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Samenvatting

Er wordt veel mankracht gestoken in het observeren van zwangere merries
om een goed verloop van de bevalling te verzekeren. Automatische obser-
vatie van de zwangere merries zou paardeneigenaars kunnen geruststellen.
Dit onderzoek stelt een methode voor die veulendetectie kan uitvoeren aan
de hand van accelerometer data. Een op een autoencoder gebaseerd an-
omalie detectie algoritme werd ontwikkeld dat het normale gedrag van de
merrie kon onderscheiden van het gedrag dat de merrie vertoonde wanneer
de bevalling werd ingezet. Verschillende autoencoder architecturen en an-
dere verbeteringen zoals de discrete Fourier transformatie van de acceler-
ometer data werden geëvalueerd om de performantie van het algoritme te
verbeteren. Door een dynamische beslissingsmetriek die zijn beslissing of een
merrie op het punt staat te bevallen of niet baseerd op bepaalde statistieken
van elke merrie apart werden veelbelovende resultaten geboekt. Uiteindelijk
werden alle bevalling correct herkend maar voor sommige merries werden
valse gedetecteerd in de dagen voor de bevalling.
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Summary

Lots of effort is put into the monitoring of pregnant mares to ensure a healthy
delivery of the foal. Automatic monitoring of the pregnant mares and their
unborn foals could bring horse owners peace of mind. In this research a
method is proposed to perform foaling detection based on accelerometer
data. An autoencoder based anomaly detection algorithm was developed
that could distinguish the mare’s normal behavior from the behavior shown
when the mare entered labor. Different autoencoder architectures and other
enhancements such as the discrete Fourier transform of the accelerometer
values were evaluated to enhance the performance of the algorithm. By using
a dynamic decision metric that based its decision if a foaling is about to take
place or not on certain statistics of each mare individually promising results
could be achieved. In the end all foalings got correctly detected but some
mares still showed one or more false alarms in the days before parturition.
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Abstract— In this research data acquired from an accelerometer was
used to develop a foaling detection algorithm. The proposed method made
use of anomaly detection using an autoencoder to detect behaviors that in-
dicated the start of labor. Several different configurations and parameters
were evaluated to improve the performance of the algorithm.
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I. INTRODUCTION

With over 16 million horses worldwide, the equine industry
results in 1.6 million full time jobs and a total global revenue of
more than 270 billion euros [1]. It is clear that a lot of money
is involved in this growing sector and a major part of it is the
breeding of top sport horses and hence the selling of their sperm
and embryos, with a single straw of sperm costing up to AC8,000
and embryo’s being auctioned off for more than AC50,000 [2][3].
Therefore, the breeding of new foals with a good heritage in-
cludes financial and emotional involvement of the breeders. Au-
tomatic monitoring of pregnant mares and their unborn foals can
bring horse owners peace of mind.
Many methods to predict the time of parturition already ex-
ist, such as looking at the size of the udder and inspecting the
amount and character of mammary secretion [4]. Although, this
indication is not exact and is mainly based on intuition built
upon previous experience which makes it a subjective decision.
To improve these predictions many different technologies have
been developed to predict and recognize the time of parturition,
such as FoalGuard, Foalert and Birth Alert [5] [6] [7]. But these
all made compromises on either horse comfort, accuracy or ease
of use.
In this abstract an autoencoder based anomaly detection algo-
rithm will be developed that could be deployed for foaling de-
tection. Several configurations and parameters of the proposed
model will be evaluated to improve the performance of algo-
rithm.

II. METHODOLOGY

A. Data collection procedure

The data acquisition was done in collaboration with the Ghent
University clinic of large animal reproduction. During the 2019
foaling season 15 mares that were stabled there for observation
during their pre-foaling period were fitted with a triaxial Axivity
AX3 accelerometer (Axivity Ltd, Newcastle, United Kingdom).
The sensors were attached to the halter in the orientation shown
in figure 1. By attaching the device to the halter worn by all
mares stabled at the clinic, the impact on the comfort of the
mare was minimized.

Fig. 1. Direction of each axis in respect to the horse [8]

B. The Datasets

For each dataset the accelerations on all three axes were cap-
tured at 50 Hz with a range of -8 g to +8 g. An overview of the
size of the dataset per mare is shown in figure 2. Because of the
high sampling rate each dataset grows quickly to large propor-
tions. To reduce the computational load for handling the amount
of data each dataset was reduced to a 1 Hz sampling rate. This
was done by taking the average of each group of 50 continu-
ous samples. The individual behaviors of each mare were still
identifiable but the computational load was drastically reduced.
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Fig. 2. Total time of movement data in days before partus for the participating
horses.

III. ANOMALY DETECTION MODEL

A. Overview

An autoencoder based anomaly detection algorithm was used
as a basis for the foaling detection system. The main benefit of
this approach was that it could be trained unsupervised. This



was necessary due to the limited amount of foaling events re-
sulting in a heavily unbalanced dataset. The idea behind using
an autoencoder to perform anomaly detection is to train the au-
toencoder on regular data only. This makes it overfit on recon-
structing regular data making it perform worse on data that sig-
nificantly differs from its training set. Because pregnant mares
often show signs of restlessness and symptoms of colic when
they enter stage one of parturition this idea could be used for
detecting the start of foaling since this behavior is significantly
different from the mares normal behavior [9].

B. Architecture

The architecture of the autoencoder consisted of two convo-
lutional layers for both the encoder and the decoder part of the
network. By using convolutional layers the network could per-
form automatic feature extraction and learn certain features dur-
ing training. Next to this architecture two other architectures
were evaluated as well, one that consists of recurrent layers and
another one that is a combination of both recurrent and convo-
lutional layers. In figure 3 a visualization of the three different
types of autoencoder architecture is given.
The input of the autoencoder was set at a fixed number of sam-
ples and thus a fixed timeframe, these were obtained from the
acquired data via a sliding window approach. Table I lists
an overview of the different tweakable parameters used in this
study.
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Fig. 3. The three used autoencoder architectures. The annotations indicate the
layer output size with a description of each parameter given in table I

IV. RESULTS

Out of the 15 datasets that were captured, 11 contained more
than 3 days of pre-foaling data. These 11 mares were divided
into a training and an evaluation dataset, the training set con-
taining data of 6 mares, the evualtion set containing the data of
the other 5 mares. All of the networks were trained using the
parameters shown in table II unless specified otherwise.

Parameter Description
N Number of input samples
M Sliding window stride length
F1, F2, ... # of convolutional filters
P1, P2, ... Size of max pooling window
L # of dimensions of the latent space
R # of units of the recurrent network
SR Sampling rate of the network input, in Hz

TABLE I
AUTOENCODER HYPERPARAMETERS

Parameter Value
Sampling rate 1 Hz
Input window length 1800 (30 minutes)
Stride length 900 (15 minutes)
Number of convolutional filters 64-32
Pooling size 1 (no pooling)-10
Activation function ReLu
Batch size 32
Epochs 100
Loss function MSE
Optimizer Adam

TABLE II
TRAINING PARAMETERS

A. Influence of the architecture

To evaluate the influence the precise architecture had on the
performance of the autoencoder several experiments were per-
formed. Several configurations for each type of autoencoder
were tried out, varying the input sizes, number of filters, base
architecture, sampling rate, etc. But in the end this only re-
sulted in differences in the absolute values of the reconstruction
errors. Since the decision if a certain window is anomalous or
not depends only on the shape of the reconstruction error signal
and not the absolute value the different configurations made no
difference on the anomaly detection performance of the autoen-
coder. In figure 4 a an example of the reconstruction error signal
leading up to parturition for a random mare between all three
architectures is given, none of the three resulted in a peak close
to parturition.
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Fig. 4. Comparison of reconstruction errors for the 3 different architectures



B. Method of standardization

One of the most influential parts of the proposed method was
the way the data was standardized. Two different methods of
standardization were evaluated. First, data was standardized per
mare to reduce the influence of halter placement and mare size
on the network. Second, each input window was standardized
separately so the autoencoder input has a mean of 0 and a stan-
dard deviation of 1. This facilitates the autoencoder ’s learning
to reconstruct its inputs.
When comparing the two methods, as shown in figure 5, it can
be seen that while standardizing per mare a large peak in the re-
construction error appears at parturition. However, when stan-
dardizing per input window this peak completely dissappears
and the entire signal is almost completely flat. With standard-
ization per input window the near-parturition data and the reg-
ular data become completely indistinguishable to the network,
standardizing the data per mare is thus necessary to make the
proposed algorithm function correctly.

72.0 60.0 48.0 36.0 24.0 12.0 0.0
Hours until start of foaling window

0

2

4

6

8

10

12

Re
co

ns
tru

ct
io

n 
er

ro
r

Per mare
Per window

Fig. 5. Comparison of reconstruction errors for both methods of normalization

C. Discrete Fourier transform

By using the acceleration values as input to the autoencoder
the network becomes sensitive to the orientation of the ac-
celerometer. The network could get confused if the sensor sud-
denly shifts or gets mounted upside down as the baseline of
the data is now different to what it has seen during training.
A way to alleviate the influence is to transform the input win-
dows from the time to the frequency domain by applying the
discrete Fourier transform [10]. In the frequency domain the
data becomes much less dependent on the exact orientation of
the sensor as it now consists of the frequencies that are part of
the signal and not the absolute acceleration values.
In figure 6 an example is presented of the reconstruction errors
for both accelerometer values as an input and the DFT of these
values as an input. The regular model shows no clear peak close
to parturition but the one that makes use of the DFT does. How-
ever, to further evaluate the influence of the DFT on the perfor-
mance of the proposed method more data is required.

Fig. 6. Reconstruction errors for an autoencoder trained with acceleration val-
ues as input (left) and one that was trained with the DFT of the acceleration
values as its input (right)

D. Other performed experiments

In addition to these three experiments several others were per-
formed as well. These include trying out a custom loss function
during training, applying transfer learning to update the model
with specific knowledge of each mare, using the latent space of
the autoencoder to do predictions, etc. All of these experiments
showed no visible improvement to the reconstruction error sig-
nal that was used for anomaly detection.

