, causes the
first operations to follow the same path as when using only the merge operation.
Occasionally a split operation will occur, resulting in slightly larger shape sets with
smaller shapes.

The resulting shape set is highly reliant on the initialization of the set, because
the local search algorithm will converge in the first local optima it finds.

Shape specifications We tested the shape inference procedure on the three
different shape specifications defined in section 3.1.2: rectangular, planar and three-
dimensional. The more constrained the specification is the smaller the search space
becomes. Our expectation is that less restrained specifications have more options
to find better shapes. This freedom will allow the shape inference algorithm to find
larger shapes with limited block types. The ratio of the complexity of shapes to the
size of shapes will be lower in general, meaning on average shapes are larger and
contain less block types.

The average measurements for all three shape specifications in Table 3.5 follow
our expectations. Less constrained specifications allow for larger shapes with less
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Shape Specification # Shapes % Matching Shape size CR
Rectangular 127.982 57.2% 9.603 0.425
Planar 97.547 50.5% 23.458 0.335
3D 68.144 28.1% 168.207 0.253

Table 3.5: Results for all three shape specifications. Measurements are averaged
over the results of all examples and all procedure combinations.

block types. In the case of three-dimensional shapes, the shapes found are often
enormous, encompassing significant subsets of or the entire structure itself. Setting
lower α values can alleviate this issue.

Alpha parameter The α parameter controls the weight of the description length,
or the number of shapes, opposed to the entropy cost of the shapes. A higher
value increases the weight of the description length cost, promoting a smaller set of
shapes and thus larger shapes. An α of 0.0 will produce the set of minimal shapes
because only the entropy is taken into account. Shapes with a single block type
have a minimal entropy of zero and will not be counterbalanced by the cost of the
description length. For every combination of a specific procedure and example a
certain α value will produce the set of maximal shapes. At this point the cost of
the description length will outweigh any effect of the entropy cost and a minimal
shape set will be prioritized, which requires the largest possible shapes. The values
in between these two extremities will result in a range from minimal to maximal
shapes.

α # Shapes % Matching Shape size CR % No matches
0.0 60.5 62.8% 5.296 0.211 7.7%
0.25 55 60% 5.342 0.211 15.2%
0.5 47 57.1% 6.214 0.201 20.9%
0.75 40 51.3% 7.1 0.197 21.7%
1 29 41.7% 10.875 0.161 23.7%
1.5 26 40% 13.067 0.16 26.7%
2 17 33.3% 18.25 0.152 30.9%
5 14 33.3% 21 0.148 31.6%
10 14 33.3% 21 0.148 31.6%
100 14 33.3% 21 0.148 31.6%

Table 3.6: Results for various alpha parameter values. Measurements are the
medians over the results of all examples and all procedure combinations. The
percentage of no matches refer to the amount of resulting shape sets that contain no
matching shapes.

We test a number of α values on all examples in all other algorithm configurations
in Table 3.6. The range of α values that produce reasonable shape sets depend on
the example and the other algorithm options, such as the cost function or the shape
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specification, used during inference. Larger α lead to larger shapes and a higher
chance that there will not be a single matching shape in the resulting shape set.
With an α value of around 5 or higher, the entropy costs of the shapes will on average
be disregarded and the maximal shape sets will be returned. Generally an α value
around 1.0 will provide reasonably sized shapes for the shape set.

3.3.3 Conclusion

Generally we recommend the following parameters that provide reasonable results in
most cases. An α parameter value of around 1.0 yields a suitable balance between
simple shapes and a simple set of shapes. The three-dimensional shape specification is
unrestricted and tends to converge into enormously large shapes, while the rectangular
or planar shape specifications find better, simpler shapes. We did not witness a
significant difference in the cost functions, except for the matching shapes discount
immediately converging when used in a minimal initialization. The hill-climbing
operation could be chosen dependant on the preference for smaller or larger shapes,
as the initialization mostly establishes the first local optima that will be found.
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Chapter 4

Grammar Induction and
Automatic Generation

After inferring a set of style features, or shapes, from example structures, rules can
be found that describe the relationships between these style features. These rules
form a grammar that can be used to construct and automatically generate new
artifacts in the same style as the example structures. This chapter discusses the
rule specifications, finding the rules that connect the shapes and the possibilities of
generating new structures with these rules.

Overview We first discuss and implement a simple grammar, with a single rule
type, that defines the style of the examples. This is an additive shape grammar
that consists of exclusively additive rules that compose an already produced shape
with another new shape. We describe its strengths and limitations, such as its
unsuitability for generation through automatic derivation of the grammar and focus
on local style. Finally, we discuss an extension for a grammar that is more suited for
generation through automatic derivation inspired by split [82] and CGA grammars
[49]. These were designed with automatic derivation in mind and handcrafted rule
sets provide good results.

4.1 Problem Statement
Given an example building structure, or structures, E and the style features, or
shapes, S for E we want to find a grammar G that describes the style of E with a
set of production rules P and allows the creation and generation of new structures
in the same style. The following two sections describe two distinct specifications of
this grammar G.

