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Abstract

Brandbestrijding is een essentieel opleidingsonderdeel voor de marine aangezien het de veiligheid

aan boord moet garanderen. Maar deze opleiding is gevaarlijk, kostelijk en milieuonvriendelijk.

Daarom is de marine op zoek naar een opleidingsvorm die de huidige opleiding kan aanvullen en

minder risico’s met zich mee brengt.

Het gebruik van een Extended Reality (XR) applicatie kan een oplossing bieden. De leerlingen

kunnen zich zo volledig inleven in de situatie en geavanceerde technieken aanleren zonder dat ze

in gevaar komen.

Deze thesis beschrijft de ontwikkeling, van design tot implementatie, van een Virtual Reality (VR)

simulator en wordt uitgebreid met een proof of concept (PoC) van wat in de toekomst een vol-

waardige Mixed Reality (MR) simulator zou kunnen zijn.

Met de VR-simulator kunnen leerlingen in een volledig virtuele omgeving trainen. De instruc-

teur kan steeds nieuwe scenario’s creëren door op willekeurige locaties vuren te plaatsen in deze

virtuele omgeving. Na de plaatsing van deze groeiende vuurhaarden, kan de leerling het virtuele

vuur blussen met een draadloos spuitstuk dat uitgerust is met sensoren. Het originele spuitstuk in

gebruik aan boord van de marineschepen, werd uitgebreid met 3D-geprinte stukken die de sen-

soren en microcontroller bevatten. De microcontroller stuurt de data van de sensoren over wifi naar

een server die in de applicatie draait.

De MR-simulator laat de marine toe om in eender welke omgeving of compartiment van het schip

te trainen zonder dat de ruimte gemodelleerd moet worden. Met behulp van een stereocamera ziet

de leerling de echte wereld. Op de echte wereld als achtergrond plaatst men virtuele vuren, die

met virtueel water geblust kunnen worden. De MR-simulator is een vereenvoudigde versie van de

VR-simulator omdat deze veel meer processing power vraagt.

Deze thesis wordt afgesloten met een performance test. Voor beide simulatoren wordt het verbruik

van de processor en de ’frame rate’ onderzocht. Deze resultaten worden besproken en op het

einde worden er nog enkele verbeteringen en uitbreidingen voor het systeem aangehaald.
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Extended Abstract

Firefighting is a crucial part of the Navy’s training program, as it must ensure the safety on board.

This training is dangerous, expensive and environmentally unfriendly. That is the reason why the

Navy is looking for a safer form of training that can enhance the current one. They are looking for a

training tool that can prepare the trainees to tackle real fires.

Extended Reality (XR) technology could offer a solution. Using both Virtual Reality (VR) and Mixed

Reality (MR) to create a virtual training environment that is tailored to their needs, could reduce the

danger, limit their training costs and reduce the environmental pollution that is caused by firefighting

training. Trainees can immerse themselves into a virtual world and train specific techniques without

compromising the training experience.

This thesis describes the development, from design to implementation, of a Virtual Reality (VR)

simulator, which is extended with a proof of concept (PoC) for a future, fully-fledged Mixed Reality

(MR) simulator. Both simulators are developed in Unity and use state-of-the-art technologies, in-

cluding the HTC VIVE Pro system and the ZED Mini stereo camera.

In the VR simulator, trainees are immersed in a fully virtual world. The instructor can create an

endlessly number of scenarios by placing fires at different locations. After the fires are placed,

they start to grow, and the trainee can start extinguishing the virtual fires using a wireless firehose

nozzle controller. A standard issued Navy firehose nozzle has been modified to be used as a con-

troller in the simulators. The original firehose nozzle is equipped with a set of sensors to track all

its potential manipulations. 3D printed parts were designed and manufactured in house using a

small 3D printer. The printed parts are attached to the nozzle and house the sensors and micro-

controller used to track its manipulations. The microcontroller sends the data over Wi-Fi, using the

User Datagram Protocol (UDP), from the sensors to the server that runs inside of the simulation

application.

The MR application allows the Navy to train in any environment or compartment of the ship, without

needing to model the room. Using a stereo camera attached to the headset, the trainee sees the

real world around him/her. This image is overlaid with virtual fires. These fires can be extinguished

with virtual water, using the same firehose nozzle as the VR simulator. The MR application is a

simplified version of the VR simulator since it requires a lot more processing power to render the

scene. Simplifications include no smoke particle collisions, no fire spreading and a more simplified

fire growing algorithm. The beginning steps were made to include object detection in the MR sim-

ulator. If object detection, combined with the recognition of materials, is implemented, this would

allow the fire to spread depending on a burning object’s material.
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This thesis concludes with a performance test. For both simulators, the processor usage as well as

their frame rate are examined. The developed system is also compared to other existing systems

from companies and other researchers. At the end, some future improvements, ideas and sugges-

tions are listed to give an overview of how the system can be improved or extended to better suit

the Belgian Navy’s needs.

Keywords: Virtual Reality, Mixed Reality, Extended Reality, firefighting, Tangible User Interface
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Chapter 1

Introduction

For the Navy, firefighting on board is essential for the safety of the ship’s crew and for the execution

of the operations at sea. Basic firefighting training of the crew consists of two parts. Firstly, theoreti-

cal courses cover the different classes of fires and their characteristics, in order to use the right type

of extinguisher. Secondly, practical training is introduced to teach the trainees the techniques and

manipulations needed to tackle a fire. Figure 1.1 and Figure 1.2 are two examples of the practical

training.

Choosing the wrong fire extinguishing method can have fatal consequences. For that reason,

trainees learn to manipulate different types of extinguishers. There is an emphasis on using the

right technique and being able to manipulate the extinguisher blindfolded because in case of a real

fire, the smoke build-up severely reduces visibility which means that looking at what you are doing

becomes really hard or even impossible. Learning the right techniques and manipulations is thus a

very important part of training.

Figure 1.1: Firefighting training with a powder extinguisher.

During the practical part, trainees will be immersed and exposed to hot fire training and its associ-

ated risks. Although instructors are always present to ensure the safety of all attendees, accidents

1
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do happen from time to time. Even experienced crewmembers can make mistakes. This is the

reason why most crewmembers have to follow an additional firefighting course before their deploy-

ment. This additional course is a rehearsal of all major firefighting methods learned and trains

specificities before deployment. It guarantees that crewmembers get enough practise and are up

to date with the latest safety measures when it comes to firefighting.

Introducing Extended Reality (XR) technology can offer solutions to both risk reduction and training

of firefighting methods. On top, XR allows for the development of an endless number of training

scenarios that cover the full ship. This includes scenarios that are too expensive or impossible to

simulate in real life. The goal of XR is not to replace the hot fire training. These trainings will always

be required as part of the firefighting education program. The goal of XR however is to introduce

a step between the theory classes and the hot fire training. By introducing XR into the mix, more

trainings can be organised which means crewmembers will be able to practise more and improve

their skills in a safer and more cost-efficient way.

Figure 1.2: Firefighting training with a firehose.

As a result, this will reduce the risk of an accident during hot fire training as well in real intervention

situations. Due to repetitive training in the virtual simulator, one obtains an increase of automation

of operation in the real scenarios.

The purpose of this thesis is to explore the possibilities of XR in the firefighting scene and develop a

working proof of concept (PoC) for the Belgian Navy. At the end, a working XR simulator might give

a glance of what role XR technology can play for the Belgian Navy. The system should highlight the

key points to consider when they develop their own firefighting simulator and it should demonstrate

why they should embrace this new technology. All of this while providing a clear overview of both

the potential as the limitations of XR.

During the course of this thesis, several engineering techniques and disciplines were combined to

achieve the end result. This includes, knowledge about electronics to create the electronic circuits

used to perform measurements, the ICT-skills to program the software in Arduino and Unity, 3D

modelling and printing knowledge to create the parts needed to support the project and finally,

machine learning to introduce object detection into the mix.
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1.1 Nature and scope of the problem

During the practical part of training, real gas and fuel fires are simulated. This part of the training

focusses on habituation of the trainee. Although the heat radiation in approaching a fire is one of

the more dominant factors, trainees have to learn to get close to a fire and not freak out. They have

to get used to the claustrophobic feeling once engulfed in smoke to the point you cannot even see

your hands before your eyes. Using a self-contained breathing apparatus (SCBA) and a thermal

imaging camera is also part of the skills trained. The most important part of the practical training is

learning the techniques and procedures to call out a fire, approach a fire and then attack the fire.

This part of the training is the most intense and asks a lot of focus and attention from every trainee

because it is also the most dangerous one.

The use of an XR firefighting simulator can be used to prepare trainees prior to a real-life scenario.

This way they are already familiar with the scenario and know what to expect when the real-life

training begins. By making the trainees try the simulator first, instructors can already single out

the trainees that are not ready for the real deal. This will improve the safety during a real training

because the instructors will know on who to keep an eye on.

Virtual trainings also give more freedom to the instructors to create more challenging and com-

plex situations for trainees. They could create simulations that are impossible or too expensive to

recreate in real-life. Moreover, customized simulations by simulating ship specific scenarios helps

trainees who will embark in the near future to get to know their shipping environment even better.

Hot fire trainings are necessary to ensure trainees are capable to handle real fires. However, they

have significant economic and ecological drawbacks. Firstly, hot fire trainings are expensive be-

cause a lot of material is needed like, different types of extinguishers (CO2, powder, foam, ...),

SCBA’s, protective equipment (e.g. firefighting suits), hoses, nozzles and a lot of fuel. Secondly,

the feasibility of hot fire trainings encounters more and more societal pressure. Polluting the envi-

ronment is a present-day issue as burning diesel, gasoline and propane emits too much CO2.

An XR simulator can reduce the amount of pollution created per training session, because no igni-

tion of fire is needed for virtual training sessions. It can also reduce the amount of materials needed

to accomplish a similar amount of trainings which will bring the cost per training down. The calcula-

tion of the training costs of 2019 below gives an image of how expensive firefighting training really

is. These numbers were provided by the Damage Control Center of the Navy. (Van Engeland, P.,

personal communication, January 23, 2020)

Amount of trainees: 1 153

For each trainee, at least one extinguisher of each kind is provided.

Cost of one CO2 extinguisher and disposal: ±100 euro

⇒ Total cost of CO2 extinguishers: 1 153 ∗ 100 = 115 300 euro

Cost of filling and examination of powder extinguisher: ± 57 euro

⇒ Total cost of powder extinguishers: 1 153 ∗ 57 = 65 721 euro
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⇒ Total cost extinguishers: 1 153 + 65 721 = 181 021 euro

For training purposes, the Navy uses fuels and gasses too. The amount used of each fuel and gas

in 2019 is shown below.

Diesel: 37 209 l

Benzine: 1 760 l

Propane: 38 000 l

The calculations show that in 2019 the Navy spent at least e 181 021 on fire extinguishers only.

This is without including the cost of the fuel and gas used during training.

Obviously, there are many benefits of using an XR simulator, nevertheless it is important to keep in

mind that it will never be able to replace hot fire training. Although it reduces the amount of hot fire

trainings, hot fire trainings will always be needed to offer an authentic training experience. The XR

simulator merely means to augment the training and to create an intermediate step between theory

and practise. An advantage of the XR simulator is that it can be used to train when conditions do

not allow it (e.g. bad weather). It can also be used as an extension of the current training facility to

allow more people to train at the same time.

1.2 Outline of the paper

This Master’s thesis starts with a brief introduction of the goal, scope and nature of this project. It

is followed by a chapter that gives background information that is needed to understand the subject

matter that is discussed in this work. In the third chapter, the use cases and all requirements that

the Navy imposed are discussed. Chapter four talks about the high-level design of the general

system and each separate component is discussed. This goes from the mechanical components

to hardware components and software. The fifth chapter, the development and implementation

chapter, explains how each component of the system is implemented. Both the used tools and

software, as the implementation of the sensors and simulators are discussed. In chapter six, the

system is evaluated on multiple criteria. The results of this evaluation are discussed in chapter

seven. The penultimate chapter is a future work chapter that discusses possible improvements and

suggestions. Finally, this thesis ends with a conclusion about the work delivered during the course

of this thesis.

1.3 Adaption of goals of this Master’s thesis due to the Corona pro-

tective measures

Due to the coronavirus outbreak, the Belgian government took some protective measures. As a

result, user tests could not be performed. However, this was an important aspect of this thesis,

because this thesis is not just about researching the XR technology but also about building a

Tangible User Interface (TUI) to train instructors and trainees of the Belgian Navy. This means
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that user input is an important factor in the design process to create a user experience that is

pleasant, intuitive and interactive. On top of that, the Belgian Navy already experienced issues with

other VR simulators. All of this meant that this issue had to be addressed and a solution needed

to be found. The way of working was altered, and short videos of the gameplay were sent to the

Navy during the design and development process. This ensured getting some kind of feedback

from them and being able to adapt the system to their needs and requirements. The main goal of

this thesis did not change because of this altered way of working.

The original user tests would assess the user friendliness of the system. Is the system easy to

setup and how long does it take an instructor to set it up? The tests would also assess the physics

of the simulator. Does the interaction between fire and water feel realistic? Is the needed amount of

water to extinguish a fire of a certain size correct? Does the spreading of fire between objects and

inside objects feels realistic? Is the shape of the beam type correct? Is the smoke development

limiting visibility like in real-life? The general gameplay of the simulator would also be evaluated.





Chapter 2

Background Information

To understand the full scope of this thesis and to be able to reproduce all the steps and results,

one needs some background information. The background information varies from the basics of

3D printing to the study of existing VR firefighting systems.

2.1 Definitions

2.1.1 Extended Reality

XR is an umbrella term that covers Virtual Reality (VR), Augmented Reality (AR), Mixed Reality

(MR) and every other immersive technology that combines the real and virtual world. The real

world is extended with virtual artefacts. (Qualcomm, nd)

2.1.2 Virtual Reality

VR is a technology that creates immersive illusions using computer simulations in which one is

teleported into an artificial environment with which he can interact. (Merriam-Webster, ndb) VR is a

technology that creates immersive illusions using computer simulations in which one is teleported

into an artificial environment with which he can interact.

The idea of immersing someone in an artificial environment dates back to the 19th century but

it only recently gained traction due to the commercialization of VR-headsets by companies like

Oculus and HTC. These companies opened up the possibility of experiencing VR to the broad

public. They brought the technology to the forefront by introducing products like the Oculus Rift and

the HTC VIVE. (Rubin and Grey, 2020)

2.1.3 Mixed Reality

MR sits right in between the physical world and the virtual world. Virtual objects overlay the real

world. In contrast to AR, MR takes into account environmental input. This allows the virtual object

7
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to interact with the real world, which gives a sense that these virtual objects are part of the real

world. Examples of environmental input are plane detection, object detection and head tracking.

(Microsoft, 2018) environmental input are plane detection, object detection and head tracking. (Mi-

crosoft, 2018) To achieve this, stereo cameras, in combination with head-mounted displays (HMDs),

are used. A stereo camera is a camera that has two lenses. The distance between these lenses

is comparable to the distance between the human eyes. (Merriam-Webster, nda) Because of the

distance between them, both cameras have a slightly different view. By comparing the difference

between the two images, the camera senses depth. This is similar to the way the human eyes

sense depth and 3D movements. (Stereolabs Inc., nda)

2.2 Analysis of existing systems

There have already been attempts to create immersive VR firefighting simulators in the past. Inspi-

ration can be drawn from these existing systems and technologies to solve problems encountered

during the design and implementation phases. Studying existing systems can help understand the

design choices that were made during the course of this thesis. Although there have never been

attempts to create an MR firefighting simulator many parallels can be drawn from VR.

2.2.1 FLAIM Trainer

The FLAIM trainer (Figure 2.1) is a firefighting simulator developed by a company called FLAIM

Systems based in Australia. The system creates dangerous, difficult and challenging situations

for firefighters in virtual environment. This way firefighters can train safely while being confronted

by life-threatening conditions. They developed the system together with the firefighting industry

to develop a range of training scenarios from car fires, to plane fires and structural fires. FLAIM

system highlights the realism of their visuals and the interactions between fire particles and different

extinguishing agents. The FLAIM trainer also contains haptic feedback in the form of a heat vest

that simulates the heat of a fire and a hose-line system that simulates the force exerted by a

firehose. The system also has a breathing mask that can measure the oxygen consumed by the

user. (Deakin Research, 2018)

FLAIM systems do emphasize that the FLAIM trainer is not a replacement for hot fire training but

complements it. This is because the system can be used all year round and does not depend on

weather conditions. It can also be used to train scenarios that are too dangerous and expensive to

simulate in real-life. (FLAIM Systems, 2019)

Belgian Navy experts are evaluating a FLAIM trainer system since 2019. Their system (Figure

2.1) consists of a firehose nozzle (4), a hose-line system for force feedback (2), a personal heat

vest for heat feedback (not visible on figure), an SCBA with built-in computer(1) and a breathing

mask for oxygen consumption measurements (3). They test the system for the same reason as

why they created this thesis. They wanted to have a system with which they could train their

crewmembers in a safe environment using a more immersive technology than a computer screen.

In their experience the FLAIM trainer was lacking this feature amongst others. One of the biggest
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Figure 2.1: FLAIM Trainer demo at DCC.

deficiencies encountered with the FLAIM trainer is that it does not have customized scenarios that

are typical to the maritime environment within which the Belgian Navy acts. The use of the virtual

nozzle does not feel real nor does it match the model that is in use at the Belgian Navy. Therefore,

trainees are not getting used to the procedures they will have to execute during hot training or during

a real fire. Nor are they getting used to the essential manipulations they will have to execute on

the firehose nozzle that is used by the Belgian Navy. This are the biggest reasons why firefighting

instructors of the Navy are reluctant to use the FLAIM trainer as an educational tool. Currently the

FLAIM trainer is used as a PR-tool to recruit new recruits for the Navy. It is also used as a tool to

introduce instructors and students to the concept of VR training.