E. Making a decision

The final step of the anomaly detection algorithm proposed in
this study is making a decision based on the reconstruction er-
rors of the autoencoder. This can be done in several ways but the
method proposed is just setting a threshold. If the reconstruction
error for a certain window goes above this set threshold an alarm
is triggered. This threshold can be set in many different ways,
being either statically were the threshold is the same for each
mare, or dynamically were the threshold is different for each
mare. A dynamically set threshold is preferred as the height of
the peaks and the baseline of the reconstruction error signal can
differ significantly between mares.
To set this threshold each mare should first go trough an analysis
phase were the values of the reconstruction errors get analyzed
to decide the value of the threshold. In table III the performance
of a number of these thresholds, based on statistics of the recon-
struction errors during the analysis phase, are presented. The
best results in terms of true positives and false positives were
obtained by using a threshold based of the mean plus a fixed
number.
Out of the 11 mares, 11 foalings were succesfully recognized
and 7 mares resulted in one or more false alarms in the three
days leading up to parturition. With more data and tweaking of
the number of standard deviations to add to the mean the last
method of deciding a threshold could also prove as succesful.
The benefit of adding a number of standard deviations instead
of a fixed value is that it automatically adjusts the threshold to
the variability of the reconstruction error signal of each mare.

Method TP FP FN
max 8 9 3
max+ 1 6 5 5
mean+ 1 11 7 0
mean+ 1.5 10 5 1
mean+ 3σ 11 9 0
mean+ 5σ 10 7 1

TABLE III
OVERVIEW OF THE NUMBER OF CORRECT PREDICTIONS/TRUE POSITIVES

(TP), FALSE ALARMS/FALSE POSTIVES (FP) AND UNDETECTED

FOALINGS/FALSE NEGATIVES (FN) FOR A DYNAMICALLY CHOSEN

THRESHOLD

V. CONCLUSION

In this research an algorithm is proposed to detect foalings
from accelerometer data based on an anomaly detection model
using an autoencoder. By training the autoencoder on regular



behavior a metric can be used to decide if a given input is show-
ing behavior common to mares entering labor or not based on
the reconstruction error. By making this metric dynamically ad-
just to each mare specifically 11 out of the 11 foalings that were
used for evaluation got succesfully detected.
Out of these 11 mares there were still some that triggered one
or more false alarms leading up to parturition. Several methods
were proposed and evaluated to reduce the amount of false pos-
itives but due to a lack of data no conclusion could be made.
Future work should include the acquisition of new datasets to
further evaluate these proposed improvements. Studies about
the influence of different sensor locations on the performance of
the proposed algorithm should be conducted as well.
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Lay summary

In this study an algorithm was designed that triggers an alarm when a
mare was about to give birth. This system made use of data about the
movements of the horse. To acquire this data a sensor that could detect these
movements, called an accelerometer, was attached to the halter the mare
was wearing. There were two ways this type of system could be developed,
the first is to manually go trough to the data and look for specific signs
that indicate the start of foaling. Then based on the findings of this step
a computer program could be written that would detect these signs and
trigger an alarm. Not only would it be very time consuming to go trough
the data manually as this consisted of many millions of data points, it would
also result in an immensely complex computer program as these signs could
depend on hundres or even thousands of variables. Because developing such
a program would be virtually impossible a second approach was used for
this study, machine learning. In machine learning a computer can, based
on complex mathematical formulas and algorithms, learn to solve complex
problems on its own, without human intervention. The human only needs to
define the space the computer can search trough to look for a solution, after
which the computer can train to solve the problem on its own by letting
it look at lots of examples of already solved problems. When this training
phase is done the computer can be given unsolved problems and solve these
on its own by using the knowledge learned during training.
To apply machine learning for developing a foaling detector the idea was
to let the computer learn what regular horse behavior looks like. Once it
had learned this, an input where the mare was showing abnormal behavior,
such as rolling, flank watching, etc. when entering labor, would confuse the
computer would get confused as it doesn’t know anything about this type
of behavior. By measuring this confusion an alarm could be triggered once
this confusion goes above a certain threshold. Several different methods were
evaluated during this study to improve the capabilities of the computer to
distinguish regular from irregulal behavior, such as transforming the data
about the movements of the mare or using different types of mathematical
formulas to let the computer learn what regular behavior looks like.
In the end the computer could correctly detect all of the 11 foalings that it
was given to evaluate the performance. While this may seem as a perfect



result, the proposed approach also resulted in 7 mares giving false alarms,
which could lead to alarm fatigue where people don’t take an alarm serious
as it has a high chance of being a false alarm. Because of this future research
should mainly focus on getting the amount of false alarms as low as possible.



Contents

1 Introduction 1
1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related research . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Current technology . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Followed approach . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Methodology 8
2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Data cleaning . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Data exploration . . . . . . . . . . . . . . . . . . . . . 13

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Model input data . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Model architecture . . . . . . . . . . . . . . . . . . . . 18

2.3 Making a decision . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Results 26
3.1 Autoencoder architectures . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Convolutional autoencoder . . . . . . . . . . . . . . . 28
3.1.2 Recurrent autoencoder . . . . . . . . . . . . . . . . . . 29
3.1.3 Combined autoencoder . . . . . . . . . . . . . . . . . . 30

3.2 Sliding window parameters . . . . . . . . . . . . . . . . . . . 31
3.3 Sampling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Discrete Fourier transform . . . . . . . . . . . . . . . . . . . . 35
3.6 Custom loss function . . . . . . . . . . . . . . . . . . . . . . . 38
3.7 Latent representation . . . . . . . . . . . . . . . . . . . . . . . 39
3.8 Leave-one-out cross-validation . . . . . . . . . . . . . . . . . . 41
3.9 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.10 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.11 Decision metric . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.11.1 Reconstruction errors based threshold . . . . . . . . . 46
3.11.2 Seasonal-trend composition based threshold . . . . . . 47



4 Discussion 50

5 Conclusion and Future work 53



Chapter 1

Introduction

1.1 Problem description

With over 16 million horses worldwide, the equine industry results in 1.6
million full time jobs and a total global revenue of more than 270 billion
euros [1]. It is clear that a lot of money is involved in this growing sector
and a major part of it is the breeding of top sport horses and hence the
selling of their sperm and embryos, with a single straw of sperm costing up
to AC8,000 and embryo’s being auctioned off for more than AC50,000 [2][3].
Therefore, the breeding of new foals with a good heritage includes finan-
cial and emotional involvement of the breeders. Automatic monitoring of
pregnant mares and their unborn foals can bring horse owners peace of mind.

More than 10% of pregnant mares suffer from dystocia during foaling, which
can be recognized by a prolonged or failure of progression of the first or
second stages of parturation [4][5]. In most of the cases, dystocia occurs
due to a malposture of the foal in the uterus or birth canal [6]. This event
requires early detection to prevent the foal from dying of asphyxiation. If
stage 2 of the labor takes more than 40 minutes, the percentage of foal mor-
tality increases to 20% [4]. The gestation duration of horses can be highly
variable, ranging from 300 days up to more than 360 days, and is dependent
on many factors such as period of insemination, sex of the foal, breed and
hereditary factors [7][8]. Therefore, lots of effort goes into the 24/7 monit-
oring of pregnant mares. For example, at the Ghent University veterinary
clinic, teams of veterinarians and veterinary medicine students monitor the
stabled pregnant mares 24/7 and assist with foalings[9].

By looking at several features of the pregnant mare, like the vulva lax-
ity, vulvar discharges, relaxation of the pelvic ligaments, but especially the
size of the udder and the amount and character of mammary secretion, ob-
servers can get a strong indication of when the parturation is about to take
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place [5]. Although, this indication is not exact and is mainly based on in-
tuition built upon previous experience which makes it a subjective decision.
Therefore, a lot of research, which will be discussed in the next section, is
done in developing automatic foaling detection systems resulting in different
technologies.

1.2 Related research

Most research in the field of not only foaling detection but also calving and
farrowing detection is focused on two aspects of the pregnant animal as pre-
dictors, namely the temperature and/or the behavior of the animal.

Research has shown that there is a significant decrease in body temper-
ature in both mares and cows the day before parturition [10] [11] [12]. To
use this as a predictor for parturition continuous body temperature mon-
itoring is required, this can either be done manually by using a rectal or
tympanic infrared thermometer or by reading out an implantable microchip
transponder [13]. But this approach is time consuming since human inter-
ventions are required for every reading. Using a telemetric gastrointestinal
pill could result in more frequent measurements with wireless transmission
to a base station, thus alleviating the need for a human intervention [14].
However, by requiring a sensor belt to house the receiving and transmitting
equipment, this system imposes a burden on the horse’s comfort, with ex-
cessive wear of the surcingle possibly contributing to rubbing on the mare.
Because of the drawbacks of both methods, despite body temperature be-
ing a good predictor for the detection of foaling, it is hard to implement in
practice.

Another feature that is shown to be useful for the prediction of parturition
is the behavior of the animal. With small activity trackers that incorporate
wireless transmission capabilities and extensive battery life becoming more
and more prevalent and affordable, this has the potential to be a practical
approach for foaling detection. Research has shown that a significant differ-
ence in behavior can be observed in the period leading up to to parturition
for horses but for cows and pigs as well [15] [16] [17] [18] [19]. The difference
in behavior is not as well-defined as the change in body temperature and
thus further analysis is required to build a predictor out of it. The total
locomotor activity as well as the frequency and total duration of standing,
lying, eating and other well-defined behaviors like tail raising, flank watch-
ing, urinating et cetera, are found to be useful features in a predictive model.
By using these features as input to a machine learning model, researchers
have been able to develop a calving detector with good performance [20].
An quick summary of the related research is given in table 1.1.
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Based on this and other research, some foaling detectors have been put
into production and are used in the field today. A short overview of some
of these systems will be given in the next section.

Study Animal Features

Body temperature and behaviour of
mares during the last two weeks of preg-
nancy (Shaw et al., 1988)

Horse Body temperature,
frequency of shown
behaviors

Body temperature fluctuations in the
periparturient horse mare (Cross et al.,
1992 )

Horse Body temperature

Methods and on-farm devices to predict
calving time in cattle (Saint-Dizier &
Chastant-Maillard, 2015)

Cow Body temperature,
tail raising, lying
bouts, clinical
signs

Detection of the time of foaling by ac-
celerometer technique in horses (Equus
caballus)—a pilot study (Aurich et al.,
2018)

Horse Increase in activity

Monitoring of total locomotor activity in
mares during the prepartum and post-
partum period (Bazzano et al., 2015)

Mare Increase in activity

Predicting farrowing based on accelero-
meter data (Hietaoja et al., 2013)

Pig Increase in activity

Predicting farrowing of sows housed in
crates and pens using accelerometers and
CUSUM charts (Hietaoja et al., 2016)

Pig Increase in activity

Prediction of parturition in Holstein dairy
cattle using electronic data loggers (Bas et
al., 2015)

Cow Number of steps,
lying bouts, ly-
ing time, standing
time

Machine-learning-based calving predic-
tion from activity, lying, and ruminating
behaviors in dairy cattle (Bewley et al.,
2017)

Cow Number of steps,
lying bouts, ly-
ing time, standing
time

Internet of Animals: Foaling detection
based on accelerometer data (De Waele,
2020)

Horse Acceleration val-
ues of the mare’s
head

Table 1.1: Overview of related research
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1.3 Current technology

The different foaling alert systems can be broadly categorized into 3 different
categories, namely systems that work by using sensors placed externally on
the mare, systems that use a device in or around the vagina/vulva of the
mare and external monitoring tools.

