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Abstract

This work designs a motion-compensation system for physiological semi-periodic
movements in the context of robot-assisted surgical procedures. Special attention is
paid to coronary artery bypass graftings or ‘bypass surgery’. The overall objective
is to render the presence of any incision larger than those necessary for keyhole
procedures obsolete. This is made possible provided such motion-compensation
system.

The thesis commences by elaborating the context and explaining why the em-
ployment of the intended system leads to less-invasive surgery. Then the design
of the system is tackled. The concept of state estimation is introduced along with
specific algorithms, after which research related to the heart is presented. This leads
to the establishment of assumptions that are exploited throughout the work. The
introductory part is concluded with the presentation of an approximative model of
the to-be-compensated heart motion. Attention is also paid to the incorporation
of respiratory movement. This model is confluenced with the state estimation con-
cepts towards the implementation and validation of several state estimators. Upon
comparison, appropriate selections are made for further use. In this context, an
extended Kalman filter (EKF) provides the best results. Additionally, a filter is
designed with the purpose of providing an on-line differentiation of an arbitrary
signal. It is compared to more traditional methods and shows superior performance.
The chapter on filter implementation is concluded by a part on the exploitation of
the predictive information of an electrocardiogram (ECG) signal through several
methods. Eventually, to this end, sensor fusion is performed by an unscented Kalman
filter (UKF). This method is proven to be the most beneficial when it comes to
exploiting the ECG signal. The aforementioned systems are separately integrated
along with two distinct control strategies. The behaviour of these systems is assessed,
in nominal as well as in anomalous circumstances. The systems have advantages and
drawbacks but both reflect promising performance.

Eventually, the expansion of the state estimator towards a realistic three-dimensio-
nal system is discussed. An approximative semispherical surface model is introduced
and a UKF is built which maintains it in real-time. The system is further improved
and methods for on-line consistency assessment are described and implemented. This
final part is concluded by a series of simulations that evaluate the designed system.
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Samenvatting

Deze thesis behandelt het ontwerp van een bewegingscompensatiesysteem voor
quasi-periodieke fysiologische bewegingen, bestemd voor gebruik in robotchirurgische
context. Bijzondere aandacht is besteed aan bypass-hartoperaties. Het vooropgestelde
doel is het overbodig maken van incisies met een grotere omvang dan deze aanwezig
bij kijkoperaties.

Het werk vangt aan met een contextuele schets en een uiteenzetting die het
verband tussen het beoogde systeem en minimaal-invasieve chirurgie verheldert.
Daarop volgt het systeemontwerp. Eerst wordt het idee achter toestandschatting
geïntroduceerd in parallel met specifieke algoritmen. Vervolgens worden enkele
cardiologische onderzoeksresultaten aangekaart. Deze leiden tot vaststellingen en
aannames die doorheen het werk worden geëxploiteerd. Dit inleidend deel wordt
afgesloten met de voorstelling van een hartverplaatsingsmodel. Aandacht wordt
daarbij ook besteed aan de inclusie van de ademhalingsverplaatsing. Dit model wordt
verenigd met de uiteengezette toestandschattingsmethoden om tot de implementatie
en validatie van verschillende toestandsschatters te komen. Deze worden vergeleken
en gepaste keuzes worden gemaakt voor verder gebruik. In deze context levert de
extended Kalman filter (EKF) de beste resultaten. Verder wordt ook een filter
ontworpen die moet voorzien in een ‘on-line’ afleiding van een arbitrair signaal. Hij
wordt vergeleken met meer conventionele methoden en vertoont betere prestaties. Het
hoofdstuk over filterimplementatie wordt afgesloten door een deel over het aanwenden
van het elektrocardiogramsignaal (ECG) en het op verschillende manieren exploiteren
van de voorspellende informatie die het bevat. Het summum hiervan is een ‘sensor
fusion’, uitgevoerd door een unscented Kalman filter (UKF). Dit blijkt de meest
performante methode. De vermelde systemen worden tezamen geïmplementeerd in
twee disjuncte controlesystemen. Het gedrag van deze systemen wordt getoetst in
nominale en afwijkende omstandigheden. De systemen hebben voor- en nadelen maar
leveren beiden veelbelovende resultaten.

Uiteindelijk wordt de uitbreiding van de huidige toestandschatter naar een meer
realistisch driedimensionaal systeem besproken. Een benaderend sferisch oppervlak
wordt geïntroduceerd, vergezeld door een UKF die het in ‘real time’ updatet. Het
systeem wordt beschreven en ‘on-line’ consistentiebeoordelingsmethoden van de
meting worden toegelicht. Dit laatste deel wordt afgesloten met een reeks simulaties
die het ontwerp toetsen.
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Chapter 1

Background and Goals

This chapter introduces the background of the work. It first lays the groundwork on
which subsequently the thesis goals and modi operandi are determined.

1.1 Introduction
Robotic surgery is gaining in popularity. Surgical robots are controlled over a distance
by a surgeon who is seated at a master console. Here, he moves a pair of joysticks
through which motions are recorded and sent as reference input to surgical robot
controllers. Ideally, the surgical robot closely follows the motion commands by
the surgeon. Today’s systems are quite powerful and intuitive to such extent that
surgeons report to have the impression as if they were directly operating on the
patient (i.e. without intervening robot). Technical developments have for example
lead to greater mechanical bandwidth and haptic feedback, in turn resulting in
quicker response and more accurate input from the operator.

Delicate tasks can be done with modern robots, like operations on the heart [3].
The robot is helpful here as it enhances precision and ergonomics. One feature that
is not fully developed and that could be a big asset for robotic surgery is motion
compensation, as beating heart procedures are beneficial for patient’s outcome.
Alternatively, a cardiopulmonary bypass (CPB) is charged with the patient’s heart
functioning. Deploying an accurate motion compensation system, the surgeon would
have the impression that he is operating on a static heart because the robot would
automatically take care of the movements of the beating heart.

1.2 Coronary Artery Bypass Grafting (CABG)
A CABG (pronounced ’cabbage’) is commonly known as bypass surgery or heart
bypass. It is a general term used to address a family of surgical procedures where an
obstructed coronary artery gets bypassed. Such obstruction prevents the supply of
oxygen-rich blood to the heart, with the possibility of eventually leading to severe
chest pain, shortness of breath or even a heart attack. Figure 1.1 displays a heart
with two obstructed arteries as well as the intended result of the procedure. These

1



1. Background and Goals

Figure 1.1: Heart with obstructed arteries (left) and after CABG (right) [1]

are often planned in advance but in some cases, they might also be performed in
emergency situations e.g. when the patient suffers from cardiac arrest. The CABG
is the most performed heart surgery in the world and one of the most common
procedures performed during U.S. hospital stays, with over 200 000 cases in 2014
[4, 5].

1.2.1 The Procedure

In general, a CABG involves the following 4 steps. First, a median sternotomy is
performed. This procedure provides access to the heart. An incision is made along
the sternum (breastbone) after which it is divided, and the chest is opened as shown
in Figure 1.2. Next, the movement of the heart is prohibited or minimized in some
way, depending on the procedure. In the most conservative scenario, a CPB is used
to this end. Here, a machine ("the pump") bypasses the heart and takes over its
function. Once these preparations have been successfully executed, an artery is used
to bypass the obstruction and is eventually sewn in place. Finally, the sternum of
the patient is closed.

An alternative, less invasive method with some pronounced advantages [6] is the
off-pump coronary artery bypass grafting (OPCAB), where the CPB is omitted by
mechanically stabilizing the heart and clamping it with a device. Further refinements
to the OPCAB have resulted in the less invasive minimally invasive direct coronary
artery bypass grafting (MIDCAB).

2



1.2. Coronary Artery Bypass Grafting (CABG)

Figure 1.2: Median Sternotomy [2]
Figure 1.3: RACAB illustration. (Prop-
erty of Intuitive Surgical Inc.)

Figure 1.4: comparison of median sternotomy (right) with less invasive mini-
thoracotomy (left) [7]

3



1. Background and Goals

1.2.2 MIDCAB

During a MIDCAB, the median sternotomy is replaced by a mini-thoracotomy (MT)
(see Figure 1.4). This is a significantly smaller incision made between the ribs in the
area of the heart. Tangible benefits of the MT over the median sternotomy include
less pain, faster postoperative recovery, and better cosmetic results. [8] Even though
the MT introduces a substantial improvement, it still involves opening up the thorax
and cutting through muscle. The resulting procedure is as described below.

First, the MT is performed: an incision between the ribs grants access to the
pericardium, a double walled sac containing the heart. After this sac is opened, the
operator can directly manipulate the heart. Then a series of further preparations for
the bypass is executed. Amongst those are measures to gain further access to parts
of the heart, identifying, clipping and clamping arteries and checking for homeostasis.
In what is left of the procedure an artery is sewn in place to form the actual bypass.

1.2.3 RACAB

The latest development in the context of the CABG procedure is the increased use
of robot assistance. Wenhui Gong et al. [3] have suggested short-term and mid-term
outcomes of the RACAB are favourable in comparison with the MIDCAB. Globally,
a number of hospitals have started to alter some of their procedures in favour of these
robotic systems. Amongst those is the university hospital of the Catholic University
of Leuven: UZ Leuven. The added value of robotic surgery becomes clear in the way
the MIDCAB is altered.

The first and longest part of the procedure is performed through keyholes in
the thorax (the chest). To this end, a Da Vinci robot (Intuitive Inc.) is deployed
(Figure 1.3). These holes are used to insert robot end effectors and a camera into
the thorax. The setup enables the surgeon to perform a significant part of the
aforementioned preparations without the need for an incision. Further advantages
of this robotic approach are more precision, stability and visibility in comparison
with a manual procedure. Because of the movement of the heart, the last part of the
procedure cannot be performed through the robot, as the operator would not be able
to control the robot as to maintain a constant gap between the point of interest and
the robot end effector. Instead, an MT is made through which the surgeon stitches
manually. This incision is reduced in size as compared with the one made during
the MIDCAB. The purpose of the MT is twofold: to allow for the placement of a
stabilising device, and to grant the surgeon access to the heart.

1.3 Thesis Goals

The currently used setup introduces opportunity for a more extensive deployment of
the robot during the RACAB. This thesis aims to design a motion-compensation
system for the robot in order to allow the surgeon to perform the entire procedure
using the robot, hereby omitting the need for an MT. The required system accurately
estimates the motion that is to be compensated and controls the robot with the
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objective of maintaining a constant distance between the end effectors and camera on
one hand, and the point of interest on the other. In this scenario, from the surgeon’s
perspective, he would seem to be working on a motionless heart. The surgeon’s input
from the console is superimposed on the motion-compensation.

In order to maintain accuracy, the tracking error of the system should be a fraction
of a millimetre, as the artery itself has a section of only a couple of millimetres.
Avoiding the MT would yield a series of advantages: significantly faster revalidation,
diminished likeliness for complications and the possibility to treat some earlier
declined patients [9]. On top of that, during these long procedures, the robot console
helps the surgeon to remain focused and work more accurately.

As the range of applications of the intended system is more extensive than the
situation described above, and as the system would ideally be applicable to the
range of surgical robots that exist today, this work aims to develop a general system
without referring to one specific platform.

First, for modelling, prediction and estimation purposes, a one-dimensional model
of the heart is developed. This is a continuous task throughout the entire work as
the sequential development of the other parts of the system might have implications
for it. Next, a suitable state estimator is designed and selected which makes use of
this model. The estimations are employed towards a twofold purpose: to filter out
measurement noise and improve the control strategy. Then the actual control problem
is tackled. Different methods are discussed, implemented and compared. These
chapters are supported by simulations. Due to the global COVID-19 crisis in the
spring of 2020, the intention of actually implementing the system on a test setup had
to be abandoned in favour of a more extensive expansion towards three-dimensional
functionality. Eventually, this expansion is discussed.
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Chapter 2

State Estimation

This chapter introduces methods and algorithms that aim to provide as accurate as
possible information about the current state of a system. To this end, the concepts of
Kalman filtering and moving horizon estimation are elaborated and the possibilities
to manipulate the filter’s behaviour are summarised. The chapter is concluded by
discussing the possibility of on-line consistency assessment.

2.1 Introduction

Consider a discrete non-linear time-invariant (NTI) system without control input,
described by xk+1 = f(xk) with corresponding measurement equation zk = h(xk).
This notation implies that, for this specific system, xk ∈ Rn×1 and zk ∈ R. These
dimensions remain assumed throughout this chapter in correspondence with chapter 3.
The state estimation problem is the problem of obtaining information about xk

considering only zk. This problem corresponds to many real-world engineering
problems as usually the internal states xk of a system are a priori unknown.

2.2 Kalman Filtering

A Kalman filter (KF) is a recursive Bayesian1 filter that employs an internal model
in order to estimate the states of a system, based on a series of measurements. These
are usually distorted by noise. The accuracy of the model is implicitly assumed to be
limited in the sense that an amount of process noise is taken into account. Process
noise is a measure for the uncertainty of the model states or, in the context of a KF,
the inaccuracy of a model. There exists an entire family of KFs, of which a subset is
considered in the context of this thesis. The filter assumes process and measurement
noise to be additive and Gaussian with measurement noise variance R0 ∈ R and
process noise covariance Q0 ∈ Rn×n. These values are implicitly presumed to be

1The Bayesian interpretation relies on probability expressing a degree of belief in an event. The
degree of belief may be based on prior knowledge about the event, such as the results of previous
experiments, or on personal beliefs about the event.
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time varying when their subscript changes: Rk and Qk. The actual system and
measurement equations, where f and h are known functions, then become:

xk+1 = f(xk) + wk (2.1)
zk = h(xk) + vk

Or for a linear system:

xk+1 = Axk + wk (2.2)
zk = Cxk + vk

The distribution of the noises can be represented as shown hereunder.

wk ∼ Nn(0, Qk) (2.3)
vk ∼ N (0, Rk) (2.4)

n in Equation 2.3 is the dimension of the system i.e. the amount of states. Nn

represents the multivariate normal distribution. This distribution is the generalisation
of the one-dimensional normal distribution (i.e. Gaussian distribution) to higher
dimensions.