4.2 Additive Shape Grammar
We first describe a simple grammar that makes use of the shapes obtained in chapter
3 and the relationships between them. When two shapes neighbor each other in the
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example structure, they form two production rules that place one of the shapes in
the same position and orientation relative to the other, already produced, shape.
We refer to the grammar of these production rules as an additive shape grammar
because all production rules in the grammar add a shape to an already produced
shape. We explore the possibilities of automatic generation with the grammar and
evaluate these results.

4.2.1 Grammar Specification

The additive shape grammar G is composed of the following:

• a finite set of shapes S, as specified in chapter 3

• an initial shape I that is selected from S

• a finite set P of production rules on the shape set S

Rule specification The set of production rules P consist of exclusively addition
rules of the form:

S → SS

where a shape from S is added on to another, already produced, shape from S. Two
shapes make contact when a block bi ∈ si is directly adjacent to a block bj ∈ sj , as
described in the shape specification in section 3.1.2. When shapes si and sj do make
contact in an example structure in E they form two rules:

si → sisj (4.1)
sj → sjsi (4.2)

When the shape on the leftmost side of the rule is present in the production, the
second shape can be added to the production. The position and orientation of the
second shape is transformed in order to comply with the same configuration of si
and sj in the original example structure. If sj is placed on top of si in the example
structure, and the position of si has changed in the production, rule 4.1 will add
sj to the production and change its position such that it is placed on top of si.
Every shape has information about its original positions and orientations in the
example structure. During production these can be changed by applying a production
transformation τp to every block in the shape, which takes on the same form as the
matching transformation τm in Equation 3.1. If a transformation τp was applied
to si in the production and rule 4.1 was applied to it, the same transformation τp
will be applied to sj before being added to the production. Figure 4.1 provides an
example of a number of production rules.

This specification of the additive shape grammar is a description of the example
structure it was induced from, in the sense that it is possible to recreate the example,
or subsets of the example, by expanding the production rules in the grammar. Instead
of modeling the style of the example, this grammar will define just the example
structure. In order to introduce variation in the grammar, by allowing it to describe
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Figure 4.1: Rules for the rightmost ceiling shape in the shape set 3.6a from example
3.1a. There is a rule for every other shape in the shape set that makes contact with
this shape. The rule produces the new shape in the same position and orientation
relative to their positions in the example structure.

and generate more than just the example structure, we make use of matching shapes
in the shape set.

Matching shapes A style feature, such as a window, that occurs multiple times
in different positions on an example structure may be adjacent to different shapes
in each of these positions. In the previous specification these matching shapes in
different locations retain their own rules in accordance to the shapes that neighbor
them. In the following specification we assume that matching shapes share rules
amongst themselves. We provide the following scenario as an intuitive explanation. A
window and balcony feature that are adjacent on the second floor of a building form
rules in which they can be placed next to each other. A matching window feature is
present somewhere else in the building, such as the third floor, without being adjacent
to a matching balcony feature. In a new production, if the matching window features
share rules, a balcony will be able to be placed adjacent to the window feature on
the third floor. This was not possible in the original grammar specification. Sharing
rules between all matching shapes will not always make structural or functional sense.
This is the case in a similar scenario where a window is adjacent to a door on the first
floor, and a matching window feature exists on the second floor. Here the door will
be able to be produced adjacent to the window on the second floor. A door in the
middle of a building facade will make no functional sense. It is very difficult to define
which rules should be shared among which matching shapes, without predefining
feature classes [40, 74]. Not allowing shapes on different floors to share rules could
pose a solution to the problem in this scenario, but the question remains if it will take
care of all problems of this nature and how many rules that do not form a problem
will be removed because of it. This presents a choice between a broader or more
general grammar for the example that will allow more variation in the generated
artifacts, or a more specific grammar with less differentiation but more structurally
coherent buildings. We choose the more general grammar that allows more variation
but will lead to more rule derivations that make less functional sense.
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Figure 4.2: Matching shapes share rules. The rightmost rule production represents
the original rule from the shape set 3.6a from example 3.1a, where the wall with a
door can be placed next to the wall with a window. Because there are two identical
shapes with a window in the example, this rule is shared with them. In the production
of these rules (the left and center productions) the shape with a door is placed in the
same configuration as the original rule, but transformed according to the position of
the duplicate shape.

In this new specification the production rules 4.1 and 4.2 are extended to:

dsi → dsisj (4.3)
dsj → dsjsi (4.4)

Where ds is the set of shapes that match s, including s. Starting from a duplicate
shape sd in dsi it is possible to expand rule 4.3 that adds a new shape sj to the
production. Its new position and orientation will be relative to the original shape
in the rule and the duplicate shape as seen in Figure 4.2. Both the transformation
τm from si to the matching shape sd, and the transformation τp performed on si
during production are applied to sj . The sharing of rules between matching shapes
provides the possibility of rule expansions outside the original example structures
space. Thus more matching shapes will provide more variation in the grammar, and
in the resulting generative space. Additionally if two example structures ei and ej in
E have matching shapes, these two examples will be linked in the grammar, because
the rules their matching shapes share provide a bridge between both production
spaces.

