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Situering 

Deze masterproef met als titel ‘Movement protocol in children with dyskinetic cerebral palsy: a 

comprehensive approach’ kadert binnen het behalen van het diploma van een masteropleiding in de 

revalidatiewetenschappen en kinesitherapie aan de Katholieke Universiteit te Leuven. Het kan binnen 

het grotere geheel gesitueerd worden binnen onderzoek in de onderzoeksgroep Neurorevalidatie 

(eNRGy) aan de faculteit Bewegings- en Revalidatiewetenschappen.  

De masterproef kwam tot stand mits continue supervisie van het onderzoeksteam Neurorevalidatie 

aan KU Leuven campus Brugge, met aan het hoofd hiervan prof. dr. E. Monbaliu. De focus van dit team 

ligt op breed onderzoek binnen de populatie van kinderen met dyskinetische cerebrale parese. De 

aangaande studie uitgevoerd binnen deze masterproef maakt meer specifiek deel uit van het 

doctoraatsproject van dra. I. Vanmechelen, met de titel ‘Instrumented dystonia and choreoathetosis 

assessment protocol (IDCA) of upper limb movements in cerebral palsy’. 

Dyskinetische cerebrale parese (DCP) is de tweede meest voorkomende groep binnen de populatie 

van kinderen met cerebrale parese. Twee dominante bewegingsstoornissen die we onder het 

eerstgenoemde kunnen onderscheiden zijn dystonie en choreoathetose. Deze bewegingsstoornissen 

komen vaak simultaan voor en hebben een grote impact op het dagelijkse functioneren van de 

kinderen. Ondanks de zware impact van DCP op het dagelijks functioneren, staat het onderzoek naar 

specifieke behandelingen nog in zijn kinderschoenen. Op dit moment worden de therapeutische 

behandelingen gebaseerd op klinische ervaring, zonder een toereikende onderbouw van 

wetenschappelijke literatuur. Medicamenteuze therapie wordt bemoeilijkt gezien sommige medicatie 

werkzaam voor dystonie, choreoathetose net erger maakt, en omgekeerd. Het kunnen evalueren en 

discrimineren van beide bewegingsstoornissen is van groot belang. Er werden reeds klinische schalen 

ontwikkeld om dystonie en choreoathetose te evalueren en te discrimineren, maar deze hebben 

echter ook limitaties. Ze zijn namelijk deels subjectief, tijdrovend en bovendien wordt een bepaalde 

ervaring van de beoordelaars verwacht. Drie-dimensionele bewegingsanalyse kan een mogelijkheid 

bieden om deze bewegingsstoornissen op een objectieve manier te evalueren en te discrimineren. In 

de literatuur werd eerder reeds gebruik gemaakt van markers en sensoren om bewegingsstrategieën 

in verschillende pathologieën te analyseren. Vorig jaar werd het Instrumented Dystonia and 

Choreoathetosis Assessment (IDCA) protocol ontwikkeld, een betrouwbaar en valide protocol dat ons 

in staat stelt bewegingen in het bovenste lidmaat bij kinderen en jongeren met DCP objectief te 

evalueren met behulp van marker en sensor data analyses.  

Deze studie bouwt verder op dit protocol en heeft als doel gebruikmakend van deze objectieve 

metingen kenmerkende parameters te vinden om een automatische discriminatie van dystonie en 

choreoathetose te realiseren.  
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Abstract 

BACKGROUND: Dystonia and choreoathetosis are two motor disorders in dyskinetic cerebral palsy 

(DCP). Discrimination and evaluation is difficult, impact on functional activities is large and optimal 

management is challenging. Towards delineated treatment, a better objective differentiation is 

needed. 

RESEARCH QUESTION: Can 3D upper limb measurements be used to differentiate dystonia and 

choreoathetosis in an automated manner within the DCP population? 

METHODS: In this cross-sectional study, 12 children with DCP and MACS level I-III were evaluated 

during three functional reaching tasks. The Dyskinesia Impairment Scale (DIS) was used to score 

dystonia and choreoathetosis in the distal arm. Wrist kinematics and forearm accelerometer and 

gyroscope data, obtained by optical motion capture and an inertial measurement unit, were 

implemented as input in the support vector machine (SVM). The predicted classes of the SVM were 

validated against the DIS classifications of the functional tasks, using accuracy to indicate the model 

performance. Subsequently, a feature selection procedure was performed to identify the relevant 

characteristics for each motor disorder. Spearman’s correlation and intraclass correlation coefficients 

(ICC) additionally assessed the validity and reliability of the DIS in this protocol. 

RESULTS: The SVM multiclass classifier with 23 features yielded 74.58% accuracy. For the binary 

classifiers, 22 and 21 features were respectively identified for dystonia and choreoathetosis with 

90.34% and 84.66% accuracy. Spearman’s correlation and ICCs ranged respectively from 0.648 to 0.830 

(p<0.05), and 0.649 to 0.772 (95% CI [0.503-0.838]) for the dystonia subscale, whereas the 

choreoathetosis subscale results ranged respectively from 0.046 to 0.580 (p=0.030-0.870) and 0.076 

to 0.671 (95% CI [-0.069-0.762]). 

SIGNIFICANTS: This study was the first to validate automated dystonia and choreoathetosis 

discrimination during functional tasks. The promising outcomes can assist treatment management, 

thereby improving quality of life in patients with DCP. Future research should enhance the 

instrumented dystonia assessment tool and clinical evaluation of choreoathetosis. 
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List of abbreviations 

CP   Cerebral Palsy 

SCPE          

DCP          

Surveillance of Cerebral Palsy in Europe 

Dyskinetic Cerebral Palsy 

DYS    

CA      

Dystonia 

Choreoathetosis 

MACS Manual Ability Classification System 

GMFCS Gross Motor Function Classification System 

MRI         Magnetic Resonance Imaging 

BADS    Barry Albright Dystonia Scale 

DIS       Dyskinesia Impairment Scale 

ULEMA      Upper Limb Evaluation in Motion Analysis 

MOCAP Optical Motion Capture  

IMU  Inertial Measurement Unit 

IDCA      Instrumented Dystonia and Choreoathetosis Assessment 

RF Reach Forward 

RGV Reach and Grasp Vertically 

RS Reach Sideways 

PTA Point of Task Achievement 

ROM Range of Motion 

A / ACC Accelerometer data 

G / GYR Gyroscope data 

RMS  Root Mean Square 

SD / STD Standard Deviation 

SVM  Support Vector Machine 

RBF Radial Basis Function 

OvO One-versus-one encoding multiclass classifier system 

ICC Intraclass correlation coefficient 

CI Confidence interval 

Med Median 

VAR Variance 

MAX Maximum 

J Jerk 
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SE Sample entropy 

COR Correlations between axes 

MAXVEL Maximal linear velocity (ACC) 

SM Smoothness 

SpE Spectral entropy 

FbandP Power in frequency band x 

TrDev Trajectory deviation 

Vmax Maximal linear velocity (MOCAP) 

WrFlex Wrist flexion 

WrDev Wrist deviation 

Ct. Category 
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 Introduction 

“Cerebral palsy (CP) describes a group of permanent disorders of the development of movement and posture, 

causing activity limitations, that are attributed to non-progressive disturbances occurring in the 

developmental fetal or infant brain. The motor disorders of CP are often accompanied by disturbances of 

sensation, perception, cognition, communication, and behavior, by epilepsy, and by secondary 

musculoskeletal problems.”[1] CP is one of the most common causes of physical disability in children.[2] 

According to the Surveillance of Cerebral Palsy in Europe (SCPE), the condition occurs in 1.5-3 per 1000 live 

births.[3] 

Since CP causes variable symptoms, the condition is classified according to the types of motor disturbances 

and the specific brain lesions. The SCPE classified CP into three groups: spastic, dyskinetic and ataxic cerebral 

palsy.[4] The dyskinetic CP population is the second most prevalent group and has an incidence varying 

between 6.5% and 14.4%.[2, 5, 6] This variation is attributed by a lack of standardization regarding the 

definition and classification based on the predominant type.[3, 4] 

Dyskinetic cerebral palsy (DCP) is characterized by involuntary excessive and repeated movements. The two 

dominant motor disorders are dystonia and choreoathetosis. Dystonia (DYS) is presented by twisting and 

repetitive movements, abnormal postures due to sustained muscle contractions, and hypertonia. 

Choreoathetosis (CA) is characterized by hyperkinesia (chorea i.e. rapid involuntary, jerky, often fragmented 

movements) and hypotonia (athetosis i.e. slower, constantly changing, writhing or contorting movements).[4, 

7] Dystonia and choreoathetosis mostly occur concurrently, but must be seen as separate entities.[7] 

Clinically, patients with DCP are most likely to have a high level of functional disability and more accompanying 

impairments, compared to the other subtypes of CP.[8-10] Around 60% of the children with DCP are classified 

in the severe levels of functional disability in gross motor function, underscoring the importance of manual 

ability in maintaining their autonomy and participation. However, only 36.4% of the children have an adequate 

manual ability (Manual Ability Classification System (MACS) level I-III).[11] Additionally, research revealed an 

association between higher levels of dystonia and a more severe motor function, unlike choreoathetosis in 

which no associations were found. This suggests that dystonia has a larger impact on functional ability than 

choreoathetosis.[12] 

Apart from the clinical classification, multiple classification systems using Magnetic Resonance Imaging (MRI) 

have been developed, linking brain lesions to time of birth, CP subtype and functional ability, to elucidate the 

pathological aspects of CP.[13-16] Around 70% of patients with DCP shows lesions in the basal ganglia and 

thalamus. However, other brain lesions and even normal-appearing MRI findings can occur.[12, 15]  
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Several studies unfortunately demonstrated ambiguity discriminating between the subtypes of CP as well as 

DYS and CA based on specific lesions with the current MRI technology.[17, 18] 

Notwithstanding the necessity, the current treatment management for children with DCP is expensive and 

only symptomatic. Management is multidisciplinary and consists of pharmacology, surgical and rehabilitation 

management. The scarce amount of research on the effect of the different interventions in the DCP population 

shows low efficacy.[19] To decrease dystonia oral drugs, intrathecal baclofen, botulinum toxin injections and 

surgical options such as deep brain stimulation can be used, but the responsiveness is variable.[17, 19-22] The 

effects of these treatment modalities have not yet been investigated in choreoathetosis. The importance of 

differentiating DYS and CA is crucial to ensure a targeted intervention, as misinterpretation in diagnosis can 

contribute to the administration of inappropriate medication. Anticholinergics e.g. are used to decrease 

dystonia but can cause worsening of choreoathetosis.[12, 17, 23] Orthopedic surgery is the last medical 

treatment option after considering all other alternatives.[24] Rehabilitation interventions for DYS and CA are 

mostly based on clinical expertise with low evidence and are guided by a multidisciplinary team of 

physiotherapists, occupational therapists and speech therapists.[17] 

To date, the evaluation of the severity of DYS and CA in patients with DCP involves the use of clinical qualitative 

measurement scales judged by video observation based on consensus definitions. Stewart et al. showed that 

most scales demonstrate a moderate validity and reliability, and also a lack of connection with the current 

dystonia definition.[21, 22, 25-28] 

The Barry Albright Dystonia Scale (BADS) and the Dyskinesia Impairment Scale (DIS) are most commonly used 

in patients with DCP. The latter is currently stated as the most sensitive, valid and reliable scale. Its additional 

value lays in its detailed full-body consideration and the differentiation action-rest, proximal-distal limb and 

duration-amplitude. Moreover, the DIS is characterized by the inclusion of both DYS and CA evaluation. 

Although this scale is currently seen as the gold standard in evaluating DYS and CA in patients with DCP, 

substantial time and experience with the current DYS and CA definitions is needed from the rater.[27-29] 

Objective measurement techniques can overcome the limitations of these partly subjective clinical scales in 

the rating of the DYS and CA severity.[30] Last decades, research focused on the ability to objectify movement 

characteristics using advanced technologies such as optical motion capture and inertial measurement units. 

