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Abstract

Increasing proliferation of distributed energy resources and electrification of demand in
the residential building sector can help realize global decarbonization targets in a cost-
effective manner. However, this green revolution has entailed a rapid transformation
of the classical power system creating new challenges for the distribution system
operator, such as reduced power quality and network congestion issues. Automated
demand response control strategies provide a solution to these problems by exploiting
available energy flexibility in the low-voltage grid at interesting times. Battery energy
storage and photovoltaics (PV) curtailment are particularly suited for this approach,
offering a competitive alternative to grid reinforcement investments.

Reinforcement learning, a data-driven control method, is especially suitable for
control in which self-adaptability is required through continuous agent-environment
interaction. However, a significant shortcoming of such data-driven methods is their
large data-inefficiency, which often translates into infeasible amounts of training
data necessary to achieve adequate controller performance. The concept of transfer
learning helps to circumvent these disadvantages: a controller is trained with data in
one domain and the gained knowledge is subsequently transferred to a different but
related control task. It is shown that both initial and asymptotic performance can
be greatly enhanced by utilizing these principles.

In this thesis, we propose a reinforcement learning based controller trained with
real-world data from Belgium and The Netherlands and research the potential of
transfer learning for optimal control strategies in limited data domains. Since many
demand response applications require scaling to a multi-agent setting, we research
these control methods in both a single-agent and multi-agent setting. The former
entails the operation of a centralized grid battery, whereas the latter focuses on
three distributed, independently acting agents controlling a local battery and PV
installation.

It is found that the grid impact of renewable energy sources and electrified demand
equipment can be mitigated adequately with the suggested controller and that
transfer learning improved the performance of the RL controller significantly. These
results demonstrate that transfer learning methods provide a solution for optimal
control strategies in limited data domains and can be used to accelerate the learning
process of RL based systems in real world problems.
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Samenvatting

De groei van hernieuwbare energie en de elektrificatie in de residentiele sector
leveren een bijdrage in de strijd tegen de uitstoot van broeikasgassen en helpen
bij het behalen van de klimaatdoelstellingen. Desalniettemin brengt deze snelle
transformatie van het klassieke elektriciteitsnetwerk nieuwe uitdagingen met zich
mee voor de distributienetwerkbeheerders, zoals netwerkoverbelastingen en power
quality problemen. Geautomatiseerde demand response controle strategieén bieden
een oplossing jegens deze problemen, daarbij gebruikmakend van de aanwezige
flexibiliteit in het laagspanningsnet, zoals opslag in batterijen of het afvlakken van
PV generatie, wat kan helpen om uitbreidingen en versterkingen van het netwerk uit
te stellen.

Reinforcement learning, een data gedreven controlemethode, is uitermate geschikt
voor controlestrategieén waarbij een automatisch aanpassingsvermogen vereist is
door middel van een continue interactie tussen de controller (agent) en omgeving.
Deze data gedreven methoden zijn echter zeer data-inefficiént en daardoor vereisen ze
een significante hoeveelheid trainingsdata alvorens ze een adequaat resultaat bieden
in de praktijk. Transfer learning helpt om deze nadelen te omzeilen: eerst wordt
een controller offline getraind met beschikbare data, waarna de verkregen informatie
overgedragen wordt (transfer) aan de controller die online functioneert in de praktijk.

In deze thesis presenteren we een ontwerp van een controller, gebruikmakend van
reinforcement learning, die getraind wordt met reéle data van Belgié en Nederland. We
onderzoeken de mogelijkheden van transfer learning in optimale controle strategieén
in gelimiteerde datadomeinen. Bijkomend vereisen vele reéle praktische problemen
een multi-agent setting. Hiervoor onderzoeken we de vermelde controlemethoden
zowel in een single-agent setting als in een multi-agent setting met drie onathankelijk
werkende controle eenheden.

Het onderzoek wees uit dat de impact van hernieuwbare bronnen en warmtepompen
op het laagspanningsnetwerk beperkt kan worden met de voorgestelde controller
en dat transfer learning de performantie van de reinforcment learning controller
beduidend verbeterd. Deze resultaten tonen aan dat transfer learning-methoden een
oplossing bieden voor optimale controle strategiéen in gelimiteerde datadomeinen
en dat ze het leerproces van reinforcement learning systemen kunnen versnellen in
praktische problemen.
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Chapter 1

Introduction

1.1 Situation

The European Union has set itself stringent targets concerning the reduction of
greenhouse gas emissions: a minimum of 40% COs reduction by 2030 and 80% by
2050 has to be achieved [2]. The decarbonization of the residential building sector,
which is responsible for 22% of the global energy consumption, is one of the possible
methods to combat anthropogenic climate change [3]. A shift is needed towards a
more efficient and sustainable electric power system in order to contribute to the
ongoing green energy revolution at the residential level [4].

One of the key developments is the increasing amount of renewable energy sources
(RES) integrated into the low-voltage grid, such as photovoltaics (PV), which can
reduce COg emissions and improve the autonomy of residential consumers [4]. Another
emerging phenomenon is the electrification of residential heating appliances (heat
pumps) and transportation (electric vehicles). Combination of the aforementioned -
increasing electrification powered by distributed RES - is a potential solution to the
required decarbonization of the residential sector [5].

However, the rapid transformation of the classical power system entailed by this green
energy revolution creates new challenges for the distribution system operator (DSO).
Implementation of RES in low-voltage grids and the increasing electrification can
lead to reduced power quality and network congestion. Moreover, grid violations are
a limiting factor for the increasing implementation of RES in low-voltage networks.
Since distribution grids are not designed to accommodate these changes, potential
benefits of decarbonization policies might be diminished [4, 5].

In order to provide a solution towards a smart grid, automated demand response
applications (DR) can help to cope with the aforementioned issues. DR is a valuable
asset for distribution network voltage regulation and congestion management [2, 4].
A broad range of control strategies exists for the implementation of DR, applications
making use of the available energy flexibility in the grid. Amongst others, the options
include electrified demand appliances, battery storage, and PV curtailment [6].



1. INTRODUCTION

In this study we will use reinforcement learning (RL) to design a controller with
the aim of determining an optimal policy to keep the grid within safe operating
limits using PV curtailment and battery flexibility. One of the advantages of RL is
its self-adaptability through continuous agent-environment interaction. However, a
significant shortcoming of such data-driven methods is their high sample complexity,
which means they require a large amount of interactions with the environment in
order to learn an (approximate) optimal control policy [7]. Due to this large data-
inefficiency, large amounts of, often unavailable, training data is necessary in order
to achieve adequate results.

In light of these limitations governing data-inefficiency, we propose a sample-efficient
RL based controller that makes use of transfer learning (TL). Here, agents are trained
in a simulated environment (in this case a low-voltage grid) with available data
and subsequently implemented as a starting point for the controller in the “real”
environment. This allows transferring gained knowledge from one domain to another.
There is still a great deal of work to be done in the research area on transfer learning.
Energy related papers on this topic study predominantly forecast related issues
[8, 9, 10] or use transfer learning in a multi-agent cooperative setting [7].

Studies on RL techniques commonly focus on a single agent interacting with its
environment. However, many real-world applications require scaling to a multi-agent
setting [4, 6]. According to Vazquez-Canteli and Nagy [4], multi-agent reinforcement
learning (MARL) is still in its infancy and comprises purely theoretical research,
whereby convergence and stability are often observed for no more than two agents.
We study in this thesis the potential of independent multi-agent systems in the field
of distributed generation (DG) and storage, including 3 independently acting agents.

1.2 Problem statement and goals

This thesis was carried out in collaboration with i.LECO, a spin-off of the company
Enervalis. Founded in 2019, they have the goal to enable and speed up the needed
green energy transition with a focus on the future expected network structure of local
energy communities. They focus on smart solutions related to residential housing,
EV charging, and storage technologies [11].

In 2018, Enervalis concluded the REnnovates [12] project in the Netherlands. Here,
249 houses were renovated through thorough isolation and equipped with an air-
sourced heat pump and a PV installation. The key idea was to transition the houses
towards “zero on the meter houses” making them carbon neutral. The electricity
consumption was monitored for one year long with three separated measurements for
each house: the power generation from the PV installation, energy consumption of
the heat pump, and other loads. The DSO, which was involved in this project, had no
detailed visibility on the effects of the heat electrification and increased penetration
of RES into the grid.



1.2. Problem statement and goals

Within this setting, our study addresses the following three research questions:

e What are the effects of installing RES and heat pumps in zero on the meter
houses on the distribution network power quality and grid congestion issues in
context of the REnnovates project?

e Is transfer learning a solution for the data-inefficiency of RL based methods
with high sample complexity in automated DR applications?

e Can grid violations be mitigated with the use of such sample-efficient RL based
controller in case of a single and multi-agent scenario?

To answer these questions we define four key goals:

e Quantify the effect of the implementation of RES and heat pumps in terms of
four grid violations: over- and undervoltages, line overloading and transformer
overloading. Therefore, we perform an extensive data analysis on the REnno-
vates data using the topology of the Linear project in Flanders, since the grid
topology of the REnnovates project was not available.

e We aim to create a fair and equitable playground for the RL based controller.
Three rule based reference controllers are developed: house level battery control,
house level PV curtailment and district level battery control. A comprehensive
study on the sizing and placement of the batteries is needed to make a simulation
with these controllers in the low-voltage grid environment.

e The third target is the design of the RL controller (which does not employ
transfer learning). The goal of the controller is to maximize the efficiency and
power quality of the low-voltage grid by using the flexibility of batteries and/or
curtailment of the PV installations. More specifically, we aim to: i) minimize
grid violations: over- and undervoltages, line overloading and transformer
overloading; and ii) minimize losses due to battery charging or discharging and
curtailment of the PV installations. Although it is out of the scope of this
work to perform a detailed economical analysis, the DSO has a strong financial
incentive to limit these grid issues and ensure security of supply towards its
customers. We designed a deep Q-learning (DQL) controller for both a single-
and multi-agent scenario, the latter incorporating three independently acting
agents.

e The main objective is the design of a sample-efficient RL based controller that
makes use of transfer learning. This is done for two cases: one scenario where
the grid topology is known and another where the topology is unavailable, so
training has to be performed on a different grid topology with different battery
sizing. The former case is studied for both the single- and multi-agent controller,
whereas the different grid topology case is researched for the single-agent case
only. We compare the performance of the proposed controller with the rule
based controllers and the baseline RL based controller which does not employ
transfer learning.



1. INTRODUCTION

1.3 Overview

This thesis is organized as follows: chapter 2 provides the reader with a literature
study on demand response control strategies with focus on reinforcement learning
methods and transfer learning. In chapter 3, an extensive data analysis is performed
in order to outline the problem statement in this thesis. Chapter 4 subsequently
presents the description and comparison of the rule-based controllers to create a
baseline for the DQL-controller. The utilized model of the environment is described as
well. Additionally, the sizing and placement of the batteries are explained. Chapter
5 discusses the design and performances of the DQL controller for the single- and
multi-agent case without employing transfer learning. In chapter 6, all of these
elements are brought together by focusing on the potential of RL controllers using
transfer learning in demand response applications. We compare the performance
of the proposed controller with the rule-based controllers from chapter 4 and the
normal baseline RL based controller from chapter 5. Finally, chapter 7 concludes the
thesis and highlights the possibilities for future research.



Chapter 2

Reinforcement learning based
controllers for demand response
applications

Large scale roll-out of distributed RES due to the global concern on climate change,
has led to a rapid transformation of the classical power system. As a result of
their inherent intermittency and instantaneous mismatch between generation and
consumption, implementation of RES can lead to reduced voltage quality and network
congestion. To cope with these issues, a broad range of applied control strategies
making use of available energy flexibility in distribution networks exists. In this
chapter we take a closer look at the position of reinforcement learning in this context.
The theory underlying this concept is presented and a specific algorithm, deep Q-
learning (DQL), utilised further in this work is described. Finally, the concepts of
transfer learning is reviewed.

2.1 Energy flexibility for grid optimization

2.1.1 Grid issues

In wake of the green energy revolution described in chapter 1, the share of distributed
generation in classical power systems is increasing rapidly [4]. Amongst others,
residential solar generation, combined heat and power (CHP) installations and wind
plants have been installed in large numbers, with a further increase expected in the
upcoming decades [13]. Electrification of non-electric energy vectors, residential heat
pumps and electric vehicles being the prime examples, adds further to the equation [4].
Inevitably, the role of the DSO has to be adjusted accordingly. The operation of the
network has changed from passive to active network management, with voltages and
power flows no longer set by a simple top-down centralized generation to decentralized
consumption architecture. Consumers are now prosumers and bi-directional power
flow is no longer an exception.



2. REINFORCEMENT LEARNING BASED CONTROLLERS FOR DEMAND RESPONSE
APPLICATIONS

Voltage disturbance Voltage level | Voltage quality index (limit)

Supply voltage variations

Flicker

Unbalance livided by the values of the posit Juer mponent for 1 week, should |

Harmonic voltage

Mains signalling voltages

Figure 2.1: Voltage quality disturbances with indicative limits following the EN
50160 standard. Remark that in low-voltage networks the voltage magnitude has to
be within +10% of the nominal level. [14]

The role of the DSO is to accommodate the distribution of electricity from the
high-voltage (HV) grid to the individual installations at medium- and low-voltage
(MV and LV) level. Summarized, the DSO is responsible for the safe operation,
development and maintenance of the distribution network [15]. The former includes
ensuring the network is operating within acceptable limits. A key concept to quantify
this behaviour is voltage quality, the different elements of which include [16]:

Voltage frequency has to be confined at 50 (or 60) Hz;

Voltage magnitude has to be within acceptable limits of the nominal level;
Sinusoidal shape has to be maintained as close as possible;

Operational reliability has to be ensured at all times (security of supply).

Any deviation from one of these characteristics is said to result in a reduced voltage
quality. In Europe, the standard EN 50160 [14] gives an overview of all voltage
quality disturbances with indicative limits. Figure 2.1 summarizes.

Returning to the issue of increasing distributed generation and electrification, a
multitude of studies [17, 18, 19] show that excessive local power generation - e.g.
residential PV production exceeding instantaneous load consumption - predominantly
effects voltage quality through pushing the voltage magnitude outside of the statutory
limits. Additionally, network congestion can arise. As will be shown in chapter 3, the
same issues are quantified with the data and topologies used throughout this work.
To alleviate these problems, a scala of voltage control techniques is available. The
next section highlights the different control possibilities and indicates the sources of
flexibility used towards this end in the rest of the thesis.
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2.1. Energy flexibility for grid optimization

2.1.2 Voltage control in distribution networks

To quantify the voltage magnitude issue described in the previous section, the
simplified representation of a radial distribution network in figure 2.2 is analyzed.
A strong grid (assume V) constant) is connected to a PV installation through a
distribution line with impedance Z = R + jX. Both load and PV exchange active
power (P) and reactive power (@) with the network.

Three-phase Vl V2
source D
/ﬂ_ -\."I | s load + Qfoad
N P load
. . e b
Voltage of Voltage of I :
grid side PV outlet I
- |P!3"(Q!2‘) %j» | : PV
|
|
|
|

r———-

PV inverter

Figure 2.2: Simplified equivalent circuit of a radial feeder connecting a voltage
source and grid-connected PV system over a line impedance. [17]

The voltage at the consumer side V5 can be approximated by [17]:

2
Vo =~ E + \/<‘/l> — (]Dload — PPV) R+ (Qload - QPV)X (21)

2 2
In general, the R/X ratio in a distribution network is large compared to that of
transmission systems [18]. Closer examination of equation 2.1 consequently tells us
that any significant active power injection will lead to a non-negligible increase of
the local voltage level V5. Vice versa, substantial load consumption would lead to a
decrease in voltage magnitude. To keep these voltage variations within acceptable
limits, a range of solutions have been proposed [17, 18]:

e On-load tap changers (OLTCs): a common method for voltage regulation
is to regulate the secondary voltage of the distribution system transformer.
It is a very effective voltage regulation method, but due to slow tap change
duration (3-10 minutes) not suitable for highly dynamic system regulation.

e Reactive power control devices: the approach above shows that any al-
teration in active power can be conversely countered by a change in reactive
power to limit voltage fluctuations. This is the main idea behind generator
power factor control (PFC) or static synchronous compensators (STATCOMs).
In this work we solely focus on active power voltage regulation techniques.

e Network asset upgrades: equation 2.1 shows that a smaller impedance can
mitigate voltage fluctuations. This network reinforcement method, through
upgrading of existing feeder configurations, is a straightforward but often
economically infeasible solution [18].
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¢ Demand side management (DSM): DSM refers to any initiative or technol-
ogy that encourage consumers to adjust their energy usage in a favorable way
[6]. Distinction is made between energy efficiency improvements and demand
response (DR). The latter focuses on providing incentives to consumers to
adjust their consumption at interesting times. Through DR existing energy
flexibility in the network can be employed to solve voltage issues. The next
section further elaborates this option.

2.1.3 Energy flexibility and demand response

Many definitions of energy flexibility exist. The view used throughout this work
envisions energy flexibility as a service, which allows DR based on the requirements
of the grid [6]. Important in this context is the availability of a supportive and
enabling regulatory framework. The EU legislation entails existing provisions -
particularly the Third Energy Package Electricity Directive [20] and the Energy
Efficiency Directive [21] - making demand response possible. This framework creates
the necessary obligations on member states, regulators, TSO and DSO to enable and
promote demand response, allowing the market to develop.

Energy systems with high potential for DR applications can be divided in four major
groups: heating ventilation and air conditioning (HVAC), smart appliances, electric
vehicles (EVs), and distributed generation with energy storage [4, 6]. In this thesis
the focus is on the latter. In the researched topology described in chapter 3, energy
flexibility is available under the form of battery energy storage and residential PV
curtailment. The exact implementation of both options in the reinforcement learning
setting is discussed in detail in chapter 5.

2.2 Demand response control strategies

2.2.1 Review of control possibilities for DR in smart grids

In the previous section, the flexibility of battery storage and PV curtailment have
been indicated as valid resources for distribution network voltage regulation and
congestion management. The main objective is to develop a control model capable
of determining an (approximate) optimal policy for the given control objective, in
this case keeping the grid within safe operating limits. Control theory is the branch
of engineering focusing on implementation and development of such models [6].

Two main types of control strategies can be distinguished: control of a single
system component (local control) or control of the entire energy system as a whole
(supervisory control) [6]. Local controllers ensure process stability and accurate
tracking of setpoints, whereas supervisory controllers regulate the local controllers
with an eye on smooth system operation. A further distinction can be made between
classical control, hard control, soft control, hybrid control and other control techniques
[22]. Figure 2.3 gives a non-exhaustive overview of the most common control
methodologies for DR based applications within these categories.