2.2.2 Fire Training with Unity and HTC VIVE

B. Schlager explained how she implemented a fire training simulator in her paper, Building a Virtual

Reality Fire Training with Unity and HTC VIVE. The goal of her research was to create an immer-

sive fire training software to train non-professionals in using a fire extinguisher. She used the Unity

game engine and an HTC VIVE to create her software and emphasized that immersion was one of

the major goals.

To achieve a higher immersive experience, she attached the controllers of the VR headset to real

fire extinguishers. This way the trainee feels the real weight of the extinguisher which acts as a kind

of haptic feedback.

In her game scene, she works with two types of objects, flammable objects and non-flammable

objects. Flammable objects have a corresponding voxel grid shaped like the 3D model and ac-

cessed at runtime. Each voxel in the grid saves information such as current temperature, physical

properties and current state. An internal software calculates a 2D raw image which loads the grid,



10 CHAPTER 2. BACKGROUND INFORMATION

as can be seen in Figure 2.2 (right). Every flammable object in her scene consists of six radiators

(Figure 2.2, left) that are responsible to transfer heat from one object to another.

Figure 2.2: From left to right: rendered mesh with radiators, emitting mesh and voxel grid. (Schlager, 2017)

In her simulation, she was able to simulate heat transfer by, conduction, convection and radiation.

She achieved this by using a heat transfer framework from her research institution to do the physical

calculations based on the physical conditions of the environment and the material of the burning

objects. She also relied on pre-processed data during runtime to mitigate performance issues and

achieve a framerate around 90 fps.

Another feature she added was controls for the supervisor. The supervisor could interact with

the environment and could control the fires. He is also able to see everything that the trainee

does and is able to give live feedback. This way the training becomes a supervised learning pro-

cess.(Schlager, 2017)

2.3 Related works

There have been several attempts to create an immersive fire training simulator by both companies

and researchers. The design of each simulator achieves a specific goal. Some intend to train

professionals, while others aim to train non-professionals and teach them the basic fire safety rules.

Besides the different aimed audiences, each developed simulator runs for a different platform such

as a desktop on one hand or a VR application on the other hand. After all, the common objective

appears to be ”education of people through gaming”.

Learning through the act of playing serious games is a subject that has long been researched. But

adding VR to the mix can have many benefits. VR is an immersive technology that can fully immerse

someone in a simulated environment. This was not possible before and therefore it offers new

possibilities to educate people. In his paper, Immersive Interfaces for Engagement and Learning,

Chris Dede concluded that immersive virtual environments can enhance the learning process in at

least three ways, allowing multiple perspectives, situated learning and transferring knowledge in the

belonging context. (Dede, 2009) This means that using skills in a context that is similar to the real

world can support the learning experience. If this is applied to the current context of firefighting,

this means that if trainees are trained in an VR environment to fight fires like they would in real life,

the immersive virtual environment could enhance their learning experience.
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VR systems come with regular controllers that can be used for every type of application. This design

choice is functional but takes away realism. Designing a specific controller for a specific application

adds to both realism as to intuitiveness. This is how a Graphical User Interface (GUI) system can be

distinguished from a TUI system. By designing a controller that is application specific, the designer

can create user inputs that are based on real-world interactions. Basing interactions on pre-existing

real-world knowledge and skills may reduce mental effort to operate a system. This can speed up

learning or improve performance in stressful situations. This may also encourage improvisation

and exploration because users do not need to learn interface-specific skills. (Jacob et al., 2008)

Using a VR or MR firefighting simulator offers a more secure, practical and cost-effective alternative

to traditional training while offering a more engaging experience. It also gives the freedom to train

in a variety of training scenarios. (Schlager, 2017) These benefits make XR a worthy investment

for the future.

2.4 General background information

This section contains general information about 3D printing, fire physics and a basic explanation of

fire classes. It is important to have a basic understanding of these concepts to be able to follow the

design choices that are made in the following chapters.

2.4.1 3D printing

After designing an object, it can be build using 3D printing technology. To be able to print an object

via a 3D printer, the 3D model has to be transformed into instructions that can be understood by the

3D printer. This process is called slicing and can be done by a computer software called a slicer.

The slicer will take an STL file that is exported from the 3D modelling software and will create a

G-code file. This file contains all the necessary printer settings (e.g. Nozzle temperature, bed

temperature, ...) and a whole set of instructions that will have to be executed by the printer. These

instructions will make the printhead and print bed move to print the 3D design that was sliced.

3D printers allow to print custom 3D objects relatively easily. There are many different types of

3D printers that work in a variety of ways and are meant for different use cases. To make the 3D

printed parts for this system a Fused Deposition Modelling (FDM) printer was used. FDM printers

work by melting a thermoplastic material using a hot end and then forcing it out of an extrusion

nozzle that is moving over a build plate. The extruded molten plastic is laid layer by layer on the

print bed. Every time a layer is completed, the extruder is moved up to build the next layer on top

of the previous one. By repeating this process till the last layer is completed, a full 3D object is

printed.

The thermoplastic, also called filament, used in FDM printers looks like a long wire. Most often the

wire is wound on a filament roll which is attached next to or on the 3D printer. Before the filament

ends up on the build plate it has to go through a whole process. To start, the extruder pulls the

filament from the roll. The extruder is made out of a spring guided lever and a stepper motor with

an extruder gear on top of it. A spring mechanism pushes the filament against the extruder gear.
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When the stepper motor rotates, the extruder gear rotates with it and pulls the filament in a certain

direction. If the extruder is on the printhead, the filament is directly pushed through the extruder

nozzle. If the extruder is a separate unit, a PTFE tube guides the filament to the printhead. Inside

the printhead a heater heats the filament to the desired nozzle temperature set by the user. If set

correctly, this temperature is equal or higher than the melting temperature of the filament. Once the

filament melts it ends up on the print bed because the extruder is still pushing the filament into the

printhead and through the extruder nozzle.

The whole process to go from a filament to a 3D object sounds simple and it is. Although, it has

many possible failure points. The most common problems that happen during 3D printing are bad

print bed adhesion, under-extrusion, over-extrusion and clogging. There are many other problems,

but these are the major ones that can ruin a whole print.

Bad bed adhesion means that the print does not stick well to the bed. This can be due to a dirty

bed, an unlevelled bed or an incorrect bed and nozzle temperature. This can be a major problem

because it can cause the print to shift mid printing, which will ruin the whole print. It can also

make the bottom layers of a part deform which is not a desired outcome and can render your part

unusable. (Goldschmidt, 2019)

Figure 2.3: Example of under-extrusion.

Under-extrusion (Figure 2.3) and over-extrusion happens when the extruder is not extruding prop-

erly. This means that it is not feeding the filament at a consistent rate. When the extruder is not

feeding enough filament to the extruder nozzle it can result in gaps, holes in the layers, thin layers

or even missing layers. This is called under-extrusion and will compromise both the print quality

as well as the print strength. Over-extrusion occurs when too much filament is fed to the extruder

nozzle. This will result in blobs, stringing, dimensional inaccuracies and can even result in jams or

clogging. (Hullette, 2019)

Clogging happens when the extruder nozzle gets clogged up (Figure 2.4). This can be caused by

over-extrusion, incorrect printing temperature, a dirty nozzle, incorrect nozzle height, bad filament

quality. There are many things that can cause clogging, so one should take care and clean his/her
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Figure 2.4: Clogged extruder nozzle (left) and normal extruder nozzle (right).

printer from time to time. Checking the printer settings and specially the temperature settings will

help. One should also always use good quality filament. (Flynt, 2019)

2.4.2 Fire ignition

A fire is an oxidation process that combines oxygen with another substance at a very fast rate.

Flames are the result of the combustion that happens when the energy created as part of the

oxidation process is created faster than it can be dissipated.

Figure 2.5: Fire triangle. (Hannah, 2019)

There are three necessary elements to start a fire, namely heat, oxygen and fuel. These three

elements form the fire triangle (Figure 2.5). As long as these three elements are present, the

oxidation process will continue and as a result the fire will keep burning. (Hannah, 2019)

If one of the elements mentioned in Figure 2.5 is missing, no fire can be ignited. This also means

that one could extinguish a fire by taking away one of the three elements. This is the exact goal of

a fire extinguishing agent. An extinguishing agent will try to remove one of the three legs of the fire

triangle to extinguish the fire. For example, water will take away the heat and thus the energy to
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keep the oxidation process going.

2.4.3 Fire spreading

Fires spread by transferring heat energy to objects in their surroundings. This can be done in three

possible ways, radiation, convection and conduction.

Thermal radiation is the emission of energy through electromagnetic waves. These waves travel in

a straight line at the speed of light. An example of thermal radiation is the sun that heats the earth.

This type of heating occurs between object that are not touching. This is for example the way that

a fire can jump from one object to another. Calculating the thermal radiation that is emitted by an

object like a fire, is fairly complex.

Convection is the transfer of heat by the vertical movement of hot combustion gases. These hot

combustion gases expand, become lighter than the surrounding air, and begin to rise because of

upward pressure due to the decreasing density. This decreasing density creates a vertical upward

stream. This pushes up heat and toxic black smoke to the ceiling. The denser layers of gas remain

at the floor level. At this level the gas mixture contains more oxygen than burning gases. At the

ceiling one will find the opposite mixing ratio with more toxic burning gases. So, the least danger-

ous environment in the compartment is at the ground level. This is the reason why it is instructed to

stay close to the ground in a compartment that is on fire. The various temperatures and densities

launch a thermodynamic stream creating an inverted convection cone of a mixed gas composed of

hot air and smoke above the fire.

Thermal conduction is the transfer of heat within the material itself or between two touching mate-

rials. The conduction of heat inside an object depends on its material composition. Metal objects

will be good conductors, while for example wooden objects are bad conductors and thus good insu-

lators. Good conductors transmit heat very fast, while bad conductors transfer heat slowly. When

talking about fire spreading, conduction is not an important factor to consider. (Auburn, nd) Except

when metals are involved because metals will absorb the heat of the fire and will transfer it through

the molecules of the material to other objects that are in direct contact with it. This means that any

combustible material that is in contact with a heating metal can ignite through thermal conduction

if their ignition temperature is achieved. (Hannah, 2019)

2.4.4 Fire classes

Different types of fires can be distinguished depending on the material of the burning object. These

types are divided into five classes ranging from A to F. It is important for a firefighter to be able to

distinguish the class of a fire because based on that information a different type of extinguishing

agent must be chosen. Choosing the wrong extinguishing agent can have lethal consequences.

Figure 2.6 gives an overview of the different classes and the extinguishing agents to be used.
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Figure 2.6: Fire classed and extinguishing agents. (Marsden Fire Safety, nd)





Chapter 3

Requirement Analysis

After several meetings with the Belgian Navy, a requirements analysis was done to determine

the use case, the functional and the non-functional requirements of the system to develop. This

allowed the development of a system that best suits the users’ needs and thus encompasses all

their desired features.

3.1 Use cases

The Belgian Navy requires a VR/MR system to give firefighting training to its crewmembers while

limiting the risk of injury and improving the flexibility to train in different environments. The system

will create simulated fires in a classroom or on a ship for the benefit of the crewmembers.

The system will not serve as a replacement for the actual firefighting but will serve as an interme-

diate step between the theory and the actual firefighting training. This intermediate step will serve

as a warmup for new trainees before they tackle real fires. The goal is to make them familiar with

all the procedures they will have to follow in case of a real fire but doing so in a safe environment.

VR and MR are immersive technologies that make players forget about their real surroundings and

immerse them in an artificial environment. Some players will not be able to distinguish between

reality and the virtual situation they are immersed in. This will cause them to react in a way that is

comparable to their reaction in a real situation.

The system will also be used with experienced crewmembers who have completed the fire safety

training multiple times. They will use the system differently than new trainees will do. New trainees

use the system to get used to the basics of firefighting, while the veterans will use the system

to rehearse their firefighting skills and train specificities. They will use the system right before a

deployment or during a ships deployment. This way they would not have to imagine fires during

onboard fire drills, but they can just simulate them in a compartment of the ship using VR/MR.

17
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3.2 Functional Requirements

Before the start of this project, the Navy set up some requirements that had to be fulfilled. These

requirements have to do with how the system works, how it should behave and what its capabilities

should be. These requirements are labelled as functional requirements.

The first functional requirement states that the system should implement VR and MR technology

to create an immersive environment to train crewmembers in the art of firefighting. The simula-

tion must be convincing enough to train crewmembers without gimmicks and distractions. This

requirement encompasses the purpose of this thesis which is, delivering a working VR firefighting

simulator and explore the possibilities of new technologies like MR in the firefighting scene.

The second functional requirement of the Navy is that the whole system should be compatible with

their current equipment. They want to be able to use certain props to enhance the immersion and

realism of the simulation. These props can vary from firefighting suits to big metal doors with which

a player can interact in MR. The most important aspect that has to be considered to fulfil this re-

quirement is to ensure a player’s freedom of movement. This implies that no cables should hinder

a player’s ability to move around in the environment or to manipulate certain props and controllers.

The third functional requirement is that a firefighting instructor should be able to place multiple fires

on different objects in the training scenario and that these fires can propagate on their own.

The fourth requirement follows out of the previous one. Namely, the fires that are placed by an in-

structor must be extinguishable by trainees using a certain type of controller. The type or nature of

the controller was not specified except the fact that it should react and be manipulated in the same

way as the firehose nozzle used during real firefighting. This means that the user of the controller

must be able to select the shape of the water spray, the flow rate and turn the water on and off.

3.3 Non-functional requirements

To meet all of the Navy’s needs, they also stated some non-functional requirements. These are

requirements that state how the system should be. This touches aspects like mobility, extensibility,

intuitiveness and ease of use. These are all non-functional, but still essential requirements to suf-

fice the needs of the Navy.

The first non-functional requirement is that the system could be setup in a classroom or a com-

partment of a ship. As a consequence, the system must be easy to setup and be movable at a

moment notice. The whole system must be mobile enough to be moved around and not be fixed or

dependent on a certain location.

Another reason why the system should be easy to setup is because the Navy requires that people

without a technical background should be able to setup the whole simulator. This means that extra

attention should be put on ease of use which is the second non-functional requirement.

The Navy formulated a third non-functional requirement which states that the system must be ex-

tensible. This means that the system must be built in a way that it can be updated or upgraded by

themselves or a third party. For example, if the Navy wants to add new features, scenarios or even

new types of controllers (e.g. different types of fire extinguishers) it should be easy to do so.



Chapter 4

Design

When designing a system, a lot of care should be taken to create the best user experience possible

while achieving all the technical needs. A good balance has to be found between functionalities

and ease of use. This balance has to be found during the design process, so it can be executed

during the implementation process and be reflected upon in the evaluation process.

4.1 Mechanical components

The AWG TURBO 2230 (Figure 4.1) is the model of firehose nozzle used by the Navy during hot fire

training and during active duty. Trainees have to get accustomed to this particular model. They have

to know its capabilities by heart and should be able to manipulate it blindfolded. During firefighting,

there is no time to look at the nozzle and thick smoke might prohibit the determination of its state.

Therefore, Navy crewmembers must develop the skills to do everything by touch. The best way to

accomplish this is by training with the same model over and over again. Thus, when designing the

controller for the fire simulator it was obvious to choose the AWG TURBO 2230.

The nozzle was taken and fitted with sensors to track all its potential manipulations. An Arduino

microcontroller is used to relay all that information to the computer in real-time. There are three

movable pieces that have to be tracked for manipulations. First, there is the beam type selector

(Figure 4.1, nr. 3), which is positioned at the front of the nozzle. This indicates which type of beam

the user wants.

Secondly, there is the flowrate selector (Figure 4.1, nr. 4) which is positioned right behind the beam

type selector and sets the flow rate of the water. Thirdly, there is the lever (Figure 4.1, nr. 5) which

determines if water can come through. It is of utmost importance that every manipulation is tracked

in real time so that the user does not experience any delay during the simulation. Delays, or better

known as lag, can take the user out of the immersion.

In order to house all sensors, 11 additional components have been designed and 3D printed. These

11 components can be divided into two main parts. The first part is attached to the front of the

nozzle and contains the sensors, the Arduino microcontroller and a LiPo battery. The second part

is the backplate and contains a switch, batteries and LEDs. This part is attached to the back of the

19



20 CHAPTER 4. DESIGN

nozzle.

Figure 4.1: Technical drawing of the AWG TURBO 2230. (Le Couteur, O., pensonal commuincation, July
31, 2019)

4.1.1 3D design

The firehose nozzle required designing and manufacturing custom components to fit the different

sensors on the outside of the nozzle. The sensors are not mounted on the inside, because there is

no possibility to mount them there due to the build and material of the nozzle itself.

There are three moving parts that are being tracked on the firehose nozzle. The sensors are

housed in the front part of the nozzle that is called the ”head” (Figure 4.2). The head consists of

three major parts, the base, the analogue sensor housing and the Arduino housing.

The base is the most inner part of the head and serves as the link between the head and the nozzle

itself (Figure 4.3). It fits around a centre threaded hole in the middle of the nozzle (Figure 4.1, nr.1)

and forms the foundation for the other parts. Originally there was another part at the front of the

nozzle, but this part is screwed off and replaced by the base to ensure a solid connection between

the head and the nozzle. The base’s design resembles the original part but has passthrough holes

for the cables of the light dependent resistor (LDR). The cables fit through hollow tubes attached to

the base (Figure 4.4). These tubes guide the cables from the LDR to the base in a sturdy fashion

which ensures the cables cannot get tangled.



CHAPTER 4. DESIGN 21

Figure 4.2: Head.

On the bottom left side of Figure 4.3, it can be seen that a small part of the base has been cut out.