4.2.2 Finding Production Rules

Production rules are found by analyzing the relationships between the final shape
sets S inferred from the example structures in E. The directly adjacent shapes are
found for all shapes, not excluding duplicate matching shapes. These adjacency
relationships each form two rules 4.1 and 4.2, which are extended the rules 4.3 and 4.4.
The sets of matching shapes are reduced to a shape and a number of transformations
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τm that transform the original shape in the rule s into the shapes that match s.
These transformations are used when expanding a matching shape rule.

4.2.3 Creating and Generating New Structures

After the grammar has been induced from the example structures, it can be used
to derive new structures that follow the grammar production rules. The set of
produced shapes F contains all produced shapes, and is initialized to the initial
shape {I}. This shape is chosen from S, and its position and orientation can be
modified by a transformation τp. Starting from the initial shape I, rules are applied
by choosing a shape s and a rule r whose leftmost shape sl is s or a matching shape
of s. The rightmost shape sr is added to the production F after applying the same
τp applied to the initial shape and after applying τm, in case sl is a duplicate of the
original shape in r. A new shape is randomly chosen from F , and the process can be
repeated indefinitely. It is possible to manually derive the grammar and construct
new artifacts in a similar style as the example structures. A design tool could assist
a designer, by providing a user interface that allows the user to choose which rule
to apply from a set of permitted rules in every iteration [45]. It is also possible
to automatically derive rules in the grammar in order to automatically generate
structures. We discuss this process in the following section.

Automatic Generation

When manually deriving the grammar to construct an artifact it is possible for
a designer to ensure certain structural constraints by choosing the exact rules to
expand. Rules that are not sensible in a particular context, such as adding a door
to a facade on the second floor, can be ignored and the user can ensure creative
consistency within the entire artifact. After automatic generation with the grammar,
where rules are expanded in a stochastic fashion without any additional constraints,
the generated artifacts are accumulations of shapes that are neither structurally
nor creatively consistent. Outside of the features and the relationships between
them, there is another higher-order layer of structure to buildings [46]. The additive
shape grammar does not take this additional layer into account, only considering the
local relationships between shapes. This will often lead to largely incomprehensible
structures such as in Figure 4.3. In some cases the automatic derivations can provide
an interesting unfinished concept for a building, that could be completed manually
to form a coherent piece of content, as in Figure 4.4. The additive shape grammar
allows indefinite application of new rules, which allows the generation of indefinitely
sized new structures. On the other hand this implies that there is never a stopping
point during derivation of the grammar. One must choose a stopping point for the
derivation, such as after a certain number of rule applications or after one or multiple
constraints have been met.

Constraints Various constraints can be used during or after the derivation of the
rules to limit the possible productions, and improve the results. As discussed in
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(a) From example 3.11b.

(b) From example 3.11g.

Figure 4.3: Examples of automatic derivation where too many small shapes
and rules are randomly produced, while overlapping each other, and will produce
largely inconsistent and incomprehensible results.

chapter 2.4 this is a significant challenge in many procedural methods. Introducing
a constraint into a grammar or rule set is in most cases enormously difficult [64]. A
search-and-test method that checks satisfaction of the constraints after generation
and accepts or rejects an artifact based on the constraints is not ideal for many
applications of automatic generation. There is no guarantee that a sufficient artifact
will be generated in a certain time. This method can not be relied upon for on
the fly generation, for instance during gameplay of a video game. The potential
constraints that can be enforced on three-dimensional structures are extensive. We
discuss limiting the size of a generated artifact and enforcing an enclosure constraint,
that will allow the generation of somewhat structurally consistent buildings through
automatic derivations of the additive shape grammar.

Size restriction We first define a constraint that sets a boundary for space in
which shapes are allowed to be derived. In city generators and other applications,
buildings are generated to fit into predefined plots of a certain size [49, 53]. Our
generator must at the very least be able to generate structures in a limited space.
The set of produced shapes is restricted to a range (xr, yr, zr) where xr, yr, zr ∈ Z.
We consider the size of the production xp, yp, zp where xp, yp, zp ∈ Z, the distance
between the smallest and largest block position for every axis. When adding a newly
derived shape to the production that increases the size of the production to a point
that the size is larger than the permitted range, this derivation is discarded and
instead a new rule is derived. If this process fails a number of times and no shape
can be found that does not pass over the set boundary the generation is halted. This
allows us to restrict the generated artifacts to a chosen size in all dimensions.

Enclosure

The automatic derivations of Figure 4.4 represent structures that, if finished, could
result in interesting new buildings in a similar style as the example structures. Notice
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(a) From example 3.11a.
(b) From example 3.11f.

Figure 4.4: Examples of automatic derivation that provide a comprehensible
concept for a building, which could be manually finished.

that finishing these buildings means filling in missing shapes, or removing redundant
shapes, to form a coherent enclosed building with a clear distinction between the in-
and outside. Enforcing enclosure will constrain the generative space and significantly
improve the results of the generation process.

