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Abstract

English

This thesis aims to expand the existing machine learning analysis of cardiac data
to atrial electrophysiological mapping data. It discusses a way of reconstructing
simulatable meshes starting from in-vivo mapping data, including control over the
thickness of myocardium, mesh coarseness and mesh conductivity regions. The
meshes are consequently used for 2286 simulations of focal beats and 2097 sim-
ulations of reentries around the right pulmonary veins, left pulmonary veins and
mitral valve. This expands the otherwise sparse mapping data availability. Addi-
tionally, it discusses the processing of mapping data to features. These are used by
nine different machine learning models for two supervised machine learning classi-
fications: distinguishing focals from anatomical reentry and inferring the location
of anatomical reentry.

Nederlands

Deze thesis richt zich op het uitbreiden van machine learning op hartdata tot atri-
ale elektrofysiologische mapping data. Het bespreekt een manier om simuleerbare
meshes te reconstueren startende van in-vivo mapping data, met inclusie van cont-
role over de dikte van het myocardium, mesh resolutie en geleidbaarheidsgebieden.
De meshes worden vervolgens gebruikt voor 2286 simulaties van focale beats en
2097 simulaties van reentry rond de rechter longaderen, linker longaderen en de
mitraalklep. Dit expandeert de anderzijds zeldzame beschikbaarheid van mapping
data. Het bespreekt bovendien het verwerken van deze mapping data tot features.
Deze worden gebruikt door negen verschillende machine learning modellen voor
twee supervised machine learning classificatieproblemen: het onderscheiden van
focale slagen en reentry, en de locatie van reentry classificeren.



1 Background: the heart

This section will give a general overview of the anatomy, functioning and electri-
cal properties of the human heart and its implementation in electrophysiological
simulations.

1.1 Anatomy and function of the heart

The heart is a hollow muscle, pumping and pressurising the circulatory system: a
connected set of veins throughout the body, providing organs and tissue of oxy-
gen, nutrients, hormones and blood cells. Two main structures can be identified
in the heart: the atria (upper chambers) and the ventricles (bottom chambers).
These are separated by valves that control the direction of blood flow. The valves
between the atria and ventricles are called atrioventricular valves. There are two
atrioventricular valves in the heart: one connecting the left atrium to the left ven-
tricle and one connecting the right atrium to the right ventricle. The left and right
ventricles are separated by the interventricular septum and the left and right atria
are separated by the interatrial septum. The atria receive blood and pump it the
blood to the ventricles via the atrioventricular valves. The left atrioventricular
valve is called the mitral valve, while the right one is referred to as the tricuspid
valve. These valves are a one-way gateway, making sure blood can pass from the
atrium to the ventricle, but not vice versa. On top of two atrioventricular valves
controlling the blood flow from the atria to the ventricles, two more valves can
be identified, controlling blood flow from the ventricles to the arteries. These are
the semilunar valves: the pulmonary valve controls the blood flow from the right
ventricle to the pulmonary artery leading to the lungs, and the aortic valve does
the same for the left ventricle and the aorta. The ventricles are larger structures
than the atria, capable of exerting enough force to pump the blood to the rest of
the body. The right atrium receives oxygen deprived blood via the vena cava and
passes it to the right ventricle. The right ventricle pumps this oxygen deprived
blood to the lungs where it is to be loaded with oxygen again. The left atrium
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Figure 1.1: Blood flow through different chambers and valves in the heart. Figure
taken from Guyton and Hall [1]

receives this oxygen rich blood via the pulmonary veins (literally “lung” veins)
and passes it to the left ventricle, to be distributed to the rest of the body via the
aorta. It is the contraction of the strong left ventricle that is responsible for our
blood pressure. These structures and the direction of the blood flow are shown in
Figure 1.1.

1.2 Electrical properties of the heart

The heart pumps blood by means of muscle contraction. This contraction is trig-
gered by an electrical wave, starting in the sinoatrial node (SA node) in the right
atrium. This electrical signal propagates through the muscle cells of the heart
(myocardium) and triggers the contraction of those cells. This triggering of the
myocardium is defined by a process of depolarisation; the electrical charge of the
heart muscle cell (cardiomyocyte) rapidly increases in value.

While the ventricles and atria are connected by tissue at the mitral valve,
they are not connected in terms of conductivity. The atria are electrically decou-
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Figure 1.2: The sequence of conduction throughout the heart. Figure taken from
Marieb and Hoehn [2].

pled from the ventricles. The only gateway for electrical conduction is through a
node between the atria and ventricles. This node is called the atrioventricular node
(AV node). An electrical signal propagates more slowly through this node than
through the atrial or ventricular cells, inducing a delay. This makes sure that the
ventricles contract only after the atria contract. This is crucial, as this gives the
atria time to push the blood to the ventricles while they are not yet contracting,
and makes the ventricles contract only after they have received this blood. The
sequence of the conduction of the electrical signal throughout the heart is show in
Figure 1.2.

Generally speaking, two types of cells are present in the heart: heart muscle
cells (cardiomyocytes) and pacemaker cells. The pacemaker cells can depolarise
spontaneously, while the cardiomyocytes can only be depolarised by an exter-
nal stimulus. The depolarisation of the heart cells is mediated by ionic currents
through their cell membranes. These membranes separate the cell from the out-
side. This outside region is referred to as the bath region, as it is filled with ions
that mediate the cellular depolarisation-repolarisation process. The heart cells are
connected with this outside region through ionic channels. The ionic channels are
proteins embedded in the membrane that can change their shape (open or closed),
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allowing only specific ions to enter from or exit to another heart cell; they are
selectively permeable. Different ions are present in different concentrations, have
different time scales and physiological effects. It’s these different ion currents that
mediate the depolarisation and replarisation of the cardiomyocytes and the pace-
maker cells. The dynamics of the charged ions through the cell membrane induce
a voltage potential across the cell membrane. This variation in transmembrane
voltage gives rise to the so-called action potential (AP), as is shown in Figures 1.3
and 1.5. Let’s take a closer look at the effects of the different transmembrane ion
flows on both the cardiomyocytes and the pacemaker cells while taking a closer
look at the shape of their action potential.

1.2.1 Electrical properties of the cardiomyocyte

This section will describe the electrochemical properties of the cardiomyocyte in
terms of ion currents. Only the ion currents included by the Courtemanche ionic
model [3] will be discussed. Ionic models will be discussed in Section 1.6.

The sodium current Iy, is a fast depolarising current and responsible
for the fast upstroke of the myocardial action potential. External stimuli cause
the Nat channels of cardiomyocytes to open very quickly, letting in Na™ ions
(phase 1). This phase ends with the inactivation of the Na® channels. The
transient outward potassium current [;, is the main contributing current to
the repolarisation after the sharp upstroke of the action potential.

The second phase of the polarising cycle is called the plateau phase and
is defined by the intake of Ca®" ions. These are the ions that initiate cardiac
contraction. This intake of C'a®** ions is made possible by the L-type calcium
current Ic,;; the opening of the CalL channels allows for C'a®** to flow into the
cardiomyocyte. This initiates Ca-Induced-Ca-Release: a positive feedback system
that releases enough Ca from the sarcoplasmatic reticulum, located in the bath
region, into the cell. This releases enough calcium to make the muscle cell contract.

This phase happens in cooperation with the ultrarapid delayed potas-
sium rectifier current I, and the slowly activating rectifier potassium
current [y ,. Both of these currents are outward currents and counter the poten-
tial augmentation caused by the intake of C'a®" ions, i.e. rectifying. The rapid
current does most of the rectifying. Due to the slow timescale of I, it is only
when Iy, is blocked that this current will play a major role.

The third phase is the repolarisation phase. During this phase, the car-
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Figure 1.3: A typcal action potential of a cardiomyocyte (blue line) and the induced
contraction (purple line). The myocardial action potential is characterised by the
sharp upstroke (phase 1), a plateau phase (phase 2) and consequent repolarisation
phase (phase 3). Figure taken from Marieb and Hoehn [2]

diomyocyte goes back to its resting potential. This phase is defined by the potas-
sium K1 current [x;. This is an inwardly pointed current with strong rectifica-
tion properties. The K ion channels are opened.

Other currents include Inqcq and In.x for respectively the NatCa®t ex-
changer current and the Na™ K pump current which exchange Na™ for respectively
Ca** or K, or vice versa. The plateau current I, o, and the background currents
It cq and I, y, are also included. An overview of these currents and their direction
is given in Figure 1.4.
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Figure 1.4: Schematic of a cardiomyocyte and its ionic currents. Figure taken from
Courtemanche [3].

1.2.2 Electrical properties of the pacemaker cell

In contrast to cardiomyocytes, the pacemaker cells depolarise spontaneously. Their
action potential has a different shape, as can be seen in Figure 1.5. These are the
cells that are present in the sinoatrial node. These cell have no stable resting
potential, but are in an eternal cycle of depolarising and repolarising. The core
polarisation dynamics will be briefly discussed by considering three important ionic
currents [4, 5] and the shape of the pacemaker action potential, shown in Figure
1.5.

The pacemaker action potential cycle is defined by three phases. In phase
1, the Na™ channels open up and the K+ close, allowing for the intake of Na™
ions, giving rise to a slow depolarisation, in stark contrast to the sharp upstroke
of the cardiomyocytes. Once the potential hits the threshold of about —40 mV/,
Ca** flow increases substantially and phase 2 begins. This phase is defined by
a sharp upstroke of the action potential. In phase 3, this upstroke is stopped by
the opening of K* channels allowing the flow of rectifying K currents, forcing
K™ ions out of the cell. Once repolarised, the K channels close again, the Na™
channels open up again, and the process is repeated. It is this cyclical process that
determines the pacing of a normal heart rhythm.
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Figure 1.5: A typical action potential of a pacemaker cell, present in the SA node.
The shape looks a bit like a sine wave, hence the name sinoatrial node. Figure
taken from Marieb and Hoehn [2].

The cardiomyocytes and pacemaker cells are connected with each other
through gap junctions: an intercellular tissue making electrochemical communica-
tion possible. This allows for larger scale tissue-level electrochemical dynamics to
arise: the formation of a wave pattern called the depolarising wavefront.
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1.3 Pattern formation

The depolarising wavefront is a trigger wave, meaning it brings a system from
one state to another. In the case of cardiomyocytes, the trigger is identified as
the moment of Na™t ion intake, giving rise to the sharp upstroke of the action
potential. This brings cardiac tissue from its resting state into an excited state. In
this excited state, the cardiac tissue exchanges ions through the ionic channels in
the cell membrane (as discussed in Section 1.2). After this excited state, the tissue
enters a refractory period. During this period, the tissue cannot get depolarised
again. This lasts until the cardiac cells are in their resting state again. This
refractory period is associated with the plateau phase of the action potential.
This plateau phase can be seen in Figure 1.3.

As cells cannot depolarise during their refractory period, the dynamics of
the depolarising wavefront has some interesting properties. Colliding waves will
annihilate each other, as each wavefront leaves a wake of tissue in the refractory
state, unable to get excited again. This is shown schematically in 1D in Figure

1.6.

" Conduction

B Refractoriness

Figure 1.6: Two waves in 1D are about to collide (top). In the end (bottom), only
tissue in the refractory period remains and no triggering wavefront is left.