8
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Figure 2.3: Overview of control methods for demand response. [6]

Classical control entails some of the most common techniques, including on/off
and P/PI/PID approaches. The former show strength in their simplicity, but are
unable to control dynamic systems with time delays [22]. The latter tune a control
variable based on an error signal comprising a custom setpoint and sensory process
information, but only perform well when operating conditions do not differ from
tuning conditions too strongly [6].

Hard control architectures include gain-scheduling PID (improved stability in com-
parison with regular PID, but requires manual tuning); nonlinear control (effective
but complex mathematical design and identification of stable states); robust control
(good performance under change of parameters and time-varying dynamics, but
robustness can be difficult to obtain due to the variable nature of energy systems);
optimal control (optimization of an objective function, same issues as robust control)
and model predictive control (MPC, relying on a dynamic model of the process to
forecast the system’s future state allowing optimization of the current timeslot, while
keeping future timeslots in consideration) [6].

Soft control comprises, amongst others, neural network control and fuzzy logic control.
In the former, an artificial neural network (ANN) is trained to learn non-linear inverse
system dynamics, but large data training sets are required [23]. The latter varies
from digital control by working with analogue input signals varying between 0 an 1,
allowing elements of human thinking to be integrated in controller design [24].

Combinations of the previous architectures leads to intertwined models denoted as
hybrid control strategies. The main goal is to combine advantages of both soft- and
hard control. For more information the reader is referred to [6, 22].
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2.2.2 Reinforcement learning based controllers

Reinforcement learning is a machine learning (ML) approach where an agent learns
from direct interaction with its environment to achieve a predetermined goal, without
the need of exemplary supervision or complete models of that environment [1]. A
summary of the theoretical framework is given in section 2.3.

Reinforcement learning has been applied in the DR setting as a control strategy to a
wide range of energy systems, including HVAC, EVs, smart appliances and DG with
energy storage [4]. Vazquez-Canteli and Nagy give an extensive literature review
of algorithms and modelling techniques which implement reinforcement learning
for demand response in [4]. They found a steep increase in number of publications
involving RL after 2012. The reason for this increasing interest is multifold:

e To ensure future success, the economic savings generated by DR must outweigh
the dissatisfaction caused to consumers [4]. Through its capability of learning
through interaction without an extensive model of the environment, RL is
especially suited for integration of human feedback in control algorithms.

e Reinforcement learning methods often require large datasets to train, but
have the advantage of being able to learn offline from historically collected
experiences. The concept of transfer learning, training a controller on one
dataset to improve performance and accelerate learning in new environments,
shows interesting possibilities [25, 26]. Section 2.5 elaborates on this topic.

e A major advantage of RL over other algorithms is its self-adaptability. Set-
tings with non-stationary environments require active adaptation of the learning
agent, which is achieved through continuous agent-environment interaction.

e Finally, reinforcement learning is highly advantageous in complex environments
because of its model-free nature [1, 4]. We highlight the differences with a
model-based approached in the next section.

2.2.3 Model free vs. model based

Reinforcement learning methods can be both model-based or model-free. In the
former, the agent first captures the dynamics of the system explicitly by estimating
the transition probabilities of state-action pairs [1]. The RL problem is then reduced
to a planning problem: deciding on an optimal action sequence based on possible
future situations before having actually experienced them. In a model-free approach,
the controller neither learns nor possesses such model [6]. The agent learns solely on
a trial-and-error basis through direct interaction with its environment [1].

Model-free RL algorithms can be very computationally efficient, adjust to non-
stationary settings and offer control capabilities to environments for which regular
models are too complex [1, 4]. Disadvantages compared to model-based approaches
include the curse of dimensionality (see section 2.3) and the delayed reward problem.
These issues often translate to a large data-inefficiency, demanding unreasonable
amounts of training data [6, 26].

10
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2.2.4 Multi-agent reinforcement learning (M ARL)

Traditional RL techniques focus on a single agent interacting with its environment, e.g.
one controller adjusting the setpoint of a grid-connected storage unit. Many real-world
applications however require scaling to a multi-agent setting [4, 6]. Conventional
control techniques for these kinds of issues involve centralized planners making
supervisory decisions for all local control units [6]. With increasing number of agents
these methods can quickly become infeasible [4, 6]. MARL provides an interesting
alternative for these traditional algorithms.

The decentralized approach offered by MARL can remove the effect of communication
delays and eliminate a single point of failure. A number of additional challenges arise
however. In a DR context, for example, actions of the different agents injecting energy
in the distribution grid influence voltages seen by other agents, thus creating a non-
stationary environment. Without information on each others actions, calculations
can become both computationally and data inefficient [27].

2.3 Deep reinforcement learning

2.3.1 Theoretical framework for the RL problem
Markov decision process (MDP)

The reinforcement learning problem can be formulated mathematically in the form
of a so-called Markov decision process. Figure 2.4 indicates the key elements of the
framework. This entire section is based on the reference RL handbook by Sutton
and Barto [1]. We follow their notational conventions: capital letters are for random
variables, lower case letters for specific values of random variables.

j Agent ll
state reward action

s, | R, A
» Rr+| (

;s,H Environment Jd——

Figure 2.4: The agent-environment interaction in an MDP [1].

An agent and environment interact with each other at a sequence of discrete time
steps tg. After observing the state of the environment S; € S at time ¢, the agent
takes an action A; € A(s). As a response to this action, the environment returns
a reward Ry41 € R and transitions towards a new state Siy1. When the sets of all
possible states S, actions A and rewards R are finite, we speak of a finite MDP. In
this case, the dynamics of the MDP are fully captured by the dynamics function p:

p(s',r|s,a) = Pr(Sit1 =8, Rip1 =7|St = s, A = a) € [0,1]. (2.2)

11
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In words, this translates to the probability of the environment transitioning to state
s’ whilst returning a reward r, given action a was taken in the original state s. From
this dynamics function all information about the environment can be extracted.
In the literature, researchers often mention the state-transition probabilities, or
transition function, which follows directly from the dynamics function:

p(8/|8,(1) = Pr(St+1 = 3/|St = SaAt = a) = Zp(8/>r|57a) € [07 1}3 (23)
reR

which is simply the probability of transitioning from state s to s’ following action a.
When p depends solely on the previous state Sy and action A¢, but to no extent on
any earlier states and actions, the state is said to have the Markov property.

Goals, rewards and returns

The MDP framework gives a mathematical abstraction of learning through interaction
with an environment to reach a specific goal. This goal is formalized through the
use of a reward signal: R; € R. In general, the agent’s purpose is to maximize the
total cumulative reward received in the long-term. Section 5.1.5 gives an in-depth
description of the reward design for the RL problem presented in this work.

To quantify the concept of “cumulative reward” a new quantity is introduced: the
return Gy. In general, it is defined as any combination of the rewards received
following an action taken at time step t. To keep the return finite for continuing
tasks (i.e. non-episodic tasks) a discount factor v is introduced:

o
Gt = Riy1 +YRivo2 + Y?Ryyz +--- = Z’}/thJrkJrl = Rit1 + Gy (2.4)
k=0

v = 0 leads to a myopic agent only focusing on maximizing immediate reward,
whereas v = 1 represents a farsighted agent attaching equal importance to future
and immediate rewards.

Policies and value functions

A common thread uniting almost all reinforcement learning algorithms is their
computation of (action-)value functions. As the name suggests, these are estimates
for “how good” a certain state (or taking a specific action in a given state) is. Once
again, this concept is formalized in terms of the expected return:

vr(s) = Er [Ge|Sy = 5] = Zw(a|s) Zp(s',ﬂs,a) [r + yvﬂ(s')] (2.5)

a s',r

qr(s,a) = E; [Gy|S: = 5,4y = a] = Zp(s’,r|s,a) (7 +vg:(s',d)] . (2.6)

s'r

Here, m(s|a) represents the policy the agent is following; a mapping from states to
the probabilities of taken a certain action from those states. It is the goal of the

12
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RL algorithm to find the optimal policy .. The state-value function v,(s) of a
state s with respect to a policy m is defined as the expected return starting from s
whilst following 7. Similarly, the action-value function ¢, (s, a) is the expected return
starting from s, taking action a and thereafter following 7. Equations 2.5 and 2.6 are
called the Bellman equations for v, and ¢, respectively. Applied to the optimal policy
7, this leads to the Bellman optimality equations, which is particularly interesting
for the optimal action-value function:

q«(s,a) =E | Repq + 'ymae/txq*(StH, a)|S; =s,A; =al. (2.7)

Thus, once one knows ¢.(s, a) it is fundamental to find the optimal action given a
state s as argmaz,(q«(s,a)). It is for this reason that approximation of ¢.(s,a) or
v«(s) lies at the heart of almost all RL algorithms.

2.3.2 Solving the reinforcement learning problem

To find (or approximate) the optimal policy . for the RL problem, formulated as a
finite MDP, many approaches exist. When the dynamics of the system are completely
determined, i.e. the dynamics function p(s’,r|s,a) is known for all s € S,a € A,
the problem is reduced to a planning problem: deciding on an optimal action
sequence based on possible future situations before having actually experienced them.
Dynamic programming (DP) algorithms, such as policy iteration or value iteration,
can compute 7, in this way when a perfect model of the environment is provided.

Apart from their great computational expenses, the requirement to have perfect
knowledge of their environment makes these algorithms of limited utility. Luckily,
RL is also applicable when no perfect model is available. Two approaches exist:
model-based and model-free RL. We refer to section 2.2.3 for a brief comparison
of both methods. One of the most popular model-free RL algorithms is Q-learning
[4, 1]. Here, the expected return Q(s,a) after each transition s — s’ is updated
through:

Qit1(s,a) < Qi(s,a) +a [r(s, a) +ymax Q;(s’,a’) — Q;(s,a) |, (2.8)
—_—— —— a’ ——
updated current ~~ current
Q-value Q-value update Q-value
target

where « is the learning rate (&« = 0: no new information is learned; o = 1: all
previous information is overwritten). The update target is an approximation of
equation 2.7 in two ways: i) it samples the expected values (so E is simply dropped
and replaced by a single sample) and ii) the current estimate Q is used instead of g.

Major advantages of this algorithm are its simplicity, model-free and off-policy nature.
The latter means it can make the Q-values converge to the optimal values Q. (so
the target policy is an optimal policy 7,) independent of the policy being followed
during training (the behaviour policy, e.g. e-greedy, see section 5.2.2). This allows
learning from historical data without specific action selection [4].

13
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2.3.3 From Q-learning to deep-Q-learning
Artificial neural networks (ANN) as function estimators

Q-learning is a discrete algorithm, meaning states and actions are represented in
a tabular way. Many real-life problems however, such as the MDP faced in this
work, are continuous in nature. Additionally, these tabular methods suffer from the
curse of dimensionality: large state-action spaces greatly increase computational and
memory requirements. To overcome these issues, the simple Q-table can be replaced
by function estimators such as ANNs or other regression techniques [1, 4].

The interested reader is referred to [28] for a more in-depth review of ANNs. Sum-
marized, an ANN is a non-linear function approximator consisting of a network of
interconnected units called neurons [1]. The units in the input and output layers can
be connected through one or more invisible layers, in this case we speak of a deep
neural network. The ANN is trained on labeled input-output data, mostly by using
the backpropagation algorithm in combination with a variant of gradient descent.
For the purpose of this work, only a high-level understanding of these methods is
required. The ANN can replace a Q-table with its ability to generalize from previous
experiences, even for states which have never been encountered.

DQL with experience replay and periodic target updates

For the implementation of our DQL algorithm, we follow the approach proposed by
Mnih et al. [29] published in Nature in 2015. The same iterative update rule as in
regular Q-learning (equation 2.8) is used, but since the back-propagating optimizer
already has a learning rate, the step-size parameter « is set to 1. The first key
difference is the approximation of the optimal-action value function ¢.(s,a) by a
DQN with parameters (weights and biases) 6:

q(s,a,0) ~ q«(s,a). (2.9)

Unfortunately, the usage of non-linear estimators can lead to unstable or divergent
RL behaviour. Two additional concepts are introduced to address these issues:

e Experience replay: the agent’s experience e; = (s¢,a¢, 7, S¢+1) is stored
in the replay memory Dy = (e1,--- ,e¢) at each time step. Subsequently, a
uniformly random minibatch is sampled from D; to perform a Q-learning
update on the DQN (the ANN is “fitted” to the samples in the minibatch).
This causes experiences to be used (potentially) in many network updates,
enhancing data efficiency. Additionally, the correlation between consecutive
samples is broken and changes in the data are smoothed out.

e Periodic target updates: to further improve stability, a separate ANN
(j(s,a,é) is used to generate the targets for the Q-learning updates. This
second DQN is only synchronised with the main model every C steps, avoiding
the need to track a constantly changing target by adding a delay between the
time @) is updated and the time this update affects the Q-learning targets,
effectively reducing oscillations and enhancing convergence.
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2.3. Deep reinforcement learning

Algorithm 1: Deep Q-learning with experience replay [29].

input : Replay memory size N, minibatch size S, target network update
frequency C, exploration probability € € [0, 1]

Initialize replay memory D with size NV;

Initialize action-value function ¢ with random weights 0;

Initialize target action-value function ¢ with weights 6 = 0;

for episode=1,M do

Initialize state s; by resetting the environment;

for t=1,T do

With probability e select random action ay;

otherwise select greedy action a; = argmaz,q(s¢,a,0));

Pass action a; to environment and observe state s;11 and reward ry41;
Store experience e; = (¢, ay, 441, S¢+1) in replay memory D;
Sample random minibatch (sj, a;,rj41,j41) with size S from D;
Set update targets (for each sample in minibatch):

yi = {rj, if episode terminates at step j+1.
;=

rj +ymaxy §(sj4+1,d, 0), otherwise.

Perform a gradient descent step on (y; — q(s;, aj,ﬂ))2 w.r.t. 0;
Reset ¢ = q every C steps;
end

end

The general implementation of these methods is illustrated in algorithm 1. Usage of
the e-greedy policy and its importance in the exploration-exploitation dilemma is
explained in a more practical context in section 5.2.2.

2.3.4 Multi-agent deep reinforcement learning

The general context of using MARL within decentralized DR applications was briefly
discussed in section 2.2.4. For the practical implementation of algorithms utilizing
this approach, multiple options exist. Tousi et al. [27] give an overview and compare
the performance of four MARL control strategies suitable for voltage control in power
systems. Other methods exist (see [4]), but are out of the scope of this work.

First, a collaborative MDP learner is considered, where the different agents are
represented as one single, large learning agent. Each of the individual actions are
combined and translated into a single action set. This eliminates the need for
communication between the agents, but each of them needs to be able to acquire
information on the states, actions and reward of all other agents. For problems with
many agents this approach is therefore often infeasible.
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A second possibility is the usage of completely independent learning agents (IL).
The latter have no information on the actions, states or rewards of the other agents
and individually solve their MDP. Each agent thus has its own Q-table (or DQN)
which it updates according to a given update-rule. When calculating the Q-values,
the state of the environment and reward function can be considered both globally
or locally. This allows great computational and memory savings as the costs scale
linearly with number of agents. Additionally, the adaptation of a single-agent RL
algorithm towards an IL-MARL method is straightforward since the single-agent
model can simply be duplicated for each agent. Because of these advantages we opt
to work with this approach for the MARL setting presented in chapter 5.

The final two possibilities presented in [27] are coordinated RL and RL with dis-
tributed value functions. In the former, an agent coordinates its actions with a
number of other agents, but acts independently from the remainder. The global
Q-function is decomposed into a linear combination of localized Q-functions. This
completely distributed method allows large storage and computational savings. The
second method allows cooperation between neighboring, but also non-neighboring
agents. Additionally, information about each agents local Q-function can be shared.

2.4 RL for low-voltage grid optimization: a literature
review

Vazquez and Nagy give an overview of algorithms and modeling techniques for RL
in DR applications in their work [4]. It is clear that the majority of the reviewed
papers covering control strategies for distributed generation and storage units have
an economical motivation. The most common objective in these papers is the
minimization of the energy cost for the consumer [30, 31, 32, 33, 34, 35]. Raju et
al. [36] present a cooperative multi-agent scenario with aim of minimizing the cost
of power generation for the whole community. Moreover, Sekizaki et al. [37] look
into user comfort combined with energy cost. Mwubir et al. [38] propose a strategy
to maximize self-consumption of local photovoltaics production in a microgrid. To
summarize, previous research typically investigated a consumer viewpoint objective
function. Studies on the maximization of efficiency and power quality in low voltage
grids, thus from the viewpoint of the DSO, are lacking in the main literature.

Furthermore, action spaces covering battery actions are mostly limited in size.
Mwubir et al. [38] propose a method with three possible actions: charging the
battery at a power equal to the instantaneous PV generation, discharging the battery,
and remaining idle. Sekizaki et al. [37] only uses two battery actions but combine
them with another source of flexibility, a water heater, which is regulated through an
on/off control mechanism. Li et al. [33] research the case where an action is taken
by the consumer: sell or buy electricity from the grid. Most of the papers reviewed
in the overview study [4] do not implement large action spaces for battery actions
combined with curtailment actions, as is the case in this study.
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Figure 2.5: As a part of their reward function, Navidi et al. use a quadratic relation
to express the voltage quality. [39]

Due to the predominantly economic targets in the papers reviewed in [4], various
reward functions are also based on costs. Jiang et al. and Qiu et al. [31, 40] combine
a cost component based on the battery losses with a reliability component: the
agent is punished if energy from the battery is needed but not available or the SoC
is too low. Furthermore, Navidi et al. [39] research a reward function with a cost
component and a power quality component to punish the agent when voltages are
outside the selected boundaries of 0.995 p.u. and 1.045 p.u., as can be seen in figure
2.5. We used the same idea of a quadratic reward function for violations but with
different boundaries to improve the performance.