Enclosure specification We define enclosure as follows. When the shape spec-
ification is either planar or rectangular one of three axes of every shape s is fixed.
Take for instance the rightmost shape in Figure 3.6a that is locked on the z axis. All
blocks bi in this shape s have a position pi of the form (xi, yi, d), where d is the same
value for every block bi. This shape has an under- and upper side at a z position of
d− 1 and d+ 1. A shape s has two distinct sides side1 and side2, which exist out of
the positions pi from every block bi in the shape s where the fixed axis is changed to
either d− 1 or d+ 1 where d is the value of the fixed axis for that shape. The shape
s is enclosed when either side1 or side2 can not be reached through a path of empty
air blocks starting from a position that is on the exterior of the generated structure.
The sides that are unreachable are considered inside the structure, whereas sides
that are reachable are considered outside the structure. Unreachable sides of a shape
are enclosed by other shapes that block the path from the exterior of the structure.
When both sides of a shape s are reachable s is not enclosed as both sides are outside.
When both sides are reachable the entire shape s is confined inside the structure.
For three-dimensional shapes there are no obvious distinct sides to the shapes. This
makes it much more difficult to ensure enclosure of the structure. We do not extend
the enclosure constraint for three-dimensional shapes.

Finding reachable sides A simple pathfinding algorithm that explores the space
of produced shapes can find the reachable sides of the shapes in the production. The
algorithm can move through empty air blocks in the production space. Starting
from a position outside the production all reachable positions are explored. If at any
step the algorithm reaches a single position that is considered a side of a shape that
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entire side is considered reachable. Once the pathfinding algorithm has explored
all reachable positions, we consider any shape for which both sides were reachable
redundant. Removing all redundant produced shapes provides a production with
consistent enclosure, as in Figure 4.5. We can remove all interior shapes, leaving
only the frame of the building by removing the shapes whose both sides are enclosed.

Limited enclosure While most buildings have an interior, not every style feature
or larger part of a building is necessarily enclosed. Whereas the walls, floors and
ceilings of a structure are usually enclosed by other features there exist a number
of structural components where this does not hold. Fences and gates, support
columns, and balcony railings are a number of features that are not usually enclosed.
Enforcing enclosure on all shapes in the production will thus have the additional
effect of removing shapes that do not require enclosure, removing details that might
provide significant value. This can be seen in Figure 4.5b where no railings are placed
on the roof of the building as in the example 3.11a it was based on. A potential
solution marks shapes that are not enclosed in the example structures. These marked
shapes are not removed when not enclosed in the produced shapes. In the following
section we further discuss and evaluate the results and limitations of generation
through the additive shape grammar.

4.2.4 Evaluation

Results

While the results of an unconstrained automatic derivation of the additive shape
grammar are unusable artifacts by themselves, solely enforcing the enclosure con-
straint can produce reasonable new buildings, as in Figure 4.5. Our method allows
the inference of a grammar from multiple example structures as evidenced in Figure
4.6. This is a grammar for the shared style of both examples. Resulting generated
structures can consist of both unique and shared features. Larger amounts of exam-
ples of a particular style will result in a more accurate grammar description of the
style, if they contain unique features and relationships. Judging by these results our
method works as intended. We infer shapes and a grammar that describe the style
of a number of example structures. Finally, this grammar can be used to generate
new structures in a similar style. The additive shape grammar is interpretable, as
it is possible to follow along with the derived rules and to understand the process
of generating new structures. The simplicity of this grammar and its rules helps to
improve the understandability. It is not necessarily trivial to interpret, especially for
grammars inferred from complex examples, but it can be modified by the designer to
remove redundant rules, add new rules and add new shapes to the grammar. Even
grammars with enormous amounts of rules are interpretable, because in every step a
single shape is chosen to apply a rule to. These shapes have a limited number of
rules defined by the limited shapes that neighbor or match the shape. The inferred
grammar can be adjusted by the designer to generate a different space of structures.
In spite of this, this method has a great deal of limitations.
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(a) From example 3.1a with shape
set 3.6a. (b) From example 3.11a. All railings

are removed because of the enclosure
constraint.

s

(c) From example 3.11f.

Figure 4.5: Examples of automatic derivation with the enclosure constraint.
Note that for more complex examples, with more shapes and rules, the enclosure
constraint will often remove most, if not all, produced shapes. This leaves us with
an empty generated artifact.

Limitations

Complexity of examples, shapes and grammars We only achieve relatively
reliable and valuable results for the simplest of examples. The more complex the
examples the more shapes are needed to describe the examples and the more complex
the resulting grammar will be. Randomly deriving these grammars results in largely
incomprehensible results such as the artifacts in Figure 4.3. The additive shape
grammar with the enclosure constraint more reliably produces sufficient results when
the shape set exists out of large shapes with a limited number of rules between them,
such as in Figure 3.6a. Shape sets with smaller shapes, such as in Figure 3.7c, rely
on many more rules to be derived to form an enclosed structure. Even simpler shape
sets with many matching shapes, such as in Figure 3.6b, have more rules between
all shapes, which increases the chance of the derivation of rules that do not make
sense in that particular context. Just as in model synthesis [42], these conflicts
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(a) Two examples in a similar style, with matching and distinctly
different style features present in the examples.