When multiple sources repeatedly initiate a triggering wavefront, the fastest
source will dominate the pacing and take over the slowest one. This is because the
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Figure 1.7: Competition between two sources of trigger waves. Figures represent
different timeframes, increasing in time from left to right. The waves are annihi-
lated upon collision. The collision region (horizontal grey line) shifts closer and
closer to the centre of the slowest focal source as time passes until the slowest
source is completely taken over.

collision region will shift more and more towards the location of the slowest source.
This is shown schematically in 2D in Figure 1.7. These effects have important
implications on the correct functioning of the heart.

1.3.1 Regular tachycardia: focal beats and reentry

Focal beats (or focals in short) refer to myocardial cells that depolarise sponta-
neously instead of needing an external stimulus. Depending on the rhythm of the
focal beat and the SA node, it is possible for a focal beat to depolarise myocardium
after the refractory period that was induced by the SA node. This triggers a de-
polarising wavefront, making the myocardium contract at a time that was not
dictated by the SA node. This can make the heart beat out of sync. An example
of this is shown on an ECG in Figure 1.10. If the focal beat has a minimum time
interval that is quicker than the sinoatrial node, the focal beat may take over the
SA node and become the pace dictator of the heart.

Depolarising waves can also create spirals. If there is some non-conductive

10



1 Background: the heart

" Conduction

B Refractoriness

Figure 1.8: An example of anatomical reentry propagating counter-clockwise on
a circle with circumference L. As long as the activation wavefront (red) meets
excitable tissue, the wave will propagate. If v -tr = d > L, the wavefront will
collide with refractoring non-excitable tissue and extinguish.

tissue with a circumference of L and has a refractory period of tz, then a wave with
velocity v < L/tg can propagate around this region without being annihalated.
This is called anatomical reentry. An generalised example of this can be seen
in Figure 1.8. Depending on the size of the non-conductive region at the center
of the spiral wave, one can distinguish macro-reentry and localized reentry. This
phenomenon can take place around scar tissue, veins or the mitral valve.

Reentrant mechanisms do not necessarily need a non-conductive region to
propagate around; they can also rotate around a single point. This is called func-
tional reentry. This point can be fixed in space, or move around the cardiac
tissue. In the latter case, the movement of the point centre of the spiral is called
meandering.

As the rotation period of reentries tends to be shorter than the rate of spon-
taneously depolarising cells, these pose a bigger threat of becoming the dominant
source of activation and desynchronising the heart. Reentries are known to induce
atrial fibrillation [6], i.e. an atrium that does not fully contract, but is instead
defined by a chaotic depolarisation pattern.

11
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Figure 1.9: A typical shape of an ECG, with annotated sections PQRST. Figure
taken from Marieb and Hoehn [2].

1.4 Detection of patterns in the clinical setting

1.4.1 ECGs

The depolarising wavefront as described in Section 1.2 can be measured by means
of an electrocardiogram (ECG). This involves placing electrodes around the heart.
These electrodes are capable of measuring the change of the electrical field in a
single direction and can detect the changes in the electrical field generated by the
depolarising wavefront of the heart [7].

Three main sections of an ECG can be identified, which are shown in Fig-
ure 1.9 [2]. The first section is called the P wave and it results from the atrial
depolarisation. Secondly, the QRS complex is associated with the ventricular de-
polarisation and happens at the same time as atrial repolarisation. The third
section is the T wave and results from ventricular repolarisation.

In a standard ECG, there are 10 electrodes (4 limb and 6 chest electrodes)

12
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that can be used to measure the change in electrical field across 12 angles (leads).
These 12 leads are used to plot a composite ECG of the heart. This is a great way to
extract data about the electrical properties of the heart; ECGs contain information
about the rate, amplitude and general location of change of the electrical field.

They are also relatively easily obtained and do not require an invasive procedure
[7].

As an example, Figure 1.10 shows an excessive heartbeat as measured by
such an ECG. Apart from the wrong timing of the excessive heartbeat, the shape
of the ECG is also substantially different, indicating the corresponding change in
electrical field i.e. the underlying mechanism also behaves differently. Also note
the flatline where the normal sinus rhythm would have given a beat; the SA node
cannot induce a depolarising wavefront as the heart is still in its refractory period
after the excessive heartbeat.

Unfortunately, they are often insufficient for representing complex arrhyth-
mias. They can only measure the rate of change of the electrical field in one
direction at once. Due to the projection on this direction, a lot of interesting in-
formation is lost. They can only measure the net change in electrical field. ECGs
of complex arrhythmias can have complicated shapes, and it is not always readily
obvious how the resulting ECG relates to the underlying mechanisms. The anal-
ysis of an ECG is challenging as a perfect solution for accurate prediction is not
available [8].

13
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Figure 1.10: An electrocardiogram showing an excessive heartbeat (red). ECG
taken from my heart. Each square represents 5 mm. The double lines are 1 mm
apart.

1.4.2 Mapping data

For more complex arrhythmias, a second and invasive procedure is possible: map-
ping data. In order to acquire this data, one needs to measure the geometry of a
heart chamber, in addition to the actual moment of depolarising of the heartcells.
This is generally done by introducing a catheter via the groin, which follows the
vein up to the inside of the right atrium. From there, the catheter can either map
the right atrium, or access the right ventricle via the tricuspid valve. Accessing
the left atrium can be done by drilling through the interatrial septum, and the left
ventricle can be accessed via the mitral valve. The catheter is placed against the
inside of the atrial or ventricular wall (the endocardium). In addition to registering
the coordinates of the points against the wall, it also registers an electrogram of the
passing depolarising wavefront [6], called intracardiac electrograms [9]. From this
electrogram, the time at which a depolarising wavefront passes by can be extracted.
This time is called local activation time (LAT). This way, the entire endocardium
of a heart chamber can be mapped. The outside of a heart (epicardium) can be
mapped as well. An example of the result of such mapping procedure is shown in
Figure 1.11 [10], where the intracardiac electrograms are shown on the left hand
side. The right hand side showcases the 12-lead electrocardiogram taken at the
same time. The center shows a 3D atrium model with a colorscale referring to the
LATs.

14
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AP View

Figure 1.11: An example of mapping data. The intracardiac electrograms are
shown on the left hand side. The right hand side showcases the 12-lead electrocar-
diogram. The center shows a 3D atrium model with a colorscale corresponding to
the LATs. The white arrows denote the path of the depolarising wavefront. Figure
taken from Bun et al. [10].
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1 Background: the heart

1.5 Mathematical representation of the cardiac cell

By identifying the ionic currents, the behaviour of the cardiomyocyte and pace-
maker cell can now be described in terms of electrical currents. A mathematical
description of the electrical activation of a nerve action potential was first pro-
posed in 1952 with the development of the Hodgkin-Huxley model [11], describing
ion currents through nerve cell membranes in mathematical terms, i.e. coupled
ordinary differential equations. This model was consequently adapted to cardiac
cells by Noble in 1962 [12] and further improved by the inclusion of more currents
and a better description of the already included currents. A mathematical model
that describes the ion flow through the cell membrane is called an ionic model.
Let us discuss the basics of such an ionic model. The following information is also
present in the OpenCARP [13] user manual. The base unit for for ionic models
is the cellular membrane. Schematically, the electrical properties of a heart cell
can be represented by a capacitor wired in parallel to a number of ionic transport
mechanisms. In general, an ionic model is of the form

avp,
dt

where V,,, is the voltage across the cell membrane, I,, is the net current across

In=Cn 45,1, (1.1)

the membrane, C,, is the capacitance of the lipid bilayer cell membrane and I,
is a particular transport mechanism, either an ion channel, pump or exchanger.
Additional equations can be added to account for additional effects (e.g. the
Ca-induced Ca release from the sarcoplasmatic reticulum). Ion channels can be
represented by a resistor in series with a battery. The battery represents the
Nernst potential, which results from the electrical field due to the difference in
concentration of some ion inside and outside the cell. This is the potential at
which there is no net flow across a biological membrane for some ion species.
Explicitly, this potential is:

_RT_[S),

W="rg,

(1.2)

, where R is the gas constant, T" is the temperature, and z is the valence of the
ion species S.

An equivalent electrical scheme for a single heart cell is given in Figure
1.12, where the ion currents are to be wired in parallel. C,, denotes the membrane
capacitance, ¥, [, the sum of all ionic currents (wired in parallel). R, (¢,V) and V,,
denote the non-linear voltage-gated resistance and Nernst potential respectively.
These include the time dependency of the ion channel dynamics. Ry and V

16
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Figure 1.12: A generalised equivalent electrical scheme of a single heart cell mem-
brane, where C,, denotes the membrane capacitance, X, [, the sum of all ionic
currents (wired in parallel), R,(t,V) and V,, the non-linear voltage-gated resis-
tance and Nernst potential respectively. R; and V; denote the linear leakage
resistance and leakage potential respectively.

denote the linear leakage resistance and potential: a constant leakage due to the
difference in ion concentrations inside and outside of the cell. The electrochemical
gradients driving the ion flow are represented by batteries V' and the ion pumps and
exchangers are represented by >, I,. The resistances are split into two categories.
The non-linear resistances R, (¢, V') represent all the resistances that have a voltage
and/or time dependency. These include the time and voltage dependency of the
voltage-gate ion channels. The linear resistance R represent the leakage current
due to the difference of ion concentrations inside and outside the cell. R; has
no voltage or time dependency. The capacitance of the cell membrane is again

denoted by C,.

Even with the advancement and development of many more membrane-
current describing mathematical models with varying complexity, a full mathe-
matical description of the electrical properties of the heart (cardiac electrophysi-
ology) remains a highly complex problem with an enormous amount of degrees of
freedom. As such, relating real-life cardiac complications to the building blocks
of these mathematical models is challenging. For this reason, they are commonly
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simulated.

1.6 Implementation of the cardiac cell in simulations

Simulations require the cardiac cells to be represented in a way that’s simulat-
able. Representing each and every cardiac cell is not yet computationally feasible.
Simulations are then commonly done by solving the transmembrane ion flow differ-
ential equations on a grid. This requires a finite element model: a representation
of the heart that’s broken up in little parts. Since the mesh finite elements are not
equivalent anymore to actual cardiomyocytes, the Hodgkin-Huxley model needs
some adaptations as well. A model that solves the equations for ionic currents in
simulations are called ionic models. Models that attempt to discretely describe ion
currents and processes within the cell are call biophysically detailed. Other mod-
els may use a set of ion currents that reproduce the same behaviour to a faithful
degree. These currents are not actually biophysical, but can be considered to be
an amalgamation of biophysical currents. The latter class of models is called phe-
nomenologically detailed, as they can reproduce only the resulting phenomena of
the ionic behaviour of the cell or tissue, and not the actual underlying discrete ion
currents. A third class of models leans close to the phenomenologically detailed
models in the sense that they can only reproduce resulting phenomena. They
dictate transitions of the cells according to a set of rules instead of ion currents.
Choosing the right model for the desired result is dependent on the behaviour that
one wants to research. It is often a trade-off between computational efficiency and
a detailed behaviour of the tissue.

1.6.1 Courtemanche ionic model

The ionic models can be implemented in varying ways and different ionic simulation
models use different sets of ionic currents. Only the ionic currents used in the
Courtemanche ionic model [3] are discussed in this thesis. The transmembrane
currents included by this model are given in Equation 1.3.

Iion = ]Na + ]to + IKI + ]Kur + ]Ks + ]Ca,L

(1.3)
+ ]p,Ca + ]NaK + ]NaCa + Ib,Na + Ib,Ca
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Machine learning is an umbrella term for a plethora of high-dimensional data
analysis tools. It is related to deep learning (DL) and artificial intelligence (AI) as
these too analyse data based on so-called features and are, due to their capabilities
of analysing high-dimensional data, often applied in similar fields.

