
Flexible matrix multiplication kernels on GPUs

Academic year 2019-2020

Master of Science in Computer Science Engineering

Master's dissertation submitted in order to obtain the academic degree of

Counsellor: Dr. Tim Besard
Supervisor: Prof. dr. ir. Bjorn De Sutter

Student number: 01506418
Thomas Faingnaert

Flexible matrix multiplication kernels on GPUs

Academic year 2019-2020

Master of Science in Computer Science Engineering

Master's dissertation submitted in order to obtain the academic degree of

Counsellor: Dr. Tim Besard
Supervisor: Prof. dr. ir. Bjorn De Sutter

Student number: 01506418
Thomas Faingnaert

Permission of use on loan

The author gives permission to make this master dissertation available for consultation
and to copy parts of this master dissertation for personal use. In all cases of other use,
the copyright terms have to be respected, in particular with regard to the obligation to
state explicitly the source when quoting results from this master dissertation.

1st July 2020

iv

Preface

Before you lies my master thesis “Flexible matrix multiplication kernels on GPUs”, the
culmination of my studies Computer Science Engineering at Ghent University. This
thesis is the result of my 9 month long journey through the LLVM compiler framework,
GPU programming, the Julia programming language, and Julia’s GPU ecosystem. I have
always been interested in compilers, and this thesis was an excellent opportunity to take
this interest further. In particular, I enjoyed gaining experience with the widely used
LLVM compiler framework. Additionally, I got the chance to explore GPGPU computing,
a world which was new to me, using NVIDIA’s CUDA platform.

First and foremost, I would like to thank my supervisors Prof. Bjorn De Sutter and
Dr. Tim Besard for their advice and guidance. Secondly, I want to thank the Julia
community, in particular Valentin Churavy and Jameson Nash, for reviewing and merging
my pull requests. Next, I want to extend my sincere gratitude to my parents, for their
willingness to proofread drafts of this thesis, and for their unwavering support during my
studies. Finally, I would like to thank you, the reader, for taking the time to read my
thesis. I hope you enjoy reading it as much as I enjoyed writing it.

Thomas Faingnaert

1st July 2020

v

Flexible matrix multiplication kernels on GPUs
Thomas Faingnaert

Student number: 01506418

Supervisor: Prof. dr. ir. Bjorn De Sutter
Counsellor: Dr. Tim Besard

Master’s dissertation submitted in order to obtain the academic degree of
Master of Science in Computer Science Engineering

Faculty of Engineering and Architecture, Ghent University
Academic Year 2019 – 2020

Abstract
GEMM (General Matrix Multiplication) kernels are at the core of many computations
in the fields of HPC (High Performance Computing) and ML (Machine Learning).
GEMM is so prevalent that NVIDIA’s latest GPUs (Graphics Processing Units) include
Tensor Cores, a special type of processing cores that are designed to accelerate matrix
multiplications. As the fields of HPC and ML evolve, we notice two trends. First, the
low-level programming language C++ that is traditionally used for high-performance
applications, is being replaced by higher level languages such as Python or Julia. Through
the use of the Julia package CUDAnative, one can even program GPUs directly in Julia.
The second trend is the increasing need for flexibility in GEMM kernels. State-of-the-art
GEMM libraries typically contain a limited set of monolithic kernels, and thus lack
flexibility.

In this thesis, we will design, implement, and evaluate a GEMM framework for
Julia that allows users to create GEMM kernels that are tailored to their use case. Given
that NVIDIA’s Tensor Cores are already extensively used to accelerate ML and HPC
workloads, we will mainly target GEMM using Tensor Cores. Our framework consists of
three different APIs (Application Programming Interfaces). The first API provides an
interface to access Tensor Cores from within Julia. The second API facilitates writing
algorithms that use tiling techniques to improve performance, such as GEMM kernels.
The final API consists of a set of customisable components that can be combined to
implement a GEMM kernel for a specific purpose.

Keywords — GPU, Julia, Tensor Cores, Flexible GEMM

vi

Flexible matrix multiplication kernels on GPUs
Thomas Faingnaert

Supervisor: Prof. dr. ir. Bjorn De Sutter
Counsellor: Dr. Tim Besard

Abstract—GEMM (General Matrix Multiplication) kernels are
at the core of many computations in the fields of HPC (High
Performance Computing) and ML (Machine Learning). GEMM
is so prevalent that NVIDIA’s latest GPUs (Graphics Processing
Units) include Tensor Cores, a special type of processing cores
that are designed to accelerate matrix multiplications. As the
fields of HPC and ML evolve, we notice two trends. First, the
low-level programming language C++ that is traditionally used
for high-performance applications, is being replaced by higher
level languages such as Python or Julia. Through the use of
the Julia package CUDANATIVE, one can even program GPUs
directly in Julia. The second trend is the increasing need for
flexibility in GEMM kernels. State-of-the-art GEMM libraries
typically contain a limited set of monolithic kernels, and thus
lack flexibility.

In this thesis, we will design, implement, and evaluate a
GEMM framework for Julia that allows users to create GEMM
kernels that are tailored to their use case. Given that NVIDIA’s
Tensor Cores are already extensively used to accelerate ML and
HPC workloads, we will mainly target GEMM using Tensor
Cores. Our framework consists of three different APIs. The first
API provides an interface to access Tensor Cores from within
Julia. The second API facilitates writing algorithms that use tiling
techniques to improve performance, such as GEMM kernels. The
final API consists of a set of customisable components that can be
combined to implement a GEMM kernel for a specific purpose.

Index Terms—GPU, Julia, Tensor Cores, Flexible GEMM

I. INTRODUCTION

Scientific computing applications typically rely on GPUs in-
stead of CPUs, as the computational capabilities of the former
are significantly larger than those of the latter. Traditionally,
GPUs are programmed using low-level languages such as C++.
As the field of scientific computing evolves, these low-level
languages are being replaced with alternative languages with
a higher-level syntax, but that are still able to match the
performance of C++. The Julia programming language is an
important example of a language with a high-level syntax,
but a performance comparable to that of C++ [5]. Using the
package CUDANATIVE, it is possible to program NVIDIA
GPUs directly in Julia [4].

Matrix multiplication, commonly called GEMM (General
Matrix Multiplication), is at the core of many computations in
scientific computing. GEMM is used for neural networks in the
field of ML (Machine Learning), and in several HPC (High
Performance Computing) applications. Matrix multiplication
is so prevalent that the latest NVIDIA GPUs now include
Tensor Cores, a type of processing cores that accelerate matrix
multiplications.

GPU vendors provide highly optimised implementations
of GEMM in libraries, such as NVIDIA’s CUBLAS. These
libraries contain a set of GEMM kernels designed for a
specific purpose, and hence lack flexibility. This lack of
flexibility is problematic if the needs of the application are
not addressed by one of the kernels contained in the library.
For example, inference in neural networks can be computed
using a matrix multiplication, followed by the elementwise
application of the activation function of the artificial neuron.
Deep learning libraries typically only support a limited set of
the most commonly used activation functions. This means that
ML researchers cannot easily experiment with new activation
functions without writing a performant GEMM kernel from
scratch.

Another example is tensor contraction, the generalisation
of matrix multiplication to multiple dimensions. One ap-
proach for performant tensor contractions, GETT (GEMM-
like Tensor-Tensor contraction), builds on top of a performant
GEMM kernel [16]. GETT reshuffles the input tensors, so that
the tensor contraction is equivalent to a matrix multiplication.
This reshuffling can be performed before launching a pre-
built GEMM kernel, but this introduces unnecessary overhead.
This overhead can be avoided if the reshuffling is fused in the
GEMM kernel instead. Of course, this is only possible if the
underlying GEMM kernel is flexible.

Over the course of this thesis, we will design and implement
a framework to instantiate customisable GEMM kernels on
NVIDIA GPUs. We will use the high-level Julia programming
language, and its package CUDANATIVE. Given their use in
various ML and HPC workloads, we will mainly focus on
GEMMs using NVIDIA’s Tensor Cores.

We will start with an introduction to the necessary back-
ground information in Section II. This section discusses GPU
programming, the Julia programming language, CUDANAT-
IVE, and Tensor Cores. Our framework consists of three
different APIs that interact. We will discuss each of these
in a separate section. Section III describes the design of an
API that allows us to use Tensor Cores from Julia. Next,
Section IV discusses an API that facilitates writing algorithms
that use tiling techniques to improve performance, such as
matrix multiplications. The final API consists of a set of cus-
tomisable components that together implement a performant
GEMM kernel, and will be the subject of Section V. We will
demonstrate and evaluate this framework using three different
examples in Section VI. Finally, Section VII concludes the
paper.

II. BACKGROUND

This section discusses the relevant aspects of GPU pro-
gramming, the Julia programming language, the Julia package
CUDANATIVE, and Tensor Cores.

A. GPU programming

The main difference between programming GPUs versus
CPUs is that the underlying programming model is different.
GPUs are massively parallel processors, meaning that a large
number of threads execute the same function in parallel. In
GPU parlance, this function is commonly referred to as a
kernel.

GPU threads are organised in a thread hierarchy [12].
Since our main interest is in NVIDIA GPUs, we will limit
our discussion to NVIDIA’s CUDA programming model. In
CUDA, the thread hierarchy consists of:

• Threads: Threads are the smallest unit of execution in the
hierarchy.

• Warps: Threads are grouped by the hardware into a set
of 32 threads called a warp. Threads in the same warp
execute in a SIMT (Single Instruction Multiple Thread)
fashion. This means that these threads must execute the
same instruction at the same time, possibly on different
data.

• Blocks: Threads are grouped by the programmer into
blocks. Threads in the same block can communicate
efficiently, so that they can cooperate on a common task.

• Grid: The set of all blocks on the GPU device is called
the grid.

Similarly to threads, GPU memory is also ordered hierarch-
ically. We are mainly interested in three parts of this hierarchy,
corresponding to the levels in the thread hierarchy:

• Registers: The register file is the fastest type of memory.
Each thread typically has access to 255 registers.

• Shared memory: Each block has its own set of shared
memory, that may be used by threads in the same block
to communicate.

• Global memory: Global memory can be accessed by all
threads on the device, regardless of which block they
belong to. Global memory has the largest capacity of the
memory hierarchy, but also has much higher latency and
lower throughput.

B. The Julia programming language

Julia is an open source programming language featuring a
high-level syntax. A central paradigm in the design of the
language is the way it handles dispatch, the process by which
the compiler determines which implementation of a function
to use for a given function call. Julia uses a multiple dispatch
scheme, which means that this choice depends on the types of
all of a function’s arguments [6].

Like most high-level languages, Julia’s type system is
dynamic, meaning that the types of expressions are not ne-
cessarily known at compile time. However, Julia also inherits
some of the advantages of static type systems through several

features of its compiler. The Julia compiler applies type
inference to deduce the types of values used by the program.
If the compiler can deduce the types of all of the arguments in
a function call, then this function can be specialised for these
types. This specialised function is then compiled just-in-time
to an efficient implementation, devoid of any dynamic type
checks.

Julia’s compiler is built on top of LLVM, a compiler infra-
structure project commonly used in research and industry [9].
Julia’s compilation process consists of a couple steps. First,
Julia code is converted to an IR (Intermediate Representation)
that is used for type inference, called Julia IR. Next, Julia
IR is lowered to LLVM IR, the representation that LLVM
uses. From this point onwards, the LLVM framework takes
control of the compilation process. LLVM contains a set of
backends, one for each target architecture that LLVM supports.
The backend corresponding to the current architecture will
then convert this LLVM IR to native instructions.

C. Programming GPUs in Julia using CUDAnative

CUDANATIVE is a Julia package that allows executing
kernels written in Julia on NVIDIA GPUs. It reuses part
of the Julia compilation process that we explained in the
previous section. In particular, the compilation pipeline is run
until the point where Julia IR is lowered to LLVM IR. The
generated LLVM IR is intercepted, and sent to the LLVM
NVPTX backend instead of the backend corresponding to the
host architecture. This NVPTX backend converts LLVM IR
to PTX instructions, the virtual instruction set of NVIDIA
GPUs. NVIDIA GPUs are not capable of executing this PTX
directly. PTX is first compiled by the GPU driver to SASS, the
generation-specific instruction set that the GPU understands.

D. Tensor Cores

Each Tensor Core performs a matrix multiply-accumulate,
i.e. an expression of the form D = A·B+C. Tensor Cores only
support a limited set of possible data types for these matrices.
One peculiarity of these Tensor Cores is that the multiply-
accumulate is performed in mixed precision. For example, if
the A and B matrices are stored as 16-bit floating point values,
the C and D matrices are 32-bit floating point.

NVIDIA exposes Tensor Cores in C++ in an API that
they call WMMA (Warp Matrix Multiply Accumulate). As
the name suggests, WMMA instructions must be used by
all threads in a warp, in a SIMT fashion. Each thread that
cooperates in a warp-wide WMMA operation holds a part
of each matrix in its registers. This part is referred to as a
fragment in WMMA terminology.

In WMMA parlance, we say that A is an M ×K matrix,
B is a K×N matrix, and C and D are M ×N matrices. The
tuple (M,N,K) is called the shape of the WMMA operation.
Note that not all possible values of M , N , and K are allowed,
as WMMA restricts the set of possible shapes.

Conceptually, WMMA consists of three separate steps:
1) Load the input matrices A, B, and C from memory into

WMMA fragments using a WMMA load operation.

2) Perform the matrix multiply-accumulate using a
WMMA mma operation, resulting in a fragment of the
D matrix.

3) Store the resultant D fragment to memory using a
WMMA store operation.

In CUDA C++, each of these steps corresponds to an over-
loaded C++ function. Calls to these functions are converted
to the correct WMMA PTX instructions by the CUDA C++
compiler.

III. ABSTRACTIONS FOR PROGRAMMING TENSOR CORES
IN JULIA

To support Tensor Cores in Julia, our WMMA API thus
needs to make sure that CUDANATIVE generates the correct
PTX instructions. We can reuse some existing functionality in
the LLVM NVPTX backend for this purpose. In the context
of compilers, an intrinsic or intrinsic function is a function
that is handled in a special way by the compiler. Backends in
the LLVM framework can define intrinsics that are specific to
that backend. The NVPTX backend already includes intrinsics
for WMMA, which are converted to the corresponding PTX
instructions.

Our Julia API for Tensor Cores consists of two different
layers. The first layer is a set of Julia functions that wrap
the pre-existing intrinsics in the NVPTX backend. These
wrapper functions are one-to-one, meaning that each intrinsic
corresponds to one Julia function.

The Julia compiler already includes an llvmcall func-
tion, that allows programmers to call LLVM intrinsics directly
from Julia. The compiler first determines the Julia type of
each of the arguments of llvmcall, converts these to the
corresponding LLVM type, and inserts a call to the correct
intrinsic. This mapping of Julia types to LLVM types is
hardcoded in the Julia compiler. To support WMMA in Julia,
we had to adapt this mapping, as the WMMA intrinsics use
some LLVM types that did not have a corresponding Julia
equivalent. We bundled the necessary changes to Julia’s code
generation in one pull request, that has since been merged in
the upstream Julia repository.

One possibility is to write these wrapper functions manually
for each intrinsic, but that would be a very tedious process.
Instead, we use Julia’s powerful metaprogramming capabil-
ities to generate these wrappers automatically. We define a
limited set of variables that contain the information necessary
to generate these wrappers, such as the possible shapes of
WMMA operations. We then simply iterate over the possible
configurations, and dynamically generate the corresponding
wrapper functions.

The second layer is a high-level interface, similar to CUDA
C++’s version of WMMA. Each of the steps of WMMA
corresponds to a different Julia function. For example, the A
matrix is loaded with a call to load_a, and the resultant D
matrix is stored to memory using store_d. Note that the
correct PTX instruction depends on the shape of the WMMA
operation, and the datatype of the accumulator matrices C
and D. This information is passed to the high-level interface

using a conf argument, which is a type that contains both
the WMMA shape and accumulator element type. We then
use Julia’s multiple dispatch mechanism to redirect calls to
our high-level API to the correct intrinsic wrapper function.

Our WMMA API will serve as a building block to im-
plement flexible GEMMs later on. One important operation
that we must support for flexible GEMM is the application
of elementwise transformations, such as linear scaling or ac-
tivation functions in neural networks. To support elementwise
operations, we integrate our WMMA API in Julia’s broad-
casting framework. This way, we may apply an elementwise
operation f to a WMMA fragment frag using Julia’s dot
syntax: f.(frag). The resulting high-level WMMA API and
intrinsic wrappers were bundled in one pull request, that has
since been merged in CUDANATIVE.

IV. ABSTRACTIONS FOR RECURSIVE BLOCKING

Matrix multiplication is an application that is rich in data
reuse. A matrix multiplication of square matrices of size N
requires O(N3) floating point operations, but only O(N2)
storage. This results in each element being reused roughly
O(N) times. This data reuse can be used to improve the
performance of GEMM kernels. The general idea is to copy
tiles of the input matrices from a slower type of memory to a
faster type. This process is then repeated for every level in the
memory hierarchy. The size of the tiles in each step is chosen
such that they fit in the relevant part of the memory hierarchy.

On the GPU, we first copy a tile from global memory
to shared memory. We can then reuse the data in shared
memory, which is faster than global memory loads. In a next
step, we can load smaller tiles from shared memory to the
register file. The massively parallel nature of GPUs allows
us to improve performance of GEMM even further. Note that
the computations of different tiles of the resultant matrix are
independent, and can thus be performed completely in parallel.

Recall that their is a one-to-one mapping between the levels
of the thread and memory hierarchy. For example, shared
memory is inherently linked to blocks, since only threads in
the same block can communicate via shared memory. Each
of the tiled copy operations is thus performed cooperatively,
by all threads in the relevant part of the thread hierarchy.
Consider the case of a GEMM D = A · B + C, where A
is an M ×K matrix, B is a K ×N matrix, and C and D are
M × N matrices. More concretely, this GEMM will consist
of the following steps:

1) Copy a tile of C from global memory to shared memory,
cooperatively by all threads in a block.

2) Copy a tile of C from shared memory to registers,
cooperatively by all threads in a warp.

3) Iterate over the K dimension, according to the tiling size
of a block.

a) Copy a tile of A from global memory to shared
memory, cooperatively by all threads in a block.

b) Copy a tile of B from global memory to shared
memory, cooperatively by all threads in a block.

c) Iterate over the K dimension, according to the
tiling size of a warp.
i) Copy a tile of A from shared memory to

registers, cooperatively by all threads in a warp.
ii) Copy a tile of B from shared memory to

registers, cooperatively by all threads in a warp.
iii) Compute a tile of D, given the A, B, and C

tiles, cooperatively by all threads in a warp.
4) Copy a tile of D from registers to shared memory,

cooperatively by all threads in a warp.
5) Copy a tile of D from shared memory to global memory,

cooperatively by all threads in a block.
Most GEMM implementations on NVIDIA GPUs use ex-

plicit tiling to improve performance [11, 14, 10, 2, 8, 3]. Apart
from GEMM, tiling is also used for batched GEMMs or tensor
contractions [1, 3, 13, 7]. Given the multitude of different
applications, a tiling API could prove very useful.

To that end, we have developed a tiling API in Julia
that facilitates writing algorithms that use tiling techniques
to improve performance. The most important operation in
our tiling API is parallelisation. The parallelisation operation
first divides a tile in subtiles of a given size. The resulting
set of subtiles is then parallelised across all blocks on the
device. Given a set of N subtiles and M blocks, each block
will handle N

M subtiles. This parallelisation operation can be
applied recursively. For example, the subtile of each block can
be recursively parallelised across all the warps in the same
block.

This parallelisation operation can be used to implement
the general structure of a GPU GEMM that we described
before. Our tiling API contains another operation that we
call linearisation, that converts a tile to a linear offset in
memory. Linearisation is used to calculate the memory address
corresponding to each element in a tile. Our tiling API thus
replaces the manual calculation of memory addresses, which
is less maintainable, and more prone to errors.

The tiling API that we developed will be used as a building
block to implement flexible matrix multiplication kernels in
our GEMM API. Nevertheless, we have designed our tiling
API to be as generally applicable as possible. For example,
tiles in our API can have any number of dimensions, so that
they can be used for tensor contractions as well.

V. ABSTRACTIONS FOR FLEXIBLE MATRIX
MULTIPLICATION KERNELS

The final API in our flexible GEMM framework is the
GEMM API itself. It uses the tiling API we described in
the previous section to implement the general structure of
a performant GEMM. Our API splits this GEMM kernel in
a set of building blocks having a predetermined interface.
Each of these building blocks corresponds to a way in which
GEMM kernels need to be adapted, and can have different
implementation depending on the use case. For example, one
building block could determine how the A matrix is stored
in global memory. Specific implementations of this building

block would include a column major, and a row major storage
format.

Each of these building blocks corresponds to one or more
calls to a set of functions with a predetermined name. For
example, the building block that determines how A is stored
can have two functions load and store that load and
store a tile of A, respectively. The first argument to these
functions is a type, such as ColumnMajor or RowMajor,
that determines the memory layout of A. Using Julia’s multiple
dispatch mechanism, we can customise the behaviour of these
functions depending on this type, thereby adding flexibility to
our GEMM kernel.

Note that the introduction of flexibility using this approach
has no performance impact at runtime. Through type inference,
the Julia compiler is able to infer the types passed to the
load or store functions. The same applies to all different
building blocks, so that it is known at compile time which
implementations of each function will be called. These imple-
mentations are then combined, and compiled just-in-time to a
kernel tailored to a specific use case.

Of course, the most important question we should answer
is which building blocks we need to cover a wide range
of different use cases. To answer this question, we drew
inspiration from two sources. First, we looked into NVIDIA’s
open source CUTLASS library, which contains a set of
components for performant GEMM or GEMM-like kernels.
Second, we conducted a literature search to get an idea of
the most common ways in which GEMM kernels need to
be adapted. From these two sources, we propose 5 different
building blocks: params, layouts, transforms, operators, and
epilogues.

The params building block contains a set of fields that
determine the tiling sizes that should be used for each step
of the GEMM kernel. For example, the BLOCK_SHAPE field
determines the size of the tiles loaded and stored by each
block. The params building block also contains information
regarding the launch configuration of the kernel, such as the
number of warps per block.

The tiling sizes in the params component are specified in
logical coordinates, i.e. with a meaning specified by the user.
To load and store tiles, we need to convert this logical index
to a physical offset in memory. This conversion is handled
by the layout building block. Possible implementations of this
building block are RowMajor and ColMajor. To provide
maximal flexibility, users can specify the memory layout
separately for each matrix, and for each level of the memory
hierarchy. For example, the A matrix may be stored differ-
ently in global and shared memory. This is especially useful
for shared memory, as accessing shared memory efficiently
typically requires more complicated memory layouts.

Transforms are arbitrary Julia functions that are automat-
ically called after every load, and before every store. Their
main use case is to apply elementwise transforms to the
input or output matrices of a GEMM kernel. This can range
from the case of a simple scaling for a normal GEMM, to
the application of activation functions in the case of neural

networks.
Operators determine how the computation of the matrix

product is performed in the inner loop. Possible implement-
ations of this building block include a WMMA operator that
performs the computation using Tensor Cores, or an imple-
mentation that uses the traditional floating point hardware
instead.

The final component in our GEMM API is the epilogue.
As the name suggests, the epilogue building block is situated
at the very last stage of GEMM. It offers more control than
the layouts over how tiles of the resultant matrix are copied
from shared memory to global memory. For example, a custom
epilogue could apply a reduction operation over the tiles stored
in shared memory across all blocks.

VI. EVALUATION

To evaluate the performance and flexibility of our frame-
work, we will implement three different GEMM variants
using our GEMM API. The first example is a normal mixed-
precision GEMM that uses Tensor Cores via our WMMA API.
Next, we introduce the necessary components to extend this
GEMM to matrices of complex numbers. Our last example will
change this complex GEMM so it also supports dual numbers.

We will compare the performance of our GEMM kernels
with the state-of-the-art GEMMs in NVIDIA’s CUBLAS and
CUTLASS libraries. CUDANATIVE dispatches matrix multi-
plications to cuBLAS, but only for datatypes that are com-
patible with CUBLAS. For other datatypes, CUDANATIVE
includes a generic kernel as a fallback. We will also compare
our performance with CUDANATIVE’s generic implementa-
tion.

A. Mixed-precision GEMM

To support a mixed-precision GEMM in our GEMM API,
we will create an operator that builds on top of our WMMA
API. This operator simply calls the correct WMMA function
for each step in the GEMM’s inner loop.

Since Julia is column major, we also implemented a
ColMajor layout component. This layout is suitable for
global memory, but leads to inefficient memory accesses for
shared memory. On NVIDIA GPUs, shared memory is split
into memory banks. Different memory banks can be accessed
in parallel, but memory accesses to addresses that map to the
same bank are serialised. This serialisation process is often
referred to as a bank conflict.

The most common way to reduce these bank conflicts
for a column major layout, is to add padding to every
column. This changes the mapping of matrix elements to
banks, thereby reducing the number of bank conflicts. To
introduce padding in our GEMM API, we added another
layout PaddedLayout. The way this layout works is slightly
different than ColMajor. It does not specify the mapping of
logical indices to physical offsets directly, but is a wrapper for
another layout. For example, PaddedLayout{ColMajor,
8} is a column major layout, where each column is padded
by 8 elements.

The epilogue we use for our mixed-precision GEMM simply
copies the corresponding tile from shared memory to global
memory. Finally, we can implement a custom transform to
apply elementwise operations such as scaling to the input
matrices or the result of the matrix multiplication.

Table I compares the peak performance of our GEMM ker-
nel with the generic implementation in CUDANATIVE, and the
state-of-the-art implementations in cuBLAS and CUTLASS.
CUDANATIVE’s generic kernel uses no tiling techniques, and
is only able to achieve a peak performance of 0.37TFLOPS.
The CUTLASS (WMMA) implementation uses the same para-
meters as our implementation: the tiling sizes are the same,
and the matrix product in the inner loop is also computed using
WMMA. We notice a perfect performance parity between this
CUTLASS kernel and our implementation.

Both our implementation and CUTLASS (WMMA) achieve
a performance of about 75% that of CUBLAS. To understand
this gap, we have also benchmarked two other kernels in the
CUTLASS library. These kernels also use Tensor Cores, but
do so using mma instructions instead of the WMMA API.
These mma instructions are specific to the GPU generation, and
allow more direct control over Tensor Cores compared to the
portable WMMA abstraction layer. The performance results
of Table I were obtained using an NVIDIA RTX 2080 Ti,
which is a GPU of the Turing-generation. The mma.m16n8k8
instruction is optimised for Turing GPUs, and gets very close
to CUBLAS’s performance. We also benchmarked a mixed-
precision GEMM using the mma.m8n8k4 instruction, which
is aimed at Volta GPUs, Turing’s predecessor. As we can see,
the performance of this Volta-style mma is even worse than
WMMA, indicating that these mma instructions are highly
generation specific.

Table I
A COMPARISON OF THE PEAK PERFORMANCE OF OUR MIXED-PRECISION

GEMM KERNELS WITH THE STATE-OF-THE-ART (HIGHER IS BETTER).

Implementation Performance [TFLOPS]
Ours 35
CUDANATIVE generic 0.37
CUBLAS 46
CUTLASS (WMMA) 35
CUTLASS (mma.m8n8k4) 22
CUTLASS (mma.m16n8k8) 40

B. Mixed-precision complex GEMM

To implement a mixed-precision GEMM of complex num-
bers, we can reuse most of the components of our previous
example. There are only two main differences between a nor-
mal mixed-precision GEMM, and a mixed-precision complex
GEMM [2].

First, the WMMA multiply-accumulate operation in the
inner loop is replaced by four WMMA operations: A.real *
B.real, A.real * B.imag, A.imag * B.real, and
A.imag * B.imag. In our GEMM API, this can be imple-
mented using another operator that is based on the WMMA
operator of the previous section, but performs four multiply-
accumulates in the inner loop instead of one.

The second difference between normal GEMMs and com-
plex GEMMs, is the memory layouts that are used. In global
memory, complex matrices are stored in an interleaved layout,
where the real and imaginary parts of the same element are
stored contiguously in memory. To load the real and imaginary
parts from shared memory into WMMA fragments, we need
to use a split-complex layout. This layout stores the real
and imaginary parts of the matrix separately. This is needed
because WMMA implicitly assumes that elements in the same
column of a column major matrix are stored at adjacent
memory addresses. In our GEMM API, this can be done using
two new layout components: InterleavedComplex and
SplitComplex.

Table II shows the peak performance of our complex
GEMM, CUDANATIVE’s generic implementation, and CUT-
LASS. At the time of writing, CUTLASS only includes an
mma variant of complex GEMM, so we cannot compare our
implementation with CUTLASS’s WMMA. Still, we were able
to achieve about 50% of the performance of CUTLASS’s
mma kernel, without implementing any optimisations specific
to complex GEMM. Once again, we see that our flexible
kernel significantly outperforms the generic implementation
in CUDANATIVE.

Note that the gap between our WMMA kernel and CUT-
LASS’s mma is larger for complex GEMM than for nor-
mal mixed-precision GEMM. This is likely because complex
GEMMs have higher arithmetic intensity: the multiplication
of two complex numbers requires four real multiplications.
This means that the importance of the compute stage of
GEMM increases, so that replacing WMMA with mma is more
important for complex GEMM than for normal GEMM.

Table II
A COMPARISON OF THE PEAK PERFORMANCE OF OUR COMPLEX

MIXED-PRECISION GEMM WITH THE STATE-OF-THE-ART (HIGHER IS
BETTER).

Implementation Performance [TFLOPS]
Ours 22
CUDANATIVE generic 1.2
CUTLASS (mma.m16n8k8) 42.7

C. Mixed-precision dual GEMM

In our final example, we study the case of the multiplication
of matrices containing dual numbers. Dual numbers extend
the set of real numbers with a new element ε, similar to the
imaginary unit i in the case of complex numbers. Addition and
multiplication of dual numbers is similar to the complex case,
with the only difference that ε2 = 0, whereas i2 = −1. An
example application of dual numbers in scientific computing
is automatic differentiation of functions [15].

Because of the similarity between complex numbers and
dual numbers, most of the discussion of the previous example
applies here as well. For example, we can simply reuse the
split and interleaved layouts we developed in the previous
subsection. The only difference with the complex case is

the operator component. Instead of four WMMA multiplic-
ations, we only need to perform three: A.real * B.real,
A.real * B.dual, and A.dual * B.real. The use
cases of complex and dual numbers are thus an excellent
illustration of the reusability of the components in our GEMM
API.

Performance-wise, we observe similar behaviour as the
complex GEMM in the previous subsection. This is not
surprising, as the only difference between complex and dual
GEMMs is the operator used in the inner loop. Note that
neither CUBLAS nor CUTLASS include kernels that multiply
matrices of dual numbers. Thus, multiplying dual matrices
stored on the GPU in Julia will dispatch to CUDANATIVE’s
generic implementation, which is many orders of magnitude
slower than peak device performance. This means that using
our GEMM API already results in a significant speedup for
dual matrices, even though we can still improve the perform-
ance of our complex and dual GEMMs.

