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Abstract

Natural language processing
for materials science: an exploration

by Fleur HUBAU

This master’s thesis will explore the applicability of natural language processing
(NLP) in materials science. NLP is widely used in today’s world, with applications
that include language translation, speech recognition, sentiment analysis, etc. More
recently, NLP has made its entrance in the field of materials science, where it is
applied to extract relevant information from scientific literature. Both supervised
and unsupervised NLP can be distinguished. In supervised NLP, large hand-labeled
datasets are used as training data to construct information-dense word embeddings,
i.e. vector representations of words. Unsupervised NLP however, does not require
human labeling. The potential of unsupervised NLP has been shown by Tshitoyan et
al. in their paper "Unsupervised word embeddings capture latent knowledge from
materials science literature"[1].

In this master’s thesis, the pretrained word embeddings of the Mat2vec model
by Tshitoyan et al. are used to assess the materials science knowledge that is
captured in the embeddings. This is done for three different types of applications, in
increasing order of complexity: (1) predicting properties of atoms and of elemental
crystals, using the embeddings of chemical element names and a linear regression
model, (2) predicting the formation energy of quaternary crystals, using a neural
network, and (3) exploring an in-house database to extract promising candidates
for thermoelectric materials. In all cases, we will discuss to what extent the word
embeddings do or do not facilitate these tasks.
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Nederlandse Samenvatting

Computers die moeiteloos kunnen converseren met mensen, ze bestaan. Althans
in sciencefiction films. In de echte wereld zijn we nog ver verwijderd van pratende
computers zoals Tony Starks J.A.R.V.I.S. of HAL 9000, de opstandige boordcomputer
uit ‘2001: A Space Odyssey’. Het vakgebied dat hier iets aan wil veranderen is
natural language processing of kortweg NLP. NLP houdt zich bezig met het aanleren
van menselijke taal aan computers, zodat ze in staat zijn om taal te begrijpen en
interpreteren zoals mensen dat kunnen.

Je staat er waarschijnlijk niet bij stil, maar de toepassingen van NLP in ons
dagelijks leven zijn schijnbaar eindeloos. De spellingscorrector in tekstverwerkers,
vertaalapplicaties (vb. Google Translate), virtuele (spraak)assistenten, de spamfilter
van je e-mailprovider, de zoeksuggesties die je krijgt wanneer je iets opzoekt via
een zoekmachine, chatbots... en ga zo nog maar een tijdje door. Het zijn allemaal
voorbeelden van NLP die niet meer weg te denken zijn uit onze hedendaagse
maatschappij.

Hoewel de spraakassistent in je smartphone er behoorlijk goed in slaagt om
eenvoudige opdrachten zoals ‘bel mama’ of ‘maak een afspraak in mijn agenda’
uit te voeren, kan je voor een leuk babbeltje beter bij de buurman aankloppen.
Waarom is het zo moeilijk om een computer te leren praten zoals een mens? Dat
heeft alles te maken met de complexiteit van de menselijke taal en de vele nuances
en ambiguïteiten die gesproken en geschreven tekst kleur geven. Een zin bevat
vaak niet alle informatie die nodig is om hem te begrijpen, omdat een stukje van
de betekenis vervat zit in de context. Ook veronderstelt taal een zekere kennis van
de wereld om ons heen. De volgende voorbeelden brengen wat verduidelijking.
Wanneer iemand zegt ‘Toen de hamer op de glazen tafel viel, spatte hij uit elkaar’,
dan begrijp je als toehoorder dat het de tafel is die in duizend stukjes op de grond
ligt, en niet de hamer. Een andere zin zoals ‘Het meisje aaide de hond met de
stok’ vereist wat meer informatie: werd de hond, die een stok vasthad, geaaid
door het meisje of aaide het meisje de hond met een stok? Een briefje van ‘iemand
die je leuk vindt’ kan betekenen dat de briefschrijver een boontje heeft voor jou,
maar omgekeerd kan ook. En zo zijn er nog talloze voorbeelden te bedenken. De
boodschap is duidelijk: taal is vatbaar voor interpretatie.

Het menselijk brein kan rekenen op miljarden zenuwcellen (neuronen) die
gespecialiseerd zijn in het ontvangen en doorgeven van informatie om taal op
correcte wijze te interpreteren. Daarbovenop komen we al van jongs af aan in contact
met gesproken en geschreven taal, waardoor ons brein uitgebreid de tijd heeft om de
kunst van het spreken en begrijpen onder de knie te krijgen. Een computer beschikt
jammer genoeg niet over zo’n handig menselijk brein. In de plaats gebruikt hij
twee tekens om informatie op te slaan: 0 en 1, ook wel bits genoemd. Aangezien
die bits met z’n tweeën zijn, zeggen we dat een computer een binaire machine
is. Als we een computer taalvaardigheid willen bijbrengen, dan moeten we onze
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woordenschat vertalen naar een vorm die leesbaar is voor de computer. Getallen
worden in computers binair voorgesteld, dus als we alle woorden vertalen naar
getallen zijn ze leesbaar voor de computer.

Woorden vertalen naar vectoren

Doorheen de geschiedenis van NLP zijn er een aantal methodes gebruikt om zo’n
numerieke representatie van woorden te bekomen. In de traditionele NLP werd een
reeks getallen gebruikt die overal nul was, behalve op één welbepaalde plaats. Die
plaats was uniek voor elk woord. Zo’n representatie wordt ook wel een one-hot
vector genoemd. Een voorbeeld illustreert deze methode het best. Stel dat we de
eerste zin van ‘De Hobbit’, het fantastische fantasyboek van de Engelse schrijver
J.R.R. Tolkien (1937), in one-hot vectoren willen gieten. De openingszin ‘In een hol
onder de grond woonde een hobbit’ zou er dan als volgt uitzien.

in = [10000000]
een = [01000000]
hol = [00100000]

onder = [00010000]
de = [00001000]

grond = [00000100]
woonde = [00000010]

hobbit = [00000001]

Elk uniek woord krijgt een vector, en omdat de zin 8 unieke woorden telt, heeft
elke vector 8 plaatsen. Het eerste woord, ‘in’, krijgt op de eerste plaats een 1,
alle andere plaatsen zijn ingenomen door nullen. Het tweede woord, ‘een’, krijgt
een 1 op de tweede plaats in de vector en op alle andere plaatsen komt een nul
te staan. Zo ga je door tot het woord ‘hobbit’, dat in zijn one-hot vector enkel
op de laatste plaats een 1 krijgt. Op deze manier heeft elk woord een unieke
vectorrepresentatie. Als we nu echter het volledige boek, dat meer dan 300 pagina’s
telt, in one-hot vectoren zouden vertalen dan krijgen we ongelofelijk lange vectoren
die veel geheugen innemen en bovendien helemaal niet zo veel vertellen. Het is
namelijk niet mogelijk om synoniemen of gelijkaardige woorden te herkennen door
een reeks eentjes en nulletjes te vergelijken. Alle woorden zijn even verschillend van
elkaar.

Er moest dus een efficiëntere manier gezocht worden om woorden naar getallen te
vertalen zonder dat daarbij de betekenis verloren ging. Een manier die vandaag
veel wordt gebruikt is Word2vec (letterlijk ‘woord naar vector’). Het basisidee van
Word2vec is dat de betekenis van een woord verweven zit in de woorden die het
omringen. Dit wordt ook wel de context van een woord genoemd. Beschouw even
opnieuw onze zin van daarnet: ‘In een hol onder de grond woonde een hobbit’. Stel
dat je niet weet wat een hobbit is, dan kan je toch uit de zin halen dat het iets is
dat in een hol woont. Uit de context leiden we dus af dat het om een wezen of dier
gaat. Verder leren we ook dat het woord ‘hol’ samengaat met het voorzetsel ‘in’. Je
kan dus ‘in’ een hol zitten en het hol bevindt zich ‘onder’ de ‘grond’. De ‘grond’ is
bijgevolg iets wat zich boven een ‘hol’ bevindt.
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De context van een woord verschaft ons dus veel informatie over de betekenis of
functie van een woord in een zin. Een computer kan deze informatie gebruiken om
de betekenis van woorden te leren. Dat doen we door hem niet één, maar miljoenen
zinnen te tonen die hij woord per woord zal bekijken. Een computermodel als
Word2vec maakt bij het bekijken van de woorden gebruik van een kunstmatig
neuraal netwerk. Zo’n netwerk bestaat uit kunstmatige neuronen die de ‘echte’
biologische neuronen uit het menselijke brein proberen na te bootsen. Het is in
staat om te leren uit de verschillende contexten die het te zien krijgt. Door het
kunstmatige neurale netwerk een hele hoop zinnen te voeden, zal het na verloop
van tijd leren welke woorden vaak samen voorkomen of op dezelfde manier
gebruikt worden. Het resultaat van dat leerproces zit vervat in de uiteindelijke
woordvectoren, die gelijkaardig zijn voor gelijkaardige woorden. In Word2vec
bestaan woordvectoren standaard uit 300 getallen. Dat is heel wat minder dan de
one-hot vectoren van zonet, die evenveel plaatsen hadden als er unieke woorden
waren.

