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Preamble concerning COVID-19 

We had planned to start the EEG data collection in March 2019, specifically the pilot 

study. The rest of the data collection was planned between October and December 2019. 

Next, the meetings for the analysis and decoding were planned from March 2020 until 

May 2020. 

The data collection was finished before COVID-19, so COVID-19 did not influence this 

part. However, due to COVID-19, we were not able to meet in person to discuss the final 

data and the next steps such as the analysis, decoding and writing the thesis. 

Since the data was collected before COVID-19, the outbreak did not change the plan of 

the study that much. It was a little bit more challenging to execute the analysis and 

understand the decoding through online meetings, but in the end, it worked. 

This preamble was drafted in consultation with the student and the promotor and was 

approved by both.  



 
 

Abstract 

Previous studies have shown that cognitive control is related to effort choices. People 

tend to minimise the effort they put into a task and often choose less effortful tasks. It 

has also been shown that metacognitive difficulty is related to cognitive control and 

avoiding cognitive control. The present studies tried to predict effort avoidance based on 

different neural correlates (i.e., N2 or objective difficulty and P3 or subjective difficulty). 

A paradigm was used where participants performed a masked priming task followed by 

them deciding the subjective difficulty for that trial (i.e., rating phase). In a subsequent 

choice phase, the participants had to choose whether they wanted to carry out this task 

in a low effort – low gain or high effort – high gain context. The ERP components showed 

modulation by objective (i.e., congruency) and subjective difficulty (i.e., rating). The 

decoding analysis, however, showed that we could not predict a participant’s following 

choice based on the neural data of congruency and subjective difficulty ratings. 

  



 
 

Corona preambule 

We hadden gepland om in Maart 2019 te starten met de eeg-afnames, vooral de 

pilotstudies. De rest van de eeg-afnames zouden tussen oktober en december 2019 

gebeuren. De meetings voor de analyse en de decoding waren gepland tussen maart en 

mei 2019. 

De eeg-afnames waren afgerond voor COVID-19, dus dit had geen effect op de 

datacollectie. Maar door COVID-19 was het niet mogelijk om samen te komen met mijn 

begeleiders voor de volgende stappen zoals de analyse, decoding en het bespreken van 

de thesis zelf.  

Aangezien de data verzameld was voor COVID-19, is de studie niet moeten aangepast 

worden. Het was wat moeilijker om de bespreking van de analyse en het uitleggen van 

de decoding via online meetings te doen, maar uiteindelijk ging dit wel. 

Deze preambule werd in overleg tussen de student en de promotor opgesteld en door 

beide goedgekeurd.  



 
 

Abstract 

Studies hebben aangetoond dat cognitieve controle gerelateerd is aan moeite. Mensen 

gaan vaak de moeite die ze in een taak moeten steken minimaliseren en vaker de taken 

kiezen die minder moeite vereisen. Het is ook aangetoond dat metacognitieve 

moeilijkheid gerelateerd is aan cognitieve controle en het vermijden van cognitieve 

controle. Deze studie heeft geprobeerd om het vermijden van moeite te voorspellen 

gebaseerd op verschillende neurale correlaten (i.e., N2 of objectieve moeilijkheid en P3 

of subjectieve moeilijkheid). In dit paradigma moesten de participanten een masked 

priming taak uitvoeren, gevolgd door het beslissen van de subjectieve moeilijkheid van 

de trial (i.e., rating fase). In de volgende keuze fase, moesten de participanten beslissen 

of ze dezelfde taak in een lage moeite – lage winst of hoge moeite – hoge winst context 

wouden uitvoeren. De ERP componenten toonden modulatie door objectieve (i.e., 

congruentie) en subjectieve moeilijkheid (i.e., rating). Echter, de decoding analyse toonde 

aan dat we een participants volgende keuze niet konden voorspellen gebaseerd op de 

neurale data van de congruentie of subjectieve moeilijkheidsratings.  
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Introduction 

An interesting aspect of the human cognitive system is its ability to control its own 

cognitive processes. This is usually referred to as cognitive control. For example, when a 

person who grew up in Belgium walks down the street and wants to cross the street, they 

will automatically look to the left, because in Belgium the cars drive on the left lane. This 

is something that is taught as a child and thus has become an automatism. However, 

when that same person visits the United Kingdom, they have to take extra caution 

because there the cars drive on the other side of the road. So, that person now has to 

suppress the urge to look to the left and force themselves to look to the right instead. 

This is what we call cognitive control. The cognitive system needs to use cognitive control 

to suppress its natural tendency to look towards the left and instead look to the right. 

Cognitive control is usually required in situations where there is conflict. For example, 

when being in the United Kingdom, the conflict between wanting to look to the left in the 

United Kingdom, but having to look to the right. The cognitive control system is necessary 

for selecting and successfully monitoring behaviour that facilitates the achievement of a 

goal (Botvinick, Braver, Barch, Carter, & Cohen, 2001).  

Conflict monitoring and cognitive control 

To study cognitive control in the lab, researchers usually examine how participants deal 

with conflict. Like the conflict of having to look to the right but wanting to look to the left 

in the example. Researchers typically use cognitive conflict. The Stroop Task is a typical 

example of such a conflict task. In the Stroop task, participants are presented with colour 

words presented in different colours. The participants are instructed to say the ink colour 

that the word is presented in. These colours can be congruent (“BLUE” is presented in 

blue) or incongruent (“BLUE” is presented in red”) with the semantic meaning of the 

word. Studies have shown that participants are significantly faster when the colours are 

congruent with the meaning of the word, compared to when the colours are incongruent 

(Cohen, Dunbar, & McClelland, 1990; Liotti, Woldorff, Perez, & Mayberg, 2000). The usual 

explanation for this effect is that reading can be regarded as an automatic process. 

Because humans are very much trained in reading words, when presented with a word, 
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humans automatically read the meaning of the word without the need for active control. 