VII. CONCLUSION

We designed, implemented, and evaluated a framework to
instantiate flexible GEMM kernels on GPUs using the Julia
programming language. We build on top of CUDANATIVE,
a Julia package that compiles Julia code to the GPU’s PTX
instruction set using the LLVM NVPTX backend. Our frame-
work consists of three separate APIs.

The first API allows Julia kernels to program Tensor Cores,
a type of processing core in the latest NVIDIA GPUs that ac-
celerate matrix computations. This API consists of two layers:
a low-level layer that directly wraps the correct intrinsics in
the LLVM NVPTX backend, and a high-level WMMA API
that is similar to the way Tensor Cores are exposed in CUDA
C++.

The second API is a tiling API, and aims to facilitate
writing algorithms that make use of tiling techniques. These
tiling techniques are used in GEMM kernels, batched GEMM
kernels, and tensor contractions to improve performance.

Finally, our third API consists of a set of components
that together implement a GEMM. These components can
be customised by the user, thereby introducing the necessary
flexibility in the GEMM kernel.

We have evaluated the performance and flexibility of our
framework using three different examples: a normal mixed-
precision GEMM, a complex GEMM, and a dual GEMM.
Our kernels perform similarly to the state-of-the-art imple-
mentations in the CUTLASS library, provided that the same
parameters are used. We also indicated how we could bridge
the remaining performance gap with CUBLAS by using the
generation-specific mma instructions instead of the portable
WMMA interface.

REFERENCES

[1] A. Abdelfattah, S. Tomov and J. Dongarra. ‘Fast
Batched Matrix Multiplication for Small Sizes Using
Half-Precision Arithmetic on GPUs’. In: 2019 IEEE
International Parallel and Distributed Processing Sym-
posium (IPDPS). 2019, pp. 111–122.

[2] A. Abdelfattah, S. Tomov and J. Dongarra. ‘Towards
Half-Precision Computation for Complex Matrices: A
Case Study for Mixed Precision Solvers on GPUs’. In:
2019 IEEE/ACM 10th Workshop on Latest Advances in
Scalable Algorithms for Large-Scale Systems (ScalA).
2019, pp. 17–24.

[3] Ahmad Abdelfattah et al. ‘Performance, Design, and
Autotuning of Batched GEMM for GPUs’. In: High
Performance Computing. Ed. by Julian M Kunkel,
Pavan Balaji and Jack Dongarra. Cham: Springer In-
ternational Publishing, 2016, pp. 21–38. ISBN: 978-3-
319-41321-1.

[4] T. Besard, C. Foket and B. De Sutter. ‘Effective Ex-
tensible Programming: Unleashing Julia on GPUs’. In:
IEEE Transactions on Parallel and Distributed Systems
30.4 (2019), pp. 827–841.

[5] JuliaLang.org. Julia Micro-Benchmarks. 2020. URL:
https://julialang.org/benchmarks.

[6] JuliaLang.org. The Julia Language Official Document-
ation. 2020. URL: https://docs.julialang.org/en/v1.

[7] Jinsung Kim et al. ‘A Code Generator for High-
Performance Tensor Contractions on GPUs’. In: Pro-
ceedings of the 2019 IEEE/ACM International Sym-
posium on Code Generation and Optimization. CGO
2019. Washington, DC, USA: IEEE Press, 2019,
pp. 85–95. ISBN: 9781728114361.

[8] J. Lai and A. Seznec. ‘Performance upper bound ana-
lysis and optimization of SGEMM on Fermi and Kepler
GPUs’. In: Proceedings of the 2013 IEEE/ACM Inter-
national Symposium on Code Generation and Optimiz-
ation (CGO). 2013, pp. 1–10.

[9] LLVM contributors. The LLVM Compiler Infrastructure
Project. 2020. URL: https://llvm.org.

[10] Rajib Nath, Stanimire Tomov and Jack Dongarra.
‘An Improved MAGMA GEMM For Fermi Graph-
ics Processing Units’. In: International Journal of
High Performance Computing Applications 24.4 (Nov.
2010), pp. 511–515. ISSN: 1094-3420. DOI: 10.1177/
1094342010385729. URL: http://dx.doi.org/10.1177/
1094342010385729.

[11] NVIDIA. cuBLAS: CUDA Toolkit Documentation.
2020. URL: https://docs.nvidia.com/cuda/cublas/index.
html.

[12] NVIDIA. CUDA C++ Programming Guide. 2020. URL:
https : / /docs .nvidia .com/cuda/cuda- c- programming-
guide.

[13] NVIDIA. cuTENSOR: A High-Performance CUDA Lib-
rary for Tensor Primitives. 2020. URL: https : / / docs .
nvidia.com/cuda/cutensor/index.html.

[14] NVIDIA. CUTLASS: CUDA Templates for Linear Al-
gebra Subroutines. 2020. URL: https : / / github . com /
NVIDIA/cutlass.

[15] J. Revels, M. Lubin and T. Papamarkou. ‘Forward-
Mode Automatic Differentiation in Julia’. In:
arXiv:1607.07892 [cs.MS] (2016). URL: https :
//arxiv.org/abs/1607.07892.

[16] Paul Springer and Paolo Bientinesi. Design of a high-
performance GEMM-like Tensor-Tensor Multiplication.
2016. arXiv: 1607.00145 [cs.MS].

Contents

Permission of use on loan iv

Preface v

Abstract vi

Extended abstract vii

1 Introduction 1

2 Background 4
2.1 The CUDA programming model . 4
2.2 The Julia programming language . 7
2.3 CUDAnative.jl: Executing Julia kernels on CUDA hardware 10
2.4 Mixed precision arithmetic . 13

3 Motivation and related work 16
3.1 The case for matrix multiplication . 16
3.2 The need for flexible matrix multiplication kernels 18
3.3 Related work . 23
3.4 Goals of this thesis . 25

4 Abstractions for programming Tensor Cores in Julia 26
4.1 WMMA: CUDA C’s interface to Tensor Cores 26
4.2 Requirements . 29
4.3 A WMMA API for Julia . 31

4.3.1 Wrappers for the LLVM intrinsics 33

xiv

4.3.2 A WMMA interface for Julia . 36
4.4 Evaluation . 40

4.4.1 Zero-cost . 41
4.4.2 Future proof . 46
4.4.3 Similar to CUDA C++ . 47

4.5 Conclusion . 49

5 Abstractions for recursive blocking 50
5.1 The case for recursive blocking . 50
5.2 Requirements and design of abstractions 55
5.3 A tiling API for Julia . 59
5.4 Evaluation . 66

5.4.1 Multiple dimensions . 67
5.4.2 Readability and zero-cost . 68

5.5 Conclusion . 80

6 Abstractions for flexible matrix multiplication kernels 82
6.1 CUTLASS . 82
6.2 Requirements . 87
6.3 A flexible GEMM API for Julia . 87
6.4 Example . 95
6.5 Evaluation . 102

6.5.1 Flexibility and performance . 102
6.5.2 Portability . 112

6.6 Conclusion . 113

7 Conclusion and future work 114

References 117

xv

List of Figures

2.1 An overview of each component in the CUDA thread hierarchy, along with
the corresponding level in the memory and hardware hierarchy. 7

2.2 An overview of the compilation pipeline of the Julia compiler. 9
2.3 An overview of Julia’s compilation pipeline adapted by CUDAnative.jl. . 12

3.1 An illustration of the TTGT algorithm for tensor contractions. 22

4.1 An overview of Julia’s compilation pipeline adapted by CUDAnative.jl. . 31
4.2 A schematic overview of the WMMA API that we will develop for Julia

(top) and the pre-existing components it relies on (bottom). 32

5.1 An illustration of the triple loop nest approach to GEMM. 51
5.2 An illustration of the blocking approach applied to the GEMM problem

on GPUs. 53
5.3 An illustration of the projection of a three dimensional tile to two dimen-

sions M and K. 56
5.4 An illustration of the parallelisation of a tile over a set of 8 cooperating

warps. 58
5.5 An illustration of the translation of a tile. 59
5.6 An illustration of the conversion of a tile to a linear index. 59
5.7 A parallelisation operation over 2 warps handling a 4× 2 set of subtiles in

parallel. 65
5.8 An illustration of copying a tile of the C matrix from global memory to

shared memory. 70

xvi

5.9 An illustration of the three dimensional iteration space in the inner loop
of the matrix product. 75

5.10 An illustration of the computation of the matrix product in the innermost
loop. 76

5.11 An illustration of copying a tile of the D matrix from registers to shared
memory. 79

6.1 Copying a tile of A from global to shared memory using the params,
layouts, and transforms components in our GEMM API. 92

6.2 Storing a 4× 4 matrix in shared memory in a non-padded layout. 104
6.3 Storing a 4× 4 matrix in shared memory using padding. 104
6.4 A comparison of the performance of our mixed-precision GEMM with

state-of-the-art implementations on the NVIDIA V100 GPU. 105
6.5 A comparison of the performance of our mixed-precision GEMM with

state-of-the-art implementations on the NVIDIA RTX 2080 Ti GPU. . . 107
6.6 The difference between an interleaved and split memory layout to store

matrices of complex numbers. Memory addresses increase from left-to-
right, and then from top-to-bottom, i.e. in a row-major fashion. 109

6.7 An illustration of the performance of our mixed-precision complex GEMM
on the NVIDIA V100 GPU. 110

6.8 An illustration of the performance of our mixed-precision complex GEMM
on the NVIDIA RTX 2080 Ti GPU. 111

xvii

List of Abbreviations

API Application Programming Interface.

AST Abstract Syntax Tree.

ATLAS Automatically Tuned Linear Algebra Software.

BF16 Bfloat16.

BLAS Basic Linear Algebra Subprograms.

BLIS BLAS-like Library Instantiation Software.

CPU Central Processing Unit.

CTA Cooperative Thread Array.

CUDA Compute Unified Device Architecture.

CUTLASS CUDA Templates for Linear Algebra Subroutines.

DL Deep Learning.

DLA Dense Linear Algebra.

xviii

FP16 Half Precision Floating Point.

FP32 Single Precision Floating Point.

FP64 Double Precision Floating Point.

FPU Floating Point Unit.

GEMM General Matrix Multiplication.

GETT GEMM-like Tensor-Tensor contraction.

GPGPU General-purpose computing on graphics processing units.

GPU Graphics Processing Unit.

GTC GPU Technology Conference.

HPC High Performance Computing.

IR Intermediate Representation.

ISA Instruction Set Architecture.

JIT Just-In-Time.

LoG Loop-over-GEMMs.

MAC Multiply Accumulate.

xix

MAGMA Matrix Algebra on GPU and Multicore Architectures.

MKL Math Kernel Library.

ML Machine Learning.

OpenCL Open Computing Language.

OpenGL Open Graphics Library.

PTX Parallel Thread Execution.

SASS Streaming Assembler.

SIMT Single Instruction Multiple Thread.

SM Streaming Multiprocessor.

SSA Static Single Assignment.

TBLIS Tensor BLIS.

TF32 TensorFloat-32.

TTGT Transpose-Transpose-GEMM-Transpose.

WMMA Warp Matrix Multiply Accumulate.

xx

1 Introduction

The days where GPUs (Graphics Processing Units) were only used as a coprocessor to
perform graphics-related tasks have long since passed. Due to their massively parallel
nature, GPUs can be used to significantly accelerate scientific computations as well. The
use of GPUs for these purposes is commonly referred to as GPGPU (General-purpose
computing on graphics processing units) programming. Several fields use GPUs to
increase performance, including ML (Machine Learning) and HPC (High Performance
Computing) [1, 61, 22, 18, 43].

GPGPU programming is typically performed in low-level languages such as C++, whereas
researchers would prefer to use a high-level language such as Python or Matlab. Tradi-
tionally, the choice between high-level or low-level languages comes down to a trade-off
between performance and programmer productivity. Through the use of modern compiler
techniques, it is possible to eliminate this trade-off and use a high-level language without
sacrificing performance. Julia is one example of a programming language with a high-level
syntax, but performance comparable to that of C++ [25]. Using the CUDAnative
project, researchers are even able to program GPUs directly in Julia.

Matrix multiplication, commonly called GEMM (General Matrix Multiplication), is at the
core of many computations in ML and HPC, ranging from neural networks to earthquake
simulation and weather prediction [1, 33, 22, 43]. The multiplication of matrices is
so prevalent that NVIDIA has introduced Tensor Cores in their latest GPUs. Tensor
Cores are hardware units specifically designed to compute matrix multiplications quickly.
One peculiarity of these Tensor Cores is that the matrix multiplication is performed
in mixed precision, meaning that both 16-bit and 32-bit floating point is used during

1

the computation. The use of mixed precision has resulted in significant speedups in the
training of neural networks and in several HPC applications [50, 18].

Efficient implementations of GEMM are bundled in vendor-specific libraries, such as
cuBLAS in the case of NVIDIA GPUs. These libraries contain a set of pre-optimised
GPU functions, called kernels, that are built for a specific purpose, and hence lack
flexibility. This is problematic if the variant of GEMM needed for a given algorithm is
not supported. In those cases, programmers typically have to spend a significant amount
of time and effort implementing a performant kernel from scratch.

The focus of this thesis is the design and implementation of a high-level framework to
instantiate performant GEMM kernels on GPUs. To increase programmer productivity,
we will use the high-level programming language Julia and the package CUDAnative
instead of C++. Given the prevalence of mixed precision in both ML and HPC, the end
goal is a GEMM targetting NVIDIA’s Tensor Cores that is both performant and flexible.
We will work towards this goal in three main steps.

Tensor Cores can be programmed in C++ using NVIDIA’s WMMA API (Application
Programming Interface), which CUDAnative did not originally support. The first goal
is thus the design and implementation of an API to interact with Tensor Cores from
within Julia.

Once we can program Tensor Cores directly in Julia, we can use them to implement
a matrix multiplication kernel. A possible approach is to divide the output matrix in
small tiles, and to calculate each of these tiles using Tensor Cores. As we shall see, this
implementation does not use the computational capabilities of the GPU optimally, and
is hence extremely inefficient. The next goal is thus to research the design principles
behind performant matrix multiplication kernels on GPUs, and to apply these principles
to implement a performant mixed-precision GEMM.

Finally, we need to make this performant GEMM kernel flexible. To achieve this, we
first conduct a literature search to understand which types of flexibility are important,
and how other frameworks approach this requirement. From this search, we will distil a

2

list of the main use cases for flexible matrix multiplication kernels, and propose a set of
abstractions needed to cover them. As a final step, we will introduce this flexibility in
the mixed-precision GEMM kernel that we developed.

We will start with an introduction to the necessary background information regarding
GPU computing, the Julia programming language, and mixed-precision arithmetic in
Chapter 2. Chapter 3 will go into more detail about the main motivation for this thesis
by describing why flexible matrix multiplication kernels are needed. The flexible matrix
multiplication interface developed in this thesis consists of three main APIs, each of which
will be the subject of a separate chapter. In Chapter 4, we will design and implement
the API to interface with NVIDIA’s Tensor Cores. Chapter 5 focuses on tiling, one of
the core principles behind performant GEMMs. Chapter 6 then builds on top of this
tiling API to implement a flexible mixed-precision GEMM. Finally, Chapter 7 concludes
the thesis, and lists several possible directions for future research.

3

2 Background

This chapter gives an overview of the background knowledge required for the rest of
this thesis. We will start with an introduction to the core concepts of CUDA (Compute
Unified Device Architecture), NVIDIA’s platform for GPGPU programming. Next, we
will explore the relevant features of the Julia programming language, and how the package
CUDAnative.jl allows writing CUDA kernels in Julia. To conclude this chapter, we
discuss the concept of mixed precision arithmetic, why it is gaining traction, and how
NVIDIA has incorporated this recent trend in their latest GPUs.

2.1 The CUDA programming model

Traditionally, GPUs were used as a coprocessor to offload compute-intensive graphics
computations from the CPU (Central Processing Unit). Several APIs were designed to
faciliate this, chief among which were Microsoft’s DirectX [46] and Silicon Graphics’s
OpenGL (Open Graphics Library) [32], now maintained by the non-profit Khronos
Group. It became clear, however, that GPUs were not only useful in the domain of
computer graphics, but were also able to accelerate scientific computations. These early
efforts of using GPUs for general-purpose computing were promising, but still required
expressing these computations in terms of the underlying graphics primitives used by
the hardware.

In November 2006, NVIDIA revolutionised the GPGPU landscape with the announcement
of CUDA: their vision for a framework for general-purpose programming on NVIDIA

4

GPUs [58]. Some time later, Microsoft extended their DirectX graphics API with GPGPU
capabilities with the launch of DirectCompute [45]. Similarly, through a joint effort of
Apple and the Khronos Group, OpenCL (Open Computing Language) was released in
2009 [31]. While CUDA is only supported on NVIDIA hardware, both OpenCL and
DirectCompute have the advantage that they are vendor independent. Nevertheless, for
the purposes of this thesis, we will mainly focus our attention on CUDA, since it is more
mature in its tooling and software support.

With CUDA’s introduction also came a plethora of new terminology specific to CUDA
and NVIDIA GPUs. The first chapters of the official CUDA programming guide give an
excellent overview of these newly introduced terms, and how they interact [52]. In contrast
to traditional CPU programming, the CUDA programming model is one of massive
parallelism. Whereas a modern CPU typically has 8 – 16 cores, an NVIDIA GPU contains
a large set of processors that NVIDIA refers to as SMs (Streaming Multiprocessors), each
consisting of a number of CUDA cores.

In CUDA, data is processed by a large set of threads executing in parallel. These threads
are organised in a thread hierarchy, consisting of:

• Threads: Threads are the smallest unit of execution in the hierarchy.

• Threadblocks: Threads can be further grouped into threadblocks (or simply blocks).
All threads in a threadblock are guaranteed to be executed on the same SM, and
can thus cooperate on a common task. For this reason, a block is also referred to
as a CTA (Cooperative Thread Array).

• Grids: Threadblocks themselves are organised in a grid, representing the set of all
blocks on the device.

Threads are not scheduled individually on an SM, but in groups of 32 threads called
warps. All threads in the same warp execute in a SIMT (Single Instruction Multiple
Thread) fashion, meaning that they should execute the same instruction. If threads in a
warp disagree on the execution path, e.g. because of a data-dependent conditional branch,

5

the SM will execute each branch taken, and disable all threads not on the currently
executing branch. This serialises the execution of the threads in a warp, and is commonly
referred to as divergence. Even though warps are primarily related to the hardware
implementation, CUDA programmers should be aware of their existence. As we shall see
later, some instructions operate at the warp level, and must be executed in lockstep by
all threads in a warp.

Similarly to threads, GPU memory is also ordered in a hierarchy. In this thesis, we
mainly care about three types, corresponding to the levels in the thread hierarchy:

• Registers: The register file is the fastest type of memory. In contrast to a CPU
core with only a few registers, each CUDA thread can use up to 255 registers on
modern GPUs.

• Shared memory: Each block has its own set of shared memory, that may be used
by threads in the same block to communicate.

• Global memory: In contrast to the register file or shared memory, global memory is
off-chip, and thus has much higher latency and lower throughput. However, it has
the largest capacity of the memory hierarchy, and can be accessed by all threads
on the device, regardless of which block they belong to.

A summary of each component in the CUDA thread hierarchy and the corresponding
level in the memory and hardware hierarchy is shown in Figure 2.1. Take note of the
one-to-one correspondence between the components in the thread, memory, and hardware
hierarchy.

CUDA uses the C++ programming language as a base, but extends it with concepts
specific to GPUs. A simple kernel that adds two arrays A and B elementwise, and stores
the result in a third array C is given in Listing 1. Note that the function VecAdd is
annotated with the keyword __global__. These functions are executed on the GPU (also
called device) rather than the CPU (also called host), and are commonly referred to as
kernels. When calling a regular C++ function, it is only executed once. In contrast,

6

Thread hierarchy

Memory hierarchy

Hardware hierarchy

grid threadblock thread

shared memoryglobal memory register file

GPU device SM CUDA core

Figure 2.1: An overview of each component in the CUDA thread hierarchy, along with
the corresponding level in the memory and hardware hierarchy.

calling kernels will result in the creation of a set of N threads, each executing the same
kernel in parallel. The example kernel is very simple: it accesses the identifier of the
executing thread using the built-in threadIdx variable, and adds the elements in A and
B at that position. Finally, on Line 10, this kernel is launched using the triple bracket
syntax <<<M, N>>>, which starts the kernel with M blocks of N threads each.

2.2 The Julia programming language

Julia is an open source programming language featuring a high-level syntax, and per-
formance on par with lower level languages such as C [25, 26]. In Julia, functions may
have different behaviour depending on the exact types of the arguments [27]. In Julia
parlance, each definition of such behaviour is referred to as a method. A central paradigm
in the design of the language is the way it handles dispatch, the process by which the
compiler determines which method to use for a given function call. Julia uses a multiple
dispatch scheme, which means that this choice depends on the number of arguments, and
types of all of the function’s arguments.

7

1 __global__ void VecAdd(float* A, float* B, float* C)
2 {
3 int i = threadIdx.x;
4 C[i] = A[i] + B[i];
5 }
6

7 int main()
8 {
9 // ...

10 VecAdd<<<1, N>>>(A, B, C);
11 // ...

12 }

Listing 1: A simple CUDA C++ kernel that adds two arrays elementwise. Adapted from
the CUDA programming guide [52].

One feature of Julia’s type system is that it is parametric. This means that generic types
may optionally be annotated with information through the use of type parameters. For
example, we can parametrise the generic Array type to a parametric form Array{T} that
also includes the type of each element. Like most high-level programming languages,
Julia’s type system is also dynamic, meaning that the types of expressions are not
necessarily known at compile time. However, Julia also has some advantages of static type
systems through several features of its compiler, which contrast it with the interpreters
used in other high-level programming languages such as Python or R.

It achieves this through the combination of JIT (Just-In-Time) compilation, function
specialisation, and type inference. Consider for example a simple Julia function that
adds its two arguments: add(x, y) = x + y. In traditional dynamically typed languages,
executing this function will involve a dynamic lookup of the types of x and y, and a
dynamic call to the + operator corresponding to these types. The Julia compiler takes a
different approach. Suppose we call this function using two 64-bit integers: add(1, 2).
Through type inference, the compiler knows that both x and y are of type Int64. The

8

add function is then specialised for these argument types, and compiled just-in-time to an
efficient implementation consisting of a simple leaq (%rdi, %rsi), %rax on x86-64.

Julia’s compiler is built on top of LLVM, a compiler infrastructure project commonly used
in research and industry [37]. The compilation process is illustrated in Figure 2.2. First,
Julia code is parsed into an AST (Abstract Syntax Tree), a tree representation of the
syntactical structure of the source code. This AST is then converted to a Julia-specific IR
(Intermediate Representation), that is used for type inference. Next, Julia IR is lowered
into the SSA (Static Single Assignment) form that LLVM uses, called LLVM IR. In the
last step, this LLVM IR is then converted to native instructions by the LLVM backend
corresponding to the current architecture, such as x86-64.

Julia AST Julia IR

LLVM IRNative code

Julia parser Julia codegen

lowering

LLVM x86-64
backend

Figure 2.2: An overview of the compilation pipeline of the Julia compiler.

Julia provides access to these intermediate representations from within the language itself.
For example, Julia’s introspection capabilities include several macros that print the result
of each step in the compilation pipeline. @code_lowered is used to display the Julia IR,
@code_typed and @code_warntype to display the lowered form after type inference. At
a lower level, @code_llvm can be used to print the LLVM IR, and @code_native for the
final machine code.

Apart from querying the intermediate representations, we can also change some of them
within Julia. Similar to LISP, Julia represents the AST of parsed code as a data structure
in the language itself, called an Expr. This is for example used to implement macros,
which return an Expr that is then compiled at parse time. More powerful is the concept
of generated functions, which, unlike macros, are expanded at a time when the types
of the arguments are known. Like macros, generated functions return an Expr that is

9

subsequently compiled. However, they can generate custom code for each combination of
argument types.

Another way in which we can influence the compilation pipeline, is through the use of
llvmcall. This function allows embedding LLVM IR directly into Julia source code.
First, Julia determines the LLVM types corresponding to the Julia types of the arguments
and return value, e.g. Julia’s Int64 will be mapped to LLVM’s i64. Next, the compiler
will generate an LLVM function with those types, containing the specified LLVM IR.
As a last step, the llvmcall is replaced by a call to this function, and, if necessary,
instructions to convert the arguments and return value to the correct LLVM type.

2.3 CUDAnative.jl: Executing Julia kernels on CUDA
hardware

CUDAnative.jl is a Julia package that allows executing kernels written in Julia on
CUDA-enabled hardware [10]. To accomplish this, it uses the LLVM backend for NVIDIA
GPUs, NVPTX, along with several features of the Julia programming language we have
seen in Section 2.2. For example, llvmcall is used to call CUDA-specific LLVM instrinsics
directly, as is the case for e.g. synchronising all threads in a threadblock.

Similarly, the CUDA memory hierarchy is exposed through the use of parametric types:
CUDAnative’s type for device pointers, DevicePtr, has a parameter that determines the
address space of the pointer, e.g. global or shared. When loading from or storing to this
pointer, the multiple dispatch mechanism is used to dispatch to a custom implementation
for device pointers. This implementation makes use of @generated functions to generate
custom LLVM IR for each pointer type, and thus for each possible address space.

Through the use of CUDAnative, one can replace C++ with Julia in the CUDA
software stack. For example, Listing 2 shows the equivalent of the simple vector addition
kernel of Listing 1. Kernels, such as vecadd, are regular Julia functions, that may

10

1 function vecadd(a, b, c)
2 i = threadIdx().x
3 c[i] = a[i] + b[i]
4 return

5 end

6

7 # ...

8 @cuda threads=N vecadd(a, b, c)
9 # ...

Listing 2: The CUDAnative.jl equivalent of the simple vector addition kernel in Listing 1.

additionally contain CUDA-specific code, such as the call to threadIdx() on Line 2. Note
that kernels are only allowed to use a subset of the Julia language. Features that do not
map well to GPUs, such as garbage collection and exceptions, are not supported. This
kernel is then run on the device using the @cuda macro, which serves as a replacement of
the triple bracket syntax of CUDA C++.

CUDAnative reuses part of the Julia compiler infrastructure we have seen in Figure 2.2.
In particular, this compilation pipeline is run up until the lowering stage. The gener-
ated code is then intercepted at the LLVM IR level, and sent to the LLVM NVPTX
backend, instead of the backend corresponding to the host architecture. The adapted
compilation pipeline is given in Figure 2.3. Note that, compared to the original pipeline,
CUDAnative slightly changes the lowering process from Julia IR to LLVM IR.

Instead of x86-64 assembly instructions, the NVPTX backend emits PTX (Parallel Thread
Execution) instructions. PTX is a low-level virtual ISA (Instruction Set Architecture),
suitable for execution on CUDA-enabled NVIDIA GPUs. The main goal of PTX is to
provide a stable ISA that is portable to different GPU architectures [60]. Note that this
ISA is only virtual: for example, PTX uses an infinitely large set of virtual registers, that
do not necessarily correspond to physical GPU registers. The GPU itself is not able to
execute PTX directly. For this, the NVIDIA graphics driver contains a compiler that

11

translates this PTX into SASS (Streaming Assembler), the generation-specific ISA that
the GPU uses.

Mimicking standard Julia’s introspection capabilities, CUDAnative also includes mac-
ros that print the IRs of GPU kernels. These are named similarly to their Julia
counterparts: it suffices to add a prefix device to their name, so that @code_llvm

becomes @device_code_llvm. CUDAnative also introduces @device_code_ptx and
@device_code_sass to inspect the generated PTX and SASS, respectively. These features
are extremely useful to find out which instructions the LLVM backend or the CUDA
driver generate for our kernels.

Julia AST Julia IR

LLVM IR

Julia parser Julia codegen
CUDA-specific
lowering

LLVM NVPTX
backend

PTXSASS
NVIDIA
driver

Figure 2.3: An overview of Julia’s compilation pipeline adapted by CUDAnative.jl.

Finally, we should briefly mention CuArrays.jl, a package built on top of CUDA-
native.jl that defines a new array type, CuArray [12]. This package complements
CUDAnative.jl by introducing several higher-level abstraction on top of the kernels
generated by CUDAnative.jl. For example, the CuArray type implements Julia’s
broadcast operation, which applies an operation elementwise. At the Julia language level,
this is exposed using the special dot-syntax. As such, the vector addition from Listing 2
may be more succinctly written as c .= a .+ b, if all the given variables are of the type
CuArray.

12

2.4 Mixed precision arithmetic

While FP64 (Double Precision Floating Point) arithmetic has long been the de facto
standard in the domain of scientific computing, mixed precision arithmetic is quickly
gaining traction [16]. This new concept originated in the fields of ML and DL (Deep
Learning), where numerical accuracy is of lesser importance than performance. Clearly,
as long as the neural network converges to a model of similar accuracy, it does not matter
that intermediate computations have reduced accuracy. Performance, on the other hand,
is pivotal: the training and inference process is repeated for each batch of input samples,
and for each choice of the hyperparameters of the model.

Mixed precision is, as its name suggests, the process of combining two precisions: FP32
(Single Precision Floating Point) and FP16 (Half Precision Floating Point). The general
idea is to perform the main computations in FP16, but store a minimal amount of
information in FP32, which is important to guarantee convergence of neural networks.
There are several advantages to using mixed precision, compared to the traditional FP64
or FP32 approach [50]:

1. Power consumption: Hardware implementing mixed precision arithmetic tends
to consume less power than traditional FPUs (Floating Point Units) for FP32 or
FP64.

2. Computation time: For workloads that are mainly compute-bound, mixed precision
will increase performance, since they are typically faster than full FP32.

3. Memory bandwidth: Since FP16 are only 2 bytes long compared to FP32’s 4 bytes,
the required memory bandwidth to load/store them is twice as small, which is
beneficial for memory-bound tasks.

4. Memory usage: Similarly, an array of FP16 elements will only require half as much
storage in global memory. In the context of neural networks, this means that we
can double the batch size used during training.

13

It has been demonstrated that mixed precision models are able to achieve the same
accuracy as their full precision counterparts [44]. What makes this even more remarkable
is the fact that this can be accomplished without any changes to the model architecture or
hyperparameters. Through the use of techniques such as gradient scaling and maintaining
a single-precision copy of the weights, this holds true for a variety of different ML models.

Compared to ML, HPC applications are much more sensitive to the precision loss induced
by the use of mixed precision. However, it is possible to limit this loss in precision
using precision refinement techniques [41]. Consider the case of the multiplication of two
matrices AFP32 and BFP32, initially stored in FP32. We convert each of these to FP16,
and calculate the residual matrices Ares = AFP32 − AFP16 and Bres = BFP32 − BFP16.
We can then obtain a higher precision result using four mixed-precision multiplications
as AFP32BFP32 = AFP16BFP16 + AFP16Bres + AresBFP16 + AresBres. This scheme can be
improved by applying the refinement iteratively. Such iterative refinement techniques
have already proven their use in mixed-precision solvers for linear systems [17].