External sensor based systems

Several foaling detection systems work by using accelerometers and/or a
gyroscopes to determine if the mare is in a lateral recumbent position. The
main benefits of these systems are the fact that no surgical intervention is
required for placement and usage is not limited to stabled mares. Drawbacks
are that they are prone to false positives, e.g. if the mare uses a lateral re-
cumbent position to rest or sleep, that could lead to alarm fatigue, as well
as false negatives during dystocia in the initial parturition phase or when
the mare is not laterally recumbent during foaling.

Two examples of this type of system are FoalGuard and Birth Alarm, Foal-
Guard, depicted in figure 1.1, works by using an accelerometer attached to
the halter to determine the position of the mare which, because of the small
form factor, only has a small negative impact on the comfort of the mare
[21][22]. Birth Alarm, shown in figure 1.2, uses a gyroscope attached to a
surcingle, it manages to obtain a lower occurence of false alarms by waiting a
couple of minutes to see if the mare stays down to filter out occurences where
the mare is sleeping. This results in a delayed alarm trigger but reduces the
number of false positives and thus the risk of alarm fatigue. However, by
attaching the gyroscope on top of the surcingle and thereby restricting the
mare’s freedom to roll over it, the horse’s comfort is penalized.

Safemate Foalalarm, shown in figure 1.3, implements a different approach
by using a sensor that senses perspiration to detect the start of foaling, this
could however lead to false positives on warm days [23].

Internally placed systems

The Foalert system, shown in figure 1.4, uses two magnets that get sutured
to either side of the mares vulva. The alarm gets triggered when the two
magnets separate by the foal being pushed out of the mare, the alarm gets
triggered [27]. The false positive rate is low because of the physical inter-
action of the foal being required to trigger the alarm, but this also has a
negative effect on the number of false negatives in the case of dystocia in
the early stages of parturation. Surturation requires veterinary assistance
to mount and uninstall the device and also adversely affects the wearing
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Figure 1.1: FoalGuard [24]

Figure 1.2: Birth Alarm [25]

Figure 1.3: Safemate Foalalarm [26]

comfort of the mare.

Another type of foaling detection system in this category is Birth Alert,
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Figure 1.4: Foalert [29]

displayed in figure 1.5 [28]. This system consists of 2 parts, a light sensitive
sensor, which gets placed inside of the mares vagina, and a microphone, once
the light sensor gets pushed out of the vagina and starts detecting light again
it will make a distinctive sound, that when detected by the microphone will
result in an alarm. No veterinary assistance is required for installation, but
it is prone to false positives when the sensor falls out on its own and it does
suffer from the same false negative rate in case of dystocia as Foalert.

Figure 1.5: Birth Alert [30]

External monitoring tools

The last category of tools function without any placement of sensors on
the mare but by using external cameras or microphones, and therefore they
do not impede the comfort of the mare. The EquiView360 uses a camera
placed in the stable and implements machine vision algorithms to track the
behavior of the horse [31]. While it is primarily used for colic detection, it
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could be modified for foaling detection use, but this is not yet tested.

Figure 1.6: EquiView360 [32]

1.4 Followed approach

The goal for this thesis is to research the possibility to implement a foal-
ing detection system based on accelerometer data that performs equally as
good or better on both comfort and accuracy than current technologies. To
achieve this, small accelerometers attached to the mare will be used to col-
lect data about the behavior of the pregnant mare. This data will be passed
trough our foaling detection machine learning algorithm that will trigger an
alarm if a foaling is about to occur.

In this study, the anomaly detection subfield of machine learning will be
explored for approximating the time of the partus. The rest of this thesis
is organised as follows. In chapter 2 a description will be given of the data
acquisition method and the followed approach for the exploring and clean-
ing of data, after which the proposed machine learning algorithm to tackle
the problem will be further explained. Chapter 3 lists the conducted exper-
iments and the obtained results. In chapter 4 these results will be further
discussed and finally a conclusion will be drawn in chapter 5.
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Chapter 2

Methodology

2.1 Data

For this study data from 15 expecting mares stabled at the Ghent University
clinic of large animal reproduction was collected, from May 2019 to August
2019. The length of each dataset ranges from three hours to over two weeks
prepartus. A complete overview of the size of the dataset per mare is given
in figure 2.1. Out of these 15 mares, 13 entered labor between 10PM and
6AM, the other 2 gave birth around noon. One of these mares, Tribela, gave
birth to a twin of foals, a rare occurence [33].

2.1.1 Procedure

The Axivity AX3 triaxial accelerometers (Axivity Ltd, Newcastle, United
Kingdom), depicted in figure 2.2, were used for data collection. These were
chosen for their compact size, broad range of configurability, robustness and
extensive battery life. A full overview of the specs is given in table 2.1.

At the start of the measurements, each mare was equipped with two sensors,
one placed on top of the withers on a surcingle and one attached on top of
the halter, as shown in figure 2.3. There were however some issues with the
sensor on surcingle. First it would slide down when the mare was active
resulting in the sensor changing location which made it hard to use this
data in practice. Another, more severe issue, was that due to the sliding the
surcingle would rub against the mares withers and induce rubbing wounds,
therefore it was chosen to not use the surcingle for data collection as the
welfare of the mare was of the uttermost importance during this study.

The sensor on top of the halter was attached with ducttape to fix it firmly in
place, after which a couple layers of cohesive bandage was wrapped around it
to make sure no ducttape was rubbing against the mares head. The sensors
were placed in the same orientation each time, with the logo facing down
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Figure 2.1: Total time of movement data in days before partus for the
participating horses.

Figure 2.2: Axivity AX3 Triaxial Accelerometer [34]

and the USB port pointing to the right side of the mare, resulting in the
axis orientation that is shown in figure 2.4. For one mare the sensor was
placed upside down for some days but this was later fixed during the data
cleaning step by flipping the x and z axis. Total time of movement data in
days before partus for the participating horses. As for the recording para-
meters, a measurement range between -8 g and 8 g was used with a sampling
frequency of 50 Hz as it gave a wide range of resampling possibilities while

9



still having ample battery life.

If the sensor was mounted, it remained on the mare for at least two days
before being removed for downloading the data and checking whether it
still worked correctly. For example, one sensor stopped recording after a
few hours due to a defective battery, but this was during the first record-
ing period so only two days of data were lost. The timestamps of the gaps
created by removing the sensor were stored in a text file so that they could
be fixed during the data preprocessing phase. Six stables at the veterinary
clinic were equipped with CCTV cameras, the videos from these were down-
loaded and used for analyzing behavior leading up to the partus as well as
to check for anomalies such as a removed halter, so a gap in the data could
be recorded.

The raw data for each continuous dataset was then saved to a csv file,
containing per sample the timestamp and the x, y and z acceleration values.
Alongside this raw data a metadata file was stored per horse containing the
name of the mare, the timestamps of when each recording was started and
stopped and the moment the amniotic sac burst according to the observing
students.

Figure 2.3: Placement of the accelerometers

2.1.2 Data cleaning

The first step of the data cleaning process was to trim each dataset to only
contain the data of when the sensor was attached to the mare. This was
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Figure 2.4: Direction of each axis in respect to the horse [35]

Parameter Value

Dimensions 23 x 32.5 x 7.6 mm
Weight 11g
Moisture ingress IPx8 1.5m for 1hr
Dust ingress IP6x
Memory 512 MB Flash non-volatile
Acceleration Sample Rate 12.5 - 3200Hz Configurable
Battery Life 30 days @ 12.5Hz, 14 days @ 100Hz
Accuracy Range ± 2/4/8/16g Configurable
Accuracy Resolution upto 13 bit

Table 2.1: Axivity AX3 Triaxal Accelerometer specifications

done by loading the csv containing the raw data via the python framework
Pandas and only keeping the valid sections by removing the sections were
the sensor was not yet on the mare. The trimmed data was then saved
to disk. As a next step, these datasets were concatenated so that a single
dataset was obtained for each horse containing all the data, which was then
stored as a csv file. These datasets do contain gaps in the data from when
the sensor was taken of for checking if it was still functioning correctly and
the intermediate downloading of the data.
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Because of the 50 Hz sampling rate each dataset grows quickly to large
proportions. One day of logged data, for example, results in over four mil-
lion datapoints. There are almost no existing visualization tools that can
handle this amount of data easily. Therefore, a custom visualization tool
was introduced using the D3.js platform to check raw data on errors or an-
omalies. The idea behind the visualizer was to resample the data at different
zoom levels so only a limited number of datapoints is shown at each time
while keeping the ability to zoom. By resampling the data during a prepro-
cessing step and not during the runtime of the visualisation the overhead of
zooming is reduced to only the time it takes to load and display the new
datapoints. Two parameters for this type of visualization that need to be
chosen is how many datapoints will be displayed at one given time as well
as the number of regions we want to zoom into, these were set at 10.000
points and 10 regions of zoom for this thesis. In figure 1 a screenshot of the
application is shown, the alternating white and gray sections each indicate
a region on which the user can click to zoom in. To reduce the data from

Figure 2.5: Screenshot of the visualisation application

millions of datapoints to only 10.000 points the timeframe of the data series
was divided into 10.000 different sections of which the average was taken as
the value of each section. This was done recursively for each level of zoom
until the last level contained less than 10.000 points. Each sampled section
was then stored to disk for use in the visualization.

By checking the data of each mare using the visualizer a couple of errors
were found and manually corrected, for example, for one mare the sensor
was attached upside down for a couple of days, thus flipping the orienta-
tion of the y and z axis. Another issue that was quickly spotted using the
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visualization tool was that for another mare the timezone of the sensor was
set incorrectly, resulting in a 6 hour difference between the actual time of a
sample and the recorded timestamp, both of these issues had to be fixed up
manually by loading and correcting the relevant dataset.

2.1.3 Data exploration

In this section an overview will be given of some of the most common beha-
viors seen in the hour leading up to foaling. First, the data was dowsampled
from 50 Hz to 1 Hz, at this sampling rate the different behaviors were still
easily distinguishable but the amount of processing power required to query
and visualize the datasets was drastically reduced. Video footage of the hour
before foaling was available for 10 out of the 15 mares, this footage was then
used to detect the different types of recurrent behavior shown leading up to
partus.