2.2.1 In general

Based on the previous estimated state x̂k−1, the KF predicts the state vector x̂−k
through the internal model and uses it to calculate a predicted measurement ẑ−k 2.
Concomitantly, the error covariance matrix P−k , an estimation of the covariance3
of the system states, is predicted. The predictions are then assimilated with the
current measurement zk. From the difference between these values, taking into
account the initially set measurement and process noises, the state estimate and error
covariance matrix are adjusted resulting in x̂k and Pk. These states in turn allow
for the calculation of a measurement estimate through ẑk = h(x̂k). A qualitative
illustration of the principle is shown in Figure 2.1: the current predicted measurement
x̂−k and actual measurement yk (= zk) are compared with their (co)variances taken
into account. The filter then produces a ‘better’ estimate x̂k with corresponding
error covariance matrix Pk.

2.2.2 Linear Kalman filter (LKF)

When a linear model describes the system and measurement equation, the filter
becomes a linear Kalman filter (LKF). For linear time-invariant (LTI) systems
with additive Gaussian process and measurement noise, as depicted in Equation 2.2
and Equation 2.3, the LKF is an optimal state estimator which solves the linear–
quadratic–Gaussian control problem (LQG). The LKF algorithm employing these
equations is shown in algorithm 1.

2Note on notation: the − superscript implies a predicted value,ˆan estimate and a k subscript
refers to a variable in the kth step of the algorithm.

3In statistics, covariance is a measure of the joint variability of two random variables. The
covariance of n variables is represented by an n× n matrix. Along the matrix diagonal the variance
of each corresponding variable is found.
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Figure 2.1: Qualitative illustration of KF working principle: the current pre-
dicted measurement x̂−k and actual measurement yk(= zk) are compared with their
(co)variances taken into account. P−k is the predicted error covariance matrix, P−k
the updated one. An optimal output estimation is then made. [10]

Algorithm 1: Time invariant linear Kalman filter
Result: Optimal measurement and state estimates ẑi and x̂i

1 initialize P0,x0, R0 and Q0;
2 while (1) do

// prediction step
3 x̂−k = Ax̂k−1;
4 P−k = APk−1A

T +Q0;
// assimilation (update) step

5 Sk = CP−k C
T +R0;

6 Kk = P−k C
TS−1

k ;
7 x̂k = x̂−k +Kk(zk − Cx̂−k );
8 Pk = (I −KkC)P−k ;

// calculate output
9 ẑk = Cx̂k;

10 k → k + 1
11 end

2.2.3 Extended Kalman filter (EKF)

If the system incorporates nonlinear system or measurement equations, as is the
more general case of Equation 2.1, the equations of algorithm 1 cannot be applied.
The EKF solves this problem by local linearisation. Consequently, a condition for
the EKF to be applicable is for the equations f and h to be differentiable. Since
this method approximates the functions by a linear model, a system with high
nonlinearity leads to poor EKF performance.

The linearisation is incorporated by the Jacobians of the nonlinear equations.
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More details are obtained from Equation 2.5.

Fk = ∂f
∂x

∣∣∣∣
x̂k−1

(2.5)

Hk = ∂h

∂x

∣∣∣∣
x̂−

k

In practice the Jacobian can either be calculated analytically or numerically. The
former is preferred if a relatively simple analytical model is available, the latter for
numerical or complex analytical models.

The nonlinear functions and calculations of the Jacobians make for the EKF
algorithm of algorithm 2.

Algorithm 2: extended Kalman filter
Result: Measurement and state estimates ẑi and x̂i

1 initialize P0,x0;
2 while (1) do

// prediction step
3 x̂−k = f(x̂k−1);
4 calculate Fk from x̂k−1;
5 P−k = FkPk−1F

T
k +Q0;

// assimilation (update) step
6 calculate Hk from x̂−k ;
7 Sk = HkP

−
k H

T
k +R0;

8 Kk = P−k H
T
k S
−1
k ;

9 x̂k = x̂−k +Kk(zk − h(x̂−k ));
10 Pk = (I −KkC)P−k ;

// calculate output
11 ẑk = h(x̂k);
12 k → k + 1
13 end

2.2.4 Unscented Kalman filter (UKF)

In the case of nonlinear equations, the unscented Kalman filter (UKF) competes
with the EKF. The UKF is a so-called sigma-point Kalman filter. Those are a class
of Kalman filters that employ statistical linearisation as a way of omitting numerical
or analytical differentiation, as well as avoiding corruption of the posterior mean and
covariance due to nonlinearities. To this end the unscented transformation (UT) is
performed.
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The unscented transformation (UT)

The UT is a method for calculating the statistics of a random variable which undergoes
a nonlinear transformation.

First, a state distribution is obtained by selecting a set of sample points, called
sigma-points, with known mean xk−1 and covariance Pk−1. Each point is subsequently
propagated through the system resulting in a transformed cloud of points. Finally
the statistics of the new points are used to compute a new mean and covariance, x−k
and P−k respectively.

Algorithm

The UKF iteratively executes three steps: calculation of the sigma-points, forecasting
and assimilation.

Sigma-point selection An extensively discussed topic in literature is the selection
of the UKFs sigma-points. Most disquisitions plead for smaller sets of points -yielding
less computational expense- without loss of accuracy. With an unlimited range of
possibilities, this topic is well beyond the scope of this paper. It is from here on
assumed that the following, common set of 2n+ 1 points, provides a reliable measure
for UKF performance.

xj
k−1 denotes the jth point based on mean xk−1. Each point is accompanied by

a weight W j to result in a set

Xk−1 = {(xj
k−1,W

j) | j = 0 .. 2n}. (2.6)

The points are then calculated from the following equations where W 0 ∈ (−1, 1) and
(
√
X)i denotes the ith row or column of the matrix square root of X.

x0
k−1 = xk−1 (2.7)

xi
k−1 = xk−1 +

(√ n

1−W 0Pk−1
)

i
∀i = 1 .. n (2.8)

xi
k−1 = xk−1 −

(√ n

1−W 0Pk−1
)

i
∀i = 1 .. n (2.9)

W j = 1−W0
2n ∀j (2.10)

Forecast step Once the points are attained, they are propagated through the
system:

x−,j
k = f(xj

k−1) (2.11)
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The forecast mean and covariance are calculated using these transformed points:

x−k =
2n∑

j=0
W jx−,j

k (2.12)

P−k =
2n∑

j=0
W j(x−,j

k − x−k )(x−,j
k − x−k )T +Qk−1 (2.13)

Similarly, the observations corresponding to the points are calculated along with their
mean and covariance. Additionally the cross-covariance4 between the transformed
points and these observations is calculated in Equation 2.17.

z−,j
k−1 = h(xj

k−1) (2.14)

z−k−1 =
2n∑

j=0
W jz−,j

k−1 (2.15)

Cov(z̃−k−1) =
2n∑

j=0
W j(z−,j

k−1 − z
−
k−1)(z−,j

k−1 − z
−
k−1)T +Rk (2.16)

Cov(x̃−k , z̃
−
k−1) =

2n∑
j=0

W j(x−,j
k − x−k )(z−,j

k−1 − z−k−1)T (2.17)

Assimilation step The update formulas show clear resemblance with those pre-
sented for the EKF in algorithm 2. In case of linear equations and Gaussian noise,
both the UKF and EKF reduce to a linear Kalman filter (LKF).

Kk = Cov(x̃−k , z̃
−
k−1)Cov(z̃−k−1)−1 (2.18)

xk = x−k +Kk(zk − z−k−1) (2.19)
Pk = P−k −KkCov(z̃−k−1)KT

k (2.20)

Summary The resulting algorithm is presented by algorithm 3. For clarity, the
equations are not copied and a more qualitative description is maintained [11, 12, 13].

2.2.5 Tuning the Kalman filter (KF)

Once a suitable algorithm is selected and implemented, the challenge of designing a
well-performing KF lies in tuning its parameters.

Model The first ‘parameter’ to be established is the maintained model. This
selection is often a trade-off. An accurate model, closely approximating the reality,
has higher dimensions and therefore increases computational cost. Additionally, it is
often unnecessary as relatively small deviations are be embodied by process noise.

4The cross-covariance is the covariance of two processes. The cross-covariance between two
states a ∈ Rn×1 and b ∈ Rm×1 is presented by an n×m matrix. The cross-covariance between two
equal states a equals the covariance, an n× n matrix.
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Algorithm 3: unscented Kalman filter
Result: Measurement and state estimates ẑi and x̂i

1 while (1) do
// sigma-point calculation

2 choose xj
k−1 and W j ;

// prediction step
3 calculate x−k and P−k ;
4 calculate z−k−1, Cov(z̃−k−1) and Cov(x̃−k , z̃

−
k−1);

// assimilation (update) step
5 calculate Kk, xk and Pk;

// calculate output
6 ẑk = h(xk);
7 k → k + 1
8 end

In order to account for environmental changes, exceptions, etc. without increasing
the model dimensions, switching between several different models on the account
of a monitor is also an option. Special care needs to be taken when transitioning
between models.

Measurement Rk and process noise Qk With the model in place, the go-to
tuneable variables are the process and measurement noise. The KF steady-state
performance is determined by the ratio Qk/Rk. If the ratio becomes small, much
measurement noise is implied, and the filter tends more towards the modelled
(predicted) results. For high values, the model becomes less accurate and more
weight is given to the measurements. These variables also provide the means for
on-line filter tuning: if they are altered during operation, the behaviour of the filter
is manipulated accordingly. This for instance can prove to be a useful asset if an
event is registered which is known to be outside of the scope of the model. Increasing
Qk then allows for greater deviations from the predicted measurements.

Initial state x0 and error covariance matrix P0 These two variables define
the initial state the filter is in. They are intertwined as they represent the Gaussian
distribution the filter is initialised with. In case of high certainty of the initial state,
P0 can be chosen small or even equal to Q0. If not, the filter converges (or diverges)
more rapidly if P0 is higher. The error covariance matrix usually converges to a
constant value over time. A too large P0 might, especially in combination with a
poorly chosen initial state (see next), trigger the system to converge to faulty states.
A possible method to provide a ’blind’ x0 estimate is solving a least-squares problem
using the internal model.
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Time step ∆t As it is intended to feed the KF independent measurements5, the
time step is -if possible- selected according to the availability of these measurement.
This interval has to exceed the computation time of one filter iteration by some
margin. An important remark to take into account is that the KF is able to skip
an assimilation step if no new or useful measurement is available. Then only the
predicted values are propagated. This however is not the intended behaviour.

Jacobian As explained in subsection 2.2.3, the calculation of the Jacobian can
either be performed analytically or numerically. Furthermore, there also exists a
possibility of including second or higher order terms, in the form of a Hessian6. In
practice this leads to high computational cost, with limited improvement only when
the measurement noise is small [14].

Sigma-points For completeness, for the case of a UKF, sigma-point selection is
also listed referring to section 2.2.4.

2.2.6 On-line consistency test

The discussed filters are highly sensitive to consistency between the measured value
and their internal model. If they are fed data which is inconsistent, they quickly lose
their purpose as the estimated states become meaningless. In order to distinct useful
data and algorithmically detect hazardous circumstances, the need for an on-line
consistency test rises. [15]

NIS & SNIS

The linear Kalman filter (LKF) and extended Kalman filter (EKF) are, considering
their analytical character, particularly suitable for implementation of such a test.
A convenient solution is the normalized innovation squared (NIS). As the name
partly reveals, the NIS is calculated by squaring the innovation νk = zk − h(x̂−k ) and
normalising it with the innovation covariance Sk = HkP

−
k H

T
k +Rk. Its formula is

shown by Equation 2.21. As only present information of the current time step is
required, the on-line NIS calculation is computationally inexpensive. Similarly, the
summed normalized innovation squared (SNIS) is calculated by summing the latest
M NIS’ in order to expose more consistently present issues.

NISk = ν ′kS
−1
k νk (2.21)

SNISk =
k∑

i=k−M

NISi (2.22)

5The measurement variance ideally fulfils Equation 2.4.
6The Hessian matrix contains the second order partial derivatives of a function. It is the

transpose of the Jacobian of the gradient of a function.

14



2.3. Moving Horizon Estimation (MHE)

If the filter assumptions are met, νki is Gaussian distributed which makes the
NISk χ

2-distributed with m degrees of freedom. The χ2-distribution with m degrees
of freedom is the distribution of the sum of the squares of m Gaussian distributed
variables. m = 1 in this case, the dimension of the measurement equation. SNISk

is then χ2-distributed with M degrees of freedom, the amount of summed terms.
Knowing the distribution allows for the calculation of a confidence interval, e.g. 95%,
for which inclusion of the (S)NIS is then assessed.

UKF consistency test

As the calculation of the innovation covariance Sk requires linear or linearised
measurement equations Hk, it’s calculation is less convenient for the UKF. A less
rigorous approach circumvents this issue by using the trace of the error covariance
matrix Pk for normalisation as shown in Equation 2.23 [16].

εk = ν ′ktr(Pk)−1νk (2.23)

This formula accompanies a predominantly experimental approach, especially
when it comes to selecting a ‘consistency criterion’ in the form of εthres, a threshold
value. Equation 2.23 is not χ2-distributed. However, within certain limits (e.g.
when the filter has converged and Pk is not volatile) it provides a useful criterion.
Alternatively, an estimate for Hk is made numerically, at a computational cost.

2.3 Moving Horizon Estimation (MHE)

A state estimation technique that competes with Kalman filtering is moving horizon
estimation (MHE). An important difference lies in the fact that the MHE at every
time step considers the last Nhor measurement values instead of only the last one.
Nhor is called the ‘horizon’, hence moving horizon estimator (MHE). As the KF, it
uses an internal model to compare expected output with measurements. It does so
by solving an optimisation problem. At every algorithm time step ∆t, the states xk

are sought that minimise Equation 2.24.