Since ML and DL typically use GPUs, it was only a matter of time before NVIDIA saw
the importance of supporting mixed precision. In 2017, NVIDIA first incorporated mixed
precision in their Volta-generation GPUs. This GPU generation introduced Tensor Cores,
a new type of processing core specifically designed for mixed precision arithmetic [5].
In terms of the traditional GPU hardware hierarchy, we may think of them as being
“inside of the CUDA cores”, complementing the traditional FPU that performs FP32
operations. Tensor Cores of the Volta generation perform a 4 × 4 × 4 matrix MAC
(Multiply Accumulate) operation, i.e. an operation of the form D = A · B + C, where
A,B,C and D are 4× 4 matrices. This MAC operation is performed in mixed precision,
meaning that the input matrices A and B are stored in FP16, whereas the accumulation
matrices C and D may be either FP16 or FP32.

The second generation Tensor Cores were introduced in 2018 with the launch of NVIDIA’s
Turing architecture [57]. Turing Tensor Cores extend the first generation Tensor Cores
with support for 8-bit, 4-bit, and 1-bit integer data types. These are useful for ML
workloads that are more tolerant to precision loss, and do not require the full 16-bit
precision of FP16.

14

On 14 May 2020, NVIDIA presented the Ampere GPU architecture, and the new NVIDIA
A100 GPU [34]. The A100 includes the third generation Tensor Cores, which support
all the operations of Volta’s and Turing’s Tensor Cores, and additionally add new
capabilities. Tensor Cores of the Ampere generation support FP64, which is useful for
HPC applications, and BF16 (Bfloat16), a truncated version of the IEEE FP32 format.
Ampere Tensor Cores also implement operations in a newly introduced floating point
format, TF32 (TensorFloat-32), a hybrid of the standardised FP16 and FP32 formats.
Like FP16, TF32 uses a 10-bit mantissa, since that is typically sufficient for the precision
requirements of ML applications. The main limitation of FP16 is that the numeric range
is quite limited, since it only has 5 bits allocated to the exponent. For that reason,
TF32 uses the same 8-bit exponent that is used for FP32, so that the same range is
supported.

15

3 Motivation and related work

In this chapter, we will focus on matrix multiplication. To start off, we explain why we
are interested in matrix multiplication kernels in the first place. Next, we illustrate why
there is a need for flexiblity in matrix multiplication kernels, and argue that the current
state-of-the-art is lacking in this respect. Finally, we conclude by summarising the main
goals of this thesis, and how each of these is mapped to the remaining chapters.

3.1 The case for matrix multiplication

Matrix multiplication kernels are interesting for several reasons. First, matrix multi-
plication is one of the most common operations in linear algebra. This is evidenced by
the fact that matrix multiplication is standardised in the BLAS (Basic Linear Algebra
Subprograms) specification, a collection of low-level computational routines that has
evolved into a de facto standard [14]. BLAS functionality is separated in three separate
categories, called levels: vector-vector operations (BLAS level 1), matrix-vector opera-
tions (BLAS level 2), and matrix-matrix operations (BLAS level 3). In this work, we are
mainly interested in BLAS level 3, and more specifically, in its GEMM routine, which
calculates a scaled matrix MAC, i.e. an expression of the form D = αA ·B + βC.

Because GEMM is a matrix-matrix operation, there are many opportunities to improve
performance by exploiting memory locality. Consider for example a GEMM where all
matrices have size N ×N . In this case, one matrix contains N2 elements, leading to a
total memory consumption of O(N2). Each of the N2 elements of the output requires N

16

additions and N multiplications, totalling a computational cost of O(N3). As a result,
each input element is reused O(N) times, and we can improve performance by exploiting
this reuse. However, writing an efficient GEMM is not trivial, and requires knowledge of
the underlying hardware. A framework to automatically instantiate GEMMs could thus
prove very useful.

Apart from a standalone matrix multiplication, GEMM is also used as a building block
in other computational kernels. For example, the area of DLA (Dense Linear Algebra)
deals with linear algebra computations involving dense matrices, i.e. matrices that do not
have a special structure that can be exploited. Two important routines in DLA are the
LU factorisation of matrices, and solving linear systems of equations. In order to exploit
code reuse, these are typically implemented on top of a performant GEMM kernel [3, 17].
By expressing the computationally intensive steps of LU factorisation and linear solvers
in terms of matrix multiplication, one can achieve high performance without having to
implement these steps from scratch.

Matrix multiplication has also proven its use in several applications in the field of HPC.
Of course, of significant importance in HPC is the traditional use case of the linear solvers,
as mentioned before [17]. In computational physics and chemistry, tensor contractions,
the generalisation of GEMM to multiple dimensions, also play an important role. With
the introduction of hardware specialised for matrix multiplication, however, we see several
more complex HPC applications being rephrased in terms of GEMMs. For example,
using NVIDIA Tensor Cores instead of the traditional FP32 FPUs can result in a massive
boost in performance. For the NVIDIA V100, a GPU typically found in datacentres,
the FP32 peak performance is 16.4 TFLOPS, whereas Tensor Cores are able to achieve
130 TFLOPS at peak capacity [59]. This has proven useful to accelerate the computations
in several HPC applications, such as earthquake simulations [22], plasma visualisation [18],
and weather and climate prediction [43].

Finally, we focus on the area of ML and DL. Training neural networks typically involves
the calculation of a large number of dot products yi = f(wT

i xi + bi). In this expression,
xi ∈ Rn×1 represents the input features, wi ∈ Rn×1 is the weight vector, bi ∈ R is the bias,
f the activation function of the artificial neuron, and yi ∈ R the output. The computation

17

of these dot products can be parallelised, and rephrased in terms of matrix multiplication.
This allows the use of highly optimised GEMM kernels, thus achieving high performance
while reusing existing functionality. This technique is used for, amongst others, fully
connected layers in traditional neural networks, convolutional neural networks, long short
term memory cells, and natural language processing [74, 56].

3.2 The need for flexible matrix multiplication kernels

Now that we have established the importance of GEMM, we will argue why flexibility is
an important criterion for matrix multiplication kernels. Google Brain, a DL research
team at Google, has recently published a paper that provides an excellent overview of why
this flexibility is needed [9]. The main focus is on Capsule networks, a novel ML idea that
is similar to the traditional neural networks, but where the neurons are matrix-valued
rather than scalars [19]. Compared to the traditional convolutional neural networks,
Capsule networks only require a fourth of the number of floating point operations for a
network of similar complexity. However, when implementing these Capsule networks in
the existing ML frameworks TensorFlow [1] and PyTorch [61], the authors noticed that
both performance and memory usage was much worse.

The underlying reason of this inefficiency turned out to be the inflexibility of both
frameworks. Because it is not straightforward to introduce custom behaviour, they
had to rephrase the computations in terms of components already supported by these
frameworks. The most efficient implementation they found consisted of several steps:

1. Split up the input image in partially overlapping patches, and materialise them to
main memory.

2. Reshuffle this data so that the dimensions are ordered correctly.

3. Call the pre-optimised, inflexible matrix multiplication kernel.

18

4. Shuffle the data back to the original layout, essentially undoing step 2.

5. Interpret the resulting data as a multidimensional tensor, and sum this tensor over
three dimensions.

This materialisation and reshuffling, necessary to adapt the input to the format that the
kernel expects, has a massive impact on performance and memory usage. Even for small
input sizes, the authors indicate that they needed to copy, rearrange, and materialise
two orders of magnitude more data than necessary.

Unfortunately, the issues do not stop there. Capsule networks have a layered structure,
and between each layer a custom computation based on the expectation maximisation
algorithm is run. Ideally, this operation should be fused in the matrix multiplication.
Due to the inflexibility of the underlying matrix multiplication kernel, however, neither
framework is able to do so. This need for operation fusion also occurs in traditional
(convolutional) neural networks. Existing ML frameworks typically only implement a
limited set of commonly used activation functions, although researchers may want to
experiment with new ones. Of course, both of these use cases can be implemented with
a separate kernel that is run after the GEMM. That introduces extra kernel launch
overhead, however, which can be avoided when operations are fused instead. Additionally,
this fusion avoids the need for intermediate storage, and loading the same data multiple
times.

Another argument for the flexibility of GEMM is the need to support a multitude of
different memory layouts. A basic GEMM only has a few possible layouts: each of the
involved matrices may be stored either in row-major or column-major storage format. In
the case of convolutions, the design space is much larger because there are more than two
dimensions involved. For images, ML frameworks typically use four dimensions: a batch
of N images with C channels, each consisting of W ×H features. While any permutation
of these is possible, a common choice is to order these as either NCHW or NHWC [56].

Nevertheless, some computational kernels are pre-optimised for a single data layout that
is optimal for that specific kernel. As such, they have no support for inputs that are

19

stored in a different layout. This is especially an issue for ML models that involve a
sequential chain of convolutions, as is the case for ResNet [9]. In case the used layouts in
each step differ, a conversion must be performed through the use of transpose kernels,
which are typically expensive. If the used kernels were flexible with respect to memory
layout, we would no longer be constrained by the requirements of the kernel, and could
assign the layouts differently. For example, we might assign layouts to each step to
optimise the performance globally. Such an assignment may not be optimal for each step
individually, but it allows the entire sequence to execute faster because we can avoid the
expensive transposition between each step.

Finally, let us focus our attention on tensors, the generalisation of matrices to multiple
dimensions. In particular, we are interested in the contraction of two tensors, the analog
of matrix multiplication for tensors. This operation is common in several scientific fields,
such as fluid dynamics [66], electromechanics [62], and computational chemistry [7].

Whereas a matrix-matrix multiplication Cmn = ∑
k Amk · Bkn only has three different

indices {m,n, k}, tensor contractions involve an arbitrarily large set of indices. The
transpositions of A and B in the case of GEMM are extended to arbitrary permutations of
the indices of the tensors A, B, and C. As an example, consider this contraction of two 4D
tensorsA and B, resulting in another 4D tensor C: Cm1n1n2m2 = ∑

k1,k2 Am1k1m2k2 ·Bn2k2n1k1 .
In this case, the set of indices is {m1,m2, n1, n2, k1, k2}. Typically, this index set is
partitioned in three disjoint sets. The set {k1, k2} of indices that summed over is referred
to as the set of contracted indices. The indices m1 and m2, which occur in both A and
C, are denoted as the free indices in A. Similarly, n1 and n2 are called the free indices in
B.

First, note that the number of possible data layouts for tensor contractions is significantly
higher than was the case for matrix multiplication. For matrices, each input matrix A
and B may be transposed or not, leading to 4 different possibilities. This corresponds to
the position of the summation index k in both matrices: Amk vs. Akm, and Bkn vs. Bnk.
On the other hand, the previous tensor contraction has a total of 4!× 4!× 4! = 13824
different memory layouts. For tensor contractions of even higher dimension, this number
grows exponentially fast.

20

The main challenge in implementing a framework for generic tensor contractions is thus
the large number of possible cases that must be considered. Given the importance of
tensor contractions, a lot of research has been done to implement this efficiently. Springer
and Bientinesi classify the traditional approaches to tensor contraction in three main
categories: loop nesting, LoG, and TTGT [69].

The first approach, loop nesting, is closest to the mathematical description of the tensor
contraction. The contraction is implemented as a set of nested loops, where each loop
corresponds to one index [6, 40, 49]. Additionally, loop transformations such as loop
reordering and loop fusion may be applied to improve performance. These approaches
exhibit suboptimal memory access patterns due to the high stride accesses [68]. As such,
they are not sufficient for larger tensor contractions where the input tensors do not fit in
the cache.

The second approach, LoG (Loop-over-GEMMs), is built on the idea of reusing efficient
GEMM kernels to implement tensor contractions [47, 36]. Conceptually, the tensor
contraction is split up in two dimensional slices, which are then interpreted as a matrix.
These 2D subtensors are then multiplied using a regular GEMM kernel. While this
approach exploits the high performance of pre-implemented GEMM kernels, performance
may suffer if the resulting 2D slices are small [68].

The third approach, TTGT (Transpose-Transpose-GEMM-Transpose), has been imple-
mented by several tensor contraction frameworks in use today, including the Cyclops
Tensor Framework [67] and Tensor Toolbox [8]. It operates according to the same principle
as LoG, i.e. to reuse efficient GEMM implementations. However, whereas LoG involves
multiple calls to GEMM, possibly of very small matrices, TTGT only calls GEMM once.
Because the data layout of general tensors is not suitable for use by GEMM, TTGT
involves reshuffling the tensors A, B, and C so they have the same memory layout as
expected by GEMM.

Figure 3.1 illustrates TTGT on the example tensor contraction of before: Cm1n1n2m2 =∑
k1,k2 Am1k1m2k2 · Bn2k2n1k1 . First, the input tensors A and B are reshuffled such that

the free indices are on the outside, and the contraction indices are on the inside. This

21

Cm1n1n2m2

C ′m1m2n1n2

Cmn

4. transpose (T)

reinterpret as tensor

= ∑
k1,k2

= ∑
k1,k2

= ∑
k

Am1k1m2k2

A′m1m2k1k2

Amk

1. transpose (T)

reinterpret as matrix

Bn2k2n1k1

B′k1k2n1n2

Bkn

2. transpose (T)

reinterpret as matrix

3. GEMM (G)

Figure 3.1: An illustration of the TTGT algorithm for tensor contractions.

step involves two transposes, leading to the first two T’s in the acronym TTGT. Next,
note that consecutive indices in tensors can be interpreted as a single virtual index, so
that we may reinterpret these transposed tensors as matrices. A performant GEMM
kernel is then executed, leading to the G in the acronym. This results in a new matrix C,
which may then subsequently be reinterpreted as a tensor. Finally, the last T in TTGT
signifies the transposition of this intermediate tensor C ′ to obtain the result C.

It has been shown that the TTGT approach works especially well for compute-bound
tensor contractions [68]. However, it also has some significant disadvantages [33]. The
transpose steps require extra kernel launches that constitute pure overhead, and addition-
ally need intermediate storage to store the transposed tensors. Moreover, the resulting
matrices A and B may be highly rectangular. Typically, GEMM routines have much
higher performance for square or nearly-square matrices, resulting in lower performance
for TTGT.

In 2016, Springer and Bientinesi proposed another method for tensor contractions, GETT
(GEMM-like Tensor-Tensor contraction) [68], that has since been adopted by other tensor
contraction implementations [33, 42]. GETT is based on the principes of TTGT, but
implicitly reorganises tensors while loading them. As such, the overhead associated with
the explicit transpositions is avoided. We may thus think of GETT as a variant of TTGT,
where the transposes are fused in the GEMM kernel itself. Clearly, this fusion requires
that the underlying GEMM kernel is flexible.

22

3.3 Related work

Having looked into the need for flexibility in matrix multiplication kernels, we will
now discuss the most prominent GEMM implementations, and evaluate their flexibility.
Since GEMM is standardised in the BLAS specification, plenty of implementations exist,
including both commercial and open-source variants. On the CPU, the most notable are
Intel’s MKL (Math Kernel Library) [23], and the open source projects OpenBLAS [73],
and ATLAS (Automatically Tuned Linear Algebra Software) [72]. However, due to their
strict adherence to the BLAS specification, their flexibility remains limited. For example,
the only supported memory layouts for real matrices are row-major and column-major.
As such, these standard BLAS implementations are unsuitable for the GETT approach
to tensor contractions.

In 2015, Van Zee and van de Geijn introduced their framework BLIS (BLAS-like Library
Instantiation Software) [71]. BLIS relaxes the monolithic nature of classical BLAS
implementations by exposing its kernels as separate components. These components
may then be reused to implement computational kernels not present in BLAS. BLIS
also extends the row-major and column-major layouts to generalised matrix layouts.
The generalised layouts may have any arbitrary stride, which is important for GETT.
The flexibility of BLIS is used by TBLIS (Tensor BLIS), an implementation of tensor
contraction built on the BLIS framework [42]. While TBLIS was independently developed
from Springer’s GETT, the underlying idea is the same: fusing the transpositions in the
GEMM kernel.

Similar observations hold for the GPU landscape of GEMM. The open source MAGMA
(Matrix Algebra on GPU and Multicore Architectures) project focuses on DLA on GPUs
and heterogeneous architectures [48]. Proprietary solutions include NVIDIA’s cuBLAS,
the de facto standard for BLAS on CUDA-enabled hardware [51]. cuBLAS contains a
set of GEMM kernels written directly in SASS for optimal performance. Starting with
CUDA 10, the cuBLAS APIs also include cuBLASLt, a lightweight library dedicated
to GEMM. cuBLASLt generalises the BLAS interface by adding more flexibility to the
types used in GEMM. For example, cuBLASLt includes support for mixed-precision

23

through the use of Tensor Cores. Nevertheless, both MAGMA and cuBLAS suffer from
the same inflexibility imposed by the fixed BLAS interface.

Another application of GEMM, especially on GPUs, is the efficient implementation
of convolutions in convolutional neural networks. NVIDIA has collected a set of DL
primitives for this purpose in the cuDNN library [53]. cuDNN is flexible in the sense
that the most common data layouts, NHWC and NCHW, are supported. However, it only
includes support for a limited set of activation functions. Since cuDNN is a proprietary
library, this cannot be easily changed by end users without sending a feature request to
NVIDIA.

The Julia package CUDAnative includes high-level wrappers for both cuBLAS and
cuDNN. For example, when two matrices of the correct types are multiplied, this call
is dispatched to cuBLAS. Note that this only holds for types supported by cuBLAS,
and will not work for custom types defined by the user. In those cases, a generic
matrix multiplication routine is used as a fallback. However, because the underlying
implementation does not make use of any memory reuse techniques such as tiling, its
performance is many orders of magnitude worse than that of cuBLAS.

Perhaps the most interesting project is NVIDIA’s open source CUTLASS (CUDA
Templates for Linear Algebra Subroutines) [55]. CUTLASS contains a set of C++
templates that together implement a performant GEMM on CUDA-enabled GPUs. It
is thus similar in spirit to BLIS, where the GEMM kernel is decomposed in reusable
parts. Due to its open source nature, CUTLASS serves as an excellent starting point for
the purposes of this thesis. CUTLASS is not only useful as a source of inspiration for
possible abstractions, but is also a benchmark to assess the performance of our GEMM
kernels. CUTLASS will be discussed in more depth when we implement the GEMM API
in Chapter 6. We will then highlight the relevant implementation details of CUTLASS,
and explain the similarities or differences between it and our API. While CUTLASS is
definitely a step in the right direction, it still requires low-level programming with CUDA
C++. Additionally, it consists of a large amount of components that interact in ways
that may not be obvious on first sight. Both these observations make it unsuitable for
rapid prototyping in the context of ML and DL.

24

Finally, we should discuss cuTENSOR, a tensor contraction library by NVIDIA [70].
Similarly to TBLIS, cuTENSOR follows the GETT approach to tensor contraction,
whereby transpositions are fused in GEMM. It is built on top of the flexible matrix
multiplication kernels of CUTLASS, and offers support for a wide variety of elementwise
operations [54]. However, these elementwise transformations are still specified as a finite
set of pre-implemented operations. True operator fusion can only be obtained when users
can pass any arbitrary functor to the computational kernels.

3.4 Goals of this thesis

In this thesis, we will design, implement, and evaluate abstractions to instantiate flexible
and performant GEMM kernels. We will mainly target researchers in the ML and DL
fields, that frequently iterate over new ideas, and want to test them out quickly without
writing a complete kernel by hand. As such, we will make the abstractions as intuitive as
possible, and use the high-level programming language Julia instead of CUDA C++.

Given the prevalence of mixed precision in ML, we will evaluate the result using a
mixed precision GEMM using NVIDIA’s Tensor Cores. To accomplish this, we identify
3 goals, each of which will be covered in a separate chapter. Chapter 4 focuses on the
implementation of abstractions to program Tensor Cores from within Julia. In Chapter 5,
we will lay the foundations for the GEMM by developing an API to easily implement
blocking. Such blocking techniques are necessary to improve the performance of GEMM
by exploiting its memory reuse property. Finally, Chapter 6 discusses the main matter
at hand: the matrix multiplication API itself.

Most of the work in this thesis was performed using CUDAnative version 3.0, and Julia
version 1.5. We had two setups at our disposal. The first setup contains a Volta-generation
NVIDIA V100, and runs on CUDA 10.1. The second setup contains a Turing-generation
RTX 2080 Ti, and runs on CUDA 10.2.

25

4 Abstractions for programming
Tensor Cores in Julia

In this chapter we will focus on the first concrete goal of this thesis: the implementation
of an API for programming NVIDIA’s Tensor Cores from within Julia. Section 4.1 serves
as an introduction to this chapter, and explains the way that Tensor Cores are exposed
in CUDA C++. In Section 4.2, we briefly list the main requirements we impose on the
API in advance. The main content is Section 4.3, which describes the implementation of
the API itself. Finally, Section 4.4 evaluates the developed API according to the criteria
specified in Section 4.2.

4.1 WMMA: CUDA C’s interface to Tensor Cores

Recall that each Tensor Core calculates an expression of the form D = A ·B + C, where
A, B, C, and D are 4 × 4 matrices. This operation is performed in mixed precision:
the input matrices A and B are stored in FP16, and the accumulator matrices C and
D may be either FP16 or FP32. CUDA does not expose Tensor Cores directly to
programmers [52]. Instead, multiple Tensor Cores must be used cooperatively by all
threads in a warp, in a SIMT fashion. Failure to do so will result in undefined behaviour.
For that reason, CUDA’s API for Tensor Cores is referred to as WMMA (Warp Matrix
Multiply Accumulate).

26

Like the underlying Tensor Cores, WMMA calculates a matrix multiply accumulate
D = A ·B +C. However, whereas Tensor Cores operate on 4× 4 matrices, WMMA uses
matrices of a larger size. We say that A is an M × K matrix, B is a K × N matrix,
and C and D are M ×N matrices. WMMA restricts the possible values of M , N , and
K. In WMMA parlance, the tuple (M,N,K) is referred to as the shape of the multiply
accumulate.

Conceptually, WMMA consists of three separate steps:

1. Load the input matrices A, B, and C from memory to registers using a WMMA
load operation.

2. Perform the matrix multiply accumulate using a WMMA MMA operation. This
results in the matrix D, stored in registers.

3. Store the resultant D matrix from registers to memory using a WMMA store
operation.

Each thread that cooperates in a warp-wide WMMA holds a part of each matrix in
its registers. In WMMA terminology, this part is referred to as a WMMA fragment.
Note that the exact mapping between matrix elements and fragments is unspecified, and
subject to change in later CUDA versions.

To illustrate WMMA in CUDA C++, a mixed-precision matrix multiply accumulate of
16× 16 matrices is implemented in Listing 3. The given kernel wmma_example has four
arguments, containing pointers to the first element of the matrices A, B, C, and D. The
kernel should be executed by one warp, i.e. one block of 32 threads. In Lines 3 – 6,
the WMMA fragments for each matrix are defined. In CUDA C++, the type of these
fragments is used during overload resolution, so they must be defined upfront. These
fragments are C++ templates, where the parameters contain information such as the
element type (half, float), data layout (wmma::col_major), matrix use (wmma::matrix_a),
and overall shape of the WMMA operation (16, 16, 16).

27

1 __global__ void wmma_example(half *a, half *b, float *c, float *d)
2 {
3 wmma::fragment<wmma::matrix_a, 16, 16, 16, half, wmma::col_major> a_frag;
4 wmma::fragment<wmma::matrix_b, 16, 16, 16, half, wmma::col_major> b_frag;
5 wmma::fragment<wmma::accumulator, 16, 16, 16, float> c_frag;
6 wmma::fragment<wmma::accumulator, 16, 16, 16, float> d_frag;
7

8 wmma::load_matrix_sync(a_frag, a, 16);
9 wmma::load_matrix_sync(b_frag, b, 16);

10 wmma::load_matrix_sync(c_frag, c, 16, wmma::mem_col_major);
11

12 wmma::mma_sync(d_frag, a_frag, b_frag, c_frag);
13

14 wmma::store_matrix_sync(d, d_frag, 16, wmma::mem_col_major);
15 }

Listing 3: A mixed-precision 16 × 16 × 16 matrix multiply accumulate, implemented
using WMMA in CUDA C++.

Lines 8 – 14 contain the main WMMA steps, as outlined before. Step 1, the loading of
the matrices, is shown in Lines 8 – 10. Note that the parameter 16 refers to the leading
dimension (stride) of the matrix being loaded. This leading dimension may differ from
the WMMA shape in the case of submatrices that are embedded in a matrix of larger
dimensions. Line 12 implements step 2, the multiply accumulate operation itself. Finally,
step 3 is shown on Line 14, that stores the resultant D matrix back to main memory.
The parameter 16 once again refers to the leading dimension of D, not to the WMMA
shape itself.

The CUDA compiler then converts the given CUDA C++ to PTX instructions. The
initial definition of the fragments in Lines 3 – 6 is only used for overload resolution,
and is not lowered to PTX. Listing 3 is converted to five WMMA PTX instructions:
three wmma.loads (one for each of A, B, C), one wmma.mma, and one wmma.store (for D).
The names of these PTX instructions all follow a pattern. For example, the loading of

28

A is lowered to PTX’s wmma.load.a.sync.aligned.col.m16n16k16.global.f16. The
aligned infix specifies that the instruction must be called by all threads in a warp.
Similarly, sync indicates that the executing thread will block until all other threads in
the same warp have reached the same instruction. Both of these infixes are mandatory,
but for our purposes, they bear little relevance. The name of this instruction contains
some information that was specified explicitly in CUDA C++, such as the data layout
(col), shape (m16n16k16), and element type (f16). Additionally, the instruction also
contains some information that we did not specify at all, but that was derived from the
context. In this case, the compiler inferred that the pointer arguments must refer to
global memory, and adds an infix global to the instruction name.

Finally, the CUDA driver compiles this intermediate PTX to device-specific SASS.
Since the loads and stores are inferred to refer to global memory, they are lowered to
instructions specific to global memory, LDG.E.SYS and STG.E.SYS. The way that mma is
handled depends on the target GPU architecture. On GPUs of the Volta generation, such
as the NVIDIA Tesla V100, the mma is converted to 16 HMMA.884.F32.F32 instructions,
each calculating an 8× 8× 4 slice of the result [24]. On the NVIDIA RTX 2080 Ti, which
is a Turing-generation GPU, the mma corresponds to 4 HMMA.1688.F32 instructions, each
performing a 16× 8× 8 matrix multiplication [74].

4.2 Requirements

Before jumping straight into the implementation of the WMMA API for Julia, we should
impose some requirements on the result. We identify four important criteria:

1. Zero-cost: Using the WMMA API in Julia should not result in extra runtime
overhead compared to a manual implementation, such as calling the PTX instruc-
tions directly. For example, we need to avoid overheads in the form of superfluous
instructions, extra memory footprint, and increased execution time.

29

2. Building block for subsequent chapters: In the context of a complete matrix mul-
tiplication kernel, WMMA is an abstraction at a lower level. Later chapters will
build on top of the WMMA API to implement a flexible GEMM kernel. As such,
we need to make sure that the WMMA API supports the operations needed by
the higher abstraction layers that make use of it. In particular, the Julia WMMA
API must have support for elementwise operations, such as scaling. Elementwise
operations are by far the most common, ranging from a simple scaling in the case of
simple matrix multiplication, to the activation functions in neural networks. Julia’s
syntax even includes first-class support for elementwise operations, through its dot
syntax [27]. For example, applying a function f elementwise to an array a may be
succinctly written as f.(a).

3. Future-proof : The future-proof requirement imposes that the implementation
should be adaptable to WMMA changes in the future, preferably without breaking
changes to the API exposed to the end users. When WMMA was first introduced,
it only supported a 16× 16× 16 multiply accumulate of FP16 matrices [52]. With
the launch of Turing’s second-generation Tensor Cores, WMMA was extended
with new data types (8-bit, 4-bit, and 1-bit integers) and new shapes (8× 32× 16
and 32 × 8 × 16). On 14 May 2020, NVIDIA published details on the changes
to WMMA for the third-generation Tensor Cores in Ampere [63]. Once again,
WMMA was extended with support for new data types (FP64, TF32, BF16) and
new shapes (8×8×4 and 16×16×8). In general, we must ensure that the WMMA
implementation in Julia can easily adapt to the introduction of new data types and
shapes.

4. Close to CUDA: The API should be similar to CUDA C++’s version of WMMA.
This ensures that the API is familiar to users coming from CUDA C++, so that
programmers wishing to program at a lower level of abstraction should have little
trouble using WMMA in Julia. One thing to keep in mind is that Julia and C++
are quite different languages. We should thus not try to exactly replicate CUDA
C++. Instead, we may deviate from the C++ version to make the resulting API
fit in the Julia programming language better.

30

4.3 A WMMA API for Julia

Recall that when WMMA is used from CUDA C++, the source code is first compiled
to generation-independent PTX instructions. The CUDA driver then converts these
intermediate PTX instructions to device-specific SASS. The compilation process of the
Julia package CUDAnative is more complicated. We have already illustrated the
compilation pipeline of CUDAnative in Figure 2.3, but for clarity, we repeat it here
in Figure 4.1. The last two steps, PTX and SASS, are the same as CUDA C++, since
these are fixed by NVIDIA. Rather than directly converting Julia to PTX, Julia is first
lowered to LLVM IR. CUDAnative then uses the LLVM NVPTX backend to convert
the LLVM IR to the necessary PTX instructions.

The LLVM framework supports a wide range of platforms, each having a specific backend
that converts LLVM IR to the machine instructions of that platform. In order to avoid
cluttering the language specification, platform-specific features are not added to LLVM
IR. Instead, each backend can define a set of functions that have a special meaning
for that backend. These functions are commonly referred to as intrinsic functions or
intrinsics. Since WMMA is specific to the NVPTX backend, it is exposed in LLVM IR
through a set of these intrinsics.

Julia AST Julia IR

LLVM IR

Julia parser Julia codegen
CUDA-specific
lowering

LLVM NVPTX
backend

PTXSASS
NVIDIA
driver

Figure 4.1: An overview of Julia’s compilation pipeline adapted by CUDAnative.jl.

To support WMMA in Julia, we will build on top of the existing WMMA intrinsics of
the NVPTX backend. A schematic overview of the WMMA API for Julia that we will
develop is given in Figure 4.2. The bottom part of the figure displays the pre-existing
components in the LLVM NVIDIA GPU stack that we will reuse: the WMMA intrinsics,

31

the PTX generated by the NVPTX backend, and the device-specific SASS that the
CUDA driver emits. Our Julia WMMA API is shown at the top of Figure 4.2, and
consists of two parts. As a first step, we will focus on exposing the NVPTX WMMA
intrinsics in Julia. To accomplish this, we will implement a set of Julia wrapper functions,
where each wrapper function corresponds to one WMMA intrinsic. We can then use
these intrinsics in Julia by simply calling the corresponding Julia wrapper. The design
and implementation of these wrapper functions will be the subject of Section 4.3.1. Of
course, we cannot expect users to directly call these wrappers every time they want to
use WMMA. They will want to use a higher level API similar to the way WMMA is used
from within CUDA C++. Section 4.3.2 will thus focus on abstracting these intrinsics to
an API that is similar to CUDA’s WMMA.