When both the ink colour and the meaning of the word are congruent, this is not a 

problem for naming the ink colour. However, on the incongruent trials, one needs to 

actively suppress the urge to read the word and say the colour of the word instead. So, 

we are faster when executing tasks with automatic processes (e.g., reading a word). 

Compared to tasks with non-automatic processes (e.g., saying the colour of the word) 

(Balota & Marsh, 2004; Schneider & Shiffrin, 1977). 

An important question then is how the brain knows when it needs to exert cognitive 

control. How does the brain know when it has to look right, and not left? To say the 

colour, and not read the word? According to the conflict monitoring theory, there is a 

system in the brain that is sensitive to conflicts in information processing. This system in 

the brain is usually referred to as the conflict monitor (Botvinick et al., 2001). This theory 

further states that when the conflict monitor detects a conflict in the processing of 

information, it sends a signal to remote brain regions that implement increases in 

cognitive control (Gratton, Coles, & Donchin, 1992; Kerns et al., 2004; Stürmer, Leuthold, 

Soetens, Schröter, & Sommer, 2002). As a consequence, after the conflict monitor 

detects the need for control, the strength of control that is necessary for the situation or 

task is applied. Thus, by checking and monitoring our internal state, cognitive control 

allows us to shift our attention in an appropriate fashion (Botvinick, Cohen, & Carter, 

2004). Previous research has proposed that there is a specific brain region involved in 

conflict monitoring, namely the dorsal anterior cingulate cortex (dACC) (Botvinick, 2007; 

Botvinick et al., 2001; Kerns et al., 2004; LaBerge, 1990; Shenhav, Botvinick, & Cohen, 

2013). Although the involvement of the dACC in conflict monitoring is usually observed 

in research using fMRI, researchers have also managed to locate the conflict monitor in 

EEG signals. Specifically, conflict monitoring is supposed to be reflected in a frontocentral 

N2 component. The N2 component is generally observed around 200-300 ms post-

stimulus. This is thought to reflect the activation to conflicting stimuli (Veen & Carter, 

2002). A larger N2 is observed when we are observing conflict (Botvinick et al., 2004). The 

N2 occurs pre-response as a consequence of stimuli (Yeung, Botvinick, & Cohen, 2004) 

and it is larger when the stimuli are incongruent compared to when they are congruent 
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(Heil, Hennighausen, Osman, Wiegelmann, & Rolke, 2000; Liotti et al., 2000). The ACC 

also shows higher activation when there are more response possibilities, when the 

response is less determined (Barch, Braver, Sabb, & Noll, 2000). So, there is evidence that 

N2 is modulated by task-related conflict (Desender, Van Opstal, Hughes, & Van den 

Bussche, 2016). 

Importantly, activating the ACC to perform cognitive control comes with a cost. This cost 

is the cognitive demand of manipulating our cognitive control (Botvinick, 2007). Botvinick 

and Rosen (2009) used a demand selection task to specify this cost. In their study, 

participants had to choose between two coloured decks of cards. One side of the card 

was orange or green, the other side of the card had a number on it, either in purple or in 

blue. If the number was purple, they had to make a parity judgement (i.e., they had to 

say whether the number was even or not). If the number was blue, they had to make a 

magnitude judgement (i.e., they had to say whether the number was larger or smaller 

than five). The difference between the desks was that in one deck (low demand) the 

colour of the number matched the previous one in 90% of the trials. In the other deck 

(high demand), this only matched in 10% of the trials. The participants were also free to 

choose when they wanted to switch between decks. Given that task-switching is known 

to require a lot of cognitive control, the researchers hypothesized that if cognitive control 

is indeed costly, participants would avoid the deck with a high frequency of task switches. 

As predicted, they found that the participants significantly preferred the low demand 

deck over the high demand deck. Based on findings like these, researchers have argued 

that cognitive control is not an unlimited resource. So, it's hard to maintain high levels of 

this control for a long time (Diamond, 2013; Ridderinkhof, Ullsperger, Crone, & 

Nieuwenhuis, 2004). Because of this cost and since cognitive control is not an unlimited 

resource, people tend to avoid cognitive control. They tend to minimize the effort they 

have to put in to do a task. Kool, McGuire, Rosen, and Botvinick (2010) used the same 

demand selection task as Botvinick and Rosen (2009). They found the same results, 

participants tend to choose the less effortful task, following the law of least effort. Hull 

(1943) clearly stated that when people can choose between two equal tasks, but one 

more effortful than the other, they will choose the less effortful one. This theory still 
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stands in psychology, and even outside of psychology (Salamone, Correa, Farrar, & 

Mingote, 2007).  

Building on these empirical findings, Shenhav, Botvinick, and Cohen (2013) introduced 

the normative model of the expected value of control (EVC). This theoretical framework 

integrates the previously described conflict-monitoring theory with the notion that 

cognitive control is costly. When allocating control to a task, this comes with a cost. This 

model allows us to represent the value of this allocation, which is supposed to be 

estimated by the ACC, which we know plays a role in cognitive control. Now, the ACC 

gathers information to estimate the EVC and the EVC uses task difficulty (state) and signal 

to estimate the probability of rewards. We can assume that conflict monitoring allows us 

to create an endogenous index of task difficulty. In sum, depending on the task difficulty 

and the potential reward, the ACC will arbitrate between investing in cognitive control or 

avoiding cognitive control. 

The potential role of metacognition 

However, one important aspect of human cognition is missing in the EVC-framework, 

namely metacognition. Metacognition is being aware of what you are thinking or feeling, 

it implies introspective access to your own cognitive processes (Desender et al., 2017). 