(b) The shape set produced for both examples with rectangular
shapes, an α value of 1.0 and splitting on intersecting shapes after
finding a shape set. The central shapes are the shared shapes
between both examples, the left are the shapes unique to the
larger example and the rightmost shapes are unique to the smaller
example.

(c) A building generated from a grammar induced from both
examples in 4.6a. The enclosure constraint was used. Both the
shared and the unique features of the examples are present in this
generated structure.

Figure 4.6: Inferring shapes and inducing an additive shape grammar for multiple
examples in a similar style and generating new buildings from this style.
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reduce the quality and consistency of the produced structures. It is possible for a
newly produced shape to overlap other shapes entirely or partially. When blocks are
allowed in multiple shapes a partial overlap during production is necessary, but it can
occur that produced shapes become entirely covered by a new shape, or two shapes
that are not related in the example structures intersect. This will only obfuscate the
results. The simpler the shape set, the more complex the grammar and the more
difficult automatic generation becomes. Shape sets with large complex shapes have
simpler grammars that are more suited for automatic generation. Larger shapes,
such as the ones used to successfully generate new structures in Figure 3.6a and 4.6b,
may, however, capture more than one style feature in a single shape.

Matching shapes The additive shape grammar relies entirely on matching shapes
in the example structures in order to generate buildings with any variance. Without
any matching style features this method is only able to generate subsets or copies
of the examples. Even if there are duplicate style features present in the examples
they must be found during the shape inference procedure. This is an issue that
similar previous example-based three-dimensional generators faced [8, 44] and one
we believe to be an inherent to this problem. When inferring the style of an artifact
with the goal of generating artifacts in a similar style, it will always be necessary to
find similarities in the examples that can be exploited. All procedural methods rely
on similarities, repetition and symmetry.

We may need to infer many shape sets with different algorithm parameters to find
a suitable shape set with matching features. Even then, there is no guarantee that
any matching shapes will be found in any configuration of the inference algorithm
for a certain example. Improving the cost function and optimization scheme of the
shape inference procedure to more reliably find matching shapes in the examples
can alleviate the problems of this dependency to a certain degree. Another option
is to weaken the matching shapes by finding shapes that match for the most part,
with a limited amount blocks that do not coincide. As discussed previously, even
if matching shapes have been found it does not always make sense to share certain
rules between two matching shapes. These rules will be part of the grammar and
can reduce the quality of the generated artifacts.

Enclosure In any newly generated artifact there is no guarantee that any part
of the structure will be enclosed. After applying the enclosure constraint to a
production without enclosed shapes, the resulting production will be empty. Even for
the relatively reliable shape sets of large shapes, this is a possibility. This generation
process is thus not suited for on the fly generation. The structural consistency of a
building hinges on more than just the enclosure. Without any other constraints the
quality of the generated artifacts remains low. There is no higher-order structure
imposed on the generated artifacts, aside from the enclosure constraint. From
this perspective, the additive shape grammar represents only the local style of the
examples. In every production step the newly produced shape only depends on
the current shape taken into account. This is the same problem encountered when
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generating with Markov models and n-grams [62, 18], where only the local style is
transferred because of the Markov property, and the r-similarity constraint [8] and
the adjacency constraint [44]. These constraints enforce similarity between local
neighborhoods between the generated and example structures, with the additional
effect of ensuring enclosure of a generated structure if the examples are enclosed.
Instead of only relying on adjacency rules, an extension with a constraint that
enforces similar local neighborhoods, could ensure enclosure during generation and
limit the derivation of inconsistent rules that reduce the quality of the generated
artifact.

Similar style Finally, we question if the generated buildings actually depict an
artifact in the style of the original examples. A grammar induced from just a single
example structure is limited in the style it describes. Only shapes and rules present
in the example can make their way into the grammar. A different example built by
a designer in the same style will most likely lead to a different grammar. Inducing a
grammar from more examples with different configurations of style features will result
in a more well-rounded description of the intended style. The fact that matching
shapes share rules may overly generalize the style of an example. Note the example
3.11a, with generated structure 4.5b. This example may depict an artifact in a style
of tower-like buildings, where other examples will have more rooms stacked on top
of each other. Instead, the grammar depicts a very different style in the generated
artifacts. This can not simply be fixed by inducing the grammar from more examples
in the style, because the matching shapes share rules in a way that, in this case, will
always allow the generated structure to become much more immense than a tower of
cuboid rooms. A subset of the possible generated artifacts of this grammar will be
the intended style, while the grammar will depict a more general style.

4.3 Grammar for Automatic Rule Derivation

We propose an extension of our methods to induce a more advanced grammar from
the example structures. The grammar discussed in this section is designed with
automatic derivation in mind, because the additive shape grammar defined in the
previous section struggles with the generation of new structures. It takes a higher-
order structure of the buildings into account and derives rules hierarchically from
low to high detail. We explore the requirements, advantages and limitations of this
new method and illustrate it with a simple prototype.