2.5 Transfer learning

2.5.1 General considerations

Greater part of machine learning algorithms concentrate on isolated tasks with a
specific feature space X' and feature probability distribution P(X) (see further) [25].
A feature can be defined as a measurable property or characteristic of the studied
phenomenon. In case of different distributions, models need to be redesigned using
new training data. This is very expensive for real life applications and sometimes it
is even impossible to collect new training data [41]. According to Torrey et al. [25]
transfer learning is trying to change this by developing methods to transfer knowledge
learned in one or more tasks and use the obtained information to improve learning in
related tasks. By using previously collected data or models in this way, new models
can be bootstrapped to enhance their initial and asymptotic performance.
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2.5.2 A taxonomy of transfer learning

Two concepts form the basis of transfer learning: the domain D and task 7 [41, 26]:

e A domain D consists of two components: a feature space X and a marginal
probability distribution P(X) with X = {z1,z9,...,z,} € X. Here, z; is a
particular feature vector corresponding to some input and X a particular
learning sample. In a demand side management context, the probability of
observing a specific feature vector is quantified by the marginal distribution
P(X) and depends for example on the occupant behaviour.

e Given a domain D = {X, P(X)}, a task T consists of two components: a label
space Y and a conditional probability distribution P(Y'|X), which is learned
from the training data in the form of pairs {z;,v;}, where z; € X and y; € V.
The task 7T is then given by {), P(Y|X)}.

Combining these elements, Pan et al. define transfer learning as follows [41]:

“Given a source domain Dg and learning task 7s, a target domain Dy
and learning task 77, transfer learning aims to help improve the learning
of the target predictive function f7(-) in D7 using the knowledge in Dg
and Ts, where Dg # D, or Ts # T7.”

Depending on the relation between source and target domain tasks, transfer learning
can be divided into three subsets: inductive, transductive, and unsupervised transfer
learning. Table 2.1 summarizes.

Table 2.1: Relationship between traditional machine learning and various transfer
learning settings [41].

Learning setting Source and target domain Source and target task

Traditional ML The same The same
Inductive TL Different but related/the same Different but related
Transductive TL Different but related The same

Unsupervised TL ~ Different but related/the same Different but related

In unsupervised learning no labeled data is available in both source and target domain.
This approach is beyond the scope of this thesis. In case of inductive transfer learning
the conditional probability distribution varies between the source and target task
(i.e. P(Ys|Xs) # P(Y:| X)), which implies that transfer occurs between systems
with different dynamics. When transfer takes place between identical systems which
operate in different regions of the state space (e.g. due to different household
behavioural patterns), we speak of transductive transfer learning. In this case, the
marginal probability distribution differs between the source and target domain:
P(X,) # P(Xy) [26].
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Kazmi et al. [26] presents two methods to achieve transfer with neural networks:

e Feature sharing: feature sharing involves direct usage of the source training
data while learning the target model to improve the learning performance.

e Parameter sharing: this method is the form of transfer learning where model
parameters, such as the weights of a neural network, are used to initialize the
target model. Usually, the first model is trained with a large amount of source
data. After initialization the weights are fine-tuned with observed data from
the target domain, while using a much smaller learning rate to retain the
representations from the first model.

In this work we will study the effect of parameter sharing on the performance of
the DQL controller developed in chapter 5. For our specific case, this translates
into training the DQL agents in one domain and subsequently transferring their
ANNS to the control task at hand by initializing the new agents with these networks.
This method, typically used for reinforcement learning, is called the starting-point
method [25]. In TL terms, the initial solution of the target task is set based on
information from a source task. Compared to the typical randomized initialization
in RL algorithms, the target task solution under starting-point transfer begins much
closer to a good solution [25].

To assess the used transfer learning methods, three measures can be studied according
to Torrey et al. [25]. Firstly, the initial performance after transfer can be compared
to the initial performance exhibited by a randomly initialized agent. A second
parameter is the learning rate of the agent with transferred knowledge versus the
oblivious agent. Finally, the asymptotic performances after reaching convergence can
be equated. When the transfer learning process is successful, often all three of these
indicators show improvement over the randomly initialized case, as conceptualized
in figure 2.6.
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Figure 2.6: Performance improvements through transfer learning [25].
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2.6 Conclusion

In this chapter a comprehensive literature study on demand response control strategies
with focus on reinforcement learning methods and transfer learning was given.
Furthermore, we substantiated the theoretical framework utilized throughout the rest
of this work. First, the emerging grid issues due to increasing RES generation and
growing electrification of demand were highlighted. It was shown that activating the
flexibility of energy sources in a low-voltage system could mitigate these problems
through smart control techniques.

One of those techniques, RL, is particularly suitable for this purpose. Some of its
key advantages include the ease with which human feedback can be integrated in
the algorithms (a crucial aspect for the future growth and scalability of demand
response), their self-adaptability, model-free nature, and the capability to train offline
on historical data. These characteristics explain the observed increase in popularity
of RL based control methods for demand response in energy systems.

Subsequently, the concept of RL was formalized through a mathematical framework
based on the concept of a Markov decision process. A specific algorithm, deep Q-
learning, for solving such problem was elaborated. The choice for DQL is multifold:
the method has shown great recent breakthroughs in various areas of RL, has
been extensively studied and is very well documented. Because of these favourable
advantages this Q-learning approach is used throughout the remainder of the thesis.

A major disadvantage of RL, however, is the known data-inefficiency linked to the
training process of the controller. The majority of machine learning algorithm
are designed for solving a specific problem. Transfer learning is used to transfer
information from one problem to solve a different, but related problem to accelerate
the learning process of algorithms with similar tasks. In addition, the need to collect
new training data can be circumvented when this is difficult or impossible to do. In
this thesis we will study the effect of parameter sharing on the performance of the
designed DQL controller in a different environment by initializing the neural network
with the weights of an earlier trained network.
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Chapter 3

Data analysis: problem
formulation

Ezxtensive integration of RES and increasing electrification of traditionally non-
electrified equipment can jeopardize power grid quality. To quantify these effects, data
of the REnnovates project combined with a grid topology from the Linear project is
analyzed and discussed. First, a brief overview of the data and applied research tools
1s given. Next, different types of grid violations - overvoltages, undervoltages, and
equipment congestion - introduced by solar panels and heat pumps in the distribution
network are quantified. To conclude, some interesting dynamics observed when
analyzing the specific REnnovates-Linear setup are discussed.

3.1 Data and grid topology

3.1.1 REnnovates data and Linear grid-topology

During the REnnovates project, the electricity consumption of 249 households
was monitored on a quarter-hourly basis over the period of one year. The power
consumption of the installed heat pumps and other loads was measured separately.
Additionally, the PV generation for each household was monitored. The obtained data
for each “house ID” thus consists of three components: PV production, electricity
consumption from the heat pump, and other loads. A total of 141 of such house
IDs were available, of which 82 proved to be suitable for further analysis due to the
presence of corrupted measurements or missing data. It was found that this amount
of data was sufficient for analyzing trends on low voltage grids (see section 3.1.2).

The actual consumer data originates from the REnnovates project, but no grid
topology data was available here. Hence, the grid topologies used are taken from the
Linear project [42]. In this thesis we opted for the physical setup where the largest
amount of grid problems were observed in practice. This grid includes 2 large feeders
with 29 households, each connected by a separate house feeder to the grid.
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Figure 3.1: Practical coupling of the REnnovates data profiles and Linear grid
topology. At the beginning of each simulated year, this update process is repeated
to create a randomized simulation environment.

At the beginning of each power flow simulation, 29 house IDs are randomly sampled
from the 82 available datasets and allocated to the load and PV nodes representing
the different households. Figure 3.1 clarifies while highlighting the REnnovates data
and Linear grid topology contributions. In this way, a total of 82!/(82—29)! = 1.11e53
unique house ID combinations are possible, each of which generating a different
aggregate network behaviour. The next section further elaborates on this topic.

3.1.2 House ID analysis

To gain a general idea about the magnitude of the different data components in each
house ID, a data-analysis was performed. Table 3.1 on the next page summarizes
the results, showing average energy and power consumption or generation for load,
PV and heat pump.

An additional parameter to take into consideration is the correlation between the
data collected for the different households. That is, if the mutual relation between
load consumption, heat pump consumption and PV generation is too large, a random
sampling of different IDs (see figure 3.1) would not generate enough variance in the
separate simulations for adequately training the RL controller. Figure 3.2 shows
that a low correlation is present between the load and heat pump generation of the
different data IDs. Logically, PV generation shows a much higher correlation. For
the net power balance (Ppy — Ploqq — Php) the mean Pearson correlation coefficient
is calculated to be 0.608: a moderate linear relationship. The observations presented
here in combination with multiple experimental runs, see section 3.3, show that
enough variance is present between the different data IDs to generate distinctive
network behaviour when randomizing the IDs.
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3.1. Data and grid topology

Table 3.1: Analysis of the 82 used REnnovates house IDs. Total energy consumption
or generation calculated for a time frame of one year.
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Figure 3.2: Correlation between the different REnnovates data IDs using the
Pearson correlation coefficient (1: perfect positive linear correlation, 0: no linear
correlation). The numbering on the axes represents an indexing corresponding to
each of the 82 unique data IDs.
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3. DATA ANALYSIS: PROBLEM FORMULATION

3.2 Power flow simulations with pandapower

In order to simulate grid behaviour under the control actions taken by the different
kinds of controllers, a power flow software to run simulations was needed. For the
design of the ANN at the heart of the DQL controller, we opted to use the well
documented python package Keras [43] with Google’s Tensorflow [44] backend. A
logical extension is to work with a power flow solver which too works within the
python programming environment. To this end, the low-voltage distribution network
was modeled in pandapower [45] - a python package which builds on the data analysis
library pandas [46] and the power system analysis toolbox PYPOWER [47] - aimed
at automation of analysis and optimization in power systems. The reader is referred
to appendix A.1 for the justification of the program selection and a brief overview of
the underlying power flow solver.

3.3 Grid violations

To quantify the voltage and network congestion problems at the basis of this thesis,
4 different types of grid violations are studied: overvoltages (U > 1.1 pu, Upgse = 400
V), undervoltages (U < 0.9 pu), line overloading (Ijine > liine,maz), and transformer
overloading (Lirafo > Itrafo,maz). To obtain statistically significant results, 100 simu-
lations of a year with randomized house ID distributions were executed. Throughout
the entire text we will refer to the findings presented here as the “no-controllable
resources scenario”, which forms the baseline for all considered controllers.

Figure 3.3 shows the results for the total number of violations and violated weeks (i.e.
a week where at least one of the aforementioned violations occurs). On average, the
simulations contained approximately 340 violated quarters. Translated into violated
weeks this amounts to a mean of 17.1 weeks, with the minimum and maximum values
ranging between 13 and 19 violated weeks per year, not considering any outliers. An
analysis of the most extreme violations observed in the simulations is given in figure
3.4. The following observations can be made:

e It can be seen from boxplot A that on average the yearly maximum voltage
per simulation amounts to 1.118 p.u. or approximately 447 V, which exceeds
the allowable upper voltage limit by £7 V. All simulations have a maximum
overvoltage deviation above the acceptable operating limit, indicating the
presence of strong overvoltage issues in the studied REnnovates-Linear setup.

e Similarly, boxplot B shows the minimum voltage per year observed in each
of the 100 simulations. In contrast to the overvoltage issues identified in
boxplot A, not a single simulation exhibits an undervoltage deviation above
the allowable limit. One of the reasons for this can be found in the low heat
pump consumption of the REnnovates households.

e Finally, box plot C and D show the maximum line and transformer loading. It
is readily verified that these parameters remain below the rated value in each
of the randomized runs.
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3.3. Grid violations
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Figure 3.3: Number of yearly violations (A) and violated weeks (B) in the no-
controllable resource scenario for 100 randomized house ID distributions.
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Figure 3.4: Voltage and equipment loading limits in the no-controllable resource
scenario for 100 randomized house ID distributions.
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3. DATA ANALYSIS: PROBLEM FORMULATION

From the aforementioned it is clear that the major issues identified in the REnnovates-
Linear data-topology combination are overvoltage problems. To clearly visualize the
seasonal trend linked to these network violations, a plot of the temporal grid voltage
is given in figure 3.5. It is clear - and according to common sense - that overvoltages
take place around noon in the summer months at moments of high solar generation.
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Figure 3.5: Heatmap showing the voltage at the end of the grid feeder - where the
voltage variations are the most pronounced - averaged over the 100 no-controllable
resources scenario simulations. The overvoltage issues (U > 1.1 p.u.) during the
summer at noon are readily verified.

The lower limit of the colorbar in figure 3.5 confirms the findings presented on the
previous page: no undervoltages can be observed during any of the simulated years.
One of the reasons for this can be found in the low heat pump consumption in the
REnnovates data IDs. In table 3.1 a mean yearly heat pump consumption of +2450
kWh was found. As a comparison: the average Dutch household yearly consumes
23260 kWh of natural gas [15]. A heat pump with a COP of 3 could fill in this
heating demand with an electricity consumption of 23260/3=47750 kWh; a factor
three more than the heat pump consumption in the data.

The explanation for this is found in the thorough insulation of the REnnovates houses,
effectively reducing the primary heating demand which translates to a lower power
consumption. Therefore, we emphasize that the used data is not representative
for all “zero-on-the-meter houses”, since this concept only takes the net energy
consumption into account and not the instantaneous power balance. Moderately
insulated houses could induce undervoltages as a result of their larger heat pump
consumption patterns.
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3.4. Generalizing the problem

In combination with the observations made in section 3.1.2 about the limited cor-
relation in the data collected for the different households, the analysis performed
in this section confirms the presence of sufficient variance between the simulations,
as indicated by the statistical spread in the violations in figures 3.3 and 3.4 with
randomized data ID assignments.

3.4 Generalizing the problem

The REnnovates-Linear setup discussed in this chapter will form the basis for the
analysis made throughout the rest of this work. However, it does not represent
the most general problem formulation from point of view of the RL controller: no
undervoltages or equipment overloading were observed. To analyse the applicability
in this extended scenario, a second, modified grid was created. The topology is similar
to the Linear grid (see section 3.1), but the number of houses on the feeder was
increased to 40, a smaller transformer was placed and the heat pump consumption
was increased. The exact same analysis procedure as for the REnnovates-Linear
setup is followed. In the analysis a noticeable amount of undervoltages was observed.

Because of the extensive modifications made to this grid in comparison with the
original setup, the real-life applicability of this scenario is reduced - especially from
point of view of the projects from which this work originates (aiming for “zero-on-
the-meter” houses). When aiming for residential decarbonisation through thorough
insulation of houses, significant installation of solar PV, and possibly the addition
of energy flexibility through battery energy systems, our analysis has shown that
overvoltage issues are the predominant factor putting strain on the DSO’s operations.
It is for this reason that we do not further consider the results of this additional
analysis in this work.

3.5 Conclusion

The data-analysis presented in this chapter exposed the low voltage distribution
network issues due to the residential solar panels: a considerable amount of overvolt-
ages in the summer. The need for a control strategy to alleviate these problems is
clear. Moreover, undervoltages were not observed in the data analysis due to the
thorough insulation of the houses. Therefore, we conclude and stress that enhancing
residential housing insulation is a priority and is a valid solution for solving grid
issues, in addition to more active control strategies.

Despite the fact that it represents a fictitious scenario - i.e. data from two different
projects are combined - the obtained results are of great interest since the matching
of these projects could well represent a real-life scenario. Moreover, the highlighted
voltage issues were observed in practice and are one of the main motivations underlying
this thesis. Finally, it can be noted that many RL researches lack the availability
of real-life data. Often, custom datasets with completely fictitious information are
employed. Therefore, the usage of real-life data is a key benefit in this work.
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Chapter 4

Rule-based controllers: creating
a baseline

To create a fair and equitable playground, the RL based controller’s performance
1s benchmarked with three reference control strategies: house level battery control,
house level PV curtailment, and district level battery control. In this chapter we first
describe the used distribution grid model, including the battery and curtailment model
necessary to simulate the impact of the controllers on the grid. Then we describe
the functioning of the baseline controllers, argue the choice for battery sizing and
placement, and compare the performance to the no-controllable resource scenario.

4.1 Modeling the distribution grid

4.1.1 Network model

We consider the distribution grid described in chapter 3. This element based network
is modeled in pandapower as a static, balanced power system. The reader is referred
to the pandapower documentation [45] for more information about the underlying
numerical solver (based on the Newton-Raphson method) and the available electric
components in the pandapower library.

Both the rule-based and DQL controllers have the possibility to control two types of
electric components: batteries and PV units (curtailment). A PV unit is modeled as
a generator with negative active power following the passive sign convention. The
storage units are modeled as either loads or generators depending on the charging or
discharging state. Following the same convention, the active power is positive for
charging and negative for discharging:

Ppy <0 P, <0 charging
Powa >0 and P, >0 if discharging. (4.1)
Py, >0 P,=0 idle
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4. RULE-BASED CONTROLLERS: CREATING A BASELINE

4.1.2 Battery model

At time of writing it is not yet possible to perform time dependent power flow
simulations in pandapower. That is, only instantaneous power balances and resulting
network parameters are calculated. As a consequence, the storage unit’s state of
charge is not updated during any power flow calculation. Therefore, we implemented
a simplified battery model as a supplementary component in the simulation code.
The charging and discharging of the battery is assumed to be a linear process. Self-
discharge or aging symptoms are neglected. The only occurring losses are due to the
charging and discharging process in the batteries and converter.

The following constraints are applied to every battery in the network:

E
S0Ck min < S0Ck < S0Ckmaz  With  SoCj, = ——2F (4.2)
Eb,kﬂnax
Pb,k,min < Pb,k < Pb,k,maac with Pb,k,min = *Pb,k,ma:v (43)

with Ejp ) the momentary battery energy content, Ej ., the maximum battery
energy content, P, the charging/discharging power and Py min and Py j maes the
minimum and maximum power to charge or respectively discharge the k-th battery.
Additionally, all batteries placed in the same network are assumed to be identical:

SOCk,min = SOlen (44) Pb,k:,ma:v = Pb,maac (46)
Eb,k,ma:v = Eb,maa: (45) Pb,k,min = Pb,min (47)

The energy content of each battery at the next quarter hour Eg;gl is calculated
taking into account the current energy content Eg,k, the battery charging efficiency
Mb,charge, Dattery discharging efficiency ny ¢ischarge and converter efficiency .. It is
assumed that ny charge = Mb,discharge = Mb,c/d- Combining these parameters leads
to the overall efficiency Nenarge = Nc * Mb,c/d = Ndischarge- Additionally, the battery
delivers a constant power P, during each time step At = 1/4 h:

1
Ef} = Ej) + ABy (4.8)
AEbvk = Pbe At TNcharge charging
AEbuk = Pb,k At - (1/77discharge) if diSCharging. (49)
AEyr =0 idle

Finally, the energy losses Ej ;.55 are computed because of their importance in the
reward function for the MDP (see section 5.1.5):

Afgb,loss,k = Pb,k At - (1 - ncharge) Charging
AEBpossk = Py - At - (1 — 1/Ngischarge) if discharging (4.10)
A-Eib,loss,k =0 idle
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4.1.3 Curtailment model

As a result of the simple PV unit modeling described in section 4.1.1 (generators
directly connected to the grid), the PV inverter is not included in the grid model and
thus assumed to be ideal. The latter is justified because the used PV data is measured
as the output power of the inverter. Curtailment through adjustment of the inverter
power is implemented by overwriting the original output power Ppy pc,; before
curtailment of the j-th pv unit with the output power Ppy ac ; after curtailment:

Ppv,ac,j = (1 - ;) - Ppv,pc,j, (4.11)

with 3; € [0, 1] the fraction of the power output of PV inverter j after curtailment as
compared to before curtailment (5 = 0: no curtailment, 5 = 1: full inverter clipping).
Finally, the losses used in the reward function (see section 5.1.5) are calculated as
follows:

AEpy,0ss = Bj - Ppy,pc,j - At (4.12)

4.2 Design of the rule-based controllers

4.2.1 General considerations

One of the critiques for reinforcement learning based controllers, extending to Al in
general, is the complexity of the utilised models. Control engineers should not opt
for these kinds of methods simply for the sake of implementing a “popular” control
strategy. To create a fair baseline for our RL controller within this spirit, we develop
three types of reference controllers: district level battery control, house level battery
control, and house level PV curtailment. The naming of each controller refers to the
source of flexibility used in their respective control strategies and at what “level” in
the grid they operate:

¢ District level battery control: regulates the charge or discharge power of
a single, large grid battery connected to the beginning or end of a feeder.

e House level battery control: with this decentralized approach each house
in the network - 29 in total for the REnnovates-Linear setup - manages its own
(smaller) battery operations. PV curtailment is not possible.

e House level PV curtailment: combination of a centralised-decentralised
control system with the capability to clip the solar PV generation of each of the
29 houses. We do not consider the usage of batteries in this control strategy.