Another approach to induce conflict is to use priming. This experimental approach has 

the advantage that it allows to study metacognition. Priming is a method where a 

stimulus is preceded by a prime (e.g., word, picture, sentence, sound, etc.), which then 

causes facilitation or impediment of the task. For example, participants have to decide 

whether an arrow is pointing to the left or the right. This stimulus (e.g., arrow) is preceded 

by a prime (e.g., another arrow), which can point in the same or opposite direction as the 

target. When both arrows (i.e. prime and target) point in the same direction, the trial is 

congruent. When the arrows point in opposite directions, the trial is incongruent. Using 

this paradigm, Desender, Van Opstal, and Van den Bussche (2014) have found that 

participants are significantly faster when prime and target are congruent. Now, this prime 

can also be presented subliminally. This means it is presented for such a short time, too 

short for conscious perception (Loftus & Klinger, 1992). In the example above, the prime 
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(i.e. first arrow) can be presented so short that it doesn’t reach the threshold for 

consciousness, and therefore there is no conscious perception. Importantly, even 

without the participant being consciously aware of this prime, it nevertheless influences 

the response. Even though the prime is presented subliminally, participants are 

significantly slower when there is a conflict between the prime and the target  (Desender, 

Calderon, Van Opstal, & Van den Bussche, 2017).  

Interestingly, even though participants are unable to perceive the prime, Desender et al. 

(2014) have shown that they are nevertheless able to experience where a trial was 

difficult (i.e., incongruent) or easy (i.e., congruent). This was shown by asking participants 

after each trial whether they though that trial was rather easy or rather difficulty, this 

was used to study their metacognition. The fact that participants were able to introspect 

on the difficulty of each trial is remarkable because when the prime is not consciously 

perceived, congruent and incongruent trials are visually indistinguishable. Therefore, 

participants seemed to rely on non-visual information when making their judgment about 

the difficulty of that trial. Thus, it seemed that participants had good metacognitive 

awareness about the difficulty of responding to each trial. In the Desender et al. (2014) 

study, even though the participants reported not being aware of the primes, the 

incongruent trials were rated significantly more difficult than the congruent trials 

(Desender et al., 2017). Thus, even when participants are not aware of the primes, these 

still influence reaction times (Cohen et al., 1990), brain activity (Draine & Greenwald, 

1998), and metacognitive experience associated with the performance. In other words, 

participants did not need to be aware of the primes to be able to measure their influence 

on performance. 

As discussed before, there is evidence that the N2 component measured in the EEG 

(reflecting dACC activity) is modulated by task-related conflict. Interestingly, this activity 

appears unrelated to metacognitive appreciation of the difficulty of a trial (Desender et 

al., 2016). In other words, the N2 component seems to track the conflict on a given trial, 

but not the subjective evaluation of such conflict. Metacognitive difficulty did affect 

another component that takes place around 300-400 ms post-stimulus, the P3 
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component (Desender et al., 2016). The true role of this component is still uncertain, but 

there is some evidence that it plays a role in subjective perception (Del Cul, Baillet, & 

Dehaene, 2007), and it also seems to be modulated by conflict (Gratton et al., 1992). 

There is some more evidence that the P3 is modulated by difficulty in a masked priming 

paradigm (Desender et al., 2016) or with confidence in an auditory task (Zakrzewski, 

Wisniewski, Iyer, & Simpson, 2019). Desender et al. (2016) also showed that the size of 

the P3 was predictive for the congruency, but also the metacognitive experience (i.e. 

subjective difficulty).  

From the above, it appears that there is evidence that conflict detection (i.e., dACC, N2) 

is related to investing cognitive control (Gratton et al., 1992) and avoiding cognitive 

control (Kool et al., 2010). However, there is also evidence that metacognition (i.e., P3) is 

related to investing cognitive control (Desender et al., 2014) and avoiding cognitive 

control (Desender et al., 2017). Given that both conflict detection and metacognition of 

conflict have been shown to be dissociable and have separable neural correlates, it 

remains an open question which of these two factors drives choices about cognitive 

control. According to the EVC model, participants will invest cognitive control in a task 

when the potential reward exceeds the costs of investing control. In the current study, 

we wanted to assess whether the cost of investing control in this equation is indexed by 

the detection of conflict on one hand, or by the metacognitive experience on the other 

hand. 

To investigate this question, participants will first take part in a rating phase during which 

they are performing a masked priming task and additionally rate their subjective level of 

difficulty. During this task, we will measure EEG activity. This will allow us to look at which 

neural signals are associated with the detection of conflict, and which neural signals are 

associated with metacognitive experiences of subjective difficulty. Second, participants 

will take part in a choice phase. This will be the same masked priming task as before, but 

before each trial participants have to decide whether they want to perform a high-

demand version of the task and have the potential to win a large reward (i.e., high effort 

– high gain), or perform a low-demand version of the task and have a potential to win a 
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small reward (i.e., low effort – low gain). Also during this second part, we will measure 

EEG. Using the EEG data, we will then examine whether investment or avoidance of 

cognitive control during the choice phase is predicted by neural coding of response 

conflict (i.e., as predicted by the EVC theory) or by neural coding of metacognition (i.e., 

as predicted by metacognition research).  

 

Materials and method 

Participants 

Twenty-six participants took part in this study (22 females, M age = 24.78 years, SD age = 

3.86 years). They all participated in turn for monetary compensation, which was around 

20 euros. They could also obtain an extra reward of two or ten euros based on their 

performance. All participants signed a written informed consent, reported normal or 

corrected vision and did not know the hypothesis of the study.  

Stimuli and apparatus 

The experiment was a masked priming task programmed in Python 2.7. The stimuli were 

presented on a grey background on an LCD screen with a 120Hz refresh rate. The stimuli 

consisted of white arrows that pointed to the left or the right. The prime and target were 

made up in such a way that the prime fits perfectly into the target, so the prime seemed 

invisible. They were also presented slightly above or below the fixation cross so the 

fixation cross could stay present during the trial. The rating scale was made using a 

gradient from green to red or red to green. This was presented in the centre of the screen. 

The ten- and two-euro boxes were pictures of a ten-euro bill and a two-euro coin. These 

were presented on four different positions (left, right, above or below the centre). The 

responses were made using a standard QWERTY keyboard and a mouse. 