Machine learning distinguishes itself from AI and DL in the sense that it
needs more direct architectural input. The input data needs to be processed a
certain way, often dependent on the machine learning model, before an analysis
can be done. This processing of data to make it an input for machine learning is
called feature engineering and is, in the case of machine learning, done by human
hand. Most machine learning models have parameters that need to be set and
tweaked, depending on the data, precision and inquired predictive result.

Two main approaches of ML can be identified. On the one hand we have
supervised machine learning, where the ground truth of some dataset is known,
and the model uses this information during the training phase, i.e. adapting its pa-
rameters to fit the given data. The other category is called unsupervised. Here,
the ground truth is not known and the outcome of a certain prediction cannot be
cross-checked against this ground truth. The latter is useful for identifying inher-
ent underlying structures in the dataset and is commonly used as an exploratory
method, but can also have predictive value. A third approach consists of an in-
between scenario, where some, but not all of the data is labelled. This is called
semi-supervised machine learning. In this thesis, we will use supervised machine

learning only.

2.1 Ground truth

It is hardly ever feasible to manually check every datasample and assign a ground
truth. an automated method is needed for this thesis. To this end, Directed
Graph Mapping (DGM) [14] was used to automatically detect locations of re-entry.
DGM is a diagnostic tool using network theory on cardiac excitation to determine
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the source of a given arrhythmia. After processing the input and analyzing the
resulting graph, it is capable of detecting reentry - macro, localized and functional
- as well as focal activity. It should be noted that, when using this as a ground
truth, one cannot measure the “true” accuracy of a machine learning model, but
rather the level of correspondence with DGM. This is sufficient for now, as this
thesis mostly aims to check whether or not it is feasible to analyse mapping data
with machine learning. A robust analysis of its accuracy is beyond the scope of
this work.

2.2 Features

Supervised machine learning is a type of data analysis that seeks to find corre-
spondence between some data and some outcome. If this outcome is a continuous
value, the machine learning problem is called a regression problem. If it’s a single
value or label, it’s called a classification problem. Classification can be done for a
single class (e.g. “is this an apple or not?”). This type of machine learning will
be applied to distinguish focals from re-entries. Classification can also be done
for multiple classes (e.g. “is this an apple, orange or banana?”). If some input
can belong to only one of multiple classes, the machine learning problem is called
a multi-class problem. On the other hand, if it can belong to multiple classes at
once, it’s called a multi-label problem. Distinguishing different types of re-entry
will be approached as a multi-label problem, as the labels will refer to the location
of rotational activity, and there can be multiple locations of re-entrant mechanisms
at the same time.

It is only when the data is used as an input for some machine learning
model that the data is called a feature (or a set of features). It’s perfectly possible
to use the data directly as a feature. In the case of analysing local activation time
(LAT) data, this would mean using each (3 4+ n)-dimensional point (3 coordinates
and n LATS) as a feature, and each point would have a label indicating whether
it belongs to a simulation of focal beats or re-entries, or a label referring to the
location of the re-entry.

The other way to create features is to actively design them. This involves
creating a data representation to extract features from. A feature can be anything
at all, and it tends to be beneficial to include as much of them as possible. They
should, however, reflect the underlying class or value that the machine learning
model will try to predict. This correspondence does not need to be one on one
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(if it was, there would be no need for machine learning), but some correlation or
expected correlation might be of interest. The feature should encapsulate some
piece of information about the class or value that’s to be predicted. It is up to the
machine learning model to interpret how exactly this information is encoded.

2.3 Accuracy

A point should be made about the concept of accuracy within machine learning.
Measuring the predictive value of a model should be done with appropriate caution.
It should also be known that there are multiple ways for measuring accuracy, and
there is no one ideal way for all cases.

Let’s first discuss the concept of a score. Scoring a model means assigning
a number to the model that reflects how well it can predict some outcome. As
this is in most cases the last step and, more importantly, the selection criterion
for model building, this is no trivial matter. One might be tempted to simply use
the accuracy as a score, i.e. the percentage of correct predictions. While this is
certainly possible, it has some caveats. First of all, this does not reflect the success
of a model in the case of imbalanced datasets. An imbalance refers to the ratio of
different data entries.

One example that will shed light to the caveats of scoring a machine learning
model is a notorious machine learning exercise “Machine Learning from Disaster”
on Kaggle. In this project, one aims to predict who died on the Titanic based on
a selection of features, such as cabin number, age, wealth, fare price etc... Only
about 710 people survived the disaster, while over 1500 lost their lives. Simply
assuming everybody has died already yields an accuracy of at least 68%. While
this is a great score for how simple the model is, this is obviously not a very good
model as it has no predictive value whatsoever.

In addition to data imbalance, it is also possible that in some cases one
wants to avoid false positives or false negatives at all cost. Imagine an Al driven
cancer detection software that has a 99% accuracy rate in correctly identifying
cancer cells, but also falsely identifies healthy cells in 10% of the cases. This would
give rise to a lot of people undergoing chemotherapy for no reason whatsoever. It
is for these reasons one should be careful when choosing how to score a model.

ROC AUC score The scoring method in this thesis will be the Receiver Oper-
ating Curve (ROC) Area Under the Curve (AUC) score. A Receiver Operating
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curve is a way of visualising model accuracy while including information about
false positives. It plots the False Positive Rate (FPR) against the True Positive
Rate (TPR). The false positive rate is the ratio of entries not belonging to a class
that are falsely classified as belonging to that class. The True Positive Rate is then
the ratio of the correctly classified ones. The ROC curve plots these two values for
different decision thresholds. What exactly a decision threshold entails depends on
the machine learning model, but it reflects how strictly a model penalizes wrong
classifications in contrast to how eager it is to include correct classifications. The
derivative of the ROC curve is a measure for how much false positives a model has
to allow in order to include true positives. A perfect model would have a 100%
TPR without any false positives. The curve would go up vertically at 0 FPR, and
allowing any false positives has no further influence on the TPR. In reality, some
false positives tend to be present, and the ROC curve becomes a convex curve
starting at (0,0) (no false positives, but also no true ones) and ending at (1,1)
(accepting all entries as belonging to some class creates a 100% TPR, but also a
100% FPR). The area under the curve (AUC) is now a measure for how well a
model deals with this trade-off. High TPR for low FPR gives rise to a AUC score
close to 1. The baseline for this score is 0.5: randomly assigning labels according
to their frequency in the input data will, on average, give one true positive per
false positive, yielding a straight line from the origin to (1,1) and an area of 0.5.
An example of this curve is given in Figure 2.1. The terms specificity and sensivity
are defined as:
Specificity =1 — FPR

(2.1)
Sensitivity = TPR

Folding A way of measuring the accuracy of a model during the training, and
thus figuring out if the model is doing a good job, is by cross-validating it against
other data. In other words, once a model has some parameters, it adapts their
data-dependent parameters (aka training) and tries to predict the outcome of some
known data that was not used for the data-dependent parameter adaptation. This
can be done multiple times, each time with another sample of data that will be kept
at bay. This is known as K-Fold cross-validation. The folds refer to the amount of
batches the data is split in. Each time, the model will adapt their data-dependent
parameters to K — n batches of data (the so-called “folds”) and use n folds to
cross-validate its accuracy. Eventually, every combination of K — n training- and
n cross-validation databatches is exhausted. The overall score of the model can
now be calculated as the mean of the scores of each training/cross-validation batch
permutation.
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Figure 2.1: An example of a ROC curve. Figure taken from Fan [15].

Training and test scores All the aforementioned scoring methods are examples
of training scores. Training scores involve assigning a score to outcome predic-
tions based on input data that is also used to fit the model. As such, a training
score is a measure for how well a model is fitted, but it should not be considered
as an equivalent to its predictive value. Since the same data that is used to cal-
culate the score as to fit the model, the training score carries a bias; the model is
fitted exactly to maximise this score, but only for the considered input data. New
data that was not used in the fitting process might have a vastly different score.
Since the prediction of new input data is exactly what we want for a good machine
learning model, the training score is not a good measure. If a model can distin-
guish two classes or values based on some feature, it is said that the model has
“captured” the feature. Ideally, we want a model that represents the data well and
also generalises to unseen samples. The training score gives no indication how well
a model will generalise to unseen samples. In fact, a good training score can be a
sign of a good model, or a sign of an over-fitted model. Over-fitted models capture
noise or sample-specific quirks in the data as if they were features, and do a very
good job at predicting only the specific dataset that was used to train on, but not
necessarily other unseen samples. Finding the best possible model that is not over-
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fitted is a bias-variance trade-off problem. Good data representation corresponds
to a low bias, while a good generalisation corresponds to a low variance. Training
models to a high degree and making them more complex might represent the data
better (decreasing bias), but has a high risk of overfitting (increasing variance).
Similarly, simpler models don’t overfit (decreasing variance), but may underfit the
training data, failing to capture important regularities (increasing bias).

It is for this reason that another type of score is used in machine learning;:
the test score. This score refers to the predictive success of a model on an unseen
dataset. To this end, the input data is split into two parts. One part will be
used to train on, the other will be kept at bay until after the model has been fully
trained (unlike out-of-fold cross validation). The more data there is for testing the
model, the more accurate one can test how well it generalises. On the other hand,
the more data we keep for testing, the less data there is left for training the model.
A typical ratio for training-test data is 80% — 20%. A good way of visualizing this
is by means of learning curves; these curves plot out the training and the test
scores for different amount of training and test samples. If both the training and
the test score keep going up with the inclusion of more and more data, it means
that the model is still underfitted, and needs more data to capture the features
better. On the other hand, if, at some point, the training score goes up, but the
test score goes down, the model has been overfitted. In the end, it is the test score
(also called cross-validation score, not to be confused with K-fold cross-validation)
that gives the best idea of a model’s success at capturing features and predicting
outcomes.

2.4 Adapting models for multilabel classification

Some models have native support for multiple possible outcomes, such as the Ran-
dom Forest model or Extra Trees. Most models, however, do not have this support.
One way, and the way that was used in this thesis, is the One vs Rest classification
method (also called One vs All). With this method, the model iterates over all n
classes and tries to decide whether some input belongs to one class instead of the
other n —1 classes. This approach is a way of reducing the multilabel problem to a
single class classification problem. Each iteration, one class is treated as positive,
while all the other classes are bundled and treated as negative. Each prediction
comes with a probability score. The class corresponding to the largest probability
score is considered to be the predictive class label. A model needs to be trained
for each class in this case.
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Another possible approach is the One vs One approach, where, instead of
bundling all the other classes as negative, each possible class pair permutation
is considered. This approach is beneficial for models that do not scale well for
different sizes of datasets; the One vs Rest method bundles n — 1 classes together
to treat as one and rare classes will be underrepresented in this bundle. The
downside is that this method requires n(n — 1)/2 models to be trained, whereas
the One vs Rest approach only requires n.
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Heart diseases are one of the leading causes of death in western countries. Due to
the high complexity of the organ, a lot of the underlying mechanisms remain hard
to describe. As a result, it can be very difficult to predict or cure propagation
abnormalities, often requiring highly advanced tools and leading experts in the
field to operate these and interpret the acquired data. This makes diagnosis and
treatments expensive [16] and not always successful [17]. One popular treatment
involves the ablation (burning) of cardiomyocytes [16, 18], making them unable
to propagate a signal. Identifying the optimal ablation region remains a difficult

problem.