Both techniques have already been used to evaluate movement characteristics in other populations with 

neurological disorders.[31-40] 
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Optical motion capture (MOCAP) is the registration of movements in 3D using infrared radiation cameras to 

detect light-reflecting body-placed markers. Biomechanical characteristics such as joint angles and movement 

velocities can be calculated from the obtained 3D trajectories.[31] 

This approach showed good reliability in the objective measurement of motor function in typical developing 

children; and also in populations with hypokinetic rigid syndromes, dyskinesia, obstetrical brachial plexus 

palsy, and hemiplegic spastic CP in the upper limb motion analysis.[31-35] The Upper Limb Evaluation in 

Motion Analysis (ULEMA) protocol was recently developed for the spastic CP population to standardize the 

upper limb marker placement and tasks.[41] Although this marker approach has been frequently used for 

clinical and research purposes, MOCAP has some limitations. The most important limitation is the location-

restriction, due to the need for a specifically equipped laboratory. Secondly, this method requires time and 

experience because of the need for a correct anatomical marker placement, the high number of markers, and 

their possible displacements due to inadequate fixation.[42] 

Apart from MOCAP, biomechanical parameters of 3D movements can be obtained by Inertial Measurement 

Units (IMUs); which contain three types of sensors: an accelerometer, a gyroscope and a magnetometer.[43] 

IMUs have frequently been used in research for biomechanical measurement in Parkinson and stroke.[36-40] 

Benefits promoting the use of the IMUs include the affordability, usability in time and space, and potentially 

a better data quality for more derived parameters.[44, 45] Arm movements in children with DCP demonstrate 

a high variability, which will profit from an accurate measurement of more detailed movement characteristics 

such as acceleration and its deviated jerk values.[46] 

Despite the potential of MOCAP and IMU systems in the DCP population, research is currently limited. Gordon 

et al. explored tonus deficits and reaching performance in both the spastic and dystonic CP population using 

the MOCAP optometric system. Severe dystonia could be related to a large degree of overflow performing a 

rest-tap task. Reaching in severe dystonia was characterized by more curved arm trajectories.[47] Sanger et 

al. investigated the upper limb kinematics using magnetic position sensors. Results indicated an existing 

random variability and a lack of straight-line pattern in arm trajectories in dystonia. This study demonstrated 

the ability to distinguish typical developing children from a DCP population using a signal-to-noise ratio, jerk 

and the index of curvature. In addition, these measures have been suggested to be useful as a quantitative 

parameter of severity.[46] 

At present, limited studies focused on the usage of the IMUs in the evaluation of DYS and CA in the DCP 

population. Cuyvers et al. studied children with DCP classified in Gross Motor Function Classification System 

(GMFCS) and MACS level IV and V, who were evaluated for involuntary movements during a head/foot staired 

wheelchair mobility task.[48] No studies have explored the usage of IMUs in children with DCP with a more 

adequate manual ability (MACS level I-III). 
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To date, a more sensitive diagnostic system with objective measurements of the different motor disorders 

during voluntary movements is lacking in patients with DCP, and hampers targeted treatment management. 

Objective measurement methods in patients with DCP will enhance insights in movement patterns of this 

complex disorder. On the long term, this approach could assist clinicians in ameliorating the patient’s quality 

of life by specifying targeted therapy according to the severity of each motor disorder. 

Previous research has developed an Instrumented Dystonia and Choreoathetosis Assessment (IDCA) protocol 

using MOCAP and IMUs to obtain objective characteristics of the upper limb functional movements. This 

protocol showed good feasibility and validity in distinguishing typically developing children and children with 

DCP.[49] 

Building on this above-mentioned protocol, the ultimate aim of this study is to discriminate DYS and CA in 

patients with DCP based on instrumented upper limb measurements. The research question is: Can 3D upper 

limb measurements be used to differentiate dystonia and choreoathetosis in an automated manner within 

the DCP population? The hypothesis is that jerk and higher frequency-related parameters will be more related 

to hyperkinetic movements as seen in choreoathetosis, whereas deviating position measures such as joint 

angles will be more related to abnormal postures as seen in dystonia. As a sub-aim, this study critically 

explored the reliability and validity of the scoring of the DIS implemented in the functional tasks. The 

hypothesis is that the DIS is a reliable and valid clinical instrument to evaluate DYS and CA in the IDCA protocol. 
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 Materials and Methods 

 Participants 

This study included 12 Flemish children with DCP, recruited via the University Hospitals Campus Gasthuisberg 

and Pellenberg, and via KOMPAS (a Flemish organization of special education schools). Inclusion criteria were: 

aged between 6 and 25 years old, a MACS level I-III and a sufficient cooperation to execute the requested 

reaching and grasping tasks. Exclusion occurred in case of: other neurological disorders, botulinum toxin type 

A injections within six months prior to the measurements and neurological or orthopedic surgery within one 

year. Ethical approval was obtained from the Ethical Committee of the KU Leuven (Appendix D). All participants 

and/or their parents provided written informed consent. 

 Study design 

This study targeted an objective discrimination of DYS and CA within the DCP population, using an 

observational cross-sectional study design. Therefore, a reliability and two types of validity studies were 

created. A discriminative validity study evaluated the predictive outcome of a machine learning model 

compared to the DIS classification scores of the functional tasks. An additional study assessed the concurrent 

validity by comparing the DIS score percentages of DYS and CA for the tasks of the DIS with DIS score 

percentages for the functional upper limb tasks. Moreover, the interrater reliability of the DIS scoring in the 

functional tasks was investigated. Further elaboration of these studies will be discussed in the next sections. 

 Data collection 

2.3.1 Material 

Participants were asked to perform three functional tasks: reaching forward (RF), reach and grasp vertically 

(RGV) and reaching sideways (RS). A chair and a custom-made reaching system were developed to enable 

adjustments according to the arm length and shoulder height of the participant.[41] 

Joint kinematics for the upper limb movements were obtained using MOCAP and IMUs. This data collection 

took place at the fully equipped clinical motion analysis laboratory situated in KU Leuven Campus Bruges and 

the University Hospital in Pellenberg. 
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The MOCAP system contained 31 markers registered by 12 infrared radiation cameras of the VICON motion 

capture system (Oxford Metrics, UK), sampled at 100Hz. Seventeen physical segmental markers, clustered on 

tripods and cuffs, were placed on the shoulder, arm and hand according to the ULEMA protocol.[41] Fourteen 

additional anatomical landmarks were captured in the static sitting position using a marked pointer. The 

palpated landmarks allowed for calculation of coordinates for four joint centers: the glenohumeral and 

scapulothoracic joint, the elbow and wrist joint.[50] Additionally, five IMU devices including accelerometers 

and gyroscopes (Xsens, The Netherlands) were placed on the hand, forearm, upper arm, scapula and sternum, 

based on the IDCA protocol.[49] The IMUs were time-synchronized with the VICON MOCAP system. The 

placement of the markers and the IMUs is shown in figure 1.  

 

 

 

The DIS was included as the gold standard to evaluate and discriminate DYS and CA clinically. More details of 

the full scoring system are illustrated in figure 2.[27] 

 

Figure 2: The Dyskinesia Impairment Scale  

Figure 1: Placement of markers and IMU devices 
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2.3.2 Protocol and test set-up 

Each test was structured as followed: 

Static and dynamic calibrations of the MOCAP and IMU systems were executed in the reference position, a 

neutral sitting position with the hands placed on the ipsilateral knee.[41] The palpated anatomical landmarks 

were digitized using a marked pointer.[41] 

The participants subsequently performed the three selected functional reaching tasks with the most affected 

arm, at a self-selected speed. In case both arms were affected, they were included as different subjects. Each 

task was performed three times, with ten repetitions each. One repetition is defined from the reference 

position to the target position (point of task achievement, PTA). The tasks are illustrated in figure 3. These 

tasks were selected because of their challenging and differentiating attributes, taking into account the 

functional possibilities of children with DCP.[49] 

 

 

 

                                                                                                    

 

 

 

A subset of the DIS tasks (i.e. proximal – distal arm) as well as the functional reaching tasks were captured 

through video recordings. The subset of the DIS tasks contained arm abduction, reach and grasp a pen in 

supine position, reach and grasp a cup, and reach and grasp a pen in sitting position. Each DIS task comprised 

ten repetitions, which have been scored all at once. In contrast to the DIS tasks, all functional reaching tasks 

were scored per repetition separately. Due to the short duration of each of these repetitions (usually ranging 

between 1 and 4 seconds), duration was scored on a 3-point instead of a 5-point scale; with 0 = no DYS/no CA, 

1 = less than 50% of the time DYS/CA and 2 = more than 50% of the time DYS/CA. The amplitude of the dystonic 

and choreoathetotic movements were scored on a 5-point scale as in the DIS; with 0 = no DYS/no CA, 1 = 

DYS/CA in a small ROM (<10%), 2 = DYS/CA in a moderate ROM (≥10 - <50%), 3 = DYS/CA in a submaximal ROM 

(≥50 - <90%), 4 = DYS/CA in a maximal ROM (≥90%). Finger movements were excluded, as it was not possible 

to place an IMU device on the fingers and since reliable, comfortable and natural placement of the markers 

on the interphalangeal heads is challenging. Finger measures were therefore also excluded in the distal arm 

DIS evaluation. 

The test procedure was administered by two assessors educated in rehabilitation and movement science and 

with adequate knowledge about the administration of the DIS and the IDCA protocol. The assessors were not 

blinded and no randomization of the selected subjects occurred. 

Figure 3: Test protocol (RF-RGV-RS) 
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 Classification distribution 

Consensus scores were obtained after a revision of the DIS scores by both assessors. The DIS outcomes for the 

functional tasks, serving as reference in the automatic classification, were categorized into four score classes 

for DYS and CA. The classifications served as input in the machine learning model. The definitions of the 

classifications are presented in table 1. 

Table 1: Four-class DIS classification system 

 
 

 

 

 

After scoring and classifying the functional reaching tasks, the distribution of the DIS classification data was 

analyzed, as illustrated in figure 4. An uneven dispersion was obtained, with a predominant presence of 

observations in class 1 (DYS/No CA). Due to this low variability, especially in the proximal arm classification, 

the DIS and machine learning data analysis for the proximal arm were excluded from this study. Hence, only 

parameters related to the distal arm were included. After in depth analysis of the data, missing data for the 

hand IMU and the need to limit the initial feature input led to the decision to only include the sensor data of 

the wrist. This study thus included the forearm features for the IMU and the wrist and hand kinematics for the 

MOCAP system. 

CLASS DEFINITION 

0 No DYS/No CA 

1 DYS/No CA 

2 No DYS/CA 

3 DYS & CA 

Figure 4: Overview of the distribution of the DIS classification scores in the total arm, the proximal arm and 

the distal arm. Represented as a percentage of the total observations in class 0-3. 
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 Data analysis 

2.5.1 Preprocessing data 

The data analysis process is depicted in figure 5. The first step in the data analysis was to pre-process the data 

in VICON and MATLAB (MATLAB 8.6.0 2019b, The MathWorks Inc., Natwick, MA, USA). An example of the raw 

MOCAP and IMU data is illustrated in figure 6. Due to weak signal transmission, loss of data and errors in the 

data collection occurred. For the MOCAP, incorrect joint angles due to marker occlusions were omitted from 

the dataset. All data from the IMUs was checked and corrected where necessary (e.g. corrupt sensor signals). 

Gaps in the MOCAP kinematic data were filled using a spline-based fill and the data was filtered with a spline-

based Woltring filter. IMU signals were filtered with a low-pass Butterworth filter (4th order) with a cut-off 

frequency of 5Hz. 

From the time-dependent signals in figure 6, time-independent variables were calculated and included in the 

feature selection (section 2.5.2) to fed in a machine learning classifier. 

Figure 6: Illustration of the raw data: a) the MOCAP data, wrist flexion and extension joint angles (°) during 

RF1 task; b) the IMU data of the forearm, gyroscope values (°/s) of the x-axis during RF1 task. One waveform 

represents one repetition. 

Figure 5: Flowchart of the data analysis 
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2.5.2 Feature selection based on literature 

In the DCP population, excessive and jerky movements of multiple joints are observed in reaching tasks. These 

can be seen distally in a poorly controlled hand posture, orientation and end-point force, and contralateral 

mirroring.[46] Though, qualitative findings revealed differences in distribution for DYS and CA across the 

different body regions.[12] Moreover, dystonia was found to be mainly characterized by more defined 

translational movements (i.e. repetitive abnormal postures, twisting movements), whereas choreoathetosis 

showed more noisy, complex and chaotic rotational movements (i.e. jerky, involuntary 

movements).[48](personal communication) 

Hypertonic characteristics can be identified using features such as joint angles, average velocity, spectral arc 

length, and jerk, when compared to a healthy population.[51-54] For hyperkinesia, mean and standard 

deviation of the acceleration signal and sample entropy were found to be discriminative compared to a healthy 

population.[55, 56] As hypertonia is a prominent characteristic for dystonia, and choreoathetosis is manifested 

with hyperkinesia, the previous features were of interest in this study. 