Procedure 

Figure 1 shows an example of an incongruent trial in the rating phase. In this phase, a trial 

started with 500 ms of gaze-contingent fixation. Here, the participant had to continuously 
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fixate on the fixation cross for 500 ms to continue, if they would break fixation, the 500 

ms period would restart. This was followed by another gaze-contingent fixation of 500 

ms where the trial would be aborted if they would break fixation. Next, the prime was 

presented for 23 ms, this was presented slightly above the fixation cross so the fixation 

cross could be presented during the whole trial. The prime could be an arrow pointing to 

the left or the right. Between the prime and the target, a blank screen with the fixation 

cross was presented for 23 ms. Next, the target was presented for 120 ms at the same 

position as the prime. The target could also point to the left or the right (i.e., congruent 

or incongruent with the prime). After the target, a blank screen with the fixation cross 

was presented for 1.5 seconds or until the participant responded. They had to respond 

by pressing the “s” or the “d” keys with their left middle finger and left index finger, 

respectively (“s” for the arrow pointing to the left and “d” for the arrow pointing to the 

right). Then, there was again a blank screen with the fixation cross for 750 ms. And lastly, 

the rating scale was presented until the participant responded. The rating scale was a 

gradient rectangle from green to red or red to green. The participants were told to rate 

the trial on their subjective difficulty using the mouse. The green part of the scale was 

associated with subjectively easy and the red part of the scale with subjectively difficult. 

On each trial, the orientation of the scale (red-to-green, or green-to-red) was randomly 

chosen. The entire trial was fixation contingent, meaning the participant could not look 

away from the fixation cross when it was presented, until the moment the rating scale 

appeared. 

The choice phase was similar to the rating phase, except it entailed an additional choice 

aspect. Figure 2 shows the trial structure of an incongruent trial in the choice phase. Here, 

each trial started with the presentation of two boxes reflecting a € 10 bill or a € 2 coin 

which represented the high effort – high gain and the low effort – low gain conditions, 

respectively. This screen was presented until the participants chose a box, which they did 

by clicking with the mouse on one of the boxes. On each trial, the two boxes appeared 

randomly in two out of four conditions equally spaced around fixation. In the low effort 

– low gain condition, participants could potentially obtain € 2 if their subsequent 

response in responding to the target arrow was correct and faster than 1.5 seconds 
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(hence, this condition was low effort - low gain). In the high effort – high gain condition 

participants could potentially obtain € 10 if their subsequent response in responding to 

the target arrow was correct and faster than a designed threshold. This threshold was 

determined on an individual level, and it was quantified as percentile 10 of the reaction 

times in the rating phase. Thus, participants could potentially obtain € 10 only if their 

subsequent response was correct and faster than 90% of responses in the rating phase 

(hence, this condition was high effort - high gain). In both conditions, when the 

participant made the wrong choice about the direction of the target arrow or they 

responded too slow, the participant could potentially win € 0. Participants were told that 

after completing the experiment, all of the € 0, € 2 and € 10 that they collected would be 

put together in one box, and the computer would randomly choose one of these values. 

Participants would then receive an extra monetary compensation equal to the value of 

the chosen number. Importantly, participants did not receive trial-by-trial feedback about 

the reward on a given trial. Thus, there was no direct way for participants to use the 

obtained reward to guide their effort choices. In order to provide participants with a 

sense of how well they were doing, every 10 trials we provided them with an overview of 

their performance in the last 10 trials. Specifically, the participants were presented with 

two boxes (i.e., € 2 rewards and € 10 rewards) where the number of times they were 

correct and fast enough in that condition was shown. After participants clicked on the € 

2 or the € 10 box, the trial followed the same structure as in the rating phase, but without 

the presentation of the rating scale. Again, the whole trial was fixation contingent when 

the fixation cross was presented. 

 



10 
 

 

Figure 1. Timeline of an incongruent trial in the rating phase. A prime was presented for 

23 ms and a target was presented for 120 ms, the participants had to react as fast as they 

could to the target by using the keyboard, reporting whether the target pointed to the left 

or the right. After reporting the target direction, the participants had to rate their 

subjective difficulty on the rating scale by using the mouse (stimuli larger for visualisation 

purposes).  

 

Figure 2. Timeline of an incongruent trial in the choice phase. Two boxes were presented 

that represented a low effort – low gain (i.e., no reaction time threshold) or a high effort 

– high gain (i.e., fast reaction time threshold) condition. The participants had to choose a 
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condition by clicking one of the two boxes. Next, a prime was presented for 23 ms and a 

target was presented for 120 ms, the participants had to react as fast as they could to the 

target by using the keyboard, reporting whether the target pointed to the left or the right 

(stimuli larger for visualisation purposes). 

The main experiment consisted of six blocks of 60 trials for the rating phase and six blocks 

of 60 trials for the choice phase. Before each phase, there was also a practice block of 16 

trials. 

EEG recording and preprocessing 

EEG was recorded using a fabric cap with 64 channels, referenced to channel Cz, while 

participants sat in a dimly lit room. Vertical and horizontal electrooculogram was 

measured from above and below the right eye. The stimulus-locked data was baselined 

at -250 to -50 ms before stimulus onset. To look at ERPs depending on the time of 

response, these data were then realigned to the onset of the response to the target (i.e., 

“s” or “d” keypress), while keeping the same pre-stimulus baseline. 

For the preprocessing, trials without an associated reaction time (i.e., no reaction time 

data), trials that were slower or faster than three standard deviations from the individual 

mean, trials without an associated rating (i.e., no subjective difficulty rating) and trials 

where participants blinked or looked away were excluded. On the remaining data, a notch 

filter of 50 Hz was applied to remove line noise. Next, a low-pass filter of 30 Hz was 

applied. The epochs were then made using the trigger of the fixation cross. Then, the 

epochs were visually inspected and trials with large artefacts were manually removed. 

Bad or noisy channels were interpolated. The data was also down-sampled to 250 Hz. 