The first noticeable behaviour detected is pacing, i.e. the mare walks rest-
lessly in circles in the stable. Figure 2.6 displays the accelerometer pattern
of this behavior together with normal activity of the same mare for compar-
ison. The most notable difference between the data of the normal behavior
versus pacing around is the frequency of the peaks and valleys in the y axis
signal, which are much more frequent when the mare is pacing around. This
could be attributed to the fact that the mare is walking around and thus
accelerating forward with each step.
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Figure 2.6: Comparison of normal behaviour vs. pacing around

The second observed behavior is headshaking together with flank watch-
ing where the mare would turn her head backwards to watch her side, often
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combined with shaking her head upwards and/or sideways. This is shown as
an accelerometer trace which is compared to normal behavior for the same
mare in figure 2.7. The first indicated region is the mare shaking her head,
which can be recognized by the high volatility of all three axis. The second
region indicates flank watching, since for this action the mare needs to tilt
her head sideways this results in a change of orientation of both the y and
z axis.
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Figure 2.7: Comparison of normal behaviour vs. head shaking (first region)
and flank watching (second region)

Out of the 10 mares for which video footage was available, 9 gave birth while
lying down. Horses have two ways of lying down, being either sternally or
laterally recumbent, in the first case the horse is lying on its sternum with
its head still held up, in the latter case the horse is lying completely flat on
its side with its head on the ground. In figure 2.8 the accelerometer data
for both of these positions is shown, the darker sections indicate where the
mare was lying laterally recumbent, the lighter section indicates a sternally
recumbent position. Lateral recumbency is easily detectable since the z axis
becomes negative as the mare puts her head down, the small peaks in the z
value can be attributed to the mare lifting her head occasionally. Sternally
recumbency on the other hand can be recognized by the fact that the values
of the three axis are more distant from eachother as well as that the x axis
now has the highest positive value and the y axis is now closer to zero. The
signal while lying down is also less noisy than when the mare was standing
upright since the mare mostly takes this position to rest in, thus result-
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ing in less and smaller head movements. This behaviour is what is used in
a couple of commercially available foaling detection systems as mentioned
before, though most of them have the downside of producing many false
positives as this is also one of the natural positions horses use to rest or
sleep.
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Figure 2.8: Accelerometer data of a mare lying in a sternally and laterally
recumbent position

The final behavior that is often seen before foaling and that is easily de-
tectable in the accelerometer data is rolling, as shown in figure 2.9. This
motion can easily be distinguished in the data since reversal of all three axis
is taking place, as the head of the mare moves upside down while performing
a rolling motion. Most horses however will roll over when they are sweating
or itchy so this behaviour is also not unique to the period leading up to
foaling.

None of these behaviors on its own are good predictors for a foaling predic-
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Figure 2.9: Accelerometer data of a mare performing a rolling motion

tion algorithm, combining them however and doing predictions based on the
frequency and variability of each behavior and transitions between behaviors
could potentially be used. Research has already shown that the detection
of most of these behaviours based solely on accelerometer data is possible,
unfortunately this was done by attaching the sensors to the forelegs of the
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mare so the result of this research could not be used directly in this thesis
[36]. Due to the lack of video recordings required to label data, the option
of designing an algorithm for detecting the shown behavior was chosen not
to further investigate.

2.2 Model

This section will describe the model used to tackle the problem of foaling
detection based on the gathered accelerometer data. In deciding the ap-
proach that will be taken for this thesis, two problems had to be taken into
consideration. First, the lack of video footage, this was only available for
10 out of the 15 observed mares and even for the ones that had footage it
was only for a limited amount of time and not the entire period the mare
was wearing the accelerometer. Because of this, the chosen approach can
not make use of labeled behaviors since we lack the ground truth data to
label and train a classifier model for these behaviors. The second issue to
consider was the time we had as an indication for parturition. Students
watching the mares wrote down the time of amniotic sac rupture, although
this was more of a rough approximation than an accurate value since the
rupture was mostly noticed after it had already happened. Because of this
it would be hard to train a model that was just a classifier or a regression
model since we have no precise ground truth to label and train the model
with, the variability in the time that was noted could result into the model
getting confused during training, the chosen approach thus had to be able
to handle the uncertainity in its prediction variable. As a result of these two
issues it was opted to go for an anomaly detection approach that was based
on a model that could be trained unsupervised.

The main benefit of an unsupervised anomaly detection model is that it
can be trained entirely without any labeled anomalous instances, which is
preferable in this case since there is a large class inbalance as we only have
one foaling event per mare lasting about 15 minutes but a couple of days
worth of normal data per mare. The idea is to train the model to recognize
normal data after which it could be used to detect samples that are signific-
antly different to its training set. Because pregnant mares often show signs
of restlessness and symptoms of colic when they enter stage 1 of parturition
this idea could be used for detecting the start of parturition since this be-
havior is significantly different from the mares normal behavior [4]. There
are several different methods available for performing unsupervised anom-
aly detection, such as principal component analysis and isolation forests but
for this thesis it was opted to use a deep learning approach based on an
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autoencoder neural network model architecture. The benefit of this type of
model is the large amount of configurability such as the type of layers and
the number of layers as well as for the final decision metric making it easy
to adapt to almost every possible scenario.

The architecture that will be used in this research consists of two parts,
the autoencoder that will transform the original input, and a second model
or metric that will decide if a certain input is anomalous or not based on the
output of the autoencoder. An autoencoder on its own consists of two parts,
an encoder and a decoder network, the encoder transforms the input into a
latent representation, the decoder then takes this latent representation and
uses it to reconstruct the input. A visualization of this type of architecture
is given in 2.10. This class of models can be used for anomaly detection
by training the model to take regular data as an input and reconstruct it,
the idea is that the model will be overfitted on normal data and will fail to
correctly reconstruct the data when it gets anomalous data as an input as
this will differ significantly from the normal data it was trained on to recon-
struct. In the context of foaling detection this means that the network gets
trained with data from mares that are still a couple of days away from par-
turition, so the network can learn to recognize and reconstruct the regular
behavior of a mare. If the network then gets passed data from a mare close
to foaling as input, this will contain a combination of behaviors that the
network probably has not seen during training. This will result in a worse
reconstruction of the input data the closer the mare gets to foaling as she is
behaving increasingly abnormal. The possibility of using the reconstruction
error of this autoencoder to detect when a mare is about to enter labor will
be further researched in this thesis.

2.2.1 Model input data

The complete dataset of each mare firstly got resampled to a lower sampling
rate than the original 50 Hz to reduce the computational load. This was
done by taking the average of each group of continuous samples. For ex-
ample, if the final sampling rate was 1 Hz, the average was taken over 50
samples. Whilst doing this the gaps in the data that occured due to the
removal of the sensors on certain moments could be part of a continuous
subset of samples, so special care was taken to make sure these were not
present in the final datasets. This was done by leaving out the last N − 1
samples before each gap, where N stands for the size of the window over
which was averaged. For a final sampling rate of 1 Hz, N is 1 so the last
N −1 = 49 samples before the start of each gap were left out. In this study,
different sampling rates were evaluated as will be described in chapter 3.

The next step is to split of a part of each dataset where the mare is showing
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Figure 2.10: Visualization of an autoencoder architecture

regular behavior for use during training of the autoencoder. The threshold
used for making the decision between regular behavior that will be used for
training and non training data is also a hyperparameter that will be ex-
plained further on in this thesis.

The final step in transforming the datasets into input for the autoencoder
was dividing each dataset into different smaller input subsets of equal length
corresponding to the input size of the network. To do this the sliding window
method was used where a subset of length N is taken followed by sliding the
”window” forward by M steps, this is illustrated in figure 2.11. The choice
for using a sliding window approach instead of just dividing the dataset in
equally sized parts without stride was made so that every captured beha-
vior was fully contained into at least one of the subsets. Otherwise a certain
behavior could be partly in one subset and partly in the following subset so
that no input subset contained the full behavior. The two parameters i.e.,
the length of the window and the stride length are again hyperparameters
than can and will be changed during experiments.

2.2.2 Model architecture

There are many different types of autoencoder architectures, such as sparse
autoencoders, contractive autoencoders and variational autoencoders, how-
ever for this thesis a regular autoencoder will be developed. The general
shape of an autoencoder is one of an hourglass, where the in- and output
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Figure 2.11: Sliding window method

layers contain a larger number of nodes than the internal nodes representing
the latent representation. The simpelest form of an autoencoder is one of a
simple feedforward, non-recurrent neural network, but this is not a require-
ment as the encoder and decoder layer can both take the shape of a broad
variety of neural networks, containing not only dense layers but also convo-
lutional and recurrent layers. In this thesis three different architectures will
be evaluated, the first one was build up by using a convolutional network
for the encoder and decoder, the second one is build up by using a recur-
rent network such as the long short-term memory network, and the final
autoencoder architecture that was evaluated is a hybrid between these two,
consisting of both convolutional and recurrent layers. Figure 2.12 shows an
overview of these three architectures. All of the parameters for each type
of layer, combined with the sliding window stride length and sampling rate
of the input form the hyperparameters of the autoencoder network. A de-
scription for each of these parameters is given in table 2.2.

Parameter Description

N Number of input samples
M Sliding window stride length
F1, F2, ... # of convolutional filters
P1, P2, ... Size of max pooling window
L # of dimensions of the latent space
R # of units of the recurrent network
SR Sampling rate of the network input, in Hz

Table 2.2: Autoencoder hyperparameters

The idea behind the convolutional network is to allow the network to per-
form automatic feature extraction since the acquired data was not sufficient
to support labeling. Due to the lack of video footage a seperate classifier to
detect behaviors such as standing, walking, rolling. . . could not be trained.
By training convolutional filters on the input data the network can train
to recognize certain features on its own. The second type of architecture
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Figure 2.12: The three used autoencoder architectures. The annotations
indicate the layer output size with a description of each parameter given in
table 2.2

makes use of recurrent network layers instead of convolutional layers. In
this thesis two types of recurrent layers were used and compared against
eachother i.e., the long short-term memory network and the gated recurrent
unit network [37] [38]. Recurrent networks have shown outstanding per-
formance in everything that has to do with sequences of data, being textual
or time series [39]. The core concept behind these two network types is the
implementation of a memory state inside of the network. When feeding a
sequence through the network, certain parts of the sequence can be recalled
or forgotten and this memory eventually becomes the output of the network.
The thought behind using this for modelling the behavior of the mare is that
the network can keep track of certain behavioral aspects to use these for rep-
resenting the entire sequence in the latent space. Since a recurrent network
takes sequences as an input, a layer that repeats its input data a certain
number of times was needed in the decoder to go from the scalar represent-
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ation of the latent space back to a sequence of samples. The final approach
that was evaluated was a combined approach with both convolutional and
recurrent layers, first the input gets passed to a convolutional network to
perform automatic feature extraction, these self-learned features then get
sent to the recurrent network to transform it into a latent embedding.