Dat Word2vec onze intuïtie voor taal goed vat, kan visueel geïllustreerd worden
door de woordvectoren op een tweedimensionaal vlak af te beelden. Op Figuur
1 worden enkele vrouwelijke en mannelijke woorden afgebeeld. Links zien we
allemaal vrouwelijke woorden, rechts de mannelijke varianten. Het leuke is dat
we ook kunnen rekenen met deze vectoren. Als je de vectoren voor ‘koning’ en
‘man’ aftrekt van elkaar en hierbij de vector voor ‘vrouw’ optelt, dan bekom je de
woordvector voor ‘koningin’. Mooi toch? Analoge berekeningen kunnen we doen
met vectoren van bijvoorbeeld landen of bijvoeglijke naamwoorden. Vectorrekening
met ‘Parijs’, ‘Frankrijk’ en ‘België’ resulteert in ‘Brussel’ en met ‘groot’, ‘groter’,
‘klein’ bekomen we ‘kleiner’.

FIGURE 1: Een tweedimensionale voorstelling van de woordvectoren
van uitgesproken vrouwelijke en mannelijke woorden[2].

NLP in de fysica

Missie geslaagd dus: we hebben een manier gevonden voor de computer om de
betekenis van woorden te vatten. Maar wat heeft dit nu allemaal met fysica te
maken? Heel veel, aangezien taal de manier is waarop wetenschappers in papers
communiceren met elkaar. Het probleem van de laatste decennia is dat er, onder
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andere door de toenemende specialisatie in de wetenschappen, zo veel papers
gepubliceerd worden dat niemand meer de tijd heeft om ze allemaal te lezen. Zo
dreigt er belangrijke kennis verloren te gaan in een literatuurstapel die jaar na jaar
groter wordt. In tegenstelling tot mensen kan een computer in enkele seconden
de gehele literatuur van de laatste decennia doornemen en zo verbanden leggen
die mensen er niet of slechts na enkele jaren van grondige literatuurstudie kunnen
uithalen.

Vooral in de materiaalfysica werden met NLP al goede resultaten behaald. Een
erg succesvol voorbeeld van NLP in materiaalfysica is ‘Named Entity Recognition’
(NER). Simpel gezegd maakt NER het mogelijk om woorden in een tekst te
labelen. Aluminium, titaan en Fe krijgen bijvoorbeeld allemaal het label ‘materiaal’
opgeplakt. Woorden als geleidbaarheid, densiteit en poreusheid vallen onder de
noemer ‘materiaaleigenschap’. Door de woorden in een paper op deze manier te
voorzien van labels, is het mogelijk om de tekst op een gestructureerde manier weer
te geven. Voor één paper is dit niet echt nuttig, maar als we dit voor alle papers doen
die tot nu toe in de materiaalfysica zijn verschenen, dan ontstaan er interessante
mogelijkheden. Zo kan je uitgebreide zoekopdrachten uitvoeren over de gehele
literatuur om te weten te komen wat de beste synthesemethode is voor een bepaald
materiaal. Of indien je een nieuw soort batterij wil ontwikkelen bijvoorbeeld, dan
kan je in een oogopslag te weten komen welke materialen in het verleden reeds
getest werden en welke resultaten ze opleverden.

Ook wordt het mogelijk om metavragen te stellen. We zouden ons bijvoorbeeld
kunnen afvragen welke materialen voor de meest diverse applicaties worden
gebruikt. Het antwoord dat NER kan geven op deze vraag is afgebeeld in Figuur
2. In luik (a) zie je een 2D-projectie van de woordvectoren van 5000 woorden

FIGURE 2: Een populaire NLP toepassing is ‘Named Entity
Recognition’ (NER). NER kan metavragen zoals ‘Welke
materialen worden voor de meest diverse applicaties gebruikt?’
beantwoorden[3].
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die het label ‘toepassing’ opgeplakt kregen. De punten die dicht bij elkaar staan,
vormen zogenaamde clusters en werden aangeduid met dezelfde kleur. Punten
in dezelfde cluster hebben een gelijkaardige betekenis. Op de figuur zie je een
uitgelicht voorbeeld van de toepassingen die onder de noemer ‘geheugen’ vallen.
In paneel (b) is een histogram te zien van het aantal toepassingen per materiaal.
Enkele van de hoogst gerangschikte materialen zijn SiO2 en staal. In panelen (c) en
(d) wordt een overzicht gegeven van de belangrijkste toepassingsgebieden van beide
materialen. In één oogopslag hebben we zo een antwoord gekregen op een vraag die
een materiaalwetenschapper slechts na enkele maanden zou kunnen beantwoorden.

Een gestructureerde representatie van tekst door NER maakt het leven van
materiaalwetenschappers dus makkelijker, maar NLP kan nog veel meer betekenen
voor de materiaalfysica. Zo kan de computer verbanden uit de literatuur halen die
er niet letterlijk in vermeld staan. Dit is interessant wanneer we nieuwe materialen
willen voorspellen voor bepaalde toepassingen. Zo toonde een belangrijke paper[1]
aan dat nieuwe thermo-elektrische materialen1 jaren voor ze ontdekt werden al
voorspeld waren door een NLP model.

De NLP in materiaalfysica is dus niet enkel een handig hulpmiddel om inzicht te
krijgen in de materialen die al onderzocht zijn, maar opent ook deuren naar nieuwe
toepassingen van bestaande materialen. Het is duidelijk dat er nog veel werk nodig
is vooraleer computers zullen praten zoals mensen, maar fysicapapers lezen kunnen
ze al behoorlijk goed.

Doel en structuur van dit werk

Een algemene inleiding tot NLP wordt gegeven in Hoofdstuk 1. Ook wordt een kort
overzicht gegeven van de huidige toepassingen van NLP in de materiaalfysica.

In Hoofdstuk 2 wordt gebruik gemaakt van de woordvectoren van chemische
elementen om na te gaan in hoeverre zij nuttig zijn om bepaalde eigenschappen
te voorspellen. Daarbij werd vertrokken van het volgende idee: als je enkel de
woordvector van een chemisch element krijgt, kan je dan aan de hand van die vector
achterhalen om welk element het gaat?

In Hoofdstuk 3 gaan we een stapje verder: daar draait het niet langer om
enkelvoudige chemische elementen, maar om kristallen die opgebouwd zijn uit
meerdere elementen. Meer bepaald gaat het over elpasolietkristallen. Dat zijn
zgn. kwaternaire kristallen, omdat ze bestaan uit vier verschillende chemische
elementen. De algemene formule van een elpasoliet is ABC2D6. Aan de hand
van de woordvectoren van de A, B, C en D elementen en een neuraal netwerk
werd geprobeerd om de vormingsenergie van de elpasolieten te voorspellen. De
vormingsenergie is belangrijk in de materiaalfysica, omdat het ons veel kan leren
over de stabiliteit van een materiaal.

Finaal wordt in Hoofdstuk 4 nagegaan of we op basis van woordvectoren
nieuwe thermo-elektrische materialen kunnen voorspellen uit een gegeven database
bestaande uit kwaternaire materialen.

1Thermo-elektrische materialen zijn materialen die heel efficiënt warmte naar elektrische stroom
kunnen omzetten, waardoor ze erg interessant zijn voor warmterecuperatie.
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Chapter 1

NLP and its significance in
materials science

1.1 Introduction

The computer is incredibly fast,
accurate, and stupid. Man is
incredibly slow, inaccurate, and
brilliant. The marriage of the two is a
force beyond calculation.