Lastly, for the independent component analysis (ICA), a high-pass filter of 1 Hz was 

applied to do the ICA decomposition on. Then the weights of the ICA were applied to the 

non-high-pass filtered data. This was used to remove eye-blinks from the data.  
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Statistical analysis 

Behavioural  

For the rating phase, linear mixed models were fit to the reaction times on correct trials 

and the z-scored difficulty ratings on correct trials to examine whether these variables 

were affected by congruency. We also fit generalised mixed models to accuracy to 

examine whether it was affected by congruency. All models included a random intercept, 

whereas random slopes were only added when this significantly improved the model fit. 

The model fit was assessed using model comparison. The degrees of freedom were 

estimated using the Satterthwaite approximation. Another linear mixed model analysis 

was used to examine the influence of congruency and reaction time on difficulty ratings. 

Again, only the correct trials were used. For the choice phase, a generalised mixed model 

analysis was fit on reaction times to examine whether they were affected by congruency, 

current context (i.e., two euro or ten euro) and their interaction. The same generalised 

mixed model was fit for accuracy and reward.  

Event-related potentials (ERP)  

To compute event-related potentials, we averaged the stimulus-locked EEG data and the 

response-locked EEG data separately for congruency (congruent vs. incongruent) and 

subjective difficulty (easy vs. difficult) in the rating phase, and separately for congruency 

(congruent vs. incongruent), and subsequent box choice (low effort – low gain vs. high 

effort – high gain) in the choice phase. To assess significance, we focused on average 

amplitude on electrode FCz and computed cluster-based t-tests for congruency and 

difficulty ratings in the rating phase, and for congruency and choice in the choice phase. 

Decoding analyses: temporal generalisation 

Then, a decoder was trained on congruency and rating in the rating phase, so we could 

confirm we could decode the information. This was also done for following choice in the 

choice phase. We started by doing a low-pass filter of 20 Hz on the already pre-processed 

data. The data was then epoched between .1 and 1 second. For the trial selection, the 

data was divided into congruent and incongruent trials. This was done in a way that for 
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each congruent trial, there was a matched incongruent trial that differed by 5 points on 

subjective difficulty maximum. This was done to make sure the predictor predicted on 

congruency and not subjective difficulty. For congruency, we used the LDA classifier using 

a least-square solver with automatic shrinkage using the Ledoit-Wolf lemma. For ratings, 

we used a scorer made by Jean-Remi King. A scorer is a function that yields a performance 

score based on the relation between the predictions by the classifier and true labels. In 

this case, we used Spearman correlation to compare rating predictions from the Ridge 

regression and true ratings. For future choice, we took the number of trials for the class 

with the lowest number and used the same number for the other class. The training data 

was resampled 10 times and 10-fold cross-validation was used.  

 

Results 

Behavioural results 

First, we focused on the behavioural results of the rating phase. A linear mixed model 

showed that the reaction times were faster on congruent trials (M = 375 ms) than 

incongruent trials (M = 443 ms), F(1,25.96) = 331.92, p < .001. A generalized mixed model 

showed that accuracy was higher on congruent trials (M = 99.4%) compared to 

incongruent trials (M = 90.0%), Χ(1) = 86.09, p < .001. Finally, a linear mixed model on 

normalized difficulty ratings showed participants rated incongruent trials as more difficult 

(M = .106) than congruent trials (M = -.34), F(1,26.06) = 42.00, p < .001. At the individual 

level, the congruency effect was significant in reaction times for 27 out of 27 participants, 

in accuracy for 24 out of 27 participants, and in difficulty rating for 19 out of 27 

participants (figure 3). 
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Figure 3. Behavioural results rating phase. Reaction times, accuracy and subjective 

difficulty are all modulated by congruency. Each grey dot represents a participant and the 

black dot represents the mean. 

Next, we examined whether difficulty ratings depended not just on the congruency itself, 

but also on the reaction time of a given trial. To examine this, we carried out a linear 

mixed model on normalized ratings with both congruency, reaction time and their 

interaction as predictors. This analysis showed significant main effects of congruency and 

reaction times (p < .001), demonstrating that both these variables have a unique 

influence on difficulty ratings. Moreover, there was also a significant interaction effect 

(F(1,7323.9) = 23.82, p < .001), showing that the effect of congruency was mostly expressed 

at slow reaction times (figure 4). 
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Figure 4. Behavioural results rating phase. The influence of congruency on subjective 

difficulty ratings was very large for slow reaction times, whereas it was much reduced for 

very fast reaction times.  

Next, we examined the data of the choice phase, and first examined whether we 

observed the same effects of congruency. A mixed regression model was fitted on 

reaction times with congruency, current context (low effort – low gain or high effort – 

high gain) and their interaction as predictors. This analysis showed a main effect of 

congruency on reaction times (F(1,25.4) = 240.34, p < .001), an effect of current context on 

reaction times (F(6712.5) = 998.68, p < .001), and a significant interaction between the two 

(F(1,6173.8) = 32.63, p < .001). In figure 5, you can see a large congruency effect in the low 

effort – low gain context (72 ms, z = 17.75, p < .001) and a slightly smaller, but still highly 

significant congruency effect in the high effort – high gain context (52 ms, z = 17.75, p < 

.001). The same analysis on the accuracy data gave highly similar results, namely a main 

effect of congruency (Χ2
(1) = 139.18, p < .001), current context (Χ2

(1) = 69.09, p < .001), 

and interaction between the two (Χ2
(1) = 3.96, p = .047). Similar to the reaction times, 

there was a very pronounced congruency effect in the high effort – high gain context 

(36.5%, z = 10.03, p < .001) and a slightly smaller but still significant congruency effect in 

the low effort – low gain context (14.8%, z = 9.46, p < .001). 
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Figure 5. Behavioural results choice phase. The congruency effect on reaction times and 

accuracy depending on the context. 