For the comparison of DYS and CA in a state of relative rest, accelerometer features were found to 

predominantly delineate dystonia, whereas gyroscope features predominantly delineated choreoathetotic 

movements. Spectral entropy of the angular velocity signal characterized the continuously changing 

choreoathetotic movements. Ambiguity existed about the presence of significant higher power in higher 

frequency bands in choreoathetosis.[48](personal communication) Due to the inconsistent conclusions of 

previous studies and the importance of not overlooking relevant parameters, both time and frequency domain 

features were included in this study. Different results were hypothesized since the outcomes of this prior 

research could not be compared to this study due to the differences in the target group and test protocol. 

Results of previous research together with the consensus definitions contributed to an overview of parameters 

for discriminating DYS and CA in the IDCA protocol. The selected parameters were split into MOCAP and IMU 

features, and further into time and frequency domain features for the IMU data. A hypothesis on how these 

features relate to DYS and CA is also included in table 2 and 3 below. 

All selected upper limb kinematic features were calculated from the 3D ULEMA protocol in MATLAB.[57] A 

total of 144 (6 MOCAP + 138 IMU) time and frequency domain features were extracted for further data 

analysis.[57] 
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2.5.2.1 Optical motion capture 

An overview of the features obtained from the MOCAP system is presented in table 2. Minimum and maximum 

angles were calculated from the joint angles over time, using the ULEMA protocol in MATLAB.[57] Maximal 

linear velocity was obtained by calculating the derivative of the displacement over time of the marker placed 

on metacarpal III. Trajectory deviation represents the sum of the deviations of that same marker from the 

linear constant taken between two points in motion. 

Table 2: Time domain features obtained from the MOCAP system 

 

 

 

 

 

 

2.5.2.2 Inertial measurement units 

Features included from the IMU are listed in table 3. First, time domain features are clarified. Linear velocity 

was obtained by integrating the acceleration values over a specific time interval. Linear jerk is defined as the 

derivative of linear acceleration and angular jerk as the second derivative of angular velocity. Jerk is also an 

indication of the smoothness of movements in the time domain. The sample entropy assesses the complexity 

and regularity within the time domain data, as it measures the predictability of further data points based on 

a given data point. Lastly, a pairwise correlations between the x/y/z axes in both accelerometer and gyroscope 

were calculated with Pearson correlation coefficients. Duration describes the time needed to perform one 

repetition, from the reference point till the target position. 

Subsequently, frequency parameters are of interest in interpreting subtle differences in movement patterns. 

These parameters have been extrapolated after Fourier transformation of acceleration and angular velocity 

signals into the frequency domain. Smoothness, in the frequency domain, can depict the amount of change in 

this signal frequency data. The spectral arc length is a standard for the evaluation of smoothness and calculates 

the length of the curve in the Fourier power spectrum of a speed profile. It is the most valid, sensitive, 

consistent and robust smoothness measure.[58] Another measure to calculate the complexity in frequencies 

is the spectral entropy, estimating the uniformity of the signal energy distribution. Power represents the 

strength/energy of a signal in a certain frequency band. 

TIME DOMAIN FEATURES No. OF FEATURES RELATED SYMPTOM 

 Joint angles 

     Min, max 

4 DYS 

 Linear velocity 

     Max 

1 DYS 

 Trajectory deviation 1 CA 
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Table 3: Time and frequency domain features obtained from the IMU 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACC = calculated from the accelerometer data; GYR = calculated from the gyroscope data 

 

 

 

 

 

 

 

  No. OF FEATURES RELATED SYMPTOM 

TIME DOMAIN FEATURES   

 Angular velocity x/y/z/norm (GYR)  

     Max, RMS, SD, variance 

16 DYS 

 Linear velocity x/y/z (ACC) 

     Max 

3 DYS 

 Acceleration x/y/z/norm (ACC)  

     Max, RMS, SD, variance 

16 DYS 

 Angular jerk x/y/z/norm (GYR) 

     Max, RMS, SD, variance 

16 CA 

 Linear jerk x/y/z/norm (ACC) 

     Max, RMS, SD, variance 

16 CA 

 Sample entropy x/y/z/norm (ACC & GYR) 

     Angular velocity – acceleration 

8 CA 

 Correlation between axes (ACC & GYR)  6 DYS-CA  

 Duration 1 DYS 

FREQUENCY DOMAIN FEATURES   

 Smoothness: Spectral Arc Length (ACC & GYR) 

     Angular velocity – acceleration 

8 CA 

 Spectral entropy (ACC & GYR) 

     Angular velocity – acceleration 

8 CA 

 Power in frequency bands (ACC & GYR) 

     0-0.5 Hz / 0.5-1 Hz / 1-2 Hz / 2-3 Hz / 3-4 Hz  

40 DYS / DYS / DYS-CA / 

DYS-CA / CA 
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2.5.3 Machine learning 

Because of the need for an adequate and easy-to-use classification of the motor disorders, the analysis of data 

and statistics was processed using machine learning techniques in MATLAB. Machine learning is a part of 

artificial intelligence and is based on the idea that algorithm models can learn from training data without being 

explicitly programmed. For this study, the support vector machine (SVM) was the best fitted machine learning 

classifier model, induced by the capacity to learn from a smaller dataset (N ≈ 1000) and high dimensional data 

(No. of features = 144). 

The full dataset for this study included the MOCAP and IMU feature input for the 948 observations available. 

First of all, the dataset was randomized and split into a 75% training and 25% test dataset. The training data 

was labeled; i.e. each observation was attributed a DIS classification score. The small training dataset of this 

study led to the necessity to utilize cross validation, using the 75% of the data for a 10-fold training of the 

machine learning model. Ten-fold cross validation implicates multiple training of the model with randomly 

selecting 90% of the training data and validating it with the remaining 10% of the data (i.e. tuning 

hyperparameters, see section 2.5.3.1). Ultimately, the remaining 25% unlabeled data (i.e. no DIS 

classifications) was retained as test data to validate the SVM model. The power of this model depends on the 

number of observations related to the number of features. As the 948 observations included in this study were 

more than double the number of features, the statistical power of this study is considered sufficient. 

2.5.3.1 Support vector machine classifier model 

The SVM is a supervised learning algorithm which targets to find the best fitted mathematical function to 

classify DYS and CA in the labeled dataset. More specifically, the algorithm looks for similarities between the 

classes in the given training data and creates support vectors based on these similarities. Subsequently, the 

best hyperplane function is calculated based on these support vectors. As high-dimensional, non-linear data 

was included, kernel functions were required. A kernel function performs a fictional transformation of the 

dataset into a higher dimension, offering the opportunity to create the hyperplane. In this study, the Radial 

Basis Function (RBF) kernel function was used, which is recommended due to its ability to deal with irregular 

datasets and to approximate non-linear functions, its good generalization and fast learning capacity.[59] The 

position of the hyperplane is based on the trade-off between maximizing the margin between classes/support 

vectors and minimizing the number of misclassification in the training data. The trade-off of this boundary can 

be controlled by tuning hyperparameters in training the model, i.e. the c-regularization and gamma () 

parameter. A large c results in a lower number of misclassifications by minimizing the margin of the 

hyperplane. A large  only includes data points close to the hyperplane. The full process to obtain the most 

appropriate value of hyperparameters was realized by 10-fold cross validation, which was specified in the 

section above. 
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In the first stage, the full dataset was implemented to enable automatic discrimination of the four DIS classes 

with each other (table 1). Since more than two classes were compared, a multiclass classifier system using 

one-versus-one (OvO) encoding was implemented. Hence, six models were created to binary compare the 

classes with each other (i.e. 0-1 / 1-2 / 2-3 / 0-2 / 0-3 / 1-3). The cross-validation process was run ten times for 

all six models. The multiclass classifier and the decision boundaries are visualized in two dimensions in figure 

7. Using this implementation, manual feature reduction was processed, which will be discussed in the 

following section. 

In the second stage, the full dataset was split in a dystonia and choreoathetosis dataset i.e. DYS/CA present or 

not present. This reclassification is visualized in table 4. Since only two classes were compared in this stage, a 

binary classification in the SVM model was implemented with manual feature reduction. Targeted conclusions 

could be made by objectifying the characteristic features of both motor disorders using this reduction process. 

Table 4: Reclassification – binary classifier dystonia and choreoathetosis dataset 

CLASSES DEFINITION RECLASSIFICATION DYS RECLASSIFICATION CA 

0 No DYS/No CA 0  (No DYS) 0  (No CA) 

1 DYS/No CA 1  (DYS) 0  (No CA) 

2 No DYS/CA 0  (No DYS) 1  (CA) 

3 DYS & CA 1  (DYS) 1  (CA) 

Figure 7: Visualization in 2D: one-versus-one multiclass classification (six submodels i.e. 0-1 / 0-2 / 0-3 / 1-3 / 

1-2 / 2-3). The full line represents the linear decision boundary for each model. 
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2.5.3.2 Feature reduction 

While training the SVM classifier model, feature reduction was implemented on the previously described 

datasets to optimize the input of the model. 

A set of the most relevant features was obtained by repetitive analyses of the accuracy (also F1-measure, 

precision and recall) of different models, using for instance manual backward and forward sequential feature 

selection. Backward feature selection starts with the full dataset and leaves features out one-by-one, carefully 

controlling the accuracy of the model. Forward feature selection starts with the inclusion of one feature, and 

consistently adds more features to the dataset. This optimization procedure of the input features is a trial-

and-error process. Since outcomes of the SVM vary depending on the randomly chosen observations in 

training, a 10-fold run was opted of which the median outcome was reported. Hereby, controlled decision 

making in this manual feature reduction process was permitted. 

 Statistical analysis 

At last, one reliability study and two validation studies were implemented. The initial DIS scores of rater 1 and 

rater 2, prior to in depth discussion, were analyzed in the interrater reliability study. Concurrent and 

discriminative validity analyses were completed using the consensus scores of the most experienced rater 

after in depth discussion. 

In a first part, the concurrent validity study compared the DIS severity percentages in the DIS tasks with the 

DIS severity percentages in the functional reaching tasks used in this study protocol. Validation of the DIS in 

these functional reaching tasks will be important serving as a reference for training and validation in the SVM 

study. A total of 22 variables was compared (mean and median of DYS and CA: four variables for the total of 

the three functional tasks – four variables for RF – four variables for RGV – four variables for RS / DYS and CA: 

two variables for the total and two variables for each task of the DIS). Due to the categorical characteristic of 

the DIS, a small sample and the absence of a normal distribution in the functional task scores, Spearman’s rho 

correlation coefficients (rs) were used. Correlation coefficients above 0.75 were considered as excellent; 

between 0.50 and 0.75 as moderate to good; between 0.25 and 0.50 as fair; and between 0 and 0.25 as no 

correlation.[60] 

In addition, intraclass correlation coefficients (ICC) and the 95% confidence intervals (CI) were calculated to 

check for agreement in inter-rater scoring (k = 2). The calculations were based on a severity score rating, 

absolute agreement, 2-way mixed effects model. ICC values above 0.90 were considered as excellent; between 

0.75 and 0.90 as good; between 0.60 and 0.75 as moderate and less than 0.60 as poor.[60] 

The previous statistical analyses were conducted with SPSS statistical package version 26 (SPSS Inc, Chicago, 

IL). The level of significance was set at p<0.05. 
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In a second part, a discriminative validity study compared the predictive outcome of the SVM classifier model 

in classifying DYS and CA during the functional reaching tasks with the actual pre-assigned classifications by 

the rater. The classifier performance was evaluated by calculating the accuracy, F1-measure, precision and 

recall of multiple models. Calculation is based on the interpretation of confusion matrices, which represent 

the actual and predicted classifications. The calculation is illustrated below. 

Table 5: Illustration of the confusion matrix interpretation and the calculation of the performance measures 

 
   
 
 
 
 
 
 
 
 
 
 

 
 
 
 
TN = true negative; FN = false negative; FP = false positive; TP = true positive 
 
 

Accuracy represents the proportion of correctly predicted observations relative to the total observations. In 

case class distribution is imbalanced, it is interesting to interpret the precision outcome, displaying the 

percentage of correctly predicted positive observations related to the total predicted positive observations. 