Once the autoencoders are trained they can be used to perform anomaly
detection by obtaining the stream of reconstruction errors for each mare.
This is calculated as the mean squared error (MSE) between the input and
output of the autoencoder, the formula for MSE is given in equation 2.1
[40].

MSE =
1

N

N∑
i=1

(Yi − Ŷi)
2 (2.1)

Where N stands for the number of samples in each window, Y is the original
input window and Ŷ is the reconstructed input as given by the autoencoder.

This stream of reconstruction errors for each input window to the autoen-
coder can then be used to determine if a mare is about foal or not. The
method of determining this will be explained in further detail in the following
section.

2.3 Making a decision

An example of a stream of reconstruction errors for a given period and mare
is given in figure 2.13. This stream is taken from an input of 100 windows
of each 30 minutes with a stride length of 15 minutes and a sampling rate
of 1 Hz. This means that if the first sample window started at 00:00 and
ended at 00:30 then the second window would start at 00:15 and end at
00:45. Based on this stream of reconstruction errors a decision should be
made on when the mare is about to foal, however due to the sliding window
approach this can only be done based on each window. The precision of
the prediction is thus dependent on the stride length and sample length of
the inputs to the autoencoder. For example, if the stride length is set to 15
minutes then a prediction can only be made each 15 minutes based on the
previous 30 minutes of data.

The idea is that the stream of reconstruction errors will change when the
mare is getting closer to foaling, as she will start showing behaviors or com-
binations of behaviors the autoencoder does not know how to reconstruct
as it is unseen and different data, thus increasing the reconstruction error.
Based on this difference in reconstruction errors a decision then has to be
made if the mare is close to parturition or not. This can be done in a number
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Figure 2.13: Example of reconstruction errors

of ways which will be explained in further detail in this section. In figure
2.14 an example is given of how the reconstruction errors change leading
up to parturition for a given trained autoencoder. In this chart the last
window is the window where foaling occured, the reconstruction error of the
autoencoder becomes visibly larger leading up to parturition, it was well
below 2 for the entire period but saw a gradual increase from about 2 to 3
hours before parturition and had a clear spike in the hour before parturition.
For this case setting a fixed threshold that will trigger an alarm once the
reconstruction loss goes above it could be a viable approach. The problem
with using this approach is that sometimes the autoencoder will fail on re-
constructing its input when the mare is not close to foaling, as shown in
2.15. If a single fixed threshold was used in this situation it would result in
a false positive. There are two ways of fixing this problem, make the autoen-
coder better reconstruct the behaviors shown when the mare is not close to
foaling. In some cases this is not possible however because some mares will
show similar behaviors during a normal situation as when entering labor.
This could lead to a false negative and an undetected birth. A second way
of reducing the amount of false positives and false negatives would be to use
a different metric of deciding if a mare is about to foal.

One of the other metrics that could be used is using a seasonal-trend decom-
position to split the signal of reconstruction errors into its seasonal, trend
and residual components [41]. In this decomposition the trend is the global
increasing or decreasing value of the underlying signal, the seasonal com-
ponent is the repeating signal of a given frequency included in the signal
and the residual is the noise in the signal that cannot be explained by either
the trend or the seasonal component, for the mares a seasonal frequency of
24 hours was taken to filter out the moments where the mares were restlessy
waiting for food or were being walked by the observers of the veterinary
clinic which was both done at a set time each day. An example of such
a decomposition for the average norm of the acceleration vector over five
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Figure 2.14: Reconstruction errors before foaling
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Figure 2.15: Reconstruction errors during normal behavior

minute windows of one of the mares is given in figure 2.16.

When this method gets applied to the stream of reconstruction errors a
clear jump in the trend becomes visible leading up to parturition for most
mares, an example of this is given in figure 2.17. This does show hope for
using this signal as a predictor for parturition, however this suffers from
the same drawback as the fixed threshold approach for certain trained au-
toencoders, as a jump in the trend of the decomposition could occur when
the mare was still a couple of hours or days away from parturition, thus
again resulting in false positives, as shown in figure 2.18. This is might be
something that could be worked around with by using some heuristics such
as the angle of the incline and the trend before the incline, some of these
heuristics will be experimented with further on in this thesis.

There are lots of other methods for performing anomaly detection based
on the reconstructions of the autoencoder, such as training a different clas-
sifier or regression model on the stream of reconstruction errors or applying
a clustering algorithm to the latent representation, since the representation
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Figure 2.16: Example of seasonal-trend decomposition for a certain two week
period

of the behaviors close to parturition could be significantly different to the
ones far away from parturition. These methods however will not be studied
further in detail for this thesis. In the following chapter the influence of the
several hyperparameters of the autoencoders as well as the difference in per-
formance for the three types of autoencoder architecture will be evaluated,
the threshold and seasonal-trend decomposition metrics will be used during
these experiments for the evaluation of each approach.
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Figure 2.17: Trend of reconstruction errors before foaling
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Figure 2.18: Trend of reconstruction errors during normal behavior
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Chapter 3

Results

For all of the experiments, except for the leave-one-out crossvalidation and
transfer learning, the dataset of 15 mares was split up into a training set
and a validation set 1. The training set consisted of 6 mares that had more
than 3 days of data before foaling. The 3 days threshold was chosen as the
splitting point between training data for the autoencoder where the mare
was showing her regular behavior and the data close to foaling where the
mare could start showing irregular behavior leading up to parturition, as
illustrated in figure 3.1. The full datasets of the other 9 mares were used to
evaluate the performance of the autoencoder on unseen mares during train-
ing as well as in the experimental fase. For all of the experiments except
for the one involving the different methods of standardization the datasets
were standardized per mare, for each individual mare the mean and stand-
ard deviation was calculated for all three axes and used to standardize them
according to equation 3.1 [42]. This was done to alleviate influences in mag-
nitude and orientation of the acceleration vectors due to differences in size
of the mare and placement of the sensors on each mare. The sampling rate
of the input data was fixed at 1 Hz to reduce computational load during
training as well as speed up the data loading. At this rate all of the differ-
ent behaviors were still distuingishable. The performance of the model on
different sampling rates will still be evaluated in this chapter however.

x′ =
x− µx
σx

y′ =
y − µy
σy

z′ =
z − µz
σz

(3.1)

1Due to the COVID-19 pandemic it was no longer possible to obtain an independent
test set of data samples
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Figure 3.1: Section of data intended for training the autoencoder

During the first phase of this thesis the models were trained and evaluated
using the HPC infrastructure of Ghent University 2. This was equipped
with a cluster containing a number of powerful Intel Xeon CPUs and Nvidia
Tesla V100 GPUs. However due to the small size of the tested models and
the added steps of transfering data between the HPC cluster and a local
machine to train the models and perform visual analysis it was opted to use
Google Colab 3 for training and evaluation of the models. Colab is a free
to use platform were users can upload and edit jupyter python notebooks
to run on virtual instances hosted by Google equipped with powerful GPUs
to speed up the training of neural networks build in Tensorflow, specifica-
tions of this platform are given in table 3.1. The choice of programming
language and software packages for this thesis were the defaults that the
Google Colab runtime provided, these were Python 3.6.9 as a programming
language together with the Tensorflow 2.2.0 and Keras 2.3.0-tf packages as
deep learning library. All of the models were trained for 100 epochs with the
adam optimizer and a starting learning rate of 0.001, mean squared error
was used as loss function. If the training loss did not decrease during 10
epochs, the learning rate was reduced by a factor of 0.2, the kernel sizes for
all convolutional layers was set fixed at 30 samples. The batch size was set
at 32 input windows, in total there were 4144 training input windows and
5178 validation samples. The validation set consisted of 5 mares that had
3 days or more of prefoaling data and 4 that contained less than 3 days of
prefoaling data which could thus not be used for training.

CPU 2 vCPU @ 2.2GHz

GPU Nvidia Tesla K80, T4, P100

RAM 13GB

Table 3.1: Google Colab specifications

2https://www.ugent.be/hpc/en
3https://colab.research.google.com
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3.1 Autoencoder architectures

3.1.1 Convolutional autoencoder

The first experiment performed was the influence of the number of convolu-
tional layers on the reconstructive capabilities of the autoencoder. Therefore
two models were compared against eachother, one with only one convolu-
tional layer in both the encoder and decoder and one containing two convo-
lutional layers in both encoder and decoder. A schematic of both networks
is given in figure 3.2. After 100 epochs of training the first network with only
one convolutional layer converged at a training loss of 0.36 and a validation
loss of 0.44, the second network with two convolutional layers converged at
a training loss of 0.37 and a validation loss of 0.45. Thus adding an extra
convolutional layer to both the encoder and decoder did not seem to make a
significant difference. This is further confirmed if the stream of reconstruc-
tion losses is plotted for a mare that had no clear increase in reconstruction
error close to parturition, there is no clear improvement or difference between
both autoencoders as can be seen in figure 3.3.

Input
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(1800,	3)

(1800,	32)

Max	pooling

Dense

Convolutional

Output

Convolutional

Max	pooling
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Figure 3.2: One layer autoencoder versus two layer autoencoder

Since the number of layers did not make a significant difference on the
reconstruction performance of the autoencoder, the number of filters used
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Figure 3.3: Reconstruction errors of both autoencoders

during convolutions was also evaluated. For this experiment the one layer
convolutional autoencoder was used with three different numbers of filters:
16, 32 and 64 filters. The training results are given in table 3.2, there are
some small differences between the losses but these do not affect the overall
reconstructive abilities of the autoencoder as can be seen in the reconstruc-
tion error signal in figure 3.4.

# of filters Training loss Validation loss

16 0.36 0.44
32 0.36 0.46
64 0.35 0.46

Table 3.2: Training results for different numbers of filters
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Figure 3.4: Comparison of reconstruction errors for all 3 configurations

3.1.2 Recurrent autoencoder

For the recurrent autoencoder four different configurations were evaluated.
Both the influence of the number of recurrent features and the type of re-
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current layer on the autoencoders performance was evaluated. The two
layer types being the long short-term memory layer (LSTM) and the gated
recurrent unit layer (GRU). The main difference between these two layers
is that the LSTM has the output gate separate to its hidden state gate,
whilst for the GRU, the hidden state is the same as its output gate. This
reduces the amount of connections in the layer, making it potentially faster
to train than an LSTM while keeping similar performance [43]. Due to the
increased amount of time per epoch to train a recurrent network these net-
works were only trained for 50 instead of 100 epochs. Training results for
all four configurations can be found in table 3.3. This shows that the gated
recurrent unit scores slightly better for reconstructing its input. Adding
more recurrent features also has a positive effect on the reconstruction loss
of the autoencoder as the network can remember more information from
the past. For the LSTM this does however inflict a penalty on the training
time of the network. For the gated recurrent unit doubling the amount of
features in its hidden state does not influence its training time significantly.
This can probably be attributed to differences in implementation between
the two layers. Figure 3.5 shows the plotted reconstruction error signal for
a mare that does not have a clear increase in loss when nearing parturition.
No useful difference, in terms of foaling prediction capabilities, between the
four implementations can be seen, as the only difference is a higher average
reconstruction error for the LSTM with 32 hidden features as this one scored
significantly lower after training. There is also no significant difference in the
general shape of the reconstruction error signal between the recurrent and
the convolutional autoencoder, both will show similar performance when
being used for foaling prediction.