The complexity of analysing cardiac arrhythmia mechanisms have attracted
multiple approaches. One novel approach that has become increasingly popular
and successful is the analysis of cardio-electrophysiological data through machine
learning and artificial intelligence; two mathematical architectures that are highly
efficient in encapsulating high-dimensional and large datasets. Depending on the
exact data that was extracted from a heart, this approach has been used in the
field of electrophysiology in many ways already. ECGs are a common datatype
for machine learning input [19] and can e.g. predict tachycardia types [20] and
atrial fibrillation before it starts [21], and has been used to find areas of rotors
sustaining AF [22]. In addition to using ECGs as an input, CT images have
been analysed with deep learning [23]. Machine learning has been applied for ion
channel level analysis such as the influence of the SCN5A gene on the cardiac
sodium channels [24] and identifying structure/function relationships in voltage-
gated cardiac potassium channels [25] [26], as well as the analysis of computational
electrophysiology [27, 28, 29, 30] and much more. Despite rapid advancements,
much of the machine learning applications to cardiac electrophysiology is still in
its nascent state when it comes to uncovering arrhythmia mechanisms [31] and
has barely been used to analyse contact intracardiac electrograms during atrial
fibrillation (with the purpose of guiding ablation procedures for example) [32].
They have not yet been used to analyse local activation times from cardiac mapping
data at all.
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This thesis will only consider the regular arrhythmia called atrial tachycar-
dia. Tachycardia are defined as an unusual fast heart rate; faster than 100 beats
per minute in rest for a normal adult person. We will only analyse tachycardia
developed in the left atrium. These tachycardia can be categorised as either re-
entrant or focal in nature (see Section 1.3). These tachycardia are known to induce
atrial flutter, even after catheter ablation [6].

The aim of this thesis is to expand the current applications of ML analysis
of cardiac data to atrial mapping data too. In particular the local activation
times as measured by this mapping data. The goal is to train a model that
can accurately predict the location of reentrant mechanisms, which are known to
sustain atrial fibrillation [33]. It will first explore the possibility to use supervised
machine learning to distinguish between focal beats and re-entries based on in-silico
mapping data. Following, it will explore the possibility to distinguish between
three locations of anatomical re-entries in the left atrium: the left pulmonary
veins, the right pulmonary veins and the mitral valve.

Due to the low availability of real patient data, the first part of the thesis
will expand upon data multiplication. Based on in-vivo data of the atrial geometry
and local activation times of 38 patients, a 3D mesh will be reconstructed per
patient. Multiple ways of creating variations of the same reconstructed mesh will
also be discussed. These mesh reconstructions will consequently be used in 200
electrophysiological simulations per patient model (100 focals and 100 reentries),
each producing in silico local activation times data. From this data, several features
will be considered and analysed with multiple machine learning models in order
to gain insight on the applicability of the different models to different features.

The first machine learning problem is to distinguish focal beats vs re-entry.
This will be analysed in two ways. First, by using the LAT data directly as an
input for machine learning models. Secondly by creating a new data representation
and extracting features from this representation. This is also how the analysis of
the second distinction (different re-entry locations) will be done.
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This section will provide a detailed rundown of the methods used to produce in-
silico data and how this was used in machine learning analysis.

Section 4.1 will discuss the pipeline that reconstructs a Carto .mesh file to
a mesh that can be used in such simulations. This will include a section on how a
single mesh can be copied with variations in terms of conduction velocity. Section
4.2 will start by giving a quick overview of the OpenCARP simulation environment
[13] in Section 4.2.1 and explain how the meshes need to be prepared in order to
run these simulations in Section 4.2.3. Section 4.3 will expand on how the data
produced in the simulations was extracted and processed. It will give an overview
of the features that were constructed from this data, how they were calculated
and the idea behind them. In order to keep a good overview, a flowchart of the
sections is provided in Figure 4.1.
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Input
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Reconstruction to
simulatable mesh

Mesh preparation
and simulations
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Figure 4.1: A flowchart of the subsections of Section 4: Methods, showing the

progress from an input CARTO .mesh to a reconstructed mesh, to a simulation,
and finally to machine learning features. Each numbered circle represents a sub-
section and is equipped with a figure representing the result of each subsection.
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4.1 Mesh reconstruction from in-vivo mapping data

In order to run OpenCARP simulations, one needs a mesh that is in correspondence
to the requirements of OpenCARP. A variety of wireframe, surface and volume
meshes are supported for OpenCARP simulations: line meshes (linear and cubic),
triangles, quadrilaterals, tetrahedrons, pyramids, prisms and hexahedrons.

The mapping data that’s to be analysed are CARTO .mesh files provided
by Biosense Webster Inc. and are triangular surface meshes. While these types
of meshes are technically supported by OpenCARP and can be directly used for
further simulations, two core issues arise in this case:

1. The resolution is too coarse for an activation front to propagate

2. This is a simplification of the real-life case that does not mirror the true
case as well as it could, even losing some core dynamics such as transmural
propagation and full 3D conduction anisotropy. Including this might be
useful for future use.

The supplementary material provides a pipeline that discusses how to create
a refined tetrahedral mesh with heterogeneous conduction regions that can be
used for OpenCARP simulations. No support for conduction anisotropy has been
implemented yet. The pipeline makes use of TetGen [34] to create a tetrahedron
mesh from a bounding surface layer. The thickness of the mesh is kept thin to
avoid transmural conduction [35] to play a significant role in the wave propagation
dynamics or inducing endo- epicardial dissociation of electrical activity, which
would add unnecessary extra complexity [36] to the simulations. DGM [14] is
used to calculate conduction velocities based on in-vivo LATs and these are used
to make variations of the original conduction velocity distribution. DGM is a
diagnostic tool using network theory (Directed Graph) on cardiac excitation.

31



4 Methods

4.2 OpenCARP simulations on HPC

4.2.1 OpenCARP simulations specifications

The simulations will be run using the OpenCARP ecosystem [13]. OpenCARP
is an open-source software system offering single cell as well as multiscale simu-
lations from ion channel to organ level. This ecosystem contains several different
programs and utilities that work together in order to prepare, calculate and anal-
yse electrophysiological simulations. Below is a quick overview of the different
programs and utilities.

OpenCARP This is the backbone of the ecosystem and consists of the simulator
with all the different solvers, written in C++4. Direct interaction with this simula-
tor is possible by means of parameter files, specifying all the variables for a single
simulation. Providing a parameter file for each simulation is tedious work if not
for a parameter-generating script or some other automated interaction with the
simulator.

CARPutils The python-based CARPutils framework enables the development
and sharing of simulation pipelines, i.e. automating in-silico experiments includ-
ing all modelling/simulation steps. This allows for easier simulation setup and
automation, making it possible to run multiple simulations with different param-
eters.

Meshalyzer Meshalyzer is a graphical program that can display time dependent
data on 3D finite elment meshes. It is developed to be compatible with the cardiac
simulation environment OpenCARP. Meshalyzer can read in and visualize the
binary .igb files; one of the outputs of OpenCARP simulations. It allows for the
creation of videos of the simulation outputs.

Meshtool Meshtool is a command-line tool written in C++ that supports the
OpenCARP file formats. It can do a selection of mesh operations, such as imporv-
ing the quality, extracting submeshes and converting from and to other mesh file
formats such as the .vtk format. The latter option has been used frequently to
allow for mesh operations in other programs (such as ParaView [37] or MeshLab
[38]) that do not support the OpenCARP file formats.
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Simulations will be run with the parameters as described in Table 4.1.

4.2.2 The HPC infrastructure

Simulations will be run on the victiny cluster of the High Performance Computing
core facilites (HPC) of the Flemish Supercomuter Centre (VSC). They will be run
in seven batches total. Each simulation will be run using 36 cores. The binary
vm.igb output files will be saved for visual inspection where necessary and the
depol-thresh.dat output files will be saved for the machine learning analysis
(infra).

4.2.3 Simulation prequisites

Per mesh, 100 focals and 100 reentries will be simulated. Simulations will be run
by selecting a stimulus region and, in the case of simulating a reentry, a block
region. This stimulus will be propagated using the Courtemanche ionic model
[3], resulting in a depolarising wavefront. Anatomical re-entry will be induced
around one of three anatomical structures in the atrium: the mitral valve, the left
pulmonary veins and the right pulmonary veins.

A stimulus is an external source that triggers depolarisation in cardiomy-
ocytes. A block is a selection of cells that do not depolarise and thus do not allow
wave propagation for a limited period of time (around 200 ms). In addition to
being non-conductive, a region that is selected as a block is clamped on the resting
potential of —81.2 mV. When timed correctly, this should prevent a depolarising
wave from propagating in one direction, but not the other. If the block disappears
by the time the wave propagated around some anatomical region and arrived at
the same location again, it allows the depolarising wave to propagate further. To
induce macro re-entry, this block region should connect two anatomical objects
so that the passage of a wavefront between these anatomical regions becomes im-
possible. The block should be present longer than the APD of adjacent cells, so
that they can’t induce further propagation when the block disappears. The block
should also not linger around for too long, however. When the depolarising wave
has made its way around the atrium, it should be able to continue its way around.
As such, the block should have a slightly shorter period than the cycle length of
the depolarising wavefront around the anatomical region of interest.

The OpenCARP simulation environment can read in locations of stimuli
and blocks by means of a .vtx file, of which an example is shown in Table 4.2.
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Meaning Parameter name Value
Simulation time resolution (ms) dt 20
Time between spatial output (ms) spacedt 5
End time of simulation (ms) tend 2000
Experiment label experiment 0

Use parabolic solver parab__solve 1
mass_ lumping 1

Amount of stimuli num_ stim 1
stimulus[0].vtx_ fen 1

stimulus[0].start 1000

stimulus[0].strength 80

stimulus[0].duration 0.1

stimulus[0].stimtype 0

stimulus[0].x0 0

stimulus[0].xd 1

stimulus|0]. \() 0

stimulus|0].yc 1

stimulus|0].z0 0

stimulus|0].zd 1

stimulus[0].vtx_ file stim

N conduction regions num__gregions 1
gregion[0].g_ il 0.7787

Conduction velocity scaling in gregion[0].g_ it 0.7787
intracellular (i) or extracellular (e) region gregion[0].g_in 0.7787
for longitudinal (1), transversal (t) gregion[0].g_el 2.7970
or normal (n) direction gregion[0].g_et 2.7970
gregion[0].g_en 2.7970

gregion[0].num_ IDs 1

gregion[0].ID[0] 0

N physical regions num_ phys_ regions 1
phys_ region[0].num_ IDs 1

phys_ region[0].ID[0] 0

num__ LATS 1

lats[0].al 1

lats[0]. measurand 0

lats[0].threshold -75

lats[0].ID depol

lats[0].method 1

num_ tsav 1

tsav[0] 2000

write_statef backup

Table 4.1: Parameters used in OpenCARP simulations. Greyed out parameters
were (re)defined in the CARPutils Python framework.
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Format Example
n_indices 106
“intra” or "extra” intra
index; 0

indexy 6

index,, 539

Table 4.2: .vtx file format

Stimulus
Block
LPV
RPV

>

Figure 4.2: An example of a stimulus (purple) and block (black) on the atrial
roof. The stimulus will induce a depolarising wavefront. This wavefront will be
unable to pass through the block as long as this block is present. The block has to
disappear before the wavefront has propagated around the right pulmonary veins
(yellow), but has to linger long enough so the stimulus can’t induce propagation
in the clockwise direction.
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Figure 4.3: A reconstructed 3D model of an atrium showing the names of various
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Parameter Original Modifier Result

g CaL 0.1238 x0.25  0.03095
g Kr 0.0294 x4 0.1176

Table 4.3: Courtemanche ionic model parameter modifications

This selection procedure was done with Paraview. To this end, each mesh point
was equipped with their index as scalar data. This scalar data is remembered
by Paraview throughout mesh operations. After selecting a stimulus region on a
mesh, the point indices were exported and converted to .vtx. The same procedure
can be done for the selection of block regions. For each mesh, 10 stimuli were
selected throughout the atrial myocardium: two at the isthmus, four on the roof
and four on the interatrial septum. These locations are shown in Figure 4.3. If the
septum or the isthmus of the atrium was too small for these selections, a location
as closeby as possible was stimulated instead. In combination with a mesh, each
stimulus region can now be used for a simulation of focal beats. Additionally, 10
block regions were also selected in correspondence to the stimuli locations, such
that combination of stimulus, block and their corresponding mesh can be used for
a reentry simulation.