In each of the models considered throughout this work, data communications are
possible between three entities: a grid monitoring system (checking the network for
violations; most likely operated by the DSO in practice), a centralized controller and
one or more decentralized controllers. Figure 4.1 gives a qualitative overview. Which
of these entities are effectively used and the type of calculations they perform varies
depending on the considered control strategy. This will be further elaborated when
discussing the working principle of the individual controllers.
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controller(s)

Figure 4.1: General overview of the types of grid entities possibly involved in the
different control strategies considered throughout this work.

4.2.2 Operating principle

The target of the rule-based controllers is to avoid voltage and network congestion
issues. In this section we further elaborate the algorithms utilised in these reference
control strategies. This method later allows benchmarking the RL controller’s
performance with respect to both the no-controllable resource scenario and the
baseline performance presented in this chapter.

District level battery control

In this work we consider both single- and multi-agent control strategies. The former
is implemented by placing a battery at the district level on a strategical position
in the network. Both the choices for battery sizing and optimal battery placement
are discussed briefly in section 4.3. This central storage unit offers flexibility to the
network operator in the form of storing or releasing energy to mediate voltage issues
and managing grid congestion.

Figure 4.2 gives a schematic overview of the algorithm representing the rule-based
battery controller. First, a centralized controller fetches the PV and load forecasts for
the upcoming quarter hour. It runs a power flow calculation and checks the network
for voltage violations (i.e. when no storage would be used). Next, the aggregate net
power balance is determined by summing over all local PV generation (-) and load
consumption (+). Based on the combination of expected network violations and this
aggregate power balance the controller decides on a control action.
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4.2. Design of the rule-based controllers

Summarized, the applied rule-set aims at charging the battery when an overvoltage
is expected, discharges when an undervoltage is expected, and keeping the state-
of-charge (SOC) at 50% in between these scenarios. A backup-controller ensures
that the applied battery power is kept within the capabilities of the installed battery
(Pb,min <P < Pb,max and SOCip, < SOC < SOCmam)

Referring to the principles highlighted in figure 4.1, this district level battery is
operated by a centralized controller, which fetches the aggregate PV-load forecast
and locally runs a power flow solver on a model of the network. In a more extended
version of this controller, the instantaneous power injection and consumption of the
connected households could be communicated from the grid monitoring system to
the centralized battery controller, allowing for a finer regulation.

Start

Fetch data g+1
PV and load forecast
all houses

'

Run powerflow

PV < Load

Cwervoltage
wo/ control

Di.udmrpeﬂ
Load - PV

End

Figure 4.2: Rule-based logic for the baseline battery controller. Battery charges at
an overvoltage, discharges at an undervoltage, and tries to keep the SoC at 50% in
between.
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House level battery control

As explained in chapter 2, sources of flexibility in distribution networks are often
present in a decentralized, multi-agent setting. Through DR-agreements this dis-
tributed flexibility can be enabled to alleviate grid issues. In this work we assume
all households connected to the grid have PV installations, leading to 100% solar
proliferation. Additionally, depending on the type of control strategy considered,
a designated amount of households is assigned a controllable battery storage unit.
Furthermore, it is assumed that the DSO or aggregator (who has a contract with
the DSO) has full control over these installations via bilateral DR-agreements.

For the rule based controller, the same principle is applied as for the district level
battery (figure 4.2). The main difference is the switch from an aggregate to localized
power balance: a central controller still checks the network for violations in the
no-controllable resource scenario, but now sends this information to each distributed
battery control unit. There, each controller checks the PV-load forecast (decentralized
control) for its own household and determines the charging power based on this value:
Py = (Ppv — Piogd — Prp)

local”

Start

Fetch data q+1
PV and load forceast
all houses

,—) Run powerflow

Figure 4.3: Rule-based logic for the baseline PV curtailment controller. The
different PV installations are iteratively curtailed starting at the end of the feeder.
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4.3. Battery sizing and placement

House level PV curtailment

Where the house-level battery controller utilizes the flexibility of the local storage
installations, another option lies in curtailment of the solar generation. This approach
has some obvious downsides: useful energy is lost and only overvoltages can be
prevented. It is for this reason that PV curtailment should be kept as a last resort,
only for situations in which grid security would be compromised. A similar approach
to load-shedding (to resolve undervoltages) is not researched, as this would jeopardize
security of supply towards consumers.

The principle of the rule-based PV curtailment controller is illustrated in figure 4.3.
A central controller is now needed for both the violation check on the network and
supervisory control of the local PV units. This is in contrast to the house level
battery control where a power flow calculation is performed based on forecasts and
send to the decentralized controllers which actually control the batteries. An iterative
approach in the centralized curtailment control on house level is employed: when an
overvoltage is predicted, the last uncurtailed solar installation on the feeder (which
has the greatest impact on the voltage magnitude, see section 4.3) is shut down. If
an overvoltage remains, this method is repeated until all violations are eliminated.

4.3 Battery sizing and placement

An important parameter when considering district or house level battery control is
the battery sizing. Two components are considered: maximum battery power P ;44
and maximum energy content Ej ,,,,. First, an analysis was performed based on
overvoltages - as these are the predominant issues in the network - to find upper
limit values for both parameters:

e Battery power: the worst-case scenario is considered to find an upper bound
for Py mqq- To this end, all PV units are set to deliver maximum power (the
houses are equipped with a 6 kWp or 8 kWp installation, but are found to
never deliver more than 7 kW, see table 3.1). Subsequently, the battery power
is iteratively increased and the maximum voltage in the network is observed.
Figure 4.4 summarizes the results for both the district and house battery case.
It is found that a battery power of +£60 kW on district level, and batteries at
house level with a maximum power of +2.5 kW suffice to avoid overvoltages in
this worst-case scenario.

e Battery capacity: to place an upper-bound on the battery’s rated energy
content, we track the maximum number of consecutive quarter hours with an
overvoltage in the no-controllable resource scenario. From the data-analysis
performed in chapter 3 a value of 16 is found. Assuming the battery has to
charge at maximum power (see explanation above) during these quarters to
prevent overvoltages, following maximum battery capacities are retrieved:

Epmaz.district = 16 ¢ -0.25 h/q - 60 kw = 240 kWh (4.13)
Epmazhouse = 16 q -0.25 h/q - 2.5 kw = 10 kWh (4.14)
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Section 4.4 gives a more in-depth review of the influence of different battery sizes on
the controller’s performance. For the district level storage unit, an additional variable
must be taken into consideration: battery placement. In figure 4.5 the battery power
analysis described above is repeated, but with the storage unit placed at different
positions in the network. From this analysis it is clear that placement towards the
end of the feeder is optimal, which is in correspondence with equation 2.1. That is,
energy generated at the end of the feeder sees the highest resistance (R = pl/A with
[ big) and thus causes the largest voltage drop.
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— | — |
5 114 ! 5 114 ;
o i = |
T 112 i vm_pu=1.1 _ T 112 i vm_pu =11
i i | p_kw =59.166 3 U p_kw =2.474
p= | = i
£ 110 - —-- £ 110 -
=18} 1 =18} 1
2 | 2 i
E 108 ; E 108 i
7] 1 L |
[=ts] 1 [=ts] 1
£ 106 i £ 106 |
[ i [ i
g 104 | g 104 |
= 1 = 1
g | g I
2 102 : 2 L02 :
= ! 3 !
< 100 | < 100 |
0 50 100 150 200 0 2 4 6
Battery power [kW] Battery power [kW]

Figure 4.4: Worst-case battery power analysis. The highlighted intersection shows
the minimum battery power needed to resolve any overvoltage in the network when
all PV units deliver maximum power.
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Figure 4.5: Worst case district battery analysis for different positions of the storage
unit in the network. From left to right: end, middle, and beginning of the feeder.
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4.4. Comparison of the rule-based controllers

4.4 Comparison of the rule-based controllers

4.4.1 Comparing performance

To gain insight in the performance of the different controllers, each of them is tested in
100 randomized house ID simulations. To create a fair comparison, the same random
seeds are applied for the different controllers (i.e. they are all tested on the same 100
different combinations of REnnovates data IDs). The results are presented in figure
4.6 and figure 4.7. In the former, the yearly observed violations in each simulation are
normalized by the number of violations for that year in the no-controllable resources
scenario. The latter shows the incurred losses and controller efficiency, which we
defined as the total number of prevented violated quarter hours over the energy
losses incurred in doing so. It should be noted that it is not the objective of the
controllers to maximize this number, since not taking any action (Ej,ss = 0) would
lead to an infinite efficiency. It is, however, an interesting parameter to consider.

It is readily verified that PV curtailment outperforms both rule-based battery
strategies based on violations prevented. Since in the REnnovates-Linear setup
overvoltages are the only issues, curtailing the PV units at moments of high solar
generation suffices to resolve all violations. The corresponding lost energy (battery
losses vs. curtailed PV energy) is slightly lower for the moderately sized district
battery controller. Throughout this work we assume a combined converter-battery
charge or discharge efficiency of 90%, combining to a round-trip efficiency of 81%.

An interesting comparison can be made between the house level curtailment and
house level battery control strategies by looking at the the worst-agent losses. Figure
4.8 and figure 4.9 indicate that in this context PV curtailment performs the poorest,
which is logical since the last house on the feeder is always curtailed first. When
looking at this from an individual consumer point of view, such control strategy is
difficult to justify, except when the consumer is remunerated for his actions through
a DR scheme. When considering an energy-community perspective - where the PV
curtailment losses from the worst-off agents could be allocated equally amongst all
community participants - this control strategy is well justifiable and from the analysis
performed here perhaps the most sensible option (especially since installation of
batteries entails additional, substantive fixed costs).

For the battery controllers, the worst-case scenario battery sizes derived in section
4.3 are studied, as well as looking at a more moderate, realistic sizing. It can be
seen in figure 4.6 that both the rule-based grid and house battery control strategies
are capable of solving approximately 85% of violations as compared to the scenario
where no control would be implemented. When taking into consideration battery
losses, see figure 4.7, the moderately sized district battery performs slightly better
than the PV curtailment controller. This results in an overall similar controller
efficiency, but the district battery avoids curtailment of local PV installations. It is
up to the DSO to determine which choice they prefer, the possible cost of avoiding a
grid violation and ensuring security-of-supply being the key decision factors.
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Figure 4.6: Comparison of the baseline controllers violations normalized with the
no-controllable resources scenario. Battery sizes Pp maz/Ebmaz (KW/kWh).
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Figure 4.8: Yearly total curtailed energy per house with the rule-based curtailment
controller. The error bars indicate the 95% confidence intervals around the estimated
mean value over 100 randomized simulations. House-numbering starts with 0 at the
beginning of the feeder and increments towards the end of the grid.
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Figure 4.9: Yearly total battery losses per house with the rule-based house battery
controller. The error bars indicate the 95% confidence intervals around the estimated
mean value over 100 randomized simulations. House-numbering starts with 0 at the
beginning of the feeder and increments towards the end of the grid.
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4.4.2 Rule-based battery sizing issue

An interesting observation can be made when comparing the worst-case and moderate
battery sizing for both the centralized and decentralized battery controllers in figure
4.6 and 4.7: the larger battery performs (slightly) worse than the smaller storage unit
- a rather non-intuitive perception. The major issue lies in the battery power selection
of the rough control strategy: it always charges or discharges at P, = Ppy — Floqq— Php.
It is clear that the controller discharges/charges his battery more than necessary and
therefore not leveraging the battery to its fullest. This phenomenon is more closely
examined in appendix A.2.

4.4.3 Limitations of the rule-based controllers

From the aforementioned discussions some clear limitations of the baseline controllers
are observed. For the battery controllers, it was found that the limited controlla-
bility of P, leads to sub-optimal performance, especially at larger battery sizing.
Additionally, they are not capable of catching seasonal trends, i.e. the batteries aim
at keeping their SoC at 50% throughout the whole year. In the summer, reducing
the SoC to lower levels could be beneficial to keep more charging capability for
upcoming overvoltages; in the winter a higher SoC is similarly interesting to avoid
undervoltages. Of course, a good balance is needed in order to avoid unnecessary
battery losses.

Another disadvantage of the rule-based battery controllers is their lack of using
available forecasts. This results in a completely myopic behaviour, taking away the
possibility to intelligently regulate the battery’s SoC. Furthermore, the position of
the house batteries in the network is not taken into consideration. This is a strong
limitation, as it was shown in section 4.3 that agents can most efficiently prevent
overvoltages if positioned at the end of the network.

The PV curtailment controller comes out best in the analysis, but has the clear
limitation of only being capable of solving overvoltages. Moreover, this control
strategy is unattractive from an individual consumer view as stated above.

4.5 Conclusion

In this chapter the foundations for the control strategy aimed at resolving grid issues
in the REnnovates-Linear setup have been laid. Both the general network model
and rule-based controllers operating within this framework have been described and
analysed. The most import limitations - sub-optimal battery power control based and
the inability to resolve undervoltages through curtailment - were elaborated. It is clear
that a more intelligent approach through implementation of an RL controller deserves
further research. To conclude, it should be noted that despite their limitations, the
rule-based controllers have purposely not been designed in a too naive manner and
their performance can be considered good in comparison to the no-controllable
resources scenario.
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Chapter 5

Deep reinforcement learning
based controller

In the previous chapter it was found that the coarse control strategy utilized by the rule-
based controllers leads to sub-optimal performance. It should not be the case that a
specific battery design choice leads to poor control performance. Therefore, we present
a more intelligent approach through a DQL based controller in this chapter. First,
the general setup of the reinforcement learning problem is translated mathematically
in the form of a Markov decision process (MDP). At each time step the agent will
interact with its environment in order to maximize the (discounted) cumulative reward
over time. Next, we elaborate the DQL controller utilized to solve the MDP. An
important aspect in this context is the optimal tuning of the model hyperparameters.
Finally, the performance of the randomly initialized RL based controller is examined
given one year of data for the single-agent and multi-agent scenario.

5.1 Design of the DQL controller

5.1.1 Markov decision process

The RL based controller solves a finite MDP, formulated as (s, a,p, ), where s is
the state of the environment, a is the control action taken by the agent based on
the given state, r is the reward function, and p(s’,r|s,a) is the dynamics function
indicating the probability of the environment transitioning to state s’ whilst returning
a reward r, given action a was taken in the original state s. For a comprehensive
overview of the mathematical descriptions underlying these principles the reader is
referred to section 2.3.1 of this work. Summarized, an MDP gives a mathematical
representation to the RL problem, with the key idea that an agent learns from
direct interaction with its environment to achieve a predetermined goal. The latter
translates quantitatively to maximizing the discounted cumulative reward (= return)
in the long-term. In what follows we discuss and define the key elements making up
the MDP to be solved by the DQL agent(s) in the second part of this chapter.
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5.1.2 Environment

Following the view of Sutton and Barto presented in [1], the environment can be
considered as anything that is outside of an agent’s absolute control. That is, any
parameter which it cannot change arbitrarily is presumed to be out of the agent-
environment boundary. The behavior of this environment is modeled as the low
voltage distribution network described in section 4.1. It consists of the physical grid
topology taken from the Linear project and 29 households consuming or injecting
energy based on the REnnovates data IDs.

In case of the single-agent approach, a district battery is placed at a strategical
position in the distribution network. Section 4.3 discussed the optimal battery
placement (at the end of the feeder) and argued an upper-boundary for the required
battery sizing (Pymaz = 60 kW and Ejp 4, = 250 kWh). However, the additional
analysis of the baseline district battery controller showed that a more moderate
battery sizing, i.e. 30 kW / 125 kWh, sufficed to resolve grid issues; we will therefore
consider this battery sizing throughout the entire SARL section.

Load Load
Node 1 Node 16
LV Busbar
400V
\ LV Busbar
ﬂ\ Separation
MV Busbar House Load House
10kV Node 1 Node 29 Node 16
LV Busbar
End 1
LV Busbar House
End 2 Node 17
House Load
Node 29 Node 17
A|E

Figure 5.1: In the single-agent scenario, a district battery is connected to the end
of the grid feeder. The box and arrows indicate the agent-environment boundary.

In context of the multi-agent approach, multiple smaller residential batteries are
placed at two or more households in the network. In the literature, many MARL
studies are performed with only two agents [4]. In this work we want to extend this
towards working with three agents. For the same reasons the district level battery
is placed at the end of the grid feeder, the three houses equipped with batteries
are chosen at house nodes 27-29 (see figure 5.2). In addition, they can curtail their
own PV output. The number of agents is chosen on basis of the analysis given in
figure 4.8, indicating that all overvoltages can be resolved through curtailment of
the last three houses. For the battery sizing, we consider the values of P a0 = 2.5
kW and Ep ;4. = 10 kWh. A detailed explanation of this battery dimension is given
in appendix A 4.
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Figure 5.2: Three smaller batteries are connected to the households near the end
of the grid feeder in the multi-agent scenario. The box and arrows indicate the
agent-environment boundary.