This is done to be able to print this small part separately. This small part is glued to the inside of

the nozzle to ensure that the whole head does not rotate when one accidentally tries to turn it. The

importance of prohibiting the head from rotating comes from the fact that a tracking device will be

mounted on top of it. The tracking device’s orientation must stay the same relative to the nozzle

itself otherwise the tracking in 3D space will malfunction. A correct orientation of the head is also

important to ensure the proper tracking of the nozzle’s manipulations.

Figure 4.3: Base of the measuring head.

On top of the base there is the analogue sensor housing which has two cut-outs to house two

analogue Hall effect sensors (Figure 4.5, nr. 1). It was designed to have enough clearance for the

sensors to properly read the magnetic field emitted by the magnets without bumping into them nor

the movable outer black ring of the nozzle. This part also has a hole to guide all the cables from the

LDR and the Hall effect sensors to the Arduino housing where they are connected to the Arduino

microcontroller (Figure 4.5, nr. 2).

The Arduino housing (Figure 4.6) is the outer most part of the head and is connected to the ana-

logue sensor housing. This part consists of two components, a bowl to fit the Arduino and the

battery, and a cover to protect the electronics inside. The bowl has several important features. It
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has a hole to guide the cables from the analogue sensor housing to the Arduino microcontroller

(Figure 4.6, nr. 1). It has a raised bed to attach the Arduino with a Velcro strip and to leave enough

space underneath the Arduino to attach the cables. On the side of the bowl, there is a cut-out to

connect a USB cable to the Arduino when the cover is closed (Figure 4.6, nr. 3). On the outside,

underneath the bowl there are three cut-outs to house the Hall effect switches that are directed

towards the mouth of the nozzle. The last important feature on the bowl is a hole that goes all the

way through the analogue sensor housing and the base towards the centre of the nozzle (Figure

4.6, nr. 2). This hole serves to guide a screw all the way into the nozzle, to attach the head to it

using the threaded hole marked in Figure 4.1, nr. 1. It is very important to tighten this screw firmly

to prevent the head from detaching from the nozzle. This firmly tightened screw together with the

small base piece that is glued to the inside of the nozzle, are the only things to prevent the head

from rotating.

Figure 4.4: Hollow tubes attached to the base with the wires of the LDR running through them.

Figure 4.5: Analogue sensor housing (black) with the Arduino housing (gold) on top.
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The cover of the Arduino (Figure 4.7) housing has three internal chambers that each house a mag-

net inside (Figure 4.8). The magnets are fully integrated into the print and are not visible from the

outside. The only way to check their presence is to hold something magnetic in the neighbourhood

of the cover. It was designed this way to ensure that no magnet would detach and go missing.

Figure 4.6: Arduino housing.

Figure 4.7: Cover of the Arduino housing.

Figure 4.8: Cross section of the cover.

The magnets are used to secure the tracker baseplate (Figure 4.9). This is a simple plate that



24 CHAPTER 4. DESIGN

holds a VIVE tracker by screwing it on using a 1/4” screw. The VIVE tracker is a tracking device

that is used to track the movements of the nozzle in three-dimensional space. The plate also has

three internal chambers which house magnets. These chambers are aligned with the chambers in

the cover when the tracker is correctly attached to the head. The magnets were inserted into the

cover and baseplate in a specific way that ensures that the baseplate can only be mounted in one

specific orientation onto the cover. This ensures a correct oriented tracker at all time.

Figure 4.9: Tracker baseplate.

Figure 4.10: Backplate (gold) and insert (black).

The final 3D printed object is called the ”backplate” and consists of two pieces (Figure 4.10). The

first part is a battery holder which houses a battery pack for two AAA batteries. A small prototype

board with three LED’s is mounted on top of the battery holder (Figure 4.11). These are used when

tracking the movement of the lever. The second part is the plate itself which is screwed on the back

of the nozzle. This plate has a cut-out to slide in the battery holder. After sliding in the battery

holder, it is held in place using a switch that fits right into the remaining gap (Figure 4.12).
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Figure 4.11: Backplate with PCB (on top) and batteries.

Figure 4.12: Backplate with switch keeping the insert in place.

4.1.2 3D printing

After designing and slicing the 3D parts, a 3D printer with PLA filament is used to print each part.

The parts are printed with black and gold PLA filament to match the colours of the firehose nozzle.

PLA filament is currently the most basic and most used 3D printing filament. It has simple printing

requirements that can be handled by the most low-end 3D printers. The used 3D printer is a very

basic printer and the only printer available at the time. For that reason and the fact that PLA was

the only filament at hand, PLA was chosen to print the 3D parts required.
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4.2 UI components

The user interface (UI) is the main way a user is going to interact with the system and thus it plays

a crucial role. It should be designed to be user friendly and it should encourage interaction with

users. The UI of the firefighting simulator consists of three major components: the VR system, the

firehose nozzle and a computer. Each UI component will be discussed more in depth to get a better

understanding of the design choices made.

4.2.1 HTC VIVE Pro

The HTC VIVE Pro system is one of the best VR systems currently available. It won the award of

best headset of the year on the VR Awards 2018. (VR Awards, 2018) The main parts of the system

are the VIVE Pro headset, also called a head-mounted display, the VIVE Pro controllers, and the

Base Stations 2.0. (Figure 4.13)

The headset is equipped with a dual AMOLED 3,5” screen with a resolution of 1440x1600 pixels

per eye. It has a refresh rate of 90 Hz and a field of view (FOV) of 110◦. The HMD is also equipped

with a set of sensors that are used to determine the position and orientation of the headset. These

sensors include (VIVE, ndb):

• SteamVR tracking

• G-sensor

• Gyroscope

• Proximity sensor

• Interpupilary distance (IPD) sensor

Figure 4.13: HTC VIVE Pro kit including headset, controllers and Base Stations 2.0. (VIVE, nda)
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The default input devices of the system are the controllers, also called Wands. These devices track

the movements of your hands and are used to interact with the virtual world. Each controller has

multiple buttons, a trigger and a trackpad. A custom action can be mapped to each of these through

the SteamVR bindings UI.

Figure 4.14: VIVE Tracker

The system can be extended with an HTC VIVE Tracker to track custom objects (Figure 4.14).

When attached to a real-life object, these trackers track the movement of the object in space. On

the back of the tracker, there are six pogo pins to which hardware can be attached. Pogo pins are

spring-loaded electrical connectors to which wires can be connected. The force of the spring keeps

the wire in place. The data from these hardware components can be sent directly to the VR game.

4.2.1.1 SteamVR Tracking 2.0

The Base Stations 2.0 alternatingly emit vertical and horizontal laser sweeps of infrared light over

an angle of 120◦. The photodiodes on the HMD’s and controllers’ surface pick up the signal. The

position and orientation are determined by the difference in time at which the sensors were hit. This

is called the inside-out tracking method. (Niehorster et al., 2017)

SteamVR Tracking 1.0 uses sync pulses in combination with sweeps. All sensors on the HMD,

controllers and trackers sense the pulse at the same time. They start counting until they sense the

vertical and horizonal laser sweep. The time between the pulse and the laser is used to determine

the position of each sensor. Combining all sensors of a tracked object allows SteamVR to calculate

the orientation, velocity and angular velocity. This is all done at a refresh rate of 1000 Hz. (Valve

Corporation, nd)

SteamVR Tracking 2.0 is an upgrade of SteamVR Tracking 1.0 and does not use the infrared pulse

anymore. Instead, data is encoded in the laser that sweeps through the room. This data is used to

calculate the position, orientation, velocity and angular velocity. (Valve Corporation, 2017)
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4.2.2 Firehose nozzle

Most of the controllers used with VR-headsets are all-purpose type of controllers. This means that

they can be used in a variety of situations for a variety of tasks. The controls are just remapped for

every situation. These controllers are not intuitive and have a low affordance. This is the reason why

a real firehose nozzle is implemented as a controller (Figure 4.15). Using such a controller creates

an interaction that feels like interacting with the real, non-digital world and that draws strength by

building on a users’ pre-existing knowledge. This type of interaction requires less mental effort

from the user and improves their performance in stressful situations. (Jacob et al., 2008) Because

the user is a firefighter in training and thus has prior knowledge about how the nozzle works and

feels, and because the training scenario consists of extinguishing fires which is a highly stressful

situation, using such a controller will have great benefits for both the user experience and the user’s

performance.

Figure 4.15: Firehose nozzle with all components attached.

4.2.2.1 Input tracking

The fire nozzle consists of three movable pieces that have to be tracked. The first one is the beam

type selector that can rotate to three specific positions to select the shape of the water beam. Three

hall-effect switches and a neodymium magnet (Figure 4.16, nr. 1) are used to track the movement

of this selector. The neodymium magnet is glued to the black ring of the firehose nozzle. The three

switches (Figure 4.16, nr. 2) are glued in their respective slots on the 3D printed head and are fac-

ing the magnet. The slots are at an angle respective to each other that is equal to the rotation angle

of the beam shape selector to go from one shape to the other. This means that at each position
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of the beam shape selector, the magnet will face only one switch. This will toggle the switch which

will send out a signal to the Arduino.

The area where the magnet is placed is small, this required a magnet with a small footprint. But

the magnet had to be strong too, because at the most extreme setting, the magnet is at 1,2 cen-

timetres from the sensor. Neodymium magnets are very strong magnets, even small neodymium

magnets have a large magnetic field that can bridge the gap of 1,2 centimetres. That is why they

were chosen for the job.

Figure 4.16: Three Hall switches with a magnet hanging above it.

The second movable piece that had to be tracked is the flow rate selector. This ring is in the middle

of the nozzle and its rotation cannot be measured from the outside nor the inside. Sensors cannot

be placed on the outside of the ring because the wires will have to run over pieces that will be

manipulated by the user. This would hinder the user and the wires may be accidentally snapped or

disconnected. Putting a sensor on the outside is thus a bad idea but putting a sensor on the inside

is impossible because the firehose nozzle cannot be opened up. The only way to track the rotation

of the middle ring is by tracking the movement of the whole front end of the firehose nozzle. The

whole front part moves along the centre axis of the nozzle when the middle ring is rotated. The 3D

printed head stays stationary because it is attached to the inside of the nozzle. This means that the

translation of the front end of the nozzle can be measured relatively from the 3D printed head. To

achieve this, two hall effects sensors and two regular magnets are used. The magnets are glued to

the front end of the nozzle and the two hall effect sensors are placed in their respective slots on the

3D printed head. When the flow rate selector is rotated, the magnets move relative to the hall effect

sensors and thus the hall effect sensors output a different voltage that is measured by the Arduino.

The use of two hall effect sensors was done to have redundancy. The output of an analogue sensor
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has a lot of jitter which makes the output voltage vary. By combining the output of two sensors and

taking the average a more accurate result is obtained.

The third movable piece that has to be tracked is the lever. Tracking the lever by measuring its rota-

tion was not possible because of the same reasons as the flow rate ring. There was no possibility

to drill a hole in the nozzle because of its construction and material. To measure the lever another

approach had to be taken. This approach consisted of an LDR and three white LED’s. The LED’s

would be mounted on the back of the firehose nozzle and shine inside the nozzle towards the front.

In the front an LDR is placed to measure the incoming light. Inside the nozzle there is a valve that

opens and closes when the lever is rotated. Thus, by rotating the lever, the amount of light of the

LED’s that reaches the LDR varies. When its open, all the light can pass through and when its

closed, no light passes through.

This LDR-LED-system is simple and circumvents all the constraints that the fire nozzle has to offer.

Furthermore, does not hinder the user experience. The only downside is that the relation between

the rotation and the resistance of the LDR is not linear. As a consequence, a way of mapping the

rotation of the lever to the output of the LDR had to be found.

4.2.2.2 Wireless connection

The fire nozzle is used as a controller to play the game, which means that the player will be ma-

nipulating it the whole time. The player will be moving around in 3D space while using the nozzle.

To not hinder the players movements and user experience, the controller is wireless. This implies

that all the sensor data is transferred over a wireless network using a microcontroller. This way

there are no wires or cables that can get tangled in equipment or props that the user is wearing to

enhance his/her experience. This ensures that the second functional requirement of the Navy is

fulfilled.

The wireless technology chosen to send data is Wi-Fi. This is because Wi-Fi is a universal technol-

ogy that is adopted in most electronic devices like computers, laptops and tablets. Another option

would be Bluetooth, but for Belgian Defence computers, it is more common to have a Wi-Fi module

than a Bluetooth module. Wi-Fi also gives more freedom when the system is expanded in the fu-

ture. This way the firehose can be programmed to communicate with multiple devices at once and

it also gives the possibility to work with multiple devices at the same time. Wi-Fi has a larger range

than Bluetooth which means that it can be used in a bigger environment. Currently, the system is

designed for single player use in a classroom or a compartment of a ship. But if the Navy wants

to expand the system to be used in a big hanger, with multiple players and devices, they can do

so with much more ease using Wi-Fi than using Bluetooth. This satisfies the third non-functional

requirement of the Navy.

To establish a Wi-Fi connection between the nozzle and the computer, a router is needed. This

router will be configured with a certain Service Set Identifier (SSID) and password that will be pre-

programmed in the microcontroller of the nozzle. This way the microcontroller can automatically

connect to the router once it is turned on. The computer will have to be connected to the router

as well and will receive a static IP address. This means that the computer will always get the
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same IP address when it connects to the network. As a consequence, this IP address can be

pre-programmed in the microcontroller to ensure it sends its UDP packets to the right server.

4.2.2.3 3D model

The physical firehose nozzle had to be represented by a 3D model in VR. This model is the main

object a user will interact with during gameplay and thus it has to be a convincing representation of

the actual firehose nozzle. There are several ways a computer model can be created of a real-life

object.

First of all, there is photogrammetry which creates 3D models using overlapping photographs taken

from objects, structures or environments. This is done by extracting 3D information stored in the

combination of these photographs and reconstructing the surfaces. This technique is often imple-

mented to create topographical maps, meshes, or point clouds based on the real-world. (Aber

et al., 2019) Using this technique and the photogrammetry software Meshroom, a 3D model of the

firehose nozzle was created. It took a lot of time to complete the process and the result was not

satisfying (Figure 4.17). The model was incomplete, and the lighting used when taking the pho-

tographs is baked into the model. As a consequence, the nozzle did not feel like it belonged in the

VR environment where it was supposed to be used. That is why another technique was required.

Figure 4.17: Result of photogrammetry of the firehose nozzle.

A second approach is a structured-light 3D scanner. This type of scanner emits light patterns onto

an object. These light patterns get distorted by the object and are read by two cameras that are

positioned on either side of the light source. The data collected by the two cameras is analysed

to calculate the surface information and create a 3D mesh of the object. To create a mesh of the

entire object, the object is rotated 360◦ and at each increment, the capturing process is repeated.

This technique did not prove to be a success either, but that was due to the lack of essential parts

of the scanning equipment used.

The last technique is to model the firehose using 3D modelling software like Blender. This is the

technique that resulted in the final model in the simulator. This is due to the fact that photogramme-

try and 3D scanning did not produce the desired result. Also, because One Bonsai, a company that

is employed by the Belgian Defence, offered their 3D model of the firehose nozzle to be used in this

project (Figure 4.18). The model needed to be textured and the origin of the different components
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Figure 4.18: 3D model of the firehose nozzle.

had to be changed before being used in the simulation. The origins were altered because it made

the rotation movement easier to implement in Unity.

4.2.3 VR Ready computer

In the XR application, the user needs to be able to move around freely. This means that cables

between the user and a stationary computer need to be avoided. There are two ways to achieve

this: a wireless adapter for the HMD or a backpack computer.

In the default setup, the transmission of data between the headset and the computer is send through

a cable. With the wireless adapter, the cable is no longer needed. The VIVE Wireless Adapter is a

device that can be mounted on the headset, so it sits at the back of the user’s head. In order to be

able to use the adapter, some modifications to the setup need to be made. There are also some

additional requirements. The adapter can only be used with a desktop computer with an empty

PCIe slot. (VIVE, ndc)

The other option is to use a backpack computer. A backpack computer is a wearable PC that can be

mounted on a harness and is battery powered. It can also be used as a normal desktop computer.

The cables from the HMD go directly to the computer on the back of the user and not to a stationary

computer. For this project, the Navy provided us with such a computer.

The backpack computer used for this project is the HP Z VR Backpack G1 (Figure 4.19). This

computer is equipped with an Intel Core i7-7820HQ processor. This four-core processor has a clock

speed of 2.9 GHz and can go up to 3.9 GHz with Intel’s Turbo Boost Technology. The computer

has Intel HD Graphics 630, but this integrated graphics card is disabled on this computer. The

dedicated graphics card in this computer is an NVIDIA Quadro P5200 with 16GB of GDDR5. The

PC is equipped with 32 GB of DDR4 RAM. The computer is running Windows 10 Pro 64. (Hewlett-

Packard, nd)

VR applications demand a lot of processing power. This power is mostly needed for rendering, but

also for physics simulations and other functionalities. This is why a computer with a good CPU and

GPU is required to run such an application. The HP Z VR Backpack is a VR Ready computer and
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Figure 4.19: HP Z VR Backpack computer. (Hewlett-Packard, nd)

is designed to run VR applications specifically. A VR Ready computer is a machine of which its

components are powerful enough to run XR applications and which has enough ports to connect all

the components, like the HMD. The combination of its technical specifications and being a wireless

PC, makes it the perfect computer for this project.

4.3 Deployment diagram

Looking at the UML deployment diagram (Figure 4.20), it is clear that there are eight types of

devices (the firehose nozzle consists of two separate devices) that have to be deployed to make

the system work properly.

The main device is the VR ready PC that runs Windows 10 and has the XRFirefighting application

installed on it. Then there is the HTC VIVE pro Linkbox that is connected to the PC using two

types of connections, an USB 3.0 cable and a DisplayPort cable that is plugged into the GPU.