Recall is a measure of sensitivity which is calculated as the percentage of correctly predicted positive 

observations related to all observations in the specific class. The F1-measure represents the harmonic mean 

of the precision and recall features. Finally, the classifier misclassification rates (or prediction errors) were 

calculated. The misclassification rate enumerates the variance and bias created by the machine learning model 

(i.e. trade-off error terms section 2.5.3.1). 

 
 
 
 
 
 
 

  Predicted class 

  Class 0 (-) Class 1 (+) 
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Class 0 (-) 
TN FP 

Class 1 (+) 
FN TP 

Recall = 
TP

TP+FN
 

Precision = 
TP

TP+FP
 

F1 - measure = 
2∗Precision∗Recall

Precision+Recal
 

Accuracy = 
TP+TN

Total
 

 

Recall 

Precision Accuracy 
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 Results 

 Participants 

Twelve children (seven males and five females, mean age 17 years; range 8y 6m to 25y 3m) with DCP were 

included in this study, in which both arms were evaluated in five participants. One subject was eventually 

excluded because of missing data, forming a total of 16 subjects. Two subjects manifested with a manual ability 

classified as level I, eight were situated in level II and six subjects were classified in level III. More details about 

the participants are presented in Appendix A, table 1. 

 Dyskinesia Impairment Scale in functional reaching tasks 

3.2.1 Concurrent validity 

The results of the concurrent correlation analyses for the DIS dystonia and DIS choreoathetosis subscales are 

presented in table 6 and 7 respectively. The variables are explained in the caption of these tables. 

Significant correlations were found for the complete dystonia subscale of the distal arm. The correlations 

ranged from 0.648 to 0.830 (p=0.000-0.011), showing moderate to excellent relationships. Correlations with 

the original DIS were highest in the RF tasks, with overall excellent and highly significant results for AD_grasp 

pen (mean rs=0.806, p=0.000; med rs=0.815, p=0.000), AD_total (mean rs=0.790, p=0.000; med rs=0.814, 

p=0.000) and AD_grasp cup (mean rs= 0.763, p=0.001; med rs=0.809, p=0.000). RS tasks were more related 

with AD_grasp cup (mean rs=0.771, p=0.001; med rs=0.754, p=0.001). 

For the choreoathetosis subscale, correlation coefficients ranged from 0.046 to 0.580 (p=0.030-0.870), 

showing absent to moderate associations. Merely six significant correlations were found for the 

choreoathetosis subscale, mostly situated in the RGV tasks. RGV_mean showed moderate associations with 

AD_total and AD_grasp cup (rs=0.546, p=0.044; rs=0.561, p=0.037). RGV_med was moderately correlated with 

all DIS tasks (AD_total rs=0.567, p=0.034; AD_grasp cup rs=0.580, p=0.030; AD_grasp pen rs=0.541, p=0.046). 

No significant correlations were found for the RF and RS tasks. 
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Table 6: Correlation analyses between DIS score percentages of the DIS tasks and the functional reaching tasks – Dystonia subscale 

DIS = DIS percentages of DIS tasks; FUNCT = DIS percentages of functional tasks; AD_total = total DIS percentage arm distal DIS tasks; AD_grasp cup = DIS percentage grasp a cup DIS task; 

AD_grasp pen = DIS percentage grasp a pen DIS task; Total_mean/med = mean/median DIS percentages of all arm distal functional tasks; RF_mean/med = mean/median DIS percentages reach 

forward tasks; RGV_mean/med = mean/median DIS percentages reach and grasp vertically tasks; RS_mean/med = mean/median DIS percentages reach sideways tasks 

 

 

 

 

 

           FUNCT 

DIS 

Total_mean Total_med RF_mean RF_med RGV_mean RGV_med RS_mean RS_med 

 rs p value rs p value rs p value rs p value rs p value rs p value rs p value rs p value 

AD_total 0.830 0.000 

*** 

0.747 0.001 

** 

0.790 0.000 

*** 

0.814 0.000 

*** 

0.689 0.006 

** 

0.712 0.004 

** 

0.722 0.002 

** 

0.684 0.005 

** 

AD_ 

grasp cup 

0.813 0.000 

*** 

0.728 0.002 

** 

0.763 0.001 

** 

0.809 0.000 

*** 

0.663 0.010  

* 

0.679 0.008 

** 

0.771 0.001 

** 

0.754 0.001 

** 

AD_ 

grasp pen 

0.812 0.000 

*** 

0.760 0.001 

** 

0.806 0.000 

*** 

0.815 0.000 

*** 

0.655 0.011  

* 

0.680 0.008 

** 

0.648 0.005 

** 

0.655 0.008 

** 
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Table 7: Correlation analyses between DIS score percentages of the DIS tasks and the functional reaching tasks – Choreoathetosis subscale 

DIS = DIS percentages of DIS tasks; FUNCT = DIS percentages of functional tasks; AD_total = total DIS percentage arm distal DIS tasks; AD_grasp cup = DIS percentage grasp a cup DIS task; 

AD_grasp pen = DIS percentage grasp a pen DIS task; Total_mean/med = mean/median DIS percentages of all arm distal functional tasks; RF_mean/med = mean/median DIS percentages reach 

forward tasks; RGV_mean/med = mean/median DIS percentages reach and grasp vertically tasks; RS_mean/med = mean/median DIS percentages reach sideways tasks 

 

 

 

 

           FUNCT 

DIS 

Total_mean Total_med RF_mean RF_med RGV_mean RGV_med RS_mean RS_med 

 rs p value rs p value rs p value rs p value rs p value rs p value rs p value rs p value 

AD_total 0.252 0.365 0.378 0.164 0.234 0.401 0.237 0.395 0.546 0.044 

* 

0.567 0.034 

* 

0.226 0.418 0.141 0.617 

AD_ 

grasp cup 

0.429 0.110 0.517 0.049 

* 

0.370 0.175 0.362 0.186 0.561 0.037 

* 

0.580 0.030 

* 

0.309 0.263 0.276 0.320 

AD_ 

grasp pen 

0.165 0.556 0.280 0.312 0.229 0.411 0.225 0.420 0.518 0.058 0.541 0.046 

* 

0.116 0.681 0.046 0.870 
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3.2.2 Interrater reliability 

The intraclass correlation coefficients (ICC) and 95% confidence intervals (CI) are presented in table 8. The 

duration and amplitude item scores will be discussed in section 4. 

The DIS score percentages for the distal arm dystonia subscale generally showed moderate to good interrater 

reliability for all functional tasks. A small difference in the mean ICC was found; 0.767 for RS, 0.726 for RGV, 

and 0.670 for RF. For the DIS dystonia subscale of the RS tasks, ICC values revealed good interrater reliability, 

ranging from 0.759 to 0.772 (95% CI [0.642-0.838]). Moderate to good reliability coefficients were found for 

the RGV tasks, ranging from 0.692 to 0.755 (95% CI [0.582-0.825]). ICC statistics in the RF tasks ranged from 

0.649 to 0.711 (95% CI [0.503-0.794]), representing a moderate reliability. All 95% CI were significant. 

For the choreoathetosis subscale, overall lower ICC values were observed for the distal arm DIS scoring of the 

functional reaching tasks. Mean ICC values for the functional tasks are 0.517, 0.298 and 0.221 for RGV, RS and 

RF respectively. All DIS scores for the functional tasks showed poor reliability, except RGV1 (ICC=0.671 (95% 

CI [0.555-0.762])). All 95% CI were significant except RF1 [-0.069-0.227] and RS2 [-0.001-0.325]. 
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Table 8: Interrater reliability: Intraclass Correlation Coefficients (ICC) with 95% confidence intervals (CI) between raters (k = 2) for the Dyskinesia Impairment 

Scale scored in functional reaching tasks – Dystonia (DYS) and Choreoathetosis (CA) subscale 

RF = reach forward; RGV = reach and grasp vertically; RS = reach sideways; Each task was performed three times (1-2-3) 

∑(D+A) = summation of the duration and amplitude factors 

 

ICC [95% CI] 

DYS CA 

 Duration Amplitude ∑(D+A) Duration Amplitude ∑(D+A) 

RF1 0.584 [0.436-0.698] 0.634 [0.488-0.740] 0.651 [0.503-0.755] 0.090 [-0.059-0.244] 0.056 [-0.087-0.206] 0.076 [-0.069-0.227] 

RF2 0.568 [0.430-0.679] 0.641 [0.504-0.743] 0.649 [0.519-0.747] 0.345 [0.170-0.498] 0.000 [-0.177-0.178] 0.264 [0.164-0.424] 

RF3 0.679 [0.561-0.770] 0.628 [0.497-0.731] 0.711 [0.602-0.794] 0.293 [0.113-0.456] 0.324 [0.139-0.486] 0.322 [0.140-0.483] 

RGV1 0.687 [0.572-0.775] 0.736 [0.638-0.811] 0.755 [0.663-0.825] 0.678 [0.564-0.767] 0.638 [0.513-0.736] 0.671 [0.555-0.762] 

RGV2 0.527 [0.343-0.665] 0.702 [0.595-0.784] 0.692 [0.582-0.777] 0.321 [0.150-0.474] 0.481 [0.329-0.609] 0.410 [0.248-0.550] 

RGV3 0.585 [0.414-0.710] 0.712 [0.600-0.797] 0.732 [0.626-0.811] 0.441 [0.247-0.596] 0.480 [0.274-0.636] 0.470 [0.266-0.626] 

RS1 0.752 [0.662-0.821] 0.720 [0.586-0.810] 0.770 [0.676-0.838] 0.360 [0.175-0.518] 0.285 [0.113-0.441] 0.344 [0.166-0.499] 

RS2 0.685 [0.575-0.770] 0.767 [0.671-0.836] 0.772 [0.687-0.836] 0.149 [-0.015-0.310] 0.146 [-0.020-0.308] 0.165 [-0.001-0.325] 

RS3 0.757 [0.658-0.831] 0.693 [0.501-0.806] 0.759 [0.642-0.838] 0.385 [0.154-0.565] 0.375 [0.142-0.557] 0.385 [0.147-0.569] 
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 Machine learning classifier model 

3.3.1 Performance of the multiclass classifier model 

Table 9: Performance measures (%) of the multiclass classifier - total and fine-tuned dataset 
 

ACCURACY F1-MEASURE PRECISION RECALL 

Total dataset 71.85% 71.85% 71.49% 71.82% 

Multiclass fine-

tuned dataset 

74.58% 74.11% 74.97% 74.58% 

 

 

Figure 8: Confusion matrices of the multiclass classification a) Total dataset ; b) Multiclass fine-tuned 

dataset 

Feature reduction 

The results obtained after running the total dataset in the SVM multiclass (classes 0-3) model are 

presented in table 9 and figure 8. Performance measures were automatically calculated in MATLAB 

based on the confusion matrix. An illustration of the confusion matrix working mechanism was given 

in section 2.6, table 5. The performance measures should be interpreted as followed: observing higher 

performance measures after excluding a single feature is an indication that this feature is less 

important in discriminating between classes, and vice versa. 
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Feature reduction was proceeded using different strategies at different levels: categorical exclusion, 

refining categories (forward and backward feature set selection, and reasoned combined feature set 

selection) and fine-tuning. This process, aiming for the most optimal feature input, is presented in 

figure 9. 

A. Categorical exclusion 

Features were combined in six categories based on their similarity e.g. RMS, VAR, MAX and STD of 

acceleration and angular velocity measures were combined in category 1. The importance of the 

category could be interpreted after exclusion from the total dataset. This was achieved by making a 

ratio balancing the model performance using the total dataset and the total dataset minus the single 

excluded category. The results presented in table 10 should be interpreted as followed: high accuracy 

when omitting a specific category (e.g. Ct.1 in line 1) from the total dataset proved the inferior 

importance of the features category. 

Table 10: Performance measures (%) of the multiclass classifier with categorical exclusion (Ct.) 

 ACCURACY F1-MEASURE PRECISION RECALL 

Ct. 1: RMS/VAR/MAX/STD 72.06% 72.09% 72.58% 72.06% 

Ct. 2: RMSJ/VARJ/MAXJ/STDJ 69.54% 69.02% 69.17% 69.54% 

Ct. 3: SE/COR/MAXVEL/DUR 69.33% 69.25% 70.16% 69.33% 

Ct. 4: SM/SpE 68.70% 68.45% 69.18% 68.70% 

Ct. 5: Power 70.80% 70.78% 71.68% 70.80% 

Ct. 6: MOCAP 69.33% 69.19% 70.10% 69.33% 

Total dataset 71.85% 71.85% 71.49% 71.82% 

 

Smoothness and spectral entropy (Ct. 4) were found to be more important in the discrimination 

between the four classes, since exclusion of these features yielded lower model performance. In 

contrast, acceleration and angular velocity measures (Ct. 1) were considered less discriminative. 