JMHE =
N∑

j=1
wmeas(h(xk,k−j+1)−zk−j+1)+

N∑
j=1

wstates(xk,k−j+1−x̂k−1,k−j+1) (2.24)

Here xk,k−j+1 is the state vector at time step k−j+1 with respect to xk, the variable
of the optimisation problem at time step k. I.e. xk,k−j+1 = A1−jxk for a linear
system. These values are compared with the results of the previous optimisation
problem: x̂k−1,k−j+1 and with zk, the measurement at time step k. wmeas and
wstates are weights used to tune the estimator. wstates is a row vector with the same
dimension as the system, which is presumed to be scaled by a scalar wstates. E.g.
wstates = wstates ∗ [1, 1, 1, 1, 1, 1]. A higher ratio wmeas/wstates results in more weight
for the measurement, resulting in faster deviation from the previous estimation and
vice versa. This ratio is comparable with Q0/R0 in the context of the invariant KF.
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When the assumptions of additive Gaussian noise hold, Nhor = 1 and the system
equations are linear, the MHE is, like the LKF, and optimal estimator. Both then
provide the same result [17].
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Chapter 3

The Heart Model

This chapter introduces a mathematical model for one-dimensional heart movement.
An accurate heart model is an important aspect in the development of the state
estimator, and some (whether or not predictive) forms of control.

3.1 Heart movement
Information about characteristics of the heart motion during the CABG is crucial for
the purposes of this work. To allow for overall clarity and due to a lack of available
experimental data in this area, some assumptions are made.

3.1.1 Frequency spectrum

In Bebek et al. [18] a power spectral density (PSD) of a heart movement is obtained
through an experiment with an adult porcine. This animal’s heart is widely accepted
to be similar to a human one [19]. Sonomicrometry, a technique of measuring the
distance between piezoelectric crystals based on the speed of acoustic signals through
the medium (in this case human tissue) they are embedded in, is used to wirelessly
measure the movement of the heart. From these movements the frequency spectrum
is calculated. The result is displayed in Figure 3.1. In the PSD, the heart beat and
respiratory frequencies are distinguished at 2.0Hz and 0.37Hz respectively. The peak
at 4.0Hz results from the first harmonic of the heartbeat movement. It is worth
noting that, concerning the heartbeat motion, the lion’s share of the movement is
represented by the ground frequency and its first harmonic. This is also assumed to
be the case for the model design. Deviations from this assumption are resolved by
accounting for more harmonics.

3.1.2 Electrocardiogram (ECG)

Another important characteristic of heart motion is its relation with the simulta-
neously recorded ECG signal. The purpose of this passage is to demonstrate the
close correlation between the heart movement and ECG, and to ascertain that to a
certain extent the movement of the heart can be predicted through the latter.
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Figure 3.1: PSD of heart movement in sonomicrometric experiment. Dominant
modes are observed at 0.37Hz and 2.0Hz, corresponding to respiratory movement
and the heartbeat rate respectively. The peak at 4.0Hz is the first harmonic of the
heartbeat [18]

Figure 3.2: Illustration of the relation-
ship between action potential (red)
and ECG signal (black). The steep
rising of the action potential occurs
in parallel with the ECG peak in the
QRS complex.

Figure 3.3: Illustration of the relationship
between action potential and ventricular
muscle force. Lag between the excitation
and the peak force is about 200 ms long
and peak force approximately coincides
with repolarisation.[18]
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The ECG signal measurement is a direct result of the ventricular action poten-
tial, a voltage change which is a by-product of the mechanism responsible for the
contraction of the heart muscles [20]. Figure 3.2 reveals the relation between the
action potential and the ECG signal. As these signals are inherently linked, the ECG
signal, unquestionably present in the operation theater (OR), provides the means to
estimate the shape of the action potential. This curve in turn reveals information
about the ventricular muscle force, which directly leads to the heart displacement
of which the prediction is intended. As is illustrated by Figure 3.3, the peak force
of the ventricular heart muscle coincides with repolarisation, which is observed by
the settling of the action potential. This repolarisation typically occurs 200ms after
excitation, the action potential peak.

These observations link the ECG peak in the QRS complex, the large peak in
the ECG signal,1 to the heart movement. Determining a general correlation linking
the time delay between the ECG peak in the QRS complex and the peak movement
of the heart ∆Tecg,p with environmental parameters such as the angular frequency of
the heart ω0 is beyond the scope of this work. It is from here on assumed ∆Tecg,p is
approximately constant with ∆Tecg,p ≈ 200 ms.

3.2 Model concept
The intended system does not exert any control over the heart movement. It makes
use of the fact that any periodic signal can be written as a sum of an (infinite)
amount of sinusoids (N →∞) and an offset:

y(t) = C0 +
N∑

i=1
ai sin(ωit+ φi) (3.1)

where ωi = iω0 and ω0 is a certain angular frequency. The ‘0’ subscript from this
pulsatance is from hereon dropped. y(t) is the time-dependent displacement of the
heart according to the model. The displacement of the heart yr(t) can be compared
with expression Equation 3.1 by writing it as follows:

yr(t) = C0(t) +
N∑

i=1
ai(t) sin(ωi(t)t+ φi(t)) (3.2)

The discrete-time variants of these expressions are

y[k] = C0 +
N∑

i=1
ai sin(ωi∆tk + φi) (3.3)

and

y[k] = C0[k] +
N∑

i=1
ai[k] sin(ωi[k]∆tk + φi[k]) (3.4)

1In electrophysiology, the ECG signal is analysed by segmenting it into distinct phases. The
QRS complex is the narrow phase in which the largest peak occurs.
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respectively, where k represents the step and ∆t the time step between the occurrence
of k and k + 1.

In what follows, for simplicity and based on subsection 3.1.1, a model with two
sinusoids is used where the second frequency is fixed to be twice as great as the first
one.

3.3 State Space Representations (SSRs)
As chapter 2 illustrates, the intended system involves numerous calculations and
is consequently designed to work with and on digital hardware. Therefore, and for
simulation purposes, the need for a discrete-time state-space representation (SSR)2
rises.

An LTI discrete-time SSR in general has the following lay-out:

x[k + 1] = Ax[k] +Bu[k] (3.5)
y[k] = Cx[k] +Du[k] (3.6)

where x[k] is the state vector, y[k] the output vector and u[k] the input or control
vector [21]. In the elaborated context there is no input, the measurement equation
Equation 3.6 is non-linear, and the output as well as measurement function are scalar,
leading to these equations:

x[k + 1] = Ax[k] (3.7)
y[k] = h(x[k]) (3.8)

There are several ways to design an SSR for the discussed heart model. In what
follows, 3 models are described and compared.

3.3.1 Explicit phase state-space representation (SSR)

This is the most interpretable model. The state-vector being used is xk = [C, a1, a2,
φ1, φ2, ω]Tk . The model itself is

xk+1 = I6xk (3.9)
yk = Ck + a1,k sin(ωkk∆t+ φ1,k) + a2,k sin(2ωkk∆t+ φ2,k) (3.10)

where I6 represents the identity matrix of 6th order. The Jacobian of the
measurement equation for this system is

J1 = [1, sin(ωk∆t+ φ1), sin(2ωk∆t+ φ2), a1 cos(ωk∆t+ φ1), a2 cos(2ωk∆t+ φ2),
a1k∆t cos(ωk∆t+ φ1) + 2a2k∆t cos(2ωk∆t+ φ2)] (3.11)

2A state-space representation is a mathematical model of a physical system as a set of input,
output and state variables related by first-order differential equations (continuous) or difference
equations (discrete).
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The Jacobian of a system provides insight in the stability of the system which is a
relevant criterion for selecting one to be used in an EKF. Judging the stability of a
system in absolute terms is complicated and unnecessary. The Jacobians provide
information that is used to compare the systems.

3.3.2 Implicit phase state-space representation (SSR)

A second SSR is similar to the one above. The measurement equation is recalculated
using the sine angle sum identity sin(a+ b) = cos(a) sin(b) + sin(a) cos(b) as follows:

yk = Ck + a1,k sin(ωkk∆t+ φ1,k) + a2,k sin(2ωkk∆t+ φ2,k) (3.12)
= Ck + a1,k cos(φ1,k) sin(ωkk∆t) + a1,k sin(φ1,k) cos(ωkk∆t)

+a2,k cos(φ2,k) sin(2ωkk∆t) + a2,k sin(φ2,k) cos(2ωkk∆t) (3.13)

This formulation introduces the opportunity to change the state vector:

xk = [C, a1 cos(φ1), a1 sin(φ1), a2 cos(φ2), a2 sin(φ2), ω]Tk (3.14)

The system equations remain the same. The measurement Jacobian now becomes:

J2 = [1, sin(ωk∆t), cos(ωk∆t), sin(2ωk∆t), cos(2ωk∆t),
a1k∆t cos(ωk∆t+ φ1) + 2a2k∆t cos(2ωk∆t+ φ2)] (3.15)

The last element of the Jacobian remains the same. Comparing the 2nd, 3rd,
4th and 5th element of J1 with the 2nd, 4th, 3rd and 5th element of J2 respectively,
shows that J2 is similar to J1 but with less dependencies, likely yielding a more
stable EKF. This can serve as a basis to assume the second system is superior to the
first one for the purpose of this thesis.

3.3.3 Alternative state-space representation (SSR)

A last implementation with less arbitrary system equations is as follows [22]:



C
a1
a2
ω0
θ1
θ2


k+1

=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 ∆t 1 0
0 0 0 2∆t 0 1





C
a1
a2
ω0
θ1
θ2


k

(3.16)

yk = Ck + a1,k sin θ1,k + a2,k sin θ2,k (3.17)

and yields the following Jacobian:

J3 = [1, sin(θ1), sin(θ2), 0, a1 cos(θ1), a2 cos(θ2)] (3.18)

The simplicity of the measurement equation and Jacobian associated with this
system make it suitable for the purposes of this work. This is the system used
throughout what follows.
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3. The Heart Model

Figure 3.4: Derivative of displacement signal with (red) and without (blue) omission
of respiratory movement in estimation model.

3.4 Respiratory movement

So far, respiratory movement has been neglected. One way of coping with it is to
introduce a second ground frequency to the system, so that it looks like this.



C
a1
a2
a3
ω0
θ1
θ2
ω1
θ3


k+1

=



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 ∆t 1 0 0 0
0 0 0 0 2∆t 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 ∆t 1





C
a1
a2
a3
ω0
θ1
θ2
ω1
θ3


k

(3.19)

yk = Ck + a1,k sin θ1,k + a2,k sin θ2,k + a3,k sin θ3,k (3.20)

Equation 3.19 introduces three new states and therefore three extra degrees of
freedom as compared to Equation 3.16. For measurement correction purposes it is
arguably justified to omit this modification by properly tuning the process noise of the
filter. More specifically, by increasing the expected noise of the offset. However, as in
chapter 5, where the design of the control is tackled, a feed-forward control strategy
is deployed, the derivative of the estimated signal is of vital importance. Ideally this
velocity signal is come by, by analytically calculating it from the estimated states.
As dropping this respiratory term significantly increases the error on the estimated
derivative, it is included in the model. Figure 3.4 shows this phenomenon for the
signal of Equation 3.21. The first term embodies the respiratory movement.

y(t) = sin(0.2 ∗ 2πt) + 0.5 ∗ sin(2πt) + 0.3 ∗ sin(2 ∗ 2πt) (3.21)

The blue signal is the actual velocity, the red one is the displacement’s derivative
when the respiratory term is omitted. Nonetheless, for clarity, in what follows
respiratory-related considerations are frequently omitted.
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3.5. Conclusion

3.5 Conclusion
Analysis of the heart movement PSD and electrocardiac characteristics reveal ex-
ploitable properties. A model for the movement of the heart is set forth and
corresponding SSRs are proposed. One is selected to serve future purposes based on
its complexity and dependency in context of the EKF. The chapter is concluded by
explaining why respiratory movement cannot be omitted in the model.
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Chapter 4

Filter Implementation

4.1 Objective

In this chapter the state estimation concepts introduced in the previous one are
deployed towards a twofold purpose.

On one hand there is the envisioning of an on-line improvement of the heart
displacement measurement. Taking into account the periodicity of the movement it is
intended to filter out sensor noise, consequently allowing for less biased robot control
and better motion compensation. The second objective is to provide additional
information that is either necessary or engenders an improvement for (some of) the
applied control strategies. An example is section 4.5, where a KF is implemented for
estimation of velocity from a given displacement. This signal is required for a feed
forward velocity control strategy. It is not the only way to achieve this derivation,
but it is later proven to increase overall performance.

4.2 EKF - UKF comparison

This section aims to compare the two filters performance-wise.

4.2.1 Test signal

To allow for testing the implemented filters, a test signal corresponding to sub-
section 3.3.3 is generated which embodies Gaussian process noise. Afterwards
measurement noise is added. The maintained dimensional units are centimetres [cm],
as this is the order of magnitude of the movement. Specific values are set as follows.
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4. Filter Implementation

The g subscript refers to a variable that corresponds to the generated signal.

∆t = 10−3s (4.1)
xT

0g = [1.5, 0.5, 0.3, 2π, 0, 0] (4.2)
Rkg = R0g = 10−3cm2 (4.3)

Qkg = Q0g = 10−5



1 cm2 0 0 0 0 0
0 1 cm2 0 0 0 0
0 0 1 cm2 0 0 0
0 0 0 10 s−2 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(4.4)

The process noise variance of the phases is zero in order to maintain -to a certain
extent- the shape of the signal. I.e. the relative phase difference between the sines is
not expected to change. The heart rate is initialised at 60BPM (ω = 2π rad/s). Prior
to the addition of measurement noise vk ∼ N (0, R0), the signal is low-passed1 using a
low-pass filter (LPF) with a cut-off frequency of 5 Hz. This is physiologically justified
because human tissue has mechanical low-pass characteristics. The resulting heart
movement and a zoom with on which the generated measurements are displayed are
shown in Figure 4.1 and Figure 4.2 respectively.