This configuration represents the case where consumers own their own house battery
but control actions are taken according to the overall interest of the energy community
to maintain a tolerable voltage level. The agents will act as independent learners
(IL, see section 2.3.4) and thus have to discover the influence of other agents on
the environment. During training, the environment is initialized at the start of a
new simulation. As described in chapter 3, new random load profiles are randomly
allocated to the different load nodes in the grid.

Following each reset of the environment, the SoC of the batteries is set to 50%. This
choice is based upon the reasoning that 50% is not the worst-case scenario in winter
or summer and thus the simulations can start in every season of the year. It should
be noted that, when not working with excessively large battery capacities, the initial
SoC has no noticeable influence on the results since the entire SoC range can be
traversed in the time frame of a single day.

5.1.3 States

In an MDP the agent aims at learning an optimal policy 7. (a|s) - a stochastic mapping
between states and actions - to determine an optimal action given an observed state
of the environment. In general, the state can be any form of information that can aid
the agent in this decision process. In an idealized setting, all available information
could be considered, but due to the curse of dimensionality this is often practically
infeasible. In this work, 12 different components are used to represent the relevant
environmental aspects. Summarized, the state of the agent is a vector that contains
information about the current SoC of the battery, the future energy demand and
production, as well as calendar features (time of day and year). Table 5.1 gives an
overview. In what follows, each of the components is discussed briefly.
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Table 5.1: The state of the environment entails 12 different components, including
the SoC of the battery, the forecasted power balance, and specific calendar features.

Index State

1 Quarter hour of day

2 Day of the week

3 Season of the year

4 SoC of the battery

5-12 Aggregate net power forecast for next 8 quarter hours:
i +J +j +i\
Zagenti (P]gv,]z - 'Pl%aé,i — P;ip,i])’ i & [17 N ’8]

In order to prevent an impending over- or undervoltage on the grid, the forecasted
difference between aggregated PV generation and load consumption for the upcoming
8 quarter hours is considered. An advantage of this approach is the scaling aspect:
when going from device to household, to community level the quality of the forecasts
normally improves because of cancellation of human stochasticity [48]. This means
that in practice only a single aggregate prediction needs to be generated for the entire
network, but no predictions are needed at the local level. Throughout this entire
work the availability of a perfect forecast is assumed; future research can extend the
findings presented here towards a scenario with imperfect prediction capabilities.

In the MARL case, the agents still use this aggregated power balance. A separated
Ppy — Pjouq — Ppyp state where the agents only receive information on their own
expected energy demand and generation, leads to a decision making process that is
not in line with the overall target (and consequently results in a bad performance).
That is, when a single agent has a high load or heat pump consumption, but all other
agents do not, this scenario will most likely not lead to an undervoltage. Since we are
working with ILs, this information cannot be deduced from his own power balance.
The reader is referred to appendix A.3.1 for the experimentally found correlation
between aggregate power balance and grid violations.

The second used state is the SoC of the battery. In the MARL case, each agent
knows only its own SoC. An important part in the learning process lies in finding a
policy which keeps the energy content of the battery at optimal levels, anticipating
upcoming quarters with grid violations. To this end, the agent needs a notion of
time and the ability to look into the future. Three time driven states are used to
describe the seasonal and daily trends in the data profiles: quarter hour of the day,
day of the week and season of the year (for more detailed information: see A.3.3.
The results of the data analysis presented in section 3.1.2 revealed the daily and
seasonal tendencies in the voltage profiles. Given only these calendar features, the
agent still lacks a more specific indication of the system dynamics. It is for this
reason that the aggregate power forecasts for the next 8 quarter hours are given.
Justification for this number is given in appendix A.3.2.
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5.1.4 Actions

An agent can take different actions based upon the given state of the environment.
The single-agent controls the charging and discharging process of the district battery
(Pymaz = 30 kW and Ej pqp = 125 kWh) in steps of 25% of the power limits. Since
this agent is not connected to an individual household it has no control over the PV
installations. In the MARL scenario, the agents can control their own battery in
the same way as in the single-agent case, but since multiple batteries are present a
more coarse power refinement can be used. In addition, they can curtail their own
PV installation. Combination of PV curtailment and battery control are possible,
leading to a MARL action space with size 5-3 = 15.

Table 5.2: The actions the agents can take for a single and multi-agent scenario.
Only with multi-agent, PV curtailment is a possibility.

Action type Single-agent Multi-agent

Pymaz - 100%

Pb,mam - 75%

Pb,max -50% Pb,max -100%
Pb,mam . 25% Pb,mam . 50%

Battery 0 0
P
POWEL £ Pb,min . 25% Pb,min . 50%
Py min - 50% Py rin - 100%
Pb,min : 75%
Py min - 100%
Curtailment =1
fraction [ n/a p=05
B=0

5.1.5 Reward function

The central goal of an RL agent is to maximize the discounted, cumulative reward over
time. After taking an action, the environment transitions to a new state and returns
a reward towards the agent indicating how favorable this decision was. The reward
function thus represents the goal of the MDP as it sets each agent’s objectives. Four
different components are considered for the low-voltage grid optimization problem
studied in this work: voltage violations, line overloading, transformer overloading
and energy losses. The main goal of the controller is to eliminate grid violations. In
addition, a secondary goal is imposed: minimizing battery and curtailment losses
in order to maximize efficiency (which can be defined as the amount of prevented
violated quarter hours per kWh lost) and prevent cycling of the battery. The general
form of the reward function then becomes:

R= Rvoltage + Rline + Rtrafo + Rlosses- (51)
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The voltage component R,ojzqqe consists of the rewards, or rather penalties, for over-
and undervoltages on the grid. Not only the boolean value of having a voltage
violation or not, but also the magnitude of the violation is of importance. For this
reason, the penalty is given a symmetric quadratic relation, effectively penalizing
larger violations more severely (see figure 5.3 A):

Rvoltage = Rovervoltage + Rundervolmge (52)
. ~(=1) a1 - (max(U;) — 1.09)*  if max(U;) > 1.9
overvoltage = 0 otherwise
(—1) - ag - (0.91 — min(U;))*  if min(U;) < 1.9

0 otherwise,

(5.3)
Rundervoltage = {

with U; the voltage in node i of the grid. The attentive reader may notice that the
thresholds from which a voltage is penalized, differ from the violation boundaries
of 0.9 p.u. and 1.1 p.u derived from the European standard in section 2.1.1. When
training the agent with boundaries of 0.9 p.u. and 1.1 p.u. the voltage penalties are
minimized by making the over- or undervoltages very small, but often the violations
are not removed completely. For this reason the limits are shifted slightly. In practice,
this gives the grid operator an additional operational margin of 4V.

Building upon this reasoning, line and transformer overloading are penalized in
a similar fashion: the reward component is a quadratic function and the reward
threshold is placed at 95% of the rated loading (see figures 5.3 C and 5.3 D):

3 j 2 . . .
R (-1)-as- (max (%) _ 95> if max (%) < 95
line —

Irated,j Irated,j

0 otherwise
(5.4)

2
100-T;.0 s ) 100-7
(—1) - ay - (max | ——relek) — 95 if max ( ——relok) > 95
I7'a,ted,k I’r'ated,k

Rtru fo = )
otherwise,

where the j-th line and k-th transformer in the network are considered.

Finally, the share of the losses in the reward function consists of two components:
battery losses and curtailment losses. The calculation of these losses is formulated in
section 4.1. As can be observed from figure 5.3 B, both reward components are a
linear function of charging and discharging losses or curtailment losses:

Rlosses = Rb,loss + RPV,loss (55)
Rb,loss = (_1) s Qs - AEb,loss (56)
Rpvioss = (—1) - a6 - AEpPyoss- (5.7)

Different scaling factors «; are used in the reward function to scale the different
components relative to each other. These factors need to be optimized in such a
way that solving violations is the primary objective and minimization of the losses
remains a secondary target. An in-depth description of this design process can be
found in appendix A.6.
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Figure 5.3: The reward function for each agent consists of four different components:
voltage violations, line overloading, transformer overloading and energy losses.

5.1.6 Solving the RL problem

To solve the MDP each agent faces the deep Q-learning algorithm with experience
replay and target update model described in section 2.3.2. The ANN, which serves
as a function approximator for ¢(s,a), acts as the “brain” of the agent and entails
the learned state-action mapping. In the single-agent case, the sole agent is assigned
a main and target ANN. In the MARL context, one main and one target network
are assigned to each agent, but no information about each others states or actions is
shared between the agents. This leads to the IL approach discussed in section 2.3.4.
For the design of the ANN, the following considerations are made:

e Input layer: the input layer consists of 12 neurons corresponding to the 12

states elaborated in section 5.1.3.
e Output layer (SARL): the ANN has 9 output neurons corresponding to the
predicted Q-values of a specific battery action (see table 5.2).
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e Output layer (MARL): in this case, the output layer is larger and contains
15 neurons: one for each combination of battery and curtailment actions. Some
DQL researches have worked with an architecture where one ANN is used per
desired output action, but since this approach requires a separate forward pass
for each action the cost scales linearly with the action space size, increasing
the computational burden [29].

e Hidden layers: layers between the in- and output layer of the ANN are
the so-called hidden layers. The number of hidden layers and neurons are
hyperparameters which require fine-tuning for optimal performance. The next
section further elaborates this.

Some extra remarks can be made about the used activation functions in the ANN.
According to Ramachandran et al. [49], the rectified linear function f(z) = max(0, x)
is the most successful and widely-used activation function for deep learning applica-
tions. In the study of Henderson et al. [50], neurons with this activation function
(consequently called rectified linear unit, or ReLLU) also exhibited the best perfor-
mance. It is for this reason that all-but the output neurons are given a rectified
linear activation. Since the output of our ANN is a numerical, continuous value
(i.e. it represents the Q-value associated with each agent’s actions) it serves as a
regressor. In this case, the usage of the linear activation function f(z) = z for the
output neurons is common practice [29, 51, 52].

Figure 5.4 indicates the position of these elements in the general structure of the
ANN. Additionally, all the components in the network’s input (i.e. the states) are
normalized with the observed limit values (following from the data analysis or nature
of the state) before being passed to the network. By doing so, none of the components
outweighs the others which would be the case if the values do not have the same
order of magnitude, speeding up the convergence rate [53].

Input Layer Hidden layers Output layer

A SRS
Statel — Vq ‘ CS ‘ S — Action 1
A?'{ A“?A A“*L\ —— Action 2

% ‘;0" ‘}" :

Figure 5.4: The general structure of a feed-forward ANN with the inputs (states),
outputs (actions) and intermediate hidden layers.
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5.2 Optimization of hyperparameters

5.2.1 General approach

Optimization of hyperparameters plays an important role in reinforcement learning
algorithms to obtain optimal performance and speed up convergence (or avoid
divergence altogether) [50, 54]. However, Henderson et al. [50] indicate that the
value range of used hyperparameters is often not reported in published work. In this
section, a description of the optimization process is given and substantiated.

Liessner et al. [54] present multiple strategies for the parameter selection, includ-
ing grid and random search, Bayesian optimization and random forests. Both
the Bayesian optimization and random forest methods require specialized coding
approaches, which are beyond the scope of this thesis. Thus, we opted for a one-
dimensional grid search primarily based on the unfeasibly high computational cost of
a full systematic hyperparameter grid search. First, an informal search was performed
on the most relevant hyperparameters (see the left-side column of table 5.3). This
method is similar to the ones reported by Mnih et al. in [29].

After reaching the point of convergence, the one-dimensional grid search was started
with parameter values symmetrically distributed around the values of the informal
search. Classical Al heuristics, such as varying the number of neurons in each
layer with steps of 2%, were applied. The different parameters were varied one at a
time, whilst keeping the others constant. This method is identical to the approach
described in [50]. Based on the performance, indicated by the total cumulative
reward received by the agents over time, the optimal values were selected. Table 5.3
summarizes the findings. For a more in-depth review on the utilized procedures and
meaning of the different parameters, the reader is referred to appendix A.5 and the
optimization example on the next page.

Table 5.3: Results of the hyperparameter optimization.

Hyperparameters Optimal value

ANN structure (neurons per hidden layer) (64,64)

Adam optimizer learning rate 0.001

Discount factor 0.99

Replay memory size 134400 quarters (200 weeks)
Minimum replay memory start size 672 quarters (1 week)
Minibatch size 64 experience samples
Target network update frequency 2688 quarters (1 month)

The values presented here are simulated in the single-agent setting. Again, this
decision was based on grounds of higher computational cost and limited resources.
The parameters obtained from the SARL scenario are directly used in case of the
multi-agent setting, so no separate hyperparameter optimization was performed.
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The parameters described above are extrinsic factors, nevertheless Henderson et
al. describe the importance of the influence of intrinsic factors (e.g. effect of
random seeds) on performance [50]. They demonstrated that results could differ
drastically just from varying the randomization process. Therefore, the optimization
of parameter values is always executed with 5 different random seeds and statistically
analyzed afterwards which is similar to the method in [50].

5.2.2 Optimization example: exploration vs. exploitation

An important dilemma faced by all learning control methods is the trade-off between
exploiting the current knowledge to perform optimally with respect to the learned
policy, and non-optimal exploratory behaviour which might unearth a more favor-
able state-action mapping. This trade-off is known as the exploration-exploitation
dilemma, and remains an open problem until this day [1]. To highlight the principles
of the hyperparameter optimization process, a closer examination towards this issue
in context of our grid control problem is given.

Through interaction with the environment over the course of 1 year - the time frame
for which the REnnovates data is available - the agent will train and update its
deep Q-network and strive to learn an optimal policy which maximizes the reward in
the long-term. In order to ensure adequate discovery of optimal control actions, an
e-greedy policy is used, with e the probability of taking a random action in a given
time step. If epsilon is 1, the agent takes all of his actions at random, leading to
maximal exploration but poor performance. A value of 0 implies that the agent will
“exploit” and take actions that are optimal with respect to the current policy, but
therefore miss the opportunity to explore new, possibly more valuable actions.

For the SARL case, the left-hand side of figure 5.5 shows the results of a grid-search
over the indicated range of e-values. It is readily verified that a higher exploration
rate is not beneficial. The reason for this is twofold. When working with a single
grid battery at the end of the feeder, a random battery action has a high chance of
leading to a malign situation (e.g. discharging at full power at moderate Pyggregate
will likely lead to an overvoltage). In other words, the sensitivity of the grid voltage
with respect to random SARL battery actions is large. Secondly, battery losses
increase near linearly with € (subfigure C2).

For the MARL case, similar dynamics can be observed. However, note the much
lower sensitivity of the grid violations with respect to random MARL agent actions
(compare the scales of figure 5.5 B2 SARL vs. MARL). This is due to the inclusion of
PV curtailment actions (which can only lead to a reduction of overvoltages) and the
distributed approach (a single faulty random action has lesser effect on the network).
Nonetheless, battery losses again increase strongly with €. For this reason it is chosen
to work with € = 0 when checking the performance of the controllers, only allowing
exploration through the randomization of the initial ANN.'

1This procedure differs from the used method in chapter 6, where a controller is first trained offline
using an epsilon-decay scheme and transferring the knowledge afterwards to an online controller.
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5. DEEP REINFORCEMENT LEARNING BASED CONTROLLER

5.3 Performance of the controller

5.3.1 General procedure

In this section the performance of the RL based controller in the REnnovates-Linear
setup is studied. We consider the MDP formulated in section 5.1. At the beginning of
each simulation the ANN for each agent is initialized with random weights and biases.
Additionally, the distribution process of the data IDs to the 29 available house nodes
is performed (see section 3.1), resulting in a unique environment. Setting the seed at
the start of each simulation ensures that all random processes (ANN initialization,
house ID distribution, and random action selection through the e-greedy policy) are
reproducible. The performance is analyzed by comparing the number of violated
quarter hours and incurred energy losses of the RL controller to the no-controllable
resources scenario. A detailed comparison with the rule-based controllers follows in
chapter 6, where the concept of transfer learning will be used to greatly enhance
sample efficiency. Since quarter hourly data is available for one year, this is the
considered time frame for both the SARL and MARL scenarios.

5.3.2 Single-agent: district battery

In the single-agent scenario, the agent controls the district battery placed at the
end of the feeder in the grid. To get statistically significant results a set of 100
simulations is performed with the same randomized house ID distributions as utilized
in chapter 3 and chapter 4 for the no-controllable resources scenario and rule-based
controller performance analysis respectively.

An overview of the findings is given in figure 5.6 for both the SARL and MARL cases.
Focusing on the former, it can be seen that given only one year of data the DQL
controller performs poorly in comparison with the no-controllable resources scenario.
On average, the performance is 10% worse compared to the no controllable resource
scenario. Similarly, the total amount of violated weeks is increased. Figure 5.7 adds
to the equation by indicating a negative amount of prevented violated quarter hours
per kWh lost for almost 50% of the considered simulations. However, these results
should come as no surprise given the known data-inefficiency of RL based controllers;
giving solely a year of training data is simply insufficient for adequately training the
agent.

In addition, the trends in the data are not very homogeneous, changing from season
to season. The agent has to learn an optimal policy in winter that is very different
from the one in summer, therefore making the learning process of the overall policy
more complex. Learning seasonal trends when observing only one year of data
is hardly possible. We could expect better results if the differences between the
seasons were smaller, because in this case the agent could train on one particular
policy a whole year long. As a result of the fluctuating climate in the Netherlands
(REnnovates data), the agent has to perform a more complicated task.
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5.3. Performance of the controller

As stated at the beginning of this chapter, the agent has to take actions in order to
learn the optimal policy. At first, the random initialized agent charges and discharges
his battery whether these actions are beneficial to prevent overvoltages or not. This
random action taking process leads to a high amount of energy losses, without
resolving almost no violations. Consequently, the controller efficiency is low (and
sometimes negative), indicating that the RL controller performs badly. In chapter 6
it will be seen that the performance can be greatly enhanced by utilizing transfer
learning.

To illustrate the performance of the controller, figure 5.8 highlights the evolution
per week of the reward, the violations and the battery losses for a representative
simulation. It is clear that only a small fraction of the problems on the grid is solved.
In the summer, the controller has learned to eliminate some of the overvoltages, but
no long-term policy has been adopted to regulate the SoC towards more favorable
values to proactively counter impending quarter hours of high solar generation. This
is indicated by the “overvoltages at full battery” part of stack plot B. The agent
needs more data to realise these types of policies.

Furthermore, plots of the evolution of the learned Q-values over time can give more
insight in the temporal policy. The Q-values represent the expected return from a
given state for each action the agent can take. Nine battery actions, discussed in
section 5.1.4, are possible in the SARL case, as a result 9 Q-values (outputs of neural
network) are studied. Figure 5.9 looks at the interesting case where the agent is
given a state in summer at noon when there is a lot of PV generation and thus the
possibility for overvoltages on the grid.