Fine-tuning
MAX GYR x/y/z

Refining categories

MAX ACC and GYR (x/y/z/N)

Categorical exclusion

Ct 1: RMS/VAR/MAX/STD

Figure 9: Flowchart of the feature reduction procedure, illustrated with an example 
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B. Refining categories 

In this second phase, analysis of features within the six above-mentioned categories was executed. A 

first step was the leave-one-out feature set reduction based on the total dataset. The feature sets 

combined the ACC and GYR data from all axes. E.g. the MAX feature set consisted of MAX_ACC and 

MAX_GYR in x/y/z/N. The results are depicted in figure 10. More precise conclusions about feature 

relevance were feasible in analyzing the performance after exclusion of a single feature set e.g. worse 

performance with excluding MAX_ACC and MAX_GYR in x/y/z/N (Ct. 1) from the total dataset 

(accuracy of the total dataset (71.85%) > accuracy of the total dataset minus MAX_AG (70.17%)). 

Figure 10: Performance (%) of the multiclass classifier model with leave-one-out feature set reduction  

Acceleration and gyroscope values for all features except * = only acceleration features; ** = MOCAP features 

Leave-one-out feature set reduction showed that maximal acceleration and angular velocity, the 

correlations between axes, spectral entropy and power in frequency band 0.5-1Hz have an important 

discriminative capacity, as accuracy significantly decreased when excluding these feature sets from the 

dataset. Feature sets of less interest based on the leave-one-out analyses were: standard deviation of 

the acceleration and angular velocity signal, the variance of the linear and angular jerk, sample 

entropy, power in frequency band 2-3Hz and 3-4Hz, and the maximal linear velocity of the MOCAP 

system. 

The backward and forward feature set selection, and the reasoned combined feature reduction 

together resulted in the most optimal (non-finetuned) combination of 50 features for the 

discrimination between the four classes. 
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C. Fine-tuning 

Further fine-tuning of the feature dataset, currently consisting of 50 features from the refining 

categories phase, was based on the distinction in axes for both accelerometer and gyroscope data. E.g. 

all features within the feature set MAX_AG: MAX_Ax, MAX_Ay, MAX_Az, MAX_AN, MAX_Gx, MAX_Gy, 

MAX_Gz and MAX_GN were separately evaluated. Feature sets were fine-tuned in a cumulative way, 

starting with the fine-tuning of the first selected feature set (MAX_AG), followed by the fine-tuning of 

the second feature set (RMS_jerk), etc. 

Finally, a total of 23 relevant features was deduced from the 144 features in the total dataset. The 

resulting relevant features for the multiclass model obtained in the cumulative fine-tuning process are 

listed in Appendix B, table 1. After fine-tuning the feature input, an average increase of 3% in the SVM 

performance measures was noticed relative to the initial total dataset (table 9), and a decrease in 

misclassifications was found for class 1, 2 and 3 (table 11). 

Table 11: Misclassification rate (%) in the total and fine-tuned dataset 

 CLASS 0 CLASS 1 CLASS 2 CLASS 3 

Total dataset 34.69% 16.09% 35.85% 48.98% 

Multiclass fine-

tuned dataset 

34.69% 8.70% 30.00% 34.04% 
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3.3.2 Performance of the binary classifier model 

Subsequently, an inspection on the relevant features specifically characterizing DYS and CA was 

performed. The most relevant features in the binary datasets (No DYS/DYS and No CA/CA) were 

extracted on the basis of leave-one-out and fine-tuning procedures. Additionally, features excluded in 

the multiclass analysis were added once again to reconfirm that they did not add to increased accuracy 

values in the binary models. 

Feature reduction 

A. Multiclass fine-tuned dataset reduction 

The multiclass fine-tuned dataset of 23 features was implemented as a starting point for the binary 

classifier feature reduction process. One by one features were excluded from the dataset. The change 

in accuracy of both the DYS and CA binary models are presented in figure 11. 

 

Figure 11: Leave-one-out feature reduction – change in performance (%): DYS vs. CA dataset 
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▪ BINARY CLASSIFIER MODEL: NO DYS VS. DYS 

Table 12: Performance measures (%) of the DYS binary classifier - multiclass and DYS fine-tuned 

dataset 
 

ACCURACY F1-MEASURE PRECISION RECALL 

Multiclass fine-

tuned dataset 

88.03% 88.12% 88.71% 88.03% 

DYS fine-tuned 

dataset 

90.34% 90.35% 90.46% 90.34% 

 

 

Figure 12: Confusion matrices of the DYS binary model for the a) Multiclass fine-tuned dataset; b) DYS 

fine-tuned dataset; with 0 = No DYS and 1 = DYS 

The results obtained after running the multiclass obtained feature set in the DYS binary SVM model 

and the associated confusion matrices are presented in table 12 and figure 12. 

The consequent leave-one-out feature analysis (figure 11) on the multiclass fine-tuned dataset 

demonstrated an important discriminative capacity for the maximal angular velocity – x- and y-axes ; 

the root mean square of angular jerk – norm value ; linear maximal velocity – z-axis ; smoothness of 

the gyroscope signal – z-axis ; power of gyroscope signal in frequency band 0.5-1Hz – x- and z-axes. 

After submitting the initially excluded feature sets of the total multiclass dataset, the following feature 

sets showed additional discriminative capacity: variance of acceleration and angular velocity, standard 

deviation of jerk, power of the accelerometer signal in frequency band 0-0.5Hz and 2-3Hz, and wrist 

flexion/extension. These feature sets were added to the above-mentioned discriminative features and 

were all further fine-tuned in the following phase, i.e. distinction in axes for both ACC and GYR data. 
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▪ BINARY CLASSIFIER MODEL: NO CA VS. CA 

Table 13: Performance measures (%) of the CA binary classifier - multiclass and CA fine-tuned dataset 
 

ACCURACY F1-MEASURE PRECISION RECALL 

Multiclass fine-

tuned dataset 

82.77% 82.94% 83.50% 82.77% 

CA fine-tuned 

dataset 

84.66% 84.79% 85.13% 84.66% 

 

 

Figure 13: Confusion matrices of the CA binary model for the a) Multiclass fine-tuned dataset; b) CA 

fine-tuned dataset; with 0 = No CA and 1 = CA 

The results obtained after running the multiclass obtained feature set in the CA binary SVM model and 

the associated confusion matrices are presented in table 13 and figure 13. 

The consequent leave-one-out feature analysis (figure 11) on the multiclass fine-tuned dataset 

demonstrated an important discriminative capacity for correlation of the x/y- and y/z-axes of the 

gyroscope signal ; linear maximal velocity – z-axis ; smoothness of the accelerometer signal – x- and z-

axes ; smoothness of the gyroscope signal – z-axis and norm value ; spectral entropy of the gyroscope 

signal – z-axis. 

After submitting the initially excluded feature sets of the total multiclass dataset, only wrist deviation 

angles showed additional discriminative capacity. This feature set was added to the above-mentioned 

discriminative features and were all further fine-tuned in the following phase, i.e. distinction in axes 

for both ACC and GYR data. 
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B. Fine-tuning 

A similar method as used in the multiclass dataset fine-tuning process was executed; fine-tuning of the 

feature dataset was based on specification of axes for both acceleration and gyroscope data. 

▪ BINARY CLASSIFIER MODEL: NO DYS VS. DYS 

A total of 22 features was derived after feature reduction and fine-tuning of the DYS dataset. These 

features are listed in Appendix B, table 1. The performance of this binary classifier model and the 

percentage of misclassifications is presented respectively in table 12 and 14. A change of 2% in 

performance was observed comparing the multiclass fine-tuned dataset and the ultimate DYS fine-

tuned dataset. In general, less misclassifications were found in the DYS class (class 1). 

Table 14: Misclassification rate (%) in the multiclass fine-tuned and DYS fine-tuned dataset 

 

▪ BINARY CLASSIFIER MODEL: NO CA VS. CA 

A total of 21 features was derived after feature reduction and fine-tuning of the CA dataset. These 

features are listed in Appendix B, table 1. The performance of this binary classifier model and the 

percentage of misclassifications is presented respectively in table 13 and 15. A change of 2% in 

performance was observed comparing the multiclass fine-tuned dataset and the ultimate CA fine-

tuned dataset. In general, more misclassifications were found in the CA class (class 1). 

Table 15: Misclassification rate (%) in the multiclass fine-tuned and CA fine-tuned dataset 

 

 

 

 

 CLASS 0 (No DYS) CLASS 1 (DYS) 

Multiclass fine-tuned dataset 19.61% 5.89% 

Fine-tuned DYS dataset 14.29% 5.00% 

 CLASS 0 (No CA) CLASS 1 (CA) 

Multiclass fine-tuned dataset 6.82% 30.19% 

Fine-tuned CA dataset 8.03% 21.78% 



33 
 

▪ COMPARISON DYS VS. CA 

The feature distribution of the fine-tuned dataset for both DYS and CA is presented in figure 14. The y-

axis represents the number of features (number of axes: x, y, z, N) that were of interest. This 

comparison demonstrated that variance and maximal angular velocity, root mean square of the 

angular jerk, standard deviation of the linear jerk, the correlations between axes of the gyroscope, 

smoothness of the accelerometer data, power in frequency band 0-0.5Hz and 2-3Hz of the 

accelerometer data and wrist flexion/extension angles could clearly describe the dystonic movements. 

Characteristic features found for describing the choreoathetotic movements were maximal linear 

velocity of the accelerometer signal, smoothness and power in frequency band 0.5-1Hz of the 

gyroscope signal, and wrist deviation angles. 

Figure 14: Relevant feature distribution based on the feature type in DYS and CA fine-tuned datasets 

The relevance of acceleration, gyroscope and motion capture data is depicted in figure 15. In both DYS 

and CA, a higher representation of gyroscope features could be found for the fine-tuned datasets. 

Acceleration features were more important in the representation of dystonic movements. In contrast, 

the MOCAP features were more important to describe choreoathetotic movements. 

Figure 15: Relevant feature distribution based on the measurement methods for the DYS and CA fine-

tuned datasets 
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 Discussion 

Previous studies within the DCP population indicated the benefit of using objective measurement tools 

for evaluating and discriminating DYS and CA.[48] However, no study yet focused on the minority of 

children within the DCP population who are able to perform functional upper limb tasks. 

Accurate discrimination of DYS and CA is important for improving insights, correct treatment and 

quality of life in the DCP population. The ultimate aim of this study was to automatically discriminate 

DYS and CA using data from both MOCAP and IMU in a classifier model. In addition, the most relevant 

features characterizing each motor disorder were identified. As a sub-aim, this study investigated the 

validity and reliability of the DIS used in the ULEMA protocol. 

 Concurrent validity 

In general, a difference in tasks between the ULEMA protocol and the original DIS tasks did not have a 

significant effect on the DIS severity scores for dystonia. The results showed moderate to excellent 

associations for the entire dystonia subscale, with the strongest correlations for the functional RF tasks 

and the DIS grasp-a-pen task. This could be attributed to the equalities between both tasks i.e. a static 

wrist and forearm position. 

A previous study of Monbaliu et al. compared the DIS dystonia subscale with the BADS scale. Pearson’s 

correlation coefficient was 0.84, revealing an excellent relationship.[27] This is in line with the 

calculated mean of the results found in this study, namely a Spearman correlation of 0.78. 

In contrast with the dystonia subscale, the correlations in the choreoathetosis subscale were absent 

to moderate. Only the RGV tasks were correlated with the DIS tasks. This could be attributed to the 

difficulty of the tasks. DIS tasks were generally perceived more difficult, resulting in higher score 

percentages. The RGV tasks were more challenging with respect to coordination in the distal arm 

compared to the other functional reaching tasks. The comparability of the RGV tasks with the DIS tasks 

could lead to comparable severity percentages, possibly evoking better validity. 

Future research should investigate the relative function of all three functional reaching tasks in 

representing the dystonic and choreoathetotic movements in the machine learning process. 