Next, to examine how these variables affected the probability of actually obtaining a 

reward (i.e., in the high effort – high gain context: being faster than 90% of reaction times 

of the rating phase and being correct; in the low effort – low gain context: being faster 

than 1.5 seconds and being correct). Therefore, we ran another generalized mixed model 

predicting whether or not a trial was rewarded, by congruency and current context. This 

analysis showed main effects of congruency (X2
 (1) = 102.26, p < .001) and context (X2

(1) = 

211.38, p < .001) on reward rate (i.e., accurate and fast enough), but there was no 

interaction between the two (p = .112). Figure 6 shows participants were more likely to 

obtain a reward in congruent trials (M = .73) compared to incongruent trials (M = .46). 

They were also more likely to obtain a reward in the low effort – low gain context (M = 

91%) compared to the high effort – high gain context (M = 27%). 
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Figure 6. The probability of obtaining a reward in the choice phase. The congruency effect 

and effects of context on reward rate.  

Next, we turned towards the context choices that participants made for the following 

trial. First, we fitted a generalised mixed model predicting which context participants 

chose to perform the next trial in, by current context, congruency, and their interaction. 

This analysis was performed on correct trials only. This analysis only showed a main effect 

of current context (X2
(1) = 13.082, p < .001), but no main effect of congruency (p = .989), 

nor interaction (p = .292). Thus, it appears that future context choices were not affected 

by whether or not there was a response conflict on the current trial. 

Given the finding in the rating phase that the congruency effect was mostly pronounced 

at slow reaction times, we, therefore, considered the possibility that congruency only 

affected future context choices for slow reaction times. Therefore, we added reaction 

times (and all interactions with reaction times) to the previous model. Apart from the 

main effect of current context (p < .001), there now also was a main effect of reaction 
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times (X2
(1) = 13.50, p < .001), and a few borderline significant effects (congruency: p = 

.056; congruency by reaction times: p = .080; choice by congruency by reaction times: p 

= .084). As can be seen in figure 7, the future choice did not depend on congruency for 

very fast reaction times, whereas for slower reaction times, participants tend to 

increasingly select the safe low effort – low gain condition when the trial they just 

performed was incongruent. This finding is consistent with the finding in the rating phase 

that the congruency effect was mostly pronounced at slow reaction times. Moreover, it 

is consistent with our hypothesis that people monitor congruency and rely on this source 

of evidence to guide effort choices. Note, however, that this conclusion should be taken 

with serious caution given that the three-way interaction did not reach significance (p = 

.080). 

 

Figure 7. The congruency effect and effect of reaction time on future choice. Participants 

increasingly selected the high effort – high gain context for future trials when they made 

a fast response to the current trial. It also appears that for slow responses, participants 

were more likely to select the high effort – high gain context after an incongruent trial, 

whereas this pattern was reversed for fast responses. Note, however, that this effect 

should be interpreted with caution is it did not reach statistical significance. 
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In the final analyses, we directly examined the influence of obtaining a reward or not on 

the following choice (i.e., as an aggregate measure of accuracy and reaction times). Again, 

note that participants did not receive any trial-by-trial feedback so any effect of obtained 

reward is purely because participants internally monitored reward probability. To do so, 

we fitted a general mixed model featuring only current context, reward and their 

interaction as predictors. This analysis showed significant main effects of current context 

(p < .001), reward (X2
(1) = 12.46, p < .001), as well as a significant interaction (X2

(1) = 6.56, 

p = .010). This interaction reflected that people were more likely to select the high effort 

– high gain condition after a rewarded versus an unrewarded trial, an effect that was 

significant in the low effort – low gain context (12.9%, z = 4.16, p < .001), but not in the 

high effort – high gain context (1.8%, z = 0.54, p = .586) (figure 8). 

 

Figure 8. The effect of reward and current trial on following choice. 

To summarise the above, the results from the choice phase demonstrate that participants 

do monitor their performance and reward outcome, and use this information to guide 

effort choices (although this was only shown for reaction times, accuracy and reward, not 

for congruency). Now, the critical question is whether we can also predict effort choices 

using the EEG data of the rating phase. 
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Event-related potentials 

To examine how neural responses were modulated by congruency and subjective 

difficulty, we used the data of the rating phase and computed event-related brain 

potentials on correct trials only, and we did so separately for congruent and incongruent 

trials. These were then further split into subjectively easy trials and subjectively difficult 

trials using the median of each participant. As can be seen in figure 9 A, at electrode FCz, 

the stimulus-locked ERP showed significant modulation by congruency from 160 ms to 

224 ms (p = .011), from 256 ms to 300 ms (p = .014) and from 320 ms to 416 ms (p = 

.003). The second significant time-window from 256 ms to 300 ms shows a frontocentral 

negativity on the topographical plot, which corresponds to the N2 component. The later 

significant time-window from 320 ms to 416 ms show a more frontal positivity on the 

topographical plot, which corresponds to the P3 component. Both these findings are well 

in line with the literature on conflict processing, where congruency usually affects the N2 

and the P3 component. Unexpectedly, we did not observe a significant modulation of 

subjective difficulty. However, based on the previous behavioural analyses and the study 

by Desender et al. (2016), we decided to do a paired t-test on incongruent-difficult trials 

versus incongruent-easy trials, using the time-window between 360 ms and 460 ms post-

stimulus (by Desender et al. (2016)). This showed a significant modulation (p < .001). So, 

even though we did not find any effects of subjective difficulty when using a cluster-based 

permutation test, when using a more specific time window chosen from a previous study 

on this topic, we did observe that subjective difficulty specifically modulated the P3 

component. We also looked for this modulation in the response-locked ERPs. Figure 9 B 

shows the response-locked ERPs at electrode FCz for the rating phase. Here, the ERP 

showed nearly significant modulation by congruency during the time-window from -132 

ms to 008 ms (p = .053). We also see a frontal positivity for congruency on the 

topographical plot for this cluster. For rating, there were no significant clusters.  
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Figure 9. Stimulus-locked ERPs at electrode FCz as a function of congruency and subjective 

difficulty for the rating phase (A). Response-locked ERPs at electrode FCz as a function of 

congruency and future choice for the choice phase (B). 