Type # of features Training loss Validation loss s/epoch

LSTM 32 0.84 0.85 18s
LSTM 64 0.72 0.69 21s

GRU 32 0.70 0.68 20s
GRU 64 0.69 0.67 20s

Table 3.3: Training results for the recurrent autoencoder

3.1.3 Combined autoencoder

The final autoencoder architecture evaluated in this thesis is a combined
approach with both a convolutional and a recurrent layer. The first layer of
this autencoder is a convolutional layer to perform automatic feature extrac-
tion. This gets followed by a max pooling layer to reduce the input along
the time axis and only keep the most relevant extracted features of the input
sequence. Finally it gets passed into the recurrent layer to transform it from
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Figure 3.5: Comparison of reconstruction errors for all 4 configurations

a time series into the latent space. A combination of the best tested set-
tings from previous experiments was used for both layer types. This being
16 convolutional filters and a gated recurrent unit with 64 hidden features.
Since the size of the input to the recurrent layer was reduced by a factor of
ten due to the max pooling the training time was also reduced to 4 seconds
per epoch. Because of this the network was again trained for the full 100
epochs. The training resulted in a training loss of 0.50 and a validation loss
of 0.51. This was better than a recurrent only architecture but worse than
the convolutional only model. In figure 3.6 a final comparison between all
three architectures is is given. No architecture managed to create a peak
in reconstruction errors before parturition for this mare. The differences
in performance thus can only be attributed to a difference in ability to re-
construct the original input. There are no fundamental differences in the
reconstruction errors that make one better for foaling prediction than the
other. Because of this it was opted to only use the convolutional only au-
toencoder in the following experiments due to its significantly faster training
time.

3.2 Sliding window parameters

Two of the most important hyperparameters for the predictive model de-
veloped in this thesis are the parameters for the sliding window, the size
and stride length of the window. The stride length affects the number of
training samples that can be obtained and the frequency at which a pre-
diction about the state of the mare can be made. The size of the window
has the possibility to influence the predictive capabilities of the model. Cer-
tain behaviors or sequences of behaviors could only be differentiable by the
model with larger windows or potentially even smaller windows since there
will be less other behaviors to add noise. Three different window sizes and
according stride lengths will be evaluated in this section, all three were eval-
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Figure 3.6: Comparison of reconstruction errors for the 3 different architec-
tures

Size Stride Training samples Validation samples

15 minutes 7.5 minutes 8313 10383
30 minutes 15 minutes 4144 5178
60 minutes 15 minutes 4110 5144

Table 3.4: Configuration for the sliding window parameters

uated with the two layer convolutional autoencoder architecture with a first
layer filter count of 32 and a second layer filter count of 16. An overview of
the tested parameters and respective training and validation dataset sizes is
given in table 3.4. The training results of this experiment are given in table
3.5. The losses get significantly larger when the window size increases as
the network has to compress longer input sequences into the same number
of latent dimensions. In figure 3.7 the reconstruction errors are plotted for
one of the mares. Again no significant differences can be seen in the abilities
of the models to predict foaling. To evaluate the influence of the number of
training samples on the reconstruction errors of the autoencoder a second
experiment was done with a fixed window size of 30 minutes and 3 different
stride lengths to vary the amount of training and validation samples. An
overview of the number of samples per stride length can be found in table
3.6, with an overview of the training results given in table 3.7. The results
in this table show that the validation loss goes down when the stride length
goes down, as the network has had more training samples to learn from
and thus could better learn to generalize. In figure 3.7 the reconstruction
losses according to each evaluated stride length are plotted. It is clear that
the stride length and thus the amount of training samples has no signific-
ant influence on the shape of the reconstruction error signal and as a result
thereof it does not improve the false positive or false negative rate. A lower
stride length could still be beneficially since the lower this value is the more
frequent predictions about the state of the mare can be done.
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Size Training loss Validation loss

15 minutes 0.33 0.34
30 minutes 0.36 0.44
60 minutes 0.42 0.54

Table 3.5: Training results for different sliding window sizes
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Figure 3.7: Comparison of reconstruction errors for 3 different window sizes

Figure 3.8: Comparison of reconstruction errors for 3 different stride lengths

3.3 Sampling rate

To reduce the computational load and data loading times it was opted to
resample the data that was captured at 50 Hz down to 1 Hz by taking the
mean for each group of 50 samples. However, a sampling rate of 5 Hz was

Stride Training samples Validation samples

5 minutes 12416 15520
10 minutes 6213 7764
15 minutes 4144 5178

Table 3.6: Number of samples for a given stride length
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Stride Training loss Validation loss

5 minutes 0.38 0.40
10 minutes 0.37 0.41
15 minutes 0.37 0.44

Table 3.7: Training results for 3 different stride lengths

also trained to evaluate the influence of the sampling rate on the predictive
capabilities of the autoencoder. This resulted in a training loss of 0.47 and
a validation loss of 0.55. This is significantly higher than the losses for 1
Hz, which were 0.37 and 0.44 respectively. This is because the autoencoder
has to encode much more information in the same size latent space. In the
plotted reconstruction errors in figure 3.9 a small difference can be seen at
about 10 hours before foaling. At 5 Hz a small peak is visible while for
1 Hz this peak is not present. During the period just before foaling no
significant differences can be seen. For the architecture used in this thesis a
sampling rate of 1 Hz will thus give similar performance for foaling prediction
compared to higher sampling rates.
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Figure 3.9: Comparison between a 1 Hz and a 5 Hz sampling rate

3.4 Standardization

One of the most influential aspects on the performance of the autoencoder
was which method of standardization was used. The input data was stand-
ardized to place the acceleration values of each mare within the same range
as this could vary widely with the placement of the sensor and the size of
the mare. For this thesis two different methods of standardization were
used and evaluated, being euther standardizing the data per input window
or standardizing per mare. In figure 3.10 a plot is given of an input window
that had a low reconstruction error for a network trained with per mare
normalization. It can be seen that the differences of the acceleration values
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between both normalization methods are fairly small in this case. When
looked at the same plot but for a window that had a high reconstruction
error the difference in acceleration values between the two becomes much
larger. Because the data looks so different between the two methods it could
be that the way of normalizing the data could influence the performance of
the network. To test this hypothesis the network was trained using both
approaches, the losses for the network trained with per window normalized
data were significantly higher at a training loss of 0.64 and a validation loss
of 0.73, while per mare normalization was at 0.36 and 0.44. This could be
explained by the fact that the input data is smoothed out when normalized
per window thus making it harder for the network to learn and reconstruct
specific behaviors. In figure 3.12 the reconstruction errors signal is plotted
for both methods. When normalized per window almost no difference can
be seen in the signal for the entire three days before foaling. It can be con-
cluded that normalizing the data per mare instead of per window is prefered
and even necessary for this model to work for foaling prediction.
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Figure 3.10: Comparison between per window normalization (left) and per
mare normalization (right) for a low reconstruction error window
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Figure 3.11: Comparison between per window normalization (left) and per
mare normalization (right) for a high reconstruction error window

3.5 Discrete Fourier transform

Whilst the model so far shows promising results, with 13 out of the 15 mares
showing a peak in the reconstruction error close to parturition there is still
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Figure 3.12: Comparison of reconstruction errors for both methods of nor-
malization

room for improvement. Of the 15 mares, 10 showed peaks in reconstruction
errors when they were still a few hours or even days away from parturition,
which could lead to a large number of false positives. Apart from the high
number of potential false positives there also were two mares that showed
no change in reconstruction errors when the parturition approached. One of
the approaches tried to improve the performance of the model was to pass
the discrete Fourier transformation (DFT) of the input to the autoencoder
instead of the acceleration values. The discrete fourier transformation trans-
forms its input from the time domain to the frequency domain [44] i.e., it will
show how strongly each frequency is present in the acceleration signal of the
mares. To compute this transformation the fast Fourier transform algorithm
was used, implemented in the scientific computing library Numpy [45]. This
transformation was computed for each input window sampled at 10 Hz. This
higher sampling rate was necessary as due to the Shannon-Nyquist sampling
theorem [46] the discrete Fourier transform can only transform the input to
a range of 0 to half the sampling frequency to the frequency domain.

An example of such a transformation for both the input window containing
parturition and a regular window is given in figure 3.13. Only the frequen-
cies between 0 and 0.2 Hz are displayed since outside this range there was
little to no variation. From this visualization it is immediatly clear that
most of the activity is confined to the lower frequencies between 0 and 0.05
Hz. The Fourier transform of the window containing the foaling shows that
there is a lot more activity and variability in these lower frequency regions
when the mare is entering labor than during a regular period.

Because of this difference between the result of the transformation on the
two windows it was chosen to test the model with the Fourier transform of
the acquired data as its input. This showed promising results, with 15 out
of the 15 mares now showing a visible increase in its reconstruction errors
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when nearing parturition, an increase of 2 mares in comparison to using just
the acceleration values as input. When looking at the number of mares that
showed a spike in reconstruction errors when still some time away from par-
turition there was also an improvement with only 9 out of 15 mares showing
such a spike compared to the 10 out of 15 for the regular approach. An ex-
ample of a mare which had no clear spike before parturition with the regular
input data but that did have an increase in its reconstruction errors when
using the Fourier transform is given in figure 3.14. Note the difference in
the range of the y-axis, for the Fourier transform the absolute error values
were significantly smaller in magnitude.
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Figure 3.13: Example of the discrete Fourier transform for two sample win-
dows, the left one containing regular behavior and the right one containing
the behavior shown around foaling
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Figure 3.14: Reconstruction errors for an autoencoder trained with acceler-
ation values as input (left) and one that was trained with the DFT of the
acceleration values as its input (right)
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3.6 Custom loss function

A second idea that was tried out for improving the performance of the
autoencoder was implementing a custom loss function. The idea that was
implemented by the custom loss function is that the reconstruction error
of the autoencoder should be low during regular behavior and high when
nearing parturition. To achieve this a weight function was added to the loss
function of the model during training that would reward the network when
it achieved a higher reconstruction error on the data close to foaling. This
weight function took the shape of a logistic sigmoid curve that was given by
equation 3.2 [47].

w =
W + 1

1 + e(−S·(t−
T
2
)
−W (3.2)

Where W is the minimum weight value, S is the steepness of the sigmoid
curve, t is the time in minutes until parturition as indicated by the rupture
of the amniotic sac and T is the time before parturition in minutes from
where the assigned weight starts to deviate from 1.