There are four types of devices connected to the VIVE Linkbox, there is the HTC VIVE pro VR

headset that is connected using its own cable, there are two SteamVR base stations 2.0 that are

connected wirelessly, one HTC VIVE pro Wand that is connected wirelessly, and one HTC VIVE

Tracker 2.0 that is also connected wirelessly. The VIVE tracker is physically connected by magnets

to the firehose nozzle which also contains the Arduino and all the sensors. The Arduino sends the

processed sensor data using Wi-Fi via the User Datagram Protocol (UDP) to the PC. Lastly, there

is the ZED Mini stereo camera that is mounted on the VR headset and is connected directly to the

PC using a USB 3.0 connection.

4.4 Hardware components and schematics

The firehose nozzle is a wireless device. This allows the user to move around freely without trip-

ping over electrical cords. This also enhances the XR experience, since the user does not have

to consider any real-world obstacles when moving around. To achieve this, a few extra constraints
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had to be taken into account while designing this measuring system.

Figure 4.20: Deployment diagram of the application.

4.4.1 Arduino

The board used for this project is an Arduino MKR 1000 (Figure 4.21). The board has a build-in

LiPo connector and charging circuit, and a build-in Wi-Fi module. It can also be powered by an

external supply of 5V, which will charge the battery when both are connected. The external supply

can be connected to the micro USB port or the Vin pin. The battery has to be a single cell 3.7V LiPo

battery with at least 700mWh. The board itself operates at 3,3V. The Wi-Fi module of the board

supports the 802.11 b, g and n standards. (Arduino, nd)

Figure 4.21: Arduino MKR1000. (Arduino, nd)

A LiPo is a lithium-ion polymer battery. These rechargeable batteries can store a lot of power
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but are lightweight and can be fairly small. This makes this kind of battery ideal for this project

compared to portable power banks which are a lot bigger. The fact that the battery is so small

allows it to sit inside of the measuring head. This prevents the user from touching and breaking

it during the game. The battery used for this project is a single cell, 3,7V battery with a rating of

700mwh.

UDP was chosen to send the data to the application. UDP is a connectionless communication

protocol which means that there is no established connection between communicating devices

as a consequence, there is less overhead. A connection-oriented protocol, like the Transmission

Control Protocol (TCP), uses a three-way handshake, but this creates a lot of overhead. With UDP,

packets are just sent to a certain IP address even when that address is not available on the network.

The reduction of overhead makes the exchange of data faster, which results in minimal response

time of the virtual model of the nozzle.

4.4.2 Sensors

The firehose nozzle is equipped with six sensors: two Hall sensors, three Hall switches and an LDR.

All these sensors are connected to an Arduino which sends the received data to the application.

Each sensor, its technical specifications and circuit is explained more in depth in the following

section.

4.4.2.1 Hall sensor

There are two analogue Hall sensors that measure the state of the flow rate selector. When the flow

rate increases, the distance between the measuring head and the actual nozzle becomes bigger.

We attached two magnets to the nozzle itself. These magnets are positioned right underneath the

sensors. The sensors sense a change in magnetic field when the magnets move.

Figure 4.22: Electrical circuit of the Hall sensor.

The analogue Hall sensor used for this project is the surface-mount device (SMD) version of the

Si7211 from Silicon Labs. The recommended power supply is 2,5 V to 5,5 V. The output is half the

power supply when no magnetic field is detected. When a large negative magnetic field is sensed,

the output voltage drops to zero. When a large positive magnetic field is sensed, the output voltage
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is close to the voltage op the power supply. (Silicon Laboratories Inc., 2019)

Figure 4.23: Hall sensor PCB design.

The circuit of this sensor is shown in Figure 4.22 and its PCB design is shown in Figure 4.23. A

decoupling capacitor is connected to the power supply to prevent spikes from damaging the sensor.

To prevent unwanted noise from entering the Arduino, a low-pass filter is put at the output of the

circuit.

4.4.2.2 Hall switch

To detect the selected beam type, there are three digital hall switches and one magnet. When the

user rotates the beam type selector, the magnet will move underneath a certain switch. This switch

detects the magnet and sends this data to the Arduino.

Figure 4.24: Electrical circuit of the Hall switch.

The hall switch that is integrated in this system is the SMD version of the DRV5033 from Texas

Instruments. It is a digital omnipolar-switch Hall sensor. An omnipolar switch was chosen so it

could detect a change in the magnetic field for both the positive and negative pole. This ensures

that if something would go wrong and the magnet would be reversed, it would not influence the

system because a change would still be detected.

The sensor can be powered by a power supply of 2,5 V to 38V. The sensor requires an external pull

up resistor in order to be read properly. When a strong magnetic field is sensed, the output will be
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Figure 4.25: Hall switch PCB design.

pulled low. Hysteresis is implemented so noise does not have an effect on the output. The circuit

and PCB are shown in Figure 4.24 and Figure 4.25 respectively. To prevent spikes in the voltage

supply from damaging the circuit, a decoupling capacitor is used. (Texas Instruments, 2016)

4.4.2.3 Light dependent resistor (LDR)

To measure the position of the big black lever, a light dependent resistor is used. This sensor sits at

the inside of the nozzle. On the insert of the backplate there are three LEDs. Between the LDR and

the LEDs, there is an internal valve. When the lever moves from the closed position to the open

position, this valve opens (Figure 4.1, nr. 2). This allows the light from the LEDs to pass through

and reach the LDR. The more the lever is opened, the more light passes through and reaches the

LDR. This will make the resistance of the LDR drop. The more light that reaches the LDR, the lower

its resistance will be.

Figure 4.26: Electrical circuit of the LDR.

The LDR used for this project is the TO-18 Hermetic Photocell NSL-06S53 from Advanced Pho-
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tonix, Inc. The diameter is around 5,5 mm which makes it small enough to fit inside the hose. At

100 lux it has a light resistance (RL) of 5kΩ. When all light is removed, it has a resistance (RD)

of 20MΩ. (Advanced Photonix Inc., 2014) After doing some measurements, the light resistance

seemed to be around 1,13kΩ instead of 5kΩ.

Figure 4.26 shows the circuit of the LDR. It is connected in series with a 200kΩ to the supply voltage

of the Arduino, which is 3.3V. The choice for a 200kΩ resistor in series is further motivated below

in the calculations for the output voltage (VOUT) in a light environment and a dark environment.

RL = 1,13 kΩ, RD = 20 MΩ and VCC = 3,3V

Using Ohm’s law:

IL =
VCC

RL +R
=

3,3V
1,13kΩ+200kΩ

= 16µA

⇒VOUT = R∗ IL = 200kΩ∗16µA = 3,28V

ID =
VCC

RD +R
=

3,3V
20MΩ+200kΩ

= 163nA

⇒VOUT = R∗ ID = 200kΩ∗163nA = 3,3mV

As can be seen in the calculations, the output voltage is almost equal to the input voltage when the

LDR is lit. The ADC of the Arduino will output 1024. When the LDR is not lit, the output voltage is

almost zero. The ADC of the Arduino will output zero. With a 200kΩ resistor, the full output range

(0 - 1024) of the ADC is used while still maintaining a low power consumption.

4.5 Software design

4.5.1 VR simulator

By using the VR simulator, a trainee can be immersed in a complete virtual environment. This en-

vironment is a specifically designed scenario. Later on, more scenarios can be added to be able to

train in different environments. A drawback of this system is that each scenario has to be designed

specifically to the needs of the Navy. Therefore, in the future, they will have to rely on a third party

to design prefabs and scenes that can be added to compose a specific scenario.

When looking at the use case diagram for the VR simulator (Figure 4.27) two primary actors can

be distinguished. One is the instructor, the other is the trainee. The primary actors each have a

range of possible interactions they can perform with the system. The instructor can place a fire

on a flammable object, he can grow a fire if he clicks on a particular fire that has not reached its

maximum size and he can start the game. After starting the game, he has to give the VR headset

to the trainee. If the instructor wants to setup a training session for himself/herself, he becomes the

trainee. The trainee has his own range of actions the first one being, extinguishing the fire. This

will diminish the fire’s health and kill the fire if its health has reached its minimum health threshold.

The trainee can also perform several actions on the firehose nozzle which include, changing the

beam type which will change the shape of the water beam, change the flow rate which will change

the amount of particles emitted, open the firehose nozzle which will start the emission of water
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and finally the trainee can also close the firehose nozzle which will stop the emission of water.

All interactions on the firehose nozzle are automatically logged into a text file that can be viewed

afterwards.

Fires can be spawned by the instructor using the VIVE Wand and the VIVE VR headset or by using

a computer screen and a mouse. When using the Wand, a laser pointer appears in VR and the

instructor can use the laser pointer to indicate the position in which he wants to spawn a fire. This

position must be on a flammable object otherwise no fire will be spawned. Spawning fires using the

computer screen is as simple as clicking on a flammable object. Currently, only class-A fires are

allowed which means, only solid objects are marked as flammable. Keep in mind that a class A-fire

does not include metals.

Fires that are spawned grow automatically with time until they reach their maximum size. The max-

imum size depends on the object the fire is spawned upon. Fires can also instantiate new fires

which can grow and instantiate other fires. This process keeps repeating itself to spread the fire

over all flammable objects in the neighbourhood.

In the real world, heat between non touching objects is mostly transferred by radiation. But calculat-

ing the energy that is transferred through thermal radiation is a complex process. For that reason, it

was chosen to simulate the heat transfer between non touching object by using conduction between

the object and the hot air around the fire and multiplying this with a constant. This is not physically

correct but results in a nice visual effect that looks realistic if the constant is chosen correctly. Study-

ing the exact behaviour and propagation of fire is part of an advanced Master’s programme in fire

safety engineering and falls out of the scope of this thesis. Heat transfer through convection is also

not implemented because its implementation is too complex and resource intensive.

4.5.2 MR simulator

The main reason why an MR application is preferred over a VR application is because this allows

the Navy to train in very specific environments without any rooms that need to be modelled. The

Belgian Navy will benefit most from a training tool that trains and prepares the crew for real-life

scenarios. With an MR application, the system can be setup in any compartment of the ship and

training can begin. This is a huge advantage since not every compartment of the ship needs to

be designed by a developer. Another major advantage is that it is possible to use props, like a

door, that they already have. This will make the training of opening a door, for example a lot more

effective. The way one opens a door of a room that is on fire should be done following a specific

procedure. The door cannot just be opened. Opening a real door instead of pressing a button on

a controller (as would be done in VR) enhances the immersion of the system and effectiveness of

the training.

Figure 4.28 shows the use case diagram of the MR simulator and all possible interactions between

the users and the system. There are two actors, the instructor and the trainee. Each MR training

starts with the instructor placing fires. The instructor himself decides how many fires he places.

He can also make existing fires bigger by clicking on them. When the instructor is finished placing

fires, he can start the game. After receiving the headset, the trainee can now start his training. The
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Figure 4.27: Use case diagram of the VR simulator.

trainee can extinguish the fire using one of the available fire extinguishers. Each physical action

performed on the extinguisher or nozzle is automatically logged into a text file.
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Figure 4.28: Use case diagram of the MR simulator.

The instructor should have the possibility to indicate where a new fire needs to be spawned or

which fire needs to increase. To accomplish this task, the default VIVE controller is used with an
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added virtual laser pointer. The instructor points the laser at a certain position on a horizontal,

pink highlighted surface. When he pulls the trigger of the controller, he spawns a new fire at that

position. When he points the laser on an existing fire and pulls the trigger, that fire increases in

size. After placing all the fires, the instructor can continue to the next phase of the game, which

is extinguishing the fires, by pressing the menu button on the controller. This is the button above

the trackpad. The pink highlighted planes will disappear, and the extinguishers/ nozzle will start to

work.

To extinguish the fire, the trainee uses one of the available extinguishers. For this thesis, only the

firehose nozzle is implemented. When one opens the nozzle, a virtual water beam appears at the

front of the firehose nozzle. It will seem like there is water coming out of it. When the water beam

is pointed at the fire, it will start to decrease in size until it goes out.



Chapter 5

Development and Implementation

This chapter discusses the implementation of each part of the system. It starts with an overview of

the used implementation environments. Followed by a section about the integration of the hardware

components. Next, there is a section on how the VR and MR simulators are programmed in Unity.

At the end of this chapter an explanation is given about how object detection should be implemented

in the system.

5.1 Implementation environment

Different implementation environments were used to create the system. This section gives an

overview of which implementation environments were used. This ranges from, the 3D modelling

software used all the way to which packages must be installed to implement object detection.

5.1.1 3D modelling and printing software

Autodesk Fusion360 (version 2019.2.0.7824) is the main 3D modelling software used to create the

printed parts. After designing the parts, they were sliced using the Ultimaker Cura software (version

4.5.0). A modified Creality CR20 3D printer was used to print all the parts. The modifications to

the printer were done to ensure quality 3D prints from a budget 3D printer. The modifications

include an upgraded magnetic print bed that improves bed adhesion, an upgraded extruder module

that ensures consistent filament feeding to the hot end and thus prevents over-extrusion or under-

extrusion and finally an upgraded hot end with nozzle that limits the risk of clogging and increases

precision.

5.1.2 Unity

The game engine used for this project is Unity (version 2019.3.10f1) by Unity Technologies. A

game engine is software that facilitates game developers to build games. It contains all the nec-

essary tools to easily create a game. Unity is one of the most popular game engines, especially

43
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for XR game development. Unity works with scenes to which game objects are added. Custom

behaviours can be assigned to these game objects by writing C# scripts. (Unity Technologies, nd)

For Unity to be able to work with the HTC VIVE Pro headset, the SteamVR plugin needs to be

downloaded and imported into the project. The new SteamVR Unity plugin, SteamVR 2.0, comes

with a whole new input system. Which allows developers to define custom action sets for the con-

troller. An action set is a collection of actions that can be mapped to the buttons of the controllers,

using the bindings UI.

5.1.3 ZED Camera

The camera that was used for this thesis, is the ZED Mini from Stereolabs (Figure 5.1). This cam-

era is developed for AR applications specifically and can be attached to a VR headset. The depth

range of this camera is 0,1 to 15m and it is equipped with two motion sensors, a gyroscope and

an accelerometer. The field of view is 90◦ (horizontal) x 60◦ (vertical), which is smaller than the

human field of view. When the image is displayed in an HMD, black bars are added to each side of

the image. As a result, the player will have a limited view. The image sensors have a 16:9 format

and at a resolution of 1344x376, the ZED Mini is able to deliver up to a 60 fps for XR. The camera

is connected by a USB 3.0 type C cable. (Stereolabs Inc., ndc)

The camera comes with multiple third-party integrations, like a Unity plugin. To use this plugin, the

ZED SDK needs to be installed too. The main components of the Unity plugin are the two camera

prefabs. The first prefab, the ZED Rig Mono, is used for AR applications that do not require an

HMD. The second prefab, the ZED Rig Stereo, is used in MR applications. This prefab can only be

used with an HMD and replaces the SteamVR Camera Rig. It outputs two images, one for each

eye.

Figure 5.1: ZED Mini (Stereolabs Inc., ndc)

The plugin also contains many useful scripts. The most important ones being the ZEDPlaneDe-

tectionManager and the ZEDControllerTracker DemoInputs. The ZEDPlaneDetectionManager de-

tects flat surfaces. The detected surfaces can be highlighted in pink. The plane detection manager

can also detect the floor plane. This plane will be highlighted in a light blue colour. The user can

select which detected planes should be visible in the scene view and/or in the game. The ZED-

ControllerTracker DemoInputs script handles the movements of the controller. It also handles the

user’s actions, like button presses and the trigger. To handle the input of the controllers, custom

bindings can be made in the SteamVR bindings UI. The ZED plugin for Unity comes with its own

action set. These actions can be assigned to each input of the tracker.

The ZED Mini can be attached to the front of the headset. The mount that comes with the camera
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is not compatible with the HTC VIVE Pro, so an additional mount needs to be printed. Stereolabs

provides an STL file with the 3D model of the mount on their website. This file should be sliced

before it can be printed, as explained in section 5.1.1.

5.1.4 Python and TensorFlow

TensorFlow is a package that can be imported in python scripts to easily develop machine learning

algorithms. In this thesis, an attempt to implement object detection has been made. To implement

object detection, the TensorFlow Object Detection API is used. This API is not yet compatible with

TensorFlow 2.0, that is why TensorFlow 1.15.0 was used. Python also needs to be installed in order

to use TensorFlow. For this project, Python 3.7 was used in combination with Anaconda.

5.2 Arduino and sensors

This chapter describes how all data from the sensors is processed before it is sent to the main

application on the computer. It gives an overview of how the sensors are connected to the micro-

controller and the libraries included in the Arduino sketch.

5.2.1 The board

Figure 5.2 shows how each sensor and PCB is connected to the Arduino MRK 1000. The output

of the LDR is connected to pin A0. The PCBs of both analogue Hall sensors are connected to pin

A1 and A2. The PCBs of the digital hall switches are connected to pins D0, D1 and D2. The Vcc of

each PCB is connected to the power supply of the board which is 3,3V. All grounds of the PCBs are

connected to the ground of the board. After the analogue pins are read, the 10-bit ADC converts

the voltage to a digital value in the range 0 to 1023.

5.2.2 The software

An Arduino program consists of two major parts, the setup and the loop. The setup is called

only once, right at the beginning of the execution of the program. After that, the loop is executed

continuously. In the setup, the agent type is set. This is done with an integer, zero for a firehose

nozzle, one for a powder extinguisher and two for a CO2 extinguisher. Next, the board will try to

connect to the Wi-Fi network with the given SSID and password. It will try to make a connection

every second until it succeeds. In the next step, the UDP connection is initialized. In the loop, every

sensor is read. To read the values of the sensors, four custom libraries were written. Three libraries

are responsible for reading each kind of sensor, and one to process the data from the sensors.

The LDR library is responsible for reading the LDR sensor output. After the output of the LDR is

read, it is pushed to the end of an array and a running average is calculated and returned. The

user can define the length of the array, and so the number of samples to calculate the running
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Figure 5.2: Connection scheme of the Arduino

average over, in the beginning of the Arduino code. The need for a running average comes from

the observation that the output voltage of the sensor is not very accurate. Its digital output value

read by the Arduino can fluctuate with ±5 units.