4.3.1 Introduction

Both the split grammar defined by Wonka et al. [82], as the CGA grammar defined
by Müller et al. [49] are shape grammars designed with automatic derivation in mind.
The split grammar approach removes design ideas out of the grammar and uses a
separate control grammar to distribute the design ideas over the whole structure. A
split grammar is sufficiently restricted to suit automatic derivation. Starting from
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a large basic shape, split rules iteratively split shapes into smaller shapes until all
shapes in the production are terminal. After every split a control grammar distributes
design attributes in the basic shapes in order to keep the style over the entire artifact
consistent, such as setting attributes exclusive to the first floor. The CGA grammar
is an extension of the split grammar approach, allowing more complex rules and the
generation of complex mass models. The rules are derived in a hierarchical order
from low to high detail, ensuring a structural coherence of the generated artifacts not
present in the additive shape grammar. Both grammars are able to reliably generate
satisfactory artifacts from manually designed grammars. These grammars have
been induced from examples to successfully generate new two-dimensional structures
[40, 74, 50]. As far as we know, no example-based split or CGA grammar approaches
have been discussed for three-dimensional structures.

Inspired by these shape grammar approaches for automatic generation of new
structures, we discuss a method that derives rules in a hierarchical top-down manner,
and constructs a new building starting from basic primitive shapes that are filled in
with the actual shapes discussed in chapter 3. This extension will limit the grammar’s
reliance on matching shapes and improve the coherence, reliability and quality of
the generated structures. We do not specify the entire method, but sketch the main
ideas and the possible advantages and implement a basic prototype as an illustration
of the method.

4.3.2 Method

The additive shape grammar has difficulty generating structurally coherent artifacts
because it is missing a notion of the higher-order structure in the example buildings.
This higher-order structure [46] can be described in the form of a mass model [49], a
building framework, or the combination of a set of primitive volumetric shapes, such
as cuboids, cylinders and pyramids. Our basic example 3.1a exists out of a single
cuboid, the example 3.11b consists of a cuboid and a pyramid for the slanted roof.
The lighthouse in Figure 3.11e consists of a cylindrical shape and a number of smaller
shapes for the stairs and the top of the tower. More complex example buildings
will require more, smaller primitive shapes to form a mass model description for
the examples. The primitive shapes in a building are composed in various ways,
such as the two cuboids in Figure 3.11a placed on top of each other. If we can infer
the primitive shapes and their relationships from the examples, as we did for style
features, we can create new similar compositions of these primitive shapes. We infer
the style features, or shapes, and their relationships inside these primitive shapes
separately, following the method discussed in chapter 3, and finally use these to fill
in the primitive shapes of the newly generated buildings. Instead of just finding style
features and composing these into new structures we find the general structure of
the buildings, the style features inside these higher-order features and compose these
accordingly. The entire specification and implementation of this method will require
a number of clearly defined procedures and decisions.
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Primitive shapes First of all, we need an extension that is able to find the
primitive shapes that make up an example structure. An algorithm that fits primitive
shapes to the example can be optimized to find a small set of primitive shapes that
cover the example in a similar fashion to the method discussed in chapter 3. The
rules between these primitive shapes can be found from the examples. We must
decide whether exclusively compositions found in the example structures are allowed,
such as placing two cuboids on top of each other in example 3.11a, or additional
compositions not present in the examples are also used during generation. If only
relationships between the primitive shapes seen in the examples are allowed, larger
examples or larger sets of examples should be provided, that give a clearer indication
of the possibilities. Most examples in Figures 3.1 and 3.11 will be limited in the
possible compositions of their primitive shapes. Alternatively, primitive shapes
are connected through a smaller shape or style feature present in the example. If
this feature is present in a primitive shape it acts as a connection point to another
primitive shape. The ceiling of the lower cuboid in 3.11a could be the element that
allows connection of the higher cuboid. In case the ceiling of the second cuboid
matches the initial ceiling, another cuboid could be placed on top of it.

Split rules For every primitive shape that covers a part of the example, we perform
the shape feature inference procedure, effectively finding the split rules from the
primitive shape to smaller style features. The style features inside these new shapes
can again be found, to create new split rules, where we consider the final features
terminal. Iteratively finding the shapes present in a larger subset of shapes will in
effect construct a split grammar [82].

If we consider just the split rules actually present in each primitive shape, every
derivation of that primitive shape will result in the same component. In this case we
could just as well just define primitive shapes as large three-dimensional shapes, as
discussed in section 3.1.2, limited to certain basic shapes. We want to introduce an
additional variance in the split rule derivations. This is a difficult problem that could
rely on matching shapes and similar split rules between different primitive shapes.

Control grammar The control grammar that is used in unison with a split
grammar [82] provides additional control over the coherence of the generated buildings.
It can distribute certain attributes along just a single floor, for example allowing
only exterior doors on the first floor. Although we believe the hierarchical derivation
of rules from low to high detail will already provide much better generated artifacts
than the additive shape grammar, the addition of a component similar to the control
grammar could increase the quality even more. It would infer design ideas from
the examples and distribute these over the newly generated artifacts. The more
information that can be inferred about the style of the examples, the more accurate
and reliable the generation process will become.
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(a) A generated composition of
cuboids. (b) The primitive shapes filled in.

Figure 4.7: Illustrative prototype of the extended method for example 3.1a.