4.2.2 EKF implementation

From chapter 2, algorithm 2 is implemented. Considering Equation 3.16 and Equa-
tion 3.17, the calculation of Fk is superfluous and Fk = A for every iteration. The
calculation of Hk, based on Equation 3.18, results in Equation 4.5:

Hk = [1, sin(x̂−5,k), sin(x̂−6,k), 0, x̂−2,k cos(x̂−5,k), x̂−3,k cos(x̂−6,k)] (4.5)

Rk is set to R0g, and xT
0 = xT

0g. Two series of simulations are executed where Q0
is varied by scaling Q0g and I6, and the mean square error (MSE) between the
output and the actual movement is calculated. Mapping this provides insight in
the filter’s sensitivity to a deviating process noise covariance matrix and shows the
best-obtainable results. I.e. the algorithm is repeatedly applied using Q0 = cQ0g

and Q0 = cI6 with varying c. The error covariance is initialised by P0 = Q0 ∗ 102.2
The results are given by Figure 4.5: the optimal c is ≈ 1.0 as expected and the
corresponding MSEs are 1.4 ∗ 10−4 cm2 and 1.6 ∗ 10−4 cm2. The MSEs are calculated
from the 3000th (3 s) time step onward, well beyond the threshold of initialisation
effects.

Figure 4.2 and Figure 4.3 show the actual movement, the measurements and the
EKF estimation for c = 1. Accurate tracking is obtained.

1The used filter performs zero phase filtering with 60 dB attenuation. For more information, see
the MATLAB documentation on lowpass().

2P0 could be set to Q0 as the initial state is known to be correct. Increasing it however makes
filter convergence observable, increases the possibility of convergence to an unintended state and
might reveal faults or instabilities.
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4.2. EKF - UKF comparison

Figure 4.1: The generated heart motion without noise. The dashed line shows the
zoomed area of Figure 4.2.

Figure 4.2: Zoom of the generated heart motion including generated measurement
values.

Figure 4.3: Strong zoom on the generated heart motion, generated measurement
values and EKF output signal.

Figure 4.4: Actual derivative of input movement along with estimated derivative
based on EKF states. The estimated derivative is shown for two different filter
solutions.
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4. Filter Implementation

Figure 4.5: Double plot of the MSEs of the UKF and EKF in function of the scaled
process noise matrix. The authentic process noise of the generated signal (top) and
the identity matrix (bottom) are used.

The simulation is performed again with the same measurement signal and Q0 =
Q0g with Q(5, 5) = Q(6, 6) = 10−6 rad2, granting the estimation of the arguments a
certain amount of freedom. Depending on the robot control strategy, the estimated
derivative of the displacement is of paramount importance. Consider e.g. a feed
forward velocity controller. The velocity is therefore shown in Figure 4.4. Four
predicted states in case of wrong initialisation x0 = [2, 0.7, 0.2, 2π + 1, 0, 0]T are
plotted in Figure 4.6 along with the actual states from the generated signal. After
the filter has converged (after about 2 s) the actual states are accurately tracked,
albeit with a small delay.

4.2.3 UKF implementation

Similarly, a UKF algorithm corresponding to algorithm 3 is implemented and tested
with the same measurement signal. The sigma-points are calculated according to
section 2.2.4. The remaining parameters are set equal to those used for the EKF.
The result of Q0 optimisation is shown in Figure 4.5. Once again, the minimal
value is found for c ≈ 1.0 corresponding to an MSE of 1.5 ∗ 10−4 cm2. This result is
comparable to that of the EKF. The results for state estimation and measurement
filtering are barely distinguishable from Figure 4.6 and Figure 4.3 respectively.

Two observations are attained from the comparison in Figure 4.5. Firstly, around
the optimal value the plot for the UKF shows some discontinuity which reflects a
higher sensitivity to parameter tuning. Secondly, and more importantly, for larger
deviations in Qk, the curve quickly becomes significantly steeper for the UKF. This
reveals an important flaw of the UKF in this specific scenario as for the real world
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4.3. Moving Horizon Estimation (MHE)

Figure 4.6: EKF estimated states and actual states. (States 1 through 4.)

system the process noise covariance matrix Q0 has to be estimated and does not
equal Q0g.

Moreover the EKF is remarkably less time consuming. The simulation was
executed (all 10000 steps) in 0.31 s as compared to 2.56 s for the UKF3. The time
cost for individual corresponding simulation steps shows the same ratio. On the
basis of these observations, the EKF is selected for further use.

4.3 Moving Horizon Estimation (MHE)

The MHE algorithm is elaborated in section 2.3. This section assesses its performance
in the context of periodic motion estimation.

4.3.1 Parameters

A test signal is generated with Q0g from Equation 4.4 and R0 = 10−3 cm2. Moving
horizon estimation is more computationally intensive as compared to (extended)
Kalman filtering. The time step is therefore increased to ∆t = 10 ms. The per-
formance in terms of MSE is compared with that of an EKF with the same time
step. Simulations are done with a horizon of Nhor = 1, 5 and 10. Both filters

3The simulations were ‘warm-executed’ on a machine featuring a 6th generation ‘Skylake’ 2.6GHz
quad-core i7 processor with Radeon Pro 450 dGPU, in similar circumstances.
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4. Filter Implementation

are initialised with the correct states, those of Equation 4.2. The EKF pro-
cess covariance matrix is set to Q0 = I6 ∗ 10−4 and the filter is initialised with
P0 = I6 ∗ 10−2. Corresponding to this covariance matrix, the MHE state weights are
chosen wstates = wstates ∗ [1, 1, 1, 1, 1, 1].

4.3.2 Results

MHE performance is mainly determined by the horizon Nhor and the ratio of the
weights, wstates/wmeas. The results of the MHE simulations are shown in Figure 4.7.
In this range, increasing Nhor increases accuracy. The difference between the most
accurate simulations of Nhor = 5 and Nhor = 10 is negligible, less than 1%. However,
initial state error rejection significantly increases with increasing horizon, to the
extent that for Nhor = 1, no convergence is reached for the trumped initial state vector
x0 from subsection 4.2.2. This finding increases the required computational power
to result in acceptable behaviour. From Figure 4.7 it is also derived that the MHE
approaches the EKF closely in terms of performance, but fails to reach/surpass it.
The optimal case for Nhor = 5 is wstates/wmeas = 0.1, which is plotted in Figure 4.8
along with the result for the Kalman filter. Similar behaviour is observed. Both
their estimated states along with the actual states are shown in Figure 4.9. Once
again, the MHE is only able to provide similar but inferior results.

When the MHE weights and EKF variances are varied separately, both filters
deliver better results. Parallels are however clear with the results above. The MHE
does not achieve the same performance as the Kalman filter. Additionally, tuning
the MHE is more difficult and the algorithm’s performance is more prone to weight
deviations.

These findings, along with the fact that for these specific simulations the MHE
algorithm takes over 100 times longer to run when compared to the EKF algorithm,
result in abandoning the moving horizon estimator (MHE) in favour of the Kalman
filter (KF).

4.4 Other Methods

A significant number of methods for on-line estimation (or time delay compensation)
remains. Yuen et al. [22] have shown the superiority of the EKF over the autoregres-
sive (AR) model with either least-squares estimator or fading memory estimator for
periodic movement. Further methods are not discussed in the context of this work.

4.5 Velocity estimation

The need for the attainment of an on-line velocity computation corresponding to a
displacement signal is translated to an additional state estimation problem. The
need for this (on-line) information emerges from the robot control (chapter 5). Feed
forward velocity control strategies require the velocity signal to be available with the
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4.5. Velocity estimation

Figure 4.7: MSE results for MHE sim-
ulations with varying horizon. Corre-
sponding EKF result is given by hori-
zontal grey line.

Figure 4.8: Test signal with results for
EKF and MHE for wstates/wmeas =
0.1 and Nhor = 5.

Figure 4.9: MHE states (yellow) against EKF states (red). The true states are
displayed in blue.
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4. Filter Implementation

Figure 4.10: Linear input signal and derivative for velocity estimation.

Figure 4.11: (Co)sinusoidal input signal and derivative for velocity estimation.

displacement. This is especially true for the operator’s input signal, as no model is
available.

The input displacement is expected to contain a certain amount of noise, orig-
inating from e.g. discretisation from the digital input console of the operator, or
measurement noise. Simple numerical differentiation vk = (xk − xk−1)/∆t would
confluence this noise with the small time step that is maintained, resulting in a
differentiation signal with considerable noise amplification. A multi-point numerical
differentiation partly resolves this issue, but also introduces an inherent time delay.
Two other solutions are considered.

The first one is a numerical differentiation of the low-passed displacement signal,
provided an efficient trade-off between time delay and noise reduction is established.
The second is a Kalman filter (KF) which maintains a model that allows for calculation
of the derivation. In contemplation of testing these methods, two inherently distinctive
test signals are created.

4.5.1 Test signals

The first test signal supplies a linear displacement which leads to a block pulse
velocity, see Figure 4.10. A displacement of 2 cm is desired in 0.5 s. The second test
signal has a rather block pulse displacement with sinusoidal flanks and therefore a
sinusoidal velocity profile as shown in Figure 4.11. A small amount of Gaussian noise
is added to the displacement signals with a variance of R0 = 10−7 cm2.
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4.5. Velocity estimation

4.5.2 Derivation of low-passed signal

The signals are propagated through a low-pass Butterworth filter. An on-line
numerical differentiation of the latest two values is then performed which provides
the velocity signal. In order to minimise the time delay, the order and cutoff frequency
of the filter are optimised to the lowest possible MSE between actual and estimated
velocity for both signals separately. A lower order and/or higher cutoff leads to
smaller time delay but passes more noise.

4.5.3 LKF implementation

Ab initio, Equation 4.6 is used. It correlates displacement x with velocity ẋ and
presumes a constant process noise covariance matrix Q0 and measurement noise
variance R0 of Equation 4.7. The model implies a constant velocity is expected.

[
x
ẋ

]
k+1

=
[
1 ∆t
0 1

] [
x
ẋ

]
k

(4.6)

yk = xk + ẋk∆t

Q0 =
[
0 0
0 q

]
(4.7)

R0 = r

The layout of Q0 accompanies the chosen system equations and must be un-
derstood as follows. At every time step the displacement is updated taking into
account the previous velocity. The absent variance on the displacement ensures that
the difference between the previous and current displacement is traced back to the
updated velocity. The measurement (current displacement) is then perceived as a
direct result of the velocity. If a variance on the displacement is present as well,
a part of the measured value is understood as process noise and the effect of the
velocity, and therefore the velocity itself as well, is underestimated.

A possible modification to the system implies constant acceleration ẍ and linear
velocity ẋ. The system equations and noises then become those of Equation 4.8 and
Equation 4.9.

xẋ
ẍ


k+1

=

1 ∆t ∆t2/2
0 1 ∆t
0 0 1


xẋ
ẍ


k

(4.8)

Q =

0 0 0
0 q 0
0 0 0

 (4.9)

The effects of a change to these modified equations is predictable: for the linear
signal of Figure 4.10, inferior performance is expected as the signal solely contains
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4. Filter Implementation

pieces of constant velocity. If the operator input embodies quadratic shapes rather
than linear ones, the 3DOF system improves the estimation. Equation 4.6 and
Equation 4.7 are adopted for further purposes.

4.5.4 Comparison

The MSEs are iteratively calculated for both systems as their parameters are altered.
The LKF is tuned by shifting q from 10−6 to 10−2 cm2/s2, the LPF by ranging the
cutoff frequency fc from 10 Hz to 110 Hz. For the latter, favourable results are
obtained with Butterworth filters of either first or second order n. The results of
these tests are plotted in Figure 4.12a and Figure 4.12b respectively.

The following conclusions are drawn. Different filter orders are preferred for the
two signals: the estimation of the sinusoidal pulse is more accurate with a second
order filter while for the linear profile the first order filter performs better. At their
optimal points, the KF performs slightly better. For the sinusoidal and linear signal
3% and 8% respectively. Considering that altering the filter characteristics on-line
is to be omitted, two points are selected that compromise in terms of performance
for both signals. The Butterworth filter is set to first order with fc = 300 Hz and
for the Kalman filter q = 10−3 cm2/s2. The Kalman’s superior results are now more
pronounced with improvements of 36% and 11% respectively. Additionally, the rise
time of the LP solution is consistently larger, as shown in Figure 4.13. Similar rise
times as those of the KF can only be achieved by applying LPF characteristics that
propagate large amounts of noise resulting in unsuitable performance. The Kalman
filter (KF) is adopted as solution for the derivation problem.

4.6 EKF improvement through ECG

As is elaborated in subsection 3.1.2, the ECG signal contains predictive information
about the heart movement. Due to the lack of a dynamic ECG–heart-movement
model, the assumption of a quasi-constant time delay ∆Tecg,p between ECG peak
and heart movement peak is made: ∆Tecg,p ≈ 200 ms. The ECG signal is assumed
the be available in real time. More particularly, the locations of the peaks in the QRS
complexes are presumed to be known when, or shortly after, they occur. If these
are not explicitly passed, they are calculated from the ECG signal by comparing the
current value to the mean of the signal. A peak is detected when this value crosses a
certain threshold (e.g. 150 mV).

The exploitation of the signal is twofold. It is in the first place used to predict
on-line deviations from the model. The point in time where the ECG places the
next motion peak is compared to the current expected peak according to the model.
Secondly, it is also used to increase robustness by converting and inserting the
measured heart rate directly into the EKF as angular frequency state ω. Generation
of test data and the two mentioned exploitations are topics tackled in the following
three subsections.
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4.6. EKF improvement through ECG

(a) Results for LKF (b) Results for LPF

Figure 4.12: Comparison of LPF and LKF for velocity estimation.

Figure 4.13: Velocity estimate rise times for the two discussed methods. Parameters:
first order Butterworth LP, fc = 30 Hz. qKF = 10−3 cm2/s2.
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Figure 4.14: Original ECG signal

Figure 4.15: Manipulated ECG signal with detection of peaks and time of expected
peak movement indicated. The first 5 s are the same as those from Figure 4.14, the
next 5 s are used to scale up the heart rate to twice the nominal (from 70 BPM to
140 BPM approx.). Constant amplitude sinusoid (purple) with peaks corresponding
to ECG signal.