To use this during training every training sample that was closer to partur-
ition than the value of T was annotated with its time to foaling in minutes.
All of the other samples as well as the entire validation dataset were annot-
ated with the value of T as its time to foaling feature to keep the input shape
constant. For this approach the training datasets were not capped at 3 days
before partus since the entire dataset is now required during training. The
training loss function used for training the autoencoder is given in equation
3.3.

loss = w ·MSE (3.3)

Where w is the weight as given in equation 3.2. By capping the annotated
time until foaling for training samples at T the weight factor function takes
on the shape as plotted in figure 3.15.

Because of the reward for a higher reconstruction error close to parturi-
tion the network now had the tendency to severly overfit on its training
data and just focus on the parts of the data that would reward it. To com-
bat this behavior L1 regularization with a regularization factor of 0.01 was
used on all trainable layers. For evaluation the network was trained several
times with different combinations of the parameters for the sigmoid weight
function. In the end the settings used for evaluating the custom loss function
were the ones that were used in figure 3.15. This custom function resulted
in significantly higher reconstruction errors on peaks while the baseline was
kept the same as shown in figure 3.16. Since by including the three days
before parturition into the training dataset the model now was trained in a
more supervised manner. Because of this only the validation dataset will be
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Figure 3.15: Plot of the weight factor for the custom loss function with
T = 360, W = 1.1 and S = 0.05

looked at for evaluation. Out of the 9 mares used for validation 8 showed
increases in the reconstruction errors when nearing parturition. As for peaks
that were not near parturition not much has changed as well, with 5 out
of 9 mares showing peaks in reconstruction errors during regular behavior.
So while this does not improve the overal performance of the model, it does
have the potential to achieve better performance by acquiring more data to
make the network learn to better differentiate between near-foaling behavior
and regular behavior.
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Figure 3.16: Comparison of reconstruction errors between the regular loss
function (MSE) and a custom implementation favoring higher losses near
parturition

3.7 Latent representation

Until now only the reconstruction error signal was used to assess the per-
formance of the autoencoder on the foaling prediction problem. The distri-
bution of input windows in the latent space of the autoencoder does however
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also have the potential to be a good predictor. It could be that the autoen-
coder transforms its input into the latent space in such a way that outlier
detection or clustering on these representations could be a good predictor
for parturition.

The first experiment conducted to evaluate this hypothesis was rdone by
reducing the number of latent dimensions to just two dimensions. By doing
this the distribution of the latent representations could be inspected visu-
ally. But before this could be done the difference between reconstruction
behavior for the network with 32 and 2 latent dimensions had to be eval-
uated to make sure that there was no significant penalty for reducing the
number of dimensions. The training and validation loss of the autoencoder
with two latent dimensions was significantly higher than the one with 32
latent dimensions at 0.70 and 0.78 respectively. This was expected since
the autoencoder had to embed more information in a smaller space. In
figure 3.17 a visual comparison is given between both autoencoders. Both
implementations show peaks at the same time, albeit higher peaks for the
two dimensional implementation. It can thus be concluded that reducing
the latent space to only two dimensions will not significantly reduce the
performance of the autoencoder for foaling prediction as this is mainly de-
pendent on the shape of the reconstruction error signal and not the absolute
values.
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Figure 3.17: Comparison of reconstruction errors between an autoencoder
with 2 and one with 32 latent dimensions

In figure 3.18 a scatterplot of the latent representations in these two di-
mensions is given as an example. All of the mares showed the same pattern
where the representations for the windows close to foaling are randomly dis-
tributed troughout the latent space. This random distribution of the input
windows in the latent space also occured in a three dimensional latent space.
It can thus be concluded that performing a clustering algorithm on the latent
space would not be a viable method of performing foaling detection for an
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autoencoder approach as there is no noticeable difference between the rep-
resentations of windows close to foaling and windows far away from foaling.
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Figure 3.18: Example scatterplot of the latent representations for a random
mare

3.8 Leave-one-out cross-validation

For all of the previous experiments in this section a fixed training and val-
idation set of 6 and 9 mares respectively was used for each trained model.
To proof that the proposed model did not depend on the specific training
set that was used but could generalize well a Leave-one-out cross-validation
(LOOCV) was performed. The first step in the LOOCV experiment was to
filter the original datasets to only contain the mares that had more than 3
days of pre-foaling data available because each mare will now be part of a
training dataset and thus had to be cut at the three day before parturition
point. In the end 11 out of the 15 mares had more than three days of pre-
foaling data and were available for use during LOOCV. For each of these 11
mares a seperate autoencoder was trained using the dataset of this mare for
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validation and the other 10 datasets for training. In figure 3.19 a comparison
between the reconstruction errors for a regular trained autoencoder and an
LOOCV trained autoencoder is given. For this visualization the data of a
mare that was part of the training set of the regularly trained autoencoder
was used to see if there was a significant difference in reconstruction errors
if the autoencoder has seen the mare’s behavior during training or not. By
visually inspecting the difference in reconstruction errors signals for both
models it can be observed that there are only small differences in the abso-
lute values. The peaks and valleys of the signal are still the same shape and
take place at the same time. This observation can be made for all 11 mares.
Because of this it can be concluded that the network sufficiently generalizes
and no overfitting to the training data took place.
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Figure 3.19: Comparison of reconstruction errors between regular training
and leave-one-out cross-validation training

3.9 Transfer learning

While the approach used up this point shows good results in terms of pre-
dicting parturition there still were a large number of false positives. Out of
the 11 mares that had more than three days of pre-parturition data avail-
able, 5 showed a clear spike in reconstruction errors in the three days leading
up to parturition but still more than a couple of hours away from partus.
This could potentially result in a false positive depending on the metric used
to decide when parturition is about to take place. To try and combat this,
transfer learning was tried out and evaluated. This was already an idea to
implement from the start of this research. The idea behind using transfer
learning for foaling prediction was to first train a general base model from
a dataset of regular behavior from a couple of unspecifified mares. This
would allow the autoencoder to learn how to reconstruct general horse be-
havior. If the model then got deployed in a real world setting it would first
go trough a setup phase. During this phase it would continuously apply
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transfer learning in an online fashion and update its knowdlegde for the
mare it was observing. After a couple of days of transfer learning the model
should have learned the intrinsics of the observed mare after which it would
switch over to inference mode. Because the model is now better fitted to
this specific mare it could be better in differentiating between regular and
abnormal behavior.

To test out this hypothesis in the setting of this research the regular model
was used as a base model on which, for each of the five validation mares,
transfer learning was then applied. First only the data up to three days
before parturition of the validation mares was kept for use during training.
Once the training data was obtained the weights of base model got loaded
for each of the five mares after which the model got trained for an additional
25 epochs on data of a single mare. The result of this experiment for one
mare that showed false positives with the regular model is shown in figure
3.20. Again there are high peaks in the reconstruction errors visible long
before parturition is about to take place, transfer learning the entire model
did not result in a potential lower false positive rate.
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Figure 3.20: Example of the reconstruction errors after transfer learning the
entire model for an additional 25 epochs

In transfer learning an already trained model it is common practice to
freeze certain layers during the transfer learning phase [48]. In most cases
the earlier layers in the network get frozen for transfer learning, and only
the later layers actually get updated. This is done because earlier layers
mostly extract more general features while later layers are trained to ex-
tract more specific features in regards of the training data. In the case of
the autoencoder used in this thesis it was chosen to freeze the first and
last convolutional layer and leave the other layers unlocked during transfer
learning. Doing this however resulted in almost no visible difference when
looking at the reconstruction errors, as shown in figure 3.21. In both graphs
there is almost no difference between the reconstruction error signals. With
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the current settings and available data transfer learning did make no usable
difference, even when locking certain layers for training.
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Figure 3.21: Example of the reconstruction errors after transfer learning
only a part of the model for an additional 25 epochs

3.10 Filtering

Up until this point the used method to decide which part of the data con-
tains regular behavior for use during training is purely a time based one. At
the moment this threshold was set at three days before parturition. It could
however be that the mare already showed some behavior that was similar to
the behavior shown when nearing parturition during this period. One pos-
sible cause is that the mares are more nervous since they were not stabled
at their home location. To combat this potential problem the influence of
applying filtering on the training datasets was evaluated.

The filtering method that was evaluated consisted of filtering out all training
windows containing over 10% of datapoints that were more than a certain
number of standard deviations away from the mean. Since the data was
normalized per mare it consequently had a mean of 0 and a standard devi-
ation of 1. Each window consisted of 1800 samples so a window would be
filtered out if over 180 samples, combined over all three axes, had an absolute
value higher than a certain set threshold. Two different standard deviation
thresholds were evaluated, i.e. 3 and 5. When filtering out all windows
containing more than 10% of samples that have an absolute value higher
than 3 about 25% of training windows get filtered out. When filtering with
a threshold of 5 only 5% of windows get removed from the training dataset.
In figure 3.22 a visual comparison is given for three different autoencoders
that were trained with these three different filtering approaches. All three
graphs look almost identically with only subtle differences between the sizes
and shapes of the peaks. Because of this it can be concluded that filter-
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ing out windows with high variability during training does not significantly
influence the reconstructive power of the proposed method.
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Figure 3.22: Comparison of the reconstruction errors between the three
different filtering methods

3.11 Decision metric

Lots of different methods to improve the predictive performance of the au-
toencoder were evaluated in the previous sections, but the goal of this thesis
is to develop a foaling prediction algorithm. To accomplish this a final de-
cision metric should be evaluated. This metric will decide, based on the
reconstruction errors of the autoencoder, when parturition is about to take
place. Two different approaches for this metric will be evaluated, decid-
ing based on the raw reconstruction errors signal or deciding based on the
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trend signal of the seasonal-trend decomposition. To make the comparison
between the different proposed methods as fair and realistic as possible only
the eleven mares that had more than three days of pre-parturition data
available were used during this evaluation. This was done to get an accur-
ate representation of the number of false positives during these three days
pre-foaling. For all mares only these three days were used to decide if a false
positive was present in the data or not. The threshold for being a correctly
predicted peak or a false positive was set at three hours before parturition.
If the model resulted in a trigger up to three hours before foaling it was
labeled as a correct prediction, if it triggered at an earlier moment this was
labeled as a false positive.