In order to ensure that the circumference of the atrial structure L is larger
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than the action potential duration times the conduction velocity L > v - APD,
two parameters of the Courtemanche ionic model were modified. These are shown
in Table 4.3 and shorten the APD.

4.3 Mapping data processing and feature
engineering

The following section will focus on how the LAT data as generated by the Open-
CARP simulations will be filtered, processed and manipulated into features for
supervised machine learning.

4.3.1 Generating a ground truth

Ground truths for the focal and reentry classification problem was already present
by preparing the simulations and were easily extracted. A ground truth for the
reentry location was generated by making use of DGM. DGM can determine the
source of a given arrhythmia. It is capable of detecting reentry - macro, localized
and functional - as well as focal activity.

4.3.2 Processing and filtering in-silico cardiac mapping data

For each simulation, the coordinates and corresponding LATs were extracted. The
mesh coordinates were rotated to align with some reference mesh and represented
in both cartesian coordinates (z,y, z) and angular coordinates (6, ¢).

For further processing steps, the cycle length needs to be calculated. To
this end, the angular coordinates (6, ¢) of the activated points were sorted by their
respective activation time. This time-ordered data was passed through a low-pass
filter and a sine function was fitted to this low-pass filtered data. The frequency of
the fitted sine function is now equal to the cycle length. A plot of the time-ordered
coordinates with their low-pass filtered variants and a fitted sine function is shown
in Figure 4.5, for both a full simulation and a subsampled simulation with 2000
LAT points. Filtering was done using the scipy module signal.butter() with
parameters as shown in Table 4.4.

As we only want to analyse stable simulations, we need to check whether or
not the simulations contain a stable wavefront during the last cycle length. To this
end, the time intervals of each node of the simulation were checked and compared
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Subsampled simulation

Full simulation .
(2000 points)

Critical frequency 3.3e-4 3.3e-3
Order 1

btype Tow’

analog False

Table 4.4: Parameters used in the Butterworth low-pass filtering of time-ordered

angular coordinates.

a Aligned mesh: OC4

a Aligned cores

4 Unaligned mesh: OC4
4 Unaligned cores

a Reference mesh: OC45
a Reference cores

Figure 4.4: Example of mesh alignment. The “cores” refer to the centers of the
RPV, LPV and MV.
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Figure 4.5: Time-ordered coordinates of a full simulation (left, 55105 points) and a
subsampled simulation (right, 2000 points). The low-pass filtered coordinate series
is show in yellow. The fitted sine is shown in red.
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Figure 4.6: Convergence of 100 slowest converging nodes for 700 randomly selected
simulations: 200 focals and 500 re-entries. At the end, each simulation’s slowest
converging nodes are within 1% relative difference to their last LAT interval.

to their last time interval, corresponding to the last cycle length. Figure 4.6 shows
the 100 slowest converging nodes for 700 randomly selected simulations. If no
activation was found during the last cycle length, the simulation was considered
to be failed and was left omitted for further analysis. If a simulation had nodes
that were not within 1% relative difference to the last measured time interval, they
were considered non-converged and left omitted for further analysis. Only the last
cycle length of each remaining simulation was used in further analysis. As real-life
mapping data only has a couple of thousand datapoints at best, each simulation
was subsampled to 2000 points to more closely resemble clinical settings.

4.3.3 Feature engineering from processed cardiac mapping data

The previous section provided us with processed cardiac mapping data. The cur-
rent section will discuss how to extract features from this processed data.

The first method, as discussed in Section 2.2, feeds the LAT datapoints
directly as features to a machine learning model, without any feature engineering
steps.

The second method involves the engineering of features. These features
will be subdivided into two main types: global and regional features. Global
features refer to features that reflect information about the entire myocardium,
rather than some statistic around or referring to a specific anatomical region. The
regional features can again be subdivided into two main types: features referring
to the amount of activation and features referring to the location of activation.
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Figure 4.7: Example of a selection of the myocardium around the three anatomical
regions of interest: the left pulmonary veins (blue, LPV), the right pulmonary
veins (yellow, RPV) and the mitral valve (red, MV). The anatomical regions are
non-conductive and will not have any registered LATs. The selected myocardium
does have registered activation.

Global features Only one global feature was implemented: the silent time. This
is the amount of time that no activation is measured across the entire myocardium.
Since reentries loop around some anatomical object or region, there is sustained ac-
tivity and the corresponding silent time is expected to be 0 ms. This feature alone
should suffice for a machine learning model to distinguish between focal beats and
reentries. In fact, this feature is so straightforward that machine learning shouldn’t
even be necessary for the focal beats vs reentries classification problem. It was
implemented anyways as an initial explorative test to see if the data processing
worked and the machine learning could interpret the resulting features.

Regional features These features reflect some information about the myocardium
around anatomical objects of interest, i.e. the left pulmonary veins, the right pul-
monary veins and the mitral valve. These regional features will be of value when
developing the machine learning models distinguishing the locations of re-entrant
mechanisms. For these features, the neighbouring myocardium was extracted from
the three anatomical regions of interest: left pulmonary veins, right pulmonary
veins and mitral valve. The neighbouring myocardium is highlighted in Figure
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4.7. Only registered LATs in these regions will be used for further feature engi-
neering.

The first type of regional features convey information about the amount
of activation around some anatomical object. If an activation wavefront loops
around some anatomical object, then there should be sustained activity around
this anatomical object. The amount of LAT registrations per time unit (activation
rate) should never be 0 Hz. Beware that an anatomical object where there is
no rotational activity around it can still have an activation rate that does not
drop to zero, as it’s perfectly possible that a wavefront enters the neighbouring
myocardium on one side when the wavefront of the previous cycle has exited on
the other. Additionally, it’s also possible that the time resolution of the LATSs is
lower than the time resolution used to calculate the activation rate; this results in
empty time intervals due to a resolution mismatch, rather than an actual period
of no activation. To avoid confusion with the silent time, the lack of activation
around an anatomical object will be called regional quiet time. The regional quiet
time is now calculated as the sum of all the time intervals that did not register
an LAT. This method different from the global silent time, as the latter calculates
the longest time interval without activation, and not the sum of all time intervals
without activation. This feature needs a somewhat coarse time resolution. Taking
the resolution (i.e. bin width) too fine will give rise to a lot of quiet time intervals,
even for regions with sustained activation. This is due to the fact that these regions
only contain about 100 — 200 points in the case of subsampled simulations. The
activation rate around some region with N = 200 points for a simulation with a
cycle length of about 200 ms is expected to be

N 200
CL 200 ms

(Noet) = =1kHz (4.1)

, or about one registered LAT per ms. If we consider this activation rate to
represent a Nyquist sampling rate of the activation wavefront signal, the Nyquist
theorem tells us that this can reconstruct a signal with a time resolution/bin
width of at best 2 ms. This is, however, an ideal case. Since the points around the
anatomical object are not perfectly evenly sampled, and the conduction velocity is
not constant, the activation rate cannot be considered a Nyquist sampling rate and
this value has a considerable error. If we want to surely find a series of non-empty
time intervals for the regions where there is sustained activity, the time resolution
needs to be about 10 times as large. This is a ballpark value at best and no rigorous
research was done to find the optimal time resolution for a given sample rate i.e.
activation rate. A time resolution this large may fail to capture regional quiet
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Figure 4.8: Example of the activation rate around anatomical regions for a simu-
lation with 2000 points.

times around anatomical objects with no sustained rotational activity around it.
To this end, another feature was created: the standard deviation of the activation
rate.

The second type of regional features will reflect information about the lo-
cation of the depolarising wavefront with respect to the anatomical regions. A
wavefront that loops around an anatomical object can only be at one side of the
anatomical object at the same time. When a wavefront passes some anatomical
object at two sides at once, it surely cannot be the location of an anatomical reen-
try. To convey this in a feature, the average angle of activated points around
each anatomical object was calculated per time interval. This results in a smooth
continuous line for anatomical objects with rotational activity, but not for regions
where the wavefront passes around the object at two sides at once. For the latter
case, we expect the mean angles to be scattered around the mean at random. This
feature is, similarly as before, dependent on the chosen time resolution, as well
as possible regional quiet time. To combat empty time intervals due to the time
resolution and point density mismatch, the coordinate values of empty time inter-
vals were filled with artificial points, monotonically increasing/decreasing between
the values of neighbouring non-empty time intervals. Passing these time-ordered
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average coordinates through a low-pass filter provides a baseline on their variation.
The difference between the actual coordinates and the low-pass filtered ones is now
a measure for how smoothly these coordinates vary over time. Denoting low-pass

filtered coordinates with a tilde (6, ¢), the error is calculated as:

error = L Z(@z — ;) (4.2)

Filling in empty time intervals with artificial coordinates will also fill in the
time intervals that were empty due to regional quiet time rather than a resolution
mismatch. As this has very little influence on the value of the feature (the difference
between a monotonically increasing set of values and their low-pass filtered variants
is low to zero) and the information about the amount of activation is already
encoded in the previously discussed features, this was left as it is.

An example of the angles and their low-pass filtered variants is shown in
Figure 4.9. In this figure, it’s visible how the ¢ coordinates of the time-ordered acti-
vated points around the right pulmonary veins do not follow their low-pass filtered
variants. This regions probably does not have any rotational activity around it.
This is better visible in Figure 4.10, where it’s visible how the activation wavefront
passes the RPV on both sides at the same time.

In addition to the error rate, the variance of the time-ordered mean of
coordinates was also added as a feature.

4.3.4 Machine Learning

Given the features as described in Section 4.3.3, a total of nine different machine
learning models were trained and compared:

o K Nearest Neighbors

o AdaBoost

o Gradient Boost

e Support Vector Classifier
e Bernouilli Naive Bayes

o Complement Naive Bayes

o Multinomial Naive Bayes
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Mean angles of activation
around anatomical regions
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Figure 4.9: Example of a time-series of coordinates and their low-pass filtered
variants. Grey areas indicate artificially filled NaN values.

e Random Forest
o Extra Trees

To this end, a parameter grid was created for each model. Using
sklearn.model selection.GridSearchCV(), the per-model parameters yielding
the best score were saved, along with the corresponding score. Fitting the models
was done by splitting the training data in 5 folds, training on 4 of them and using
the last one for cross-validation. Scoring was done by calculating the mean ROC
AUC out-of-fold score.
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Figure 4.10: Two plots of the (6, ¢, t) coordinates of activated points from the same
simulation as Figure 4.9. It is clear here how there is rotational activity around the
left pulmonary veins (blue spiral) and mitral valve (red spiral), but not around the
right pulmonary veins (yellow cylinder): the activation wavefront passes on both
sides at the same time.
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5.1 Mesh reconstruction

The mesh refinement procedure can adapt the mesh edges to a desired edgelength.
This can be seen in Figure 5.1, showing a boxplot of the mesh edgelength dis-
tribution at each iteration step, as well as the values for the maximum allowed
edgelength (o) and minimum allowed edgelength (tolerance). For each iteration
step, the length of the mesh edges are distributed closer and closer within the
desired range. At the last iteration step, the amount of edges that are not within
the desired range is marginal and their lengths are close to the desired range.
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Mesh edge lengths during refinement
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Figure 5.1: A mesh refinement procedure. The longest allowed edge («) follows
the distribution (1 — %) -maz(original edges)-e~*"/N 4 UL, while the minimum
allowed edge length (tolerance) decreases linearly as 500um - (1 — %) + LL, where
n is the current iteration step and N is the total amount of iteration steps. UL

and LL are the desired upper and lower limit respectively, which shown in blue
(here: 400 — 1200 pm).
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The reconstruction procedure can successfully make variations of these con-
duction regions based on the existing conduction velocity distribution throughout
the mesh. It can automatically assign non-conductive regions based on tags in the
CARTO .mesh file. They provide an efficient way of expanding sparse data. It is
unclear how realistic these conduction velocity distributions are.