Leo Cherne, economist

Since 1945, the number of published scientific articles and reports has doubled
approximately every nine years[4]. This growing number of scientific publications,
along with the continuing specialization of research domains, has made the
ability for individual researchers to manually extract relevant information nearly
impossible. What if the answers to all our questions are locked away in this
enormous pile of literature? Sure, search engines and scientific literature databases
can provide us with some answers when given the right keywords. However,
nuanced questions such as ’Which piezoelectric material has the highest Curie
temperature?’ can not so easily be answered. What if we could teach computers
to understand and interpret language just like humans do? This is exactly what
natural language processing (NLP), a field of computer science and computational
linguistics, is trying to do. NLP has many applications and is widely used today,
both for spoken and written language. Some examples are given below [5, 6].

• Language translation, i.e. the translation of one language to another. Google
translate, a free service from Google, is probably the best example of language
translation. Users can input speech, text, images with text and even
handwritten text that can be translated to more than hundred languages.

• Sentiment analysis, i.e. the characterization of subjective information such as
opinions, communicated through text. Various companies rely on sentiment
analysis to identify emotions in reviews or feedback from costumers. Satisfied
or malcontent costumers provide valuable information for product analytics
and market research.

• Spell checkers, software programs that identify and provide suggestions for
incorrectly spelled words in a text, are widely used in word processors, email
clients and search engines.
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• Predictive typing, a technology that tries to predict text that users are
inputting. For example in search engines, the next word in search queries is
predicted, providing a drop-down list with suggested keywords.

• Speech recognition or speech-to-text is the conversion of spoken language to
text. Today, virtual assistants from multinational technology companies such
as Amazon (Alexa) and Apple (Siri) make use of speech recognition to interpret
human speech and respond accordingly.

Other examples of natural language processing include chatbots, email filters,
automatic summarization of text, question answering... and many, many more.
As you can see, NLP is everywhere and we use its applications daily without
even thinking about it. However, just like learning a new language is difficult
for any human, teaching a computer to process natural language is no easy
task.

1.2 Word embeddings and Word2vec

You shall know a word by the
company it keeps.

J.R. Firth, linguist

Natural language is a system created by humans to communicate with one another.
This manner of human communication is incredibly nuanced and complex. Context,
punctuation and intonation all add to the meaning of a sentence. For example ’Let’s
eat, grandma’ is quite alarming without the comma and an ambiguous sentence
such as ’He fed her cat food’ does not sound pleasant either when it is wrongly
interpreted. Luckily, the human brain can rely on billions of neurons to interpret
spoken or written language. This is a very complex process that does not only
require knowledge of vocabulary and grammar, but also the ability to guess what
someone means based on the current situation, cultural differences, historical events,
et cetera.

How can we teach this complex task to a computer? To begin with, we
should somehow translate the meaning of words into something that a computer
understands. In contrast to the neurons in human brains, computers use a binary
system (based on 0 and 1) to store information. It thus seems that we have to
convert words to numbers that a computer can store as binary data. Put differently,
in order to make natural language comprehensible to a computer, each word in its
vocabulary must be represented as a collection of numbers, which can be interpreted
as the components of a vector. Some crucial questions immediately arise. What
should word vectors look like in order to be useful for a computer and how can they
be constructed?

1.2.1 One-hot encoding

Up until 20131, words in NLP models were regarded as discrete symbols and turned
into vectors through one-hot encoding. The principle of one-hot encoding is best

1In fact, important work was done earlier by Bengio et al. in 2003[7] but this barely impacted the
NLP community. The big paradigm shift in NLP came in 2013, when Mikolov et al. proposed the
Word2vec algorithm as described in the next section (Section 1.2.2).
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illustrated in an example. Consider the opening sentence of The Hobbit, the critically
acclaimed fantasy novel by English author J.R.R. Tolkien (1932): ’In a hole in the
ground there lived a hobbit’. The one-hot encoded word vectors that can be obtained
from this sentence are given below.

in = [10000000]
a = [01000000]

hole = [00100000]
the = [00010000]

ground = [00001000]
there = [00000100]
lived = [00000010]

hobbit = [00000001]

The number of components of each vector is equal to the number of unique words in
the text, also called the vocabulary. Each index of the vector corresponds to a word.
The first word has a 1 as its first member and the rest of the vector is put to zero. The
second word has a 1 as its second member, the rest of the vector is zero, and so on for
the other words. One can quickly understand the problems this approach brings: if
we were to put the entire book of The Hobbit into one-hot encoded vectors the length
of the vectors would be considerably large. This is bad news in terms of memory
as a lot of space is wasted with zeros. Also, since these vectors are orthogonal, no
similarity relationships can be derived between them. This is highly problematic if
we truly want a computer to grasp the meaning of words.

1.2.2 Word2vec

A more efficient approach that encodes similarity in the vectors themselves was
found in 2013 by Mikolov et al.[8] when the Word2vec algorithm was proposed.
The general idea of Word2vec is that the meaning of a word is given by the words
that frequently appear close-by, i.e. the word’s context. The many contexts in which
a word appears in a corpus of text are used to create a word vector, also called the
embedding of the word. Rather than creating a word vector that represents the word
itself, the aim is now to create a word vector that represents the environment of a
word and therefore implicitly the word itself. Each word embedding is a vector
of several hundred dimensions with non-zero elements. The word embeddings of
words that appear in similar contexts are also similar. Hence, words that have the
same meaning will have similar embeddings. When performing simple algebraic
operations, we can obtain results that closely resemble the way humans interpret
words. For example, subtracting the vector for ’man’ from the vector for ’king’ and
adding the vector for ’woman’ results in a vector that is closest to the vector for
’queen’[9].

A Word2vec model can be obtained by using one of two Word2vec architectures:
the Continuous Bag-of-Words model (CBOW) or the Skip-gram model. Both
architectures are artificial neural networks, meaning they are specifically constructed
to mimic the neurons in a biological brain. They both compute word embeddings by
looping over the words in a given corpus, one at a time. The Skip-gram architecture
will use the current word in the loop to predict the words in its context. The CBOW
architecture works the other way around. It predicts the current word in the loop
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based on the words in its context. The notion ’bag-of-words’ refers to the fact that
the order of words in the context is not important as their word vectors are averaged
before being fed to the model[8]. In what follows, we will focus on the Skip-gram
architecture as it best suits our purposes for this master’s thesis. The idea behind
Skip-gram is explained in detail in the next section.

1.2.3 The Skip-gram architecture of Word2vec

The Skip-gram Word2vec architecture is depicted in Figure 1.1. The current word

FIGURE 1.1: Schematic representation of the Skip-gram model[8].

w on position t has context words w(t + 1), w(t + 2), w(t − 1) and w(t − 2). The
number of surrounding words that belong to the context of a certain word in
addition to the word itself, is also called the window size. In this example, the
window size is 5, but any number can be chosen2.

More formally, the Skip-gram model tries to maximize the average log probability
for the words on positions t = 1, 2, ..., T in the training corpus. It does this based on
the words that appear in a window size of c from a given word on position t[10]:

1
T

T

∑
t=1

∑
−c≤j≤c,j 6=0

log p
(
wt+j | wt

)
. (1.1)

How does one calculate p
(
wt+j | wt

)
? We can do this by assigning two vectors to

each word w: v when it is a center word and u when it is a context word. Then the
probability that a context word O appears in the window size of the center word I is
given by the normalized exponential function

p (O | I) =
exp

(
u>O vI

)
∑W

w=1 exp (u>w vI)
, (1.2)

2Usually, the window size ranges from 2-10 words away. Increasing the window size improves the
quality of the word embeddings, but also results in longer training time.
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where W is the number of words in the vocabulary. In words, given a center word
and a context word, we take the exponential of the dot product of the word vector of
the center word with the word vector of the context word and normalize this result
by performing a summation over the dot products of all the context vectors uw in
the vocabulary with the center word.

Equation 1.2, also called the softmax function, is frequently used in neural networks
because it maps arbitrary values to a probability distribution. The exponential
nature of the softmax function allows for assigning small probabilities to small
values, while still amplifying the probabilities of the largest values. Physicists
will recognize this function as the widely used Boltzmann distribution from
thermodynamics.

1.3 NLP in materials science

AI won’t replace scientists, but
scientists who use AI will replace
those who do not.

Jeff Nichols, computational scientist

Over the past several years, the use of artificial intelligence (AI), and more
specifically machine learning, has played an increasing role in materials science.
Machine learning (ML) is a subset of AI that enables systems to learn from
experience instead of being explicitly programmed to perform complex tasks. ML
can be divided into two categories: supervised and unsupervised learning. As the
name suggests, supervised ML requires human interference as it uses hand-labeled
data to learn the relationship between an input X and an output Y. Unsupervised
ML does not require labeled datasets. It is merely used to discover the underlying
structure of data such as clustering and the detection of unusual data points. ML
in materials science has various applications, such as new materials discovery and
material property prediction[11].