3.11.1 Reconstruction errors based threshold

The first method that was looked at was deciding if parturition is nearing
based on just the reconstruction error signal. The decision that parturi-
tion is about to take place was made when this signal went above a certain
set threshold. There were two ways of setting the value for this threshold,
picking the same threshold for all mares or choosing one for each mare in-
dividually. The results from choosing a static threshold for all mares are
given in table 3.8. It can be seen that the lower this threshold the higher
the number of correctly recognized foaling events as the threshold will be
reached for lower reconstruction errors, this makes this approach more sens-
itive. Because of this increase in sensitivity when the threshold gets lowered
the number of false positives also grows. At a value of 1.5 for the threshold
7 out of the 11 mares triggered one or more false alarms.

Threshold TP FP FN

5.0 3 2 8
3.0 7 3 4
2.0 9 3 2
1.5 10 7 1

Table 3.8: Overview of the number of correct predictions/true positives
(TP), false alarms/false postives (FP) and undetected foalings/false negat-
ives (FN) for a statically chosen threshold

A way of improving the performance would be to set a threshold for each
mare individually instead of a global threshold. This individual value would
be decided by analyzing the reconstruction errors from each mare some time
before parturition to get a baseline of what to expect from each mare in terms
of reconstruction errors. In the setting of this thesis all data up to three days
before parturition was used for this analysis. Three different methods of se-
lecting the threshold based on this data were evaluated. The first one was
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setting the threshold at the maximum value, or maximum plus a fixed value,
encountered during the analysis phase. The second one was calculating the
mean of the reconstruction errors during the analysis phase and setting the
threshold at this mean plus a certain value. Because some mares showed a
lot more variability in their reconstruction error signal than others the final
method that was evaluated was again taking the mean but now adding a
number of standard deviations to it to set the threshold. Making the added
value depend on the standard deviation of each mare should account for the
differences in variability between each mare. The results for using a dynamic
threshold are presented in table 3.9. Again the same pattern is visible, the
lower the value of the threshold the higher the number of true positives but
also the higher the number of false positives. Noticeable is that while the
number of true positives is the same for both the fixed addition to the mean
and the addition based on the standard deviation this is not the case for the
number of false positives. On the limited dataset available standard deva-
tion based addition performs significantly worse. This is however an issue
that could be fixed by further finetuning the amount of standard devations
away the threshold is set at on more data.

Method TP FP FN

max 8 9 3
max + 1 6 5 5

mean + 1 11 7 0
mean + 1.5 10 5 1

mean + 3σ 11 9 0
mean + 5σ 10 7 1

Table 3.9: Overview of the number of correct predictions/true positives
(TP), false alarms/false postives (FP) and undetected foalings/false negat-
ives (FN) for a dynamically chosen threshold

3.11.2 Seasonal-trend composition based threshold

The second proposal for a metric that decides when parturition is about to
take place is not based on the stream of reconstruction errors but is based
on the trend component of the seasonal-trend decomposition of this stream.
The benefit of this decomposition is that it singles out the seasonal com-
ponent of the signal. This could influence the performance of the proposed
approach since some mares will become restless and show increased activity
around feeding time, which occured mostly at the same time in the an-
imal clinic. This could confuse the model when not taken into account. To
calculate this decomposition the seasonal decompose method from the stats-
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models library was used. 4 The problem with using this trend signal for
deciding the time of parturition is that the baseline of this trend could differ
a lot between mares, making it harder to decide purely on a fixed threshold.
To place every mare on the same baseline and make it easier to decide on
a threshold the difference between each subsequent value is taken and used
then this was used as a signal. An example of the trend of a mare and these
differences between subsequent values is shown in figure 3.23. From this it is
clear that using the differences between subsequent values for thresholding
is a better choice than just using the trend signal. With the differences it
is easy to only trigger on rising edges in the trend signal and not on falling
edges. In table 3.10 the results of using this approach are given, for this
experiment only two statically chosen thresholds were evaluated. It can be
seen that, for the limited dataset of 11 mares, this approach performs similar
to using a dynamic threshold on the reconstruction error signal.

Threshold TP FP FN

0.05 7 2 4
0.025 10 5 1

Table 3.10: Overview of the number of correct predictions/true positives
(TP), false alarms/false postives (FP) and undetected foalings/false negat-
ives (FN) for a statically chosen threshold on the differences between sub-
sequent values of the trend from the seasonal-trend decomposition

4https://www.statsmodels.org/stable/generated/statsmodels.tsa.seasonal.

seasonal_decompose.html
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Figure 3.23: Example of the trend component of a seasonal-trend decom-
position together with differences between subsequent values of this trend
signal
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Chapter 4

Discussion

The goal of this study was to develop a machine learning model that could,
based on accelerometer data from the mare’s head, recognize when a mare is
entering labor. To achieve this anomaly detection by using a deep learning
approach based on an autoencoder architecture was used. The benefit of this
approach is the wide range of configurability from tuning the autoencoder ’s
underlying architecture to defining the used decision metric, as well as the
fact that no data had to be labeled, a task normally very labor intensive. In
the previous chapter several of these possible configurations were evaluated.
In table 4.1 a summary of the findings of these experiments is given. Due
to the limited amount of acquired data some of these experiments had no
conclusive result since more data was required to be able to correctly eval-
uate these ideas.

In the end the proposed method should make use of a convolutional au-
toencoder to generate a stream of reconstruction errors. A convolutional
only approach is preferred since these train significantly faster than when
using a recurrent network. By using the lowest possible sampling rate that
still obtains the necessary accuracy the data footprint and computational
load is kept at a minimum. By changing the stride length of the sliding
window method for obtaining input data the frequency at which predictions
are made can be influenced. The lower the stride length the higher the fre-
quency, but this also increases the chance of repeating false positives. So
a balance between both should be found. To alleviate the influence of a
misplaced sensor or a shifted halter the discrete Fourier transform of the
acceleration values can be used to make the predictions of the model more
robust against these types of changes. With enough training data it could
prove beneficially to use a custom training loss function that makes the
autoencoder learn to perform worse on windows showing near-parturition
behavior.
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Description Significant
influence

Conclusion

Architecture No 2 layer convolutional only au-
toencoder

Sliding window No 30 minutes window size, stride
length as low as possible to im-
prove frequency at which pre-
dictions can be made

Sampling rate Potentially More data is required to evalu-
ate, only slight differences vis-
ible for the current dataset

Standardization Yes Standardizing per mare

DFT Yes Makes the algorithm less
prone to errors in sensor
placement, more data is
required to evaluate

Custom loss Potentially With more data the network
could better learn the intrins-
ics of the behavior close to par-
turition

Latent represena-
tion

No Using the reconstruction er-
rors for prediction, not the lat-
ent representation

LOOCV No The performance of the au-
toencoder does not depend on
the training set and general-
izes well

Transfer learning No Since the model generalizes
well transfer learning did not
improve its performance

Filtering No Filtering out high variability
input windows does not im-
prove performance

Decision metric Yes A dynamic threshold based on
the mean and standard devi-
ation

Table 4.1: Overview of the outcome of the performed experiments

The autoencoder is only one part of the proposed approach, based on the
output of this autoencoder a decision has to be made on if the mare is about
to enter labor or not. To do this the reconstruction error of the autoencoder
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on the input window is calculated using the mean squared error formula.
Based on this reconstruction error a decision is then made by comparing
this value against a threshold, if the value is above the threshold a foaling
alarm is triggered. For deciding what this threshold should be the mare
should first go trough an analysis phase where the reconstruction errors are
calculated for a couple of days, the mean of these values during this phase
will then be used for deciding the threshold. Because some mares show a
lot more variability in the values of the reconstruction error over time, the
standard deviation of the errors during the analysis phase gets calculated as
well. When this analysis phase is completed the threshold for triggering an
alarm is set at the mean of the analysis phase plus a number of standard
deviations. By changing the amount of standard deviations that get added
the sensitivity of the decision can be influenced.
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Chapter 5

Conclusion and Future work

The aim of this study was to design a machine learning algorithm that warns
in time that a pregnant mare is entering labor. By only using a small accel-
erometer attached to a halter the impact on the comfort of the mare is kept
at a minimum. Anomaly detection based on the reconstruction error of an
autoencoder neural network was proposed as a model to recognize the start
of labor based on the accelerometer data.

For the training and evaluation of the proposed method data of 15 pregnant
mares was captured at the Ghent University veterinary clinic. Of these 15
mares 11 had more than 3 days of pre-parturition data and were used for
evaluation. The impact of different architectures, training tactics and de-
cision metrics were evaluated and in the end all foalings of the 11 mares used
for evaluation were correctly recognized. This came however at the cost of
many false alarms, in the best case 7 out of the 11 mares suffered from one
or more false alarms in the three days leading up to parturition. Due to the
wide configurability of several of the different parts of the proposed method
this could be reduced to more acceptable numbers but more data is required
to explore the different possibilities.

In figure 5.1 an example of how to apply this system in practice is given.
The proposed method consists of 3 or 4 different parts: a microcontroller
with an accelerometer and transmitting antenna placed on the mare’s halter,
a server with a receiving antenna that runs the model, and a device that
can communicate with the server that will be used to warn an observer of a
potential foaling. Optionally a camera can be added to the system so that
the observer can decide based on video footage if the triggered alarm is a
false alarm or not. The microcontroller on the mare continuously gathers
accelerometer data and transmits this to the server, this transmission can
be done using a wirelless communication protocol that best fits the situation
at hand, being either BLE, LoRaWAN, Wi-Fi et cetera. The server then
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takes in this data and feeds it to the autoencoder which will calculate the
reconstruction error on each input window. If the error is above the set
threshold the server will send an alarm to the observer, this can be either
via a smartphone notification or via a seperate dedicated device. To make
sure the alarm is not a false alarm and parturition is really about to take
place the observer can first check the videofeed when he receives an alarm.
Because the symptoms of labor are very similar to the symptoms of colic
this system to be used for the detection of health related behavior.

Accelerometer

Server

BLE / LoRaWAN / Wi-Fi...

Alarm

Videofeed

Observer

Figure 5.1: Example of how to deploy the model in a real world scenario

The main goal of future work should be to acquire more data. More data of
a head mounted accelerometer gives the possibility to further explore and
evaluate several of the proposed enhancements of this study such as the
Fourier transform or custom loss function during training. Different places
to attach the sensor should also be evaluated, such as the legs or tail. In-
stead of using the raw accelerometer data as an input a seperate model
could be trained that classifies the observed behavior after which anomaly
detection could be performed on combinations of these detected behaviors.
Since the symptoms of the first stage of labor and the sympoms of colic are
very similar the possibility to deploy this system as a colic detector could
be explored as well.
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