13 meshes did not complete the process of tetrahedralisation, of which 4
could potentially be re-run with different edgelength intervals or iteration steps.
9 failed due to unknown reasons. Possibly, the latter 9 meshes were not manifold
and/or watertight. No further time was spent on trying to fix these meshes. 25
other anatomical 3D models were successfully recreated and passed on to further
preprocessing steps.

5.2 Simulations

25 meshes were used in a total of 5000 simulations. 617 out of 5000 simulations
did not run correctly: 214 focals and 403 re-entries. This was due to:

o Faulty selection of a stimulus or block region, preventing propagation.

o Lack of stimulus propagation due to a mesh resolution that’s too low or a
bad quality mesh.

o A self-extinguishing re-entry

5.3 Features

The distributions of regional features are shown in Figures 5.3-5.8, where the
columns refer to the label of the simulation and the rows refer to the location at
which the feature was calculated.The means are shown as a vertical lines. Keep
in mind that, since this is a multilabel problem and simulations can have multiple
labels at once, there is overlap between the columns. Simply because a simulation
is e.g. in the LPV column does not mean it can’t be in another column i.e. have
another label too.

Figures 5.3 and 5.4 show that the standard deviation of the activation rate
around anatomical regions and the regional quiet time are indicative of the location
of reentry, as their mean is visibly lower for the feature distributions where the
region of the feature corresponds to the region label. The other features show
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Figure 5.2: Silent time of simulations.

no obvious differences. Figure 5.9 shows that the regional quiet time and the
standard deviation of the activation rate around the same anatomical region have
a correlation of .8 for the left pulmonary veins and the mitral valve and .9 for
the right pulmonary veins. This correlation is very high and implies that one of
either feature is sufficient to encapsulate the underlying information. The silent
time is also heavily correlated with the regional quiet time, with a value of .8 for
all anatomical regions. Some correlation is to be expected, as a silent time will
always give rise to a regional quiet time as well. Other features are not significantly
correlated.
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Figure 5.4: Regional quiet time per anatomical region
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Figure 5.5: Error rate between the means of binned time-ordered theta coordinates

and their low-pass filtered variant
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Figure 5.6: Variance of the means of binned time-ordered theta coordinates
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Difference between time-ordered ¢ and its
low-pass filtered variant
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Figure 5.7: Error rate between the means of binned time-ordered phi coordinates

and their low-pass filtered variant
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Figure 5.8: Error rate between the means of binned time-ordered phi coordinates

and their low-pass filtered variant
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5.4 Machine Learning: focal vs reentry classification

5.4.1 LATs as point features

Using the LAT points as features gave no satisfactory result. They will not be
further discussed.

5.4.2 Engineered features

Table 5.1 shows us the ROC AUC scores, specificities and sensitivities of all the
models. For the sake of reproducibility, the model parameters yielding these scores
are given in the supplementary material in Table 7.2.

Each score is the mean of five out-of-fold predictions. The scores show that
machine learning is very capable of distinguishing focal beats versus reentries.
This is no surprise, as the silent time alone already provides this information,
as is obvious in Figure 5.2. Only the model Complement Naive Bayes (CNB)
has a mean ROC AUC score below 0.995. CNB also has a perfect sensitivity
score, indicating that it can correctly classify all focals, but also classifies reentries
as focals. Support Vector Machine (SVM) is the most successful model with a
perfect score.

The learning curves in Figures 5.10-5.14 do not show a lot of valuable
information for the successful models as the y-axis has a very small range. This
implies that the models can find the difference between focal beats and reentries
very early on, and adding more data does not impact the mean ROC AUC score
a lot. Two learning curves should be discussed however. The models with a low
score i.e. Multinomial Naive Bayes (MNB) and Complement Naive Bayes (CNB)
are different. Both the training and cross-validation score of MNB in drop after
about 2500 training samples, as can be seen in Figure 5.13a. This implies that
the model fails to fit to more input samples than 2500, or that the parameters are
not optimal for the given amount of samples. The training and cross-validation
score of CNB seem to be on a rise in Figure 5.12b. This implies that either the
model is still underfitted for the given amount of samples and will fit better given
more input data, or that the parameters are not optimal for the given amount of
samples.
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Model Mean ROC AUC Mean specificity Mean sensitivity
SVM: 1.00000 1.00000 0.98074
Random forest:  0.99929 0.99739 0.98906

Extra trees: 0.99929 0.99869 0.98818
AdaBoost: 0.99929 0.99695 0.98906
Gradient Boost: 0.99929 0.99913 0.98468

KNN: 0.99842 0.99696 0.97943

MNB: 0.99619 0.98929 0.99519

BNB: 0.99562 0.99095 0.98643

CNB: 0.78391 0.73702 1.00000

Model Mean: 0.97459

0.96738

0.98809

Table 5.1: Mean out-of fold cross-validation scores and average out-of-fold speci-
ficity & sensitivity for the label ‘focal’. Models are sorted by their mean ROC AUC
score. Highest scores per column are shown in bold.

1 0{_earning curve for knn: FvsR Learning curve for ada: FvsR
1.00 1.00

§ §0 99
0.98

—e— Training score
0.97 —— Cross-validation score

2000 3000
Training examples

(a) Learning curve for KNN
(focals vs reentries)

0.98

—e— Training score
== Cross-validation score

2000 3000
Training examples

(b) Learning curve for AdaBoost

(focals vs reentries)

Figure 5.10
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5.5 Machine Learning: reentry location classification

Table 5.2 shows the out-of-fold averaged ROC AUC scores of the models. The
specificity and sensitivity have been averaged over the folds, as well as the labels.
Means taken over the cross-validation folds will be denoted with a subscript ‘F’.
Means taken over the labels will be denoted with a subscript ‘L. An overview
of the per-label sensitivity and specificity is given in Table 5.3. For the sake
of reproducibility, the model parameters yielding these scores are given in the
supplementary material in Table 7.3.

It is visible from both the ROC AUC scores and the sensitivities and speci-
ficities how machine learning is capable of inferring the location of reentries, albeit
with lower accuracy than the focal vs reentry classification problem. The Com-
plement Naive Bayes (CNB) classifier shows the best ROC AUC score at 0.7630.
7 out of 9 models have a ROC AUC score above 0.71. Extra Trees has the best
sensitivity at 0.85560 and the second best specificity at 0.82002. Gradient boost
has the best specificity at 0.84726 and second highest sensitivity at 0.8245. The
specificity is for most models comparable to its sensitivity, with the exception of
CNB, Multinomial Naive Bayes (MNB) and Bernouilli Naive Bayes (BNB). Similar
scores for specificity and sensitivity imply that false classifications aren’t skewed
to be predominantly positively or negatively assigned. CNB and MNB have a
notable higher sensitivity than specificity: a difference of 0.13417 and 0.13018 re-
spectively. This implies that these models have a lower false negative rate than
a false positive rate. For BNB, the opposite holds true. Looking at Table 5.3,
some specificities and sensitivities yield even higher scores, with a specificity of
0.91841 for the classification of MV reentries with Extra Trees, and a sensitivity of
0.96970 for the classification of RPV with Extra Trees. The mean specificities and
sensitivities are dragged down by having lower scores for other labels. Looking at
the low model-average sensitivity for the classification of MV reentries, it’s visible
how the mitral valve label has a surpsisingly low sensitivity for most models, with
values 0.35810 for Random Forest, 0.31895 for BNB and even 0.29694 for Support
Vector Classifier. This implies that the features do not easily lend themselves to
capturing mitral valve reentries for these models, yielding a lot of false negatives.

With the exception of the learning curves of Gradient Boost (Figure 5.16a),
Multinomial Naive Bayes (Figure 5.18a) and Extra Trees (Figure 5.19), all learn-
ing curves have a strictly rising cross-validation score with the inclusion of more
training data. This implies that all these models are still underfitted. It would be
informative to fit these models to even more data to see how long the trends hold.
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Model Meang;, ROC AUC Meanpg, specificity Meanp ;, sensitivity
CNB: 0.76300 0.70729 0.84146
MNB: 0.76254 0.70806 0.83824
MLKNN 0.74438 0.74683 0.78704
Extra trees: 0.74284 0.82002 0.85560
SVM: 0.73884 0.77982 0.72024
Gradient Boost: 0.73552 0.84726 0.84254
AdaBoost: 0.71953 0.79352 0.78589
Random forest:  0.69608 0.74032 0.72791
BNB: 0.65798 0.73216 0.61261
Model Mean: 0.72897 0.76392 0.77906

Table 5.2: Mean out-of fold cross-validation scores for the reentry multilabel clas-
sification problem and average out-of-fold specificity & sensitivity, averaged again
over the labels. Models are sorted by their mean ROC AUC score. Highest scores
per column are shown in bold.

Extra Trees, Gradient Boost and Bernouilli Naive Bayes seem to be overfitted, but
it is not fully clear and they too could use more data to gain a better view over
the trend of the cross-validation score.
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5 Results

Meanp specificity Meany sensitivity
Model Meang 1,
ROC AUC LPV RPV MV LPV RPV MV

CNB: 0.76300 0.78110  0.74335 0.59788 0.86374 0.88822 0.77384
MNB: 0.76254 0.78618  0.74239  0.60188  0.86259  0.89226  0.76701
MLKNN: 0.74438 0.76272  0.67506  0.79198  0.86607 0.96768  0.54500
Extra trees: 0.74284 0.86430  0.69984 0.91841 0.88685 0.97912 0.69758
SVM: 0.73884 0.76603  0.68077  0.89725  0.89259 0.97643  0.29694

Gradient Boost: 0.73552 0.89938 0.73776  0.89309 0.88914  0.96566  0.71520
AdaBoost: 0.71953 0.84357  0.67965  0.85698  0.84295 0.96162  0.55589
Random forest:  0.69608 0.74258  0.57778  0.87478  0.85329  0.96970  0.35810

BNB:

0.65798 0.87158  0.51199 0.83526  0.60167  0.89360  0.31895

Model

Mean: 0.73857 0.82832  0.72095 0.83411 0.89222  0.96251  0.62564

Table 5.3: Average out-of fold cross-validation scores for the reentry multilabel
classification problem and average out-of-fold specificity & sensitivity for each
label. Highest scores per column are shown in bold.
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Figure 5.19: Learning curve for Extra Trees (reentry location)
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5 Results

With eight models having ROC AUC scores between 0.995 and 1.0, super-
vised machine learning is very successful in distinguishing focal beats from reentry,
indicating that cardiac mapping data can lend itself to machine learning analysis.
It is moderately successful in inferring the location of reentry, with seven models
having mean out-of-fold ROC AUC scores between 0.71 and 0.76. The latter clas-
sification problem needs more samples in order to properly fit the models to the
data.
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6 Discussion

6.1 Mesh reconstruction

The mesh reconstruction pipeline as discussed in Section 4.1 can reconstruct a
CARTO .mesh into a qualitative simulatable mesh with control over edge lengths
and conduction regions.