LLVM intrinsics PTX SASS

WMMA LLVM wrappers

Julia

Figure 4.2: A schematic overview of the WMMA API that we will develop for Julia (top)
and the pre-existing components it relies on (bottom).

Note that, to use a given WMMA operation, all components in Figure 4.2 need to
support it. In particular, if the LLVM NVPTX backend does not have intrinsics for
a specific WMMA variant, we cannot use it from Julia either. At the time when we
implemented Julia’s version of WMMA, the LLVM version that Julia used only supported
the Volta-generation WMMA operations. As such, the implementation described in
the next sections will only offer support for the Volta-generation WMMA types and
shapes. Nevertheless, during our implementation of WMMA, we kept the need for future
extensibility to Turing and Ampere in mind. While we only have support for Volta-style
WMMA at the NVPTX level, we have both Volta and Turing GPUs at our disposal.
Because WMMA is forward compatible, we will test our developed API on both Volta
and Turing hardware.

32

4.3.1 Wrappers for the LLVM intrinsics

To call the WMMA NVPTX intrinsics from Julia, we can use Julia’s llvmcall, as
discussed in Section 2.2. The Julia compiler will first convert the Julia types passed
to llvmcall to their LLVM IR equivalent. This mapping of Julia types to LLVM IR
types is hardcoded in the Julia compiler. To support WMMA in Julia, we need to adapt
this mapping, since the LLVM WMMA intrinsics use some LLVM types that have no
corresponding Julia equivalent:

1. half: Julia’s Float16 type is lowered to an LLVM 16-bit integer, i16, instead of
the half-precision floating point type half.

2. i8 addrspace(x)*: LLVM pointer types such as i8* can be optionally annotated
with an address space. NVPTX uses this to map each pointer to a level of the GPU
memory hierarchy. For example, i8 addrspace(1)* represents a pointer to global
memory, whereas i8 addrspace(3)* refers to a location in shared memory [39].
While the Julia type Ref{T} is lowered to i8*, it does not support address spaces.

3. {float, ..., float}: WMMA fragments are represented in LLVM as a structure
aggregate type, indicated by curly braces. However, since Julia structs are lowered
to LLVM arrays, LLVM structures have no equivalent Julia type.

We thus extended Julia’s code generation to support these LLVM types. Because these
changes should only apply to llvmcall, a boolean parameter was added to the Julia-
to-LLVM type conversion functions. This boolean indicates whether the type mapping
is meant for use with llvmcall, or will be used in regular Julia code. Supporting half

and LLVM structures is fairly straightforward: it suffices to override the default type
mapping of Float16 and structs in case llvmcall is used. The case of pointers with
address spaces is somewhat trickier. For compatibility reasons, we cannot just add an
address space parameter to Ref{T}. Instead, a new built-in type Core.AddrSpacePtr{T,

AS} was added to the Julia language, that gets lowered to an LLVM pointer type to the

33

correct address space AS. The required adaptations to the Julia code generation were
sent to the upstream developers, and have since been merged into Julia1.

This type mapping is not the only problem we encountered while adding support for
WMMA in Julia. It turned out that NVIDIA had changed the names of the WMMA
PTX instructions in PTX version 6.3. The LLVM NVPTX backend was later updated
to accommodate this change, but Julia used an LLVM version that did not include this
patch yet. The next step in supporting WMMA for Julia was thus to port this patch
to Julia’s LLVM version. During this porting, we noticed that this patch depended on
two other patches, one of which refactored the WMMA implementation in NVPTX. The
second patch added a new feature to TableGen, LLVM’s domain-specific language that is
used in the backends to lower LLVM IR to machine-dependent instructions [38]. This
new TableGen feature was used by the NVPTX backend to emit different instructions
depending on the PTX version that was targeted. The resulting three patches were
reapplied on top of Julia’s LLVM version, and bundled in one pull request that has since
been merged in upstream Julia2.

Now that the Julia compiler supports the needed LLVM types, and NVPTX generates
the correct PTX instructions, we can begin wrapping the WMMA intrinsics. Like
the PTX instructions, the LLVM intrinsics are named according to a pattern. For
example, the loading of the A matrix is represented as a call to the intrinsic function
@llvm.nvvm.wmma.m16n16k16.load.a.col.stride.f16.p1i8. Note that, like PTX, the
LLVM intrinsic includes information such as the memory layout (col), address space
(p1, referring to global memory), and WMMA shape (m16n16k16) in its name.

To satisfy our future-proof requirement, we will not be defining each individual wrapper
manually. Instead, we first define a set of configuration variables that determine, amongst
others, the possible WMMA shapes, and the WMMA fragment sizes for each matrix
and element type. We can then iterate over all possible configurations, and generate the

1Pull requests available at: https://github.com/JuliaLang/julia/pull/33970 (Float16),
https://github.com/JuliaLang/julia/pull/34760 (AddrSpacePtr), and https://github.com/
JuliaLang/julia/pull/34996 (LLVM structures).

2Pull request available at https://github.com/JuliaLang/julia/pull/34043.

34

https://github.com/JuliaLang/julia/pull/33970
https://github.com/JuliaLang/julia/pull/34760
https://github.com/JuliaLang/julia/pull/34996
https://github.com/JuliaLang/julia/pull/34996
https://github.com/JuliaLang/julia/pull/34043

1 for N in unique(values(map_frag_sizes))
2 struct_ty = Symbol("LLVMStruct$N")
3

4 @eval struct $struct_ty{T}
5 Base.Cartesian.@nexprs $N i -> x_i::T
6 end

7

8 @eval Base.convert(::Type{NTuple{$N, T}}, x::$struct_ty{T}) where {T} =
ntuple(i -> getfield(x, i), $N)↪→

9 end

Listing 4: Dynamically generating Julia structs with the correct number of fields, using
Julia’s metaprogramming functionality.

name of the wrapper and LLVM intrinsic depending on the values of the configuration
variables. A function with that name that calls the correct LLVM intrinsic is then created
dynamically.

This approach allows for future extensibility, but it complicates the generation of the
types needed for the llvmcall. In particular, because the fragment sizes are determined
by the configuration variables, we need a way to dynamically generate a Julia struct that
contains the correct amount of fields. To solve this, one can make use of Julia’s powerful
metaprogramming abilities, as shown in Listing 4. The variable map_frag_sizes maps
each matrix and element type to its corresponding fragment size. Line 1 iterates over
the unique values in this map, i.e. the fragment sizes, and dynamically generates a struct

with the corresponding number of fields. Line 2 defines a Symbol representing the name
of the generated struct. Lines 4–6 then generate a parametric struct with this name,
and one type parameter T. The generated struct contains N fields x_1, x_2, . . . , x_N,
each of type T. Finally, we may want to convert this struct to a Julia NTuple, which is a
better fit for statically-sized data such as WMMA fragments. For example, contrary to
structs, NTuples support indexing through the subscript operator some_ntuple[i]. To
allow this conversion, Line 8 defines how this newly generated struct can be converted
to Julia’s NTuple type.

35

4.3.2 A WMMA interface for Julia

Since we cannot expect users to directly use the wrappers of the LLVM intrinsics, we need
to implement a CUDA C++-like abstraction layer on top of them. The main difference
between the CUDA C++-like API that we will develop, and the lower level wrappers, is
that the former enforces several constraints when working with WMMA. For example,
it ensures that the A fragment argument to a wmma.mma instruction was obtained by a
call to wmma.load.a, and not wmma.load.b or wmma.load.c. Additionally, it makes sure
that the data type and the storage layout of the wmma.load/wmma.store operations and
the wmma.mma operation match.

We can achieve this by adding extra information to the fragment types, similar to CUDA
C++. To represent WMMA fragments, we will use a parametrised type WMMA.Fragment{M,

N, K, FS, T, L, U}, as shown in Listing 5. The type parameters determine the WMMA
shape (M, N, K), the size FS and element type T of the fragment, the storage layout L

(row- or column-major), and the use U of the corresponding matrix (A, B, or one of the
accumulator matrices). Each of these parameters is specified in the type domain. For
example, the use of a fragment is given as a struct type that is a concrete version of the
abstract FragmentUse type. This way, we can use Julia’s multiple dispatch mechanism to
select the correct variant of WMMA instructions to call.

The WMMA.Fragment type is a struct with one field x. This field x is an NTuple of the
correct size and element type, and contains the fragment’s data. Users can access a
fragment’s elements through the x field, like in CUDA C++. However, the Julia language
allows us to extend this further. In Julia, indexing can be implemented for custom
types by specialising a limited set of functions: getindex, setindex!, firstindex, and
lastindex. For example, X[i] is converted a call to getindex(X, i) [27]. We can thus
implement the required methods for parameters of type WMMA.Fragment, and redirect the
function to the x field instead. This way, we may either write frag.x[i], or frag[i]

to access the ith element of a fragment frag. Once again, Julia’s metaprogramming
capabilities allow us to do this easily, as shown in Listing 6. The given snippet iterates
over the functions to specialise in the loop of Line 1. Line 2 then specialises each

36

1 abstract type FragmentLayout end

2 struct RowMajor <: FragmentLayout end

3 struct ColMajor <: FragmentLayout end

4 struct Unspecified <: FragmentLayout end

5

6 abstract type FragmentUse end

7 struct MatrixA <: FragmentUse end

8 struct MatrixB <: FragmentUse end

9 struct Accumulator <: FragmentUse end

10

11 struct Fragment{M, N, K, FS, T, L <: FragmentLayout, U <: FragmentUse}
12 x::NTuple{FS, T}
13 end

Listing 5: The definition of a fragment in the Julia WMMA API.

1 for f in (:getindex, :setindex!, :firstindex, :lastindex)
2 @eval Base.$f(frag::Fragment, args...) = $f(frag.x, args...)
3 end

Listing 6: Defining indexing for WMMA fragments using Julia’s metaprogramming.

function for arguments that are instances of the WMMA.Fragment type. The underlying
implementation forwards this call to the same function, where the first argument is
changed from frag to frag.x.

One peculiarity of the LLVM intrinsics is that half-precision types are stored as an
LLVM vector type of two elements. That is to say, a WMMA fragment of FP16
values is represented as {<2 x half>, ..., <2 x half>}, which corresponds to Julia’s
type NTuple{N, NTuple{2, VecElement{Float16}}}. Using this Julia type to store a
fragment’s data in WMMA.Fragments complicates elementwise operations, so we take a
different approach. We store the values in a fragment using the flattened type NTuple{2

* N, Float16} instead. Of course, we need to convert to/from this flattened type when
calling the LLVM intrinsics. This flattening and unflattening process is implemented

37

using @generated functions, which recursively generate an Expr that flattens or unflattens
the input. Due to the @generated nature of these functions, this recursion only happens
during type inference, and does not result in an overhead at run time.

Despite the similarities between the Julia API and CUDA C++, we depart from CUDA
C++ in the way we handle fragments. In CUDA C++, the fragments must be declared
upfront, because their type is used during overload resolution to select the correct variant
of WMMA instructions to call. This means that the fragments must be passed as a
by-reference argument, which obscures the data flow. In essence, in CUDA C++, the
fragments have two separate purposes: the storage of intermediate results, and the
configuration of the parameters of WMMA.

In contrast, the Julia API separates these in two types: WMMA.Fragment, as seen before,
and a new type WMMA.Config. Instead of taking the resultant fragment by-reference, the
Julia API just returns it. This makes the dataflow clearer, but it also means that the
fragment’s type cannot be used during dispatch. As such, there is a limited amount of
information that cannot be inferred from the argument types, but that is nonetheless
needed to select the correct WMMA instruction. This is accomplished using a separate
parametrised type WMMA.Config{M, N, K, T}, where (M, N, K) represents the WMMA
shape, and T represents the type used for accumulation.

Through the use of WMMA.Config, we can avoid having to declare the fragments upfront.
We only need to create an instance of this parametrised type once, and give it as
an argument to all WMMA functions. These WMMA functions are @generated, and
dynamically determine the correct intrinsic to call dynamically, based on the types of the
arguments. Because most information is baked into the argument types, we only need a
limited number of WMMA functions in the high-level API. For example, rather than
having a myriad of functions for loading WMMA matrices, the high-level API only has
three: WMMA.load_a, WMMA.load_b, and WMMA.load_c.

As an illustration of the Julia WMMA API, consider the multiply accumulate of 16× 16
matrices given in Listing 7. This code fragment is the Julia equivalent of the CUDA C++
version shown in Listing 3. Note that, contrary to CUDA C++, there is no need to define

38

1 function wmma_example(a, b, c, d)
2 conf = WMMA.Config{16, 16, 16, Float32}
3

4 a_frag = WMMA.load_a(pointer(a), 16, WMMA.ColMajor, conf)
5 b_frag = WMMA.load_b(pointer(b), 16, WMMA.ColMajor, conf)
6 c_frag = WMMA.load_c(pointer(c), 16, WMMA.ColMajor, conf)
7

8 d_frag = WMMA.mma(a_frag, b_frag, c_frag, conf)
9

10 WMMA.store_d(pointer(d), d_frag, 16, WMMA.ColMajor, conf)
11

12 return

13 end

Listing 7: A mixed-precision 16× 16× 16 matrix multiply accumulate using the WMMA
API in Julia.

the fragments upfront. The only definition that is needed before calling the WMMA
API, is a single WMMA.Config instantiation. Compared to CUDA C++, the dataflow is
also a lot clearer. For example, we can immediately see that a_frag is the result of the
call to WMMA.load_a.

Finally, we have one remaining requirement: implementing elementwise operations
through Julia’s dot syntax. In Julia, dot expressions are lowered to calls to the built-
in broadcast function. This broadcast function is extensible through the multiple
dispatch mechanism [27]. For example, the first step in broadcast is to convert the
values involved in the broadcast to types that support indexing. This is implemented
using a call to broadcastable, which can be specialised. In our case, we do not re-
quire any specific conversion, so we can define broadcastable as the identity function:
Base.broadcastable(frag::WMMA.Fragment) = frag.

The next two steps are selecting an appropriate output array, and applying the broad-
cast in an efficient manner. In Julia’s broadcast framework, these are defined simul-

39

taneously by a broadcast style. We thus define a new WMMA.FragmentBroadcastStyle

specifically for WMMA fragments. Through the same multiple dispatch mechanism used
for broadcastable, we are able to have this style take precedence over the style used for
scalars, so that a scalar multiplication of a WMMA fragment is handled by our custom
style. Similarly, by specialising Base.BroadcastStyle(...), we can link WMMA.Fragments
to this new broadcast style.

Finally, Base.copy is called with the arguments of the broadcast operation, and the
broadcast style. This method is responsible for implementing the broadcast operation
itself. In our case, we specialise Base.copy for our broadcast style to provide a custom
implementation of broadcast. First, we check if all arguments are either 1-dimensional
(arrays) or 0-dimensional (scalars), since WMMA broadcasting only makes sense in
those cases. Next, we apply the given operation elementwise, artificially extending all
arguments to a 1-dimensional array. This extension is important in case one of the
arguments was a scalar. Finally, we find the type of the first WMMA.Fragment used in the
broadcast call, and return a new fragment of the same type, containing the broadcasted
data.

With these changes in place, we can now use dot expressions on WMMA fragments. For
example, to scale the D matrix in Listing 7 by 2, it suffices to add the following after
Line 8: d_frag = 2 .* d_frag.

The resulting high-level WMMA API and LLVM wrappers were bundled in one pull
request to CUDAnative, that has since been merged upstream3.

4.4 Evaluation

In this section, we will evaluate the developed WMMA API based on the criteria given in
Section 4.2. The support for elementwise operations is mostly a functional requirement
that we have already discussed in Section 4.3.2. We do not repeat the functional

3Pull request available at https://github.com/JuliaGPU/CUDAnative.jl/pull/494.

40

https://github.com/JuliaGPU/CUDAnative.jl/pull/494

aspects here, but we will look into the impact of elementwise operations on the zero-cost
criterion.

4.4.1 Zero-cost

To evaluate the zero-cost requirement, we will look at the generated LLVM IR and PTX
of the 16× 16× 16 matrix multiply accumulate given in Listing 7. A shortened version
of the LLVM IR corresponding to Listing 7 is given in Listing 8. The extractvalues on
Line 2 – 3 are generated by CUDAnative to extract the pointer to the arguments a, b,
c, and d. Similarly, the inttoptr and addrspacecast on Lines 5 – 6 and Lines 23 – 24
are due to the way CUDAnative represents pointers: as integers in the generic address
space.

The WMMA specific code is converted to five @llvm.nvvm.wmma instructions: 3 loads for
A, B, and C, one mma, and one store for D. Additionally, a number of extractvalues is
generated after each load and the mma. These are required because the load and mma

return an LLVM structure, whereas mma and store.d have the individual elements as
arguments. Note though that no unneeded LLVM IR instructions are generated. In
particular, the flattening and unflattening process is completely optimised away at the
LLVM IR level.

The NVPTX backend generates the PTX shown in Listing 9. First, the base address
of each matrix is loaded into registers on Lines 3 – 6. These addresses are converted
from the generic address space to global addresses on Lines 8, 12, 15, and 25. These
cvta.to.global.u64 instructions correspond to LLVM’s addrspacecast. The only other
instructions are related to WMMA itself, i.e. the extra extractvalues from the LLVM
IR have disappeared, because they were only necessary to pass the correct types to the
WMMA intrinsics.

Similar observations hold for the elementwise operations using Julia’s dot syntax. For
example, let us consider the case of the scaling of the D matrix using d_frag = 5 .*

41

1 define void @kernel({ [2 x i64], i64 }, ...) {
2 %a.addr = extractvalue { [2 x i64], i64 } %0, 1
3 ; similarly for B, C, D

4

5 %a.ptr = inttoptr i64 %a.addr to i8*
6 %a.asc = addrspacecast i8* %a.ptr to i8 addrspace(1)*
7 %a.frag = call {<2 x half>, ...} @llvm...m16n16k16.load.a.col...(
8 i8 addrspace(1)* %a.asc, i32 16)
9 %a.frag.0 = extractvalue {<2 x half>, ...} %a.frag, 0

10 ; ...

11 %a.frag.7 = extractvalue {<2 x half>, ...} %a.frag, 7
12

13 ; similarly for B and C

14

15 %d.frag = call {float, ...} @llvm...m16n16k16.mma.col.col...(
16 <2 x half> %a.frag.0, ..., <2 x half> %a.frag.7,
17 <2 x half> %b.frag.0, ..., <2 x half> %b.frag.7,
18 float %c.frag.0, ... float %c.frag.7)
19 %d.frag.0 = extractvalue {float, ...} %d.frag, 0
20 ; ...

21 %d.frag.7 = extractvalue {float, ...} %d.frag, 7
22

23 %d.ptr = inttoptr i64 %d.addr to i8*
24 %d.asc = addrspacecast i8* %d.ptr to i8 addrspace(1)*
25 call void @llvm...m16n16k16.store.d.col...(
26 i8 addrspace(1)* %d.asc, float %d.frag.0, ..., float %d.frag.7,
27 i32 16)
28

29 ret void

30 }

Listing 8: The LLVM IR corresponding to the program given in Listing 7, as generated
by Julia.

42

1 .visible .entry wmma_example(.param .align 8 .b8 a_array[24], ...)
2 {
3 ld.param.u64 %rd1, [a_array+16];
4 ld.param.u64 %rd2, [b_array+16];
5 ld.param.u64 %rd3, [c_array+16];
6 ld.param.u64 %rd4, [d_array+16];
7

8 cvta.to.global.u64 %rd5, %rd1;
9 mov.u32 %r1, 16;

10 wmma.load.a.sync.aligned.col.m16n16k16.global.f16
11 {%hh1, ..., %hh8}, [%rd5], %r1;
12 cvta.to.global.u64 %rd6, %rd2;
13 wmma.load.b.sync.aligned.col.m16n16k16.global.f16
14 {%hh9, ..., %hh16}, [%rd6], %r1;
15 cvta.to.global.u64 %rd7, %rd3;
16 wmma.load.c.sync.aligned.col.m16n16k16.global.f32
17 {%f1, ..., %f8}, [%rd7], %r1;
18

19 wmma.mma.sync.aligned.col.col.m16n16k16.f32.f32
20 {%f9, ..., %f16},
21 {%hh1, .., %hh8},
22 {%hh9, ..., %hh16},
23 {%f1, ..., %f8};
24

25 cvta.to.global.u64 %rd8, %rd4;
26 wmma.store.d.sync.aligned.col.m16n16k16.global.f32 [%rd8],
27 {%f9, ..., %f16}, %r1;
28 ret;
29 }

Listing 9: A cleaned up version of the PTX generated by the LLVM NVPTX backend
for the program given in Listing 7.

43

d_frag. For such a FP32 scaling, we only have a few extra fmul float %..., 5.0e+0

instructions at the LLVM IR level, which get lowered to PTX’s mul.f32.

The case of FP16 operations is a little more complicated. For FP16, Julia does not
implement arithmetic operations such as multiplication and addition directly. Instead,
the FP16 values are first converted to FP32. The operation is then run on these FP32
intermediate values, and the result is converted back to FP164. While this is fine for
CPUs, where FP32 and FP64 are the norm, this is suboptimal for GPUs, which have
hardware support for FP16. Scaling an FP16 WMMA fragment still works, but extra
instructions will be generated to implement the conversion to and from FP32.

Obviously, we cannot change this behaviour in Julia directly, as this will break code
running on the CPU. The cleanest way to solve this would be with a Julia package
called Cassette.jl [65]. Cassette.jl implements contextual dispatch, where each
function call has an extra implicit argument, the context, that may be used during
dispatch. Contextual dispatch allows override existing Julia functions with context-specific
behaviour. We can use this mechanism to contextually override the implementation of
FP16 multiplication on the GPU.

Cassette support for CUDAnative is already planned, since it could be used to
provide custom implementations of built-in functions such as sin, but it is still a work-
in-progress5. In the meantime, the same behaviour can be achieved by using inline PTX
assembly that multiplies two FP16 values. Note that the NVPTX backend also uses
this approach for CUDA C++ code that applies an elementwise scaling to the A or B
fragments.

As an illustration, Listing 10 shows an example implementation using LLVM.jl, a Julia
package that wraps the LLVM C APIs [11]. While overriding the built-in * operator is
possible, doing so is inadvisable because this will break CPU code. Instead, we define
a new function multiply_fp16, which means we need to adapt our kernel accordingly.

4See the implementation of FP16 arithmetic at https://github.com/JuliaLang/julia/blob/
97e3fe88d7d3e4f748195a4250b34ed593419b56/base/float.jl#L397-L399.

5See https://github.com/JuliaGPU/CUDAnative.jl/pull/334.

44

https://github.com/JuliaLang/julia/blob/97e3fe88d7d3e4f748195a4250b34ed593419b56/base/float.jl#L397-L399
https://github.com/JuliaLang/julia/blob/97e3fe88d7d3e4f748195a4250b34ed593419b56/base/float.jl#L397-L399
https://github.com/JuliaGPU/CUDAnative.jl/pull/334

1 using LLVM
2

3 multiply_fp16(a::Float16, b::Float16) =
4 Base.bitcast(Float16,
5 LLVM.Interop.@asmcall(
6 "{mul.f16 \$0,\$1,\$2;}",
7 "=h,h,h",
8 false,
9 Int16,

10 Tuple{Int16, Int16},
11 Base.bitcast(Int16, a),
12 Base.bitcast(Int16, b)
13)
14)

Listing 10: Multiplying two half-precision floating point values using inline PTX.

That is, instead of a_frag = Float16(5) .* a_frag, we should now write a_frag =

multiply_fp16.(Float16(5), a_frag). LLVM.jl expects the input and output to be
of type Int16, so Line 4, Line 11, and Line 12 bitcast the Float16 values to or from
Int16. Line 9 and Line 10 specify the return type, and argument types, respectively. The
boolean false on Line 8 indicates that the inline assembly has no side-effects. Finally,
the most important part of the @asmcall is the PTX template on Line 6, containing the
call to the mul.f16 instruction. Line 7 determines the constraints corresponding to the
placeholders $0, $1, and $2: all of the placeholders are half-precision (h), and the first
placeholder is an output rather than an input (=).

In general, we can state that the broadcasting abstractions themselves do not introduce
superfluous instructions. However, the implementation of the underlying elementwise
operation can result in extra instructions, at both the LLVM IR level, and the PTX level.
In the case of FP16 operations, this can be remedied by using Cassette.jl’s contextual
dispatch mechanism, or by using inline PTX using LLVM.jl.

45

4.4.2 Future proof

The next criterion for the WMMA API is that it must be future proof. We have already
discussed this during the implementation, but in this section we will evaluate the future-
proofness in more detail. To accomplish this, we identify three different ways in which
the Julia WMMA API may need to change in the future:

1. The names of the WMMA instrinsics of the NVPTX backend may change. For
example, LLVM 6 and LLVM 8 use slightly different naming schemes for the
WMMA intrinsics.

2. To support the increasing capabilities of Tensor Cores, WMMA can be extended
with new datatypes. For example, Volta-style Tensor Cores only support FP16, but
Tensor Cores of the Turing and Ampere generation support way more datatypes.

3. NVIDIA can add new shapes to WMMA. For example, the initial WMMA API
only supported 16× 16× 16 WMMA operations. With the launch of Turing, the
list of supported shapes was extended to also include 8× 32× 16 and 32× 8× 16.

Ideally, the WMMA API in Julia should be able to handle these changes with min-
imal adaptations to the underlying implementation, or to user code that makes use of
WMMA.

Recall from Section 4.3.1 that the LLVM intrinsics are wrapped in Julia functions.
Because the latter do not change names, end-users do not need to change their code
if the underlying LLVM intrinsics change. It suffices to adapt the logic that is used in
CUDAnative to dynamically generate the names of the LLVM intrinsics. As such, the
first option for changes to WMMA is covered.

The other two options are similar, in that they only add functionality. As a result, these
do not introduce breaking changes to user code that relies on WMMA. Nevertheless, we
still want to support these new shapes or types with minimal changes to CUDAnative.

46

This is solved through the use of the configuration variables. To add these new types and
shapes, one should only need to extend these variables with the new functionality. This
way, new wrappers will be generated for the corresponding LLVM intrinsics. Because the
high-level WMMA functions are @generated, changing the configuration variables will
extend the support for the new types and shapes to the higher level interface. Of course,
adding support for new types may need additional changes to Julia’s compiler as well. If
the new datatype does not have an equivalent in Julia, it needs to be added to the Julia
language before CUDAnative can support it.

4.4.3 Similar to CUDA C++

The last aspect of the evaluation is the similarity of the Julia WMMA API to that
of CUDA C++. While the main idea of Julia’s WMMA is the same as CUDA C++,
there are a few notable deviations. These differences were introduced either to make
the resulting API more readable, or to make it fit better in the Julia language. As an
illustration, compare the implementation of the 16× 16× 16 matrix multiply accumulate
in Julia (Listing 7) and in CUDA C++ (Listing 3). In both versions, the basic steps of
WMMA are the same. First, a fragment of the A, B, and C matrices is loaded. Next,
a fragment of the D matrix is obtained by a wmma.mma operation. The resultant D
fragment is then stored to memory. Despite the similarities, we observe a few cases where
the Julia API deviates from CUDA C++:

• Specification of the WMMA shape: In CUDA C++, the WMMA shape must be
defined for each fragment separately. This means that if the shape is changed later,
this change needs to be propagated to all four WMMA fragments. The Julia API
only specifies the WMMA shape once, through the WMMA.Config variable. This
means that the Julia version is less cluttered, and also makes changing the WMMA
shape less prone to errors, since the shape is defined in one location only.

• Passing the resultant WMMA fragments: The CUDA API takes all WMMA
fragments as by-reference arguments, which obscures the data flow. Consider for

47

example the case of the multiply accumulate operation: wmma::mma_sync(frag_1,

frag_2, frag_3, frag_4). It is not immediately obvious which of the arguments
will be changed after the call. In the Julia API, fragments that are changed are not
taken as arguments, but are instead returned by the function. The call above would
thus be represented as frag_1 = WMMA.mma(frag_2, frag_3, frag_4). The syntax
of the assignment statement makes it immediately clear that frag_1 contains the
resultant WMMA fragment.

• Specification of the data layout: WMMA fragments may be stored as row major or
column major. This memory layout must be specified when issuing a WMMA load
or store. In CUDA C++, this is done in an inconsistent manner. For A and B, the
layout must be specified in the type of the fragment. The accumulator matrices C
and D have a different approach. In these cases, the memory layout is specified as
an extra argument of the call to the load or store. Additionally, when specifying
the data layout using the fragment type, wmma::col_major and wmma::row_major

must be used, whereas the argument method requires wmma::mem_col_major or
wmma::mem_row_major. These two forms of inconsistency make using WMMA in
CUDA C++ more difficult without referring to the documentation. In Julia, both
these inconsistencies are eliminated. All memory layouts are specified as an extra
argument WMMA.ColMajor or WMMA.RowMajor to the load or store functions.

• Verbosity: CUDA C++ requires fragments to be defined upfront, which makes the
resulting code more verbose than necessary. In the sample 16 × 16 × 16 matrix
multiply accumulate of Listing 3, these definitions constitute almost half of the
WMMA-specific lines of source code. The verbosity is increased even further because
the types used in these declarations have long names themselves. In contrast, the
Julia API does not require declaring the fragments upfront. There is also no need
to fully specify the WMMA fragment type.

• Purpose of WMMA fragments: In CUDA C++, the purpose of WMMA fragments
is twofold. On the one hand, they are temporary arrays to store the intermediate
per-thread results when using WMMA. On the other hand, their type contains
information, such as the WMMA shape, that is used during overload resolution to

48

select the correct WMMA variant. The Julia API separates this in two different
concepts. A WMMA.Fragment stores the intermediate results, and the WMMA.Config

type is used to configure the parameters to WMMA.

• Indexing WMMA fragments: Finally, CUDA’s and Julia’s version of WMMA differ
in the way fragments can be indexed. Both allow elementwise access to a fragment’s
data using the x member. The Julia API extends this by implementing the indexing
interface for WMMA.Fragments, so that one may write frag[i] instead of frag.x[i].
In the Julia standard library, functions that operate on arrays are written to make
use of these generic indexing interfaces. As long as a type supports the necessary
interfaces, it can be passed directly to these functions. By supporting the indexing
interfaces for WMMA.Fragments, we can thus reuse functionality in Julia’s standard
library or its packages.

For the aforementioned reasons, we argue that the underlying differences improve read-
ability, and make the API fit better into a high-level language such as Julia. Despite
these differences, the resulting API is still close enough to the original version of WMMA,
so that programmers coming from CUDA C++ should have no trouble familiarising
themselves with the Julia API.