More recently, also NLP has made its entrance in the field of materials science.
In any NLP application for materials science purposes, words are converted to
embeddings (see Section 1.2) using a large dataset of materials science articles.
In practice, materials science abstracts are used, rather than full articles. Why is
this? Generally, the information in abstracts is straightforward and contains few
unnecessary words. Expanding the corpus with domain-irrelevant content, for
example from Wikipedia articles, only creates more noise and is detrimental for the
quality of the embeddings (see Figure 1.2) for materials science purposes. The scores
on Figure 1.2 were obtained by assessing whether the NLP model could correctly
finish grammar and science analogies such as ’Structure is to structures as energy
is to ...’ (the correct answer is of course ’energies’) and ’He is to helium as Fe is
to ...’, with ’iron’ as the expected answer. We also see on Figure 1.2 that irrelevant
abstracts have to be discarded to improve performance for materials science NLP.
This can be automatically done with a text classifier that solely selects abstracts that
contain certain keywords and thus are expected to be relevant for the task at hand.
This shows that the quality of the data is far more important than the quantity of the
data. The more domain-specific the corpus, the better the results.

Just like ML, supervised and unsupervised methods can be distinguished. This is
discussed in Sections 1.3.1 and 1.3.2.
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FIGURE 1.2: The importance of corpus selection for NLP tasks in
materials science. Models trained on Wikipedia articles, which
contain the most text, perform very well for grammar analogies,
but fall short when it comes to materials science analogies. It
can also be seen that solely selecting relevant abstracts improves
performance for NLP in materials science[1].

1.3.1 Supervised NLP

One important and widely-spread example of supervised NLP is Named Entity
Recognition (NER). Originally, NER was intended for the extraction of names and
geographic locations from unstructured text, but it soon found its applications
in materials science. It can be used to convert large piles of unstructured text
into structured database keywords such that quick information retrieval becomes
possible.

A recent paper on NER [3] by Weston et al. illustrates how training a NER
model works. First, seven entity labels were formulated: inorganic material (e.g.
’titania’, ’Fe’), symmetry/phase label (e.g. ’tetragonal’, ’fcc’), sample descriptor
(’single crystal’, ’nanotube’), material property (e.g. ’band gap’, ’conductivity’),
material application (e.g. ’photovoltaics’, ’field-effect transistor’), synthesis method
(e.g. ’solid state reaction’, ’etching’) and characterization method (e.g. ’XRD’,
’photoluminescence’). With these entity labels, 800 materials science abstracts are
hand-labeled by a materials scientist. Subsequently, a model is trained on millions
of other abstracts to automatically recognize these entity labels in unstructured text.
The result of a NER analysis can be seen in Figure 1.3. The NER model has indeed

FIGURE 1.3: Example of Named Entity Recognition (NER). The
highlighted words are labeled with the corresponding entity
name.

assigned an entity label where appropriate.

Weston et al. go on to show that quick literature search by means of some keywords
becomes possible. For example, in the paper’s accompanying web application
Matscholar, https://www.matscholar.com/, a specific property or application entity

https://www.matscholar.com/
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can be entered, upon which all matching materials (along with the corresponding
DOIs) will be returned. It is also possible to filter the search results, e.g. one can ask
for all thermoelectric materials that do not contain lead (Pb). Another application
that they mention is the automatic summarization of relevant information based
on entities. One can enter a material and then quickly scan over the entities that
co-occur most with the material of interest. The entities are ranked according to
the number of occurrences with a given material. For example, one can learn
how a specific material is commonly synthesized by looking at the highest-ranked
synthesis entities and the application entities shed light on which applications a
material is most associated with.

Furthermore, Weston et al. demonstrate that meta-questions, such as ’Which
materials have the most diverse applications?’, can be answered. Asking this
question results in the answer depicted in Figure 1.4. In Figure 1.4 on panel (a),

FIGURE 1.4: Answering the question ’Which materials have the most
diverse applications?’ with NER. Panel (a) shows a 2D-projection
of the word embeddings from 5000 ’application’ entities. On panel
(b), a histogram with the number of applications per material is
given. Panels (c) and (d) illustrate the top applications for SiO2
and steel in a pie chart[3].

one can see a 2D-projection of the word embeddings from 5000 ’application’ entities.
The different colors refer to sub clusters with words that belong to the same category.
The category ’solid-state memory devices’ is used as an example on the figure. In
Figure 1.4 (b), a histogram with the number of applications per material is given.
Figures 1.4 (c) and 1.4 (d) show the top applications for two example materials (SiO2
and steel) in a pie chart.

There are many other applications of the NER approach. The extraction of
key experimental parameters for the synthesis of materials is probably the most
important one. For example, the key synthesis parameters for 30 different oxide
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materials systems were determined using 76,000 articles that contained information
on these oxides[12]. Another publication demonstrated that precursors for two
perovskite materials could be predicted, by using training data that was published a
decade before their first synthesis methods were even reported. The synthesis routes
for new perovskite materials were also explored[13].

1.3.2 Unsupervised NLP

In contrast to supervised NLP methods which use hand-labeled training data,
Tshitoyan et al. recently showed that the materials science knowledge in published
literature can be contained in embeddings without human labeling[1]. Their
unsupervised NLP approach resulted in the extraction of structure-property and
chemical relationship information and also demonstrated that new thermoelectric
materials can be discovered with word embeddings. Their Skip-gram Word2vec
model that was obtained after a training procedure on millions of materials science
abstracts was given the name Mat2vec.

The Mat2vec model

Tshitoyan et al. collected 3.3 million scientific abstracts from materials science
articles, from which they obtained a vocabulary of V = 500, 000 words. A word
was included in the vocabulary when it occurred more than five times. Chemical
formulae were added independent of the number of mentions, but were normalized
such that the order of elements and common multipliers did not matter. For
example, NiFe and Fe50Ni50 refer to the same word in the vocabulary. As can be
seen on Figure 1.5, all words in the vocabulary are used in their one-hot encoded
form: a V-dimensional vector with a 1 at their index and zeros everywhere else.
The Skip-gram Word2vec algorithm then loops over all the one-hot encoded word
representations. A neural network consisting of a single linear hidden layer predicts
all words that appear in a chosen window size of the current word. Of course, while
some words occur hundreds of times in the context of a certain word, others appear
ever so slightly or not at all. This is reflected in the resulting word embedding of 200
dimensions3 of a word. Finally, the softmax function (see section 1.2.3) normalizes
the word embeddings to 1.

What is surprising, is that the obtained word embeddings capture chemical
intuition, even though no chemical information was added to the model. This is
illustrated when we perform some simple arithmetic on the word embeddings. For
example, vector(’BeO’) - vector(’Be’) + vector(’Mg’) approximates the word vector
of ’MgO’. The word embeddings also reflect the ferromagnetic/antiferromagnetic
nature of NiFe and IrMn as vector(’ferromagnetic’) - vector(’NiFe’) + vector(’IrMn’)
yields ’antiferromagnetic’.

Predicting thermoelectric materials

Tshitoyan et al. used the obtained embeddings of the Mat2vec model to predict new
thermoelectric materials. Thermoelectrics are materials that efficiently convert heat
into electric power, making them interesting candidates to recover waste heat for
useful purposes. The performance of thermoelectric materials is captured by the

3Any number between 50 and 300 works well for the dimensionality of word embeddings, but the
authors show that 200 was best in this case.
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FIGURE 1.5: Schematic representation of the Skip-gram Word2vec
algorithm by Tshitoyan et al. that was trained on 3.3 million
scientific abstracts from materials science articles. The resulting
model was named Mat2vec.

dimensionless figure of merit[14]

zT =
σS2T

κ
, (1.3)

with σ the electrical conductivity, S the Seebeck coefficient, T the temperature and κ
the thermal conductivity. The factor σS2 is also called the power factor and is more
commonly used than the figure of merit zT for thermoelectrics.