For the choice phase, we again calculated the ERPs for the correct trials only. These were 

then split into congruent and incongruent trials and then also into the following choice 

(i.e., low effort – low gain or high effort – high gain). On figure 10 A, at electrode FCz, the 

stimulus-locked ERP shows a significant modulation by congruency during the time-

window from 244 ms to 308 ms (p = .012) and during the time-window from 352 ms to 

476 ms (p < .001). Both these effects correspond well to what was observed in the rating 

phase (i.e., figure 9), namely a modulation of the N2 and the P3 component by response 

conflict. Finally, there was no significant modulation by following choice. Figure 10 B 

shows the response-locked ERPs at electrode FCz for the choice phase. The ERP shows a 

significant modulation by congruency during the time-window from -128 ms to 4 ms (p < 

.001) and during the time-window from 80 ms to 232 ms (p = .002). The first significant 

time-window is accompanied by a large frontal positivity and the second significant time-

window is accompanied by a smaller frontal positivity, which can both be seen on the 

topographical plots in figure 10 B. For following, choice, the ERP shows a significant 

modulation by following choice during the time-window from -200 ms to -140 ms (p = 

.047) and during the time-window from 80 ms to 568 ms (p < .001). The first significant 

time-window is accompanied by a posterior negativity, while the second significant time-

window is accompanied by a central positivity, which can both be seen on the 

topographical plots in figure 10 B. 
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Figure 10. Stimulus-locked ERPs at electrode FCz as a function of congruency and future 

choice for the choice phase (A). Response-locked ERPs at electrode FCz as a function of 

congruency and future choice for the choice phase (B). 

To summarise, the analyses on the ERPs shows us that there is a link between objective 

difficulty (i.e., congruency) and subjective difficulty (i.e., rating), given that they have 

similar neural markers.  

Within-condition decoding 

For the decoding analyses, we first wanted to see whether we could use a decoder to 

predict congruency, rating and following choice. For this part, only correct trials were 

used, to avoid that the decoder was instead decoding correctness versus errors (i.e. 

because congruent trials are more likely to be correct). Importantly, as explained before 

the trial selection for these decoding analyses was done orthogonal to the other variables 

(e.g., when decoding subjective difficulty it was reassured that each level of subjective 

difficulty had an equal level of congruent and incongruent trials). Therefore, if it is 

possible to decode these different variables this implies that these are associated with 

unique neural activity. For congruency, super-trials were made by averaging four trials 

together. It has been shown that averaging four trials is a good compromise to improve 

the signal to noise ratio (Grootswagers, Wardle, & Carlson, 2017). Figure 11 A and B show 

the temporal classification accuracy for congruency in the rating phase. This classifier was 

trained and tested on each point in time. As you can see, the classification accuracy goes 

as high as 70%. For the stimulus-locked data, you can see that significant decoding was 

possible from 200 ms to 900 ms (p < .0002) (figure 11 A). For the response-locked data, 

you can see the same significant clusters from -200 ms to 500 ms (p < .001) (figure 11 B). 

We can also see some significant clusters that have reversed polarity. This only appears 

pre-stimulus. Next, in figure 11 C and D you can see the decoded performance for 

subjective difficulty regression in the rating phase. The scale on this image shows how 

much the predicted subjective difficulty was correlated with the empirical subjective 

difficulty across the data and time. For stimulus-locked data, significant clusters were 

found from 200 ms to 800 ms (p < .0002) (figure 11 C). For response-locked data, 



25 
 

significant clusters were found from -200 ms to 400 ms and from 400 ms to 700 ms (p < 

.002) (figure 11 D). We again see significant clusters that have reversed polarity. Figure 

11 E and F shows the decoded performance for future choice classification in the choice 

phase. This was to double-check whether we could decode this information, which was 

indeed possible. To overcome the imbalance between the low effort – low gain and high 

effort – high gain condition, we equated the number of trials for each condition. For the 

stimulus-locked data, multiple significant clusters were found from 250 ms to 800 ms (p 

< .006) (figure 11 E). For the response-locked data, we see the same significant clusters 

from -200 ms to 400 ms (p < .001) (figure 11 F). Some clusters have also reversed polarity. 

When we look at figure 11, we can see that the significant decoding always starts around 

300 ms (stimulus-locked). 

These analyses demonstrate that it is possible to decode each of these conditions based 

on EEG activity. Interestingly, the congruency and subjective difficulty decoding exhibited 

a significant decoding performance mostly on the diagonal, suggesting that these two 

cognitive processes were associated with distinct patterns of neural activity across time 

(King & Dehaene, 2014). Alternatively, if these conditions were decodable from a unique 

EEG pattern, the significant decoding performances would be spread in the horizontal 

and vertical axes (i.e., off-diagonal). This suggests that distinct informative neural activity 

about congruency and subjective difficulty unravels through time and that the neural 

representations of these two cognitive processes involve a succession of neural stages.  
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Figure 11. Decoding performances. Decoding performances for congruency classification 

with stimulus-locked (A) and response-locked data (B), subjective difficulty regression with 

stimulus-locked (C)  and response-locked data (D), future choice classification with 

stimulus-locked (E) and response-locked data (F). 

Across-condition decoding 

Having shown that it is possible to decode congruency, subjective difficulty and future 

choices, we now turn towards the most critical research question. Namely, can we 

decode future context choices based on neural signatures of conflict or based on neural 

signatures of subjective difficulty? First, we examined whether a classifier that was 

trained to decode on congruency in the rating phase was able to predict future choices 

in the choice phase. When this analysis was done in the low effort – low gain context 

(figure 12 A and B), no significant clusters were found. When we repeated the same 

analysis on the data of high effort – high gain context (figure 12 C and D), also no 

significant clusters were found.  
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Figure 12. Cross-decoding accuracies for congruency in the rating phase. Training on 

congruency in the rating phase and testing on following choice in low effort – low gain 

context in the choice phase for stimulus-locked data (A), low effort – low gain context in 

the choice phase for response-locked data (B), high effort – high gain context in the choice 

phase for stimulus-locked data (C), and high effort – high gain context in the choice phase 

for response-locked data (D).  