4.6.1 Test data

Data allowing for testing the algorithm is created by altering experimental ECG
data [23]4. The data, displayed in Figure 4.14 is offset by its own mean value
(518 mV). An interval of 20 s is selected where the heart rate is about 70 BPM. The
[5 s, 10 s] interval is used to gradually speed up the frequency to twice the heart rate,
which is maintained until the end. The resulting signal is 13.75 s long and shown in
Figure 4.15. A threshold of 150 mV is selected for peak detection. The detections are
indicated with ‘o’s, the expected peaks in the heart motion -200 ms later- with ‘x’. A
sine wave of constant amplitude with peaks hitting these time marks is then created
as a means of simulating the heart motion. These makings are shown in Figure 4.15
as well.

4.6.2 Heart rate linking

The extended Kalman filter (EKF) implemented in subsection 4.2.2 has the heart
frequency ω explicitly present as a state in x, the state vector. By setting it to the

4The D1NAMO dataset contains ECG data for research on diabetes. Data from the subset of
healthy subjects is used.
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4.6. EKF improvement through ECG

measured heart rate from the ECG signal, the robustness of the filter is increased.
A rapid raise in heart rate could for example initially be ‘explained’ by the EKF
through the process noise of the offset, amplitudes and sine arguments, resulting in
a lagging state estimation for ω. This phenomenon is to a small extent observed
in Figure 4.6. Fixing this value directly also introduces a time delay, as the new
frequency is only calculated after the QRS peak has passed. This delay is partially
compensated by the time delay between the ECG signal and heart movement. In the
lion’s share of the cases the resulting effect is modest as ω does not deviate much
between subsequent periods.

This method is implemented and compared as follows. A simplified model of
the earlier described EKF is implemented, omitting a second sine, the offset and
amplitude. The resulting filter is iteratively applied to the simulated signal of
Figure 4.15 and distorted with additive Gaussian measurement noise with variance
R0 = 10−2 cm2. The diagonal elements of Q0 have been optimised separately,
resulting in Diag(Q0) = (1.3 rad2/s2, 0.04 rad2).

Subsequently, the alternative algorithm with direct ω feed is implemented and
Q0 (with only one diagonal element, in position [2, 2]) is optimised as well, resulting
in Q0,(2,2) = 0.04 rad2. The resulting displacement estimation in terms of MSE is
consistently about 10% better5.

4.6.3 Motion prediction

The next expected peak of the current model maintained by the EKF is known from
the states, as is the approximate peak in heart movement due to the ECG signal
–about 200 ms in advance. The corresponding phase difference φ∆,k is a measure for
the current state error being made by the filter. Fixing the sine argument to match
the expected motion eliminates every degree of freedom of the sine, restricting the
filter’s possibilities to cope with real world process uncertainties. Instead the process
noise covariance matrix Q0 is tuned on-line, resulting in a time dependent Qk.

Qk is increased linearly with increasing φ∆,k. This results in Equation 4.10.

Qk = Q0(1 + c|φ∆,k|) (4.10)

Q0 as well as c are iteratively altered in a search for optimal values, leading to
Q0,(2,2) = 0.03 rad2 and c = 2 rad−1. The resulting system now consistently performs
about 20% better than the one omitting ECG information.

Analysis of the resulting signals reveals that improvements are predominantly
present when the heart rate increases, which is where the standard EKF output
deviates most from the actual signal. This phenomenon is perceived in Figure 4.16.

4.6.4 Drawbacks

There are some drawbacks to the implemented ECG-exploitations. First of all,
fixing one of the states based on a discrete event, and concomitantly taking away

5This result varies slightly between simulations due to the stochastic measurement noise.
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Figure 4.16: Zoom on simulation in the particular region where the heart rate rapidly
increases. The deviation of the standard EKF signal (yellow) and improvement of
the improved one (purple) are observed, especially where the former deviates most.

its degree of freedom, interferes with robustness in unpredicted scenarios. The
response towards a sudden shock (step) for example shows more ‘inertia’, resulting in
a larger tracking error. Fixing the frequency does increase robustness in the nominal
case, assuming the ECG frequency is correct. Robustness is here interpreted as the
rejection of convergence to erroneous states. E.g. when the frequency estimate is
too high/low and the error is captured by fluctuation in offset and amplitudes. A
second problem is that intentionally increasing the process noise covariance matrix
when convergence to the accurate states has been achieved, increases the chances
of nonetheless ending up with anomalous states. The third and last problem is the
presence of the aforementioned inherent time delay of the ECG frequency estimation,
due to the fact that it is only computed once a peak is detected. This delay is of
little consequence in the nominal case, but when the heart beat rhythm suddenly
changes, it ensures a delay in the estimated frequency. Consequentially, the motion
tracking has the propensity to lag in those cases.

These three problems are tackled by exploiting the ECG signal in a more robust
and elegant fashion: a fusion of the two measurements with respect to the model.

4.7 Sensor fusion

Once again, the dynamic ECG–heart-motion model is presumed to be known with
a constant time delay ∆Tecg,p between ECG peak and peak in heart movement.
Based on these detected ECG peaks, a deterministic reference signal is designed
which serves as second measured signal, in parallel with the measured displacement.
Triangular pulses that start when the peak is measured are used to this end. The
measurement function is altered in order to, apart from the expected displacement,
also calculate the expected triangular signal. Because this introduces a numeric
aspect to the implementation, the extended Kalman filter (EKF) is replaced by an
unscented Kalman filter (UKF).
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Figure 4.17: The generated signals for the UKF sensor fusion. The generated
movement (red) and triangular ECG pulses (blue) are shown.

4.7.1 ECG signal

Because a signal with discrete function value differences such as the Dirac delta
function is not suitable for this purpose, the detected peaks are translated into a
continuous signal6 which the UKF produces as well. A triangular pulse train is used
where the pulses are placed immediately upon detection of the ECG peaks.

The used displacement signal is created with Diag(Q0) = (10−7 cm2, 10−7 cm2,
10−7 cm2, 10−5 rad2/s2, 0 rad2, 0 rad2), and the frequency is artificially increased by
3 rad/s in 3 s starting at t = 4 s. The resulting generated states are plotted in
Figure 4.18 (yellow). Measurement noise with R0,disp = 10−3 cm2 is added. The
generated triangular signal and displacement are shown in Figure 4.17. The time
delay ∆Tecg,p is increased to 400ms for three reasons. The 200ms that was assumed
before was based on the heart beat of an animal with a significantly faster frequency
than the average human one. Physiologically, the ECG peaks are registered before
or with the upward heart movement (as is now the case in Figure 4.17) and, lastly,
because it makes the observed effect of the sensor fusion more pronounced. The
generated triangular pulses are symmetrical, 100ms wide and have unit height.

4.7.2 UKF design

The measurement function which is maintained by the ‘Sensor Fusion UKF’ is given
by algorithm 4. It now returns two outputs. First the expected displacement is
calculated. What remains serves the purpose of calculating the expected triangular
pulse value in function of the current state. First the search interval Tint is limited to
one period of the signal, symmetrically around the current time step. A vector ∆Trel
is created which contains the relative time differences corresponding to the current
time step for every element of the period Tint. This symmetrically generated interval
is offsetted by the maintained ECG triangle–motion-peak lead. The estimated
displacement signal localWave is created with respect to the current states xk. The
maximum of the wave is found along with its corresponding relative time difference

6I.e. a continuous discrete signal: the signal itself is discrete but the subsequent values are close
to one another.
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∆T∗rel. This is then used to calculate the expected current value of the triangular
signal ∆ecg,k. Any undefined functions in algorithm 4 refer to MATLAB syntax.

The values used in algorithm 4 for generation of the triangular profile (0.35, 0.05
and 20 respectively) correspond to these elaborated in subsection 4.7.1.

In addition to the mentioned changes, the measurement variance is replaced by a
measurement covariance matrix:

R0 =
[
R0,disp 0

0 R0,ecg

]
(4.11)

Algorithm 4: Measurement Function (UKF Sensor Fusion)
1 function measurementFunction(xk):
2 ẑk = x1,k + x2,k sin x5,k + x3,k sin x6,k

3 Tint = 2π/x4,k

4 ∆Trel = (−round(Tint/2, 3) + 0.35 : ∆t : round(Tint/2, 3) + 0.35)
5 localWave = x2,k sin(x5,k + x4,k∆Trel) + x3,k sin(x6,k + 2x4,k∆Trel)
6 [∼, ind] = max(localWave)
7 ∆T∗rel = ∆Trel(ind)− 0.35

8 if ∆T∗rel < 0.05 && ∆T∗rel ≥ 0 then
9 ∆ecg,k = 20(−∆T∗rel + 0.05)

10 else if ∆T∗rel > −0.05 && ∆T∗rel ≤ 0 then
11 ∆ecg,k = 20(∆T∗rel + 0.05)
12 else
13 ∆ecg,k = 0
14 return [ẑk,∆ecg,k]′

4.7.3 Insights

The performance of the filter in the context of the additional functionality is influenced
by the triangular signal and the measurement noise R0,ecg. Placing the triangles
earlier increases the predictive aspect of the filter. This placement is physiologically
limited by ∆Tecg,p. Decreasing the width makes the momentary influence of the
ECG signal shorter. A longer triangle manipulates the states (mostly the frequency)
for a longer period in time. As the pulse is a reflection of a momentary detection
(the ECG peak), this manipulation becomes more irrelevant the longer it lasts. On
the other hand, the shorter the pulse is the less time the filter is permitted to adapt
to the new measurements. When it comes to the measurement noise R0,ecg, a larger
value implies more measurement noise and less influence by the ECG. Since no
measurement but only discretisation noise is present, the value is chosen relatively
low, presuming the ECG detections and the dynamic ECG–heart-motion model are
accurate.
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4.7.4 Simulation

The resulting states for the simulation with R0,ecg = 10−5 are shown in Figure 4.18,
along with the states of the generated signal and the estimation by the conventional
UKF. The corresponding triangular pulses with a detailed pulse are also plotted
in Figure 4.19. Each ECG detection is indicated by a grey dashed line. The small
lasting difference between the pulses results from the difference between the peak
search algorithms. The UKF finds the top of the curve analytically, based on the
states, while the ECG signal is generated by locating the actual top. The latter
is partly determined by the process noise as well. This characteristic allows the
difference to be perceived as a sort of noise on the dynamic ECG–heart-motion
model.7 In the plot of the states, the frequency in particular, the updates due to the
ECG are perceivable. As the model presumes a constant frequency, the states with
sensor fusion tend to converge to those without after the detected peak has passed.
This behaviour is influenced by pulse shape, as discussed before.

The improvement of the sensor fusion algorithm over the conventional UKF in
terms of MSE is significant for the displacement tracking (35% improvement) as well
as for the estimated velocity (50% improvement). The conventional UKF disposes of
the possibility to more rapidly respond to the increase in heart frequency than is
portrayed here, provided an increase in the variance of the frequency state is carried
through. This however comes at the cost of deteriorated performance in nominal
scenarios.

4.8 Conclusion
In correspondence with chapter 2, an extended Kalman filter (EKF), unscented
Kalman filter (UKF) and MHE are implemented and compared. Based on the results,
the EKF is selected for further use. Next a linear Kalman filter (LKF) is designed
and implemented with the purpose of providing an on-line differentiation estimate.
This system is compared with the more conservative numeric differentiation and has
proven to perform superiorly. The chapter is concluded by exhausting the possibility
of using an ECG signal to improve filter performance. Simplistic methods as well as
sensor fusion are used and compared. The latter yields significant improvements in
comparison with the former.

7I.e. this inaccuracy can be omitted but this small difference is more realistic than a perfect
prediction.
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Figure 4.18: Actual (generated) states (yellow) along with the states estimated by
the UKF with sensor fusion (red) and those by the conventional UKF (blue). The
time steps where the ECG peaks are registered are shown by the grey dashed lines.

Figure 4.19: UKF sensor fusion triangular pulses. The measured pulse (red) and
estimated pulse (blue) are shown. The blue pulse adapts to match the red one. The
lasting difference is explained in subsection 4.7.4.
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Chapter 5

Robot Control

5.1 Introduction
This chapter introduces and compares strategies concerning the control of the surgi-
cal robot. More specifically, two methods are applied. First the more conservative
proportional-integral-derivative (PID) control is implemented. Then, exhausting
the possibility of prediction, model predictive control (MPC) is applied. The two
strategies are briefly explained, applied to the motion-compensation system and com-
pared with different tuning parameters. These simulations are repeatedly performed
making use of an ideal and a more realistic plant model. The numerical results serve
solely as a means of comparing the two systems. Performance is heavily dependent
on the deployed hardware and further mechanical design choices.

5.2 Proportional control

5.2.1 Concept of PID control

A PID controller is a feedback controller that (in the most general case) applies a
three-term control formula to the measured error value e(t), the difference between the
reference value and measured variable. As the name divulges, this formula consists of
three terms as shown in Equation 5.1 (in the s-domain)1. General feedback control
loops adopt the scheme of Figure 5.1.

C(s) = kp + kds+ ki

s
(5.1)

5.2.2 Proposed P(I) controller

A variant of this controller is introduced. The scheme is is shown in Figure 5.2
(marked in pink) along with the earlier described KFs of chapter 4. The derivative
term is omitted as it yields little to no improvement. For simplicity, the integral
term is ignored as well at first. The plant is presumed to have an internal velocity

1I.e. the Laplace domain where s = ωj.
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5. Robot Control

Figure 5.1: Feedback control scheme. C(s) is the control formula, P (s) (a model of)
the plant.