To find thermoelectric materials with the Mat2vec model, Tshitoyan et al. assessed
which materials were most similar to the vector representation of the word
’thermoelectric’. This was done by calculating the cosine similarity of the word
vector for ’thermoelectric’ with the word vector of a certain material. The cosine
similarity of two vectors A and B is defined as follows:

similarity = cos(θ) =
A · B
‖A‖‖B‖ =

∑n
i=1 AiBi√

∑n
i=1 A2

i

√
∑n

i=1 B2
i

. (1.4)

The materials that yielded the highest cosine similarity are listed in Figure 1.6a.
Apart from known thermoelectric materials such as Bi2Te3 and PbTe, we also see the
appearance of materials that have never been studied as a thermoelectric material
before. This is surprising, given the contextual nature of the embeddings. One
might expect that a high cosine similarity with the word ’thermoelectric’ only occurs
for materials that are reported frequently as thermoelectric materials. However, the
predictions that appear in Figure 1.6a have never been studied as thermoelectric
materials, meaning they did not appear close to the word ’thermoelectric’ or related
words in any of the materials science abstracts. To investigate whether the predicted
thermoelectrics are indeed promising thermoelectric materials, rather than false
candidates, the authors looked at their thermoelectric power factor. The higher
this thermoelectric power factor, the better suited a material is for thermoelectric
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applications. By comparing the known and the predicted thermoelectric materials
with a dataset of computed thermoelectric power factors, a ranking was made of the
materials for which computational data of the power factors were available (Figure
1.6b). The purple and green bars respectively represent the known thermoelectrics
and the candidate thermoelectrics. The 10 highest ranked predictions4 from the
candidate materials are indicated by the dashed lines, yielding some interesting
thermoelectric materials that were not discovered before for further experimental
research.

(A) Ranking of the highest cosine similarities of
materials with the word ’thermoelectric’.

(B) Computed power factor for known and
candidate thermoelectric materials.

FIGURE 1.6: Prediction of thermoelectric materials with the Mat2vec
model[1].

As a means to generalize the predictive capabilities of the Mat2vec model, Tshitoyan
et al. also performed what is best described as a historic search. They trained
a Mat2vec model at various moments ’in the past’ (between 2001 and 2018) with
materials science abstracts up until that moment. Then they used these models
to predict a top 50 of thermoelectric materials that were likely to be discovered
in the future. Subsequently, they assessed what percentage of the predicted top
50 were years later published as newly found thermoelectric materials. Materials
are branded as ’published thermoelectric material’ when they appear alongside
thermoelectric keywords such as ’zT’, ’seebeck’, ’thermoelectric’, ’thermoelectrics’,
’thermoelectrical’, and so on.

The results are displayed in Figure 1.7. The grey lines indicate the cumulative
percentage of predicted thermoelectric materials in the top 50 that were reported
in the literature, years after the predictions were made. Let’s take the year 2015 as
an example. The Mat2vec model was trained with materials science abstracts before
1 January 2015. The grey line expresses the cumulative percentage of thermoelectrics
in the predicted top 50 that were discovered after one, two, three and four years.

4For the interested reader, these are: Li2CuSb, CuBiS2, CdIn2Te4, CsGeI3, PdSe2, KAg2SbS4,
LuRhO3, MgB2C2, Li3Sb and TlSbSe2.
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FIGURE 1.7: Prediction of top 50 thermoelectric materials using
word embeddings obtained from various historical datasets.
The grey lines indicate the cumulative percentage of predicted
thermoelectric materials in the top 50 that were reported in the
literature, years after the predictions were made. It is obvious that
the average materials in the top 50 (red line) were more likely to
be discovered compared to a randomly chosen material (blue line)
or a random material with a non-zero band gap (green line).

Overall, we see that the predicted thermoelectrics in the top 50 are significantly more
likely to be discovered (red line) compared to a randomly chosen material (blue
line) or a random material with a non-zero band gap (green line)5. Notice that the
grey lines of more recent years are steeper, implying that the use of larger corpora
improves the number of successful predictions.

The authors performed a similar procedure with the words ‘photovoltaics’,
‘topological insulator’ and ‘ferroelectric’ and found trends similar to Figure 1.7.

1.4 Goal and structure of this work

We have seen in this chapter that NLP is widely used in today’s world. Most
importantly for this master’s thesis, its increasing role in materials science has
become apparent. Both supervised and unsupervised NLP approaches were
considered in the previous sections. In this work, we will adapt the latter approach
to find out what else is possible with the Mat2vec model from Tshitoyan et al. for
materials science purposes. The structure of this work is listed below.

• Chapter 2: The embeddings of chemical elements in the Mat2vec model
are used to create an overview of the two-dimensional embedding space.
Furthermore, we investigate whether several atomic and thermodynamic
properties can be predicted with embeddings and a linear regression model.

• Chapter 3: The formation energy of elpasolites (quaternary crystal structures
with general formula ABC2D6) is predicted with a random forest and a neural
network. The dataset that is used to train the models and to validate the results
consists of the formation energy of approximately two million elpasolites. The

5Non-metals, which have a non-zero band gap, are known to have better thermoelectric properties.
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aim of this chapter is to investigate whether the use of embeddings can prove
to be helpful in a neural network to predict the formation energy of elpasolites.

• Chapter 4: An in-house database of the CMM is used to explore the potential
of embeddings to predict thermoelectric materials. The results are compared
to earlier work on the prediction of the thermoelectric power factor by Jasper
De Witte.

• Chapter 5: Conclusion and outlook of this work.
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Chapter 2

Property prediction for atoms and
elemental crystals

An overview of some current NLP applications in materials science was provided
in Chapter 1. Now we will apply these methods to problems we are interested in.
A good place to start with is the embeddings of individual element names as they
make up the materials and the structures that are the subject of study in materials
science. All chemical elements that have been discovered thus far are included in
the periodic table of the elements, which is depicted in Figure 2.1.
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FIGURE 2.1: The periodic table of the elements[15]. The colours
indicate the different categories into which the elements can be
divided.

The elements in the periodic table are positioned by increasing order of atomic
number, i.e. the total number of protons in the atomic nucleus. Elements in the same
column (group) have similar properties as they have an equal number of electrons in
their outermost shell, which determines their tendency to form chemical bonds with
other atoms. The groups are numbered from 1 to 18. A row (period) in the periodic
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table contains elements that have an equal number of shells, increasing from 1 to 7.
The various colours in the periodic table on Figure 2.1 correspond to the different
categories into which the elements in the periodic table can be grouped together1.

In the Skip-gram Word2vec algorithm on which Mat2vec is based, words that have
similar meanings will also have similar embeddings as they will often be used in
analogous contexts. When we look at the elements in the periodic table, we thus
expect that elements from the same category will possess similar embeddings. To
assess whether the word embeddings of the elements in the periodic table are indeed
similar, we will project the 200-dimensional embeddings down to two dimensions
in Section 2.1 to envision the word embedding space in which the chemical elements
live.

Apart from a general overview of the elemental embeddings in the embedding
space, it is also interesting to look at the individual embeddings in a more
quantitative way. Given the embedding of a random chemical element, can we
discover the name of that element by predicting several properties with its word
vector? This is the general idea of Section 2.2. By predicting several atomic and
thermodynamic properties with a linear regression model and the embeddings as
input, the ability of word embeddings to capture chemical information will be
assessed.

The pretrained Mat2vec word embeddings from the paper ’Unsupervised word
embeddings capture latent knowledge from materials science literature’[1] are used
in this chapter. As in the paper by Tshitoyan et al., the element’s embeddings are
retrieved by using the full element’s name (e.g. ’hydrogen’), rather than its symbol
(’H’). Exactly 100 elements and their corresponding 200-dimensional embedding
vectors remain, after discarding the elements that were not present in the vocabulary
of the Mat2vec model with their full element name2.

2.1 Word embedding space of the elements

To get some visual insight in the relations between the embeddings of the elements,
we will create a two-dimensional embedding space of the elements in the periodic
table. In order to plot the embedding space of the elements onto a plane, we
must first reduce the 200-dimensional embeddings of the chemical elements to two
dimensions. This was done with the dimension reduction algorithm UMAP, which
is short for ’Uniform Manifold Approximation and Projection’. In general, UMAP
constructs a high dimensional graph representation of the data points, which is
sort of a schematic representation of all the connections in the data, and then a
low-dimensional graph is optimized to be as structurally similar as possible to the
high dimensional graph. The interested reader is directed to the accompanying
paper[16] for mathematical details.

The resulting two-dimensional embedding space after application of UMAP is
depicted in Figure 2.2. It is important to note that a lot of information is lost due

1That is, according to the most commonly accepted version (Los Alamos National Laboratory,
https://periodic.lanl.gov/metal.shtml).