The evolution of the graphs only changes after 18 weeks of training. This result
is expected since there are no overvoltages in the first months of the year. The
experiences gathered by the agent in winter simply do not describe cases with a lot
of PV generation and thus the agent does not learn a policy for these kinds of states.
After encountering overvoltages for the first time in the beginning of the summer,
the agent clearly learns that charging the battery is the best option. After 30 weeks
of learning the agent considers charging at 50% as the optimal action for the given
state. As we will see in chapter 6, the actual optimal action is 75% or 100% in an
(approximate) optimal policy scenario.

It can be seen that the Q-values of the studied state keep evolving over time, not
having reached a state of convergence yet. This indicates the data-inefficiency of
the RL controller: despite interacting with the environment for over a year, no
clear policy has been established. Furthermore, the comparison of these results with
figure 5.8 reveals that the agent has (partially) forgotten its pre-summer policy (keep
battery losses low) in the post-summer period. That is, after receiving large penalties
for overvoltages in the summer the agent mistakenly interprets post-summer states
as potentially leading to voltage violations, leading to charging of the battery when
not needed.
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5.4. Conclusion

5.3.3 Multi-agent: house batteries and curtailment

To analyze the multi-agent setting the same procedure is followed. Again, the
performance of the controllers is observed over a time frame of one year for 100
randomized data ID distributions. The major differences with the SARL case lie in
the distributed approach: now there are 3 independently acting agents at the end of
the grid feeder, which in addition have control over their PV installations.

The results are presented in figure 5.6. It is clear that the amount of violations
per year is much lower in case of MARL than the no control and SARL case. On
average, a reduction of 80% in violated quarter hours is realized. One would think
that therefore the MARL controller performance is superior to that of the SARL
controller but when looking to figure 5.7 it is observed that the incurred losses
are significantly larger, which causes the MARL controller’s efficiency (prevented
violations per kWh of losses incurred) to be almost identical to that of the SARL
controller. Similar to the SARL scenario the learned policy is far from optimal.
As will be seen in chapter 6 the performance can be greatly enhanced through the
concept of transfer learning.

Figure 5.10 shows the evolution of the reward, the violations and energy losses per
week for a simulation of one year. As opposed to the SARL agent, a large part of
the grid violations is effectively resolved. The graph containing the energy losses
clearly indicates that the agents have learned to mitigate these violations through
curtailment of their respective PV installations. However, these curtailment actions
do not resolve all violations and are used excessively leading to abundant losses.

Finally, the uniform distribution of the battery losses indicates that battery actions
do not play an important role in the control process. The agents quickly learn the -
for us - obvious relation between their curtailment actions on one end and effectively
removing an overvoltage from the grid on the other end by receiving an immediate
reward (or rather a reduced penalty) after performing those curtailment actions. Not
all battery actions, however, give rise to immediate rewards. For example, discharging
the battery in order to be able to charge the battery at upcoming moments of high
PV generation only gives rise to long-term rewards, therefore making the learning
process concerning battery actions more complex for the agent.

5.4 Conclusion

In this chapter an RL based controller was designed for a single-agent and multi-
agent scenario with the primary objective of mitigating grid violations, whilst
minimizing energy losses as a secondary target. Batteries and PV curtailment were
used as flexibility resources. The agents in the multi-agent scenario act completely
independent from each other and have to learn that there are other agents which act
in the same, therefore non-stationary, environment. In the SARL setting, a single
agent has control over the operations of a large grid battery placed at the end of the
feeder.
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5. DEEP REINFORCEMENT LEARNING BASED CONTROLLER

The implemented RL algorithm, deep Q-learning with experience replay and a target
update model, required fine-tuning of multiple parameters for optimal performance
and avoiding convergence altogether. The optimization of these hyperparameters
was done through a one-dimensional grid search for the single-agent case, the results
of which were subsequently used for the multi-agent setting.

The overall results of the simulations lead to the conclusion that the performance of
the controllers is inadequate after one year of training. Especially, the SARL controller
performs poorly compared to the rule based controllers. Whereas the baseline battery
controllers from chapter 4 resolved on average 85% of the overvoltages, the SARL
controller decreased the average overall performance by 10% in comparison with
the no-controllable resources scenario. Also, the generated energy losses are much
higher compared to the baseline cases. In order to learn the optimal policy, the
agent has to interact with the environment for many more years. The Q-values did
not converge after one year of training which confirms the data inefficiency of deep
reinforcement learning methods. As will be seen in the next chapter, the concept of
transfer learning can greatly enhance the performance.

Finally, it was observed that the MARL controller outperforms the SARL controller
by resolving on average 80% of all possible overvoltages. However, the MARL does
create more energy losses in the process of doing so. This discrepancy in performance
between the MARL and SARL cases was explained through the different reward-
dynamics driving each of these control methods, which is one of the key findings in
this chapter. Whereas, the SARL agent requires a focus on long-term rewards to
discover an optimal planning policy for adequate regulation of its SoC, the MARL
agent needs only a superficial insight, since PV curtailment does not require such
long-term optimization scheme. Despite the better performance, the learned policy
of the MARL agent is still not optimal and (similar to the SARL) more enhanced
control strategies are necessary.
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Chapter 6

Transfer learning

The analysis of the RL controller’s performance developed in the previous chapter
confirmed a well-known shortcoming of data-driven methods: their significant data-
inefficiency. In order to design an accurate controller in real life, an abundant amount
of data is necessary before adequate operational performance is reached. In most
cases, such amounts of data are either not available or collecting a sufficiently large
dataset is too time-consuming. The concept of transfer learning helps to circumvent
these disadvantages: a controller is trained with available data in one domain and
the gained knowledge is subsequently transferred to a different but related control task.
In this chapter it is shown through two example cases that performance can be greatly
enhanced by utilizing these principles.

6.1 Overview

To examine the applicability of transfer learning to the low-voltage grid optimization
problem studied in this work, two cases are considered:

e A well described distribution grid: in this setting the physical aspects of
the distribution grid in which the control task needs to be performed are known
in advance by the control engineer. In our case, this is the Linear grid topology.
The agents are trained ahead of time with available data in a simulated model
of the environment. Once the grid is digitized, profiles from any project can
be taken, including open source data. Subsequently, the gained knowledge is
transferred to the agents acting in the “real” environment by using the trained
DQNs as a starting-point instead of randomly initializing their ANNs.

e An unknown distribution grid: now the grid data of the “real” environment
is not available, meaning no simulations of this topology can be made in advance.
To enable transfer learning, the agents are trained similarly to the first case in
a known environment (Linear), which physically differs from the actual target
distribution grid. After the offline training, the experienced DQNs are used to
initialize the agents in the “unknown” environment in order to bootstrap the
online training.
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6. TRANSFER LEARNING

The quotes around the “real” environment indicate that in this work no in-situ tests
are done, but the real-life distribution grid is modeled as well. Since we use a model
to represent this “real” distribution grid, we also need data to simulate the behaviour
of the “real” agents acting in this environment. Therefore, a random sampling of
REnnovates data IDs (from the pool of 82 collected datasets) is assigned to the 29
households. During training different random samplings are utilized, ensuring the
transferred models never see the same environment twice. Summarized, this means
the loads on each node is different in offline and online phase. In what follows, the
two cases are compared with the randomly initialized DQN learner from chapter 5.3.
In addition, the performance is equated to the baseline controllers from chapter 4.

6.2 Case study 1: a well described distribution grid

6.2.1 Setup

In the first case we study the potential of transfer learning where real world data
is available for a given environment. Here, this is the Linear topology. Firstly, the
agents are trained offline with data from the REnnovates project. Secondly, the
information gained from the first training stage is transferred to the agents in the
“real” environment by initializing the weights and biases of the target DQN with the
same weights and biases obtained from the offline training. Additionally, the replay
memory containing the agent’s experiences e; = (s, at, r¢, s¢+1) for a certain amount
of time steps is carried over. Lastly, the agents are trained online for 1 year in the
“real” environment, which has the same topology as the simulated environment. The
transfer learning process is applied for both the single- and multi-agent cases.

Offline learning Online learning

MR ANN
ZeBAL I S~

Lot
P

Figure 6.1: Single-agent transfer learning in a well described distribution grid. The
random seeds determining the REnnovates data allocation differ: Vi : x; # y. This
ensures the loads on each node is different in offline and online phase.
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6.2. Case study 1: a well described distribution grid

6.2.2 Precedent offline training with available real world data

The offline training process is similar to the online training process of the randomly
initialized DQL controller, as stated in section 5.3. At the beginning of the first
episode, the environment and all agents are randomly initialized, i.e. the weights and
biases of their deep Q-networks are randomly chosen. In contrast to the normal DQL
controller, the agents are trained over multiple episodes covering one year of data
each, but with different distributions of REnnovates data IDs over the network. The
latter is done by “resetting” the environment at the beginning of each new episode.
To retain the knowledge obtained during the previous episode(s), the trained deep
Q-networks of the agents are saved and passed on to the next simulation. The
left-hand side of figure 6.1 summarizes the procedure.

By following this approach, the agent can learn and interact with the environment for
multiple consecutive simulations effectively overcoming the issue of data-inefficiency:
available data spanning only a limited time-horizon is intelligently employed. The
DQL algorithm used to train the agents is given in section 2.3.3. For an overview of
the utilized hyperparameters and the optimization process for finding these values,
the reader is referred to appendix A.5.2.

Besides the difference in number of episodes, another key difference with the normal
DQL controller is the allowable exploration rate in the e-greedy policy. Section 5.2.2
dwelled upon the exploration-exploitation dilemma, indicating a trade-off between
sacrificing the highest expected short-term rewards for the possibility of discovering
a more favorable policy. It was established that in online training e cannot be too
large since this leads to high numbers of violations and battery losses. A randomly
acting grid battery is not operationally justifiable. At the same time, a small € limits
the agent in exploring the new environment.

In an offline learning process in a simulated environment, random actions do not
lead to potentially dangerous outcomes. This is one of the main advantages of offline
learning: the exploration of the agent can be much larger than with the online
variant, allowing the agent to more thoroughly search the policy space. This leads
to a speed up of the learning process. Typically, an epsilon decay scheme is used
where € is chosen large at first (e.g. ¢ = 1) and is reduced linearly following the
reset of each episode. In doing so, the exploration is large at the beginning and the
exploitation of optimal actions increases towards the end of the learning process,
allowing verification of the performance.

The process described above is performed for both the single- and multi-agent
scenarios, as seen in chapter 5. The most important results are described in the
following sections. At the end of these training simulations, the weights of the neural
networks are saved and are ready to be transferred to the agents facing the online
learning task. It is emphasized that the training of the MARL agents is completely
independent. Therefore, multiple DQNs (one per agent) are saved and transferred to
the corresponding agents in the “real” environment.
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Single-agent: district battery

The SARL agent, which controls the district battery, is first trained offline for 60
episodes - which equals 60 years of training data. The e-value linearly decays from
1 in the first episode to 0 in the 45th episode. Afterwards, € is kept constant at 0.
The latter is the same as the online training e-value of the randomly initialized DQL
based controller used in section 5.3. To keep a fair comparison, ¢ = 0 will also be
used for the online learning with DQN transfer further in this chapter. The results
of a representative offline training run are presented in figure 6.2, indicating the
evolution per episode of the rewards, grid violations and battery losses. It can be
seen that the rewards converge to a final asymptotic value. With respect to the
primary objective of solving grid violations, the SARL agent has clearly adopted a
working policy: almost no residual grid violations remain in the last episodes.

We also see the necessity for working with a 60-episodic task, as the battery losses
seem to stagnate only during the final episodes. This highlights the importance of
a correctly fine-tuned reward function: it should be the agent’s main objective to
solve grid violations. To achieve this, a long-term policy with adequate planning to
regulate the SoC optimally over time is needed. When penalizing battery losses too
harshly, such learning behaviour might be discouraged. With the current scaling
factors, it can be seen that reduction of the battery losses is kept as a secondary
target, starting convergence well after an optimal violations-policy was found.

Similar to the evaluation of the randomly initialized DQL controller, we study the
evolution of the Q-values from the DQN of the SARL agent (see figure 6.3 and 6.4).
First, we consider noon in the summer at a large aggregated power injection in the
network. In contrast to the findings in figure 5.9, the offline learner does find the
optimal battery action: charging at 75% of Pj,4,. The difference with charging
at full capacity, however, is almost indistinguishable. A second, very interesting
dynamic, is given in figure 6.4. Here we look at a morning in summer, a little less
than two hours before large PV generation is forecasted and at high SoC of the
battery. A clear planning approach is noticed: despite the short-term penalty for
battery losses, the agent decides on discharging its battery to proactively counter
the impeding overvoltages. The interested reader is referred to appendix A.7 for a
detailed view of the grid battery’s operations over time following the learned policy.

Multi-agent: house batteries and curtailment

In the offline learning process for the multi-agent case, the agents control their own
house battery and curtailment of their own PV installations. Similarly to the SARL
approach, the agents are trained offline for 60 episodes with a linearly decaying
e-scheme from 1 in the first episode to 0 in episode 45 after which they fully exploit
the learned policy. Since we opted to work with independent learners, the agents
have to estimate the influence of other agents on the grid tracking actions throughout
a non-stationary environment, whilst trying to figure out the individual best action
to resolve voltage violations.
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Figure 6.2: Offline training of the SARL agent. The agent successfully learns solving
almost all grid violations after 45 episodes, after which the secondary objective of
minimizing battery losses is initiated. Note the strongly varying violations per year
in the reference no-controllable resources scenario (black line): this indicates the
high variance between the different REnnovates data allocations in each simulation.
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Evolution Q-values per episode
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Figure 6.3: The Q-values at noon in the summer indicate the agent has correctly
learned to charge the battery at high forecasted aggregate power injection into the
network. There is a clear preference for charging the battery at 75% (which was
found to be the optimal action in this case) or 100% of Py mqz-
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Figure 6.4: The Q-values at morning in the summer a little less than two hours
before large PV generation is forecasted and at high SoC of the battery. The
agent starts adopting a correct SoC planning policy after £40 episodes, deciding on
discharging its battery towards more optimal values.
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Figure 6.5: Offline training of the MARL agents. The energy losses are summed
over all agents. A shift in learning dynamics can be observed compared to the SARL
offline learner: the agent quickly understands that curtailment solves upcoming
overvoltages, but starts off by curtailing at unnecessary times. The major objective
seems to be a reduction in energy losses, an asymptotic value of £3800 kWh per
year is reached.
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Figure 6.5 shows the results of the offline MARL learning process. Even during
the first episode (¢ = 1, completely random actions) around 70% of overvoltages
are solved. This is due to lower sensitivity of the grid to faulty actions of a sole
agent: PV curtailment can never cause overvoltages and due to the distributed
approach, agents can (by accident) correct each others bad decisions. This leads
to the same dynamics as found in section 5.3.2 when comparing the regular SARL
and MARL controllers. The clear two-stage learning process observed for the offline
SARL scenario - minimizing violations and thereafter reducing battery losses - is
therefore no longer visible. Rather, a completely new learning dynamic is established.
The losses are abundant during the first episodes, mainly due to the high curtailment
losses and a smaller part from battery losses. A large quantity of training data is
needed and the major objective is shifted towards reducing the incurred losses.

6.2.3 Online training of the agent in the real environment

After having performed the 60-episodic offline learning task, the obtained DQN
models can finally be transferred to the online agents in the “real” environment. For
this, the DQN starting-point method is used, in which the “real” agents ANNs are
initialized with the transferred models. To follow the same procedure as employed
during the offline learning, the replay memories are transferred as well. The concept
is shown earlier in the right-hand side of figure 6.1. The attentive reader might have
noticed that this transfer of offline-to-online model is completely equivalent to just
adding a 61th episode to the learning path described in the previous section. The
main difference, at least in this work where no in-situ tests are done and the “real”
environment has to be modelled, lies in the perception of the transfer: one should
imagine this 61th episode as a real-life one-year field test of the controller in practice.

Single agent: district battery

In figure 6.6 an example of an online training process is given for the SARL scenario.
The same results as during the last episodes of the offline learning process are,
logically, observed. Once again, almost all violations are solved. If we compare this
figure to figure 5.8 of the RL controller without transfer learning, we can clearly see
a substantive improvement. In addition, it can be observed that the losses in winter
are just a fraction of these in summer, but sporadic peaks are still observed.

Multi-agent: house batteries and curtailment

Figure 6.7 similarly shows an online example for the multi-agent case. It is clear
that also in this case the agents have learned a violation-solving policy. Two
things catch the eye: i) the near perfect mapping between resolved violations and PV
curtailment losses, and ii) there are almost no battery losses present. The agents have
learned the strong correlation between their curtailment actions and the mitigation
of overvoltages, i.e. they have established an internal mapping between the aggregate
power balance and calendar features on one end and the possibility to avoid an
overvoltage through curtailment at the other end.
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Figure 6.7: Online training of the MARL agents, each of them bootstrapped with
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established with primarily curtailment as method to resolve violations.
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Importance of the replay memory
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Figure 6.8: Online training of the SARL agent without transfer of replay memory.
The same randomized allocation of data IDs to the households as in figure 6.7 is
used. The performance worsens during the first summer months.

In the transfer learning procedure considered in the previous sections, the combi-
nation of DQNs and replay memories was passed on to the online learning agents.
An interesting side-note towards a better understanding of the actual dynamics
underlying the learning task, is found when considering the case where the replay
memories are not transferred. Towards this end, compare figure 6.8 (no replay
memory carried over) and figure 6.7 (replay memory transferred).

If the agent is initialized with an empty replay memory, the only experiences e; =
(S¢,a¢, 1, S14+1) gathered in the first months of training are from winter data. This
abrupt change from a full replay memory (containing 4 years of training experiences,
thus entailing a mixture of seasonal transitions) to a limited memory of only winter
data in the online learning alters the learned policy of the agent notably. Moreover,
at the beginning of the summer the agent has forgotten the optimal policy with large
PV generation as only “winter states” have been seen. Only after mid summer, the
agent has “recovered” and is able to resolve overvoltages again. This supports the
discussion in section 5.3.2, where similar remarks were made about the importance
of seasonal dynamics for the regular DQL controller. The agents there face the same
issue of having a non-representatively filled replay memory, but are even worse off
since their ANNs are randomly initialized.
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6.2. Case study 1: a well described distribution grid

6.2.4 Validation of the DQL controllers

In the previous section we established the qualitative performance improvement
gained from offline-to-online transfer learning. To quantify these findings, the RL
controllers with randomly initialized DQN agents developed in chapter 5 are equated
with these enhanced learning agents. The same structure is followed as in the rest
of this chapter, focusing on the SARL case first after which the MARL scenario is
elaborated. To conclude the first case studied in this chapter, we bring all elements
from chapters 4, 5 and 6 together in a comprehensive control strategy comparison
for the REnnovates-Linear setup.