Figure 5.2: Combination of proportionate and feedforward control integrated with
KFs. The control loop itself is marked in pink. LKF and EKF denote the linear and
extended Kalman filter respectively. PLANT the robot, velocity controller inclusive.

controller. The proposed system uses the velocity as feed-forward signal. The feedback
loop attempts to compensate for errors of the feed-forward control by responding
to the observed tracking error. Under the assumption of perfect estimation, and
considering the plant to be an ideal integrator 1/s, the transfer function (TF) of the
system depicted in Figure 5.2 is Equation 5.3 and can be compared with the basic
proportionate feedback control Equation 5.2 (proportionate control-formula case of
Figure 5.1). In this ideal case, the improved control loop delivers perfect tracking as
the TF equals 1. Equation 5.2 however has one pole and low-pass characteristics.

Y (s)
X(s) = P (s)

1 +KP (s)
P (s) = s−1

−→ 1
s+K

(5.2)

Y (s)
X(s) = P (s)(s+K)

1 +KP (s) −→ s+K

s+K
= 1 (5.3)

Ab initio, ˙̂xe is calculated analytically from the estimated states according to
Equation 5.4. This is readdressed in section 5.5.

˙̂xe = x̂2x̂4cos(x̂5) + 2x̂3x̂4cos(x̂6) (5.4)
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5.3 Model Predictive Control (MPC)

5.3.1 Concept of MPC

Model predictive control (MPC) is a strategy which employs an internal model of
the plant in order to predict output behaviour. It repeatedly solves an optimisation
problem in which it minimises a cost function for the plant’s control signal. For the
case of tracking a constant signal this for instance often comes down to minimising
the difference between the reference and the expected output for the following NPH
values. At each time step the control value for the current time step, calculated
during the previous one, is applied.

The concept is illustrated by Figure 5.3. MPC is a multivariable control algorithm
with behaviour dependent on the following parameters.

Time step ∆tMPC This is the time step used by the controller. It is the interval
within which the control signal remains constant. A smaller ∆tMPC increases per-
formance. It establishes a more precise control signal and reduces the control delay.
This delay equals ∆tMPC and is inherently present in the system as ∆tMPC is the
time needed to solve the optimisation problem. Consequently, the time step must
also be chosen large enough to allow for the optimiser to solve the problem.

Prediction and control horizon NPH andNCH (see Figure 5.3) can take different
values, with NPH > NCH. The prediction horizon is the amount of time steps
maintained for solving the optimisation problem and thus simulating the future
response of the model. The control horizon is the amount of time steps over which
the predicted control signal is allowed to vary. An increase of either value improves
control accuracy at the cost of computational complexity.

Constraints The control effort as well as the output of the plant can be subject
to constraints. These manifest themselves in a constrained optimisation problem,
which in turn yields a higher computational cost.

Cost function The to-be-optimised cost function JMPC determines the objective
of the optimisation. It for instance reflects the relative importance between reference
tracking and minimising the control effort. JMPC can also be used to assign different
weights to steps in the prediction horizon. E.g. the first couple of steps are made
more important.

5.3.2 Proposed MPC controller

Before applying the controller, reference predictions r have to be calculated. To
calculate the k+ jth prediction at time step k, Equation 5.5 is deployed where kMPC
and kEKF correspond to the current (possibly distinctive) time intervals. Additionally,
as a means of countering the MPC’s inherent time delay, the predictions are shifted
by ∆tMPC, resulting in Equation 5.6. If the MPC and EKF time steps are equal,
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5. Robot Control

Figure 5.3: Schematic illustration of MPC method. Control and prediction horizon
are denoted by NCH and NPH respectively.

the ‘EKF’ and ‘MPC’ subscripts in Equation 5.5 become irrelevant as is assumed in
Equation 5.6. These equations correspond to the ‘predictions’ block of Figure 5.4.
The cost function maintained by the controller’s optimiser is given by Equation 5.7.
xpj is the simulated output of the system depending on the optimised variable (the
p-subscript denoting ‘predictive’), the velocity control signal is u. This signal is not
directly present in the cost as power consumption is assumed to be irrelevant in
contrast to tracking accuracy. For the magnitude and rate of change of u however,
limitations are imposed on umin, umax and u̇min, u̇max respectively, as the system’s
dynamics are limited. [24]

rkMPC+j = x̂kEKF1 + x̂kEKF2sin(x̂kEKF5 + j∆tMPCx̂kEKF4)+
x̂kEKF3sin(x̂kEKF6 + 2j∆tMPCx̂kEKF4) (5.5)

rk+j−1 = x̂k1 + x̂k2sin(x̂k5 + j∆tx̂k4) + x̂k3sin(x̂k6 + 2j∆tx̂k4) (5.6)

JMPC =
NPH∑
j=1

(rj − xpj)2 (5.7)

The resulting control system is integrated as schematically depicted by Figure 5.4.
The EKF’s estimated states x̂ are used to make NPH predictions r. The current
human (operator) input xm

h is added before they are fed to the MPC controller, which
also takes the measured output (MO) into account. Based on these the manipulated
variable (MV) u is calculated and used to control the plant.

5.4 Simulations

A combination of MATLAB and Simulink is used to validate the designed systems
and tune the parameters. The same signals are applied with identical noise, the KFs
are deployed and in the first instance an ideal plant model is maintained.

The operator input of section 4.5 is used, together with the generated heart
movement of Figure 5.5 (in red, behind purple). Gaussian noise is added to the signal
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Figure 5.4: Integrated MPC controller. The estimated states x̂ of the EKF are
used to calculate NPH predictions ri of the environmental movement xe. The
current human (operator) input xh is added before the values enter the MPC. The
controller respectively has two inputs and one output: the reference signal, measured
output (MO) and manipulated variable (MV).

Figure 5.5: Control simulation input displacements. The EKF displacement estima-
tion (purple) sums with the operator’s desired movement (green) to result in the
desired robot movement (blue).

with R0 = 10−4 cm2. The plot also shows the resulting desired robot movement
(blue).

5.4.1 Ideal plant simulations

P(I) control The implemented proportionate control loop is first tested with
different gains. Increasing the gain K monotonously increases the tracking accuracy
(until it bumps into the limitations concerning discretisation noise, which occur
around Kinstable = 500 s−1). The results for K = 10 s−1 are plotted in Figure 5.6.
The MSE of the resulting error signal is 6.8 ∗ 10−4 cm2. The results for a more
conservative (K = 2 s−1) and higher gain (K = 20 s−1) are shown in the left table of
Table 5.1. Also included are results for a system with additional integral action: a
PI controller. The achievable improvements are often limited but notable. They are
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Figure 5.6: Proportionate control simulation results. The desired movement (blue)
which is only perceived by the system in the presence of measurement noise is
compared to the resulting robot movement (red). The difference is also plotted
(yellow).

in the range of 5− 35%. The numerical values of the I-gains are chosen so that they
either achieve the best performance, or that further increase only yields negligible
improvement.

Model predictive control (MPC) As the ideal plant model is used in combina-
tion with shifted predictions (i.e. the MPC time delay is compensated as discussed
in subsection 5.3.2 and shown by Equation 5.6), the controller achieves accurate
tracking and the only errors made are the estimation errors made by the KFs and
those that result from process noise. For a time step of 1 ms his results in an MSE
of 3.5 ∗ 10−5 cm2, regardless of the chosen prediction horizon (PH) or control hori-
zon (CH). A time step of 10 ms leads to 2.2 ∗ 10−4 cm2, mainly due to the delayed
response to the operator input.

It is clear that this unrealistic virtual environment fails to expose real world
behaviour of the intended systems. A more realistic simulation is envisioned which
takes into account limited plant dynamics and imposes limitations on the control
signal.

5.4.2 Limited dynamics simulation

In addition to the integrator, low-pass characteristics are added with a bandwidth
of about 30 Hz, translating into a time constant τ = 5 ms. The control effort and
its rate are limited by |umin,max| < 0.5 m/s and |u̇min,max| < 5 m/s2. These values are
chosen with respect to the achievements of modern high performance linear actuators
that could e.g. be used as robot end effector [25, 26]. They are not specifically
related to any equipment or scenario but intend to simulate an environment which
allows for comparison of the control systems. The same test signals are used.
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Ideal plant

Control Gains

K[s−1] I[−] MSE [cm2]

2 0 3.6 ∗ 10−3

5 2.3 ∗ 10−3

10 0 6.8 ∗ 10−4

5 6.3 ∗ 10−4

20 0 3.9 ∗ 10−4

10 3.7 ∗ 10−4

Non-ideal plant

Control Gains

K[s−1] I[−] MSE [cm2]

2 0 5.4 ∗ 10−3

2 4.4 ∗ 10−3

10 0 2.1 ∗ 10−3

20 0 1.2 ∗ 10−3

100 0 2.2 ∗ 10−4

Table 5.1: Results for P(I)-control simulations with ideal (left) and more realistic
(right) plant model. No integral action is added if no improvement was obtained.

P(I) control The right table in Table 5.1 shows the results for these more realistic
simulations. The results are directly comparable with those of the left table, obtained
through the ideal plant model. Adding integral action with proportionate gains
K = 10 s−1 and K = 20 s−1 yields no further improvement. These results are
therefore omitted. The peak-to-peak errors corresponding to K = 2 s−1; I = 2, K =
20 s−1; I = 0 and K = 100 s−1; I = 0 are 3.5 mm, 1.8 mm and 0.8 mm respectively.

Furthermore, the systems closed loop stability is -making use of the current
model- favourable. The input to a step input (consequently without feed-forward)
has no overshoot for K = 20 s−1 and a 4% overshoot for K = 100 s−1.

Model predictive control (MPC) The simulations are performed with an inter-
nal MPC time step ∆tMPC of either 1 ms or 10 ms. The aforementioned restrictions
are imposed and the prediction and control horizon (NPH and NCH) are varied. The
simulation occupies 10 s of ‘simulated time’ and the input signals are sampled at
∆t = 1 ms. The results are summarised in Table 5.2. This table shows the simulation
time ∆Tsim2, the MSE of the error between the eventual robot position and the
original (unbiased) heart motion, the peak-to-peak error εpp and the overshoot ∆h
of the output towards the internal plant, in response to a step input.

The results show that the prediction and control horizons must be selected
sufficiently high in order ensure stability. ‘unstable’ denotes behaviour of which the
apparent ‘damping’ is insufficient and the excitation due to a step response does not
fade. This value is dependent on the phase delay of the plant. A controller with
time step ∆tMPC = 1 ms applied to the current plant (τ = 5 ms) reaches this kind
of stability with a horizon of 6 ms for instance, whereas the same controller applied
to a plant with slower dynamics (τ ′ = 20 ms) only reaches with NPH = 11. This is
an important parameter to take into account when designing an MPC for a specific
plant.

2The simulations were ‘warm-executed’ on a machine featuring a 6th generation ‘Skylake’ 2.6GHz
quad-core i7 processor with Radeon Pro 450 dGPU, in similar circumstances.
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Parameters Output measurements

∆tMPC[ms] NPH/NCH ∆Tsim[s] MSE [cm2] εpp[mm] ∆h[−]

10 1/1 unstable
2/2 1.0 3.5 ∗ 10−4 1.4 35%
10/10 1.3 3.5 ∗ 10−4 1.4 6%

1 2/2 unstable
8/8 4.0 7.9 ∗ 10−5 0.6 18%
10/10 4.3 7.8 ∗ 10−5 0.6 13%
20/20 7.5 7.8 ∗ 10−5 0.6 4%
50/50 9.4 7.8 ∗ 10−5 0.6 4%

Table 5.2: Results for MPC simulation with non-ideal plant model.

Once favourable behaviour is reached, further increasing the horizon yields
elevated robustness but little further improvement on the error in the simulation.
The computational effort however rapidly increases. When the horizon is further
expanded the performance has the tendency to slowly deteriorate. This is explained
by the fact that the errors of the movement predictions r that are further in the
future increase due to process noise.

5.5 Unmodelled behaviour

This section provides a fully integrated simulation for compensation of motion that
is not comprehended by the internal model. Operator input is omitted. The systems
are compared performance-wise and further safety measures are discussed.

5.5.1 Simulation

A signal is composed which lacks one of the heart movement beats. It is shown in blue
in Figure 5.8. Due to the inconsistency of the provided model the states calculated
by the EKF are inaccurate, even though the error of the estimated movement is
limited (see Figure 5.9a in green). The proposed PID and MPC controllers are
for their functioning dependent on these states. The PID controller uses them
to analytically calculate a velocity estimate through Equation 5.4 and the MPC
employs them in order to calculate reference predictions. I.e. the control strategy
is threatened in these unmodelled circumstances. The effects are investigated by
means of a simulation using the discussed signal. The PID and MPC results are
shown in Figure 5.8, Figure 5.9a and Figure 5.9b in purple and red respectively. The
MPC uses NPH = NCH = 10 with ∆tMPC = 1 ms and the PID has K = 20 s−1. The
latter shows a large peak which tends to follow the unmanipulated signal: the state
estimates are non-conform and bias the feed-forward signal. Similarly, the MPC
predictions r amplify the EKF error, albeit to a smaller extent.
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The need for the possibility of more robust control rises. One solution is to use
the linear Kalman filter (LKF) of section 4.5 to estimate ˙̂xe instead of calculating
it analytically. These results are shown in yellow. This allows the PID to even
outperform the MPC in terms of ‘inconsistency rejection’, against the cost of an
inherent (section 4.5) time delay, less accuracy and modestly higher computational
complexity. In order to observe the impact of this change, the simulations of
section 5.4 are repeated with the same signal, using K = 20 s−1 and I = 0. The
operator input is omitted. The respective mean square errors (MSEs) for LKF and
analytical estimation are 4.0 ∗ 10−3 cm2 and 1.2 ∗ 10−3 cm2. I.e. this solution has a
significant negative impact on the overall performance in nominal circumstances.

5.5.2 On-line consistency test

The epicentre of the problem corresponds to the ability of making an algorithmic
distinction between nominal and unmodelled measurement. This functionality creates
the possibility of on-line shifting to the optimal control strategy. If the PID is used,
the velocity estimation is for instance ideally calculated analytically in the nominal
case and through the LKF elsewhere. The foundations of an appropriate consistency
test have been introduced in section 2.2.6.