We then tried to decode by training on subjective difficulty rating in the rating phase and 

testing on future choice in the choice phase in the low effort – low gain context (figure 

13 A and B). Again, no significant clusters were found. And lastly, we tried to decode by 
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training on subjective difficulty rating in the rating phase and testing on future choice in 

the choice phase in the high effort – high gain context (figure 13 C and D). No significant 

clusters were found. 

 

Figure 13. Cross-decoding accuracies for subjective difficulty in the rating phase. Training 

on congruency in the rating phase and testing on following choice in low effort – low gain 

context in the choice phase for stimulus-locked data (A), low effort – low gain context in 

the choice phase for response-locked data (B), high effort – high gain context in the choice 

phase for stimulus-locked data (C), and high effort – high gain context in the choice phase 

for response-locked data (D).  
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These results suggest that we cannot decode following choice based on the neural activity 

of congruency (i.e., objective difficulty) and rating (i.e., subjective difficulty). 

 

Discussion 

In this study, we examined whether neural markers of conflict detection or neural 

markers of subjective difficulty judgements could predict the investment of cognitive 

control in a demanding task. Which neural activity predicts our effort choices? Is it neural 

activity related to the feeling of subjectivity difficulty, or is it neural activity related to the 

detection of a conflict between two incompatible responses? To examine this, we 

recorded scalp EEG while participants performed a masked priming task where they had 

to decide whether the stimulus pointed to the left or to the right, followed by deciding 

the subjective difficulty for that trial (i.e., rating phase). In a subsequent choice phase, 

the participants had to choose whether they wanted to carry out this task in a low effort 

– low gain or high effort – high gain context. 

The behavioural analysis for the rating phase showed that people were faster, more 

accurate and rated subjective difficulty lower for congruent trials compared to 

incongruent trials. The behavioural analysis for the choice phase showed that the 

participants being rewarded or not and the current context had an influence on their 

choice of the next condition. Here, when participants were in the high effort – high gain 

context (i.e., current trial) they were more likely to choose the low effort – low gain 

context (i.e., following trial) when they did not receive a reward. Importantly, this was 

observed even though participants did not receive trial-by-trial feedback, suggesting that 

participants internally monitor the probability of obtaining a reward. This observation is 

consistent with the EVC-theory (Shenhav et al., 2013) which states that the investment 

of cognitive control depends on the potential benefits that it brings (i.e., the reward). 

However, what these behavioural results do not show is whether this effect occurs 

because of subjective difficulty monitoring or conflict monitoring.  
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Next, the ERP analysis of the stimulus-locked data showed the same patterns as in the 

study by Desender et al. (2016). So, based on this study, there was an a priori hypothesis 

of how the ERP-signal would look like. We indeed were able to replicate a conflict-

sensitive component at around 250 ms (i.e., N2) and a subjective difficulty monitoring 

component at around 360 ms (i.e., P3). Even though the experimental designs of both 

studies are not identical, we still found the same results. This suggests that these 

components are not solely found in this study. It should, however, be noted that the P3 

component could not be found using a cluster-based permutation test, but only with an 

a priori time-window and specific electrodes. This a priori time-window and the specific 

electrode were decided on using the results from the previously mentioned paper 

(Desender et al., 2016). So, even though this effect was not sufficiently robust to be 

picked up by the cluster-based permutation test, it is still sufficiently robust when 

focusing on a priori time window. Topographical plots have also shown that the N2 

component is more frontocentral while the P3 component is more frontal. So, the 

difference in time and topographies of the N2 and P3 components suggest that the brain 

has different processes for conflict and subjective difficulty. For the response-locked ERP 

analysis, we confirmed the presence of the P3 component right before the response. But 

there were no significant components after the response.  

The temporal generalisation of congruency showed that we could predict congruency in 

the rating phase with an accuracy up to 70%. The temporal generalisation of difficulty 

ratings showed we could decode the subjective difficulty with an above chance level. 

Lastly, the temporal generalisation of the following choice showed that we could predict 

the following choice with and accuracy up to 55%. For the response-locked data, there 

were also significant clusters that reversed in polarisation. This isn’t the most important 

part of the study, but should also not be ignored. The pattern of the temporal 

generalisation was located on the diagonal, which suggests that these are isolated/chain 

processes (King & Dehaene, 2014).  

Lastly, the cross-temporal generalisation of congruency and rating on following choice 

showed no significant results. This suggests that we cannot decode a participant’s 
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following choice (i.e., low effort – low gain or high effort – high gain) based on the neural 

data of congruency and subjective difficulty ratings. This observation is unexpected, given 

that the EVC theory by Shenhav et al. (2013) predicts that effort investment depends on 

the detection of conflict, which is believed to be mediated by the anterior cingulate 

cortex (i.e., the N2 component). We can only speculate about why we were unable to 

find significant across-decoding results.  

One reason why we could not predict a participant’s following choice based on the neural 

data of congruency and subjective difficulty ratings could be that the EVC theory by 

Shenhav et al. (2013) is incorrect and conflict processing does not have an influence on 

effort choices. Or at least not sufficiently to alter the neural data of congruency and 

subjective difficulty in this study design. It is also possible that the € 10 and € 2 context 

were not perceived as high effort – high gain and low effort – low gain. Possibly, the 

difference between the two rewards was not enough. Lastly, by removing data to make 

sure the prediction was orthogonal, we may have lost too much data. While we had 

enough data overall, this may have lead to insufficient data to train and test the predictor. 

 

Conclusion 

Based on this study, we could not predict a participant’s following choice based on the 

neural data of congruency and subjective difficulty ratings. This does not mean that this 

is impossible and thus requires further research. 
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