Choreoathetosis is characterized by variable chaotic movements, which could impede uniform scoring, 

especially for the movement amplitude. Moreover, dystonia is more prominently and more frequently 

present which could lead to lower noticeability of choreoathetosis, making it harder to score the 

latter.[12] The writhing fingers movements were typical signs of choreoathetosis in the hand, but the 

fingers were excluded from the analyses of both scoring situations. However, these finger movements 
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were a disturbing factor during the scoring of the DIS of the functional reaching tasks as it was difficult 

not to take them into account. Another difficulty during the scoring was the dubiety about the origin 

of the choreoathetotic movements (proximal or distal) as well as the doubt about the occasionally 

vague division between a normal reaction and an abnormal movement e.g. the recoil at point of task 

achievement. 

Comparison with other studies could not be made, since this was the first study to investigate the 

concurrent validity of the clinical scoring of choreoathetosis. 

Striking, focusing on the concurrent validity of the objective measurement of DYS and CA, Haberfehlner 

et al. indicated a better relation with choreoathetosis. The study did not point significant relations for 

the objective measurement and the DIS dystonia subscale. Though, it should be noted that in this study 

involuntary movements in the lower limb were analyzed in a resting position and in participants with 

a GMFCS level IV and V.[61] 

Some important aspects need to be considered with respect to the difference between both DIS 

applications. A first consideration is the discrepancy of the task complexity, which could be noticed in 

lower score percentages for the functional reaching tasks after examining the raw data. Another aspect 

to take into account should be the difference in the scoring formula; the DIS scoring of the functional 

reaching tasks was based on the mathematical mean of the eight repetitions separately, whereas the 

DIS scoring of the DIS tasks took place by scoring ten repetitions all at once. The latter implicates that 

only the highest severity presentation was reflected in the DIS scoring. A third consideration lies in 

rescaling the duration item score from a 5-point to a 3-point scale in scoring the functional tasks, which 

implies less gradation in possibilities of score percentages. E.g. DIS duration item score 3 is interpreted 

as a 75% severity score for the motor disorder, whereas 75% is impossible to score with the DIS in the 

functional reaching tasks i.e. 0%, 50% and 100% are the only score possibilities. The DIS duration item 

score 3 immediately reflects in a 100% severity score in the DIS in the functional reaching tasks No 

conclusions could be made based on further analysis on the duration and amplitude item scoring in 

both DIS and functional reaching tasks. 

 Interrater reliability 

For the dystonia subscale, the DIS severity percentages showed moderate to good interrater reliability 

for the functional reaching tasks, with the best results for the functional RS tasks. In general, the 

reliability scores of dystonia were fairly in line with the excellent interrater reliability scores found in 

the DIS reliability studies on experienced and unexperienced raters.[27, 62] In the ICC of the item 

scores, better results were generally found for amplitude. 
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For the choreoathetosis subscale however, poor ICC values were found for the DIS severity score, 

except for RGV1. The more conform scoring of choreoathetosis in the RGV tasks was also recognized 

in the concurrent validity results. The difficulties experienced during the DIS scoring process and the 

variable presence and expression of choreoathetosis as previously mentioned could be explanations 

for the poor ICC results. In contrast with the dystonia subscale, ICC results of the choreoathetosis 

subscale were lower compared to previous studies.[27, 62]  

Interrater differences in the original DIS scoring were comparable with the results found for both 

experienced and unexperienced raters in previous studies.[27, 62] Thus, the original DIS scoring was a 

reliable input in the concurrent validity study. 

 Machine learning classifier model: DIS classification in functional reaching tasks 

Since classifications were needed to compare input (MOCAP and IMU features) and output (DYS and 

CA classes) of the SVM model, reliable DIS classification of DYS and CA in the functional reaching tasks 

was required. However, poor results for interrater reliability on the DIS classifications were found 

(Appendix A, table 2). Reviewing the raw data, interrater differences in class 0 (No DYS/No CA) and 2 

(No DYS/CA) were highlighted more specifically, pointing towards the role of CA. These findings are 

visualized in figure 16. Previous research already indicated that choreoathetosis was consistently 

scored lower than dystonia.[12](personal communication) The subtle changes contribute to the 

difficulty to detect the presence of this motor disorder. This indicated once more that choreoathetosis 

is more difficult to score, reinforcing the findings described in section 4.1. Therefore, results obtained 

in the SVM for choreoathetosis (section 3.3) should be treated with caution. 

As mentioned in the methodology, the initial scores of both rater 1 and rater 2 were used in the ICC 

statistical analyses. After a revision of the scores, the consensus scores were included in the further 

course of this study. For this reason, the reliability of the classifications included in the SVM model can 

be justified. 

Figure 16: Comparison of DIS classifications in the distal arm for rater 1 and rater 2 
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 Machine learning classifier model: feature extraction and discriminative validity 

4.4.1 Multiclass classifier model 

This was the first study to develop and test machine learning models for the automated discrimination 

of DYS and CA in children with DCP during functional upper limb tasks. This study is still an explorative 

study and must therefore be interpreted on this basis. The SVM algorithm using the final dataset of 23 

features was able to classify the four classes with performance measures of approximately 74.5%, and 

a misclassification rate below 35%. The performance outcomes of the multiclass model were in line 

compared with the existing studies in literature regarding the determination of movement patterns 

(table 16A).[63-66] Less misclassifications were noted in class 1 (DYS/No CA), which could be explained 

by the imbalanced class distribution (i.e. 355/948 observations in class 1) and the more reliable and 

valid scoring of dystonia. In comparison with previously used machine learning classifiers in clinical 

applications such as SVM, random forest and decision trees (table 16B), the performance of this SVM 

classifier was similar.[63-66] Logistic regression was found to be less accurate as a part of multiclass 

classification problems.[65, 66] 

Table 16A: Comparison of the SVM performance in the proposed multiclass algorithm to existing 

multiclass algorithm models in literature 

 

 

 

 

 

 

 ACCURACY ERROR RATE F1-MEAS PRECISION RECALL 

Goodlich, B (2020) 77.3% - 74.1% - - 

Zhang, Y (2019) 85.0% 5.7% - - - 

Butt, A (2018) 74.1% - - - 41.7% 

Bidabadi, S (2019) 62.3% - - - - 

Obtained SVM results  

(section 3.3.1) 

74.58% 8.70-34.69% 74.11% 74.97% 74.58% 
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Table 16B: Comparison of the performance of different machine learning algorithms in literature 

 ACCURACY ERROR RATE F1-MEAS PRECISION RECALL 

Goodlich, B (2020) 

- Random forest 

- Decision tree 

 

79.0% 

76.5% 

 

- 

- 

 

76.6% 

72.8% 

 

- 

- 

 

- 

- 

Zhang, Y (2019) 

- Random forest 

- Decision tree 

 

83.6% 

84.3% 

 

6.4% 

5.7% 

 

- 

- 

 

- 

- 

 

- 

- 

Butt, A (2018) 

-Logistic Regression 

 

70.4%   

 

- 

 

- 

 

- 

 

58.3% 

Bidabadi, S (2019) 

-Logistic Regression 

-Random forest 

 

54.2% 

67.4% 

 

- 

- 

 

- 

- 

 

- 

- 

 

- 

- 

Apart from the class distribution, the impact of classification selection on the multiclass classifier 

model should be considered in interpreting the above-mentioned results. As classes were created 

based on the absence or presence of the motor disorder, a large variation in the presentation of 

severity was recognized in class 1, 2 and 3. This complicated the detection of clear patterns during the 

training phase of the SVM model, especially in classes with smaller sample sizes. 

For the initial study, a linear regression model using continuous data was not possible due to the large 

number of included features. Future research could be done using the obtained 23 features of the 

multiclass model from this study in a multiple linear regression model, aiming to find a linear 

relationship in the input and output variables of a given dataset. The interpretability of this linear 

regression model is found superior, caused by the absence of black box methodology. Moreover, the 

linear regression is a computationally more efficient method. Nonetheless, a lower performance 

accuracy is found as compared to other regression models. The linear regression machine learning 

model is less experienced in dealing with a high amount of data and unbalanced classes, and shows a 

higher amount of misclassifications.[67] Previous studies showed that this higher amount of 

misclassifications is remarkable in dystonia.[48] Specifically, this model is sensitive for outliers and the 

presence of underfitting, caused by the typically more complex nature of data.[67] Therefore, also the 

more complex and less efficient non-parametric regression models should be considered in future 

research. Comparing the performance of different machine learning models, SVM and gaussian 

process regression were indicated as better regression models for quantifying dystonia, whereas linear 

regression and random forest regression were better for choreoathetosis.[48] 
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4.4.2 Binary classifier models 

DYS and CA binary classifiers were important to improve knowledge of characteristics for each motor 

disorder. As binary classification is a less complex function, better performance outcomes were found 

regarding the classification of No DYS/DYS and No CA/CA. The results for both motor disorders were 

in line with similar studies on the SVM performance, as presented in table 17A.[55, 68-70] Table 17B 

represents the comparison of the performance of different classifier models based on literature.[68-

70]  

Table 17A: Comparison of the SVM performance in the proposed binary algorithm to existing binary 

algorithm models in literature 

 ACCURACY ERROR RATE F1-MEAS PRECISION RECALL 

Kim, JY (2020): Spastic CP 71.8% - - - - 

Cole, B (2014): Tremor - 7.2% - - - 

Cole, B (2014): Dyskinesia - 9.1% - - - 

Bennasar, M (2018): Huntington 91.1% - - - 90.4% 

Obtained SVM results DYS  

(section 3.3.2) 

90.34% 5.0-14.29% 90.35% 90.46% 90.34% 

Obtained SVM results CA  

(section 3.3.2) 

84.66% 8.03-21.78% 84.79% 85.13% 84.66% 

 

Table 17B: Comparison of the performance of different machine learning algorithms in literature 

 ACCURACY ERROR RATE F1-MEAS PRECISION RECALL 

Kim, JY (2020): Spastic CP 

- Decision tree 

- Random forest 

- Linear discriminant analysis 

 

76.6% 

91.8% 

80.6% 

 

- 

- 

- 

 

- 

- 

- 

 

- 

- 

- 

 

- 

- 

- 

Cole, B (2014): Tremor 

-Diffuse Neural Network 

 

- 

 

6.2% 

 

- 

 

- 

 

- 

Cole, B (2014): Dyskinesia 

-Diffuse Neural Network 

 

- 

 

8.7% 

 

- 

 

- 

 

- 

Nica, I (2019): DYS 

- Random forest 

 

80.9% 

 

- 

 

- 

 

- 

 

- 

Nica, I (2019): CA 

- Random forest 

 

70.0% 

 

- 

 

- 

 

- 

 

- 
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A clear overview of the obtained relevant features of each motor disorder and their performance plots 

is given in Appendix B, table 1 and figure 1. As a clarification, figure 17 illustrates the defined coordinate 

system for the accelerometer and gyroscope. 

 

 

  

 

 

 

 

 

 

Twenty-two features were of interest in characterizing dystonia; these will be described below. 

Regarding movement axes, movements around and along the z-axis appeared to be most 

discriminative for No DYS / DYS. 

Hypotheses based on literature (section 2.5.2) were confirmed in the results of this study regarding 

angular velocity, correlations between axes, duration, the power in lower frequency bands and wrist 

flexion/extension. 

A continuous alternation of dealing with the tendency to extreme dystonic postures in controlling 

functional reaching tasks was recognized. In the distal arm, the dystonic postures emerged as a 

significantly flexed wrist position. 

The dystonic movements were mostly three-dimensional, partly objectified by strong correlations 

between the coordinate axes for the gyroscope signal. Movements around the y-axis often concurred 

with movements around the x- or z-axis, i.e. elbow flexion, forearm pronation and external shoulder 

rotation, deviating towards the upper limb flexion pattern. Again, this represented the less 

coordinated, less straight reaching, discussed as a characteristic of dystonia. Less coordinated 

movements were previously suggested to be associated with excessive antagonist muscle activation 

and overflow activation of non-essential muscles.[46, 71-74] 

The presence of movement fragmentation, velocity resistance and the efforts to control the 

performance and precision of sequenced movements could have resulted in the high movement 

duration.[33, 46, 73, 75, 76] 

X 

X 

Y 

Z 

Figure 17: Illustration of the coordinate system of the forearm arm IMU in the a) transverse plane and ; 

b) sagittal plane 
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Results of this study indicated that dystonia was related to a slightly lower maximum and variance of 

the angular velocity, respectively in three dimensions and around the z-axis. Low variance was not 

expected but could possibly be explained by a decrease in degree of freedom due to the tendency 

towards a sustained upper limb flexion pattern in more severe hypertonia. However, an increased 

movement variability in dystonia was frequently reported in previous studies.[46, 52, 73, 77] The 

higher presence of involuntary movements in the dystonia group accompanied the resulting inability 

to fully control motor actions and stabilize joints.[46, 73, 76-79] The more significant stuttering 

reaching movements and the attempts to restore motor control were expected in children with less 

severe hypertonia, and could be reflected in repetitive interrupting rotational movements causing 

variety in acceleration. Focusing on the degree of the angular velocity, dystonic movements were 

expected to be slow in order to enhance motor performance and target precision, and to avoid an 

additional increase of movement variability.[73, 75, 76, 78, 80] These findings were confirmed with 

slightly lower maximal angular velocities in the DYS class with respect to the No DYS class, represented 

in Appendix B, figure 1. 