2In total, 18 element names were discarded because they did not appear in the Mat2vec vocabulary.
These element names are berkelium (Bk), einsteinium (Es), mendelevium (Md), nobelium (No),
rutherfordium (Rf), dubnium (Db), seaborgium (Sg), bohrium (Bh), hassium (Hs), meitnerium (Mt),
darmstadtium (Ds), roentgenium (Rg), nihonium (Nh), flerovium (Fl), moscovium (Mc), livermorium
(Lv), tennessine (Ts), oganesson (Og).

https://periodic.lanl.gov/metal.shtml
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FIGURE 2.2: The embedding space of the elements in two dimensions
after applying the dimension reduction algorithm UMAP to the
200-dimensional embeddings. The colour code is the same as in
Figure 2.1.

to the dimensional reduction. The original 200-dimensional embeddings contain
much more detail than a two-dimensional projection could ever provide us with.
Nonetheless, Figure 2.2 illustrates that even the two dimensional embedding space
contains some useful information. Generally speaking, it can be seen that the
elements of the same category group together in the two-dimensional embedding
space. Given that the word embedding space is a context-based representation, it
makes sense that the noble gasses form a separate cluster. In contrast to the other
elements, they are not frequently used in combination with other elements and this
is reflected by the embeddings. Overall, the other categories group closer together.
As is also pointed out in the paper by Tshitoyan et al., one can observe that the main
components of organic compounds are clustered together: hydrogen (H), oxygen
(O), nitrogen (N) and carbon (C) live in close proximity in the two-dimensional
vector space. An other interesting observation can be made in the lower right corner
of the embedding space. Radon (Rn), radium (Ra), technetium (Tc) and polonium
(Po) all seem to be a little out of place there. However, as these are all radioactive
elements, it comes as no surprise that they appear closer to uranium (U) and thorium
(Th) than to the elements of their respective category.

In the following section, more than two dimensions will be taken into account to
investigate the usefulness of the embeddings to predict certain elemental properties.

2.2 Properties from embeddings

The properties that are investigated here can be divided into two groups: properties
that can be linked to the periodic table (atomic number, Mendeleev number, column
and row in the periodic table, Pauling electronegativity and atomic weight) and
thermodynamic properties (boiling point, evaporation heat, heat of formation and
melting point). Notice that the individual element names can refer to elements as
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well as crystals. For example, with ’iron’ (Fe) in the periodic table, the element iron
with its atomic properties, such as atomic number and atomic weight, is meant.
Thermodynamic properties (boiling point, evaporation heat...) are properties from
iron compounds, i.e. structures that are made up from iron atoms, such as an iron
crystal or liquid iron.

2.2.1 Approach

To access the properties of the elements, the python library mendeleev[17] is
used. For all other tasks, we utilize the free software machine learning library
scikit-learn[18].

The dimensionality of the embedding vectors first has to be reduced to avoid
overfitting as we only have 100 data points at most per property, given we have 100
element names with their corresponding embeddings. Analogous to the approach
of Tshitoyan et al., the 200-dimensional vectors are brought down to 15-dimensional
vectors by applying principal component analysis (PCA)[19]. PCA reduces the
dimensionality by identifying so-called principal components, which are capable
of retaining (most of) the variation that was present in the original dataset. The
principal components are linear combinations of the original variables. For our
particular case, the resulting 15-dimensional embeddings after applying PCA are
linear combinations of the original 200-dimensional embeddings and explain 65%
of the total variance of the original embeddings. We thus unfortunately lose a
substantial amount of information by applying PCA, but more than half is still
conserved.

Subsequently, linear regression is performed with the 15-dimensional embeddings
as features and a certain property of the chemical elements as output of the linear
regression fit. The result of the linear regression procedure is a 15-dimensional
vector ~a with the regression coefficients and an intercept value b. The linear
regression model that is obtained is then used to predict the correct property value
for each chemical element. This can be mathematically expressed as

p =~a · ~w + b, (2.1)

where p is a certain property value, ~a is the vector that contains the regression
coefficients for a given property, ~w is the 15-dimensional embedding vector of a
chemical element and b is the intercept value of the regression fit.

For each property, we perform linear regression several times with k-fold
cross-validation. For k-fold cross-validation, the total dataset is divided into k folds.
A fold is a subsection of the dataset that contains 1/k’th of the original data points
in the dataset. The training set, which is the data that is used to build the linear
regression model, is created by k − 1 folds of the data. The validation set, which
is the dataset that is used for predictions, consists of the remaining fold. This
process is performed k times, such that every fold is used once as validation set.
The implementation of k-fold cross-validation is important here because we have
such a limited dataset. In other words, k-fold cross-validation results in less biased
or less optimistic estimations of the linear regression procedure. A simple split in a
training and validation set would possibly give more biased results.

Here, we choose k = 5 and perform 5-fold cross-validation to evaluate the linear
regression procedure as correctly as possible on our limited dataset. We have at
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most 100 data points for a given property because, as pointed out before, we have a
total of 100 element names and their corresponding embeddings. Furthermore, not
every element in our dataset has a specified value for a given property. For example,
as the mendeleev package uses the 18-column form of the periodic table, Ce-Lu and
Th-Lr are not assigned a column number as they are placed between columns 3 and
4. Removing these elements leaves us with 76 elements for the predictions of the
right column in the periodic table. In the case of Pauling electronegativity, the noble
gasses generally do not bond with other atoms and thus an electronegativity can not
be determined. Furthermore, the Pauling electronegativity of some rare elements is
simply unknown as they are not well studied (yet). This leaves us with 85 elements
for the property electronegativity. The latter reason also goes for the boiling point,
evaporation heat, heat of formation and melting point. For these properties, we
respectively have 95, 88, 87 and 98 elements left.

To interpret the quality of the linear regression procedure, we construct a plot of the
predictions and the true values. Perfect predictions would yield a straight line (y =
x). The R2 value or the goodness-of-fit measure for linear regression models, is also
calculated. As we know, R (a number between 1 and -1) represents the relationship
between variables. R2, ranging from 0 to 1, is used here to check the correlation
between the predicted property values and the true values. An R2 value of 1 would
indicate a perfect correlation.

Let’s now go over to the results of the linear regression procedure with the
15-dimensional embeddings and various atomic and thermodynamic properties.

2.2.2 Results

The results for various atomic properties can be seen in Figure 2.3.

On Figure 2.4, the results for the thermodynamic properties are displayed.

The true value is given on the horizontal axis, the predictions on the vertical axis.
The black dashed line is included for clarity and indicates the true value on both
axes. Each colour represents one validation set originating from the 5 folds that
were created during the cross-validation procedure. The resulting coefficient of
determination (R2) of the true data points versus the predicted values, is also given.
On each plot, five outliers with the highest absolute error for a given property are
indicated with their respective element name.

2.2.3 Discussion

Overall, it seems that the predictions of the linear regression models are quite good,
with R2 values between 0.45 and 0.75. However, when we look at the results by
Tshitoyan et al. in the supplementary information of the paper (Supplementary
Figure 4), they obtain R2 values between 0.70 and 0.80 for similar properties.
This is mainly due to the fact that they seem to have removed certain elemental
embeddings before performing the linear regression3. As they were not clear in
which embeddings they removed, we decided to stick with all of the embeddings
that were available for a certain property and draw conclusions from these results.
Guided by the outlier data points, the following conclusions can be made.

3This can clearly be seen when we compare the graphs with the predictions for row in the periodic
table. Elements in row 1 and 7 were removed from the dataset by Tshitoyan et al. The exclusion of
elemental embeddings is also apparent on the graphs for atomic weight and Mendeleev number.
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(A) (B)

(C) (D)

(E) (F)

FIGURE 2.3: Linear regression with 5-fold cross-validation for atomic
properties. The different colours refer to the five validation sets
that were created in the 5-fold cross-validation procedure. The
coefficient of determination, the R2 value, is given on each plot.
The black dashed line is included for clarity and indicates the true
value on both axes. The outlier data points are indicated with their
respective element name.

First of all, it immediately stands out that lawrencium (Lr), copernicium (Cn),
californium (Cf), astatine (At), promethium (Pm) and francium (Fr) are marked quite
frequently as an outlier data point on Figure 2.3. These elements are very rare and
not well studied experimentally. For this reason they are not included in Figure 2.4
as there is no data available on their thermodynamic properties. It does not come as
a surprise that these rare elements are marked at least twice as outliers for the atomic
properties. Elements that are not well studied yet are also mentioned less frequently
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(A) (B)

(C) (D)

FIGURE 2.4: Linear regression with 5-fold cross-validation for
thermodynamic properties. The different colours refer to the five
validation sets that were created in the 5-fold cross-validation
procedure. The coefficient of determination, the R2 value, is given
on each plot. The black dashed line is included for clarity and
indicates the true value on both axes. The outlier data points are
indicated with their respective element name.

in the materials science literature on which the model was trained. All together, we
found that they appeared less than 0.005 % of the time when an element name was
mentioned in the training corpus of Mat2vec. The quality of the embeddings reflects
this. We can thus assign the bad performance of these uncommon elements to their
poor embeddings.