The libraries responsible for reading the analogue Hall sensors and hall switches both contain a

function to read the output of the sensor.

The fourth library is the Nozzle library. This library is responsible for processing the received data

and preparing it to be sent to the application. The LDR value is converted to an angle between 0

and 90 degrees. This is the range of the actual lever. For the conversion, a function was found

through an experimental method. For different positions of the lever, the output value was read

multiple times and the average was calculated. From the calculation, we could derive the function

in equation 5.1.

f (x) =


0 x < 17

0,0441∗ x+29,051 17≤ x < 1010

90 1010≥ x

(5.1)

The average of the measurement of two analogue Hall sensors is used to increase the accuracy of

the flow rate selector’s position reading. The average of both sensors’ measured values is larger

than 300, so this is subtracted from the average. The reason for doing this is that now, no average

value is larger than 255 and the value can be sent within one byte. Further processing of this value

is done by the XR application. For all eight settings of the flow rate selector, a range of values is

determined. The calculations of these ranges are shown in appendix A.

The beam type is detected using three digital hall switches. The output of these sensors is high if

there is no magnet underneath it and low if there is a magnet present. Depending on the selected
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beam type the output will be an integer between zero and two.

Besides the use of custom written libraries, certain standard libraries were used too. The WiFi101

library is needed to connect the Arduino to a Wi-Fi network. The WiFiUDP library allows to set up

an UDP connection between the Arduino and the application.

All the components of the virtual nozzle follow the real nozzle’s manipulations in real time. This

means that the server has to process the received data and convert it to movements on the screen.

Processing the data in the Arduino program reduces the load on the server of the application.

After reading all sensors and processing the data, the UDP packet is prepared for transmission. To

reduce the load on the server, a packet will only be transmitted when it is different from the previous

sent packet. The packet is four bytes long. The agent type fills the first byte. For now, there are

only three options so, only the two least significant bits are used. But this can be extended in the

future by using the remaining six bits as flags. The lever position fills the second byte. The flow

rate and beam type fill the third and fourth byte respectively. Figure 5.3 shows the structure of the

packet.

Figure 5.3: Structure of the payload of the UDP datagram

5.3 Implementation in Unity

The main application is made in the Unity game engine using visual scripting and coding in the C#

programming language. C# was used to program the logic of the simulator, like how fires spread

and how they interact with water, but it was also used to program the networking part of the project.

Most prefabs used to create game objects can be found for free on the Unity asset store. Except

the firehose nozzle (Figure 4.18) which was created by One Bonsai.

5.3.1 General code

The XR simulator application is divided in two parts, the first one being the VR simulator and the

second one being the MR simulator. Both simulators have similarities and thus share some of the

same classes and methods.

5.3.1.1 UDPServer

One of the shared classes is UDPServer. This class is responsible to collect and process the data

received by its clients and relay the information to the correct game object in the scene to update

the object’s state.
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A separate thread is created to collect the incoming data via the method ReceiveData. This thread

will handle all the incoming 32-bit packages. All packages bigger or smaller than 32 bits are dis-

carded because this would imply a faulty package. Once the packet is received and the size is

checked, it is sent to the main thread. The main thread will use the CreateAgent method (Listing

5.1) to send the message to the correct game object in the scene or it will instantiate a new game

object if the client is connecting for the first time. The type of game object that has to be instantiated

depends on the information contained in the package. Each UDP package contains a tag that is

the client’s agent type (Figure 5.3) which is used to select the right extinguishing prefab (Listing

5.1, line 10). In the current version of the simulator, there are three possible game objects, there is

the firehose nozzle, the CO2 extinguisher and the powder extinguisher. These three types of extin-

guishing agents can be spawned, but only the firehose nozzle will work in the current state of the

simulator. This is because there is no tangible CO2 or powder extinguisher with sensors connected

to it. Thus, no sensor data is being send to the server. The option to have multiple extinguishers

is added to this version of the simulator to show its extendibility which is the third non-functional

requirement of the Navy.

Once the game object has been instantiated, an available VIVE tracker has to be linked with the

object and its state has to be updated with the received information. The VIVE tracker is used to

track the movement of the object in three-dimensional space and mirror these in the virtual scene.

To attach the tracker to an object in the scene, an empty parent object is created. This parent object

will have the tracker linked to itself and will encapsulate the object that has to be tracked. It is im-

portant to know that no game object will be instantiated if there is no tracker available (Listing 5.1,

line 28). Thus, it is crucial to check whether at least one tracker is on and connected to SteamVR.

To ensure the tracking of the virtual object happens accurately, the Tracker object must be placed

correctly relative to the game object in three-dimensional space. To achieve the right placement

and correct tracking, the tracker object is kept in the local origin and an offset is applied to the

game object’s position and rotation (Listing 5.1, lines 48 and 49). The offsets needed can be found

in the AgentInteraction instance of the game object, by using the methods mGetTrackerRotOffset

and GetTrackerPosOffset.

Updating the state of the game object happens in the CreateAgent method by calling the Packet-

Translator method of the AgentInteraction instance that is attached to the game object (Listing 5.1,

lines 62 and 70). If the object does not have to be instantiated because it already exists, its state is

simply updated in the same way as for a new object.

The reason why the information found in the secondary thread is sent to the main thread is be-

cause Unity does not allow a secondary thread to instantiate objects. A Dispatcher design pattern

(Dupire and Fernández, 2001) is used to send the information from the secondary thread to the

main one. The Dispatcher class implements a singleton pattern to ensure that there is only one

Dispatcher object for the whole server. This Dispatcher object will save a list of all the actions from

the secondary thread that have to be executed by the main thread. These pending actions will be

invoked by the main thread in the Update loop of the UDPServer object.

Working with the dispatcher also allows the server to handle multiple clients at the same time with-

out dropping any of the received UDP packages. Being able to handle multiple clients at once
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means that the system is ready for a user with multiple extinguishers. It also allows the Navy to

upgrade the system to a multiplayer version, where every player has his own extinguishing agents.

This is also in line with the Navy’s third non-functional requirement.

1 // Creates a extinguisher gameobject if it does not exist and updates the object

with the new data

2 private void CreateAgent(IPEndPoint clientEndpoint, byte[] data)

3 {

4 try

5 {

6 //If client connects for the first time a new GameObject is made and the

sending IPadress is linked together in the dictionary

7 if (!clients.TryGetValue(clientEndpoint.Address, out GameObject

extinguisher))

8 {

9 GameObject prefab;

10 Agent agentType = AgentInteraction.GetAgentTypeOutOfData(data);

11 switch (agentType)

12 {

13 case Agent.HOSE:

14 prefab = prefabHOSE;

15 break;
16 case Agent.POWDER:

17 prefab = prefabPOWDER;

18 break;
19 case Agent.CO2:

20 prefab = prefabCO2;

21 break;

22 default:

23 Debug.Log("ERROR: Agent type is not recognized for the following

client: " + clientEndpoint.Address);

24 return;
25 }

26
27 // Check if a tracker is available to attach to the agent, so the it’s

movement can be tracked in 3D space

28 Tracker tracker = GetAvailableTracker();

29 if(tracker == null && useTrackers)

30 {

31 Debug.Log("No tracker available"); // If no tracker is available

(because they’re all used or none are connected) the object

isn’t added to the scene

32 return;

33 }

34
35 tracker.Available = false; // Set tracker is in use

36 // Create gameobject
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37 extinguisher = Instantiate(prefab, new Vector3(0f, 0f, 0f),

Quaternion.identity);

38
39 // Create empty game object that is linked with the tracker that will be

used as a parent

40 GameObject trackedParent = new GameObject();

41 trackedParent.AddComponent<SteamVR_TrackedObject>();

42 // Link tracker to parent

43 SetTrackedParent(trackedParent, tracker);

44 //Set name seen in the hierarchy of the parent game object

45 trackedParent.name = agentType.ToString();

46 // Set parent (empty object with tracker, it moves with the tracker, so

all the objects it contains will move with it)

47 extinguisher.transform.parent = trackedParent.transform; //

trackedParent is a gameobject while one expects a transform that’s

why .transform is added

48 extinguisher.transform.localEulerAngles =

extinguisher.GetComponent<AgentInteraction>().GetTrackerRotOffset();

49 extinguisher.transform.localPosition =

extinguisher.GetComponent<AgentInteraction>().GetTrackerPosOffset();

50
51 // Add IPaddress as key and new gameobject as value to the dictionary

clients

52 clients.Add(clientEndpoint.Address, extinguisher);

53 // Set the agent type field of the created extinguisher

54 extinguisher.GetComponent<AgentInteraction>().SetTracker(tracker);

55 // Set the agent type field of the created extinguisher

56 extinguisher.GetComponent<AgentInteraction>().SetAgentType(agentType);

57 // Set IP address in weapon component

58 extinguisher.GetComponent<AgentInteraction>().SetIPAddress(clientEndpoint.Address);

59 // Make a WriteTextIO instance to log the data received by the weapon in

a text file

60 extinguisher.GetComponent<AgentInteraction>().SetTextIO(agentType,

clientEndpoint.Address);

61 // Modify fields of the new object by the data received by the client

62 extinguisher.GetComponent<AgentInteraction>().PacketTranslator(data);

63 // Add timestamp of last weapon update to the dictionary timestamps

64 DateTime lastUpdate =

extinguisher.GetComponent<AgentInteraction>().GetLastUpdate();

65 timestamps.Add(clientEndpoint.Address, lastUpdate);

66 }

67 else
68 {

69 // Update extinguisher with new data

70 extinguisher.GetComponent<AgentInteraction>().PacketTranslator(data);

71 // Update timestamp of last extinguisher updates

72 DateTime lastUpdate =
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extinguisher.GetComponent<AgentInteraction>().GetLastUpdate();

73 timestamps[clientEndpoint.Address] = lastUpdate;

74 }

75 }

76 catch (Exception err)

77 {

78 print(err.ToString());

79 }

80 }

Listing 5.1: CreateAgent method of the UDPServer class.

5.3.1.2 AgentInteraction

The AgentInteraction class is an abstract class that serves as a base class for different types of ex-

tinguishing agent classes. Every extinguishing agent type needs its own derived class to be able to

update and keep track of the game object it is linked to. This is because every type of extinguishing

agent has different controls and movable pieces. For example, a firehose nozzle has three controls

with which it can be manipulated. It has the beam type selector, the flow rate selector and the lever.

But a CO2 or Powder extinguisher only have one control, the lever. The base class only contains

the methods that are used in every extinguishing agent class. All the agent specific methods are

implemented in the derived classes.

An example of a method that is needed for every type of extinguisher is the SetLever method. This

is an abstract method that is implemented in the derived classes. It is responsible to update the

position of the lever and turn the emission of the agent on and off. The lever value is the only

argument for the method, and it depicts the real position of the lever on the tangible object. The

way that the real-life position or rotation is translated to a position or rotation for the virtual lever, is

implemented in this method.

The PacketTranslator method is a fully implemented base class method. This method is called by

the UDPServer’s CreateAgent method every time a UDP packet has to be processed. The Pack-

etTranslator will update the state of the extinguishing agent it is called upon. This method also

contains the call to the WriteTextIO object to log the updated state of the extinguishing agent in a

text file.

Every extinguishing agent type will need its own AgentInteraction variant that inherits from AgentIn-

teraction. Each variant will have to implement the methods that are needed to update the state of

their specific extinguishing agent based on the sensor data received.

The AgentInteractionHOSE class is a child class of AgentInteraction that implements all the meth-

ods needed to update the state of the lever, beam type selector and flow rate selector based on the

received UDP packet. These methods also influence the water particle system that emits particles

out of the firehose nozzle. Changing the beam type for example will change the particle systems

shape. While changing its flow rate will alter the particle systems emission. Changing the posi-

tion of the lever will influence the throughput of water particles out of the firehose. This class also



52 CHAPTER 5. DEVELOPMENT AND IMPLEMENTATION

contains the specific offsets for connecting the VIVE tracker to its instantiated prefab.

5.3.1.3 WriteTextIO

The WriteTextIO class is used to log the data of all the clients of the server. Every client has its own

WriteTextIO object that creates a separate text file to log the data with a timestamp. This feature can

be used by instructors to review or replay the manipulations executed on the extinguisher during

the training session. Although additional software would simplify the reviewing process.

5.3.1.4 Tracker

The Tracker class is used to check if a tracker is connected. In the server there are four slots to fill

in the serial number of different trackers. This gives the user the freedom to choose which tracker

to use. If one tracker has to be recharged, the user can swap trackers and start a new training

session. Keep in mind that the four slots do not have to be filled. Only one tracker is necessary to

use the simulator, so at least on slot should be filled.

When the UDPServer is instantiated, it goes through the array with the four slots and creates

Tracker object for the non-empty slots. Each Tracker object represents a physical tracker and

contains the serial number of that tracker, the tracker’s ON/OFF-state and if the tracker is still

available. Being available and ON does not mean the same thing in this context. If a tracker is ON,

it is connected to the application. If a tracker is available that means that the tracker is connected to

the application and it is not linked with any other game object in the scene. When a tracker is linked

with a game object, it is indicated in the tracker field of the AgentInteraction instance attached to

the game object.

5.3.1.5 Water

The Water game object, which is attached to the water emitter of the firehose nozzle, is a modified

version of the Shower prefab from Unity’s Particle Pack. The original Water game object consists

of a parent game object to which a particle system, the beam itself, is attached. This parent

game object has two child game objects, Splash and Ripple,which also have a particle system

component. The original prefab is modified, so it would better resemble a firehose.

First, the rotation of the particle is changed so it sprays forward instead of downwards. Second,

the number of particles that are emitted is increased to make it look more realistic. In game, the

parameter that relates to the number of emitted particles can be changed by turning the flow rate

selector. A higher flow rate results in a higher emission. The third modification that is made is the

shape of the particle system. The shape of the particle system is a cone, whose angle changes

when the beam type selector changes.

Last, the Water or MRWater script is added to the parent game object. This script describes the

behaviour of the water. The method OnParticleTrigger is called every time a trigger event with a

water particle happens. This method is used to decrease the fires’ health when they are hit by
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water particles. In order for the particle system to generate trigger events, the trigger module of the

particle system should be enabled. The trigger module needs a list of trigger colliders. Only when

a particle enters one of those colliders, a trigger message is generated. The OnParticleTrigger

method makes a list of all the particles that entered one of those colliders. For each particle in the

list, the program verifies which fire it entered. If it hit a certain fire, the fire’s health decreases with a

constant value. The code is shown in Listing 5.2. The list of these colliders is updated every frame.

1 private void OnParticleTrigger()

2 {

3 //Get all entered particles that entered one of the colliders in the list of

the trigger module of the particle system

4 List<ParticleSystem.Particle> enteredParticles = new
List<ParticleSystem.Particle>();

5 int enterCount =

waterPS.GetTriggerParticles(ParticleSystemTriggerEventType.Enter,

enteredParticles);

6
7 //Get all fires

8 GameObject[] fires = GameObject.FindGameObjectsWithTag("Fire");

9 //for each particle in the list, check which fire it hit

10 foreach (ParticleSystem.Particle particle in enteredParticles)

11 {

12 for (int i = 0; i < fires.Length; i++)

13 {

14 //get the collider of the fire

15 Collider collider = fires[i].GetComponent<Collider>();

16 //check if the particle is inside the collider

17 if (collider.bounds.Contains(particle.position))

18 {

19 fires[i].GetComponent<Fire>().Damage();

20 }

21 }

22 }

23 }

Listing 5.2: OnParticleTrigger method of the Water/MRWater class.

5.3.1.6 Fire

When a new fire is spawned, a new instance of the fire prefab is instantiated. This prefab is a

modified version of the WildFire prefab from Unity’s Particle Pack. The modifications optimize the

prefab for this application and missing features are added, like for example smoke. The original

prefab consisted of one parent game object with two child prefabs. Each of these three game

objects had a particle system. The first modification is the addition of another child game object

which contains the smoke particle system. This smoke particle system is also a modified version of
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the SmokeEffect from Unity’s Particle Pack. The smoke particle system was modified so the smoke

goes upwards and does not stay on the ground. The second modification is the restructuring of the

prefab. An empty game object is created to which all game objects that contain a particle system

are added. The parent game object of the original fire becomes a child object of the new parent

too. The new parent game object now has four child game objects. Rearranging the hierarchy of

the prefab is needed to scale it properly, so when a fire increases in health, it also grows in size.

To simplify the object verification, the tag of the prefab is set to ’Fire’. A box collider is added to the

parent game object. This box collider is set as a trigger. The effect of this setting is that other game

objects or particles do not bounce off of but go through the collider. When a game object or particle

enters the trigger, a trigger event is launched, and both the fire and the intruding game object get

a trigger message. The box collider sits at the base of the fire to make the extinguishing process

more realistic. In real life, fires should be hit at the base and not at the top of the flames when using

water as an extinguishing agent. A disadvantage of using triggers instead of collisions is that a

trigger event does not give any information about the objects that caused the trigger event. When a

particle collision happens, the method OnParticleCollision is called. The parameter of this method

is the game object that was hit. Using collisions instead of triggers would make the processing

of this event a lot easier but does not give the visual effect that is aimed for because when using

collisions, the water particles start bouncing off of the Fire’s box collider. At run time, when a new

instance of the fire is instantiated, the Fire or MRFire script is added to the game object to define

the behaviour of the fire.

5.3.1.7 FireManager

The FireManager class is responsible to keep track of all the Fire game objects in the scene.

It stores a reference of all the objects in a list that can be accessed by other classes using the

GetFires method. The Water class attached to the water particle system is an example of a class

that uses this method to update its colliders.