Slightly lower jerk values were hypothesized for dystonia and reflected in the feature plots. (Appendix 

B, figure 1) This should not be interpreted as smooth movements in the DYS group, but rather as more 

smooth or less unsmooth movements with respect to the No DYS group. The smoother nature of the 

prominently rotating movements in dystonia could be induced by the presence of class 2 (No DYS/CA) 

in the No DYS class. In contrast, significantly higher jerk values did emerge in previous studies in the 

DCP population during analyses in a state of relative rest and in reaching.[46, 48] More negative 

spectral arch length (smoothness) values were found to be discriminative, representing the unsmooth 

nature of dystonia. This is in contrast with the previously discussed results of lower jerk values. As past 

research pinpointed spectral arc length to be the most sensitive measure for evaluating smoothness, 

the interpretation of the unsmooth nature of dystonic movements could be supported.[51, 58] Clear 

lower values of spectral entropy were reflected in the feature plots and represented a lower 

complexity of the dystonic movements. 

The arrhythmicity of dystonic movements was clear from the more broad and flat power spectrum 

graph for dystonia with respect to no dystonia, represented in Appendix B, figure 2. Hence, the time 

series of the reaching movements were composed of a large variety of frequencies. In general, a lower 

power was noticed in the DYS class with respect to the No DYS class, possibly explained by the presence 

of the class 2 (No DYS/CA) in the No DYS class. Power of the accelerometer and gyroscope signal was 

found higher in the lower frequency bands, as hypothesized for dystonia. Focusing on the 

accelerometer signal, power signals in frequency band 2-3Hz were also found to be discriminative, 

which was not anticipated.[48] Though, this finding was advocated in one study by the presence of 



42 
 

higher frequencies (4-10Hz) analyzing the dystonic tremor in Parkinson patients.[81] A second study 

indicated dystonia in the DCP population to be related to the 1.7-3.5Hz frequency range.(personal 

communication) However, it should be noted that the discriminative ability found in this study lay 

within a lower power in these higher frequency bands, as presented in Appendix B, figure 1. 

Prediction error rates were found to be sufficient when focusing on class 1 (DYS) in the DYS binary 

classifier. However, a high number of misclassifications could be discerned regarding class 0 (No DYS). 

Results of these findings were listed in section 3.3.2, table 14. The better performance in detecting DYS 

could be explained by the high number of observations in class 1 (539 of the 948 observations) when 

training this class. Larger datasets with more variability are vital in future research. 

A second reason for the high number of misclassifications in class 0 concerned the fact that the DIS 

classifications were solely based on the observed movements in the distal arm region. However, as 

movements in the proximal arm could have an impact on the data collected by the objective 

measurements, this could have imposed misclassifications in class 0 for dystonia. 

Twenty-one features were of interest in characterizing choreoathetosis. In general, movements 

around the x-axis, translating into the presence of pronation/supination movements, and norm values 

of the features emerged. 

Hypotheses based on literature (section 2.5.2) were confirmed in the results of this study regarding 

angular jerk, correlations between axes, linear and angular smoothness values, linear and angular 

spectral entropy and trajectory deviation. 

First, the high amount of change in angular acceleration around the z-axis and its norm value strongly 

related to noisy, unsmooth, chaotic movements. Specifically, chaos could be noticed in a continuous 

change in direction and speed during shoulder rotating movements and/or elbow flexion/extension in 

the horizontal plane. These less coordinated movements usually arose at the same time with 

movements into forearm pronation/supination, i.e. around the x-axis. 

The concomitant presence of involuntary and less coordinated movements did not always translate 

into an increased movement duration. This finding was in line with previous research.[82]  

The discriminative capacity of trajectory deviation could be translated in excessive and more deviations 

from the normal pathway in choreoathetotic movements. 

Subsequently, linear and angular spectral arc length (smoothness) turned out to be dominant 

parameters, with less coordinated movements for the CA class. Analysis of the smoothness plots 

(Appendix B, figure 1) generally represented more negative values for the norm of the translational 

movements and the three-dimensional rotational movements in this class. In past research, spectral 
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arc length was pinpointed as the most sensitive measure for evaluating smoothness, and was 

highlighted as a distinguishing measure of cerebral palsy and the healthy population.[51, 58] 

The presence of unpredictable complex movements in choreoathetosis was confirmed in the SVM 

frequency outcome results by the spectral entropy of the gyroscope signal. Validation of these findings 

was given in research on chorea in Huntington and the DCP population, and on Parkinson’s tremor.[48, 

55, 83] However, when interpreting the feature plots (Appendix B, figure 1), no clear differences could 

be determined. Lower values were found to be representative for dystonia, reflected in class 1 and 3 

(DYS/ No CA and DYS & CA). The remaining classes 0 (No DYS/No CA) and 2 (No DYS/CA) showed higher 

spectral entropy values, indicating more complex movements. Since both higher and lower values 

were present in both No CA and CA classes, no defined conclusions could be made about the 

movement complexity. 

A more interesting and unexpected finding in choreoathetosis was the presence of higher linear 

velocities in 3D for the accelerometer axes. This could be related to the continuously rapid changing 

movement directions, characterizing hyperkinesia.[71] 

As a second contrasting finding, the natural position in children with choreoathetosis was found to be 

oriented towards ulnar deviation. 

Entropy measures were expected to characterize choreoathetosis. It should be noted that this was not 

the case in this study for sample entropy, as previously anticipated by Vanmechelen et al. for the 

gyroscope signal data of the distal arm.[84] 

In general, the more spiked structure of the power spectrum in the CA class with respect to No CA class 

should be noted in frequency band 0.5-1Hz. A similar gradient of the power in higher frequency bands 

was demonstrated, represented in Appendix B, figure 2. Previous studies reported a tendency towards 

a repetitive pattern in dyskinesia, which could be deducted from this consistent peak in the power 

spectrum in the lower frequencies.[85-87] The peak was reflected in clearly higher power of the 

gyroscope signal localized in frequency band 0.5-1Hz, which is in contrast with the expected significant 

presence of choreoathetosis in the higher frequency bands. Notwithstanding the ambiguity in 

literature about this finding, Cuyvers et al. reported a range in frequencies of 0.8-3.5Hz; Burkhard et 

al. documented a peak frequency at 1.5-3.25Hz.[48, 87] A possible explanation of the absent 

discriminative value of power in higher frequency bands could be the inclusion criteria of MACS level 

I-III, meaning that children with an insufficient manual function were excluded from this study. 

Including more severe cases of choreoathetosis, in an adapted protocol, could facilitate the SVM 

learning process in future research and could improve the current insights for choreoathetosis. 
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The choreoathetosis results should be interpreted with caution. In the initial analyses, the results of 

the concurrent validity and interrater reliability study were insufficient for choreoathetosis. Moreover, 

a clear imbalance in the DIS classification distribution emerged, with a higher presence of training data 

for class 1 (DYS/No CA) in the multiclass model. This could be translated in a higher presence of training 

data (558 of the 948 observations), a better performance and less misclassifications for class 0 (No CA). 

Although high classification performance was achieved in total, this could not ensure the capability of 

the algorithm to provide the same results in equal sample sizes for both classes. More specifically, a 

high number of misclassifications in class 1 (CA), i.e., CA classified by the raters, but not predicted by 

the binary model, partly restrained the generalization of the results. 

For both DYS and CA, translational movements were less representative compared to the rotational 

movements, illustrated in figure 15. The relevance of gyroscope data could be explained by the largely 

rotational nature of human movements.[88] The power spectrums in figure 2 in Appendix B, 

represented this more important discriminative value of the gyroscope data, with a larger discrepancy 

between both motor disorders i.e. larger distance between the curves, with respect to the 

accelerometer data. In general, accelerometer signals were found to be of more interest in dystonia. 

Notwithstanding their similarities, the results obtained in this study highlighted the separate entity of 

both motor disorders. Unique characteristics for dystonia with respect to choreoathetosis were the 

variance of the angular velocity, standard deviation of the linear jerk, power in frequency band 0-0.5Hz 

and 2-3Hz of the accelerometer signal, and the minimal wrist flexion/extension angles. Optimal 

description of choreoathetosis with respect to dystonia was possible using discriminating features such 

as the maximal linear velocity, smoothness of the gyroscope signal, power in frequency band 0.5-1Hz 

of the gyroscope signal, and minimal/maximal wrist deviation angles. 

Time domain measures were of higher interest in classification, with a slightly higher importance for 

dystonia (59.1% of the total features) compared to choreoathetosis (52.4% of the total features). The 

consequent more important role of frequency measures in CA with respect to DYS is in line with results 

of previous research.(personal communication) 

Notwithstanding the existing ambiguity, more significant differences were expected between both 

motor disorders regarding the power spectrum. In contrast to some previous results, in this study no 

significantly higher power was found for choreoathetosis in the higher frequency bands.[48, 56, 87] 

Burkhard et al. described dyskinesia in Parkinson’s disease pointing out a broad power range with a 

predominant frequency from 0.25 to 1.25Hz and 1.5 to 3.25Hz for dystonic and choreiform dyskinesia 

respectively.[87] Cuyvers et al. studied the DCP population in a state of relative rest and encountered 

frequencies ranging from 0 to 0.8Hz for dystonia and 0.8 to 3.5Hz for choreoathetosis.[48] 
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Discriminative ability of power in the higher frequency bands was found for dystonia with respect to 

choreoathetosis. A lower power in dystonia in these higher frequencies was already mentioned above. 

As noted, results were not always anticipated and reflected in the feature plots. Three general 

conclusions could be made based on these feature plots. First, choreoathetosis was reflected in highly 

unsmooth movements with respect to dystonia. Towards a second conclusion, a more spiked and 

energetic power spectrum was revealed in choreoathetosis compared to dystonia. These curves 

suggested dystonic movements to be more arrhythmic. A stronger rhythmicity could be found in 

choreoathetosis. At last, dystonic movements were found to be less complex, whereas in 

choreoathetosis no conclusions could be made. 

In the previous discussion, frequent discrepancies existed regarding the obtained relevant features 

and the concomitant feature plot interpretation. As SVM uses black box approach in the automatic 

classification, the process used to obtain the most relevant feature set could not be determined. 

 Limitations 

This study had some limitations and therefore warrants some critical reflections. First, only 12 children 

were included. In the future, larger sample sizes are needed to allow for more generalized conclusions 

regarding the reliability and validity of the DIS in the functional tasks. Still, a sufficient number of 

observations were obtained to allow sufficient SVM power. A more equal distribution over different 

severity levels and classes is demanded. Furthermore, there was a restriction in inclusion criteria. Due 

to the choice of functional reaching tasks in the ULEMA protocol, patients with DCP and a MACS level 

IV or V were excluded. However, studies indicated that about 65% of the children with DCP are 

classified in the severe levels of manual ability.[11] In this less manually abled group of children with 

DCP, research on the use of IMU devices in discriminating DYS and CA had already been conducted.[48] 

Since the aim of this study was to objectively discriminate DYS and CA during the functional tasks, the 

participants had to be able to execute the requested reaching and grasping tasks. Future research 

should include all different levels of manual ability, aiming for a better generalization and performance 

of the SVM. 

Another future perspective is the evaluation of this model in the context of activities of daily life, which 

could be feasible if only including IMU features. Both IMU and MOCAP systems were used to evaluate 

the kinematics of the functional tasks. Both systems were combined because of their complementarity, 

leading to an increased chance to obtain the most relevant set of features. The limitations of the 

optometric system however lie within the time-consuming aspect of both placement and labelling of 

the markers. Moreover, a fully equipped laboratory, expertise in palpation and data processing is 
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needed. Evaluation was done on the ability to eliminate the use of MOCAP in the protocol to obtain a 

time- and cost-efficient, portable classifying system. However, results clarified the value of MOCAP in 

the discrimination of dystonia and choreoathetosis. 