Figure 5.10 shows the EKF measurement and output for a signal similar to
the one of Figure 5.9a, together with it’s SNIS for M = 5 which corresponds to
Equation 2.22. In this example, 10 ms of SNIS values outside of the 99% confidence
interval is used as a criterion to detect severe inconsistencies. Figure 5.10 also shows
when inconsistency is flagged according to this criterion. Consequently, the control
strategy can upon detection be changed to a more robust one for a determined time,
until certain ‘safety conditions’ are fulfilled. Selection of M , the confidence interval
and the time interval to pass before intervention are trade-offs between responsiveness
and robustness of the selection.

5.5.3 Predictive ECG peaks

Section 4.6 explains how by comparing the detected ECG peaks with the expected
location of the next movement peak, the process noise covariance matrix is altered
which leads to improved tracking. Similarly, if the heart skips a beat, the lack of
such peak is available information and can be used as an indicator for a switch to a
different control strategy.

For the model that has been maintained so far, at discrete time step k, the
expected location of the next peak is calculated by solving Equation 5.8 in interval
Equation 5.9. It is expressed by t∆, the time difference between the current time and
that of the next expected peak. A constant delay between ECG peak and movement
peak ∆Tecg,p of 200ms is assumed here. A time interval (see Figure 5.7, grey dashed
line) is imposed after which the heart beat is supposed to be skipped or unacceptably
delayed. The control strategy is then altered accordingly. The applicability of this
algorithm depends on ∆Tecg,p as well as the heart movement. In the particular case
of Figure 5.7 for instance, the detection occurs too late and most of the damage
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Figure 5.7: Heart skipping beat with indication of predicted peaks. The presumed
location of the ECG peak is shown as well, along with an example of a threshold
time for detection of a skipped beat.

Figure 5.8: Performance comparison of different control systems in unforeseen
(unmodelled) scenario. The PID systems maintain a gain of K = 20s−1 without
integrating action. The earlier discussed low-pass model is used.

(see Figure 5.8) is already done. Here using the SNIS as detection method is more
sensible.

a1k cos(θ1k + ωkt∆) + 2ωka2k cos(θ2k + 2ωkt∆) = 0 (5.8)

t∆ ∈
(

2π − θ1k

ωk
,
3π − θ1k

ωk

)
(5.9)

5.6 Conclusion
The feed forward P(I) controller uses conservative technology to maintain favourable
results. Its performance is driven by the feedforward control and therefore the
velocity estimation is of vital importance. A feedback circuit with gain K is used to
compensate any deviations, which is why -supposing the velocity estimation is as
good as possible- K determines the P-control performance. Increasing K increases
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(a) Zoom on area of interest in Figure 5.8 (b) Zoom on signal of Figure 5.8

Figure 5.9

Figure 5.10: EKF output and SNIS for input beyond model scope. A vertical line
indicates where, maintaining the elaborated criterion, anomalous circumstances are
detected.
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the accuracy. The MPC shows the potential to be a superior solution but is heavily
subject to the availability of computational power.

After establishing this, attention is paid to behaviour in circumstances outside
the model’s scope. It was shown that the PID controller only provides acceptable
results in this scenario if the velocity is estimated differently. To this end an LKF
is applied which negatively impacts overall performance. Therefore, the chapter is
concluded by showing results for an on-line consistency test which allows for on-line
distinction between control strategies.

The trends exposed in this section are in line with those obtained with the si-
nusoidal pulse as operator input. They also hold for in/decreased noise on the
signals.
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Chapter 6

Three-Dimensional Motion
Tracking

6.1 Introduction

Taking into account the objective of designing a robot motion-compensation system
for a surgical platform, the expansion of the one-dimensional considerations of the
previous chapters towards a three-dimensional system is a final, crucial step.

The general idea is to maintain a real-time estimate of the surface which contains
the point of interest (POI) by approximating it with a certain model and updating it
at every time step. This approximated 3D surface at a time step k compares to the
scalar ẑk of chapter 2 and further. In this chapter a semispherical surface is used,
yielding 4 degrees of freedom: the location of the centre and the radius. A sketch of
the principle is shown in Figure 6.1.

Considering the absent availability of an accurate close-range 3D distance sensor,
the measurement is presumed to be done by a laser mounted on the robot end
effector. Consequently, the measurement remains one-dimensional. Figure 6.2 shows
a geometric view of the situation where the end effector trajectory is in the z = 0
plane, perpendicular to the laser measurement direction.

6.2 3D Extended Kalman filter (EKF)

6.2.1 Simplified model

In a first illustrative approach, the laser is assumed to provide a unidirectional
measurement along the z-axis and the heart motion is neglected (static scenario).
The system states x are the 4 parameters that determine the surface: the coordinates
of the centre and the radius Rs. Furthermore, the current location of the laser
(xe, ye, ze)k is presumed to be known1. The measurement equation Equation 6.3 is
then analytically available which allows for the Jacobian to be calculated explicitly.

1The subscript ‘e’ is for ‘(end) effector’.
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6. Three-Dimensional Motion Tracking

Figure 6.1: Illustration of POI
on heart with spherical approx-
imation of surface.

Figure 6.2: Geometric overview of esti-
mated surface (copper) with end effector
trajectory (blue) and laser measurement
line (red).

xk = [xc, yc, zc, Rs]Tk (6.1)
A = I4 (6.2)
zm

k = zc,k + ze,k −
√
R2

s − (xe,k − xc,k)2 − (ye,k − yc,k)2 (6.3)

6.2.2 Orientational freedom

In correspondence to a realistic surgical robot, the laser (end effector) is granted
orientational freedom. This orientation is captured through a polar angle θe,k and
azimuth angle φe,k at every time step k. These angles correspond to the spherical
coordinate system depicted in Figure 6.3. An updated geometric overview is given
by Figure 6.4.

Maintaining the same surface model as subsection 6.2.1, the measurement equation
now changes to Equation 6.4 where (x, y, z)sol is the solution of Equation 6.5 for
(x, y, z) and represents the measured point on the surface. The first and second
equations define the measurement line of the laser, the third the semispherical surface.
Equation 6.5 only holds under the conditions of Equation 6.6. The consideration of
the other cases is a topic of subsection 6.3.2.

56



6.2. 3D Extended Kalman filter (EKF)

Figure 6.3: Spherical coordinate
system with polar angle θ and az-
imuth angle φ.

Figure 6.4: Geometric overview of esti-
mated surface (copper) with end effec-
tor trajectory (blue) and inclined laser
measurement line (red). θe = π +
0.2 rad, φe = 0.1 rad and (xe, ye, ze) =
(1.1, 0.46, 0) cm.

zm
k =

√
(xe,k − xsol,k)2 + (ye,k − ysol,k)2 + (ze,k − zsol,k)2 (6.4)



x− xe,k

sin θe,k cosφe,k
−

y − ye,k

sin θe,k sinφe,k
= 0

y − ye,k

sin θe,k sinφe,k
−
z − ze,k

cos θe,k
= 0

z − zc,k −
√
R2

s − (y − yc,k)2 − (x− xc,k)2 = 0

(6.5)


sin θe,k cosφe,k 6= 0
sin θe,k sinφe,k 6= 0
cos θe,k 6= 0

(6.6)

No convenient analytical solution is attainable for these more profound equations.
Additionally, the dependency of filter performance on the existence of an analytical
formulation is to be omitted as interchangeability of the surface shape is a vital
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6. Three-Dimensional Motion Tracking

asset of the intended system. Depending on the location of the POI on the heart, a
surface model change is due. This makes any advantage of the EKF over the UKF
fade away. The latter provides a more prominent solution in coping with numerical
models as it omits the need for numerical differentiation by means of the unscented
transformation (UT). Therefore, in what follows, an unscented Kalman filter (UKF)
is designed for the purpose of 3D heart motion estimation.

6.3 3D Unscented Kalman filter (UKF)

6.3.1 Model equations

A more complete model is maintained as heart beat and respiratory motion are added.
For clarity, the results in this section only consider monofrequential movement for
either. Results where the first harmonic of the heart beat motion is included are
provided in Appendix A. Based on observations of MIDCAB footage, the heart
movement is by the model presumed to manifest itself in a varying sphere radius
Rs, and the respiratory movement is monodirectional in the z-direction. The system
and measurement equations used in the filter are Equation 6.7 and Equation 6.8
respectively. The equations to be solved are given by Equation 6.9 where Equation 6.6
are required conditions.



xc

yc

zc

Rs

A
ω
θ

Aresp
ωresp
θresp


k+1

=



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 ∆t 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 ∆t 1





xc

yc

zc

Rs

A
ω
θ

Aresp
ωresp
θresp


k

(6.7)

zm
k =

√
(xe,k − xsol,k)2 + (ye,k − ysol,k)2 + (ze,k − zsol,k)2 (6.8)



x− xe,k

sin θe,k cosφe,k
−

y − ye,k

sin θe,k sinφe,k
= 0

y − ye,k

sin θe,k sinφe,k
−
z − ze,k

cos θe,k
= 0

z − (zc,k +Aresp,k sin θresp,k) ...
... −

√
(Rs +Ak sin θk)2 − (y − yc,k)2 − (x− xc,k)2 = 0

(6.9)
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6.3. 3D Unscented Kalman filter (UKF)

6.3.2 Numeric solver

The traditional measurement equation is replaced by a system of equations which has
to be solved numerically in real time. A solver is deployed which solves Equation 6.9
for (x, y, z)sol,k = F (states, xe,k, ye,k, ze,k, θe,k, φe,k)k at every time step ∆t. The
conditions of Equation 6.6 are not required in order for a solution to exist. If any of
the conditions is violated Equation 6.9 has to be reformulated.

For instance: if sin θk = 0, Equation 6.10 is used instead.
x− xe,k = 0
y − ye,k = 0
z − (zc,k +Aresp,k sin θresp,k) ...

... −
√

(Rs +Ak sin θk)2 − (y − yc,k)2 − (x− xc,k)2 = 0

(6.10)

To account for the limits of numeric calculations, in the condition test a small
threshold value is used instead of zero. Four distinctive scenarios are possible in
which this reformulation is necessary. This results in an if...elseif...else-case with four
conditions and the nominal equations in the else-entry. The applied solver employs
a trust-region dogleg algorithm [27]. At every time step 2n + 1 sigma-points are
propagated through the system. In this case n = 10 which translates to the solver
being addressed 21 times within every time step.

Consequently, facilitating fast solver convergence is of vital importance for the
filter’s performance. In the local region around the measured point, and within
nominal geometric circumstances2, the problem is strongly convex. Convergence to
a unique solution is therefore guaranteed if the starting point of the algorithm is
sufficiently close to the solution. In the presence of a small time step (e.g. 10ms)
and considering limited robot dynamics, the subsequent measured points are close to
one another. Therefore this problem is tackled by using the previous solution of the
equations as the starting point of the current problem. As a result, the solver converges
within a significantly lower amount of iterations. In the simulation of section 6.4
this results in an MSE difference3 of 0.001% as compared to using the exact solution
when only 2 iterations are allowed for the optimiser. This explains why altering
the solver’s tolerance to a larger value -albeit a fraction of the standard deviation
of the sensor noise- further reduces the amount of iterations. Furthermore, these
2n+ 1 optimisation problems are independent and therefore suited for parallelisation.
Parallel computing is a type of computation in which many calculations or the
execution of processes are carried out simultaneously [28]. Profiling the code learns
that for the simulation of section 6.4, 80% of the computation time is spent on
solving one of these optimisation problems. As a result, the designed algorithm is
about 80% parallelisable. This means that the algorithm is 5 times faster in the
theoretic case where an unlimited amount of CPU cores is available.

2If e.g. the measurement line cuts the surface at a small angle, two nearby solutions may exist
or the problem might not be convex in the considered region.

3On the tracking error of the UKF.
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6. Three-Dimensional Motion Tracking

6.3.3 Data elimination

Inconsistent data

In order to increase the filter’s stability, inconsistent data is not fed to the UKF.
The consistency test discussed in section 2.2.6 is shown here again and used for the
algorithm.

εk = ν ′ktr(Pk)−1νk

Because no innovation covariance is available and this modified normalized innovation
squared (NIS) is calculated making use of the error covariance matrix’ trace, an
arbitrary threshold value εthres must be experimentally determined.

Out of bounds data

The surface tracked by the filter is meant to be a good approximation within a
certain region around the POI. I.e. when deviating more towards the borders of
the semisphere, the error between the surface and heart becomes larger. In order
to prevent measurements outside of this area of interest to bias the parameters of
the surface, only data close enough to the POI is considered. Figure 6.5 shows an
example in correspondence to Figure 6.2. The black stripe-dot line illustrates a
proposed threshold for measurements to be considered. Even though this threshold
area is depicted in 2D, in reality it is a 3D ‘threshold volume’, e.g. in the shape of a
sphere. When at a certain time step the algorithm eliminates a data point for usage,
the correction step is omitted and two consecutive prediction steps are performed.

6.4 Simulation

6.4.1 Lissajous tracking trajectory

The trajectory followed by the robot end effector plays an important role in con-
structing the model. From one hand, ideally, the samples measured are as divers as
possible, distributed along the area of interest. From the other, the robot imposes
limitations as its dynamics are limited. A raster with sharp edges cannot be tracked
accurately by the robot as it requires significant bandwidth. The sinusoidal scanning
trajectory of Figure 6.6 (left) resolves that problem but also moves slowly in one
direction. A large number of consecutive samples come from within a narrow area,
so it fails to provide a fast overview of the situation.

An elegant solution is provided by Lissajous scanning trajectories. The parame-
trised equations take the form of Equation 6.11.

x(t) = A sin at (6.11)
y(t) = B sin bt

If the ratio a
b is rational, the produced curves are closed. This is not a strict

requirement for the purposes of this work. Figure 6.6 (middle and right) shows
results for 2

3 and 4
5 respectively. The 2

3 -profile has so far been illustratively used in
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6.4. Simulation

Figure 6.5: Zenith view of semisphere and trajectory corresponding to Figure 6.2
with example of area for data acceptance (stripe-dot line).