4.3.3 Limitations

This method will struggle with more complex example buildings, such as 3.1b, because
they will be much more difficult to describe through primitive shapes. Not just
one primitive shape will encapsulate, for example, the entire roof. The amount of
primitive shapes will increase because of the many protruding blocks and details that
need to be covered by their own basic shapes. As was an issue with the shapes in
the additive shape grammar, many small shapes result in many different, potentially
unnecessary, rules and thus lesser results. The more complex the description of the
example through primitive shapes, the less these represent a higher-order structure
of the example. In general it will be much more difficult to find a higher-order
description of very complex buildings. A potential solution adds another layer of
abstraction to the structure of the buildings, that covers larger components of the
structures and is split into smaller primitive shapes.

This method remains interpretable, but the multiple layers of the split grammar
intertwined with the distribution of attributes by the control grammar will complicate
the method and the modification process.

4.3.4 Prototype Evaluation

We implemented a simple prototype to illustrate this extended method. Instead of
inferring the primitive shapes and their compositions from the examples, we created
a grammar specifically for example 3.1a. The example exists out of a single cuboid,
which can be split into four walls and a ceiling. The terminal shapes were found with
the shape inference method described in chapter 3 and correspond to the features in
Figure 3.6a. These could still be split further to refine the lower detail style features.

Because the example is captured by a single cuboid shape without any relation-
ships with other primitive shapes we allow duplicates of this cuboid to be placed
next to and above each other. In the actual method we will induce the relationships
between primitives and use these rules exclusively, or with a limited number of
predefined rules. Starting from an arbitrary cuboid, we expand the rules in the
grammar for primitive shapes. In the case of example 3.1a this places cuboids next to
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Figure 4.8: Additional generated results for the prototype based on example 3.1a.

or on top of other cuboids restricted to a predefined parcel, as illustrated by Figure
4.7a. In Figure 4.7b these primitive shapes are filled in with terminal shapes. A
single ceiling feature is allowed in the ceiling slot, so it is filled in with the same
shape in every cuboid. The four walls present in the example are allowed in every
wall slot in the primitive shape, if their neighboring shapes match the shapes in
the example. This will ensure the local similarity between the examples and the
generated artifacts is considered during generation.

A final extension would be to find a component similar to a control grammar that
distributes the final terminal shapes over the entire generated structure. It could,
for example, enforce that doors are only allowed on the first floor.

This illustrative prototype has ignored many crucial parts of the method and
implementation issues that should be addressed in detail in potential further work.
Nonetheless, the artifacts generated by this extended method guarantee a general
higher-order structure in the buildings, removing the need to check for satisfaction
of enclosure. This scheme could be used to generate new structures on the fly.
Because the separate relationships between the final shapes are used to derive the
final terminal shapes we also ensure a local lower-order similarity with the provided
examples.
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Chapter 5

Conclusion

This thesis explored inferring style features and shape grammars from three-dimensional
voxel-based structures. This final chapter discusses the results and limitations of our
work and proposes possible extensions as future work.

5.1 Conclusion

Procedural content generation and procedural modeling suffer from the issue that for
every desired type of content a rule set, or algorithm, must be devised to generate
the desired content. Potential solutions for this problem are example-based methods,
such as PCGML [72], texture and model synthesis [21, 44] and IPM [4, 8, 66, 50].
These generate content or rules sets for a style of content from examples. Existing
research on example-based methods for generating three-dimensional artifacts is
limited and relies on highly similar systems and constraints [8, 44].

We proposed a method for inferring a set of style features, or shapes, from
provided example structures. These shapes are then used to form a shape grammar
that can be used to model and automatically generate new structures in the same
style. Our method for finding a set of shapes relies on optimizing a function that
determines the cost of a set of shapes. The cost function seeks a balance between
simple shapes and a simple set. A limited local search [1] scheme optimizes the cost
function and converges to a local optimum. The resulting shape sets are mostly
satisfactory, but there is no guarantee that the obtained local optimum is good.
We explored variations of various components of this algorithm that take other
considerations into account and performed experiments to validate or refute their
intended effects.

We discussed two grammar specifications and fully implemented the first. The
additive shape grammar is a simple grammar that consists exclusively of additive
rules. This shape grammar is able to recreate subsets and copies of the provided
examples, and more varied new structures in a similar style if there are matching
shapes present in the shape set. The variety in generated buildings relies completely
on finding matching shapes in the shape inference step, and should be optimized to
find matching shapes when using this grammar. The additive shape grammar is not
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well suited for automatic generation, because the indefinite random derivation of
rules is able to create enormously large structures without any concern for higher-
order structure. Nonetheless, we define the enclosure constraint which allows for the
generation of acceptable artifacts from simple examples. Besides the many limitations
we have successfully inferred style features and grammars from limited examples
capable of generating new structures in the same or similar style. This method can
infer a style from multiple examples, combining the features and rules of all examples
if they share a matching shape. It is interpretable and can be modified to change
the generative space of the grammar by removing or adding rules and shapes.