4.5 Conclusion

In this chapter, we have developed a Julia WMMA API to interface with NVIDIA’s
Tensor Cores. The resulting abstractions are inspired by CUDA’s version of WMMA,
but depart from it to increase readability, or to better fit into the Julia programming
language. The WMMA abstractions also support the most common operation, element-
wise transformations, through Julia’s special dot syntax. The developed WMMA API
implementation has been merged into CUDAnative, and will allow us to wite a mixed
precision GEMM in a later chapter.

49

5 Abstractions for recursive blocking

In the previous chapter, we implemented a WMMA interface to access Tensor Cores
from within Julia. To calculate a matrix product C = A ·B using Tensor Cores, we can
subdivide the C matrix in submatrices of size 16× 16 so that we can use WMMA. We
can then calculate these submatrices in parallel by calculating each of them in one warp.
Unfortunately, this simple implementation does not achieve high performance.

The subject of this chapter is the design of abstractions for recursive blocking. These
techniques are used to increase performance in GEMM kernels, by improving the temporal
locality of the implementation. Section 5.1 makes the case for these tiling abstractions
by discussing in which contexts they are used. In Section 5.2, we will describe the
non-functional requirements of the API, and list which operations must be supported.
Section 5.3 describes the tiling API for Julia that we developed. Finally, we will evaluate
the resulting API in Section 5.4.

5.1 The case for recursive blocking

Consider the in-place matrix multiply accumulate operation C := AB + C of N × N
square matrices. The most basic implementation of this operation is the triple loop nest
shown in Listing 11. The outer two loops iterate over the rows i and columns j of the
output matrix C. Each element C[i, j] is then calculated as the inner product of the
ith row of A and the jth column of B using another loop over the k dimension.

50

1 for i = 1 : N
2 for j = 1 : N
3 for k = 1 : N
4 C[i, j] += A[i, k] * B[k, j]
5 end

6 end

7 end

Listing 11: A naïve implementation of the in-place matrix multiply-accumulate operation
C := AB + C.

This approach is inefficient due to the large working sets required to store slices of the
A and B matrices. For example, calculating the first row of C requires the first row of
A and the entire B matrix, as illustrated in Figure 5.1. If this row of A does not fit in
the cache, it needs to be fetched for every element in the first row of C. Similarly, once
we reach the second row of C, we need the entire B matrix once again. If N is large,
chances are that a large part of B has already been evicted from the cache. As such, this
naïve algorithm will only run as fast as global memory, which is much slower than the
computational capabilities of the GPU.

A

B

C

Figure 5.1: An illustration of the triple loop nest approach to GEMM.

In order to improve performance, we can exploit the data reuse property of GEMM.
A matrix multiplication of square matrices of dimension N requires O(N3) floating
point operations, and O(N2) storage. This results in each element being reused roughly
O(N) times. This data reuse can be exploited by improving the temporal locality of the

51

implementation. That is, we want memory accesses to the same location to be as close
as possible in time.

If N is small, the algorithm has perfect temporal locality, since each of the matrices fit
in the cache. For large N , we have to rewrite the GEMM as a set of matrix products
of smaller size. We can then choose the size of these matrices to be small enough such
that they fit in a part of the memory hierarchy. On the CPU, the L1, L2, and L3 caches
are used, whereas on the GPU, we can reuse data in shared memory. There are two
main ways this can be accomplished: explicit blocking techniques, and cache-oblivious
algorithms. Both are designed to make use of the memory hierarchy, but do so in different
ways.

Cache-oblivious algorithms, like Strassen, do not rely on the cache size being known
at compile time [21]. As such, they can be expected to perform well on machines with
memory hierarchies of different size. Typically, they operate on the principle of divide-
and-conquer, where the problem is recursively subdivided in subproblems of smaller size.
For example, Strassen recursively subdivides an N ×N matrix in four submatrices of
size N

2 ×
N
2 . Eventually, these submatrices will become small enough to fit in a level in

the memory hierarchy. Typically, the runtime of these cache-oblivious algorithms has
large constant factors, so they are only efficient for large matrices.

In contrast to cache-oblivious algorithms, explicit blocking techniques have the cache size
as a parameter to the GEMM. The tiling size is chosen in such a way that tiles of the A,
B, and C matrices fit in the relevant parts of the memory hierarchy. Explicit blocking
applied to a GEMM on the GPU is illustrated in Figure 5.2. First, tiles of A and B are
loaded from global memory to shared memory. These tiles are then multiplied, resulting
in an intermediate tile of C in shared memory. This process is repeated for all the tiles of
A and B that contribute to a given C tile. The contributions of all these A and B tiles
are accumulated together, and the resultant C tile is stored back to global memory.

Note that this only calculates a single tile of the C matrix. We need to repeat this
process for every tile to obtain the entire C matrix. The computations needed for each
of these tiles do not depend on any of the other tiles of C. As such, we can perform

52

x

A

B

C

Global memory

Global memory

Global memory

Shared memory

Per threadblock

x
A

B

C

Shared memory

Shared memory

Shared memory

Registers

Per warp

Figure 5.2: An illustration of the blocking approach applied to the GEMM problem on
GPUs.

53

the computations for different tiles in parallel. Shared memory is inherently linked to
threadblocks, since only threads in the same threadblock may communicate via shared
memory. Consequently, we assign each of these tiles to one threadblock, and launch a
kernel with a sufficient number of threadblocks to cover the entire C matrix.

This subdivision process is then repeated for the next level of the thread and memory
hierarchy, as illustrated on the bottom of Figure 5.2. Tiles of A and B are loaded from
shared memory into registers, multiplied, and stored back to shared memory. These tiles
are computed in parallel by a set of warps in one threadblock.

Explicit blocking techniques typically perform well for a variety of different matrix sizes,
but performance heavily depends on the values of these parameters. Because the optimal
parameter values are linked to the properties of the underlying hardware, explicit blocking
is less portable than cache-oblivious algorithms. In the context of GPU GEMMs, explicit
blocking is sometimes also referred to as shared memory or register blocking, depending
on the relevant part of the memory hierarchy. Another term that is used frequently in
literature is double-sided recursive blocking. Recursive refers to the fact that this tiling
is performed for each level of the memory hierarchy. The term double-sided indicates
that the optimal tiling parameters differ for the memory operations and the computation
stage of a GEMM. Both of NVIDIA’s implementations of performant GEMMs, cuBLAS
and CUTLASS, make use of this technique [51, 55]. Similarly, most implementations of
GEMM for GPUs in literature use explicit blocking [48, 3, 35, 75].

Batched GEMM, which calculates many small matrix multiplications in parallel, also
uses tiling techniques in each batch [2, 4]. Furthermore, tensor contractions also rely on
blocking techniques for performance [54, 33]. This can be either explicitly in kernels built
for a specific tensor contraction, or implicitly in approaches built on top of GEMM, such
as GETT. In general, any algorithm that can be made more cache efficient by processing
the input in blocks, benefits from tiling. Given the multitude of different applications,
a tiling API could thus prove useful. Such a tiling API can improve the readability of
kernels making use of it. Instead of performing the necessary address manipulations
manually each time, this can be handled transparently by the code underneath the
API.

54

5.2 Requirements and design of abstractions

To make the resulting tiling API as useful as possible, we identify three important design
criteria:

1. Readability: The main goal of the tiling API is to make writing kernels that use
blocking techniques easier. At a high level, these kernels are typically expressed in
terms of high-level operations on tiles, such as subdividing a tile in tiles of a smaller
size. In the implementation phase, programmers typically have to convert these
high-level operations to manual calculations of address offsets, which is hard to read
and prone to errors. Consider the example of Listing 12, which corresponds to the
first step in a GEMM kernel: copying a tile of the C matrix from global memory
to shared memory. Note that the memory addresses in this example are calculated
manually. Without reverse engineering these address calculations, it is not obvious
what this code does. Our tiling API will replace these manual calculations with
high-level operations on tiles, and perform the necessary address computations
behind the scenes.

2. Zero-cost: Using the abstractions should incur no performance cost, compared to
manually calculating the addresses.

3. Support for multiple dimensions: Since our focus is GEMM, we will mainly be using
two dimensional tiles, as each matrix has two dimensions. Note though that the
underlying iteration space of GEMM has three dimensions. The first and second
dimension correspond to the rows and columns of the resultant C matrix, and
together specify an element of C. Each element of the C matrix is calculated as a
dot product, which involves iterating over the elements in a row of A and a column
of B. This iteration can be regarded as a third dimension in the iteration space
of GEMM. As such, support for multiple dimensions is necessary to implement a
GEMM.

55

There is also a second reason to support multiple dimensions. The tiling API can
be used for problems related to GEMM as well. For example, batched GEMM
calculates a batch of small matrix products in parallel. Thus, batched GEMM
needs an extra dimension compared to regular GEMM, corresponding to individual
matrices in the batch. Tensor contractions extend GEMM even further, to any
arbitrary amount of dimensions. In order for the tiling API to be applicable to
many different applications, it should work for any arbitrary amount of dimensions.

In this thesis, we are mainly interested in matrix multiplication kernels. To that end,
the tiling API will need to support the operations needed to implement a performant
GEMM kernel. In particular, we propose 4 different operations on tiles: projection,
parallelisation, translation, and linearisation. During our extensive literature study, we
found no comparable approaches.

Projection Recall that a GEMM calculates an expression of the form C := A ·B + C,
where A is an M ×K matrix, B is a K ×N matrix, and C is an M ×N matrix. The
compute stages of GEMM will use tiles that refer to the three dimensional iteration
space (M,N,K). In the memory stages of GEMM, we typically only need two of these
dimensions. For example, to load a slice of the A matrix, we are only interested in the
M and K dimension. Projecting a tile reduces its dimensionality by dropping one or
more of its dimensions, as shown in Figure 5.3. The projection abstraction thus allows us
to easily reduce the original three dimensional tile to a tile containing only the relevant
dimensions.

project

M and KM

N

K
K

M

Figure 5.3: An illustration of the projection of a three dimensional tile to two dimensions
M and K.

56

1 @unroll for warp_offset = 0 : WARPS_PER_BLOCK : (BLOCK_M * BLOCK_N) ÷
(MEM_CD_WARP.M * MEM_CD_WARP.N) - 1↪→

2 NUM_WARP_ROWS = BLOCK_M ÷ MEM_CD_WARP.M
3

4 base_warp_i = (warpId % NUM_WARP_ROWS) * MEM_CD_WARP.M
5 base_warp_j = (warpId ÷ NUM_WARP_ROWS) * MEM_CD_WARP.N
6 warp_i = (warp_offset % NUM_WARP_ROWS) * MEM_CD_WARP.M
7 warp_j = (warp_offset ÷ NUM_WARP_ROWS) * MEM_CD_WARP.N
8

9 @unroll for thread_offset = 0 : 32 : (MEM_CD_WARP.M * MEM_CD_WARP.N) ÷
(MEM_CD_THREAD.M * MEM_CD_THREAD.N) - 1↪→

10 NUM_THREAD_ROWS = MEM_CD_WARP.M ÷ MEM_CD_THREAD.M
11

12 base_thread_i = (laneId % NUM_THREAD_ROWS) * MEM_CD_THREAD.M
13 base_thread_j = (laneId ÷ NUM_THREAD_ROWS) * MEM_CD_THREAD.N
14 thread_i = (thread_offset % NUM_THREAD_ROWS) * MEM_CD_THREAD.M
15 thread_j = (thread_offset ÷ NUM_THREAD_ROWS) * MEM_CD_THREAD.N
16

17 global_linear_base = (block_i + base_warp_j + base_thread_j) * global_M
+ (block_j + base_warp_i + base_thread_i)↪→

18 global_linear_offset = (warp_j + thread_j) * global_M + (warp_i +
thread_i)↪→

19 shared_linear_base = (base_warp_j + base_thread_j) * shared_M +
(base_warp_i + base_thread_i)↪→

20 shared_linear_offset = (warp_j + thread_j) * shared_M + (warp_i +
thread_i)↪→

21

22 global_ptr = pointer(global_c, global_linear_base)
23 shared_ptr = pointer(shared_c, shared_linear_base)
24

25 # Load at address global_ptr, with offset global_linear_offset

26 # Store at address shared_ptr, with offset shared_linear_offset

27 end

28 end

Listing 12: Implementing the first step in GEMM using manual calculation of addresses.

57

Parallelisation Parallelisation is the most important operation of the tiling API. It
corresponds to the recursive subdivision of tiles in smaller tiles, and the subsequent
parallelisation of the resulting subtiles over a set of collaborating entities, such as
threadblocks or warps. Consider the example parallelisation operation shown in Figure 5.4.
A tile of size 4M × 4N is divided in subtiles, each of size M × N . These subtiles are
handled in parallel by a set of 8 cooperating warps, indicated by the numbers 0 – 7
in each subtile. Note that the set of all cooperating warps do not need to cover the
entire tile. Indeed, in this example, there are 16 subtiles but only 8 warps. This means
that each warp will handle 2 of these 16 subtiles. This parallelisation can be applied
recursively, by dividing each of these subtiles into sub-subtiles, where each sub-subtile is
handled by one thread.

0
1
2
3

4
5
6
7

0
1
2
3

4
5
6
7

N
M

4M

4N

parallellise
8 warps

Figure 5.4: An illustration of the parallelisation of a tile over a set of 8 cooperating warps.

Translation The third operation is translation. As the name suggests, translation
moves a tile over a specified distance in each dimension. In the example of Figure 5.5, a
two dimensional tile is moved over a distance m in the M dimension, and a distance n in
the N dimension. The translation operation is useful in cases where the reference point
of a tile needs to be changed. For example, consider a tile referring to a submatrix stored
in global memory. The coordinates of this tile are specified relative to the first element
in the first row of the parent matrix in global memory. To copy this submatrix to shared
memory, we need to express the tile relative to the first element stored in shared memory,
which may be different. To accomplish this, we can simply translate the tile over the
correct distance.

Linearisation The last supported operation is linearisation, which is used to convert
a tile’s location from a cartesian index to a linear index. This conversion is needed to

58

translate
M = m
N = n

M

N

m
n

Figure 5.5: An illustration of the translation of a tile.

calculate the offset of a tile in memory, relative to the base pointer of the parent tile.
In the example of Figure 5.6, we consider a subtile at a cartesian offset of (m,n) from
its parent tile which has size (M,N). Linearisation results in the linear offset of this
tile, relative to the top-left corner of the parent tile. Note that the linearisation process
assumes that the matrix is stored in column major ordering, as this is the convention that
Julia uses. In this case, we need to span n columns ofM elements each, and an additional
m elements to reach the subtile. This corresponds to a linear index of nM +m.

lineariseM

N

m

n

nM + m

Figure 5.6: An illustration of the conversion of a tile to a linear index.

5.3 A tiling API for Julia

A tile is fully determined by its position and its size. Our tiling API contains a Tile

struct that stores this information. One could store the size as a field in this struct,
but this poses a problem. In the implementation of GEMM, we use these tiles to copy
slices of a matrix from shared memory to registers. In order for the compiler to know
how many registers are needed, the size of the tile needs to be available at compile time.
In Julia, this can be done using the package StaticArrays, which contains a set of
statically sized arrays [15]. The term statically sized refers to the fact that the size of

59

each of these arrays can be determined from their type, which means it is available to
the compiler after type inference.

Now suppose we define a function load_tile(mat, tile::Tile) that, given a matrix mat

and a Tile, returns a StaticArray that contains the data stored in mat at the positions
corresponding to that tile. The size of this returned StaticArray, and hence its type, will
depend on the size of the tile that is passed as an argument. If we store the size of a tile
as a field, the return type of this load_tile function will not be inferable from the types
of the arguments mat and tile. Instead, this return type depends on the value of the
arguments passed to load_tile. This will make type inference in the Julia compiler fail,
which will result in dynamic type checks at runtime. In Julia parlance, this is referred to
as type instability [27]. In order to avoid type instability in this load_tile function, we
have to ensure that the return type is inferable from the types of the arguments mat and
tile. We can accomplish this by mimicking StaticArrays, and storing the size in the
Tile type. Tile will thus become a parametrised type, where one of the type parameters
is the size of the tile.

The position of an N -dimensional tile is a tuple of N elements, and can be represented
in Julia as an instance of the built-in type NTuple. One disadvantage of using NTuples is
that they are indexed by a number. If pos is an NTuple that represents the position of a
tile, then we can obtain the position along the first dimension as pos[1]. This inherently
imposes an ordering of the dimensions of the tile.

If we want to implement GEMM using tiling, we typically do not think in terms of
the first or second dimension of a tile. Instead, a tile that represents a slice of the A
matrix of size M ×K has an M -dimension and a K-dimension. Rather than writing the
position as pos[1], we can increase readability by naming the dimensions, so that we may
write pos.M. Julia includes a special type for this purpose, called NamedTuple. As their
name suggests, NamedTuples are tuple-like collections of values, where each value is not
associated with a numerical index, but with a unique name. To improve the readability
of the tiling API, we will use NamedTuples to store both the position and size of a tile.

60

1 struct Tile{size, names, T}
2 base::NamedTuple{names, T}
3 offset::NamedTuple{names, T}
4 end

Listing 13: The definition of a Tile in the Julia tiling API.

Before we started working on the tiling API, we had already implemented a proof-of-
concept performant GEMM implementation. In that implementation, we calculated
memory offsets manually, but we noticed that a lot of superfluous instructions were being
generated. Upon closer inspection, it turned out that these were the result of the address
calculations. These calculations involve expressions that are quite complex, and hence
introduce overhead in the form of extra arithmetic instructions.

In order to eliminate these extra instructions, we had to split up each expression as a sum
of two parts. The first part contained the base of the memory address, and depended on
values only known at runtime, such as the identifier of the currently executing thread.
The second part contained offsets from this base address, which were constants known at
compile time. Due to this splitting, the compiler was able to eliminate the superfluous
instructions. The base part of the addresses could be calculated once, at the start of the
kernel, and stored in a register. To perform a load or store at a specified offset from this
base address, the compiler used the register + constant addressing mode, eliminating the
extraneous arithmetic operations.

To avoid these superfluous instructions when using the tiling API, we will not store the
position of the tile as one field. Instead, the position is split up in a base index and
offset from that base. The final definition of the parametrised Tile type is shown in
Listing 13. Note that the base and offset are separated, and that both are stored as a
NamedTuple. The Tile type is statically sized by including the size in the type parameters.
NamedTuples are themselves parametrised types with two type parameters names, which
contains the name associated with each entry in the tuple, and T, which determines the
type of each entry. These two type parameters are included in the definition of Tile as
well.

61

Now that we have defined a Tile datastructure, we need to implement the four operations
that we need for the GEMM kernel. The implementation for the translate operation
is fairly simple. We define the function translate(tile, dist) that returns a new tile
with the same size and offset, but where the base is the elementwise sum of the original
tile’s base and the argument dist. This essentially moves the multi-dimensional tile over
the distance specified by the argument.

The linearise(coord, dimensions) function converts a cartesian index to a linear index.
The first argument coord represents the coordinate of the tile. Note that we do not
take the tile itself as an argument, so that linearise can be used for both the base
and offset of a tile. Instead of having a separate linearise function for base and offset,
we may simply write linearise(tile.base, ...) and linearise(tile.offset, ...).
The second argument dimensions represents the size of the parent tile. To convert the
cartesian index to a linear index, we use the LinearIndices type from the Julia standard
library. This way, we can both reuse functionality, and ensure the linearise operation
works for any arbitrary amount of dimensions.

To project tiles, we could define another function project(tile, dims), where dims

contains a list of the dimensions we want to keep. A projection of a tile to the M
and K dimension could then be written as project(tile, (:M, :N)). We will take a
slightly different approach by making use of Julia’s extensibility. In Julia, the syntactic
construct a.b is converted to a call to Base.getproperty(a, :b) [27]. Through the
multiple dispatch mechanism, we can thus override this with custom behaviour. We
will use this to write our projection operation as tile.MN instead of project(tile, (:M,

:N)).

Listing 14 shows a part of the implementation of the projection operation. As mentioned
previously, the construct tile.MN is first converted to the call Base.getproperty(tile,

:MN). The type of the second argument, :MN, is a Symbol, indicated by the colon prefix.
Symbols are similar to strings, except that they are immutable and only one copy of each
distinct value is stored [27]. The Base.getproperty function is specialised for arguments
of type Tile on Line 1. The value of the sym argument of this function determines the
name of the field that was accessed. To generate custom projection implementations for

62

each sets of dimensions, we want to dispatch on the value :MN of this argument, rather
than its type Symbol. To do this, we can use Julia’s Val type, a parametric type with
one type parameter. When we call the constructor of Val as Val(sym), a new instance of
Val is created where the type parameter is set to sym. This essentially moves the value
of sym to the type domain, so that we may use the multiple dispatch mechanism. After
creating a Val type, we dispatch to another function getproperty_impl that implements
the projection itself.

To make the abstraction zero-cost, we use @generated functions that generate custom
code depending on the argument types, as shown on Line 3 of Listing 14. Since we moved
the name of the field to the type domain, we can generate a different implementation
for each possible projection operation. First note that accesses to the base or offset of a
tile using tile.base or tile.offset also get converted to calls to Base.getproperty. We
handle this case in Lines 4 – 7 by checking whether the symbol passed is either base or
offset. If so, we just return the value of the field by calling getfield on Line 7. Recall
that @generated functions must return an Expr, that is subsequently compiled. To easily
create an Expr corresponding to a block of Julia code, we can surround the block with
the quote ... end construct, as shown in Lines 6 – 8.

The projection itself is implemented in Lines 10 – 22. First, we convert the symbol
representing the field name to a String on Line 11. Line 12 then converts this symbol to a
tuple containing the individual dimensions. For example, if sym is :MN, then sym_str and
new_names are "MN" and ('M', 'N'), respectively. In Lines 16 – 18, an Expr is generated
to create new NamedTuples that only contain the relevant dimensions for the base, offset,
and size. Finally, Line 21 wraps these newly generated NamedTuples in the Tile struct
that represents the project tile, and returns that tile.

The parallelise operation is exposed to the user as a function call with four arguments:
parallelise(tile, tiling_size, index, count). The tile argument has type Tile

and is the parent tile that will be subdivided and parallelised over a set of entities. These
entities can be a set of blocks, warps, or threads that cooperate. The second argument,
tiling_size, determines the tile size that each entity will handle, and the last argument
count refers to the number of cooperating entities. Finally, the argument index is an

63

1 @inline Base.getproperty(tile::Tile{size, names, T}, sym::Symbol) where {size,
names, T} = getproperty_impl(tile, Val(sym))↪→

2

3 @generated function getproperty_impl(tile::Tile{size, names, T}, ::Val{sym})
where {size, names, T, sym}↪→

4 if sym == :base || sym == :offset
5 # standard fields

6 return quote

7 getfield(tile, sym)
8 end

9 else

10 # tile projection

11 sym_str = String(sym)
12 new_names = ntuple(i -> Symbol(sym_str[i]), length(sym_str))
13

14 return quote

15 # create new NamedTuples with the correct dimensions

16 new_base = ...
17 new_offset = ...
18 new_size = ...
19

20 # return projected tile

21 return Tile{new_size, new_names, ...}(new_base, new_offset)
22 end

23 end

24 end

Listing 14: An overview of the implementation of tile projection in the Julia tiling API.

64

integer from 0 to count - 1, and determines the identifier of the currently executing
entity.

Consider the example parallelisation given in Figure 5.7. This operation starts with a
parent tile of size 4m×2n, divides it in subtiles of size m×n, and parallelises the subtiles
across 2 warps. The number 0 or 1 in each subtile indicates which warp is responsible
for it. We may write this parallelisation operation as parallelise(Tile(M = 4 * m, N =

n), Tile(M = m, N = n), warpId, 2), where warpId is either 0 or 1, corresponding to
the identifier of the currently executing warp.

To make the parallelisation operation generalisable to multiple dimensions, we again
reuse the indexing functionality from Julia’s standard library. The information needed
for iteration is then stored in a new struct, a TileIterator, that is returned by the
paralellise function. Julia allows us to write customised implementations for iterating
over user-defined types. For loops are converted to calls to the Base.iterate function,
which may be specialised for our own types. In order to iterate over TileIterators
using a for loop, we must thus specialise the Base.iterate method for TileIterators.
Base.iterate is called for each iteration of the for loop, and must return the value
associated with each iteration. In the case of TileIterators, each call to Base.iterate

will return a Tile corresponding to the tile of that iteration.

0
1
0
1

0
1
0
1

m
n

Figure 5.7: A parallelisation operation over 2 warps handling a 4× 2 set of subtiles in
parallel.

65

5.4 Evaluation

This section evaluates the Julia tiling API according to the criteria we gave in Section 5.2:
the support for multiple dimensions, readability, and zero-cost. For our discussion, we
will use three different examples. Given that our main interest is matrix multiplication
kernels, each example will correspond to a different step in a performant implementation
of GEMM. From our discussion in Section 5.1, we identify the following steps for a
GEMM D = A ·B +C, where A is an M ×K matrix, B is a K ×N matrix, and C and
D are M ×N matrices:

1. Copy a tile of C from global memory to shared memory, cooperatively by all threads
in a block.

2. Copy a tile of C from shared memory to registers, cooperatively by all threads in a
warp.

3. Iterate over the K dimension, according to the tiling size of a block.

3.1. Copy a tile of A from global memory to shared memory, cooperatively by all
threads in a block.

3.2. Copy a tile of B from global memory to shared memory, cooperatively by all
threads in a block.

3.3. Iterate over the K dimension, according to the tiling size of a warp.

3.3.1. Copy a tile of A from shared memory to registers, cooperatively by all
threads in a warp.

3.3.2. Copy a tile of B from shared memory to registers, cooperatively by all
threads in a warp.

3.3.3. Compute a tile of D, given the A, B, and C tiles, cooperatively by all
threads in a warp.

66

4. Copy a tile of D from registers to shared memory, cooperatively by all threads in a
warp.

5. Copy a tile of D from shared memory to global memory, cooperatively by all
threads in a block.

We will pick three steps from this process to illustrate and evaluate the tiling API:
copying a tile of C from global memory to shared memory (step 1), the computation of
the matrix product in the inner loop (step 3.3), and copying a tile of D from registers to
shared memory (step 4).

Note that these three examples cover the entire GEMM, as the other steps are just
variants of the steps we selected. For example, the only difference between step 1 and step
5 is the direction in which memory is copied: either global-to-shared, or shared-to-global.
Similarly, step 2 and step 4 are the same, if we ignore the direction of the copy operation.
Finally, step 3.1 and step 3.2 are the same as step 2, except for the matrix that is being
copied, and possibly the data type.

5.4.1 Multiple dimensions

In order to support multiple dimensions, our tiling API reuses functionality from Julia’s
standard library. All operations on Tiles are built on top of interfaces from Julia that
work for any arbitrary number of dimensions. For example, the position and size of
each Tile is stored using Julia’s NamedTuples, which support any amount of dimensions.
Similarly, the parallelisation and linearisation operations, which involve computations
using multidimensional indices, are written using Julia’s generic indexing interfaces.

Our set of three examples cover the case of tiles with two and three dimensions. Step
1 (copying C from global to shared memory) and step 4 (copying D from registers to
shared memory) are memory operations, and only use the two dimensions of the matrix
that is being copied. Step 3.3 (the matrix product itself) is a computation step, and

67

uses all three dimensions M , N , and K. Given that our main focus is GEMM, most of
the discussions of the other criteria will be limited to the two or three dimensional case.
Nevertheless, we argue that similar observations should hold for the case of more than
three dimensions. Julia’s indexing interfaces are extensively used in the standard library
itself, and in its package ecosystem. One of these packages is TiledIteration.jl, which
aims to facilitate writing cache-efficient algorithms in Julia [20]. It includes functionality
to iterate over disjoint tiles of a larger array. Like our tiling API, TiledIteration.jl
supports multiple dimensions by building on top of Julia’s indexing interfaces. To date,
no issues regarding dimensionality have been reported. As such, we can reasonably
assume that the conclusions we draw for our tiling API in the 2D and 3D case are
generalisable to tiles of higher dimensionality as well.

One may wonder why we are not using TiledIteration.jl instead of designing a new
tiling API. The reason is that TiledIteration.jl is a simple package, mainly targeted
towards code running on the CPU. TiledIteration.jl is not sufficient for our use case,
as it does not support several GPU-specific operations, such as parallelisation across
threadblocks and warps.

5.4.2 Readability and zero-cost

We will evaluate the readability and zero-cost together, using the three different examples
we have given before. Given our end goal of a mixed-precision matrix multiplication,
we will mainly focus on a GEMM using WMMA. For each of these examples, we first
explain at a high level which operations must be performed, and implement them using
our tiling API in Julia. Finally, we will study the generated PTX to ensure that our
zero-cost criterion is met.

68

Example 1: Copying a tile of C from global to shared memory

To copy a tile of C from global to shared memory, we will follow the approach that
is illustrated in Figure 5.8. The corresponding implementation using our tiling API
is given in Listing 15. Each block will copy a separate tile, and we will launch the
GEMM kernel with enough blocks to fully cover the C matrix. The size of each of these
tiles is determined by the block_tile variable. Note that block_tile initially has three
dimensions, so we first project it to the M and N dimension using block_tile.MN on
Line 1 in Listing 15.

Next, we divide block_tile in subtiles, and parallelise the resulting warp_tiles over
a set of cooperating warps in the block. This parallelisation operation is shown in
Line 1 on Listing 15. Note that we are using the @unroll macro from the Julia package
GPUifyLoops.jl [13], which informs LLVM to fully unroll the loop. Each of these
warp_tiles has size (M = MEM_CD_WARP.M, N = MEM_CD_WARP.N).

Similarly, we parallelise this warp_tile over the set of 32 threads in a warp. The
corresponding parallelisation operation is shown on Line 2. The laneId variable is an
integer 0 – 31 that identifies the threads within a warp. Each thread handles a tile
of size (M = MEM_CD_THREAD.M, N = MEM_CD_THREAD.N) in each iteration. In the case of
an FP32 C matrix, the best choice is MEM_CD_THREAD.M = 4, and MEM_CD_THREAD.N = 1.
This way, each thread loads/stores 4 adjacent FP32 elements, so that we can issue one
128-bit load/store, the largest memory transaction size supported by the GPU. This
optimisation reduces the total number of instructions compared to issuing four separate
32-bit loads/stores, and is referred to as vectorisation of memory accesses.

Note that the positions of all these tiles are specified relative to the top-left corner of the
current block’s tile. This means that thread_tile.index == (M = 0, N = 0) corresponds
to a linear index of 0. Because shared memory only stores the tile of the current block,
this is the correct index for shared memory. For global memory, we need to offset this
tile depending on the currently executing block. To accomplish this, we translate this
thread_tile over the correct distance on Line 3. Finally, Lines 5–9 convert the base and

69

thread_tilewarp_tileblock_tile.MN

parallelise parallelise

Figure 5.8: An illustration of copying a tile of the C matrix from global memory to
shared memory.