Other classes like the FireSpawner can modify the list by using the AddFire method to add a new

Fire object to the list. When a Fire object is destroyed because it is extinguished, it raises the KillMe

flag. This Boolean is used by the FireManager to know which Fire objects have to be removed from

its list and have to be destroyed. It is the FireManager that is responsible of destroying extinguished

Fire objects using the KillFires method. This method is executed every second as a coroutine rather

than being executed in the Update loop. Doing this helps with the performance of the application.

Every method in this class will try to access the list of fires, some will even modify it. So, it is

important to make sure that the list is not modified by two actors at the same time. Nor that it is

read by one actor while the other is writing in it. To ensure thread safety and prevent data corruption,

a mutex is used in all the methods. This will lock the list, to ensure that only one actor has access

to the list at the same time. An example of how the mutex is used in the FireManager can be seen

in Listing 5.3.

It is also important to notice that when a Fire object is destroyed, its Smoke child object is not.

The Smoke child object is taken out of the Fire object before the Fire object gets destroyed. This
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is done to create the realistic effect of still having smoke lingering around while the fire is already

extinguished. The Smoke object is destroyed at a later phase by the DestroySmoke class that is

attached to the Smoke object.

1 public void AddFire(GameObject newFire)

2 {

3 mutex.WaitOne();

4 fires.Add(newFire);

5 amountOfFires = fires.Count;

6 mutex.ReleaseMutex();

7 }

Listing 5.3: Use of a mutex in the AddFire method.

5.3.1.8 Menu

The first scene that is loaded when the game is started is the menu screen, called MainMenu

(Figure 5.4). The menu consists of three buttons: Virtual Reality, Mixed Reality and Quit. When

the Virtual Reality button is pressed, a new screen, called VRInfoScreen, is loaded which contains

all the information on how to play the simulation. There are also two buttons, one to go back to the

menu and one to start the actual simulation. When Mixed Reality is selected, the MRInfoScreen is

loaded. It looks like the VRInfoScreen, but with the information on how to play the MR simulator.

When Quit is selected, the application closes.

Figure 5.4: Main menu

In Unity’s build settings, all scenes are added and receive an index. Using the SceneManager, the

next scene can be loaded using its index from the build settings.

After the game ends, another menu screen EndMenu appears. In this screen, the player can

choose to play the same simulator again or to go back to the MainMenu screen. Both the VR
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and MR simulator have a slightly different version of the EndMenu. The end menu contains the

after-action report of the training session. For now, only the amount of water used, is displayed.

5.3.2 Implementation of the VR simulator

Implementing a simulator in VR offers a lot of freedom for the programmer. There are almost no

limits to what can be simulated other than computational power. This freedom comes from the

fact that the virtual environment is not constrained by the real world. The only constraint could be

real-world moving space, but even then, there are solutions to circumvent the space constraint by

using a teleportation feature. This means that the possibilities to make a firefighting simulator are

endless and thus many different approaches can be taken to meet the requirements of the Navy.

The implementation proposed in this thesis is just one of the many ways to create a firefighting

simulator. A game view of the VR simulator is shown in Figure 5.5.

Figure 5.5: Game view of the VR simulator

5.3.2.1 FireSpawner

Before a training can start, the instructor has to place fires in the scene. This can be done in two

different ways. Fires can be placed using the computer itself by clicking on different objects in the

scene on which fires should be spawned upon. Or the VR headset and the VIVE Wand can be

used to place fires. Both ways of spawning fires are handled by this class.

When using a mouse, the MouseClick method is called. When the left mouse button is clicked

this method will cast a ray from the position of the camera through the position on the projection

plane where the mouse click was registered. By following this ray till it hits an object, a hit point is

determined.

Using the hit point, a spawn point is calculated. The spawn point has the same x- and z- coordinates

as the hit point but the y-coordinate is equal to the lowest point of the axis-aligned bounding box

(AABB) of the object. This ensures that the fire is spawned at the bottom of the object and not
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somewhere in the middle. Which gives a more realistic feeling to the phenomena.

When using the VIVE Wand to spawn fires, a laser pointer is displayed in VR. This laser pointer

gives a visual queue to the user of where he is aiming at. It shows the user where he is aiming,

and he can intuitively select an object on which he wants to spawn a fire. When the trigger of the

controller is pulled, the PointerClick method is executed. This method will take the point on an

object at which the laser pointer was pointing when the trigger was pulled, and it will determine the

spawn point in the same way as for the mouse click.

To spawn the actual fires, the SpawnFire method is called. This method is responsible to spawn a

fire in the spawn point that is passed as an argument. SpawnFire will first check what type of object

was hit by checking if the object is a Flammable object or a Fire object.

If the object that is hit is a Flammable object, then it is checked whether a Fire object is already

in the neighbourhood of the spawn point. This is done using the SpawnCheck method that will

check with the FireManager if there is a fire in a radius of MINDISTANCE from the spawn point.

MINDISTANCE is a constant that is chosen based on experimental testing. If no fire is in the

neighbourhood, a new fire is spawned in the spawn point and its parent is set to the object on

which it is spawned. If a fire is already present in the neighbourhood, no fire is spawned to reduce

the amount of particle systems in the simulation. This is done because particle systems take up

a lot of system resources, so minimizing the amount of particle systems in a scene is beneficial

for the performance of the application. Particle systems that are close to each other are not really

distinguishable and thus having multiple particle system close to each other does not improve

the user experience. Not spawning fires that would be close to other fires will therefore not be a

drawback, but an advantage because it limits the amount of particle systems in the scene.

If a Fire object is hit, the Fire object will become bigger by using the ClickUpdate method of the

Fire script that is attached to the Fire object. This is how an instructor can place bigger fires. First,

the instructor has to place a default fire before optionally enlarging it by clicking on it. The more he

clicks on it, the more the fire will grow until it reaches its maximum scale.

5.3.2.2 FireCore

A FireCore is an object that is instantiated by the FireSpreader class and it is used to spread fires.

This object is a normal C# object and not a ”Unity object” that inherits from MonoBehaviour. This

means that the FireCore script cannot be attached to 3D object in the scene. A FireCore is an

object that keeps track of the temperature in a certain point on a Flammable object. To accomplish

this, the FireCore uses the physical properties of the flammable object like its thermal conductivity,

its temperature, its weight and its heat capacity.

A VR application is already computational expensive thus resources must be spent carefully. When

making a firefighting simulator it is better to spend resources on the smoothness of the experience

(e.g. achieve higher fps) than on physically correct fire simulations. If the end goal of this project

was to build a fire simulator for research purposes, then it would make sense to spent resources

to create a physically correct simulation of a fire. But for now, a simple model to simulate the fires

suffices.
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It was chosen to use a variation of conduction to increase the temperature of neighbouring objects

around a fire in a pseudo-scientific way. The temperature increase by conduction is calculated

with all the physical properties of the flammable object and the properties of the nearby fire (e.g.

distance from the fire, temperature of the fire). The heat transfer that happens by conduction is

really small. So, small that it could even be discarded in most cases. That is the reason why

a multiplication factor is used. This multiplication factor is a constant that is determined through

experimental testing to see which factor makes the fires spread between objects in the most realistic

way. The temperature increase due to conductivity is multiplied by this factor. This class also

updates the core temperature of the flammable object itself. This is updated in the same way as

the temperature of the core.

5.3.2.3 FireSpreader

The FireSpreader script is attached to the Fire game object. This script will give the fire the ability

to spread around in the scene. It handles both requests to spread fires between objects as well as

requests to spread fires inside an object even though the two types of spreads are done differently.

When spreading fires, the goal is to find the positions where new fires have to be spawned. Finding

these points is rather tricky. It can be chosen to spawn fires at a fixed distance from each other

without taking care of any other parameters, but that does not look good.

The approach that is implemented in the firefighting simulator is rather different. It makes use of

OverlapSpheres. What an OverlapSphere does, is to create a sphere around a centre point with a

predefined radius and return all the colliders that are inside or touching that sphere.

An OverlapSpere with a mask and with a radius that depends on the size of the fire is executed

around the origin of the fire. Because a fire grows automatically with time, until it reaches its maxi-

mum size, the radius of the OverlapSphere will do the same. The mask used for the OverlapSphere

will make sure that only the colliders of flammable objects are returned. Once the list with all the

colliders is returned, a couple of colliders have to be removed. First, the collider of the flammable

object on which the fire is burning is removed because this method will only be used to spawn

fires on other objects. Then, every collider that was already found by a previous OverlapSphere is

removed. All of the remaining colliders will be added to a list of colliders called hitColliders which

is a field of the class. If the hitColliders list contains colliders that have not been found in a new

search, they are also removed from the list. In the current version of the simulator this cannot occur

because objects cannot be moved. But if the Navy wants to make the experience more realistic in

the future by adding the feature that objects can be moved by spraying them with a powerful water

jet, then this feature would come in handy.

Because an OverlapSphere is a resource expensive operation, it is only executed every time the

size of the fire is increased. This size increase happens every second until the fire has reached

its maximum size. This means that once the fire is full scale, no OverlapSphere is executed which

saves resources. It is also important to know that every fire grows independently which signifies

that they are not updated all at once but asynchronically. As a consequence, the OverlapSphere

operation for every fire happens on a different moment in time which prevents fps drops. Figure 5.6
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shows how an OverlapSphere looks when it is executed. When the sphere touches the box on the

left, the box’s collider is added to the hitColliders list.

Figure 5.6: Fire with its OverlapSphere (green) in Unity

The next step is to find positions to create FireCores on the new colliders that have been added

to the hitColliders list. To get these positions, the closest point on every new collider from the fire

centre is calculated. A FireCore is created in those points and is added to the fireCores list. These

FireCores will regulate the temperature in every position and will send out a request to spawn a

fire once the ignition temperature for a certain object is reached in one of the cores. The temper-

atures of all the cores are updated every second thanks to a coroutine called UpdateCores. The

coroutine will request the FireSpawner to spawn a fire once the ignition temperature for a certain

core is reached. At that moment the fireCore object will be removed from the fireCores list and all

references to the core are deleted. This means that during the next garbage collection, the memory

taken up by the core will be freed up.

A fireCore is also removed from the fireCores list when it still has not ignited after a certain number

of updates. An update happens every second, which means that if the number is 200 for example,

every fireCore that has not ignited after 200 seconds will be removed from the list and the memory

will be freed during the next garbage collection.

It is important to remember that a fireCore is deleted once it reached the ignition temperature and

it ignites a fire. From that moment forward, it is the fire that will regulate the temperature in that

position. Because every Fire object has a FireSpreader attached, this process is repeated for every

new fire that is spawned.

5.3.2.4 FlammableObject

Every flammable object in the scene has this script attached. It is used as a sort of container for

all the physical specifications of a certain object. These specifications are needed to spread fires
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inside and between objects. The choice to make the fire spreading be dependent on the physical

properties of an object is the main reason why this class is needed. This class will also change the

tag and layer of an object to make the object detectable by the OverlapSphere of the FireSpreader.

In the current implementation of the VR simulator, only class-A fires are implemented. This means

that only solid objects have the FlammableObject script attached. This class is also responsible for

the fire audio. There are three types of audio files used, the Fire Place Low Intensity, Fire Place

Medium Intensity and Fire Place High Intensity. These audio clips are part of the Fire Burning

package that was purchased from the Unity asset store. These three audio clips are played depen-

dent on the health of the fire that is present on the burning object. If multiple fires are present on

a single object, then the fire with the highest health will determine the audio clip that is played. It

was chosen to only play one clip per burning object to limit the noise through the speakers of the

HMD. The HTC Vive pro headset has low quality headphones, thus it can get really noisy, really

fast. After some tests this way of working seemed to give the best user experience.

5.3.2.5 Fire

The Fire script is added to a Fire game object once it is instantiated. This script will control the

behaviour of the fire. It is responsible to keep track of the fire’s health, scale and temperature. The

GrowFire method is the coroutine used to update the fire every second. This coroutine calls up

several methods to increase the fire’s health, scale and temperature. It will also lower the position

of the fire if it is not at the lowest point of the AABB of the object.

The fire’s health is the main parameter that controls both the scale and the temperature. If the

health is changed, the two other parameters will also be influenced. Both parameters have a linear

relationship with the health that is dictated by the formulas in Listing 5.4, lines 9 and 25.

The health is increased every second by the IncreaseHeath method. This method has two possible

ways to increase the health of a fire. It can increase the health linearly by incrementing it or it can

increase the health based on an addition with the coreTemperature that is multiplied by a multiplier.

The first method is used in the ClickUpdate method that is called when a user clicks on a fire to

increase its size. The second method is used in GrowFire which is called every frame.

1 private void UpdateScale()

2 {

3 float sizeX = fireCollider.bounds.size.x;

4 float sizeZ = fireCollider.bounds.size.z;

5 // Has to be edited if it has to work properly for big objects

6 if ((sizeX < maxSize) && (sizeZ < maxSize))

7 {

8 // Equation of the first degree

9 scale = scaleIncrement * health + (maxSize * Vector3.one - scaleIncrement *

maxHealth);

10 gameObject.transform.localScale = scale;

11 fireSpreader.UpdateFireCoresList();

12 }
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13 // If the fire has reached its maximum size and the neighbours are not yet

spawned

14 else if (!neighboursSpawned)

15 {

16 // This function is only called once by the fire script.

17 SpawnNeighbouringFires();

18 }

19 }

20
21 private void UpdateTemperature()

22 {

23 if(coreTemperature < maxBurningTemperature)

24 {

25 coreTemperature = health * temperatureIncrement;

26 }

27 Mathf.Clamp(coreTemperature, 0, maxBurningTemperature);

28 }

Listing 5.4: UpdateScale and UpdateTemperature method.

To update the scale of the fire, the UpdateScale method is used. This method will update the scale

based on the formula on line 9 of Listing 5.4 until the fire reaches its maximum scale. The maximum

scale of a fire depends on the size of the object that is burning. Once the maximum scale of the

fire is reached, this method will call up the SpawnNeighbouringFires method.

In reality, the size of the fire does not only depend on the size of the flammable object (fuel). The

amount of oxygen plays a big role in the propagation and lifetime of a fire. In a room where there

is plenty of flammable objects, but where oxygen is limited, the fire goes out automatically. For this

application, it is assumed that in each virtual environment, there is enough oxygen for the fires to

grow until they reach their maximum size.

Figure 5.7: A fire with its possible spawn points (white) in Unity
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The SpawnNeighbouringFire methods is responsible to spread fires inside an object. It takes a

look at 26 possible spawn points around the current fire (Figure 5.7) and will look if a fire could

be spawned in them. The criteria to spawn a fire in a spawn point is that the point is inside the

bounds of the AABB of the burning object. If that is not the case, nothing happens. But if the spawn

point is inside the bounds of the AABB, a call is made to the FireSpreader attached to the fire to

create a FireCore in the specific spawn point. This FireCore will keep track of the temperature in

the spawn point and will make the FireSpreader spawn a Fire once the temperature reached the

ignition temperature of the already burning material.

The temperature of the Fire game object is updated using the UpdateTemperature method which

will implement the formula from line 25 in Listing 5.4.

The last method executed in the GrowFire coroutine is the LowerFireHeight method which will lower

the Fire game object’s height if it is not at the bottom of the object. If a fire is somewhere at the

top of an object, it will look like the fire is spreading to the bottom. The top part will still be ingulfed

in flames from the fire even though the fire has moved to the bottom. This is because the fire is

increasing in size while it is lowered.

Finally, there is one last method in the Fire script and that is the Damage method. This method is

called every time the fire is hit by a water particle. It will decrease the health of the fire like seen in

Listing 5.5, line 5. It can be seen that the smaller the health the faster it will decrease. If the fire’s

health drops to zero, the killMe flag is raised to let the FireManager know that this Fire object can

be destroyed.

1 public void Damage()

2 {

3 // Damage fire

4 if(health > 0)

5 {

6 health = (int) (health - (1 - (health-1)/maxHealth) * HEALTHDECREMENT);

7 health = (int) Mathf.Clamp(health, 0, maxHealth);

8 }

9 // Destroy fire

10 if(health <= 0)

11 {

12 KillMe();

13 }

14 }

Listing 5.5: Damage method of the Fire class.

5.3.2.6 CameraScript

When placing fires with the computer or when observing a training session, the instructor has

to be able to move around in the scene. This is achieved by adding the CameraScript to the

InstructorCamera. This script will give the instructor the ability to move the camera using the arrow-

keys and the mouse.
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The arrow-keys will translate the camera in different directions in the scene. Using the mouse and

the middle mouse button, the user can rotate the camera in different directions.

5.3.2.7 DestroySmoke

Before a Fire game object is destroyed in the FireManager, its child object Smoke is detached

from it, so it could create the effect of smoke lingering around after the fire has been extinguished.

Eventually this smoke will also have to disappear. This is achieved by making the emission rate of

the Smoke particle system zero when the fire is extinguished. Doing this will ensure that no new

Smoke particles will be emitted. This combined with the fact that Smoke particles have a limited

lifespan will make the Smoke particles disappear after a while. Even though no smoke particles

will be visible, the Smoke object will still be in the scene because it is never destroyed. This means

that smoke is taking up memory without even being used. During a training session these Smoke

objects will start to pile up and they will start taking up more and more space which will deplete

more system resources and eventually have an impact on the user experience.

To avoid this from happening, the DestroySmoke script is attached to the Smoke game object.

This script will automatically destroy the smoke game object once its emission is zero and all the

particles from that object have disappeared.

5.3.2.8 GameManager

After the instructor is done placing all the fires, a button needs to be pressed in order to start the

next phase of the game. When using the keyboard, this is the TAB key. When using the controller,

this is the Menu button. When one of these buttons is pressed, the laser pointer is deactivated.

The UDPServer is activated and starts receiving packets from the extinguisher. After processing

the first packet, the server spawns the extinguisher into the scene.

This script is also responsible for ending the game when all fires are extinguished. A coroutine

checks every ten seconds the number of fires that are still burning. When the amount of fires is

zero the Boolean endGame is set true. If, the next time this coroutine is executed, the amount of

fires is still zero, the game is ended and the EndMenu screen is loaded.