Further visual inspection signals another problem with the embeddings or more
specifically, the way in which they were retrieved from the Mat2vec model. Let’s
take tungsten (W) as an example, which is marked three times as outlier on Figure
2.3 and four times on Figure 2.4. The full name of this element in mendeleev is
tungsten, so the embeddings of this element were retrieved by that name. However,
another popular name for this element is wolfram. When we change its name
from ’tungsten’ to ’wolfram’ and perform the linear regression, all R2 values for
the atomic properties are seen to improve and W stops being an outlier data point,
except for Pauling electronegativity. The improvement on the R2 values is less
spectacular for the thermodynamic properties and even drops slightly for heat of
formation. W is still an outlier for evaporation heat, heat of formation and melting
point. It thus seems that the quality of the property predictions of an element is
highly dependent on the element name that was used for retrieving the embedding.
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The same reasoning can be made for carbon (C), which is marked three times as
an outlier data point on Figure 2.4. C is the most common element name in the
training corpus: it appears 10% of the time when an element name is mentioned. In
contrast to tungsten, carbon is not known under any other name. However, when
carbon is mentioned in materials science articles, it refers to different structures with
very different properties. For example, ’carbon’ could refer to diamond, graphite or
carbon nanotubes. The same is true for other elements. E.g. boron (B), which is an
outlier data point on Figures 2.4b and 2.4d, knows many applications when it forms
a crystal compound with carbon. Boron carbide is an extremely hard material that
is used in bulletproof vests, tank armor and various other industrial products[20].
This wide application span brings along many mentions in materials science articles,
clouding the word vector for the true boron crystal.

A third issue is the bias that is present in the embeddings. It was mentioned in
Section 2.1 that Radon (Rn), radium (Ra), technetium (Tc) and polonium (Po) seemed
out of place in the two-dimensional embedding space. These radioactive elements
were seen to appear closer to uranium (U) and thorium (Th) than to elements of their
respective category. This bias in the literature is also reflected in the embeddings.
When we look at Tc for example, it is marked as an outlier on Figure 2.3a, Figure
2.3d and Figure 2.3f. On each of these plots, the predicted value approaches that for
U (respectively 92, 7 and ≈ 238) and Th (respectively 90, 7 and ≈ 232). On Figure
2.3e, the same is true for Po as U has an electronegativity of 1.7 and Th of 1.3. U and
Th have no column value as mentioned earlier, so the comparison for Po and Rn to U
and Th can’t be made on Figure 2.3c. On Figure 2.3b, where both Rn and Ra appear
as an outlier, the same logic as before can’t be followed as the Mendeleev number of
uranium is 20 and 16 for thorium.

Nonetheless, the bad prediction of the Mendeleev number of Rn brings up a
fourth problem. Rn has the second to highest Mendeleev number and is greatly
underestimated by the linear regression model. The same trend can be noticed
on Figure 2.4, where the extreme thermodynamic properties of W are always
underestimated by the linear regression model. Also boron (B) and carbon (C) are
greatly underestimated. The same is true for oxygen (O) and fluorine (F) on Figure
2.3e, which are the elements with the highest Pauling electronegativity (respectively
3.44 and 3.98). It thus seems that the linear regression model fails to predict extreme
values. The explanation behind this phenomenon is the following. When these
extreme numbers are not part of the training data during the 5-fold cross-validation,
the resulting linear regression model is more likely to make lower predictions when
it comes to predicting the property values.

2.2.4 Mean R2 value and standard deviation for multiple iterations

In Section 2.2.2, we performed 5-fold cross-validation once and plotted the results
and the R2 value. In their paper, Tshitoyan et al. have also calculated the mean R2

value and its standard deviation for multiple iterations. As we also experienced, the
cross-validation procedure converges quite fast because it samples homogeneously,
so a different approach was used. During each run, random splitting of the dataset
into a training (80%) and validation set (20%) was performed. The result of 20
randomly chosen train/validation sets with the average R2 value and standard
deviation of the validation set is depicted in Table 2.1, along with the 5-fold
cross-validation results that were obtained earlier. The results by Tshitoyan et al.
are also given for the properties that they investigated. Notice that more properties
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were included in this work. As mentioned earlier, the better results from Tshitoyan
et al. seem to originate from the fact that they have removed certain elemental
embeddings before performing the linear regression procedure.

Property
This work Tshitoyan et al.

R2 avg. R2 (20 runs) R2 avg. R2 (20 runs)

Atomic number 0.52 0.62±0.03 / /

Mendeleev number 0.61 0.66±0.04 0.73 0.74±0.09

Column 0.45 0.25± 0.15 0.71 0.69±0.16

Row 0.61 0.65± 0.03 0.80 0.81±0.07

Electronegativity 0.62 0.71±0.03 0.75 0.76±0.12

Atomic weight 0.50 0.61±0.04 0.75 0.72±0.10

Boiling point 0.70 0.77±0.02 / /

Evaporation heat 0.75 0.80±0.02 / /

Heat of formation 0.66 0.67±0.03 / /

Melting point 0.64 0.71±0.03 0.75 0.74±0.10

TABLE 2.1: Average R2 value with standard deviation of the
validation set for atomic and thermodynamic properties after 20
runs. During each run, the dataset was randomly split into a
training set (80%) and a validation set (20%). For completeness,
the 5-fold cross-validation results from earlier are included in the
table. The results from Tshitoyan et al. are also shown.

Except for the properties column (slightly lower within the standard deviation)
and heat of formation (equal within the standard deviation) the average R2 values
are better compared to those in Section 2.2.2. The reason for this is that the
cross-validation procedure ensures that every data point is used at least once in
the validation set, which is not the case in the random splitting approach. More
frequent inclusion of certain data points in the training set might yield other, in this
case better, results. Elements with qualitative embeddings in the training set allow
for a better linear regression model.

2.2.5 Finding the optimal number of PCA components

The standard deviations on the average R2 values in Section 2.2.4 are reasonable,
except for the column property. As mentioned before (Section 2.2.1) we only have
76 elements with a column value. As can be expected with a low R2 value, the root
mean square error (RMSE) on the predictions in the validation set is quite high given
there are only 18 columns: 4.24 ± 0.28. It seems that we are in overfitting territory.
Let’s try to reduce the dimensionality of the 15-dimensional embeddings even more
to see if that yields better results.

After varying the number of PCA components and calculating the average R2 value
with standard deviation after 20 runs, we find that 7 PCA components give the best
results. The explained variance ratio is lower (46% compared to 65% for 15 PCA
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components), but R2 = 0.57± 0.04 and the RMSE equals 3.4± 0.16. The R2 value is
significantly better and its error is much lower. The RMSE is still high, but lower than
it was before. Altering the number of PCA components thus proved to be successful
to optimize the performance of the linear regression model.

Inspired by this result, the influence of the number of PCA components on the
performance of the linear regression model was also investigated for the other
atomic and thermodynamic properties. However, no smaller or larger number
of PCA components yielded a better R2 value within the standard error. We can
thus conclude that dimensional reduction to 15 PCA components is justified for all
properties, except for the column value of the periodic table where reduction to 7
PCA components seemed best.

2.3 Conclusion

As we saw, R2 values of the properties in Figures 2.3 and 2.4 are good, but they could
be better. The hypothesis that the dimensional reduction with PCA was somewhat
responsible for the varying results, was proven false in Section 2.2.5, except for the
column property.

Guided by the outliers on Figures 2.3 and 2.4, there seemed to be four main
problems: poor embeddings of rare elements, ambiguous element names, bias in
the embeddings and the struggle of the linear regression model to predict extreme
values. Possible solutions to these problems are discussed below.

1. Rare elements such as lawrencium (Lr), copernicium (Cn), californium (Cf),
astatine (At), promethium (Pm) and francium (Fr), have poor embeddings
because they are almost never mentioned in the literature. We could try to
remove them from the dataset, but then we would end up with even less data
points.