1 @unroll for warp_tile = parallelise(block_tile.MN, Tile(MEM_CD_WARP), warpId,
WARPS_PER_BLOCK)↪→

2 @unroll for thread_tile = parallelise(warp_tile, Tile(MEM_CD_THREAD),
laneId, 32)↪→

3 global_thread_tile = translate(thread_tile, (M = block_i, N = block_j))
4

5 global_linear_base = linearise(global_thread_tile.base, (M = global_M,
N = global_N))↪→

6 global_linear_offset = linearise(global_thread_tile.offset, (M = global_M,
N = global_N))↪→

7

8 shared_linear_base = linearise(thread_tile.base, (M = shared_M, N =
shared_N))↪→

9 shared_linear_offset = linearise(thread_tile.offset, (M = shared_M, N =
shared_N))↪→

10

11 global_ptr = pointer(global_c, global_linear_base)
12 shared_ptr = pointer(shared_c, shared_linear_base)
13

14 # Load at address global_ptr, with offset global_linear_offset

15 # Store at address shared_ptr, with offset shared_linear_offset

16 end

17 end

Listing 15: Copying a tile of the C matrix from global to shared memory using our tiling
API.

70

offset of each of these thread_tiles to a linear index. We can then create a pointer to
the correct memory location on Lines 11–12, and perform the load or store. To separate
the constant parts of the memory addresses, we create a pointer using the linearised base,
and only add the linearised offset afterwards.

This example corresponds to Listing 12, which we used to illustrate the readability
criterion in Section 5.2. For clarity, we have repeated Listing 12 as Listing 16. The outer
for loop on Lines 1 – 7 corresponds to the first parallelisation operation, and the inner
for loop on Lines 9 – 15 is the equivalent of the second parallelisation operation. In
the body of both loops, the bases and offsets of tiles are calculated manually. Lines 17
– 20 convert the bases and offsets to linear indices, and are thus the equivalent of the
linearise operations in our tiling API. Note that the translation operation is handled
by the addition of the translation offsets block_i and block_j on Line 17. Compared
to Listing 16, the implementation using our tiling API in Listing 15 is significantly less
verbose. Additionally, our tiling API increases the readability and maintainability by
replacing the manual address calculations with high-level operations on tiles, such as
parallelisation and linearisation.

The corresponding PTX of Listing 15 is shown in Listing 17. First, the base addresses
for each thread are calculated in the registers %rd20 and %rd13 for shared and global
memory, respectively. The loads and stores are performed using vectorised memory
instructions, indicated by the suffix v4.f32. The stores to shared memory are shown on
Lines 7, 13, and 21. Because the size of shared memory is known at compile time, the
offset from this base address can be resolved to a constant. This allows the compiler to
use the register plus constant addressing mode for the shared memory stores. In contrast,
the size of the matrix in global memory is not known by the compiler. This means that
the linearised offset is not known at compile time, even though the offsets in the M and
N dimensions are constants. To calculate the address in global memory, LLVM emits a
multiplication (using a bitshift shl.b64), and an addition. In general, we can see that
no superfluous instructions are generated, for both the loads from global memory and
the stores to shared memory.

71

1 @unroll for warp_offset = 0 : WARPS_PER_BLOCK : (BLOCK_M * BLOCK_N) ÷
(MEM_CD_WARP.M * MEM_CD_WARP.N) - 1↪→

2 NUM_WARP_ROWS = BLOCK_M ÷ MEM_CD_WARP.M
3

4 base_warp_i = (warpId % NUM_WARP_ROWS) * MEM_CD_WARP.M
5 base_warp_j = (warpId ÷ NUM_WARP_ROWS) * MEM_CD_WARP.N
6 warp_i = (warp_offset % NUM_WARP_ROWS) * MEM_CD_WARP.M
7 warp_j = (warp_offset ÷ NUM_WARP_ROWS) * MEM_CD_WARP.N
8

9 @unroll for thread_offset = 0 : 32 : (MEM_CD_WARP.M * MEM_CD_WARP.N) ÷
(MEM_CD_THREAD.M * MEM_CD_THREAD.N) - 1↪→

10 NUM_THREAD_ROWS = MEM_CD_WARP.M ÷ MEM_CD_THREAD.M
11

12 base_thread_i = (laneId % NUM_THREAD_ROWS) * MEM_CD_THREAD.M
13 base_thread_j = (laneId ÷ NUM_THREAD_ROWS) * MEM_CD_THREAD.N
14 thread_i = (thread_offset % NUM_THREAD_ROWS) * MEM_CD_THREAD.M
15 thread_j = (thread_offset ÷ NUM_THREAD_ROWS) * MEM_CD_THREAD.N
16

17 global_linear_base = (block_i + base_warp_j + base_thread_j) * global_M
+ (block_j + base_warp_i + base_thread_i)↪→

18 global_linear_offset = (warp_j + thread_j) * global_M + (warp_i +
thread_i)↪→

19 shared_linear_base = (base_warp_j + base_thread_j) * shared_M +
(base_warp_i + base_thread_i)↪→

20 shared_linear_offset = (warp_j + thread_j) * shared_M + (warp_i +
thread_i)↪→

21

22 global_ptr = pointer(global_c, global_linear_base)
23 shared_ptr = pointer(shared_c, shared_linear_base)
24

25 # Load at address global_ptr, with offset global_linear_offset

26 # Store at address shared_ptr, with offset shared_linear_offset

27 end

28 end

Listing 16: Implementing the first step in GEMM using manual calculation of addresses
(repeated from Listing 12).

72

1 // Calculate the base addresses in %rd13 and %rd20...
2

3 shl.b64 %rd22, %rd13, 5;
4 add.s64 %rd23, %rd17, %rd22;
5 cvta.to.global.u64 %rd24, %rd23;
6 ld.global.v4.f32 {%f5, %f6, %f7, %f8}, [%rd24];
7 st.shared.v4.f32 [%rd20+4096], {%f5, %f6, %f7, %f8};
8

9 shl.b64 %rd25, %rd13, 6;
10 add.s64 %rd26, %rd17, %rd25;
11 cvta.to.global.u64 %rd27, %rd26;
12 ld.global.v4.f32 {%f9, %f10, %f11, %f12}, [%rd27];
13 st.shared.v4.f32 [%rd20+8192], {%f9, %f10, %f11, %f12};
14

15 // ...
16

17 mul.lo.s64 %rd64, %rd13, 480;
18 add.s64 %rd65, %rd17, %rd64;
19 cvta.to.global.u64 %rd66, %rd65;
20 ld.global.v4.f32 {%f61, %f62, %f63, %f64}, [%rd66];
21 st.shared.v4.f32 [%rd20+61440], {%f61, %f62, %f63, %f64};

Listing 17: The PTX generated by the NVPTX backend for the Julia code given in
Listing 15.

73

Example 2: Computation of the matrix product

To implement the computation of the matrix product in the inner loop using the tiling
API, we will follow the approach illustrated in Figure 5.9. A block_tile represents
the three dimensional iteration space (M,N,K) used to calculate the tile of the D
matrix corresponding to one block. The M and N dimensions are shown vertically and
horizontally, respectively. The K dimension is represented as perpendicular to the page.
Let us consider the case where a block_tile has size (M,N,K) = (128, 128, 16). This
means that each block calculates an M ×N = 128× 128 part of D, by multiplying all
M ×K = 128× 16 tiles of A in the same row, and all K ×N = 16× 128 tiles of B in
the same column. This results in a set of D-tiles, which are subsequently accumulated
by summing over the K dimension.

We want to parallelise this computation over all warps in a block. In the example of
Figure 5.10, each block contains 8 warps, in a 2× 4 arrangement. Each warp calculates
a 64× 32 tile of D in each iteration, by multiplying a 64× 16 tile of A, and a 16× 32
tile of B. Of course, we want tiles in this three dimensional space with the same M and
N indices to be mapped to the same warp, so that we can accumulate across the K
dimension. Recall that our tiling API is column major. In our case, this means that the
warps are assigned to tiles in the order of the M , N , and K dimension. We can thus
simply use a parallelisation operation of size (M,N,K) = (64, 32, 16) across 8 warps, as
shown in Figure 5.10. The 8 warps fully cover the M and N dimensions, as indicated by
the 0 – 7 in each tile. In the next iteration, we have advanced along the K dimension, but
the division along the M and N dimension is the same. This means that with this choice
of tiling size, the parallelisation operation implicitly iterates over the K dimension.

This parallelisation operation is shown on Line 1 of Listing 18, and returns a three
dimensional warp_tile. To compute the matrix product using WMMA, we first need to
load the A and B tiles into WMMA fragments. To load A, we are only interested in the
M and K dimension, so we first project warp_tile on Line 3. This results in a tile of
size (M,K) = (64, 16), which thus consists of four 16× 16 WMMA fragments. To load
the WMMA fragments, we first translate the tile in the M dimension over 0, 16, 32, and

74

48 elements on Line 3. Lines 5–6 then convert this translated base and offset to a linear
index, which can then be used to create the pointer argument to WMMA.load_a on Line 8.
Lines 11–18 do the same thing for the B matrix: the warp_tile is projected to the K
and N dimensions, translated, and converted to a linear index. Finally, Lines 20 – 24
calculate the 64× 32 product of D using the WMMA.mma function.

block_tile

A

B

D

M

N
K

128 x 128

16 x 128

128 x 16

Figure 5.9: An illustration of the three dimensional iteration space in the inner loop of
the matrix product.

At the PTX level, we again observe the same behaviour as in the previous example: the
base addresses of A and B for each warp are calculated once, and stored in registers. The
code in Listing 18 is converted to a set of wmma.load.a, wmma.load.b, and wmma.mma

instructions. The addresses of the load operations are expressed as a constant offset
from the base addresses stored in registers. This once again indicates that the tiling
abstractions do not introduce any superfluous instructions.

Example 3: Copying a tile of D from registers to shared memory

In the previous example, we studied the calculation of the matrix product in the inner
loop of GEMM. After this step, each warp has a part of the D matrix stored in WMMA
fragments. To store these WMMA fragments to shared memory, we follow the approach
illustrated in Figure 5.11. block_tile represents the same tile as in example 2, i.e. the
three dimensional iteration space used to calculate a tile of the D matrix corresponding

75

A

B

D

parallelise

M

N
K

64 x 16

16 x 32

64 x 32

Iteration 1 Iteration 2

...
0

1

2

3 5

4 6

7

0

1

2

3 5

4 6

7

Figure 5.10: An illustration of the computation of the matrix product in the innermost
loop.

76

1 @unroll for warp_tile = parallelise(block_tile, Tile(M = 64, N = 32, K = 16),
warpId, 8)↪→

2 @unroll for i = 1 : 4
3 a_tile = translate(warp_tile.MK, (M = (i-1)*16, K = 0))
4

5 linear_base = linearise(a_tile.base, ...)
6 linear_offset = linearise(a_tile.offset, ...)
7

8 a_frags[i] = WMMA.load_a(...)
9 end

10

11 @unroll for j = 1 : 2
12 b_tile = translate(warp_tile.KN, (K = 0, N = (j-1)*16))
13

14 linear_base = linearise(b_tile.base, ...)
15 linear_offset = linearise(b_tile.offset, ...)
16

17 b_frags[j] = WMMA.load_b(...)
18 end

19

20 @unroll for i = 1 : 4
21 @unroll for j = 1 : 2
22 acc_frags[i, j] = WMMA.mma(a_frags[i], b_frags[j], acc_frags[i, j],

...)↪→

23 end

24 end

25 end

Listing 18: The computation of the matrix product, implemented using our tiling API.

77

to one block. To copy D, we are only interested in the M and N dimension, so we project
this tile to these dimensions first.

Next, we parallelise this tile over a set of warps. This parallelisation should have the
same parameters as the matrix computation in the previous example. Obviously, the
tiling size is only specified in the M and N dimension, instead of in the in the three
dimensions M , N , and K. Figure 5.11 uses the same tiling sizes as our previous example:
block_tile is a 128× 128 matrix, and is parallelised across 8 warps, each handling a
64× 32 subtile. The corresponding parallelisation operation returns a warp_tile, and is
shown on Line 1 of Listing 19. Note that the for loop of Line 1 only has 1 iteration in
this case, since 8 warps fully cover the entire block_tile.

Finally, this warp_tile is divided in a 4× 2 arrangement of WMMA fragments, like in
example 2. The for loops on Line 2 and Line 3 iterate over these 8 WMMA fragments.
Line 4 then translates the tile in the M and N dimension over 0, 16, 32, or 48 elements
to obtain the final tile corresponding to each WMMA fragment. Line 6 and Line 7 then
convert this cartesian index to a linear index, so that it may be used to create pointers
for the WMMA store.d on Line 9.

To conclude this example, we will study the PTX that is generated for Listing 19. The
PTX is very similar to the previous two examples: first, the base address of D for each
warp is calculated and stored in a register. After this computation, 8 wmma.store.d

instructions are emitted, which use this register as a base address, and constant offsets.
Once again, we conclude that the use of the tiling API does not introduce any extra
overhead.

Summary

We have proposed four operations on tiles in our tiling API: parallelisation, projection,
translation, and linearisation. In this section, we have demonstrated how these operations
can be combined to implement more complex behaviour. To that end, we selected three
different steps in a mixed-precision GEMM using WMMA. Using the tiling API for each

78

acc_frags[1, 2]

acc_frags[4, 1]

warp_tileblock_tile.MN

0

1

2

3

4

5

6

7parallelise

Figure 5.11: An illustration of copying a tile of the D matrix from registers to shared
memory.

1 @unroll for warp_tile = parallelise(block_tile.MN, Tile(COMPUTE_WARP).MN,
warpId, WARPS_PER_BLOCK)↪→

2 @unroll for i = 1 : 4
3 @unroll for j = 1 : 2
4 tile = translate(warp_tile, (M = (i-1)*16, N = (j-1)*16))
5

6 linear_base = linearise(tile.base, ...)
7 linear_offset = linearise(tile.offset, ...)
8

9 WMMA.store_d(..., acc_frags[i, j], ...)
10 end

11 end

12 end

Listing 19: Copying a tile of the D matrix from registers to shared memory using our
tiling API.

79

of these significantly improves readability, compared to performing the necessary address
calculations manually. For each of these examples, we also demonstrated that the tiling
API does not introduce any superfluous instructions. Because each tile stores the base
and offset separately, the compiler was able to calculate the base address once, store it in
a register, and then use the register + offset addressing mode.

To determine which part of an address is a constant, and thus part of the offset, we
make a few assumptions. For example, we assume that the parallelisation operation is
fully unrolled through the use of @unroll. This way, values that are dependent on the
iteration index are constants. A possible improvement in our tiling API would be to
let the compiler handle this separation of base and offset instead of doing it manually.
There is an optimisation in LLVM, the so-called SeparateConstOffsetFromGEP pass,
that does this. Unfortunately, SeparateConstOffsetFromGEP did not work when we
tested it, because of the way CUDAnative stores pointers. These pointers are stored in
the generic address space, and converted to the global/shared address space just before
the load/store. This conversion is performed using LLVM’s addrspacecast instruction,
which is treated as a black box in most LLVM optimisations. CUDAnative has recently
changed the way pointers are stored, thus eliminating the need of the extra addrspacecast.
More future work is needed to ascertain that this eliminates the need for the manual
separation of base and offset, but our initial testing showed promising results.

5.5 Conclusion

In this chapter, we have developed an API for recursive blocking. This technique is
important to improve performance in several kernels, such as normal GEMMs, batched
GEMMs, and tensor contractions. While our main goal was applying the blocking
techniques for the specific case of GEMM, the tiling API is designed with these other
applications in mind. We illustrated how the tiling API can be used to implement a
performant mixed-precision GEMM kernel using WMMA. In the next chapter, we will
discuss GEMM in more depth, and introduce the necessary flexibility in the kernel.

80

The tiling API and the GEMM API of the next chapter were bundled in one pull request
to CUDAnative, that is currently under review1. The tiling API part of this pull
request consists of 300 lines of Julia source code.

1Pull request available at https://github.com/JuliaGPU/CUDAnative.jl/pull/629.

81

https://github.com/JuliaGPU/CUDAnative.jl/pull/629

6 Abstractions for flexible matrix
multiplication kernels

In Chapter 5, we designed tiling abstractions that can be used to implement a performant
GEMM kernel. In this chapter, we will introduce the necessary flexibility in this GEMM,
so that users can instantiate a wide variety of GEMM variants. In Chapter 3, we already
indicated that the open source CUTLASS project was a source of inspiration for this
thesis. Section 6.1 will discuss the relevant aspects of CUTLASS in more detail. In
Section 6.2, we list the criteria we will use to evaluate our GEMM API. The main content
is Section 6.3, which discusses the design and implementation of the GEMM API we
developed. Section 6.4 illustrates this GEMM API using an example. Finally, Section 6.5
evaluates the resulting API using the criteria given in Section 6.2.

6.1 CUTLASS

The de facto standard for GEMM on GPUs is NVIDIA’s cuBLAS library, containing a
set of GEMM kernels written in SASS assembly. cuBLAS works well if the needs of the
application are covered by the kernels implemented in the library. If a certain operation
is not supported by cuBLAS, application developers typically have to implement the
required kernels from scratch. In the case of custom elementwise operations, one could
run another kernel after cuBLAS, but this results in the same data being loaded twice:
once for the GEMM in cuBLAS, and once for the kernel that performs the elementwise
operation.

82

NVIDIA’s open-source CUTLASS project takes a different approach. Rather than having
monolithic GEMM kernels, CUTLASS contains a set of CUDA C++ template classes
that together implement a GEMM. These classes are organised according to CUDA’s
execution hierarchy: CUTLASS contains templates at the thread, warp, block, and
device level. Each of these templates can be specialised for custom computations, tiling
sizes, element data types, and memory layouts. Thanks to this modular design, these
flexible components can be reused as building blocks to implement custom GEMM or
GEMM-like kernels.

The use of templates in CUTLASS not only increases flexibility, but also allows the
compiler to optimise better. For example, instead of passing tiling sizes as arguments
to functions, CUTLASS stores the tiling size as template arguments. This allows the
compiler to store thread-local arrays in the register file, since their size is known at
compile-tile. Similarly, most loops can be unrolled, since the number of iterations is
known by the compiler.

The aim of the CUTLASS project is to provide a set of reusable templates to implement
GEMM or GEMM-like algorithms. For that reason, CUTLASS contains a lot of different
interacting components. NVIDIA annually organises a technical conference called GTC
(GPU Technology Conference). In GTC 2018 and GTC 2019, one of CUTLASS’s
developers presented two talks that provide an excellent overview of the structure of the
project [29, 30]. Since we cannot cover all the different components of CUTLASS in this
thesis, we will limit our discussion to the components that are most relevant for our use
case.

CUTLASS includes generic algorithms that iterate over tiles of matrices with constant size.
The tile iterator abstraction determines how exactly this iteration is performed. Not all of
the algorithms in CUTLASS require the same operations on tile iterators. For that reason,
CUTLASS’s tile iterators can implement one or more concepts. Each concept specifies a
set of operations that tile iterators satisfying this concept must implement. For example,
readable tile iterators must define a load operation that loads a part of the matrix from
memory. Contiguous memory tile iterators implement a add_pointer_offset function,
that adds an offset to the memory address that the iterator represents.

83

The tile iterator templates additionally have arguments that can be used to customise
the behaviour of the iterator. The thread map argument determines which thread is
responsible for each matrix element. Each concrete thread map must define a function
initial_offset that, given the identifier of the current thread, returns the initial
position of the iterator for that thread. The thread map also specifies the number
of iterations for each thread, and the offset from the initial position that should be
used in each iteration. We can thus think of the thread map as a generalisation of the
parallelisation operation in our tiling API.

The initial position and offsets returned by thread maps are expressed as a multidimen-
sional index in a logical coordinate system. Tile iterators have another argument, called
the layout, that converts this logical index to a memory address. The purpose of the
layout components in CUTLASS is twofold. First, they contain functions that map
logical indices of tiles to physical offsets in memory. For example, a logical index (i, j) in
an M ×N matrix will be converted to a physical offset jM + i for a column-major layout,
and to iN + j for a row-major layout. The second purpose of layouts is to define a type
system that can be used to specialise other CUTLASS components. Consider the case
of a component that calculates a matrix product using WMMA. Recall from Chapter 4
that the WMMA instructions differ depending on whether the matrices are stored in
row-major or column-major format. CUTLASS’s WMMA templates thus have layouts
as template arguments to determine the memory layout of the matrices A, B, and C.

These tile iterators, thread maps, and layouts are used to efficiently move tiles of the
input matrices through the GPU memory hierarchy. Another abstraction that is relevant
for our purposes, is the transform component. Transforms are functions that are used for
the global-to-shared memory stream of the A and B matrices. Transforms are applied
after a tile is loaded from global memory, but before it is stored to shared memory. This
component was initially introduced to implement an 8-bit GEMM, but having a functor
built into the global-to-shared memory stream is useful for other cases as well. For
example, one could store the matrix in global memory using a reduced precision to save
capacity. Using a transform, this lower precision datatype can then be converted to a
higher precision to increase the accuracy of the matrix product.

84

The purpose of the abstractions discussed before is to copy tiles of the input matrices from
global to shared memory, and from shared memory into registers. These abstractions
are used in the components that implement the GEMM computation itself. CUTLASS’s
GEMM components are ordered according to the CUDA execution hierarchy, as discussed
in Section 2.1. The matrix multiplication for the thread-level GEMM components is
performed per thread, and the inputs are stored in each thread’s registers. Components
at the warp-level first load tiles from shared memory to registers using tile iterators,
and then compute the matrix product. Similarly, threadblock-level components use tile
iterators to load tiles from global memory into shared memory.

All of these GEMM components are heavily specialised C++ templates. Some of the
template arguments determine the class and shape of the matrix multiplication operation.
For example, in the case of a warp-level WMMA operation, the class would be “WMMA
Tensor Operation”, and the shape would be 16 × 16 × 16. These templates are also
specialised on the element type, memory layout, and tile iterator corresponding to
each of the A, B, and C matrices. The CUTLASS source code contains the necessary
specialisations for a range of GEMM variants, including FP32 and FP64 GEMMs using
traditional FPUs, and mixed-precision GEMMs using Tensor Cores.

After the computation step, each threadblock has calculated a tile of the resultant matrix.
This tile is distributed over the registers of all threads in a block, so it still needs to be
written back to global memory. During the computation phase, the mapping of threads
to elements was chosen to maximise the performance of the matrix computation. This
mapping does not necessarily lead to optimal access patterns if we were to update global
memory directly. The epilogue component in CUTLASS is the last phase of the matrix
multiplication kernel. Its purpose is to update global memory efficiently. In the default
implementation of CUTLASS’s epilogue, the threads in one block first store their part
of the result matrix to shared memory. This tile in shared memory is then copied to
global memory, cooperatively by all threads in the block. This indirection through shared
memory allows CUTLASS to use a different mapping of threads to matrix elements, so
that global memory can be updated more efficiently.

85

Custom epilogues can override this with custom logic to update global memory. For
example, one could implement a custom epilogue that adds a bias to the matrix multi-
plication result. This epilogue would load the bias vector from global memory, and add
it to the matrix multiplication result before writing it back to global memory. Epilogues
are also the phase in CUTLASS where custom elementwise operations on the resultant
matrix can be fused in the GEMM kernel. CUTLASS includes a set of epilogues for
common elementwise operations such as scaling and converting the matrix elements from
one type to another.

The set of C++ templates we have described only constitute a part of the CUTLASS
project, called the CUTLASS Template Library. This part of CUTLASS serves as an
inspiration for abstractions in our GEMM API. It also gives us an idea of possible
optimisations that we can apply to improve the performance of our GEMM kernels. The
CUTLASS project also contains two other parts that are interesting for our purposes:
the CUTLASS Instance Library, and the CUTLASS Profiler.

The CUTLASS Instance Library contains a set of scripts that instantiate and compile
GEMM kernels using the CUTLASS Template Library. These kernels are instantiated
with a wide range of different tiling sizes, data types, memory layouts, and operations.
The CUTLASS Profiler is a command-line application that can load the kernels in the
Instance Library, execute them, and evaluate their performance. Some of the command-
line arguments of the profiler specify which kernel types should be run, so that we
may apply a filter to the set of all kernels in the Instance Library. For example, the
--op_class=wmma_tensorop argument indicates that we are only interested in GEMM
kernels targeting Tensor Cores using the WMMA API. Other arguments can be used to
change the tiling sizes for each step in the GEMM, such as the threadblock shape.

The CUTLASS profiler is interesting for our use case for two reasons. First, the CUTLASS
profiler allows us to easily quantify the influence of different parameters of the GEMM on
the performance of the kernel. Secondly, by running the profiler with the same parameters
as our GEMM kernel, we have an excellent benchmark to compare our implementation
with.

86

6.2 Requirements

Before designing and implementing our GEMM API in Julia, we should impose a set
of requirements on the end result. We identify three important requirements for our
GEMM API:

1. Flexibility: Since the main goal of this thesis is to build flexible GEMMs, flexibility
is the most important criterion for our API. The cuBLAS library contains a set of
monolithic kernels, whose behaviour cannot be adapted by the programmer. To
increase flexibility, our GEMM API should split the GEMM kernel in separate
components that can be customised by the user.

2. Performance: Of course, flexibility is of no benefit if the resulting kernel performs
poorly. The performance of GEMM kernels that are built using our API should be
on-par with the state-of-the-art implementations, such as cuBLAS or CUTLASS.

3. Portability: To ensure that the GEMM kernels built using our API are able to
perform well on a wide range of devices, we should keep portability in mind. This
means that we should make as few assumptions about the underlying hardware as
possible. For example, the size of shared memory depends on the GPU, so our API
needs to be able to handle these differing sizes. Similarly, only GPUs of the Volta,
Turing, and Ampere generation include Tensor Cores to accelerate the computation
of matrix multiplications. While our main focus is on GEMM using Tensor Cores,
our API should also allow the matrix product to be calculated using traditional
FPUs.

6.3 A flexible GEMM API for Julia

CUTLASS’s main aim is to provide a set of pre-built components that can be combined
to build custom kernels. While these components are used in CUTLASS to implement a

87

variety of different GEMMs using the explicit blocking technique, they are reusable for
other applications as well. For example, Huang et al. have implemented a performant
family of Strassen-like matrix multiplication kernels that are built on top of the abstrac-
tions provided by CUTLASS [21]. The large set of components in CUTLASS is useful if
one wants to write custom kernels that operate on matrices. However, for use cases where
tweaking a pre-built GEMM kernel is sufficient, it introduces unnecessary complexity.

This thesis has a different goal. Our main interest is GEMM kernels that can be
customised by the user, instead of a set of components that can be used to build GEMM
or GEMM-like kernels. To accomplish this, we implement the general structure of a
performant GEMM kernel beforehand. To introduce the necessary flexibility, we split
this GEMM in a small set of different building blocks having a predetermined interface.
Each of these building blocks corresponds to a way in which GEMM kernels need to be
adapted, and can have different implementations depending on the use case. For example,
one building block could determine how the A matrix is stored in global memory. Specific
implementations of this building block would include a column major and a row major
storage format.

In our Julia GEMM API, each of these building blocks corresponds to one or more calls to
a set of functions with a predetermined name. Using Julia’s multiple dispatch mechanism,
we can customise the behaviour of these functions depending on the types of their
arguments. For example, consider the building block that determines the memory layout of
the A matrix. We can define two types RowMajor and ColumnMajor that represent possible
implementations. This building block can have functions load(layout_type, tile, ...)

that loads a tile of A, and store(layout_type, tile, ...) that stores a tile. The first
argument layout_type is a type, and can be either RowMajor or ColumnMajor in our
example. Using the multiple dispatch mechanism, we can have different implementations
of this building block, depending on which type is passed for layout_type.

The major strength of this scheme is that this flexibility has no impact at run time.
Through type inference, the Julia compiler is able to infer the types passed to each of
these functions, so that it is known at compile time which implementation of a building
block will be called. This same process is repeated for all the different building blocks,

88

which are subsequently combined. The resulting code is then compiled just-in-time to a
kernel tailored to the needs of the user.

The most important question we should answer is which building blocks we should
introduce in the GEMM, so that they can cover a range of different use cases. CUTLASS
already gives us some inspiration for possible abstractions, as described in Section 6.1.
To get a better idea of the required level of flexibility, we also conducted a literature
search to list the most common ways in which GEMM kernels need to be adapted. From
these two sources, we propose five different building blocks: params, layouts, transforms,
operators, and epilogues. In what follows, we will explain each of these building blocks,
and list some use cases for each of them. Where relevant, we will also compare our design
with that of CUTLASS.

Recall that CUTLASS includes tile iterators that can implement one or more concepts
depending on which operations they support. The elements in each tile are then manually
mapped to individual threads using the thread map template argument. A thread map
specifies the initial offset of each thread, the number of iterations for each dimension of
the tile, and the offset for each iteration. Our focus is on pre-built GEMM kernels that
are flexible, so we will take a different approach. We will implement the general structure
of a GEMM kernel using the tiling API we designed in Chapter 5. Users of our GEMM
API do not need to specify a thread map manually. Instead, our GEMM kernel will call
the parallelise operation on tiles, which implicitly maps matrix elements to threads.

Of course, we still want the user to be able to customise the tiling size of each step of
the GEMM kernel. This is the purpose of the params abstraction. This abstraction is
essentially a structure that is passed to the kernel, and contains a set of configuration
fields. Some of these fields determine the tiling sizes, and others specify the launch
configuration of the kernel, such as the number of warps per block. Note that the user
does not need to specify all fields manually. We have implemented a set of heuristics that
choose reasonable defaults for fields that are not set explicitly. For example, if the tiling
size per threadblock is not set, we choose the largest square (N ×N) or nearly-square
(2N × N) tile that still fits in shared memory. For the time being, these heuristics

89

are mainly aimed at GEMMs using Tensor Cores, but future work could expand these
heuristics to other cases as well.

Like CUTLASS, the positions of tiles in our tiling API are expressed in logical coordinates.
To convert these logical coordinates to offsets in physical memory, we introduce another
abstraction, called layouts. This abstraction corresponds to three functions that can
be customised using Julia’s multiple dispatch. The size(layout_type, logical_size)

function determines the size in physical memory of the layout for a given size in logical
coordinates. This physical size is not necessarily the same as the size in logical coordinates.
For example, to access shared memory efficiently, it is sometimes necessary to add p

padding elements to every column of a column major matrix. In this case, for a logical
size of M ×K, the corresponding physical size would be (M + p)×K. The size(...)

function is used so that our GEMM API known how many bytes it has to reserve in
shared memory. This function is also used by the heuristics in the params abstraction to
select the optimal tiling size in shared memory, as this depends on how much memory a
given memory layout requires.

The other two functions are load(layout_type, tile, ...) and store(layout_type,

tile, ...). As their name suggests, these functions are responsible to load or store the
tile at the logical coordinates represented by the tile argument. This is different from
CUTLASS, where the layouts only convert logical indices to physical offsets. By having
separate load and store functions, users of our GEMM API can implement arbitrary
logic to load or store the matrix elements corresponding to a given tile. For example,
recall that NVIDIA GPUs can load and store vectors of 16 bytes (128 bits) in a single
instruction. This vectorisation of memory accesses is only possible if the base address
of the load or store is aligned, i.e. divisible by 16. An AlignedColumnMajor layout can
indicate that the necessary alignment requirements are met, so that the corresponding
load and store functions can issue vectorised loads and stores.