Figure 6.6: 3 realistic (limited BW) tracking profiles. One sinusoidal scanning
trajectory (left) and two Lissajous profiles with different frequency ratios (middle
and right, 2:3 and 4:5 respectively).
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6. Three-Dimensional Motion Tracking

Figure 6.2, Figure 6.4 and Figure 6.5. These trajectories are especially beneficial as
they cover large area in little time and additionally require only a or b -whichever is
highest- as maximum bandwidth (BW). The dimension of the covered raster is 2A
by 2B. Because of the aforementioned reasons, Lissajous tracking has been proven
beneficial in various mechanical scanning applications [29, 30].

6.4.2 Parameters

The UKF time step is ∆t = 10 ms. The heart is assumed to locally approximate a
sphere of radius Rs = 4 cm and centre (0, 0,−8) cm. Heart beat motion is incorpo-
rated by a sinusoidally varying radius with ω = 2π rad/s (60 BPM) and amplitude
A = 1 cm. I.e. the radius varies between 3 and 5 cm. Respiratory movement is
translational in the z-direction with ωresp = 12/60 ∗ 2π rad/s (12RR) and amplitude
Aresp = 2 cm, resulting in the zc coordinate varying between −10 and −6 cm.

The laser position and orientation are determined by three coordinates and two
angles, given in cm and rad:

xe,k = sin 4k∆t (6.12)
ye,k = cos 6k∆t (6.13)
ze,k = 0 (6.14)

θe,k = π(1 + sin k∆t
18 ) (6.15)

φe,k = 5k∆t (6.16)

This environment is simulated, the measurement is calculated and Gaussian noise
with zero mean and variance Rmeas = 10−2 cm2 is added.

The filter is set and initialised with R0 = 10−2 cm2, Q0 = I10 ∗ 10−7 and
P0 = I10 ∗ 10−1. The initial states x0 deviate from the real ones x0,actual.

x0,actual = [0, 0,−8, 4, 1, 2π, 0, 2, 1.26, 0]T (6.17)
x0 = [0.5,−0.5,−7, 3, 2, 2π + 1, 0, 1, 0.76, 0]T (6.18)

6.4.3 Results

Figure 6.7 shows a plot of the measurement without noise, the measurement and the
UKF output. The norm of the error covariance matrix P is plotted and indicates
convergence. The state estimates in function of time are shown in Figure 6.8 together
with the actual values. All states show sensible convergence. zc and Rs show slight
deviations. They compensate each other locally. Considering the first control strategy
of chapter 5, an important criterion for assessment of accuracy is the estimated
velocity as compared to the actual velocity of a tracked point. The estimated velocity
of the center point of the semisphere in this simulation is compared with its actual
velocity in Figure B.5 (spherical surface line).
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6.4. Simulation

Figure 6.7: 3D UKF output estimation, together with measurement and signal
without noise (top). The norm of the error covariance matrix (bottom) is also
plotted.

A similar simulation where the model is extended with a harmonic for the heart
beat motion is found in Appendix A. Appendix D contains a geometric overview of
this simulation at three time steps.

6.4.4 Unmodelled behaviour

In order to illustrate the purpose of the NIS, the measurement signal is altered and an
anomaly is created at around t = 7 s, in the region where the filter’s convergence has
significantly advanced. Qk is increased by a factor 10. The results for the simulation
without data elimination are shown in Figure 6.9. As the data makes suspect, the
estimated states deviate significantly as is shown in Figure C.1 (Appendix C).

Figure 6.10 shows the same simulation where data elimination is applied based
on the NIS criterion. εthres is fixed at 15. The estimated signal from the anomaly
onward tracks the reality accurately and the state estimates don’t deviate as shown
by Figure C.2 (Appendix C). As the surface of the heart in not smooth but instead
harbors irregularities such as epicardial fat and arteries, this criterion is proposed as
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6. Three-Dimensional Motion Tracking

Figure 6.8: 3D UKF estimated states.

a means to filter them out and improve the accuracy of the tracking surface in the
area of interest of the heart.

Furthermore, two simulations are performed in which an ellipsoidal surface is
tracked and approximated with the so far maintained spherical profile. The second
simulation uses a smaller scanning area and illustrates the importance of limiting
this area when it comes to rejecting approximation errors. The velocity of a point
on the surface, an important value to be estimated for the control (chapter 5), is
also compared with that of the corresponding point in case of a spherical surface,
and plotted against the actual velocity in both cases. This simulation and its results
are presented in Appendix B.
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6.4. Simulation

Figure 6.9: Simulated results of 3D UKF with trumped signal without data elimina-
tion. The corresponding system states are given by Figure C.1.

Figure 6.10: Simulated results of 3D UKF with trumped signal with data elimina-
tion. The horizontal line in the bottom plot shows the elimination criterion. The
corresponding system states are given by Figure C.2.
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6. Three-Dimensional Motion Tracking

6.5 Conclusion
The demand of geometrical degrees of freedom renders an EKF unsuitable for 3D
movement. That path is abandoned in favour of a UKF. Three-dimensional system
equations are designed along with a measurement equation incorporating a numeric
solver. Two methods of measurement data elimination are elaborated and a Lissajous
tracking profile is proposed. The entire system is evaluated through simulations and
favourable results are attained.
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Chapter 7

Conclusion

Heart procedures such as the coronary artery bypass grafting (CABG) show potential
for improvement when confronted with a powerful motion-compensation system.
Improvements are noticeable on the side of the surgeon because of the ability to
use the robot for the entire procedure, e.g. more precise control, extended periods
of concentration and less tiredness, as well as on the patient’s end with shorter
revalidation periods, a decrease in complication likeliness and the possibility for
earlier declined patients to be reconsidered.

Research of the heart learns that the ECG signal contains predictive information
of the movement. It additionally shows that the lion’s share of heart beat movement
is contained in only two frequencies. Three when the respiratory movement is
accounted for.

From the comparison of the extended Kalman filter (EKF), unscented Kalman
filter (UKF) and moving horizon estimator (MHE) for nonlinear periodic one-
dimensional motion estimation, the EKF proves to be most prominent solution
in the basic scenario. It is the most accurate filter, is least sensitive to changes
in tuning parameters and, on account of the availability of an analytical Jacobian,
significantly less time consuming when compared to the others. On-line detection of
anomalies and inconsistent data is enabled by the NIS and SNIS consistency tests.
The ECG signal is used to add predictive aspects to the EKF. When a sensor fusion
is attempted, the EKF is replaced by a UKF. Simulations prove the improvements
brought about by these alterations.

A linear Kalman filter (LKF) brings relief in the search for an accurate on-line
differentiation method. It proves to be a superior all-round solution as compared
to the more traditional method: numerically differentiating a low-passed signal. Its
main benefit is a reduced time delay.

A combination of feedback and feedforward control embodies the more traditional
approach in the comparison of two control strategies. The other being model
predictive control (MPC). When assisted by the aforementioned state estimators,
both demonstrate adequate performance. The MPC manages to improve tracking
to an extent which cannot be overseen. This improvement however comes at a
significant computational cost. A fully integrated simulation in which the behaviour
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7. Conclusion

of the input signal temporarily does not match the internal model of the EKF/UKF
and MPC, reveals flaws of both systems. An on-line consistency test is proposed
along with a solution in case of anomaly detection.

In the context of the envisioning of a real-world motion compensation system,
the one-dimensional EKF/UKF is expanded in order to create a three-dimensional
motion estimator. The maintained model is that of a semispherical surface which
locally approximates the heart surface. The unavoidable need for geometrical degrees
of freedom, together with the demand of an interchangeable approximative surface
render the EKF unsuitable. In response, an unscented Kalman filter (UKF) is
designed which successfully carries out the task. Further optimisations to the filter
algorithm, a proposition for a mechanical scanning trajectory and an algorithmic
criterion for data elimination result in a suitable system. A statement which is
supported by a series of simulations.

The design process of this work opens doors towards and creates room for further
research. Future steps towards a fully operational motion-compensation system start
with the assimilation between these disquisitions and a specific robot platform. This
allows for three-dimensional expansion of the control system. Other improvements
lie in a dynamic model between the ECG signal and heart displacement. Eventually,
these efforts lead to an experimental validation of the system, concomitantly allowing
for additional tuning of the countless parameters, thresholds and other variables
which influence system performance.
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Appendix A

3D UKF simulation with first
harmonic

An extra harmonic of the heart beat movement is added. Two extra states, a sine-
argument and the sine-amplitude, represent it in the system. The simulation is
executed with the following settings/parameters:

xe,k = sin 4k∆t (A.1)
ye,k = cos 6k∆t (A.2)
ze,k = 0 (A.3)
θe,k = 0 (A.4)
φe,k = 0 (A.5)

Qfilter = I12 ∗ 10−6 (A.6)
Q0 = I12 (A.7)

Ractual = 10−2 (A.8)
Rfilter = 10−2 (A.9)

x = [xc, yc, zc, Rs, A1, A1, ω, θ1, θ2, Aresp, ωresp, θresp]T (A.10)
x0,actual = [0, 0,−8, 4, 1, 0.7, 2π, 0, 0, 2, 1.26, 0]T (A.11)

x0 = [0.5,−0.5,−7, 3, 1.2, 2, 2π + 1, 0, 0, 1, 0.76, 0]T (A.12)

The states are plotted in Figure A.1, sufficient convergence is present. The output
is given by Figure A.2.
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A. 3D UKF simulation with first harmonic

Figure A.1: States corresponding to simulation with heart beat harmonic.
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Figure A.2: In and output, error covariance and NIS corresponding to simulation
with heart beat harmonic.
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Appendix B

3D UKF simulation of
ellipsoidal surface

In the context of investigating the robustness of the 3D UKF of chapter 6, the
algorithm is set to approximate an ellipsoidal surface with a semispherical model.

The simulation variables and filter settings are similar to those of Appendix A
and shown hereunder.

xe,k = sin 4k∆t (B.1)
ye,k = cos 6k∆t (B.2)
ze,k = 0 (B.3)

θe,k = π(1 +
sin k∆t

18 ) (B.4)
φe,k = 5k∆t (B.5)

Qk = I12 ∗ 10−6 (B.6)
P0 = I12 ∗ 10−1 (B.7)

Ractual = 10−2 (B.8)
Rk = 10−2 (B.9)
x = [xc, yc, zc, Rs, A1, A1, ω, θ1, θ2, Aresp, ωresp, θresp]T (B.10)

x0,actual = [0, 0,−8, 4, 1, 0.7, 2π, 0, 0, 2, 1.26, 0]T (B.11)
x0 = [0.5,−0.5,−7, 3, 1.2, 2, 2π + 1, 0, 0, 1, 0.76, 0]T (B.12)

Attention has to be paid to x0,actual, as it implies the actual model to be a
(semi)sphere. Instead, an ellipsoid is used with its y-axis 25% longer than the x-
axis, so 10 cm as opposed to 8 cm. The estimated output and states are shown by
Figure B.1 and Figure B.2 respectively. The filter interprets the lower curvature
of the surface in the y-direction by overestimating the radius of the sphere and
underestimating the z-coordinate. In this case the UKF shows the propensity to
converge slower.
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B. 3D UKF simulation of ellipsoidal surface

Mathematically speaking, considering a smaller area of interest results in a
decreased absolute error that results from a certain difference in surface curvature. It
is therefore recommended to put effort into minimizing the considered heart surface.
The effect of this adjustment is illustrating by an identical simulation except for
(xe, ye, ze)k, which is scaled down as follows.

xe,k = 0.5 sin 4k∆t (B.13)
ye,k = 0.5 cos 6k∆t (B.14)
ze,k = 0 (B.15)

The corresponding output and states are given by Figure B.3 and Figure B.4 respec-
tively. The improvement is mainly observed through the mean square error (MSE)
of the tracking error after convergence. In the last 5 s of the first simulation it equals
1.8 ∗ 10−3 cm2 as compared to 7.8 ∗ 10−4 cm2 for the second one.

As has been illustrated before, the accuracy of the derivative of the estimated
displacement is an important indicator of estimator performance, because a feedfor-
ward control strategy heavily depends on it. The actual velocity of the center point
of the ellipsoid is the same as the one in the simulation of subsection 6.4.3. The
estimated velocities of that simulation and this one with the ellipsoidal surface are
compared with the actual velocity in Figure B.5. As is to be expected, the velocity
estimate deviates more when the surface fit is less accurate.
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Figure B.1: UKF estimated tracking of deviating surface (ellipsoid).

Figure B.2: UKF estimated states of deviating surface (ellipsoid).
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B. 3D UKF simulation of ellipsoidal surface

Figure B.3: UKF estimated tracking of deviating surface (ellipsoid) with smaller
trajectory.

Figure B.4: UKF estimated states of deviating surface (ellipsoid) with smaller
trajectory.78



Figure B.5: Comparison of estimated velocities from simulation with ellipsoidal
surface and the simulation of subsection 6.4.3 (with spherical surface) with the actual
velocity. The velocity of the central (upper) point of the surfaces are considered.
The estimation with the spherical surface provides a more accurate velocity.
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Appendix C

Simulation with out-of-model
signal

This appendix contains the states corresponding to the two compared simulations of
subsection 6.4.4.
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C. Simulation with out-of-model signal

Figure C.1: UKF states for signal containing anomaly –without NIS test
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Figure C.2: UKF states for signal containing anomaly –with NIS test
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Appendix D

Illustration of 3D UKF
simulation

Figure D.1, Figure D.2, Figure D.3 and Figure D.4 illustrate the simulation at times
0 s, 2 s and 7 s (of a 10 s simulation). The last plot is a top view after the simulation
has completed. Every previous measured point (black asterisk) remains plotted. The
simulation corresponds to the one of section 6.3.
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D. Illustration of 3D UKF simulation

Figure D.1: At start Figure D.2: After approx. 2 s.

Figure D.3: After approx. 5 s. Figure D.4: After ending, top
view.86
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