This pipeline can be useful for any electrophysiological simulations on CARTO
data. The pipeline can be expanded to other data types as well, as long as they
contain point and triangle information. The automatic assignment of conduction
regions and tagged physical regions to the output mesh only works for CARTO
.mesh files and will not be possible for other data types, but this can be imple-
mented if necessary.

6.1.1 Limitations

The pipeline is sensitive for input meshes that have defects. Some defects are
automatically fixed throughout the pipeline, but most are not. Whether or not the
mesh survives the reconstruction process depends on the refinement parameters
as well as these mesh defects. Sometimes meshes would fail the reconstruction
process, but succeed with slightly different allowed edge length or iteration step
parameters. Out of 38 input meshes, 13 failed. Of these thirteen, about four
could be rerun with other parameters and succeed. The other 9 failed due to mesh
defects or other unknown reasons.

Since CARTO data carries no information about fiber directions, this was
not implemented in the pipeline. However, the inclusion of fiber directions is
important for realistic simulations [39]. This is a major shortcoming.

The availability of atrium models remains sparse. 25 atrium meshes is not
enough to fully encapsulate the variance of atrium shapes that are present in the
population.
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6.1.2 Further development

The mesh reconstruction pipeline could use a mesh defect fixing step for a more
reliable reconstruction process, as well as support for other datatypes. Preferably
datatypes with fiber direction information. Fiber directions can also be inferred
after the reconstruction process based on histology maps, rule-based methods or
methods that use morphological information of the atrium as well as a local solu-
tion of Laplace’s equations [40, 41, 42].

It would be beneficial to include more atrium meshes. Tweaking the shape
of the current meshes is also an option. To this end, one could make variations
in shape of a given atrium mesh by varying spatial operations such as stretching
along some axis.

6.2 Machine Learning

Machine learning is very capable of discerning focal beats from reentry, as is visible
in the high scores in Table 5.1. Complement Naive Bayes has the lowest ROC
AUCscore for this classification problem at 0.78391. The other 8 models have a
near perfect ROC AUC score.

It can also distinguish between different locations of anatomical reentry
with moderate succes, as is reflected by the scores in Table 5.2. 6 out of 9
models have a ROC AUC score above 0.73. Gradient Boost and Extra Trees
provide the highest specificities and sensitivities pairs at (0.84726,0.84254) and
(0.82002, 0.85560) respectively.

The machine learning methods as discussed in this work provide the initial
steps towards a new field of analytical applications, more closely correlated to the
wave dynamics and anatomical properties of the heart. An analysis of this kind
has not been done before and can combine existing state of the art machine learn-
ing analysis techniques to existing datasets, possibly providing new and insightful
information. It also highlights the capabilities of DGM [14] for generating ground
truth labels and conduction velocities, making a supervised machine learning anal-
ysis of this scale possible.

67



6 Discussion

6.2.1 Limitations

The ground truth is generated by DGM. The accuracy of a machine learning model
based on this ground truth is a correspondence rate to DGM, and can only ever
get as accurate as DGM.

Only 2097 simulations of reentries could be used for machine learning anal-
ysis. This is not enough for most models to fully fit to the data given the feature
set. With the exception of Gradient Boost, Multinomial Naive Bayes and Extra
Trees, all models are underfitted. More data needs to be generated to fully explore
the capabilities of these models.

During feature engineering process, the scope was limited to designing fea-
tures with a presupposed direct link to the underlying dynamics of reentries, such
as regional quiet time, mean angular deviation from the low-pass filtered angles
etc. This does not truly exploit the full capabilities and strengths of machine
learning. It would be beneficial to add much more features that do not necessarily
contain obvious information about the underlying dynamics. One of the strengths
of machine learning is to find connections where we can not. It is thus not nec-
essary to limit the features to those with presupposed obvious links to underlying
dynamics.

All features are dependent on a certain time resolution or bin width. The
chosen values might not be optimal. They might not even be sufficient in some
cases. The time resolutions for these features were educated guesses, but unex-
plored ones. This is also applicable to the choice of the amount of points in the
bands around anatomical regions.

All features referring to the location of activity, as discussed in Section 4.3.3,
were represented in angular coordinates (6, ¢). As some features are dependent
on distances (the error rate with the low-pass filtered coordinates, see Figure 4.9)
or spatial point density (the variance of the coordinates, see Figure 5.6 and 5.8),
these distances and densities would have to be scaled with the spherical Jacobian
to give accurate values. This was not implemented. In hindsight, the spherical
coordinate representation was unnecessary, save for the fact that this makes it
possible to make 3D plots of (0, ¢, t) space like Figure 4.10. All these coordinates
and corresponding features can be perfectly well represented in (z,y, z) space. In
addition to providing two extra regional features (the error rate with the low-pass
filtered time-ordered coordinate and the variance of this time-ordered coordinate),
there would also be no need to scale these with a Jacobian.
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The error rate between the time-ordered spherical coordinates and their
low-pass filtered variants might not be the best way to represent a wavefront
passing on both sides of an anatomical object. Averaging out the angles that are
measured in the same time interval loses a lot of valuable information. A better
way might be to not average these coordinates at all, but simply time-order them
as is, and count the amount of zero crossings.

The regional quiet time is calculated as the ratio of empty time intervals
around some anatomical object to the cycle length. A better implementation that
better represents the amount of time without activation around an anatomical
object, and one that is less susceptible to the choice of an appropriate time resolu-
tion, is to find the longest amount of time some anatomical object’s neighbouring
myocardium goes without activation. For regions with sustained activity, this
will be the time between the two slowest consequent LATs. For regions without
sustained activation, this can be much larger than this slowest consequent LAT in-
terval if the depolarising wave is at some point not propagating in the neighbouring
myocardium.

Each simulation of focal beats was run with a stimulus pacing interval of
exactly 240 ms. This might skew the accuracy of the machine learning to seem
more accurate than it really is. It might be beneficial to rerun the simulations of
focal beats with varying pacing intervals and to analyse these instead.

The LAT datapoints taken from the simulations were subsampled to 2000
points. This sampling was done homogeneously. This does not reflect the case of
a clinical setting, where there can be significant variance in the point density.

The machine learning was only done on simulations. Even with the imple-
mentation of varying conduction velocities on the simulation mesh and usage of
precise ionic models, these simulations are and idealised case of the clinical setting
and lack a lot of noise that in-vivo data has.

6.2.2 Further development

More data needs to be generated. On the one hand to see if the success for
discerning focals from reentries holds true for more data, and on the other hand
to fully explore the capabilities of the models inferring the reentry location. As
each simulation was subsampled to 2000 points, and obvious way to increase the
amount of input data is to sample the same simulation multiple times, each time
with different points. This will represent the same simulation in multiple ways,
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effectively expanding the same data. However, this method will not add to a
variation in conduction regions, nor the atrium anatomy, which is an important
influence on the susceptibility of the atrium to atrial fibrillation [43].

The current features can be developed further to more accurately convey
the intended information. For example, using the amount of zero crossings in
the time-ordered mean angular coordinates (Figure 4.9) might better convey the
fact that a wavefront passes an anatomical object on both sides better than the
currently implemented error rate. Other features are often dependent on a certain
time resolution or bin width. In addition to polishing the existing features, more
features altogether should be beneficial to the machine learning.

More research should be done on finding appropriate time resolutions for
these features, as well as the influence of the size of the myocardium used for
feature engineering, as shown in Figure 4.7, on the machine learning results.

It would be interesting to see the effect of heterogeneous sampling of sim-
ulation data on the machine learning accuracy, as well as the addition of noise to
the simulation data.
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7 Supplementary material

7.1 Mesh reconstruction pipeline

7.1.1 CARTO .mesh to .csv

The first step in the mesh preparation sequence consists of extracting the point and
triangle information from the provided .mesh files. These contain the coordinates
of the points and the point indices that define each triangle respectively. Both
are written out to .csv files, as well as all other sections of the .mesh file. Some
.mesh files provide extra information regarding the anatomy of the left atrium,
such region tags to define left and right pulmonary veins as well as the mitral
valve. This info can later on be used to automatically detect and assign non-
conductive regions, but will not be kept during the tetrahedralisation process.
Other info defined in the .mesh files will be ignored.

7.1.2 Vertices and triangles .csv to double layered surface
mesh

The second step towards adding thickness to the surface mesh is to calculate two
bounding layers with a certain distance inbetween (i.e. the epi- and endocardium)
based on the provided surface mesh. The original input surface mesh will be
discarded and only the two bounding layers will be saved.

There are multiple ways one can go about this calculation, such as spherical
expansion and Poisson surface reconstruction. Reconciling accuracy and compu-
tational ease, the method used in this thesis is as follows: for each point in the
mesh, all triangles including that point were extracted. The normals of these tri-
angles were information already present in the CARTO .mesh file, but can also
be easily calculated. Along the direction of the average of these normals, a point
was added .4 mm to the outside of the mesh and .1 mm to the inside. The sum
of these two values at .5 mm will from now on be referred to as the “thickness”
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Figure 7.1: A flowchart of the mesh reconstruction process. The arrows are num-
bered in correspondence to the subsections of Section 4.1.

of the mesh. This thickness is significantly thinner than an actual atrium, which
ranges from 2.5 mm to 6.5 mm [44]. The thickness was kept thin to avoid trans-
mural conduction [35] to play a significant role in the wave propagation dynamics
and inducing endo- epicardial dissociation of electrical activity, which would add
unnecessary extra complexity [36]. This way, the thin mesh essentially functions
as a two-dimensional surface for wave propagation.

As long as the points do not cross over each other during this mesh thick-
ening, the triangle information of the original mesh can simply be recycled and
applied to this new point cloud mesh. It should be noted that this method can go
wrong if the length of the curvature radius in any location of the mesh is compara-
ble to the thickness of the mesh. As such, points may cross over one another when
expanding in a concave region and a self-intersection is created, as can be seen in
Figure 7.2. Consequently, the triangle info of the initial mesh becomes inapplicable
to the newly created, self-intersecting mesh. This can be avoided by using quali-
tative input meshes, choosing a thinner thickness, or using mesh cleaning software
as a postprocessing tool to fix any holes, self-intersections or non-manifoldness
that might have made their way into the mesh, such as PyVista’s [45] wrapper for
MeshFix [46], MeshLab [47] or any apt meshing software one might be fond of.
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Figure 7.2: A second mesh layer (right, red) is added to a pre-existing mesh (left,
red), separated by a distance d (thickness), where d > R and R is the curvature
radius (blue) of a concave corner in the mesh. This creates a self-intersection.