In the case of a classic GEMM kernel, the most obvious examples of implementations of
the layout building block are RowMajor and ColumnMajor. As mentioned before, each of
these layout can be adapted to aligned or padded layouts. To add padding, one could
have PaddedRowMajor and PaddedColumnMajor layouts, but Julia’s type system allows

90

us to do this more cleanly. We can make a parametrised type PaddedLayout{Layout,

Padding}, where Padding represents the padding in number of elements, and Layout is
the base layout we wish to modify, such as RowMajor or ColumnMajor. The load and
store functions for padded layouts would then dispatch to the implementations for the
underlying Layout. The size method simply calls size for the underlying layout, and
adds the padding specified in the type parameters of the PaddedLayout.

The layout building block can also be used to create a GEMM with a more complicated
mapping between logical indices and physical offsets. In Section 3.2, we discussed the
GETT approach to tensor contraction, where multidimensional tensors are reinterpreted
as matrices. In our framework, this reinterpretation can be performed using a custom
implementation of the layout building block. Note that a layout does not even need to
correspond to a matrix that is materialized in memory. Consider a matrix multiplication
where the elements of one of the matrices can be calculated from the position, i.e.
aij = f(i, j) for some function f . In this case, we implement a layout where the store

function is a no-op, and the load function generates the necessary elements on the fly.
Similar strategies can be used for other matrices with a special structure, such as sparse
matrices. We can only store the non-zero elements in memory, and create a custom
layout that implements the necessary logic to load or store the correct elements.

The next building block in our GEMM API are transforms. Transforms are arbitrary
Julia functors, i.e. functions or structures implementing the function call operator ().
They are called after every load and before every store operation. This is different from
CUTLASS’s transforms, which only cover the global-to-shared memory stream of the
input matrices A and B. Our transforms can thus also be used for elementwise operations
of the result matrix, whereas in CUTLASS, this is the task of the epilogue component.
By having a transform after every load and before every store, elementwise operations to
the input and result matrices can be applied consistently in our API.

Transforms can be used for elementwise operations, such as a simple scaling in the case
of GEMM, and the application of activation functions for artificial neurons in neural
networks. Another use case of transforms is to implement type conversions immediately
after loading data from global memory. This is useful if one wants to use a higher

91

precision data type to compute the GEMM, but store the matrices in lower precision in
global memory to save capacity.

So far, we have discussed three parts of our GEMM API: params, layouts, and transforms.
Figure 6.1 illustrates how these three components interact to copy a tile of the A matrix
from global to shared memory. A similar structure is used to copy tiles of the B, C, or
resultant D matrix. This copy operation is performed cooperatively by all threads in
a threadblock, using the parallelisation operation of our tiling API. First, the params
component determines the tiling size that should be used for the tile iterator corresponding
to the parallelise operation. The GEMM kernel then iterates over this tile iterator, which
returns a tile in each iteration. The base and offset of this tile are specified in logical
coordinates. To load the correct matrix elements from global memory, the load function
is called using this tile and the layout of A in global memory. This load function returns
a tuple that contains the correct matrix elements. This tuple is then sent to the transform
for the global-to-shared stream of the A matrix, resulting in a transformed tuple. Finally,
the store function corresponding to the layout of A in shared memory is called with this
transformed tuple and the logical index of the current tile.

Params

Logical index

Tuple of
elements

Transformed tuple
of elements

Shared layout
(store)

Global layout
(load)

Tile iterator Tile

Transform

Figure 6.1: Copying a tile of A from global to shared memory using the params, layouts,
and transforms components in our GEMM API.

The previous building blocks together copy tiles from global to shared memory. The
next step in GEMM is to compute the matrix product itself. In our GEMM API, this
is the task of the operator building block. CUTLASS contains GEMM components for
each level in the CUDA execution hierarchy. The components at the threadblock level

92

have tile iterators as template arguments that are used to copy tiles from global memory
to shared memory. In our GEMM API, this copying is implicit in the structure of the
pre-built GEMM kernel, and can be customised using the layout abstraction that we have
discussed before. The operator building block in our API approximately corresponds
to the warp-level GEMM component in CUTLASS. The purpose of operators is to load
tiles from shared memory, perform the matrix multiplication, and store the resulting tile
back to shared memory.

In CUTLASS, the loads and stores are implemented by tile iterators, which typically
are specific for the GEMM component. For example, the warp-level WMMA GEMM
component has specific tile iterators that call the nvcuda::wmma::load_matrix_sync

function of the CUDA C++ WMMA API. Because the warp-level GEMM components
and its tile iterators are so closely tied together, they are merged in one building block
in our GEMM API, the operator. Instead of having separate tile iterator arguments,
the operator building block has five functions associated with it. The load_a, load_b,
and load_c functions load tiles of the A, B, and C matrix from shared memory to
registers. The matrix computation itself is performed by the mma function, and the result
is stored back to shared memory using the store_d function. Like the layout building
block, the load_a, load_b, load_c, and store_d functions have a tile argument that
represents the logical coordinate of the tile that should be loaded or stored. The load and
store functions also have an argument that determines the shared memory layout of the
corresponding matrix, so that we can dispatch to the different implementations depending
on the memory layout that is used. Finally, the mma function has three arguments a_frag,
b_frag, and c_frag that represent parts of the A, B, and C matrices stored in registers.
The function should perform the multiply-accumulate operation res_frag = a_frag *

b_frag + c_frag, and return the resulting fragment res_frag.

Note the similarity of the operator building block with the WMMA API we developed in
Chapter 4. There is a one-to-one correspondence between the basic steps of WMMA, and
the functions we listed in the previous paragraph. This is no coincidence, as both the
operator building block and the WMMA API are warp-level matrix multiply-accumulate
operations. Because of this correspondence, it is fairly easy to define an implementation
of the operator building blocks that uses Tensor Cores using our WMMA API. It suffices

93

to convert the tile argument to the load and store functions to a memory address, and
call the load, store, and mma functions of the WMMA API.

The operator building block has several use cases. First, they can be used to provide a
custom implementation for the computation in the inner loop of GEMM. This is useful
if the data type of our matrices has a custom multiplication operator, such as complex
numbers. The operator building block also improves the portability of the GEMM kernel.
For example, the WMMA operator may be parametrised with the WMMA shape, so that
we can select the WMMA shape that is optimal for our GPU. Additionally, we cannot
always use WMMA, since not all GPUs have Tensor Cores. In order for our kernel to be
portable to devices with different capabilities, we can define an alternative operator that
calculates the matrix product using the traditional FPUs instead of Tensor Cores.

Recall that CUTLASS’s epilogue component performs three different tasks. It applies
elementwise operations to the result, stores the transformed matrix to shared memory,
and updates global memory efficiently. In our API, the elementwise operations are
handled by the transform component, so that elementwise operations to the A, B, C,
and D matrices can be applied in the same way. While we can use transforms to apply
elementwise operations to the resultant matrix, we still need an epilogue building block.
Epilogues are needed so that users of our API can customise the way global memory is
updated at the last stage of GEMM. For example, without an epilogue, it would not be
possible to apply a reduction operation across all threadblocks.

The purpose of epilogues in our API slightly differs from CUTLASS’s approach to
epilogues. In CUTLASS, the epilogue also stores the resultant matrix to shared memory.
Because this step heavily depends on the way the GEMM was computed in the inner loop,
CUTLASS includes quite a few default epilogue components. For example, CUTLASS has
separate epilogues for GEMMs using WMMA, and GEMMs using traditional FPUs.

Our epilogue building block only has one purpose: to copy tiles of the resultant matrix
from shared memory to global memory. The storing to shared memory is moved to
the operator building block that we mentioned before. This means that we need fewer
epilogues overall, since our epilogue is decoupled from the way GEMM is computed in

94

the inner loop. As long as two different operators store the resultant matrix to shared
memory in the same layout, we can use the same epilogue for each. By default, we only
include one epilogue that simply copies the current threadblock’s tile in shared memory
to the correct position in global memory. This default epilogue uses the previously
mentioned layout building block to determine the memory layout of the resultant D
matrix.

6.4 Example

We can imagine that the discussion in the previous section was somewhat abstract, so
we would like to clarify it with an example. Consider the first step in a GEMM kernel:
copying a tile of the C matrix from global to shared memory. Listing 15 on page 70
shows an implementation of this step using our tiling API. For clarity, we repeat it here
as Listing 20.

In our GEMM API, this first step is implemented as shown in Listing 21. The code has
a similar structure to Listing 20, but the linearisation, loads, and stores are replaced by
generic calls to Layout.load and Layout.store. The first arguments of these functions,
GLOBAL_LAYOUT and SHARED_LAYOUT, are types that determine the memory layout of C for
global and shared memory, respectively. The transform_global_to_shared_c is a Julia
function that represents the transform that should be applied during the global-to-shared
memory stream of the C matrix.

Suppose that we have defined the necessary components (such as layouts, operators,
. . .) for a given use case. To instantiate and execute GEMM kernels that use these
components, we use the user-facing interface of our GEMM API, which is illustrated in
Listing 22. This code fragment calculates a mixed-precision matrix product of the form
Dij = max(∑

k AikBkj + Cij, 0). These types of matrix products are common in neural
networks, where the activation function max(·, 0) is commonly referred to as a rectified
linear unit (ReLU). Lines 1 – 4 declare the two-dimensional arrays that represent the
A, B, C, and D matrices. In Lines 6 – 11, we configure the parameters of our GEMM

95

1 @unroll for warp_tile = parallelise(block_tile.MN, Tile(MEM_CD_WARP), warpId,
WARPS_PER_BLOCK)↪→

2 @unroll for thread_tile = parallelise(warp_tile, Tile(MEM_CD_THREAD),
laneId, 32)↪→

3 global_thread_tile = translate(thread_tile, (M = block_i, N = block_j))
4

5 global_linear_base = linearise(global_thread_tile.base, (M = global_M,
N = global_N))↪→

6 global_linear_offset = linearise(global_thread_tile.offset, (M = global_M,
N = global_N))↪→

7

8 shared_linear_base = linearise(thread_tile.base, (M = shared_M, N =
shared_N))↪→

9 shared_linear_offset = linearise(thread_tile.offset, (M = shared_M, N =
shared_N))↪→

10

11 global_ptr = pointer(global_c, global_linear_base)
12 shared_ptr = pointer(shared_c, shared_linear_base)
13

14 # Load at address global_ptr, with offset global_linear_offset

15 # Store at address shared_ptr, with offset shared_linear_offset

16 end

17 end

Listing 20: Copying a tile of the C matrix from global to shared memory using our tiling
API (repeated from Listing 15).

96

1 @unroll for warp_tile = parallelise(block_tile.MN, Tile(MEM_CD_WARP), warpId,
WARPS_PER_BLOCK)↪→

2 @unroll for thread_tile = parallelise(warp_tile, Tile(MEM_CD_THREAD),
laneId, 32)↪→

3 global_thread_tile = translate(thread_tile, (M = block_i, N = block_j))
4

5 x = Layout.load(GLOBAL_C_LAYOUT, c, global_thread_tile)
6 y = transform_global_to_shared_c(x, thread_tile)
7 Layout.store(SHARED_C_LAYOUT, shmem_c, y, thread_tile)
8 end

9 end

Listing 21: Copying a tile of the C matrix from global to shared memory in our GEMM
API.

kernel, such as the overall shape of the GEMM, the operator to be used in the inner loop,
and the memory layouts of the A and C matrices. The missing fields are automatically
set to reasonable default values. For example, if the memory layout of the B matrix is
not specified, it is automatically set to the memory layout of the A matrix.

A GEMM kernel that uses this configuration is executed in Lines 13 – 16. The argument
transform_regs_to_shared_d determines the transform that should be applied when
copying tiles of the resultant D matrix from the register file to shared memory. The call
to MatMul.matmul will execute each step in the GEMM kernel, using the components
given by the user. For example, Listing 21 will be executed with GLOBAL_C_LAYOUT =

Layout.AlignedColMajor{Float32}.

The equivalent of Listing 22 using CUTLASS is shown in Listing 23 and Listing 24. These
listings were adapted from one of the examples available in the CUTLASS repository1.
Listing 23 contains the configuration step of the GEMM, and thus corresponds to the
call to MatMul.get_config in our API. Recall that elementwise operations in CUTLASS

1Original example available at the permalink https://github.com/NVIDIA/cutlass/blob/
1ab1027954bafc513cef2d3ca673d0e2c1eebb24/examples/12_gemm_bias_relu/gemm_bias_relu.
cu.

97

https://github.com/NVIDIA/cutlass/blob/1ab1027954bafc513cef2d3ca673d0e2c1eebb24/examples/12_gemm_bias_relu/gemm_bias_relu.cu
https://github.com/NVIDIA/cutlass/blob/1ab1027954bafc513cef2d3ca673d0e2c1eebb24/examples/12_gemm_bias_relu/gemm_bias_relu.cu
https://github.com/NVIDIA/cutlass/blob/1ab1027954bafc513cef2d3ca673d0e2c1eebb24/examples/12_gemm_bias_relu/gemm_bias_relu.cu

1 a = CuArray(rand(Float16, (M, K)))
2 b = CuArray(rand(Float16, (K, N)))
3 c = CuArray(rand(Float32, (M, N)))
4 d = similar(c)
5

6 conf = MatMul.get_config(
7 gemm_shape = (M = M, N = N, K = K),
8 operator = Operator.WMMAOp{16, 16, 16},
9 global_a_layout = Layout.AlignedColMajor{Float16},

10 global_c_layout = Layout.AlignedColMajor{Float32}
11)
12

13 MatMul.matmul(
14 a, b, c, d, conf;
15 transform_regs_to_shared_d = Transform.Elementwise(x -> max(x, 0))
16)

Listing 22: Calculating the matrix product Dij = max(∑
k Aik ·Bkj + Cij, 0) using our

GEMM API.

98

need to be implemented using a custom epilogue. Lines 2 – 6 instantiate the pre-defined
LinearCombinationRelu epilogue for FP32 values. Lines 9 – 25 create a type Gemm that
contains the configuration for the GEMM kernel, such as the datatype and layout of
each matrix. The type parameter on Line 22 determines the epilogue, and is set to the
epilogue we defined on Lines 2–6.

Note that each elementwise operation corresponds to a different CUTLASS epilogue.
The CUTLASS codebase contains epilogues for two activation functions: ReLU and the
sigmoid function σ(x) = (1 + exp(−x))−1. If CUTLASS does not contain an epilogue for
a certain elementwise transform, users need to implement one themselves. Because these
epilogues are typically 150 – 200 lines long2, this process requires significant effort. In our
API, we can use another activation function by replacing Transform.Elementwise(x ->

max(x, 0)) with any arbitrary function. Of course, we can also apply custom elementwise
transforms in CUTLASS using a separate kernel, but this introduces extra kernel launch
overhead, and results in the same data being loaded multiple times.

Listing 24 launches a GEMM kernel using this configuration, and thus corresponds to
MatMul.matmul in our API. Lines 2 – 7 create the arguments of the GEMM kernel, such
as the overall shape of the GEMM, and the addresses of the A, B, C, and D matrices.
Some CUTLASS components need extra memory to store intermediate results, called a
workspace. A workspace of the correct size is allocated on Lines 10–11. Finally, Lines
14–16 initialize and run the GEMM kernel.

Launching a GEMM kernel in CUTLASS uses a lot more components than our GEMM
API. These components have quite a few template arguments, all of which need to be
specified by the user. In contrast, our API has a set of heuristics for default values, so
that end users do not need to specify every configuration parameter explicitly.

2For examples of pre-defined epilogues in CUTLASS, see https://github.com/NVIDIA/cutlass/
tree/1ab1027954bafc513cef2d3ca673d0e2c1eebb24/include/cutlass/epilogue/thread.

99

https://github.com/NVIDIA/cutlass/tree/1ab1027954bafc513cef2d3ca673d0e2c1eebb24/include/cutlass/epilogue/thread
https://github.com/NVIDIA/cutlass/tree/1ab1027954bafc513cef2d3ca673d0e2c1eebb24/include/cutlass/epilogue/thread

1 // Instantiate the epilogue

2 using EpilogueOp = cutlass::epilogue::thread::LinearCombinationRelu<
3 float, // datatype of the output

4 4, // number of elements per memory access

5 float, // datatype of the accumulator

6 float>; // datatype used to calculate the ReLU

7

8 // Configure the GEMM kernel

9 using Gemm = cutlass::gemm::device::Gemm<
10 cutlass::half_t, // datatype of A

11 cutlass::layout::ColumnMajor, // layout of A

12 cutlass::half_t, // datatype of B

13 cutlass::layout::ColumnMajor, // layout of B

14 float, // datatype of C and D

15 cutlass::layout::ColumnMajor, // layout of C and D

16 float, // datatype used for accumulation

17 cutlass::arch::OpClassTensorOp, // operator in inner loop

18 cutlass::arch::Sm75, // Turing-generation Tensor Cores

19 cutlass::gemm::GemmShape<128, 128, 32>, // threadblock shape

20 cutlass::gemm::GemmShape<64, 64, 32>, // warp shape

21 cutlass::gemm::GemmShape<16, 8, 8>, // operator shape

22 EpilogueOp, // epilogue

23 cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
24 // determines how threadblocks are scheduled on the GPU

25 1>; // number of pipeline stages

Listing 23: Configuring a GEMM kernel to calculate the matrix product Dij =
max(∑

k Aik ·Bkj + Cij, 0) in CUTLASS.

100

1 // Create the arguments of the kernel

2 typename Gemm::Arguments arguments{
3 cutlass::gemm::GemmCoord(M, N, K), // overall shape of GEMM

4 A, B, C, D, // references to A, B, C, D

5 {1, 1}, // scaling factors used for A * B and D

6 1 // split factor along the K-dimension

7 };
8

9 // Allocate workspace

10 size_t workspace_size = Gemm::get_workspace_size(arguments);
11 cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
12

13 // Run the kernel

14 Gemm gemm;
15 gemm.initialize(arguments, workspace.get());
16 gemm();

Listing 24: Launching a CUTLASS GEMM kernel using the configuration of Listing 23.

101

6.5 Evaluation

In this section, we will evaluate our GEMM API according to the three criteria we
described in Section 6.2. In Section 6.5.1, we will discuss the flexibility and performance
of our GEMM API using three different examples. For each of the three examples, we will
first indicate which building blocks need to be instantiated. Next, we will compare the
performance of our kernels with the state-of-the-art GEMMs in cuBLAS and CUTLASS.
Recall that CUDAnative also includes a generic matrix multiplication kernel as a
fallback for datatypes that are incompatible with cuBLAS. We will also compare
the performance of our kernels with CUDAnative’s generic implementation. Finally,
Section 6.5.2 will explain how our proposed building blocks increase the portability of
the GEMM kernels that are built using our API.

6.5.1 Flexibility and performance

In this section, we will evaluate both the flexibility and performance using three example
use cases. First, we will implement a mixed-precision GEMM using the WMMA API
we developed in Chapter 4. Next, we introduce the necessary components to extend
this GEMM to matrices containing complex numbers. Our last example will change this
complex GEMM so it also supports dual numbers. Dual numbers extend the set of real
numbers with a new element ε, similar to the imaginary unit i in the case of complex
numbers. Addition and multiplication of dual numbers is similar to the complex case,
with the only difference that ε2 = 0, whereas i2 = −1.

Example 1: Mixed-precision GEMM

To implement a mixed-precision GEMM, we will create an operator that calls our WMMA
API. We have already mentioned that the interface of operators and WMMA is similar:
both have functions to load A, B, and C, calculate the matrix product, and store the

102

resultant D matrix. To use WMMA in our GEMM API, it is thus sufficient to convert
the logical index of the tile to a memory address, and call the correct WMMA function.

Julia uses column major storage for matrices. The next step for a mixed-precision GEMM
using our API is thus to implement a ColMajor layout. We used this memory layout for
both global and shared memory, but we noticed that performance was not on par with
CUTLASS’s WMMA kernels. Upon closer inspection, we found that this performance
gap was due to two reasons.

First, tiles of the FP16 A and B matrices were loaded using 16-bit memory instructions.
This resulted in a large amount of memory transactions, which resulted in stalls because
the load-store queue was full. To reduce the number of instructions, we can use vectorised
accesses instead. The largest transaction size on NVIDIA GPUs is 128 bits, so that
we can replace eight 16-bit loads with one 128-bit load, reducing the total number of
memory instructions by a factor 8×. We chose to do this vectorisation manually, by
casting the pointer from a Float16 pointer to a vector type of 128-bits. Note that this is
the same approach that CUDA C++ uses for explicit vectorisation.

The second reason for the performance gap with CUTLASS is due to the structure of
shared memory. On NVIDIA GPUs, shared memory is split into memory banks. Different
memory banks can be accessed in parallel, but memory accesses to addresses that map
to the same bank are serialised. This serialisation process is often referred to as a bank
conflict. Consider the example of Figure 6.2, where shared memory consists of 4 banks.
Suppose we store a 4 × 4 matrix in a row major format. If multiple threads access
the elements 0, 4, 8, and 12 in the same column, a bank conflict occurs. CUTLASS’s
WMMA kernels eliminate these bank conflicts by using padded layouts. In our example,
we can add one element of padding after every row, as shown in Figure 6.3. This changes
the mapping of elements to banks, so that the elements 0, 4, 8, and 12 now map to
different memory banks. To use padding in our GEMM API, we use the parametrised
PaddedLayout{Layout, Padding} that we mentioned in Section 6.3. PaddedLayout adds
the specified number of padding elements, and reuses the functionality of the wrapped
Layout.

103

Bank 0

0

4

8

12

Bank 1

1

5

9

13

Bank 2

2

6

10

14

Bank 3

3

7

11

15

Figure 6.2: Storing a 4× 4 matrix in shared memory in a non-padded layout.

Bank 0

0

13

10

7

(padding) 4

Bank 1

1

14

11

(padding) 8

5

Bank 2

2

15

(padding) 12

9

6

Bank 3

3

(padding)

Figure 6.3: Storing a 4× 4 matrix in shared memory using padding.

104

To evaluate the performance of our mixed-precision GEMM, we will compare our imple-
mentation with cuBLAS, CUTLASS, and the pre-existing generic matrix multiplication
in CUDAnative. We will measure this performance as the number of floating point
operations per second, expressed in TFLOPS. We have two experimental setups at
our disposal for this evaluation. The first setup contains an NVIDIA V100, a GPU
of the Volta generation. The resulting performance is graphed in Figure 6.4. First
note that CUDAnative’s generic matrix multiplication performs poorly, and levels
off to a maximum quite quickly. This is because this generic kernel does not use tiling
techniques, so that it is limited by the bandwidth of global memory. This is many orders
of magnitude slower than the computational capabilities of the GPU. The purple curve
represents CUTLASS’s GEMM kernel that uses WMMA. To have a fair comparison,
we used the CUTLASS Profiler to select the same tiling sizes for CUTLASS and our
implementation.

28 210 212 214

N

0

20

40

60

80

TF
LO

PS

Our implementation
CUDAnative generic
cuBLAS
CUTLASS (WMMA)
CUTLASS (mma.m8n8k4)

Figure 6.4: A comparison of the performance of our mixed-precision GEMM with state-
of-the-art implementations on the NVIDIA V100 GPU.

105

As we can see, our kernel performs slightly better than CUTLASS’s GEMM. This seems
to be the result of slight differences in the generated SASS assembly, such as the order of
memory instructions. Unfortunately, we have no control over the process that generates
the SASS, since this is performed by the closed-source NVIDIA CUDA driver. We
have observed that when we tweak our GEMM, the CUDA driver may generate slightly
different SASS instructions, resulting in different performance results. In general, the
performance stays close to 40 TFLOPS, so that the graph of Figure 6.4 still gives a good
idea of the performance of our kernels. This same remark holds for the other performance
graphs that we will discuss: if two implementations have similar performance, we cannot
really say with absolute confidence that one is more performant than the other.

Our GEMM kernels achieve about 55% of the performance of cuBLAS on Volta. To
get an idea on how to bridge this gap, we also plotted the performance of a CUTLASS
GEMM kernel that uses mma instead of WMMA. mma is a set of PTX instructions that
use Tensor Cores, similar to WMMA. These mma instructions are generation specific, and
thus less portable than the WMMA abstraction layer. The mma.m8n8k4 of Figure 6.4
calculates an 8× 8× 4 matrix multiply-accumulate, and is optimised for GPUs of the
Volta generation. The main difference between WMMA and these mma instructions, is
that the latter gives more control over how the matrix multiply-accumulate is performed.
For example, WMMA calculates a 16× 16× 16 matrix multiply-accumulate per warp.
Volta’s mma.m8n8k4 calculates one 8 × 8 × 4 matrix multiply-accumulate per quarter
warp, i.e. four 8× 8× 4 multiply-accumulates per warp.

Another difference between WMMA and mma is that mma does not have explicit load
and store instructions. This means that we have more control over how the matrix
elements are loaded, stored, and distributed over the different threads. This is used by
CUTLASS to replace the padded shared memory layout, which results in some overhead
due to the unused padding elements, with an alternative layout. This alternative layout
permutes the elements in shared memory in such a way that simultaneous memory
accesses map to different memory banks. Since this technique heavily depends on the
GPU architecture and type of GEMM kernel, we did not implement this. Nevertheless,
to use this optimisation in our GEMM API, one could write a custom layout for the

106

permuted layout in shared memory, and a custom operator to replace WMMA with
mma.

Our second experimental setup contains a Turing-generation RTX 2080 Ti. The perfor-
mance results of this setup are shown in Figure 6.5. We observe similar performance
behaviour for this graph as was the case for Volta: our implementation and WMMA CUT-
LASS have similar performance, whereas CUDAnative’s generic kernel only achieves
a fraction of peak device performance. On Turing, our mixed-precision GEMM using
WMMA is able to achieve 75% of the performance of cuBLAS, compared to Volta’s
55%. Note that the Volta-style mma.m8n8k4 performs poorly on Turing, only achieving
about 20 TFLOPS. Figure 6.5 also shows the performance for mma.m16n8k8. This mma

operation is aimed at Turing GPUs, and has a performance of about 40 TFLOPS, very
close to cuBLAS. This again illustrates that the mma operations are highly generation
specific.

28 210 212 214

N

0

10

20

30

40

TF
LO

PS

Our implementation
CUDAnative generic
cuBLAS
CUTLASS (WMMA)
CUTLASS (mma.m8n8k4)
CUTLASS (mma.m16n8k8)

Figure 6.5: A comparison of the performance of our mixed-precision GEMM with state-
of-the-art implementations on the NVIDIA RTX 2080 Ti GPU.

107

Example 2: Mixed-precision complex GEMM

There are two main differences between a normal mixed-precision GEMM, and a mixed-
precision GEMM of complex numbers. First, the WMMA multiply-accumulate operation
in the inner loop is replaced by four WMMA operations: A.real * B.real, A.real *

B.imag, A.imag * B.real, and A.imag * B.imag. In our GEMM API, this can be done
using a custom operator WMMAComplexOp. This operator is based on the WMMAOp operator,
but performs four 16 × 16 × 16 matrix multiplications instead of one. WMMAComplexOp

also loads or stores two WMMA fragments, one for the real part, and one for the
imaginary part. Note that the real part of the result matrix is A.real * B.real -

A.imag * B.imag, so that the fragment corresponding to A.imag * B.imag needs to be
negated. This corresponds to an FP16 multiplication with a constant −1. Recall from
Section 4.4.1 that Julia first casts FP16 values to FP32, and then multiplies the resulting
FP32 values. This significantly reduces the performance of our GEMM kernel. In
Listing 10, we showed a possible solution to this problem by using inline PTX that
multiplies FP16 values directly. To improve performance, we apply this same approach
to our mixed-precision complex GEMM.

The second difference between normal GEMMs and complex GEMMs, is in the memory
layouts that are used. In global memory, complex matrices are stored in an interleaved
layout, as illustrated at the left in Figure 6.6. In the interleaved layout, the real and
imaginary parts of a single element are stored contiguously. To load the real and imaginary
parts using WMMA, we need to use a split-complex layout, as shown at the right of
Figure 6.6. This layout stores the real and imaginary parts separately, so that both the
matrix consisting of the real part, and the matrix consisting of the imaginary part are
stored contiguously. This is needed because WMMA implicitly assumes that elements in
the same column of a column major matrix are stored at adjacent memory addresses.
In our GEMM API, we hence defined two memory layouts InterleavedComplex and
SplitComplex. These layouts have custom load and store functions that are used to
convert between the interleaved and split layouts.

108

real
part

imaginary
part

Interleaved layout Split layout

Figure 6.6: The difference between an interleaved and split memory layout to store
matrices of complex numbers. Memory addresses increase from left-to-right,
and then from top-to-bottom, i.e. in a row-major fashion.

CUTLASS 2.1 includes an example that performs a mixed-precision complex GEMM. We
compare the performance of our complex GEMM kernel with CUDAnative’s generic
implementation and this CUTLASS example in Figure 6.7 (Volta) and Figure 6.8 (Turing).
Once again, we see that CUDAnative’s generic implementation only achieves a fraction
of the peak device performance, because it does not make use of any tiling techniques.
For Volta, our kernel achieves a performance of 37% of CUTLASS, whereas on Turing,
we get a performance slightly over 50%. The fact that we were able to achieve decent
performance by just implementing two components is promising, even though there is still
a performance gap. A possible explanation for this gap is that the CUTLASS example
uses mma instead of WMMA. Unfortunately, complex GEMMs are not added to the
CUTLASS profiler yet, so we cannot easily check the performance of complex GEMM in
CUTLASS with WMMA. A possible direction for future work is to research the case of
complex GEMMs more thoroughly, in order to bridge this remaining performance gap.

Example 3: Mixed-precision dual GEMM

In our final example, we will study the case of the multiplication of matrices containing
dual numbers. We have already explained that dual numbers are similar to complex
numbers, in that they are a two-dimensional extension of the real numbers. A dual
number is written as a+εb, where ε has the same role as the imaginary unit i for complex
numbers. Addition and multiplication of dual numbers happens similarly to complex
numbers, with the only difference that instead of i2 = −1, we have ε2 = 0. Addition of

109

28 210 212 214

N

0

20

40

60

TF
LO

PS

Our implementation
CUDAnative generic
CUTLASS example

Figure 6.7: An illustration of the performance of our mixed-precision complex GEMM
on the NVIDIA V100 GPU.

110

28 210 212 214

N

0

10

20

30

40

TF
LO

PS

Our implementation
CUDAnative generic
CUTLASS example

Figure 6.8: An illustration of the performance of our mixed-precision complex GEMM
on the NVIDIA RTX 2080 Ti GPU.