Single agent: district battery

The results for the no-controllable resources scenario and the RL controllers with
and without transfer learning are presented in figure 6.9. Focusing on the SARL
case, the adequacy of the transfer learning agent (with replay memory carried over)
regarding the mitigation of grid violations is readily verified. In all of the performed
simulations, more than 99% of violations are prevented, with some runs even showing
a perfect improvement of 100%. Compared to the regular RL agent, which showed a
10% worsening compared to the no-controllable resources scenario, this is an increase
of £95 percentage points - a more than noticeable difference.

With respect to the incurred battery losses, the RL controller after transfer learning
achieves an average yearly energy loss of £1000 kWh. Compared to the 2000 kWh
of the regular DRL agent, this translates into a 50% improvement. Keeping into
consideration the accompanying reduction in grid violations, this is a remarkable
feat. After all, to resolve more grid violations the agent needs to learn an optimal
battery scheduling policy, including substantive ahead-of-time charge and discharge
planning for optimal SoC regulation. In the regular RL process, the agent clearly
fails to find such policy, but merely succeeds in generating a limited state-action
mapping focusing on short-term battery operations.

These results highlight the usefulness of transfer learning in practical control tasks
on low-voltage distribution grids with known topology data. An interesting element
to note is the real-life simulation time needed to perform the offline SARL training
procedure: approximately 48 hours where needed to train the final models, but the
fine-tuning of the reward function and other hyperparameters preceding these runs
increased the total computational burden. Nonetheless, the remarkable performance
improvement achieved through solely two days of simulated training are a key result
of this work indicating the usefulness of transfer learning in DR settings.

Finally, the results in figure 6.9 formalize the discussion in the previous section
regarding the importance of carrying over both the DQN and replay memory. That
is, it can be seen that the performance (both violations solved and battery losses
incurred) of a MARL agent with carried over experiences outperforms the agent with
sole ANN transfer over each of the 100 randomized simulations.
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6.2. Case study 1: a well described distribution grid

Multi-agent: house batteries and curtailment

Next to the SARL results, figure 6.9 additionally shows the simulated findings for
the no-controllable resources scenario, the randomly initialized MARL controller and
MARL controller with transfer learning. The latter once again shows superior per-
formance in comparison with the reference scenario where no control is implemented.
However, the difference with the normal RL control strategy is less pronounced, a
phenomenon which was attributed to the lower grid sensitivity towards faulty MARL
actions and the “easier” policy these agents can learn to resolve grid violations,
i.e. curtailment of their PV units without the need to develop a more complex
planning approach needed when only battery control is entailed. Overall, the MARL
controller with transfer learning resolves on average 98% of the violations, reiterating
the success of their learned policies as discussed in the previous sections.

Whereas the difference towards grid violations is less pronounced between the regular
RL and transfer learning cases, the results of the losses in figure 6.9 indicate a
more pronounced distinction: the MARL agents with transferred knowledge clearly
manage their operations under a more energy efficient state-action mapping. This
supports the findings presented in figure 6.5, where the offline training procedure of
an exemplary MARL agent was visualized. It was found that the losses converged
to an asymptotic value of 3800 kWh, the same value is found in the experimental
analysis presented in this section. Compared to the yearly energy losses of 6200 kWh
for the non-transfer learned MARL case, this is an improvement of approximately
40%, again demonstrating the benefits of transfer learning.

An interesting observation is made when MARL transfer learning with and without
passing over the replay memory. Not passing on the experiences pooled in the agents
memory has less influence on the MARL agents. In the SARL scenario, the early
winter experiences fill up the replay buffer and subsequently overwriting the more
complex SoC-planning policy. This has a bigger impact on overall performance than
similar alterations of the less complex MARL policy - myopic curtailment - which is
more easily recovered when the first overvoltages are observed.

Finally, to keep in line with the discussions given in the SARL section, the offline
simulation time for the MARL transfer learning based controller amounted to 44
days. The higher computational cost of training a multi-agent system is an important
disadvantage which the control engineer should always keep into consideration.

6.2.5 Comparing all controllers

Throughout this work two main control strategies with aim of mitigating grid
issues have been developed: on one end the rule-based controllers, on the other
end the reinforcement learning based approaches with or without transfer learning.
Each method has its strengths and weaknesses, both on a conceptual and purely
performance level. To assess the latter, all of the analysis performed on the different
types of controllers in this thesis are summarized in figure 6.10 and figure 6.11.
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6. TRANSFER LEARNING

Before jumping into the results, we would like to add an extra rule-based controller
to the comparison. In chapter 4 the most broad scenario for the distributed house
controller was considered where all 29 houses were assigned a battery unit. For
the MARL case, however, due to computational limitations this amount of agents
is infeasible. Nonetheless, a reference with three houses at the end of the feeder,
controlled through a rule-based scheme, would be an interesting comparison for the
multi-agent performance. For this reason the decentralized algorithm presented in
section 4.2.2 is reconsidered, but now only the last three houses on the feeder are
controlled through this rule-based approach. For the battery sizing, the exact same
procedure as presented in section 4.3 is followed, leading to P e, = 7.5 kW and
Ey maz = 30 kWh. Notice that, since no PV curtailment is available in this novel
control method, a larger battery size is needed in comparison with the MARL case.

In what follows, a brief overview of the most important observations is given,
substantiated by the different analysis performed throughout this work:

e Within the group of rule-based controllers, only the PV curtailment strategy is
capable of resolving all grid violations. The biggest limitation of the battery
based methods is their incapability to intelligently regulate P, leading to
situations in which the maximum energy content is prematurely reached when
further charging to avoid overvoltages is needed. To obtain a more intelligent
battery control, diverse RL techniques were developed.

e The regular RL strategies created in chapter 5 perform poorly in comparison
with the rule-based controllers. The large data-inefficiency of such methods
lies at the origin of these issues.

e Through transfer learning with carry-over of the replay memory the perfor-
mance of the randomly initialized RL agents with respect to violation-solving
capabilities and incurred energy losses can be greatly enhanced. These TL
controllers outperform all but the rule-based PV curtailment controllers when
considering resolved grid violations.

e Without transfer learning, the randomly initialized MARL controller outper-
forms the SARL counterpart in terms of resolved violations, but suffers more
battery losses in the process of doing so. This difference was explained through
the different reward-dynamics driving each of these control methods: the SARL
agent requiring a focus on long-term rewards to discover an optimal planning
policy for adequate regulation of its SoC, versus the MARL agent for which a
more myopic view suffices since PV curtailment does not require such long-term
optimization scheme. The latter allows much faster learning for the MARL
agents, which translates into the observed results in figure 6.10 and 6.11.

e When comparing the house-level control strategies (MARL with and without
transfer learning, and rule-based battery control with 29 or 3 demand response
enabled households), our MARL agent with transfer learning outperforms
all other methods, even the rule-based approach where all 29 households are
actively trying to balance the network. This is a particularly interesting result,
indicating the capabilities of our RL method.
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6.3. Case study 2: an unknown distribution grid

e Despite their great performance with respect to solving overvoltages, the RL
controllers are characterised by substantial energy losses. In the end, it is the
DSO who needs to decide to what (economic) extend the prevention of grid
violations is justifiable with respect to the suffered energy losses.

e Finally, the two controllers with the best overall performance (high reduction
in grid violations at the lowest energy losses) are the rule-based PV curtailment
and SARL grid battery controllers. The latter has the advantage of also being
capable of solving undervoltages, but this issue was not observed in the studied
REnnovates-Linear setup. The PV curtailment technique, however, requires
supervisory control over multiple house-level PV installations in the network,
but does not entail the high fixed costs linked to large-scale grid battery storage.

In practice, rule-based controllers are often used as back-up systems for RL controllers,
especially during the initial learning phase. Therefore, different combinations of
rule-based and RL controllers developed in this thesis could be considered.

6.2.6 Centralized vs. decentralized control

The independent MARL method has some advantages over the rule based controllers
concerning pure control aspects. First of all, compared to the baseline controllers,
the MARL strategy removes a single point of failure: the central controller. This
results in a more robust system architecture. Only the forecasts of the aggregated
power balance and the monitored voltages on the grid are communicated to the
independent agents. Additionally, if data-communication to one agent fails in the
multi-agent scenario, the other agents are not influenced and can mitigate the effects.
Similarly, failure of one agent would lead to a less catastrophic outcome compared
to a malfunctioning central power flow calculation in one of the rule-based scenarios
or to a wrong action of the SARL controller (higher maximum power). Lastly, in
contrast to the SARL case, the MARL controller still requires the presence of energy
communities to justify the unbalanced costs, which applies also for the rule-based
controllers on house level.

6.3 Case study 2: an unknown distribution grid

6.3.1 Setup

In the second case, we study the potential of transfer learning if real world data is
available, but in contrast to the first case the physical aspects of the distribution
grid are unknown. Therefore, the agent is first trained offline with data from
the REnnovates project in the known environment from the Linear project. The
obtained knowledge is subsequently transferred to the agent in the “real”, unknown
environment by carrying over the DQN. Finally, the agent is trained online for one
year in the “real” environment. Due to limited computational resources, this case is
only researched for a single-agent scenario.
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Figure 6.12: The modified grid used to study the potential of transfer learning
when the environment is different in the offline and online training phases. It is
presumed that the grid topology data from this distribution network is not known in
advance.
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Figure 6.13: Single-agent transfer learning in an unknown distribution grid. The
agent is trained offline in the Linear topology after which the experienced DQN is
transferred to the “real”, unknown environment.
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6.3. Case study 2: an unknown distribution grid

6.3.2 Precedent training in a well-known environment

Similarly to the first case, the agent is trained offline on the Linear grid topology
following the exact same procedure as described in section 6.2.2 of this chapter.
Because of this approach, the reader is referred to the discussions in this section
about the observed offline learning process.

6.3.3 The “unknown” environment

To establish the environment in which the online control task has to be performed, a
fictitious, “unknown” grid was designed. The topology for this network is derived
from the Linear setup: the bottom feeder was copied and symmetrically attached to
the top-side of the network. Thus, a larger distribution system with radial branching
is obtained. Figure 6.12 gives a graphical representation while indicating the position
of the SARL controlled grid battery. The used converter power and battery energy
content, respectively 45 kW and 190 kWh, are larger compared to case 1 because
of the increased number of total houses connected to the network. A linear scaling
approach based on the ratio of the number of houses in case 1 and case 2 is applied
to obtain the proposed battery sizing. The choice for the indicated placement stems
from the findings in section 4.3, indicating the battery can most efficiently resolve
violations when placed near the end of the network. Therefore, the furthest common
node between the two splitting up branches is chosen. It is assumed the control
engineer has no practical information on the physical data of this network, and thus
has to reside on the transfer learning process elaborated in this case study.

6.3.4 Online training of the agent in the “real” environment

To transfer the gained knowledge from the offline learning process to the online
agent facing the control task on this enlarged network, the same starting-point
method as in case study 1 is applied: the DQN is used to initialize the ANN of the
RL based grid battery controller in the “real” environment. However, the replay
memory is not transferred since the experiences gathered by the offline agents can
drastically differ from the experiences collected in the new environment. Some
informal test simulations were performed with transfer of replay memory, but no
notable performance improvement was observed.

At the beginning of the online simulation, a random sampling of REnnovates load
profiles (from the pool of 82 collected datasets) is assigned to the 42 households. The
e-value is kept constant at 0.1, a higher value compared to findings in section 5.2.2
for the Linear topology. It was experimentally observed that this higher exploration
rate led to enhanced performance. A higher e-value ensures more exploration and
adjustment of the learned policy. This online training procedure is repeated multiple
times (100 simulations with randomized REnnovates load profile distributions) for
both a randomly initialized RL agent and RL agent with transferred DQN. Figure
6.13 summarizes. The findings are presented in the next section.
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6. TRANSFER LEARNING

6.3.5 Validation of the DQL controller

The aim of case study 2 is to research the applicability of transfer learning in the
context of the described unknown distribution network. This new environment differs
strongly from the online training environment: an increased number of houses, a
different grid topology and different battery sizing are implemented. Therefore, we
consider solely the TL aspect, focusing on the differences between the performance
of the randomly initialized agent and agent with transferred DQN.

Figure 6.14 shows the performance of the controllers with and without transfer
learning over the 100 randomized simulations. The controller without offline training
resolves only a small amount of few grid violations. A clear performance improvement
is observed however for the SARL transfer learning agent, with an average reduction
in the number of remaining grid violations of 8% (and up to 16% in some of the
simulations) compared to the randomly initialized controller. As one might expect,
the improvement is not as pronounced as in case study 1, but the clear advantage of
transfer learning is established nonetheless.

A. Mo control B. Normal RL C. Transfer learning
3500 '
=
5 2 3250 é
w0
g X
= = 3000
'
~ g 2750
o
w15
=
g = '
z x40
= ,
2 oo
" e 30
R e
30 4
MNo-controllable Mo transfer Model
resources scenario learning anly

Figure 6.14: A controller with transfer learning performs better than the controller
without transfer learning. Not all violations are resolved, but the result shows that
transfer learning is even useful when the topology in online and offline training differs.

To gain some more insight in these results, figure 6.15 and figure 6.16 show an
example of the online training in the new grid for one of the randomized simulations
(the same random seed was applied to compare the transfer and no-transfer learning
cases). A clear improvement can be seen when comparing both cases: the TL agent
adopts more quickly a (limited) violation-solving policy.
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Figure 6.15: Online performance of the randomly initialized SARL agent. Almost
no grid violations are solved, indicating the poor data-efficiency of this method.
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Figure 6.16: Online performance of the SARL agent when initialized through
transfer learning. A clear improvement can be observed with respect to resolved
violations, especially towards the end of the summer when the agent has gained more
experience in the new environment
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6.4 Conclusion

In this final chapter the most important elements elaborated throughout the rest
of this work were brought together in the context of a transfer learning based RL
controller. The latter had the aim of increasing the poor performance of the randomly
initialized RL agent(s) from chapter 5. It was shown that the proposed controllers
using transfer learning are capable of mitigating the bulk of the grid violations in the
REnnovates-Linear setup over a multitude of randomized simulations, confirming
the applicability of sample-efficient RL controllers for low-voltage grid optimization.

In the first case study, the applicability of transfer learning in situations, where
the control engineer has perfect knowledge of the physical distribution grid data,
was shown. Through a precedent offline learning process a trained DQN network
was obtained and subsequently used for the initialization of the “real” agent, facing
the control task in the “real” environment. By sampling from a large dataset and
ensuring the same load profiles are never assigned to the same position in the network,
the available data was efficiently utilized in this training and verification process
without compromising the validity of the obtained results.

A clear methodological reasoning was established by first elaborating the utilized
procedures and then discussing the SARL and MARL results, both from a statistically
significant point of view over multiple randomized simulations and more in-depth
analysis of the trends observed in each of these runs. A benefit of working with an
offline training procedure found in this way is the possibility for larger state-space
exploration through implementation of an e-decay scheme. Additionally, the greatly
enhanced practical learning rate and the possibility to use any source of consumer
data for the offline training processes - even from open source databases - are key
advantages of the proposed methods.

All of the controllers developed in this work were subsequently benchmarked against
each other in a statistically significant way for the REnnovates-Linear setup. It was
found that the rule-based PV curtailment controllers and the offline trained SARL
and MARL controllers using transfer learning entailed the most successfully policies
towards resolving grid violations. When additionally taking into consideration the
incurred battery losses, the rule-based PV curtailment controller showed to be the
first-best option, not taking into consideration other than purely control based
indicators.

Finally, in the second case study the agent was presented a control task in a
distribution network for which the physical grid topology data was not available.
Even though the topological differences were significant, the results with transfer
learning were noticeably better. Therefore, we point out that this extreme case
demonstrates that transfer learning is also useful when the grid topology differs in
the offline and online learning process. Using a different grid with a similar topology
in both learning processes would be more realistic in practical control settings and it
is expected to result in even better performance enhancements.
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Chapter 7

Conclusion

This thesis presents a sample-efficient RL based controller designed for demand
response applications in a single and multi-agent setting. More specifically, a deep
Q-learning algorithm in combination with transfer learning is used to overcome the
data-inefficiency typically entailed by these data-driven methods. Battery and PV
installations in residential buildings were used as energy flexibility resources. The
main objective was to mitigate the grid impact of air source heat pumps and PV
installations in net-zero energy buildings on the low-voltage grid. As a secondary
target, battery cycling and PV curtailment losses are minimized. We used real world
data from large-scale pilots in Belgium and The Netherlands, more specifically grid
data from the Linear project and consumer profiles from the the REnnovates project.
The performance of the SARL and MARL controllers is evaluated using rule-based
controllers and an RL based controller which does not employ transfer learning.

An extensive data analysis showed that a considerable amount of overvoltages occurred
in summer as a result of the PV installations. Despite the heating electrification,
there were no undervoltages observed. It was found that the proposed RL based
controller with transfer learning canceled 99% of the grid violations in the single
agent case and 98% in the multi-agent case, which demonstrates that the grid impact
of RES and HP can be mitigated adequately with the suggested controller.

Furthermore, we showed that transfer learning improved the performance of the
controller significantly with respect to the baseline RL controller. This baseline RL
controller, which does not employ transfer learning, performed inadequately after
1 year of training, which confirms the extremely high sample complexity of DQL
and renders such controllers infeasible in practice. It was found that the transfer
learning controller outperformed the baseline RL controller when the topology of the
low-voltage grid was the same in the offline and online training process. Even when
simulating an extreme scenario in which the grid topologies differed substantially, the
transfer learning controller exceeded the performance of the baseline RL controller.
The results demonstrate that transfer learning methods provide a solution for optimal
control strategies in limited data domains and can be used to accelerate the learning
process of RL based systems in real world problems.
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7. CONCLUSION

Table 7.1: The SARL and MARL controllers using transfer learning outperform the
different RL and rule-based controllers. The multi-agent configuration using transfer
learning has a lower investment cost compared to SARL and is much more realistic,
because only a few small batteries are needed to mitigate almost all violations.