5.3.3 Implementation of the MR simulator

5.3.3.1 MRFire

The MRFire script is a simplified version of the Fire script. But the Fire prefab is the same as

described in section 5.3.1.6. This fire cannot spread or spawn new fires, because in order to do so,

the simulator should have a notion of different objects. This is not the case, since it only overlays

virtual objects on live camera images.

The script has three public methods, SetHealth, IncreaseHealth and Damage. The first method,

SetHealt, is called when the fire is instantiated. It sets the health of the fire to a default value.

The second method, IncreaseHealth, increases the health with the same default value. The scale
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changes accordingly. The third and last method, Damage, decreases the health with one unit. The

scale changes accordingly also.

5.3.3.2 Laser pointer

The instructor needs to be able to place fires. This can be done using the default VIVE controller

as a laser pointer (Figure 5.8). This laser pointer is created using different pre-made and cus-

tom scripts. In the scene, an empty game object, called LaserPointer, is created. Three scrips

are added to this game object: SteamVR Behaviour Pose, ZEDControllerTracker DemoInputs and

SteamVR LaserPointer. The laser pointer game object has one child game object called FirePlace-

ment. This game object has only one component, the MRFirePlacement script.

Figure 5.8: MR simulator game view with laser pointer (blue) and plane detection (pink)

Players might have different preferences concerning the position of the controller in their hand, so

the position of the pose can be set in the bindings UI. A pose represents the position and rotation

of a tracked object. The SteamVR Behaviour Pose script get the position and rotation of a certain

controller. (Valve Corporation, 2019) The action pose is set to SteamVR’s default pose of the right

controller.

The ZEDControllerTracker DemoInputs script tracks a certain device, in this case the right con-

troller. The script allows to set actions that should be executed when a certain event, like a button

press, occurs. These events are set using the bindings UI. This script requires to set a ZEDMan-

ager. In this case, the ZEDManager of the ZED Rig Stereo is used. A ZEDManager manages a

ZED camera. It is responsible for setting the right parameters and opening and closing the connec-

tion with the camera. (Stereolabs Inc., 2020)

The SteamVR LaserPointer script adds a virtual laser beam to the controller. In contrast to the VR

simulator, no 3D model of the controller is needed since the user can see the real world and thus

the controller. Three functions, for three different events, can be implemented by the developer.

For this laser pointer, a function for only one event, PointerClick, is needed. This script requires

an action, which causes the OnPointerClick function to be called. In this case, the InteractWithUI
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action, which is bound to the trigger, is used. The function is added to the laser pointer by the

MRFirePlacement script.

Inside of the OnPointerClick function, the target of the laser is verified. If the laser did not hit any-

thing, nothing happens. If it hit a ZEDPlaneGameObject, the normal of the plane is retrieved. If the

plane is close to horizontal, SpawnFire is called. This function spawns a new fire at the hit point of

the laser pointer. It instantiates a new instance of the fire prefab and adds the MRFire script. The

health of the fire is set to a default value. If the plane is not close to horizontal, nothing happens. If

an existing fire is hit, the fire’s health and size increase. This is possible until it reaches a maximum

value. A fire with a higher health needs to be hit by more water particles before it goes out. To

determine if the hit object is a fire or a plane, the target’s tag is verified.

With the default laser pointer script from SteamVR it is not possible to get the exact position of

the hit, only some information about the target object. That is why the scripts were modified. The

RaycastHit is made public. The RaycastHit has different attributes like the collider that was hit and

the impact point of the hit.

To detect planes, the ZEDPlaneDetectionManager script is used. On calling the DetectPlanes

method, the plane detection manager starts detecting planes around the given location. The plane

detection manager detects flat surfaces and adds them to a list. These detected planes are high-

lighted in pink in the scene and game view, when this option is selected. In this simulator, this is

only the case during the first phase of the game, when the instructor is placing the fires.

5.3.3.3 Other functions

When the instructor is done placing fires, he can start the next phase of the game, which is ex-

tinguishing the fires. This can be done by pressing the Menu button on the controller. When this

button is pressed, the laser pointer is disabled and disappears. The FireSpawner script is also de-

activated, which means that no new fires can be added. The ZEDPlaneDetectionManager keeps

detecting planes, but it will no longer highlight them in the game view. The last thing that happens is

the activation of the UDPServer. The server will start receiving UDP packets from the extinguisher

and adds its prefab to the scene.

Next, the trainee can start extinguishing the fires. To do this, one of the available extinguishers

is used. After booting the extinguishing device, it will start sending UDP packets. These packets

are received and read by the server that runs inside of the application. The AgentInteraction script

processes this data and translates it to changes in the shape and flow rate of the water beam.

5.4 Object detection

Fires in the VR application are able to spread from one object to another in a pseudo-physical

manner, taking into account different parameters, like the material. In MR, the fires are overlaid

on live video footage. There is no notion of different objects. The fires can increase in size, but

they will not spread from one object to another. In order to spread from object to object, single

objects need to be recognized from the live video footage. Since the spreading of fire depends on



66 CHAPTER 5. DEVELOPMENT AND IMPLEMENTATION

parameters, like the material, the MR application needs to recognize this too. Machine learning

and object detection can be used for this. This thesis focusses on the detection of materials. Due

to limited time, this part could not be fully implemented.

In the field of computer vision, object detection is a technology that not only recognizes a certain

object, but also finds its location in the image. (MathWorks, nd) It indicates the location of the object

by drawing a bounding box or a mask. A bounding box is the smallest area possible, following the

axes, that contains the object. A mask indicates the location of the object following its contours.

For this thesis, the TensorFlow Object Detection API is used. This open source API allows users

to easily build, train and use object detection models. The API comes with a bunch of pretrained

models that can be deployed immediately. It also includes everything needed to train an existing

model on a custom database. (TensorFlow, 2020a)

Most pretrained models in TensorFlow’s API are trained on the COCO dataset from Microsoft. The

COCO dataset, or Common Object in Context dataset, consists of more than 300 000 images that

belong to 80 classes. Images in the dataset can contain multiple objects from different classes.

Compared to other object recognition datasets, COCO focusses on detecting single instances of

classes. (Lin et al., 2014)

5.4.1 Dataset

First, a suitable dataset needs to be found. For this project, the Flickr Material Database is used.

This dataset consists of 1000 images of 10 different classes. Each class consists of 100 images,

from which 50 are regular views and 50 are close ups. The images were manually selected by the

creators of the dataset to ensure the diverseness in lighting conditions and colours of the dataset

(Sharan et al., 2010)

In order to train a TensorFlow model on a custom dataset, TFRecord files need to be created. A

TFRecord file is a serialized version of the data. It stores a sequence of binary records which

makes it easier to read for the model. (TensorFlow, 2020b)

The data is split in a training set and an evaluation set. Next, a TFRecord file is created of both

sets. To do this, a python script is written that splits the data evenly. From each class, ten close-ups

and ten regular views are put in the evaluation set. All other images are put in the training set. The

evaluation set now contains 20 images from each class. All images are cropped to 300*300 pixels

instead of 512∗384.

A label map needs to be created. A label map file binds an id, starting from one, to a class. Before

the images can be converted, each class is represented by its id.

5.4.2 Model

Second, an algorithm needs to be found. Speed was the most important factor when choosing

the algorithm, since the frame rate had to be at least 90 fps. If the frame rate drops far below 90

fps, the user will start to feel nauseous and the MR simulator becomes unplayable. This is why a

single shot detector model was chosen. SSD models are the fastest kind of models available in the
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TensorFlow Object Detection API and they are designed for real-time object detection.

SSD models take a single image or video frame as input. It outputs the probability and location of

detected objects. SSD models consist of two major parts: the backbone and the SSD head. The

backbone is a pretrained convolutional neural network for image classification. In an SSD model,

it is used as a feature extractor. The backbone is extended with the SSD head. The SSD head

consists of one or more convolutional layers. Its outputs are the bounding boxes and classes of

detected objects. (ArcGIS API for Python, nd)

SSD uses a set of default bounding boxes and tries to predict the class and offset for each box.

This significantly increases the frame rate of the model. Different scales of feature maps are used

to obtain a high accuracy. A feature map is obtained by dividing the image in cells using a grid.

Different scales of grids result in different feature maps. A small number of boxes, which have

different aspect ratios, is put at each cell of a feature map with different scales. These boxes

go beyond the boundaries of the cell. For each box, the offset and confidence of each class is

predicted. (Liu et al., 2016)

5.4.3 Training

Before the model can be trained, a pipeline needs to be configured. This config-file consists of five

major parts:

• Model : this defines the model that will be trained

• Train config: in this part, the parameters to train the model are defined

• Eval config: this defines the metrics that will be used during evaluation of the model

• Train input reader : this defines the data for training (TFRecord file)

• Eval input reader : this defines the data for evaluation (TFRecord file)

The config file of the pre-trained model, with some changes, can be used for this. First of all, the

number of classes needs to be changed to the number of classes in the dataset. Second of all, the

user has to change the path of both the training input and evaluation input file and the path to the

label map file. Next, the number of samples in the evaluation set needs to be changed. The user

can also define a checkpoint file. This file also come with the pre-trained model and speed up the

training process. (TensorFlow, 2018)

After configuring the pipeline, training can start. TensorFlow provides a train.py script that starts the

training process. When training is finished, the trained model can be exported using the checkpoint

files. Multiple files are generated from which the frozen inference graph.pb contains the actual

model and is used to deploy the model. Due to time constraints and an unresolvable error during

training, this part and the part described in section 5.4.4 of the project could not be completed.
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5.4.4 Object detection with ZED

Stereolabs provides a python script that applies object detection to the live video feed from a ZED

camera. In the script, the path should be changed to the path of the new trained model. When

the script is executed, it opens a new window on the screen which shows the processed video

footage (Figure 5.9). Bounding boxes are traced around the detected objects, its predicted class

and probability are shown and the distance to the object is measured. The low frame rate should

be taken into account.

Figure 5.9: Object detection with a ZED camera (Stereolabs Inc., ndb)

With Python for Unity, python scripts and Unity can work together. The live video from the ZED

Mini should be processed by the script in order to be able to get the kind of material of objects in

the room. This information can be used by Unity to spread fires accordingly. Take into account

that object detection requires a lot of processing power. Using Stereolabs’ python script with a

pre-trained model the frame rate drops to 30 fps. This is even without the processing power that

is needed for Unity to run smoothly. When object detection would be used in combination with the

MR simulator, it would become unplayable.

When working with the ZED 2 camera, object detection can be enabled directly in Unity. This would

make it a lot easier to implement. An external python script would not be needed. Unfortunately,

this camera was not available and is not designed to be attached to a headset.
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Evaluation

6.1 Performance

To test the performance of the system, Unity’s build-in profiler is used. Unity’s profiler allows devel-

opers to verify which task, for example rendering or garbage collection, uses the most resources

at a certain time. It also indicates the frames per second. For an XR application, a refresh rate

of at least 90fps is recommended otherwise, the user can start to feel nauseous. This is called

simulation sickness. (One Bonsai, nd)

Unity’s profiler indicates the frame rate, but some considerations should be made. The indication

of the frames per second is not very reliable and exact, but it can be used to get a general idea

about the differences between two cases. It should also be taken into account that the profiler is

used in the editor, so before the project is built. This causes some overhead, but it can be generally

accepted that after the project is build, the frame rate would improve.

6.1.1 VR simulator

Figure 6.1 shows a screen capture of Unity’s profiler while the VR simulation is running. It was

taken right after 15 fires were spawned, so they were still very small. The average frame rate is

around 90 fps. The peaks in the CPU usage are because of Unity’s garbage collector.

Figure 6.2 also shows a screen capture of Unity’s profiler, but a minute later. Those 15 little fires

have spread and caused new fires to spawn. These new fires also cause new fires to spawn and

so on. The frame rate dropped drastically to 30 fps.

Comparing both views of the profiler during the VR simulator shows that the frame rate drops

drastically when many particle systems are used. The second screen capture would make you

think the simulator is unplayable, but that is not true. When trying on the headset, the simulator

appears to be perfectly fine. This could be the fault of the profiler itself. It is known for giving false

values for the frame rate.

69



70 CHAPTER 6. EVALUATION

Figure 6.1: Unity profiler during VR simulation with 15 small fires present

Figure 6.2: Unity profiler during VR simulation with more than 15 fires present

6.1.2 MR simulator

Figure 6.3 is a screen capture of Unity’s profiler while the MR simulation was running without any

fires present. The average frame rate is just above 60 fps, which is actually too slow for the user to

be fully immersed in the simulation. Again, peaks in the garbage collection can be noticed.

Figure 6.3: Unity profiler during MR simulation with no fire present
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Figure 6.4 is also a screen capture of Unity’s profiler while the MR simulation is running, but this

time there is one fire present in the middle of the room. From the image, it can be derived that the

average frame rate is around 90 fps. This should be fast enough to play the simulator comfortably.

Figure 6.4: Unity profiler during MR simulation with one fire present

When both screen captures of the profiler during the MR simulation are compared, some strange

results can be noticed. The frame rate of the simulation with a fire present is higher than the

frame rate of the same simulation without a fire. This is the opposite of what was expected since a

particle system requires a lot of resources and a fire consists of four particle systems. This strange

result could be due to a wrong indication of the profiler. If the MR simulator is compared to its VR

counterpart, it can be seen that a lot more resources are needed for animation in the MR simulator.

Rendering, on the other hand, uses fewer resources.

6.2 Durability

For the firehose nozzle, multiple parts were 3D printed. Their robustness should also be evaluated.

The parts were printed in PLA. After each part was printed, its firmness was tested by pulling the

features that could be a point of weakness. When the part broke, it was redesigned.

The first part that had to be redesigned is the backplate with insert. In the first few prototypes,

the backplate and its insert were one part, but the insert kept breaking off like seen in Figure 6.5.

The design was changed so the actual backplate and the insert would be two separate parts. This

made it more robust and easier to replace if one part would break again in the future.

The second part that had to be redesigned is the Arduino housing. The Arduino sits about 5 mm

above the floor of the container. The first few prototypes had little pins on the four corners that

would fit in the holes of the Arduino. It turned out that these pins broke off easily. For that reason, a

thicker base was added to the pins. But even these bases would break off from time to time (seen

on the left in Figure 6.6). The right circle on Figure 6.6 shows a thick base, but with a broken pin

on top. The final design of the Arduino housing has two raised platforms and walls on each side to

hold the Arduino in place. This is a lot sturdier and does not brake of that easily. Velcro was used

to attach the Arduino to the platforms.
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Figure 6.5: Broken backplate (early version)

Figure 6.6: Broken pins in Arduino housing (early version)

In section 4.1.1 it is mentioned that a small part of the base of Figure 4.3 is cut out to be glued on

the inside of the nozzle and prevent the head from rotating. It is the only piece together with the

firmly tightened screw that keep the head in the right orientation. Unfortunately, even if the screw

is fully tightened, the head can still be rotated when a decent amount of force is applied. This can

happen when one accidentally grabs the head instead of one of the selector rings. The fact that

the head can still be rotated is due to a bad adhesion of the printed piece to the metal part of the

nozzle. The piece is able to move around which defies its purpose. Using another type of glue

might offer a solution. Gluing the whole base to the inside of the nozzle might also help. But the

best way to solve this problem is to redesign the base of Figure 4.3.
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Discussion

In this chapter a critical reflection is made of the whole system. The simulator is compared to

other existing systems like those mentioned in section 2.2 and we take a look to which degree the

requirements of section 3.2 and 3.3 are met.

7.1 General considerations

The differences between VR and MR make it difficult to compare the two simulators directly with

each other. Both technologies have different purposes and use cases, and they both have their

strengths and weaknesses. A lot more things can be simulated in the virtual environment because

of the fact that the environment does not depend on any real-world phenomena like light or reflec-

tions. There are fewer constraints in VR than in MR. In MR, special care has to be taken with the

objects present in the simulation environment, the lighting in the environment and reflective sur-

faces. Both bad lighting and reflective surfaces can confuse the ZED camera which will result in a

malfunction when the user wants to spawn a fire.

Reflective surfaces can also interfere with the VR tracking. It can cause the tracking to malfunction

which will result in glitches in the simulation that can cause discomfort and may reduce a player’s

performance. In the case of VR, the interaction between the user and the simulation happens in a

complete virtual environment thus the user will not have to interact with reflective surfaces like they

would have to when playing in MR. This means that reflective surfaces will not hamper a user’s

ability to spawn fires in VR like it would in MR.

Because the MR simulator also uses the VR tracking to track virtual objects in 3D space, it will also

be affected by all the drawbacks caused by reflective surfaces. In this case, the virtual objects in

the scene will start glitching. This is less pronounced than what happens in VR, where the whole

view will start glitching.

The firehose nozzle will also be prone to glitches because it is tracked with the same technology

as the HMD, namely inside-out tracking via SteamVR Tracking 2.0.

Another external factor that should be taken into account is the heavy machinery on board of a ship

that cause a lot of vibrations. These vibrations have an effect on the whole ship and thus, no matter
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where the Base Stations 2.0 are attached, they too will vibrate. This will disturb the tracking and

will affect the user experience.

Since a ship moves with the swell, even when it is docked in a harbour, these constant movements

might cause some discomfort for the user when training in a fully immersed virtual environment.

So, in theory the system would be very useful on board and offers a lot of advantages. But when all

external factors are taken into account, it can be concluded that further research and development

is needed to make the XR technology suitable for use on board of a ship.

7.2 Evaluation of the Navy’s requirements

To determine whether the simulator meets the needs of the Belgian Navy, each requirement is

evaluated. This gives a better view of whether this project succeeded or not.