111

dual numbers is thus defined as (a+ εb) + (c+ εd) = (a+ c) + ε(b+ d), and multiplication
as (a+ εb) · (c+ εd) = ac+ ε(ad+ bc). One important application of dual numbers in
scientific computing is automatic differentiation of functions. In Julia, this method for
automatic differentiation is implemented in the package ForwardDiff.jl [64].

Because of the similarity between complex numbers and dual numbers, most of the
discussion of the previous example applies to this example as well. As a result, we can
simply reuse the interleaved and split layouts for matrices of dual numbers. The only
difference is in the operator building block. Instead of four WMMA multiplications, we
only need to perform three: A.real * B.real, A.real * B.dual, and A.dual * B.real.
The use cases of complex and dual matrices are thus an excellent illustration of the
reusability of the building blocks in our GEMM API.

Performance-wise, we observe the same behaviour as the complex GEMM. This is not
surprising, as the only difference between complex and dual GEMMs is the operator
used in the inner loop. Note that neither CUTLASS nor cuBLAS include GEMM
kernels for dual numbers. Thus, multiplying two dual matrices in Julia will dispatch to
CUDAnative’s generic implementation, which is many orders of magnitude slower than
peak device performance. This means that using our GEMM API already results in a
significant speedup for dual matrices, even though we can still improve the performance
of our complex and dual GEMMs.

6.5.2 Portability

To conclude the evaluation of our GEMM API, we will discuss the portability of GEMM
kernels using our API across different GPU architectures. In the previous section, we
have evaluated GEMM on a Volta and a Turing GPU, the only architectures that have
Tensor Cores. We were able to achieve similar performance results for both architectures,
without explicitly tuning our GEMM kernel to a specific architecture. This already
indicates that the general structure of our GEMM kernels is portable to different GPU
architectures.

112

Additionally, there are also two building blocks in our API that improve the portability
of kernels. First, the params building block determines the tiling sizes for each stage of
GEMM. To port a GEMM kernel to a GPU with different hardware properties, such
as the size of shared memory, we can simply change the relevant tiling size. Second,
operators allow us to cover the different computational capabilities of GPUs. For example,
our WMMA operator only works on GPUs that have Tensor Cores. To support GEMM
on GPUs of older generations, we can add another operator that computes the GEMM
using FPUs instead. Recall that Tensor Cores can also be programmed using the
generation-specific mma PTX instructions. These mma instructions can be mapped to
different operators, one for each GPU generation.

6.6 Conclusion

In this chapter, we have designed an API for flexible GEMM kernels. We have proposed a
set of customisable building blocks that together implement a GEMM. We have illustrated
how these components interact using three use cases: a normal mixed-precision GEMM, a
complex mixed-precision GEMM, and a dual mixed-precision GEMM. We also compared
the performance of our kernels with state-of-the-art implementations in cuBLAS and
CUTLASS. In most cases, the performance of our GEMM kernels is similar to CUTLASS’s
kernels with the same parameters.

The GEMM API and the tiling API of the previous chapter were bundled in one pull
request to CUDAnative, that is currently under review3. The GEMM API part of this
pull request consists of approximately 1800 lines of Julia source code. For each of the
three use cases we discussed, the pull request contains the necessary components (such
as layouts and operators), and an example that illustrates how to instantiate a GEMM
that uses these components. The pull request also contains a set of Bash scripts that
compare the performance of our GEMM kernels with cuBLAS and CUTLASS.

3Pull request available at https://github.com/JuliaGPU/CUDAnative.jl/pull/629.

113

https://github.com/JuliaGPU/CUDAnative.jl/pull/629

7 Conclusion and future work

In this thesis, we first described the relevant aspects of CUDA’s programming model for
GPGPU computing, the Julia programming language, and the Julia package CUDA-
native.jl. We then explained the concept of mixed-precision arithmetic, and how
it relates to Tensor Cores in the latest NVIDIA GPUs. Next, we focused on matrix
multiplication kernels. We highlighted why flexibility is an important criterion for
GEMM, and how the state-of-the-art fares in this regard. We identified two important
libraries, cuBLAS and CUTLASS, that served as benchmarks for the GEMM kernels
we developed.

The main goal of this thesis is to build a flexible mixed-precision GEMM using NVIDIA
Tensor Cores. To that end, we have designed, implemented, and evaluated three different
APIs. We started with an API to program Tensor Cores from within the Julia program-
ming language. This API is inspired by CUDA C++’s API for Tensor Cores, WMMA,
but deviates from it to improve readability, or to make the resulting API fit better in the
Julia programming language.

We then moved on to an API for recursive blocking. This API is used to facilitate
writing algorithms that use tiling techniques to improve performance, such as matrix
multiplications or tensor contractions. Given our goal of mixed-precision GEMM, we
illustrated the use of this tiling API using three different steps in a mixed-precision
matrix multiplication kernel.

Finally, we proposed a set of components that together implement a GEMM kernel. Each
of these components can be customised by the user of our API, thereby increasing the

114

flexibility of the kernel. To demonstrate the flexibility of our proposed scheme, we have
instantiated the necessary components for three different use cases. We first applied our
API to the case of a mixed-precision GEMM, where we were able to achieve performance
similar to NVIDIA’s CUTLASS library. Next, we introduced the necessary components
to also support multiplications of complex-valued matrices. Finally, we adapted this
complex GEMM so it also supports matrices of dual numbers.

The abstractions as described in this thesis serve as a starting point for further research
and development in the area of flexible GEMMs. In particular, we see several possible
directions for future work or research:

1. Our WMMA API only supports the Volta-generation datatypes and shapes, since
only those were supported by LLVM at the time we implemented our API. In the
future, the WMMA API can be extended to also include support for the datatypes
and shapes introduced in Turing and Ampere.

2. In this thesis, our main focus was on mixed FP16-FP32 GEMMs using Volta-style
Tensor Cores. In the future, we can instantiate the necessary components to
support other GEMM datatypes, such as FP32 or FP64, as well. We can even use
Tensor Cores to accelerate this matrix product, since Tensor Cores of the Ampere
generation add support for these datatypes.

3. We can look into other applications of flexible GEMM, such as tensor contractions,
in more detail. By implementing those applications using our GEMM API, we
can see if our proposed scheme works well for these cases, or if adaptations to the
GEMM components are needed.

4. Starting from Ampere, NVIDIA GPUs support asynchronous copy instructions
from global to shared memory [63]. The upcoming 2.2 release of CUTLASS will
use these instructions to construct efficient software pipelines to hide the latency
of global loads [28]. A possible direction for future research is to add support for
these asynchronous copy instructions to our layout components.

115

5. There is still a performance gap between our mixed-precision GEMM kernels and
cuBLAS. Bridging this gap will likely come down to replacing WMMA with the
generation-specific mma instructions, and using a permuted layout in shared memory
instead of padding.

6. Over the course of this thesis, we implemented some optimisations manually, such
as the separation of memory addresses in a base and offset, and vectorisation.
To increase programmer productivity, it would be better if these optimisations
were applied automatically by the compiler. We discussed that CUDAnative
addrspacecasts pointers before load or store instructions. This hampers various
optimisations in LLVM, because addrspacecasts are treated as a black box by most
optimisation passes. Recently, CUDAnative changed the way it stores pointers,
thus eliminating the need for addrspacecast. It would be interesting to see if this
change is sufficient, or if more work is needed to let the compiler handle these
optimisations.

116

References

[1] Martin Abadi et al. ‘TensorFlow: A system for large-scale machine learning’. In:
Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). 2016, pp. 265–283. url: https://www.usenix.org/

system/files/conference/osdi16/osdi16-abadi.pdf.

[2] A. Abdelfattah, S. Tomov and J. Dongarra. ‘Fast Batched Matrix Multiplication for
Small Sizes Using Half-Precision Arithmetic on GPUs’. In: 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 2019, pp. 111–122.

[3] A. Abdelfattah, S. Tomov and J. Dongarra. ‘Towards Half-Precision Computation
for Complex Matrices: A Case Study for Mixed Precision Solvers on GPUs’. In:
2019 IEEE/ACM 10th Workshop on Latest Advances in Scalable Algorithms for
Large-Scale Systems (ScalA). 2019, pp. 17–24.

[4] Ahmad Abdelfattah et al. ‘Performance, Design, and Autotuning of Batched GEMM
for GPUs’. In: High Performance Computing. Ed. by Julian M Kunkel, Pavan Balaji
and Jack Dongarra. Cham: Springer International Publishing, 2016, pp. 21–38.
isbn: 978-3-319-41321-1.

[5] Jeremy Appleyard and Scott Yokim. Programming Tensor Cores in CUDA 9. Oct.
2017. url: https://devblogs.nvidia.com/programming-tensor-cores-cuda-

9.

[6] E. Aprà, M. Klemm and K. Kowalski. ‘Efficient Implementation of Many-Body
Quantum Chemical Methods on the Intel® Xeon Phi Coprocessor’. In: SC ’14:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 2014, pp. 674–684.

117

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9

[7] Alexander Auer et al. ‘Automatic code generation for many-body electronic struc-
ture methods: The tensor contraction engine’. In: Molecular Physics, R. J. Bartlett
Festschrift Special Issue 104 (Jan. 2006). doi: 10.1080/00268970500275780.

[8] Brett W. Bader and Tamara G. Kolda. ‘Algorithm 862: MATLAB Tensor Classes
for Fast Algorithm Prototyping’. In: ACM Transactions on Mathematical Software
32.4 (Dec. 2006), pp. 635–653. doi: 10.1145/1186785.1186794.

[9] Paul Barham and Michael Isard. ‘Machine Learning Systems Are Stuck in a Rut’.
In: Proceedings of the Workshop on Hot Topics in Operating Systems. HotOS ’19.
Bertinoro, Italy: Association for Computing Machinery, 2019, pp. 177–183. isbn:
9781450367271. doi: 10.1145/3317550.3321441. url: https://doi.org/10.

1145/3317550.3321441.

[10] T. Besard, C. Foket and B. De Sutter. ‘Effective Extensible Programming: Unleash-
ing Julia on GPUs’. In: IEEE Transactions on Parallel and Distributed Systems
30.4 (2019), pp. 827–841.

[11] Tim Besard. LLVM.jl: Julia wrapper for the LLVM C API. 2020. url: https:

//github.com/maleadt/LLVM.jl.

[12] Tim Besard et al. ‘Rapid software prototyping for heterogeneous and distributed
platforms’. In: Advances in Engineering Software 132 (2019), pp. 29–46.

[13] Valentin Churavy. GPUifyLoops.jl: Support for writing loop-based code that executes
both on CPU and GPU. 2020. url: https://github.com/vchuravy/GPUifyLoops.

jl.

[14] BLAS contributors. BLAS (Basic Linear Algebra Subprograms). 2017. url: http:

//www.netlib.org/blas/.

[15] Andy Ferris. Statically sized arrays for Julia. 2016. url: https://github.com/

JuliaArrays/StaticArrays.jl.

[16] Geetika Gupta. Using Tensor Cores for Mixed-Precision Scientific Computing.
2019. url: https://devblogs.nvidia.com/tensor-cores-mixed-precision-

scientific-computing/.

118

https://doi.org/10.1080/00268970500275780
https://doi.org/10.1145/1186785.1186794
https://doi.org/10.1145/3317550.3321441
https://doi.org/10.1145/3317550.3321441
https://doi.org/10.1145/3317550.3321441
https://github.com/maleadt/LLVM.jl
https://github.com/maleadt/LLVM.jl
https://github.com/vchuravy/GPUifyLoops.jl
https://github.com/vchuravy/GPUifyLoops.jl
http://www.netlib.org/blas/
http://www.netlib.org/blas/
https://github.com/JuliaArrays/StaticArrays.jl
https://github.com/JuliaArrays/StaticArrays.jl
https://devblogs.nvidia.com/tensor-cores-mixed-precision-scientific-computing/
https://devblogs.nvidia.com/tensor-cores-mixed-precision-scientific-computing/

[17] Azzam Haidar et al. ‘Harnessing GPU Tensor Cores for Fast FP16 Arithmetic
to Speed up Mixed-Precision Iterative Refinement Solvers’. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage,
and Analysis. SC ’18. Dallas, Texas: IEEE Press, 2018. doi: 10.1109/SC.2018.

00050. url: https://doi.org/10.1109/SC.2018.00050.

[18] Azzam Haidar et al. ‘Harnessing Tensor Cores FP16 Arithmetic to Accelerate Linear
Solvers and HPC Scientific Applications’. NVIDIA GPU Technology Conference.
2018. url: http : / / on - demand . gputechconf . com / supercomputing / 2018 /

video/sc1826- harnessing- tensor- cores- fp16- arithmetic- accelerate-

linear-solvers-hpc-scientific-applications.html.

[19] Geoffrey Hinton, Sara Sabour and Nicholas Frosst. ‘Matrix capsules with EM
routing’. In: International Conference on Learning Representations. 2018.

[20] Tim Holy. TiledIteration.jl: A Julia package to facilitate writing multithreaded, mul-
tidimensional, cache-efficient code. 2020. url: https://github.com/JuliaArrays/

TiledIteration.jl.

[21] Jianyu Huang, Chenhan D. Yu and Robert A. van de Geijn. Implementing Strassen’s
Algorithm with CUTLASS on NVIDIA Volta GPUs. 2018. arXiv: 1808.07984

[cs.MS].

[22] Tsuyoshi Ichimura et al. ‘A Fast Scalable Implicit Solver for Nonlinear Time-
Evolution Earthquake City Problem on Low-Ordered Unstructured Finite Elements
with Artificial Intelligence and Transprecision Computing’. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage,
and Analysis. SC ’18. Dallas, Texas: IEEE Press, 2018.

[23] Intel. Intel Math Kernel Library. 2020. url: https://software.intel.com/

content/www/us/en/develop/tools/math-kernel-library.html.

[24] Zhe Jia et al. Dissecting the NVIDIA Volta GPU Architecture via Microbenchmark-
ing. 2018. arXiv: 1804.06826 [cs.DC].

[25] JuliaLang.org. Julia Micro-Benchmarks. 2020. url: https://julialang.org/

benchmarks.

[26] JuliaLang.org. The Julia Language. 2020. url: https://julialang.org.

119

https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050
http://on-demand.gputechconf.com/supercomputing/2018/video/sc1826-harnessing-tensor-cores-fp16-arithmetic-accelerate-linear-solvers-hpc-scientific-applications.html
http://on-demand.gputechconf.com/supercomputing/2018/video/sc1826-harnessing-tensor-cores-fp16-arithmetic-accelerate-linear-solvers-hpc-scientific-applications.html
http://on-demand.gputechconf.com/supercomputing/2018/video/sc1826-harnessing-tensor-cores-fp16-arithmetic-accelerate-linear-solvers-hpc-scientific-applications.html
https://github.com/JuliaArrays/TiledIteration.jl
https://github.com/JuliaArrays/TiledIteration.jl
http://arxiv.org/abs/1808.07984
http://arxiv.org/abs/1808.07984
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
http://arxiv.org/abs/1804.06826
https://julialang.org/benchmarks
https://julialang.org/benchmarks
https://julialang.org

[27] JuliaLang.org. The Julia Language Official Documentation. 2020. url: https:

//docs.julialang.org/en/v1.

[28] Andrew Kerr. ‘Developing CUDA kernels to push Tensor Cores to the absolute
limit on NVIDIA A100’. May 2020. url: https://developer.nvidia.com/gtc/

2020/video/s21745.

[29] Andrew Kerr et al. ‘CUTLASS: CUDA Template Library for Dense Linear Algebra
at all levels and scales’. Mar. 2018. url: http://on-demand.gputechconf.com/

gtc/2018/presentation/s8854-cutlass-software-primitives-for-dense-

linear-algebra-at-all-levels-and-scales-within-cuda.pdf.

[30] Andrew Kerr et al. ‘Programming Tensor Cores: Native Volta Tensor Cores with
CUTLASS’. Mar. 2019. url: https://developer.nvidia.com/gtc/2019/video/

S9593.

[31] Khronos Group. OpenCL: An open standard for parallel programming of heterogen-
eous systems. 2020. url: https://www.khronos.org/opencl.

[32] Khronos Group. OpenGL: The Industry’s Foundation for High Performance Graph-
ics. 2020. url: https://www.opengl.org.

[33] Jinsung Kim et al. ‘A Code Generator for High-Performance Tensor Contractions
on GPUs’. In: Proceedings of the 2019 IEEE/ACM International Symposium on
Code Generation and Optimization. CGO 2019. Washington, DC, USA: IEEE Press,
2019, pp. 85–95. isbn: 9781728114361.

[34] Ronny Krashinsky et al. NVIDIA Ampere Architecture In-Depth. May 2020. url:
https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/.

[35] J. Lai and A. Seznec. ‘Performance upper bound analysis and optimization of
SGEMM on Fermi and Kepler GPUs’. In: Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). 2013,
pp. 1–10.

[36] J. Li et al. ‘An input-adaptive and in-place approach to dense tensor-times-matrix
multiply’. In: SC ’15: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. 2015, pp. 1–12.

[37] LLVM contributors. The LLVM Compiler Infrastructure Project. 2020. url: https:

//llvm.org.

120

https://docs.julialang.org/en/v1
https://docs.julialang.org/en/v1
https://developer.nvidia.com/gtc/2020/video/s21745
https://developer.nvidia.com/gtc/2020/video/s21745
http://on-demand.gputechconf.com/gtc/2018/presentation/s8854-cutlass-software-primitives-for-dense-linear-algebra-at-all-levels-and-scales-within-cuda.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8854-cutlass-software-primitives-for-dense-linear-algebra-at-all-levels-and-scales-within-cuda.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8854-cutlass-software-primitives-for-dense-linear-algebra-at-all-levels-and-scales-within-cuda.pdf
https://developer.nvidia.com/gtc/2019/video/S9593
https://developer.nvidia.com/gtc/2019/video/S9593
https://www.khronos.org/opencl
https://www.opengl.org
https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/
https://llvm.org
https://llvm.org

[38] LLVM contributors. The LLVM Target-Independent Code Generator. 2020. url:
https://llvm.org/docs/CodeGenerator.html.

[39] LLVM contributors. User Guide for the NVPTX Back-end. 2020. url: https:

//llvm.org/docs/NVPTXUsage.html.

[40] Wenjing Ma et al. ‘GPU-Based Implementations of the Noniterative Regularized-
CCSD(T) Corrections: Applications to Strongly Correlated Systems’. In: Journal
of Chemical Theory and Computation 7.5 (2011), pp. 1316–1327. doi: 10.1021/

ct1007247. url: https://doi.org/10.1021/ct1007247.

[41] Stefano Markidis et al. ‘NVIDIA tensor core programmability, performance &
precision’. In: Proceedings - 2018 IEEE 32nd International Parallel and Distributed
Processing Symposium Workshops, IPDPSW 2018 (2018), pp. 522–531. doi: 10.

1109/IPDPSW.2018.00091.

[42] Devin A. Matthews. High-Performance Tensor Contraction without Transposition.
2016. arXiv: 1607.00291 [cs.MS].

[43] Vishal Mehta. ‘Getting Started with Tensor Cores in HPC’. NVIDIA GPU Techno-
logy Conference. 2019. url: https://on-demand.gputechconf.com/supercomputing/

2019/video/sc1909-getting-started-with-tensor-cores-for-hpc.

[44] Paulius Micikevicius et al. ‘Mixed Precision Training’. In: 6th International Con-
ference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. url:
https://openreview.net/forum?id=r1gs9JgRZ.

[45] Microsoft. Compute Shader Overview. May 2018. url: https://docs.microsoft.

com/en- us/windows/win32/direct3d11/direct3d- 11- advanced- stages-

compute-shader?redirectedfrom=MSDN.

[46] Microsoft. DirectX graphics and gaming. May 2018. url: https://docs.microsoft.

com/en-us/windows/win32/directx.

[47] Edoardo [Di Napoli] et al. ‘Towards an efficient use of the BLAS library for
multilinear tensor contractions’. In: Applied Mathematics and Computation 235
(2014), pp. 454–468. issn: 0096-3003. doi: https://doi.org/10.1016/j.amc.

2014.02.051. url: http://www.sciencedirect.com/science/article/pii/

S0096300314002902.

121

https://llvm.org/docs/CodeGenerator.html
https://llvm.org/docs/NVPTXUsage.html
https://llvm.org/docs/NVPTXUsage.html
https://doi.org/10.1021/ct1007247
https://doi.org/10.1021/ct1007247
https://doi.org/10.1021/ct1007247
https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1109/IPDPSW.2018.00091
http://arxiv.org/abs/1607.00291
https://on-demand.gputechconf.com/supercomputing/2019/video/sc1909-getting-started-with-tensor-cores-for-hpc
https://on-demand.gputechconf.com/supercomputing/2019/video/sc1909-getting-started-with-tensor-cores-for-hpc
https://openreview.net/forum?id=r1gs9JgRZ
https://docs.microsoft.com/en-us/windows/win32/direct3d11/direct3d-11-advanced-stages-compute-shader?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/direct3d11/direct3d-11-advanced-stages-compute-shader?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/direct3d11/direct3d-11-advanced-stages-compute-shader?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/directx
https://docs.microsoft.com/en-us/windows/win32/directx
https://doi.org/https://doi.org/10.1016/j.amc.2014.02.051
https://doi.org/https://doi.org/10.1016/j.amc.2014.02.051
http://www.sciencedirect.com/science/article/pii/S0096300314002902
http://www.sciencedirect.com/science/article/pii/S0096300314002902

[48] Rajib Nath, Stanimire Tomov and Jack Dongarra. ‘An Improved MAGMA GEMM
For Fermi Graphics Processing Units’. In: International Journal of High Per-
formance Computing Applications 24.4 (Nov. 2010), pp. 511–515. issn: 1094-
3420. doi: 10.1177/1094342010385729. url: http://dx.doi.org/10.1177/

1094342010385729.

[49] T. Nelson et al. ‘Generating Efficient Tensor Contractions for GPUs’. In: 2015 44th
International Conference on Parallel Processing. 2015, pp. 969–978.

[50] NVIDIA. Automatic Mixed Precision for Deep Learning. 2020. url: https://

developer.nvidia.com/automatic-mixed-precision.

[51] NVIDIA. cuBLAS: CUDA Toolkit Documentation. 2020. url: https://docs.

nvidia.com/cuda/cublas/index.html.

[52] NVIDIA. CUDA C++ Programming Guide. 2020. url: https://docs.nvidia.

com/cuda/cuda-c-programming-guide.

[53] NVIDIA. cuDNN Developer Guide: NVIDIA Deep Learning SDK Documentation.
2020. url: https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-

guide/index.html.

[54] NVIDIA. cuTENSOR: A High-Performance CUDA Library for Tensor Primitives.
2020. url: https://docs.nvidia.com/cuda/cutensor/index.html.

[55] NVIDIA. CUTLASS: CUDA Templates for Linear Algebra Subroutines. 2020. url:
https://github.com/NVIDIA/cutlass.

[56] NVIDIA. Deep Learning Performance Guide. June 2019. url: https://docs.

nvidia.com/deeplearning/sdk/pdf/Deep- Learning- Performance- Guide.

pdf.

[57] NVIDIA. NVIDIA Turing Architecture whitepaper. 2018. url: https://www.

nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/

turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf.

[58] NVIDIA. NVIDIA Unveils CUDA – The GPU Computing Revolution Begins. Nov.
2006. url: https://www.nvidia.com/object/IO_37226.html.

[59] NVIDIA. NVIDIA V100. 2020. url: https://www.nvidia.com/en-us/data-

center/v100.

122

https://doi.org/10.1177/1094342010385729
http://dx.doi.org/10.1177/1094342010385729
http://dx.doi.org/10.1177/1094342010385729
https://developer.nvidia.com/automatic-mixed-precision
https://developer.nvidia.com/automatic-mixed-precision
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html
https://docs.nvidia.com/cuda/cutensor/index.html
https://github.com/NVIDIA/cutlass
https://docs.nvidia.com/deeplearning/sdk/pdf/Deep-Learning-Performance-Guide.pdf
https://docs.nvidia.com/deeplearning/sdk/pdf/Deep-Learning-Performance-Guide.pdf
https://docs.nvidia.com/deeplearning/sdk/pdf/Deep-Learning-Performance-Guide.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/object/IO_37226.html
https://www.nvidia.com/en-us/data-center/v100
https://www.nvidia.com/en-us/data-center/v100

[60] NVIDIA. Parallel Thread Execution ISA Version 6.5. 2020. url: https://docs.

nvidia.com/cuda/parallel-thread-execution.

[61] Adam Paszke et al. ‘PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library’. In: Advances in Neural Information Processing Systems 32. Ed.
by H. Wallach et al. Curran Associates, Inc., 2019, pp. 8024–8035. url: http:

//papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-

performance-deep-learning-library.pdf.

[62] Roman Poya, Antonio J Gil and Rogelio Ortigosa. ‘A high performance data
parallel tensor contraction framework: Application to coupled electro-mechanics’.
In: Computer Physics Communications 216 (2017), pp. 35–52. issn: 0010-4655.
doi: https://doi.org/10.1016/j.cpc.2017.02.016. url: http://www.

sciencedirect.com/science/article/pii/S0010465517300681.

[63] Pramod Ramarao. CUDA 11 Features Revealed. May 2020. url: https : / /

devblogs.nvidia.com/cuda-11-features-revealed/.

[64] J. Revels, M. Lubin and T. Papamarkou. ‘Forward-Mode Automatic Differentiation
in Julia’. In: arXiv:1607.07892 [cs.MS] (2016). url: https://arxiv.org/abs/

1607.07892.

[65] Jarrett Revels. Cassette.jl: Overdub your Julia Code. 2020. url: https://github.

com/jrevels/Cassette.jl.

[66] Norman Rink et al. ‘CFDlang: High-level code generation for high-order methods
in fluid dynamics’. In: Real World Domain Specific Languages Workshop 2018. Feb.
2018, pp. 1–10. doi: 10.1145/3183895.3183900.

[67] E. Solomonik et al. ‘Cyclops Tensor Framework: Reducing Communication and
Eliminating Load Imbalance in Massively Parallel Contractions’. In: 2013 IEEE
27th International Symposium on Parallel and Distributed Processing. 2013, pp. 813–
824.

[68] Paul Springer and Paolo Bientinesi. Design of a high-performance GEMM-like
Tensor-Tensor Multiplication. 2016. arXiv: 1607.00145 [cs.MS].

[69] Paul Springer and Paolo Bientinesi. The Landscape of High-Performance Tensor
Contractions. Feb. 2017. url: http://www.netlib.org/utk/people/JackDongarra/

WEB-PAGES/Batched-BLAS-2017/talk13-springer.pdf.

123

https://docs.nvidia.com/cuda/parallel-thread-execution
https://docs.nvidia.com/cuda/parallel-thread-execution
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/https://doi.org/10.1016/j.cpc.2017.02.016
http://www.sciencedirect.com/science/article/pii/S0010465517300681
http://www.sciencedirect.com/science/article/pii/S0010465517300681
https://devblogs.nvidia.com/cuda-11-features-revealed/
https://devblogs.nvidia.com/cuda-11-features-revealed/
https://arxiv.org/abs/1607.07892
https://arxiv.org/abs/1607.07892
https://github.com/jrevels/Cassette.jl
https://github.com/jrevels/Cassette.jl
https://doi.org/10.1145/3183895.3183900
http://arxiv.org/abs/1607.00145
http://www.netlib.org/utk/people/JackDongarra/WEB-PAGES/Batched-BLAS-2017/talk13-springer.pdf
http://www.netlib.org/utk/people/JackDongarra/WEB-PAGES/Batched-BLAS-2017/talk13-springer.pdf

[70] Paul Springer and Chen-Han Yu. ‘cuTENSOR: High-Performance CUDA Tensor
Primitives’. In: NVIDIA GPU Technology Conference 2019. Mar. 2019.

[71] Field G. Van Zee and Robert A. van de Geijn. ‘BLIS: A Framework for Rapidly
Instantiating BLAS Functionality’. In: ACM Trans. Math. Softw. 41.3 (June 2015).
issn: 0098-3500. doi: 10.1145/2764454. url: https://doi.org/10.1145/

2764454.

[72] R. C. Whaley and J. J. Dongarra. ‘Automatically Tuned Linear Algebra Software’.
In: SC ’98: Proceedings of the 1998 ACM/IEEE Conference on Supercomputing.
1998, pp. 38–38.

[73] Zhang Xianyi. OpenBLAS: An optimized BLAS library. 2020. url: https://www.

openblas.net.

[74] Da Yan, Wei Wang and Xiaowen Chu. ‘Demystifying Tensor Cores to Optimize
Half-Precision Matrix Multiply’. To appear in: Proceedings of the 34th IEEE
International Parallel and Distributed Processing Symposium. 2020. url: https:

//www.cse.ust.hk/~weiwa/papers/yan-ipdps20.pdf.

[75] Xiuxia Zhang et al. ‘Understanding the GPU Microarchitecture to Achieve Bare-
Metal Performance Tuning’. In: Proceedings of the 22nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. PPoPP ’17. Austin, Texas,
USA: Association for Computing Machinery, 2017, pp. 31–43. isbn: 9781450344937.
doi: 10.1145/3018743.3018755. url: https://doi.org/10.1145/3018743.

3018755.

124

https://doi.org/10.1145/2764454
https://doi.org/10.1145/2764454
https://doi.org/10.1145/2764454
https://www.openblas.net
https://www.openblas.net
https://www.cse.ust.hk/~weiwa/papers/yan-ipdps20.pdf
https://www.cse.ust.hk/~weiwa/papers/yan-ipdps20.pdf
https://doi.org/10.1145/3018743.3018755
https://doi.org/10.1145/3018743.3018755
https://doi.org/10.1145/3018743.3018755

Flexible matrix multiplication kernels on GPUs

Academic year 2019-2020

Master of Science in Computer Science Engineering

Master's dissertation submitted in order to obtain the academic degree of

Counsellor: Dr. Tim Besard
Supervisor: Prof. dr. ir. Bjorn De Sutter

Student number: 01506418
Thomas Faingnaert

	Permission of use on loan
	Preface
	Abstract
	Extended abstract
	Introduction
	Background
	The CUDA programming model
	The Julia programming language
	CUDAnative.jl: Executing Julia kernels on CUDA hardware
	Mixed precision arithmetic

	Motivation and related work
	The case for matrix multiplication
	The need for flexible matrix multiplication kernels
	Related work
	Goals of this thesis

	Abstractions for programming Tensor Cores in Julia
	WMMA: CUDA C's interface to Tensor Cores
	Requirements
	A WMMA API for Julia
	Wrappers for the LLVM intrinsics
	A WMMA interface for Julia

	Evaluation
	Zero-cost
	Future proof
	Similar to CUDA C++

	Conclusion

	Abstractions for recursive blocking
	The case for recursive blocking
	Requirements and design of abstractions
	A tiling API for Julia
	Evaluation
	Multiple dimensions
	Readability and zero-cost

	Conclusion

	Abstractions for flexible matrix multiplication kernels
	CUTLASS
	Requirements
	A flexible GEMM API for Julia
	Example
	Evaluation
	Flexibility and performance
	Portability

	Conclusion

	Conclusion and future work
	References