The two primary shortcomings of the additive shape grammar for automatic
generation are the lack of higher-order structure throughout the productions and the
boundless derivation of rules. We discuss a potential extension to solve these issues
inspired by split and CGA grammars [82, 49]. These are shape grammars designed
with automatic derivation in mind, working hierarchically from low to high detail
and reaching a terminating point in the derivation. Our extension requires a method
for finding primitive shapes that cover large parts of the example structures and
represent low detail higher-order structure of the examples. These primitive shapes
can be composed and filled in with actual style features found through our original
method. We illustrated the main ideas of this approach with a prototype built for a
simple example, concluding that this method could ensure a higher-order structure,
while still providing the local similarity with the examples. Crucial methods and
details will need to be addressed in further work.

5.2 Real World Applications

Although the use of this method in real world application will require increased
reliability and quality of the generated artifacts, the potential for example-based
procedural methods is enormous. The entertainment industry, forefronted by the
video game industry, relies increasingly on procedural methods to efficiently create
content. Our example-based methods simplify the process of creating procedural rules
and systems for multiple different building styles. These could be used to populate
virtual models of cities existing out of many different styles of buildings [53, 30].
Aside from the entertainment industry, these could be used in the architectural field
and in various simulations [82, 49].

5.3 Future Work

Despite the realization of our initial goals, our method remains limited. We propose a
number of extensions and improvements to alleviate these limitations and incorporate
additional functionality.

The style feature, or shape, inference method discussed in chapter 3 can be
improved to more reliably return a better set of shapes. The simple hill-climbing
algorithm converges to the first local optimum that it finds. Other more advanced
local search methods could improve these results [1, 9] through backtracking executed

62



5.4. Epilogue

operations, restarts and iterative local search methods. Additionally, the cost function
to be optimized could be improved or modified to encourage more specific shape set
requirements.

The generation of artifacts through the additive shape grammar could be refined
and improved by applying various constraints during and after generation. A
refinement of the induction of rules could remove redundant and undesirable rules
from the grammar, improving the results of random derivations. However, as
discussed, the additive shape grammar is intrinsically not suited for automatic
generation. We could apply a constraint that ensures the local neighborhoods in
generated artifacts always match local neighborhoods in the examples, which has
been addressed extensively in the work of Bokeloh et al. [8] and Merrel [43, 44].
Improvements to this method are more akin to patchwork than to fixing the underlying
issues. We should instead focus on methods designed with these issues in mind.

We discussed an approach designed for automatic derivation, inspired by split
[82] and CGA grammars [49]. We believe this method will strongly increase the
reliability and quality of the artifacts generated in a similar style as the provided
examples. It will ensure a higher-order structure in all generated artifacts, which
will allow this method to be used on the fly, for example during gameplay. The
concretization, implementation and evaluation of this method is the next step.

Instead of exclusively using style features present in the examples we could
consider the usage of similar but slightly different shapes. Inferred shapes could
be extended or reduced to form similar shapes of different dimensions. A grammar
that uses these will not exactly describe the style of the examples, but will have an
additional layer of variance in the generated artifacts. These possibilities highlight
the important trade-off between the variety and expressivity of the generated artifacts
and their resemblance to the example structures.

Our methods are currently limited to rigid voxel structures, while in most
applications the three-dimensional structures are modeled with polygons. A final
extension will allow these, or similar, techniques to be applied to polygonal examples.

5.4 Epilogue
Style inference and example-based procedural methods are an important development
in the field of procedural generation. This thesis discussed the relatively unexplored
problem of inducing a set of rules that are capable of generating similar structures
from three-dimensional buildings, and serves as a stepping stone for further research
in this field. Aside from inferring and imitating a style, algorithms that are able
to learn new concepts and styles could form an important foundation for eventual
computationally creative systems.
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Appendix A

Program Setup

This chapter describes how to set up and test the implementations of the methods
discussed in this thesis.

A.1 MCEdit

MCEdit can be deployed by following the instructions at https://github.com/
Podshot/MCEdit-Unified.

A.2 Filters

Our implementation is in the form of MCEdit filters that can be cloned from
https://github.com/gillishermans/thesis_filters. These must be placed in
the stock-filters folder within the root directory of the MCEdit repository. The filters
can be applied by following these steps:

• start the MCEdit application as described at https://github.com/Podshot/
MCEdit-Unified

• open a minecraft map (CTRL+O), such as the example_world map provided
in the filter repository, by selecting the level.dat file in the map folder

• select the entire example structure or structures to be examined with the select
tool

• apply the infer_and_generate filter with the filter tool to infer a set of
shapes and a grammar and to immediately generate a new structure

A.3 Filter Parameters

The infer_and_generate filter has a number of parameters that are explained
here:
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• the hill climbing operation: 0 (only merge), 1 (only split), 2 (both)

• the shape specification: 0 (rectangular), 1 (planar), 2 (three-dimensional)

• the cost function: 0 (basic), 1 (multiple types cost increase), 2 (matching
shapes discount)

• the α parameter: a value ∈ R

• is overlap of blocks in multiple shapes allowed: true or false

• is the post processing split operation allowed: true or false

• the amount of rule derivations allowed during automatic generation: 0 (not
generation), any other positive value ∈ Z

• is the enclosure constraint enforced: true or false

• experimental split grammar option: true or false (no results guaranteed)

• visualization of overlapping generated shapes
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