This study was limited to the inclusion of the distal arm data. Only the wrist and forearm data were 

implemented, respectively obtained by MOCAP and IMU. Upcoming analyses should explore the 

impact of including the entire upper limb. However, this requires a large number of participants to 

preserve the statistical power of the SVM model. 

Ultimately, the presence of spasticity in some children with DCP should also be taken into account 

when interpreting the results. This could potentially have an influence on the smoothness, range of 

motion and velocity of the upper limb movement pattern. Movement velocity is by nature complicated 

to control in children with dyskinesia, which has an impact on the severity of spasticity known to be 

velocity-dependent. As spasticity is much more prominent in the lower limbs and its presence was 

found minimal in the distal arm, the influence of spasticity should not be overestimated for this 

study.[89, 90] 

A considerable low reliability and validity was found for the choreoathetosis subscale in this protocol. 

The DIS was the first scale to set a standard for the clinical evaluation of this motor disorder and this 

study was the first to assess the concurrent validity of the DIS choreoathetosis subscale. More research 

is needed to ameliorate the current results for reliability and validity, which should lead to the ability 

to generalize the outcome of the SVM for choreoathetosis. In contrast, as good results were obtained 

in the dystonia subscale, it could be worth to explore the dystonia assessment tool as a single value. 

This is a pioneer study using SVM to discriminate DYS and CA in a manually able DCP population, and 

is still in an explorative phase. Thus, more research is needed to confirm the obtained results. For this 

study, the SVM was trained in classifying a small number of classes with a large variation in the 

presentation of severity. To enable inclusion of severity variation, further classification and evaluation 

analyses can be pursued respectively using more refined classes and continuous data. This is possible 

using the relevant features obtained in this study as input in the SVM classifier and linear regression 

model. 
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 Conclusion 

This study was the first to validate automated dystonia and choreoathetosis discrimination during 

functional reaching tasks, showing promising outcomes. 

The first part of this study analyzed the psychometric value of the DIS used in the IDCA protocol. The 

DIS was found a reliable and valid instrument to evaluate dystonia in the functional reaching tasks, 

with results being in line with previous research. However, poor results were found for the 

choreoathetosis subscale. 

The second part of this study focused on the ultimate aim regarding the discriminative performance 

of the established SVM classifier model based on 3D objective motion data. Satisfying results were 

obtained for the combined classification of DYS and CA in a multiclass model, with a low prediction 

error for the DYS/No CA class. In a subsequent stage, highly accurate predictions were obtained in the 

classification of DYS and CA separately. A list of the unique discriminative characteristics for both motor 

disorders eventually could be made. Gyroscope data was prominent in differentiating and 

characterizing both DYS and CA. Accelerometer data was more related to dystonia whereas MOCAP 

features were more of interest in choreoathetosis. Time domain measures were principal in the 

discrimination of DYS and CA. Dystonia was more reflected by time domain measures, whereas 

frequency domain measures were of higher interest in the detection of choreoathetosis. 

As results of the concurrent validity and interrater reliability study were not as good as expected for 

the choreoathetosis subscale, more research regarding the clinical evaluation of choreoathetosis is 

needed to ensure generalization of the obtained SVM results. In contrast, further investigation on a 

dystonia assessment tool is indicated, using the obtained features and more refined classes in the SVM 

classifier, and further extending towards a linear regression model with continuous data. 

Further insights obtained in this study can assist correct treatment management plans, thereby 

improving quality of life in patients with DCP. Future research on automatic discrimination and 

evaluation of DYS and CA will allow opportunities to describe the motor disorders based on their 

biomechanical characteristics. 
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Appendices 

A. Demographic characteristics and DIS statistical analyses 

 

* Eventually excluded from this study because of missing data 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table A1: Demographic characteristics of the participants 

Participant  Age MACS L/R handed Measured side 

P1 12.22y 3 R L 

P2 23.91y 1 R L 

P2 23.91y 1 R R 

P3 18.46y 2 L L 

P3 * 18.46y 3 L R 

P4 25.37y 3 L R 

P5 16.20y 2 R L 

P5 16.20y 2 R R 

P6 13.54y 2 L R 

P7 19.41y 2 R L 

P8 16.91y 3 R L 

P8 16.91y 3 R R 

P9 11.93y 2 R L 

P9 11.93y 2 R R 

P10 13.63y 3 R L 

P11 21.55y 3 R L 

P12 8.63y 2 L R 

    Mean Age  17.01y (SD 4.78y) 
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Table A2: Interrater reliability of the DIS classifications (0-3): Intraclass Correlation Coefficients (ICC) 

with 95% confidence intervals (CI) between raters (k = 2) for the Dyskinesia Impairment Scale scored in 

functional reaching tasks. 

 ICC [95% CI] 

RF1 0.172 [0.003-0.335] 

RF2 0.356 [0.187-0.504] 

RF3 0.344 [0.158-0.504] 

RGV1 0.625 [0.490-0.729] 

RGV2 0.236 [0.062-0.397] 

RGV3 0.279 [0.073-0.459] 

RS1 0.230 [0.060-0.389] 

RS2 0.204 [0.035-0.364] 

RS3 0.140 [-0.037-0.315] 
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B. Machine learning classifier model 

Table B1: Relevant features per dataset 

MULTICLASS CLASSIFICATION DYS CLASSIFICATION  CA CLASSIFICATION 

MAX_Gx VAR_Gz MAX_Gx 

MAX_Gy MAX_Gx MAX_GN 

MAX_Gz MAX_Gy RMS_jerk_Gz 

RMS_jerk_Gx MAX_Gz RMS_jerk_GN 

RMS_jerk_Gy RMS_jerk_Gx Corr_Gxz 

RMS_jerk_Gz RMS_jerk_Gy Max_vel_Ax 

RMS_jerk_GN RMS_jerk_GN Max_vel_Ay 

Cor_Gxy STD_jerk_Az Max_vel_Az 

Cor_Gyz Corr_Gxy SM_AN 

Cor_Gxz Corr_Gyz SM_Gx 

Max_vel_Az Max_vel_Az SM_Gy 

SM_Gx SM_Ax SM_Gz 

SM_Gz SM_Az SM_GN 

SM_Gy SM_Gz SpE_Gx 

SM_Gz SM_GN SpE_Gy 

SM_GN SpE_Gy FbandP2_Gx 

SpE_Gy SpE_GN FbandP2_Gy 

SpE_Gz FbandP1_Ay FbandP2_GN 

SpE_GN FbandP2_Gx TrDev 

FbandP2_Gx FbandP4_Az WrDev_min 

FbandP2_Gy TrDev WrDev_max 

FbandP2_Gz WrFl_min  

TrDev   
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▪ Ct.1  

  

▪ Ct. 2  

  

Figure B1: Relevant feature plots of DYS and CA binary models 

White = class 0 (No DYS or No CA); light orange marking = class 1 (DYS); light grey marking = class 1 (CA) 
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▪ Ct. 3  

  

 
▪ Ct. 4  

 
  

 
 
 
 
 

 

Figure B1: Relevant feature plots of DYS and CA binary models 

White = class 0 (No DYS or No CA); light orange marking = class 1 (DYS); light grey marking = class 1 (CA) 
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▪ Ct. 5  

  

 

 
 
 
 
 
 
 
 

 
 

Figure B1: Relevant feature plots of DYS and CA binary models 

White = class 0 (No DYS or No CA); light orange marking = class 1 (DYS); light grey marking = class 1 (CA) 
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▪ Ct. 6  

 
 

 

 

  

 

 
 
 
 
 
 
 
 

Figure B1: Relevant feature plots of DYS and CA binary models 

White = class 0 (No DYS or No CA); light orange marking = class 1 (DYS); light grey marking = class 1 (CA) 
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▪ No DYS / DYS  

▪ No CA / CA  

▪ DYS vs. CA  

Figure B2: Power spectrum of the DYS and CA binary classifier models and the comparison of DYS and 

CA 

 
 
 
 
 
 
 
 



64 
 

C. Populaire samenvatting 

Dyskinetische cerebrale parese (DCP) is een zeldzame motorische aandoening met schade aan het 

ontwikkelende brein. DCP uit zich klinisch in onwillekeurige bewegingen en moeilijk gecontroleerde 

vrijwillige bewegingen, ten gevolge van abnormale en wisselende spierspanningen. 

Dystonie (DYS) en choreoathetose (CA) zijn twee omschreven bewegingsstoornissen binnen de DCP 

populatie. DYS wordt gekenmerkt door abnormale gewrichtstanden en CA door veelvoudig wringende 

bewegingen. Differentiatie en ernstbeoordeling van beiden zijn veelbetekenend in het doeltreffend 

toekennen van correcte behandeling. Het kan ook inzichten scheppen in het kennisluik rond de beperkt 

gekende aandoening, zijn therapie en prognose. 

Differentiatie en evaluatie van DYS en CA wordt momenteel klinisch mogelijk gemaakt met de 

Dyskinesia Impairment Scale (DIS) als gouden standaard. Om reden van het deels subjectief en 

tijdrovende aspect van deze schaal en de verwachte ervaring, richtte onderzoek zich recent op 

objectieve meetinstrumenten. Deze zijn in staat gedetailleerd en betrouwbaar 

bewegingskarakteristieken weer te geven kenmerkend voor een bepaalde bewegingsstoornis. Binnen 

deze studie werd specifiek nagegaan of 3D bewegingskarakteristieken van het bovenste lidmaat 

gebruikt kunnen worden om dystonie en choreoathetose automatisch te gaan differentiëren. 

Twaalf kinderen met DCP namen deel in een protocol bestaande uit drie taken: voorwaarts en zijwaarts 

reiken, en verticaal reiken en grijpen. De DIS werd gebruikt om DYS- en CA-aanwezigheid te scoren in 

de distale arm. Tijdens deze reiktaken werden de bewegingen vastgelegd door de registratie van 

polskinematica, voorarmversnelling en -hoeksnelheid middels markers en sensoren. De bekomen 144 

bewegingsparameters werden toegevoegd in een support vector machine (SVM) learning 

classificatiemodel samen met hun klinische DIS classificaties. Deze studie vergeleek de voorspelde 

klassen van het SVM model met de vooraf bepaalde DIS classificaties. Hieropvolgend vond een 

selectieprocedure plaats om de relevante bewegingsparameters te identificeren voor beide 

bewegingsstoornissen apart. Als referentie voor het trainen en aftoetsen van de computergestuurde 

classificaties was een adequate schaal nodig. Hierom werd aanvullend de validiteit en 

betrouwbaarheid nagegaan van de DIS die in casu gebruikt werd bij het scoren van de functionele 

reiktaken. 

Goede resultaten werden bekomen voor de DIS dystonie subschaal, namelijk matige tot excellente 

validiteit en matig tot goede betrouwbaarheid. Mindere resultaten werden verkregen voor 

choreoathetose; een afwezige tot matige validiteit en zwakke betrouwbaarheid. Resultaten wezen uit 

dat het SVM model met een redelijke nauwkeurigheid (74.58%) predictief onderscheid kan maken 



65 
 

tussen aan- of afwezigheid van DYS en CA. Betere resultaten werden gevonden in een SVM model dat 

enkel binair gaat differentiëren. Identificatie van de aan- of afwezigheid van DYS of CA is respectievelijk 

mogelijk met een 90.34% en 84.66% accuraatheid. Daarnaast werden typerende parameters opgelijst 

voor DYS en CA. 

Deze studie was pionier in het valideren van een automatische DYS en CA discriminatie tijdens 

functionele taken van het bovenste lidmaat. De veelbelovende resultaten kunnen betekenisvol zijn in 

het creëren van nieuwe inzichten en het verbeteren van doelgerichte therapie. Komend onderzoek 

kan de klinische evaluatie van choreoathetose optimaliseren en de objectieve evaluatie van dystonie 

reeds verder uitbouwen. 
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E. Guidelines for authors 

Richtlijnen voor auteurs voor publicaties van de ‘guidelines for authors’ in Gait and Posture: 

https://www.elsevier.com/journals/gait-and-posture/0966-6362/guide-for-authors 

https://www.elsevier.com/journals/gait-and-posture/0966-6362/guide-for-authors