7.2.1 Evaluation of functional requirements

The first functional requirement is the use of immersive technologies to train the crew. The simu-

lator should be convincing enough, so it actually adds value to the training procedure. Due to the

Corona protective measures taken by the government, no user tests could be done. These user

tests were supposed to provide feedback on whether the simulator is realistic enough. The real-life

tests were replaced with videos that were evaluated. But relatives and roommates could be counted

on to test the system in person. Most of the feedback that was given, was taken into account but

due to limited computing power and time constraints, some remarks could not be implemented.

The second functional requirement is that the MR system should be compatible with extra props

and equipment they already possess. This is also the reason why live plane detection was used

instead of scanning the room before starting the simulation. A mesh can be made from the room,

but when a prop like a door is used, the system has no idea of what is behind the camera. Using

live plane detection ensures that this requirement is met. The simulator should also be playable

when wearing a firefighting suit and gloves. By eliminating wires and routing them so they cannot

be reached during gameplay the robustness of the nozzle is increased. No wires can accidently be

pulled.

The third requirement states that the instructor should be able to place fires and that after the fires

are spawned, they spread on their own. The fires are placed using an input device, a VIVE wand

or keyboard and mouse. In VR, the FireSpreader script makes the fires spread from one object to

another. In MR, this is not yet implemented, since no different objects can be recognized yet. To do

this, a machine learning algorithm should be implemented, but will make the frame rate drop and

the simulator will become unplayable.

The fourth requirement is the use of a device, that resembles the real-life firehose nozzle, to extin-

guish fires. This is done by using the same firehose nozzle that is also used during hot training.

The model is equipped with sensors to track the different manipulations and to visualize them ac-

cordingly in VR. In MR, only changes to the water beam are made. Also, no virtual model of the

nozzle is used in MR since the player can see the real-life nozzle.
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7.2.2 Evaluation of non-functional requirements

The first non-functional requirement covers the mobility of the system. The whole system should

be easy to move around. This should be analysed by looking at the different components of the

system. First, the HTC VIVE Pro kit is needed. This kit contains the Vive pro headset, Vive pro

controllers, Linkbox and the SteamVR base stations 2.0. Everything is easy to set up, but extra

thought should be put in the base stations. The base stations should be placed at opposite corners

of the room and they need access to an electrical outlet. The base stations should be put at a

height of around 2 m, so holders should be stuck to the wall or the base stations should be put

on a tripod. This makes it more difficult to move around. The other parts of the system are the

backpack pc, firehose nozzle and the router. The router should only be connected with its power

cord, no ethernet connection is needed. The pc and nozzle are very portable. Due to the nature of

the SteamVR Tracking 2.0 principle, more thought should be put on the setup of the system which

makes the whole system less portable. This is a weakness of the system but cannot be avoided

when using the HTC VIVE Pro kit.

The second non-functional requirement states that the system should be easy to set up. This

was also going to be a part of the user tests, so no feedback on this part was received. The

SteamVR system is fairly easy to set up. Most of it consists of plugging in devices which are

detected automatically by the computer and afterwards a small SteamVR setup tutorial must be

followed to calibrate the HTC Vive pro setup. The firehose nozzle only needs to be connected to

the battery and the switch on the back should be switched on. Overall, the system is easy to setup.

The third and last non-functional requirement covers the extensibility of the system. It should be

easy to add new features, like other fire extinguishing devices such as CO2-extinguishers, powder

extinguishers, different type of water hoses, etc. The code is written with this in mind. To test this,

a new extinguisher was added to the system. It did not take longer than 15 minutes to implement

it, when a proper prefab is used.

7.3 Comparison with related words

If we compare our system with the analysed systems in section 2.2, we can see that there are

some similarities but several differences between our systems.

7.3.1 Comparison with the FLAIM Trainer

What FLAIM systems wanted to realise with the FLAIM trainer is the development of an immersive

VR fire training simulator. They emphasised the immersion of their system by highlighting all their

accessories like the heat vest, the mask, the hose-line system and the firehose nozzle itself. Their

main form of interaction with the system is the FLAIM firehose nozzle that is attached to the hose-

line system.

If we compare our two systems, we can see that our main focus was creating a system that is

intuitive, immersive and realistic. If we look at the main form of interaction, we can see that it is
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almost the same. We both use a firehose nozzle as a controller to interact with the system. The

nozzles are both tracked with a VIVE tracker and they almost have the same controls.

But there are some major differences. The firehose nozzle that we use, is the exact model that the

Belgian Navy uses, and which trainees will have to work with. This means that our controller feels

and acts like the original AWG TURBO 2230. Users will not have to learn to work with a new type

of nozzle, they will be able to interact with the system in the same way as interacting with the real

firehose nozzle. This means that everything trained in the simulator can be directly conveyed to the

real world without having to alter or relearn manipulations. Another added benefit of using the real

firehose nozzle as the controller is that the controller is not fully made of plastic which means it is

more robust and it has the right weight to it.

A drawback of our system compared to the FLAIM trainer is that the controller is the only haptic

feedback we currently have to offer. The FLAIM trainer has multiple ways of giving feedback to the

user, like the heat vest and the hose-line system. These systems give an extra level of immersion

when they work properly. If they fail to work correctly, they can add an extra distraction which will

take the user out of the immersion. Although these features are not present in our current system

these can always be added in the future. This will be discussed in chapter 8, Future work.

Another drawback of our system is the graphics and realism of the simulation. Because of our

limited resources, we only used free assets of the Unity asset store. This means that we were

restricted in the environments we could create, unless we modelled the objects ourselves. FLAIM

has a whole team of designers that can design specific objects and scenarios for their system. With

the word scenario, we not only mean the virtual environments that hey offer, but also the types of

fires. Our system only offers class A fires, while from what we have seen, their system offers, class

A, B and C fires.

Currently, we only offer one virtual scenario, but the benefit of our system is that the user can train

in a real world setting without having to model all the objects around him. This is thanks to the MR

simulator that is integrated into the system. With this system, each crew member can be trained in

any compartment of any ship without the need for major changes to the system itself. In case of a

change to the layout of a room in a ship or the arrival of a new ship, there is no need to design a

new room.

Our fire simulations are based on approximations to save resources, while their simulations are

based on the real physical equations. This means that our fire interaction is just an approximation.

However, the goal of our application is not to make digital simulations of fire that approach reality

and are based on real data. The goal of this Master’s thesis is to develop an application that can

be used to train people. This means that the propagation of fire should only look realistic. The

use of an approximation of reality could also be an advantage, since the propagation of fire can be

much quicker. One of the reasons why the Navy does not like to use the FLAIM trainer is that it

approaches reality too much. The propagation of fire is fairly slow, which means that training one

student takes too long, which makes it too expensive to use. In our simulation, this process is sped

up. Trainees can practice the procedures and the supervisors can get a sense of the attitude of a

trainee towards fire, with a less expensive tool. Another advantage is that less time is needed from

the instructors, so other work can be done too. This becomes really relevant in times when there is
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a lack of ’personal resources’.

7.3.2 Comparison with the fire trainer by B. Schlager

When comparing our two systems it is clear that her system is scientifically correct while ours is

an approximation. She was able to simulate the different types of heat transfer by using the heat

transfer framework of her research institute. This allowed her to solve the complex equations for

radiation and convection while maintaining a descent framerate.

Her system had another type of controller, but it is also based on a Reality Based Interaction (RBI)

like ours. She attached a VIVE controller to an extinguisher to give the user the feeling he was

manipulating a real extinguisher. Which is exactly what we did, but with a firehose nozzle. These

types of controllers improve the user’s immersion.

Other than the points mentioned above, the systems look the same. Both systems were made to

be easily extensible in the future and with user immersion as the primary goal.

7.4 General discussion

The final system is the product of five months of full-time work. This proves that in a few months,

it is possible to develop a basic fire training system starting from a list of requirements. Which

implies that a professionally made, fully-fledged system with multiple custom scenarios could be

developed and deployed within a year. If only one or two scenarios are required, the system should

be deployable within a couple of months.

The developed system is not only useful in a military environment but could also be deployed in

the civilian world. Firefighters could safely train for tricky situations, which do not occur very often.

It can even be used to train civilians for basic firefighting, so they can protect themselves when a

small house fire occurs. The system makes it possible to train a lot of people in a short amount of

time. This makes such a system ideal to be used in schools. Students can learn about the basics

of firefighting and learn how to use extinguishers, which can be a live-saving skill.

The system is designed to be modular and expandable. By only switching out the controller, a whole

new set of skills can be trained. Depending of the audience, one controller might be preferred over

another. To train firefighters, a nozzle is probably the preferred extinguishing device, since they use

it in their daily job. To train civilians, learning how to use a fire extinguisher is probably more useful,

since these are the extinguishing devices that are widely available and present in public areas as

well as in people’s cars.
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Future work

Even though the simulators that were developed for this Master’s thesis are usable, there is always

room for improvement. While some elements of our work could be improved with newer and better

technology, other elements could be readily implemented. The system could also be extended with

additional features and functionality.

8.1 Improvements

The current simulator comes with a router that is configured with an SSID, password and static

IPs. These parameters are also configured in the Arduino code. This system could be improved

by letting the Arduino broadcast a packet on boot up. This packet contains a key that the server

must recognize. The UDP server running inside the application will check the received packet and

the key it contains. If the key is recognized the server will send a reply packet which contains its

IP address in the header and a confirmation code in the payload. After verifying the confirmation

code, the Arduino can configure itself so it will only communicate with the UDP server in the future.

It is almost like the three-way handshake of a TCP connection, but only for the first packet. No

static IP addresses need to be configured in the router anymore.

The measuring system of the firehose nozzle could be another possible improvement, more specif-

ically the measuring system of the big lever. In the current system, this is done by some LEDs

and an LDR. After some testing, it turned out that this measuring method is not very accurate and

reliable. With the right tools, a potentiometer could be used to fulfil the same task. A hole should

be drilled on the side of the nozzle, between the lever and flow rate selector. This hole is needed

to route the wires from the potentiometer to the Arduino at the inside of the firehose nozzle (Figure

8.1).

Another solution is opening the firehose nozzle and integrating all sensors at the inside so no ex-

ternal parts (except from the VIVE Tracker) are needed. This method was also tested and resulted

in a broken nozzle. Without professional tools it is not possible to open the nozzle which is to be

expected because it was designed and build to withhold a huge amount of pressure. The Belgian

Defence could also work together with AWG, the manufacturer of the nozzle, to develop a custom
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nozzle with integrated sensors. This would greatly improve the robustness of the device.

If building a custom nozzle is not possible and external integration is needed, these parts could be

3D printed in metal. Right now, these parts are 3D printed in PLA which is not very sturdy. Printing

them in metal or another sturdy material prevents it from breaking when it falls on the ground.

Figure 8.1: Firehose nozzle with indication of position for potential hole.

8.2 Future technology

The ZED Mini stereo camera limits the quality of the MR simulator due to its low frame rate and low

resolution. The limited bandwidth of USB 3.0 is the root cause. Now the ZED Mini has a refresh

rate of 60 fps and a resolution of 720p. The limited field of view takes away part of the experience.

The user cannot see what is happening in the corner of his eyes and this does not feel natural.

The refresh rate of the actual MR simulator frequently drops below 60 fps. This is due to the

processing of the images and rendering require a lot of processing power. This could be resolved

by better, smaller and more power efficient GPUs, which do not exist yet. The reason why they

have to be small and power efficient is because a backpack PC is used. This computer is fairly

small as compared to a normal desktop. The backpack PC can be powered by batteries, but when

the GPU is not energy efficient enough, the batteries will die far too quickly.

The object detection with the ZED Mini is also limited to 30 fps which is way too low to use in

combination with a headset. More powerful electronics could also solve this problem.

8.3 Suggestions and possible extensions

The simulator that is delivered at the end of this thesis is rather basic. There is only one class of

fire implemented. Different classes of fires need to be extinguished in a different way and with a

different extinguisher. To be able to train these scenarios too, multiple classes of fires and different
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types of extinguishers need to be implemented. Multiple extinguishers can easily be added to the

simulator since the code is written with this purpose in mind. The interaction between different

classes of fires and the different types of extinguishers should be visually correct. When a fire is

treated with the right kind of extinguisher, the fire should go out nicely. But if a fire is treated with

the wrong kind of extinguisher, the consequences (e.g. a fireball when burning oil is extinguished

with water) should be programmed.

The VR simulator only has one scene which does not resemble a typical training environment of

the Navy. In the future, more and custom scenes can be added that resemble the environment in

which the Navy is used to train, like specific compartments of a Belgian Navy ship.

Right now, the simulator can only be used by one player. Multiplayer is not yet implemented. This

feature could make the simulator a lot more useful, since some exercises are done in teams of

two or three. When using multiplayer in VR each player should be aware of the position of the

other players. During some exercises, trainees change roles in the middle of the exercise, so

the extinguishing devices cannot be bound to a certain player. They have to be interchangeable

between players.

Like the FLAIM trainer, haptic feedback would also be a nice feature to add to the simulator. This

creates a whole new level of immersion for the user. A heat suit lets the user know when he is close

to a fire by heating up the suit. This would be useful when the user cannot see the fire due to the

thick smoke in the room. A breathing mask can help users to get used to breathing with an SCBA

but can also serve to measure their oxygen intake. Knowing the oxygen intake is a nice feature

that can be included into an after-action report. Together with the amount of water used during a

training scenario.





Chapter 9

Conclusion

The Belgian Navy is looking for a way to improve the firefighting training of its crewmembers. The

current training method is dangerous, expensive and environmentally unfriendly. This thesis re-

searches the possibility of using immersive technologies within the training program. A VR and MR

simulator were developed in Unity using the HTC VIVE Pro kit and ZED Mini stereo camera. The

main input device for both simulators is a firehose nozzle. An AWG TURBO 2230 nozzle was mod-

ified and integrated into the XR system. This model of nozzle is chosen because it is universally

used by the Belgian Navy. This makes it easier for trainees to operate the system without learning

new controls.

In both simulators, the instructor is able to place fires using a VIVE wand or a computer mouse

and keyboard. After the fires are placed by the instructor, they grow and start to spread on their

own. Fires can spread within an object and between objects. The spreading mechanism is based

on pseudo-physical principles. The fires can be extinguished using the firehose nozzle which is

equipped with sensors and a VIVE Tracker. The data from the sensors is sent over Wi-Fi to the

server that runs in the application. The protocol that is used to send the data is UDP.

The VR simulator consists of one training environment, but other environments can be added in

the future. By altering the number of fires and placing them on different objects, different training

scenarios can be created.

With the MR simulator, it is possible to place virtual fires in the real world. Fires do not spread

in or between object because the simulator has no notion of different objects. In order to achieve

this, object detection should be implemented. The algorithm should also be able to recognize the

material of the objects since this has an effect on how the fire spreads.

At the end of this thesis, a playable system is delivered. Its performance was tested and evaluated.

Unfortunately, no user tests were performed due to COVID-19. But an alternative way of evaluating

was performed.

A comparison was made between the developed system and other systems or researches. The

whole system can be extended by adding a handful of features, for example, other extinguishers,

multiple classes of fires, more training scenarios and the ability to play in multiplayer.

XR is an interesting technology for the Belgian Navy. It has numerous benefits compared to con-
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ventional training, like improved safety, reduced costs, more training scenarios and environmental

benefits. So, it can be concluded that the Navy should adopt XR and other immersive technologies

for training in the future.
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Appendix A

Calculations of the flow rate selector
ranges

For the flow rate selector, two analog hall sensors are used. Because the output of these analog

sensors fluctuates quite a bit, some ranges needed to be determined. There are eight different

setting on the flow rate selector: 115, 180, 230 and five gradients in flush. An output values is

determined for every setting. For each setting, the output value of both sensors is read. This is

repeated five times. The values are shown in table A.1. For each test, the average of both sensors

is calculated. These values are shown in table A.2. Next, the overall average value is calculated for

each setting.

Table A.1 Measurements taken from the analog hall effect sensors (A1 and A2)

Test 1 Test 2 Test 3 Test 4 Test 5

Flow rate A1 A2 A1 A2 A1 A2 A1 A2 A1 A2

115 354 310 372 314 372 313 362 313 355 310

180 365 327 392 354 381 329 372 329 372 336

230 382 350 401 374 395 352 387 350 386 356

Flush1 419 396 430 417 430 403 426 403 422 403

Flush2 447 440 453 450 456 442 454 444 449 444

Flush3 436 465 472 471 469 463 467 465 463 466

Flush4 479 483 483 482 482 481 480 483 482 485

Flush5 487 486 488 487 487 486 485 489 487 492

Table A.2 also contains the mean absolute deviation (MAD), calculated with formula A.1, where

m(X) is the overall average and xi are the averages of each test. Using this average deviation, the

ranges are calculated. The lower bound is the average deviation subtracted from the average. The

upper bound is the average deviation added to the average.

MAD =
1
n

n

∑
i=1
|xi−m(X)| (A.1)
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Table A.2 Average of both sensors for each position of the flow rate selector

115 180 230 Flush1 Flush2 Flush3 Flush4 Flush5

Test1 332 346 366 407.5 443.5 450.5 481 486.5

Test2 343 373 387.5 435 451.5 471.5 482.5 487.5

Test3 342.5 355 373.5 416.5 449 466 481.5 487

Test4 337.5 350.5 368.5 414.5 449 466 481.5 487

Test5 332.5 354 371 414.5 402.5 464.5 483.5 489.5

Average 337.5 355.7 373.3 417.2 439.1 463.7 482 487.5

Avg. deviation 4.2 6.92 5.76 7.12 14.64 5.28 0.8 0.8

Lower bound 333 349 368 410 424 458 481 487

Upper bound 342 363 379 424 454 469 483 488

The intervals do not follow each other up nicely, so when there is a gap or the bound overlap, the

average value of the two bounds is used. The final result is the following:

• 115: 333 - 345

• 180: 345 - 365

• 230: 365 - 395

• Flush 1: 395 - 424

• Flush 2: 424 - 456

• Flush 3: 456 - 475

• Flush 4: 475 - 485

• Flush 5: 485 - 488
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