Controller Average violations resolved
Best rule-based battery 90%
Rule-based PV curtailment 100%
SARL -10%
SARL + transfer learning 99%
MARL 80%
MARL + transfer learning 98%

In addition, the results of the benchmarking test of the rule-based controllers and the
RL based controller with transfer learning exposed the shortcomings of rule-based
algorithms. Man-made policies require a great deal of expertise and modeling is very
expensive, because of the variability in residential energy systems. The proposed
controller resolved more violations compared to the baseline controllers, therefore
providing a viable alternative to these classic rule-based control methods.

This study has made innovative contributions to research governing independent
learning multi-agent systems. Whereas the majority of prior work describing multi-
agent problems included only 2 agents, our work presents a method with 3 agents.
In addition, most previous research focused on the implementation of collaborative
agents instead of employing a complete independent learning process. Moreover, the
presented independent multi-agent control strategy improves robustness compared
to the single agent controller or the rule-based controllers used in this study as a
baseline.

However, it should be acknowledged that the found policies are sub-optimal with
respect to the secondary objective of reducing energy losses. The contradictory
objectives, mitigating violations and minimizing losses, result in a complex learning
process. Fine tuning of the energy losses scaling factor in the reward function is a
painstaking and sensitive procedure. Future research can build upon the findings
presented here and use more refined methods, in which they can employ the policies
learned in our SARL and MARL settings and push them towards even greater energy
efficiencies. Furthermore, the effectiveness of more advanced algorithms, such as
double Q-learning, on the performance and convergence rate of the proposed methods
can be considered. We emphasize that the reward function used in our MDP can
also be utilized from an economical point of view. The costs of grid violations for
the DSO are not only related to technical grid issues caused by those grid violations,
but also to the operational reliability and ensuring security of supply towards their
customers. Interested parties can use our results as an input for a more thorough
economic analysis.
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While this study focused on RL based control systems in zero energy buildings using
data from specific projects in the Netherlands and Belgium, the presented framework
is generalizable to other control energy applications. It can be noted that many RL
researches lack the availability of real-life data and employ custom datasets with
completely fictitious information. Therefore, the matching of these projects could
well represent a universal scenario.

To conclude, transfer learning has proved to be a valuable asset in this study. We
believe that transfer learning is going to play an important role in future real-life
reinforcement learning DR applications. While transfer learning research within this
setting is still in its infancy, this study contributes to the first steps towards a more
extensive foundation in this research domain.
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Appendix A

Further considerations

A.1 Selection power flow program: pandapower

Different energy and power system modeling tools are reviewed by [55]. We selected
pandapower [56] based on its simplicity in modeling and parametrizing of electric
components such as transformers, lines and switches. pandapower is an open source
Python package, making use of data analysis library pandas and was built on
PYPOWER in order to focus on the modelling of distribution networks. Different
papers [57, 58] use pandapower for the simulation of smart power grids on low voltage
level, e.g. for designing optimal energy management strategies.
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A. FURTHER CONSIDERATIONS

A.2 Battery sizing issue for the rule-based controllers

An interesting observation can be made when comparing the worst-case and moderate
battery sizing for both the centralized and decentralized battery controllers: the
larger battery performs (slightly) worse than the smaller storage unit - a rather
non-intuitive perception. Figure A.1 highlights these findings by looking at the
battery controllers performances for a range of battery sizes. Two observations can
be made: i) at a given P 4, performance improves for bigger Ep q, and ii) at a
given Ej ., performance decreases for bigger P pqz-

The explanation for this phenomena is given in figure A.2, where the rule-based
operations of the grid battery over time are more closely examined. The major issue
with this control strategy lies in its selection of battery power: it always charges or
discharges at P, = Ppy — Pioqq — Pnp. At moments of expected overvoltages, this
effectively pulls down the voltage to an allowable magnitude below 1.1 p.u., but at
higher P, ,,,q, this excessively “discharges” the network resulting in a lower voltage
than is necessary. However, the SoC increases rapidly and the battery prematurely
reaches Ej q, at times where further charging is needed to prevent impending
overvoltages. Additionally, when the battery discharges to get the SoC to lower
values again, a higher discharge power (which is available but not used) in the evening
periods could be beneficial, since now the aimed value of 50% is not reached before
the next overvoltage occurs. The same issues apply to the rule-based house battery
controller.

Battery capacity [kWh] Battery capacity [kWh]
25 50 75 100 125 150 175 200 225 250 1.0 2.0 3.0 40 50 6.0 7.0 80 9.0 10.0

Battery power [kW]
Battery power [kW]

Figure A.1: Heat map for the rule-based grid battery controller (left) and house
battery controller (right) showing the percentage of violations per year compared to
the no-controllable resources scenario for different battery sizes. The analysis here is
performed for one of the 100 house ID distributions which showed an around average
number of violations without battery control.
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Figure A.2: A detailed view of the rule-based grid battery controller’s operation
in time. Utilized batter sizing Py nqe = 60 kW, E} 1,0, = 250 kWh. The ‘violations
without” parameter in subplot (A) indicates a boolean value (0: false, 100: true).
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A. FURTHER CONSIDERATIONS

A.3 Clarifying the agent’s states

A.3.1 Aggregate power balance

Figure A.3 indicates the clear linear relation between the instantaneous aggregate
power generation Pugg = Y juses (PPV — Pload — Prp) and maximum grid voltage
experimentally observed in the no-controllable resources scenario simulations. It
is clear that a hysteresis is present with respect to overvoltages: below 130 kW
aggregate net power injection it is almost certain no overvoltage will occur; likewise
P,gg > £133 kW will most likely result in an overvoltage. Compared to the present
order of magnitude this translates to a (133 — 130)/130 = 2.31% error margin in
which it is unclear whether a given F,4, will lead to a voltage violation or not.
Compared to the extra cost of refining this state, the aforementioned makes it more
than justifiable to use the community level forecast.
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£ 102 £ 1098
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0 100 125 130 135
Aggregate power balance [kW] Aggregate power balance [kW]

Figure A.3: Scatter plot of the aggregate power balance and maximum system
voltage in the no-controllable resources scenario for all simulated quarter hours in
the 100 randomized simulations.

A.3.2 Length of the forecast

To establish the optimal number of forecasted quarter hours to include in the agent’s
state, an experimental parameter analysis was performed. Here, we look at a
completely myopic agent (n, = 1) and more farsighted agents (n, = 8, ny = 24, and
ng = 48). Figure A.4 shows the results of this analysis for the SARL scenario, figure
A5 for the MARL case. In the former, it is found that more quarters lead to a
reduction in battery losses, but a clear local optimum towards resolved violations
is observed for the n, = 8 case. Since it is the primary objective of the agent to
solve grid violations, this translates into a maximum reward for the agent with the
2 hours ahead forecast. The results for the MARL scenario support these findings,
also indicating an optimum at n, = 8.
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Figure A.4: Analysis of the optimal number of upcoming quarter hours to include
in the SARL state. The right-hand side figure shows the indicated metrics averaged
over the last five simulated episodes (see section 6.2 for the meaning of an episode).
An epsilon-decay policy with € = 1 at the start and linear reduction to € = 0 over
the first 10 episodes is used, afterwards epsilon is kept at zero. Each parameter is
tested over five randomized simulations, with the same set of random seeds used
for comparing the different parameter values. Violations are normalized with the
no-controllable resources scenario.

91



A. FURTHER CONSIDERATIONS

—2000

—4000

—6000

Reward [-]

—8000

= = =
= 2 W

Normalized violations [-]

o
[=1

15.0

12.5

10.0

Energy losses [MWh]
~]
w

w
[=]

Al. Reward per year

— asplq08
— asplq24
—— asplg48

B1. Normalized violations per year

C1. Energy losses per year

10 20 30 40 50
Time step [years]

—1800

—2000

—2200

Reward [-]

—2400

—2600

A2, Average reward per year

B2. Average normalized violations per year

0.025

0.020

0.015

0.010

Normalized violations [-]

0.005

Energy losses [MWh]
= o o
(5] [=1 ()]

o
=]

C2. Average energy losses per year

asplg08 asplg24 asplg48

Parameter value

Figure A.5: Analysis of the optimal number of upcoming quarter hours to include
in the MARL state. The same remarks as the caption for figure A.4 (SARL) are
valid, only in this case 60 episodes were considered (e = 0 at episode 45). Due to the
poor results in the SARL case, the completely myopic agent was not considered.
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A.4. MARL battery sizing

A.3.3 Time driven states

Three time driven states are used to describe the seasonal and daily trends in the
data profiles as described in 5.1.3:

e Quarter of day: indicating the number of quarter hour in 1 day, so this state
varies from 0-95 (96 quarter hours in one day). The initial quarter hour of day

is set at O.

e Day of the week: indicating the number of the day in the week, starting at
0 at the beginning of the simulation. This state varies from 0-6 (7 days in 1

week).

e Season of year: indicating the number of the season in one year, so varying

from 0-3 (4 seasons in year), starting from 0.

Due to the design of these states, the simulations can start in every quarter hour,
day or season. It is only important that the agent can learn the tendencies in time.
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Figure A.6: The MARL battery sizing analysis is based on two considerations:
the maximum instantaneous aggregate power balance in the 100 randomized no-
controllable resources scenario simulations (A), and the iterative minimum battery
power analysis with three houses placed at the end of the feeder (B).

The worst-case battery sizing analysis presented in section 4.3 gives an interesting
approach to determine an upper bound for both P 4, and Ej 4. Nonetheless,
it was found that these values are a strong exaggeration in comparison with the
experimentally found suitable battery sizes. The bigger battery sizes even led to
poorer rule-based performance, an issue discussed in section 4.4.2.
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Since it is not in the scope of this work to analyse the performance of the RL
controller over different ranges of battery sizes, solely a single, realistic combination
of Py maz and Ep e, is studied. For the SARL agent, this choice is rather obvious:
we take the moderate battery sizing determined in the rule-based district storage
unit scenario (P mqez = 30 kW and Ejp e, = 125 kWh). However, for the MARL
case with three independent learners this design choice is less clear since both PV
curtailment and battery control actions are possible. Therefore, we will not size the
battery in the same way as for the SARL controller. The battery size is selected
based on the following reasoning: the agent has to be able to resolve most of the
overvoltages, but not all of them. In this way, we research if the agents would take
only curtail actions in extreme cases when not all of the overvoltages can be canceled
with battery actions.

This battery sizing for MARL is done in a similar way as in chapter 4, but instead of
assuming a maximum production of all the PV installations (worst case) at the begin-
ning of the battery analysis, we calculate the maximum aggregate power generation,
since this is a less extreme upper boundary, max; (Zle (P](Dt‘)/vi — Pl(ot(z di P}E;)l))
This is determined in each of the 100 performed no-controllable resources simulations.
Figure A.6A shows an average value of £150 kW, or 150/29 = +5 kW per household.
So, instead of using a maximum (worst-case) PV production of 7kW, we use the
value of P} 1,q,=5kW in the battery analysis. We then perform the same iterative
Py ;maz analysis as presented in section 4.3, but now only the last three houses on
the feeder are assigned a storage unit. Figure 4.3B highlights the result, indicating
an optimal battery sizing of approximately 2.5 kW. This value presents the needed
battery size in order to be able to mitigate all the violations on the grid encountered
in the 100 simulation. Overvoltages which cannot be canceled by the battery, should
be canceled with curtailment.

The energy content is calculated in the same way as in section 4.3, following the
reasoning that the battery has to charge at maximum power during 16 quarters
to prevent an overvoltage, with 16 the maximum number of consecutive quarter
hours observed in the data analysis with an overvoltage. A battery energy content
of 10kWh is calculated using the battery power of 2.5kW for each battery.

A.5 Hyperparameters

A.5.1 Hyperparameters definitions

In chapter 5 the optimization of the hyperparameters was performed for the online
RL controller. For each simulation 1 year of data was used in order to choose the
right parameters in the same setting as for the actual controller. The following table
shows the influence of different parameter values on the performance [29, 59].
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A.5. Hyperparameters

Table A.1: Explanation of the hyperparameters.

Hyperparameters Explanation

A large amount of hidden layers can lead to
overfitting and the inability to generalize data.
Working with a small amount of hidden layers is
maybe not enough to represent the complexity
of the problem.

ANN structure (neurons per
hidden layer)

Each time the neural network is trained, the
estimated error is calculated and the weights
of the network are updated. The learning rate
indicates how much the agent changes his weights
according to the value of the estimated error. A
small learning rate will lead to slow learning
processes. A high learning rate will fasten up
the learning but can lead to unstable processes
where the agent forgets his learned policies from
the past.

Adam optimizer learning rate

The discount factor, a value between 0 and 1
is used to discount the reward and calculate
the cumulative discounted future reward. The
discount factor determines the horizon of the
agent. Using a large discount factors means
that the agent will attach more importance to
future rewards. On the other hand small discount
factors represent immediate rewards.

Discount factor

The amount of experiences e; = (¢, as, ¢, St+1)
stored in the replay memory. If the memory size
is small, the agent learns mostly (undesirable)
temporal correlations. Bigger memories allow
the agent to also learn from earlier experiences
which speed up the learning.

Replay memory size
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Table A.1: Explanation of the hyperparameters (continued).

Hyperparameters

Explanation

Minimum replay memory start
size

Only when the agent has reached enough experi-
ence, expressed as a minimum amount of experi-
ences (minimum replay memory size) stored in
the memory, the agent starts training. Starting
with a small replay memory size has the same
effects as explained in the definition of the replay
memory size above. Starting with a too large
memory means that the agent performs bad for
a long time (because there is no training) or that
the agent has already forgotten some experience
(it is not anymore in the memory).

Minibatch size

At the beginning of each training process, sam-
ples from the replay memory are randomly drawn
in order to use these former experiences to train
the neural network. The amount of samples is
called the minibatch size. The neural network is
trained using a stochastic gradient method. For
this method, larger batch sizes lead to a degra-
dation in the generalization performance and
optimization convergence, but smaller minibatch
sizes lead to a less accurate estimate of the error
gradient.

Target network update fre-
quency

The frequency, expressed as the amount of time
steps, at which the target network is updated.
During the update, the weights of target are set
equally to the weights of the main neural network
used in the training process. Updating the target
network very frequently, can lead to oscillations
(the generated targets for the Q-values change
frequently). Updating the target less frequently,
leads to better convergence, but the value cannot
be to low in order to update the future Q-values
enough.
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A.6. Scaling factors in the reward function

A.5.2 Hyperparameters for offline learning

The hyperparameters used in the simulations of the offline training process in chapter
6 are presented in table A.2. These parameters are obtained with a one dimensional
grid search, similar to the online learning parameters. Instead of using only one year
of data, we simulated 15 episodes in order to evaluate the values in function of a
offline setting. The e-value was set at 1 and decayed linearly to 0 in the 10th episode.
In the last five episodes € was kept constant at 0. Five seeds were used per parameter
value in order to get a statistically significantly results.

Table A.2: Results of the hyperparameter optimization.

Hyperparameters Optimal value
ANN structure (neurons per hidden layer) (64,64)
Adam optimizer learning rate 0.001
Discount factor 0.99
Replay memory size 134400 quarters (200 weeks)
Minimum replay memory start size 672 quarters (1 week)
Minibatch size 64 experience samples
Target network update frequency 1 episode (1 year)

A.6 Scaling factors in the reward function

An important factor in the considered MDP is the design of the reward function. It is
the agent’s objective to maximize the discounted, cumulative reward over time. This
effectively means the emerging control behaviour is steered by the definition of the
reward signal. In our case, the four components (voltage magnitude, energy losses,
line loading and transformer loading) described in section 5.1.5 constitute the reward
function. The scaling factors in the different components should be interpreted as
measures to set the relative importance of each component with respect to each
other. In practice, an economical motivation could be used for this, but it is up to
the DSO to decide the relative importance of each component with respect to costs
and being able to ensure security of supply. Following reasoning is followed:

e Since the data analysis in chapter 3 revealed the dominant grid issue to be
overvoltages, we take this parameter as the reference case. It is chosen to
work with a scaling factor a; = 100000, leading to Ropervoltage(max(U;) =
1.1 p.u.) = —10. Since undervoltages are treated similarly to overvoltages, the
same scaling factor is applied here: a; = as.

e Common sense tells us a single quarter hour with a line overloading or trans-
former overloading is more harmful for safe operations of the distribution
network than a quarter hour with an over- or undervoltage. Thus, it is logic to
penalize such violations more severely. Since in our reward reward function
we always consider the highest loaded line or transformer in the system, it is
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Figure A.7: Experimental analysis for the fine-tuning of the SARL scaling factor
for losses in the reward function. At low « the agent focuses on solving violations,
but the incurred losses are abundant. With increasing « the focus first shifts towards
reducing battery losses, but the amount of resolved violations worsens. A local
optimum of o = 160 is found.
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A.7. A closer look at the single-agent transfer learned policy

assumed that both situations are equally bad: a3 = a4. An arbitrary choice is
made here: a line- or transformer loading of 100% is considered to be 2.5 times
more disadvantageous as an overvoltage of exactly 1.1 p.u. From 5.4 it then
follows that aes = a3 = 1. It is difficult to verify the influence of this parameter
on the MDP since the Linear grid is adequately designed for the REnnovates
load profiles, meaning no overloading is observed in the simulations.

e The most crucial part in the reward design is the relative importance of energy
losses. Since the source of these losses does not matter, i.e. a kWh battery
losses is equally bad as a kWh PV curtailment, it logically follows that as = ag.
The scaling should be done in such a way that solving voltage violations is
the primary objective and that minimization of the losses remains a secondary
target. A similar experimental approach is used as for the optimal number of
quarters to include in the agent’s forecast (see section A.3.2) and the offline
hyperparameter optimization (see section A.5.2). The main difference is that
now not 15, but 30 episodes were considered since the dynamics for the battery
losses requires a long-term view. The results for the SARL case are indicated
in figure A.7. For the MARL scenario, a similar approach was followed, leading
to an optimal scaling factor of 400.

A.7 A closer look at the single-agent transfer learned
policy

Figure A.8 shows the operations of the SARL agent during a week in summer. Two
clear observations can be made:

e SoC planning policy: the agent has clearly learned a farsighted policy by
proactively discharging its battery some hours before high PV generation is
expected in the forecasts. This ensures that the SoC will be sufficiently low to
start charging the battery at moments of impeding overvoltages.

¢ Reduced overcharging: compare the operations of our RL agent to that
of the rule-based grid battery controller in figure A.2. The issues with the
latter were highlighted in the accompanying section, reiterating the major
disadvantage of the rule-based controllers: their inability to intelligently regulate
the battery power. The approach of our RL agent creates a much smoother
voltage profile (see subfigure 2 in both cases) and ensures the SoC of the battery
does not prematurely reach 100%.
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