7.1.3 Refinement

The third step involves refining the mesh to a desired coarseness. The mesh now
consists of two triangular surface meshes separated by a distance d. These will fur-
ther on be used to define boundary surfaces of tetrahedrons. As such, they have to
be refined before the actual tetrahedralisation takes place. The Python-integrated
C++ library PyMesh combines already existing and state-of-the-art meshing li-
braries, and as such provides two useful functions for this: split_long_edges()
and collapse_short_edges (). Calling these two functions iteratively in alternat-
ing fashion, each time with a stricter constraint on the minimum and maximum
allowed edgelength, makes the edge lengths converge to a single value. This makes
the mesh more homogeneous with respect to edge length. This procedure also
improves the quality of the mesh, which becomes especially important when tetra-
hedralizing the mesh and propagating a stimulus on the final result. The maximum
and minimum allowed edgelengths are called o and tolerance respectively. They
follow the iteration step dependent distribution:

a = <1 — ﬁ) . mam(original edges) . e3n/N UL
N n (7.1)
tolerance = 500um - (1 B N) LI

, where UL and LL are the desired upper limit and lower limit respectively on the
mesh edge lengths, n is the current iteration step and NV is the total amount of
iteration steps.. This procedure should be continued at least until the shortest edge
length is larger than the resolution of the simulation software and the longest edge
length is shorter than the maximum allowed resolution of the simulation software.
For the meshes used in this thesis, an edge range of 700 — 1100m was chosen.
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Switch Value Meaning
-p Tetrahedralizes input surface mesh
-Y Preserves input faces as boundaries
-k Outputs mesh to .vtk file
-N Suppresses creation of .node file
-E Suppresses creation of .ele file
-F Suppresses creation of .face file
-q 2.5/20 minRadiusEdgeRatio/minDihAngle - Refines mesh
-a 2e+08 Volume constraint in pm?
Optional:

-O 0-10/0-7/0-00  Optimization level:
flip level/local optimisation/max iterations
-V Verbose output

Table 7.1: TetGen switches

This proved to be a small enough resolution for accurate wavefront propagation
while being coarse enough to save on valuable CPU time, as was tested by running
simulations. During this process, one can try to connect the two meshes in places
where they are not closed. This will be necessary for meshes where e.g. the mitral
valve is an open hole, or where the mesh has holes that were not fixed by any mesh
fixing software. If the mesh is not closed, the upcoming tetrahedralization process
will unavoidably fail.

7.1.4 Tetrahedralisation

The fourth step and the essence of the process is the actual tetrahedralization of
the mesh. At this point, the pipeline has provided us two refined triangular meshes
that act as epi- and endocardium surface layer, but the cells are still triangles and
the inbetween space of the two layers is empty. In order to tetrahedralize the mesh,
Hang Si’s TetGen [34] library was used. To this end, a .smesh file was written,
which allows for the definition of holes, i.e. the entire hollow inside of the atrium.
Only with the use of . smesh files can such a hole be defined. The Python wrappers
for TetGen provided by either PyVista, PyMesh or PyTetGen do not provide this
feature.
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Figure 7.3: Schematic of fixing a collinearity. From left to right: the collinear
edgepair, the connections of the points that define the collinear edgepair, the
average directions of these connections, the mesh with the collinear points shifted
along these average directions.

TetGen, when used as a bash command, uses so-called switches. These act
as parameters for the tetrahedralisation process, defining constraints on tetrahe-
dron quality, tetrahedron volume, refinement etc. Reading in a .smesh file and
creating a tetrahedron mesh with quality and volume constraints gives rise to the
following bash command

tetgen -pYKNEFq1.5/20 -a2.0e+08 <meshname>.smesh (7.2)

The switches used in the command, along with their value and explanation
are shown in table 7.1, with some optional switches as well. The . smesh file format
is explained in the TetGen documentation, as well as the usage of command-line
switches. This command gives a 3D tetrahedral mesh as output in the form of a
.vtk file.

During this process, some errors can be brought to the attention of the user
by TetGen. The most common error for this process is:

Collinearity found!
Cannot further reduce collinear tolerance (179.9 degrees).

Aborting.

This means that the mesh contains three points whose connecting lines have
a smallest angle of over 179.9 degrees. As such, TetGen cannot build a tetrahedron
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on the triangular surface that contains these two lines. In order to avoid this, the
error output of the command was caught. This error output contains the indices
of the points defining the collinear line segments. The collinearity can be fixed by
shifting the points away from each other. This has to be done in the right direction,
as shifting them the wrong direction will intersect the edge connecting the outer
two vertices, giving rise to an intersection error. Getting all the connections for
each of these points, calculating the average direction along these connections and
moving the point along this average direction will always move the points away
from each other without creating a self-intersection, as long as the points are shifted
over a distance that’s smaller than the distance to its closest neighbour. This can
easily be seen in the schematic Figure 7.3. The only time when this method fails
is when all three average directions are exactly equal within machine precision; a
negligible situation.

Other errors were not fixed. These include self-intersections, overlapping
edge pairs and overlapping vertices. Changing the desired edge length interval or
the amount of conversion steps in the refinement phase usually fixed these errors.

7.1.5 Conversion

The fifth step towards a simulatable mesh is to convert this . vtk file to something
openCARP can work with. To this end, Meshtool was used to convert the meshes
to carp_txt format.

7.1.6 Cleaning

As a sixth step, meshtool is again used to clean the mesh. This cleaning algorithm
involves shifting vertices in a non self-intersecting way such that the quality of the
corresponding tetrahedra improves. Defining the quality of a tetrahedron can be
done in multiple ways. The metric used here is the volume metric, which aims to
maximise the ratio () between the tetrahedron’s volume and the volume it would
have if all the edges were as long as the average edge length:

0= o (7.3)

a

, where @ is the average edge length of the tetrahedron. The closer this ratio Q is
to 1, the more qualitative the tetrahedron is.

This cleaned mesh is then converted back to .vtk format for further steps.
During this process, a second .vtk file is also written out, one where the point
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index is added as scalar data to the mesh points. This is because Paraview was used
to select anatomical regions, stimuli and blocks on the mesh (as was discussed in
Section 4.2.3) and Paraview does not keep track of the original point index during
certain operations.

7.1.7 Applying conduction velocities and scar tissue

DGM [14] was used to calculate an estimated conduction velocity for each node
that registered an LAT during the in-vivo cardiac mapping of the left atrium.
PyVista was then used to interpolate this data on the refined tetrahedral VTK
mesh and to convert the point data to cell data.

Since the square of this conduction velocity is proportional to the conduc-
tivity in each cell, the squared value of this cell data can be used to define a
per-cell mesh conductivity scaling factor. OpenCARP uses this in the form of an
additional .txt file. Each line of this file contains a scale factor between 0 and 1.
The lines indices correspond to the indexing of the mesh cells. OpenCARP can
scale the conductivity during the simulation making use of this file.

Similarly to scaling the conduction velocity, one can also select a region
and scale the conduction velocity to zero. As far as propagation dynamics go,
this effectively acts as scar tissue. If wanted, it’s even possible to write a small
procedure that randomly selects one or more nodes, get the neighbouring nodes
and scaling the conduction velocity of these nodes down to zero. This way, one
can generate a selection of meshes with random scar tissues of random sizes.

It should be noted that scaling down the conduction velocity is not truly
the same as creating scar tissue. In order to properly create a scar tissue for Open-
CARP simulations, one needs a so-called adjustment file that describes whether
or not some cell has functioning ionic channels for a certain species of ions. This
can be implemented in a similar fashion as the previously mentioned scale factor
file. For this thesis however, no scar tissue was defined on the meshes.

7.1.8 Conduction velocity variation

In addition to a reconstruction of the conduction velocities based on the LATS,
nine more variations were made. Variations were made by iterating over all the
points of the mesh, fetching the k closest neighbours, fitting a normal distribution
to the CV distribution of these neighbours and drawing a random new conduction
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Conduction velocity variation
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Figure 7.4: Example of making variations of a existing conduction velocity distri-
bution. For each point (yellow), k neighbors (white, here & = 100, not all visible)
are used to create a local conduction velocity distribution. A normal distribution
(grey) is fitted to this local CV distribution and a new CV (green) is randomly
drawn from this distribution.

velocity from this distribution. These steps are shown in Figure 7.4. These new
conduction velocities were again interpolated on the mesh for a new conduction
velocity distribution. This method prevents extreme outliers due to the interpo-
lation process and keeps large regions of comparable conduction velocities intact
due to the Gaussian sampling distribution. The similarity of CV distribution this
method provides is dependent on the amount of neighbours & and the interpolation
smoothing parameters, as well as some randomness.

The carp_txt mesh files and corresponding scale factor .txt files together
define a reconstructed (variation of a) patient-specific simulatable atrium model.

7.2 Machine learning

7.2.1 Focal vs reentry parameters
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Model ROC AUC Parameters
SVC: 1.0 {’C’: 0.5, 'gamma’: ’scale’, ’kernel’: 'rbf’}
KNN: 0.9994 {‘algorithm’: ‘ball_tree’, ‘leaf size’: 1, ‘n_neighbors’: 1,

‘P’ 2, ‘weights’: ‘uniform’}
Random forest:  0.9993 {’criterion’: ’gini’, 'max_ depth’: 5,
‘'max_ features’: None, ‘'min_samples_leaf’: 40,
'n__estimators” 20, 'n_jobs’: -1, 'warm_ start’: True}
Extra trees: 0.9993 {’criterion’: ’gini’, 'max_ depth’: 5,
‘'max_ features’: None, 'min_samples leaf’: 1,
'n__estimators’ 70, 'n_jobs’: -1, 'warm_ start’: True}
AdaBoost: 0.9993 {’learning_ rate’: 0.0005, 'n_ estimators’: 100}
Gradient Boost: 0.9993 {’learning_ rate’: 0.005, "loss’: ’exponential’,
‘'max_depth’: 1, 'max_features’: None,
‘'min__samples leaf’: 1, 'n_ estimators’: 80,
'subsample’: 0.02, 'warm_ start’: True}

BNB 0.9956 {’alpha’: 0.5, 'binarize’: 0}
CNB: 0.7839 {’alpha’: 0.01, 'norm’: 1}
MNB: 0.5526 {’alpha’: 0.001}

Table 7.2: Parameters used for each machine learning model for the focal vs reentry
classification problem, resulting in the corresponding ROC AUC score.

7.2.2 Reentry location parameters and scores
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Model ROC AUC Parameters

MLKNN 0.7494 {'k’: 65, ‘s’: 0}

CNB: 0.7473 {‘alpha’: 0.005, ‘norm’: 0}

Extra Trees: 0.7428 {‘criterion’: ‘gini’, ‘max_ depth’: 20,
‘max_ features’: None, ‘min_samples leaf’: 7,
‘n__estimators” 200, ‘n_jobs’ -1, ‘warm_ start’: True}

SVC: 0.7427 {‘C’: 0.2, ‘gamma’: ‘scale’; ‘kernel’: ‘rbf’}

Gradient Boost: 0.7372 {‘learning_ rate’: 0.07, ‘loss’: ‘deviance’,
‘max__depth’: 5, ‘max_ features’: None,
‘min_samples leaf’: 50, ‘n_estimators’: 200,
‘subsample’: 0.9, ‘warm_ start’: True}

AdaBoost: 0.7195 {‘learning_ rate’: 0.05, ‘n_ estimators’: 500}

Random Forest: 0.6961 {‘criterion’: ‘entropy’, ‘max_ depth’: 2,
‘max_ features’: None, ‘min_samples leaf’: 200,
‘n_estimators’: 50, ‘n_jobs’: -1, ‘warm_ start’: True}

BNB: 0.6580 {‘alpha’: 0.01, ‘binarize’: 0}

MNB: 0.5526 {‘alpha’: 0.001}

Table 7.3: Parameters used in each machine learning model for the multiblabel

reentry location classification problem, resulting in the corresponding ROC AUC

score.
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