2. The problem that ’W’, ’tungsten’ and ’wolfram’ all yield different embeddings,
could be solved by normalizing the embeddings, such that unambiguous
retrieval of the embeddings becomes possible. However, the problem remains
in the example case of carbon that was given. There it would be better to
split up the embeddings, depending on the context. For example, separate
embeddings for diamond and graphite could be constructed, but this approach
would obviously require some effort.

3. The bias in the embeddings of radioactive elements is impossible to get rid
of because the very reason for this bias is the nature of the embeddings.
Radioactive elements are likely to appear in similar contexts and this is
reflected in the embeddings.

4. The struggle to predict extreme values is due to the limited dataset as only
a relatively small amount of elements exist in the universe, but also due to
the simple linear model that we are using here. It is highly assumptious that
linear functions suffice to connect word embeddings to specific properties.
More complex non-linear models should be investigated. However, one must
keep in mind that fitting more parameters with a limited dataset can lead to
overfitting.

In contrast to the limited number of elements in the periodic table, we can
combine them into crystal structures with multiple elements in an infinite number
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of combinations. This is done in the next chapter to predict the formation energy of
quaternary crystal structures. A major difference with this chapter is that we will no
longer use a linear regression model to make the predictions. Instead, we will turn
to methods that can identify non-linear relationships: random forests and neural
networks.
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Chapter 3

Predicting the formation energy of
ABC2D6 elpasolites

In Chapter 2, we looked at elemental embeddings to investigate atomic properties
and thermodynamic properties of crystals made up of a single element. Let’s now
look at crystals containing multiple elements and see if their combined embeddings
can be of use to predict a specific property. More specifically, we will concatenate the
embeddings of elemental crystals and treat the result as the embedding of a crystal.

Tshitoyan et al. have recently shown[1] that embeddings can be of use in machine
learning models, such as for predictions of the formation energy of crystals. The
formation energy is defined as the difference in energy between a crystal and
corresponding amounts of unary crystals for every element that appears in the more
complex crystal. A material is said to be thermodynamically stable if the formation
energy is negative, meaning that energy is released when forming the material1.
Furthermore, the formation energy is a useful quantity for the calculation of reaction
enthalpies, the generation of phase diagrams and the determination of many other
material properties[21].

The ubiquity of the formation energy makes it an interesting property to calculate for
materials science purposes. One can calculate the formation energy, and lots of other
properties, with density functional theory (DFT). The idea behind DFT is that the
electron density and the total energy of a system uniquely define each other. Since
the 1970s, DFT has been the most successful ab initio method to solve problems in
chemistry and materials science. The great advantage of DFT is that it avoids solving
the Schrödinger equation directly, which is very hard to solve analytically. Instead,
the DFT Kohn-Sham equations are a set of differential equations that reduce the
many-body problem to a number of easier to solve one-body problems. However,
solving differential equations does take a significant amount of time, especially if we
want to do these calculations multiple times for different compounds.

The dawn of machine learning in materials science has given us a way to bypass the
Kohn-Sham equations from DFT, making it possible to predict the formation energy
in milliseconds. This is what Faber et al.[22] have done for the calculation of the
formation energy of elpasolites. Elpasolites are quaternary crystal structures with
the general formula ABC2D6. As four different elements make up one elpasolite,
millions of combinations are possible. Faber et al. constructed a machine learning
model for the calculation of the formation energy of elpasolites, hereby reaching

1However, this does not imply that the material is truly stable as the same chemical composition
can possibly have a more negative formation energy for other crystal structures.
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similar accuracy as DFT methods. We will use the precalculated formation energies
from their machine learning model to train our own models and to validate the
results. We thus will not start from DFT information. Instead, we will rely on the
dataset generated with machine learning from Faber et al. Before taking a closer
look at the dataset, we first introduce elpasolites.

3.1 Elpasolites

Elpasolites, with the general formula ABC2D6, are the predominant quaternary
crystal structure in the Inorganic Crystal Structure Database (ICSD). They are of
special interest due to their scintillating properties, i.e. they emit light when excited
by ionizing radiation. More specifically, they re-emit (a fraction of) the energy that
was absorbed from the incoming particle in the form of light. This makes them
ideal as scintillator devices, which are used in experimental particle physics to detect
ionizing particles such as electrons, alpha particles or high-energy photons. They are
also commonly used for security purposes (e.g. cargo scanning with X-rays) and in
medical facilities (CT scanners). The structure of an elpasolite is depicted in Figure
3.1 by means of 4 unit cells. The positions of the A, B, C and D atoms are indicated
on the figure. One can verify that the unit cell, which is the smallest repeating unit,
indeed contains one A atom, one B atom, two C atoms and six D atoms.

A

C

B
D

FIGURE 3.1: Structure of an elpasolite (ABC2D6)[23]. The positions of
the A, B, C and D atoms are indicated.

Furthermore, the Crystallography Open Database (COD)[24] tells us that the space
group of elpasolites is fm-3m (number 225) and its symmetry class is cubic. The
prototype of an elpasolite is AlNaK2F6. The Wyckoff positions are: 4a for Al, 4b for
Na, 8c or K and 24e for F. This last position has one degree of freedom.

3.2 The dataset by Faber et al.

The dataset that is used in this chapter was constructed by Faber et al. Using
machine learning, they calculated the formation energy of all the elpasolites that
can be formed from main-group elements up to bismuth (Bi). These 39 elements
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yield a total of 39 · 38 · 37 · 36 = 1, 974, 024 ≈ 2 · 106 different elpasolites, consisting
of four different elements on the A, B, C and D positions. With a training set of 1 · 104

crystals for which they generated the DFT formation energy, they obtained a mean
absolute error of±0.1 eV/atom, which is comparable to the DFT accuracy for solids.

For our purposes, the complete dataset from Faber et al. with the machine learning
generated formation energy of 1,974,024 elpasolites was split into a training set
(80%), a validation set (10%) and a test set (10%). The number of samples in each
subset can be seen in Table 3.1.

Type Samples

Training set 1,579,220

Validation set 197,402

Test set 197,402

Total dataset 1,974,024

TABLE 3.1: Overview of the number of samples in the training,
validation and test set after performing the 80-10-10 split.

A histogram with the distribution of the formation energy in the dataset is given in
Figure 3.2. As stated before, a material is thermodynamically stable if the formation

FIGURE 3.2: The distribution of the formation energy in the dataset.
Stable materials have a negative formation energy (green). For a
positive formation energy, the material is predicted to be unstable
(red).

energy is negative (green) and unstable if the formation energy is positive (red)2.
Given the abundance of red bins on Figure 3.2, most elpasolites in the dataset are
unstable. This is also reflected by a mean formation energy of 0.63 eV/atom in the
dataset. Thermodynamically unstable materials do not occur in nature as energy is
needed during the formation of these materials.

2Often a tolerance of 0.05 eV/atom is allowed for DFT error and metastable materials.
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3.3 Random forest

We will first turn to a random forest to predict the formation energy of the
elpasolites. As we have the precalculated formation energies from Faber et al.
at our disposal, we can create a random forest to predict the formation energy
of the elpasolites given the atomic numbers of the A, B, C and D element. We
use the random forest regressor from scikit-learn[18] to create the random forest.
The random forest consists of multiple decision trees. As the target variable is a
continuous value, the decision trees in the random forest are also called regression
trees.

How can a regression tree be used to predict the formation energy? An example of a
single regression tree is given in Figure 3.3. In the top node, all data is in one group

FIGURE 3.3: An example of a single regression tree with scikit-learn.

and the best prediction for the formation energy is simply the average formation
energy of all elpasolites in the dataset: 0.63 eV/atom. Subsequently, the decision
tree will impose decision criteria that maximize the homogeneity of the data points
in the resulting sub-nodes. To decide which decision criterion will be most efficient,
the decision tree will split the nodes on all available input variables and then select
the split which results in the most homogeneous sub-nodes. For our particular case,
the decision criterion determined by the model for the first split is that the atomic
number of the D element is equal to or less than 7.5. All the samples that meet this
criterion go to one internal node, those that don’t to the other internal node. This
process with suggested decision criteria from the model repeats itself until it reaches
a stopping criterion. The stopping criterion in this example was a maximum of four
leaf nodes, which are nodes without any further splits.

To make the predictions for the formation energy, special attention was paid to the
following parameters.

min_samples_leaf and min_samples_split

Specifying when to stop the splitting of the tree nodes is important. With
scikit-learn’s default settings, the splitting of nodes would continue until there is
only one sample in each leaf node. This causes the model to overfit (i.e. it fails to
generalize its predictions), meaning that the model does not perform well on data
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that it hasn’t seen before. As a consequence, the predictions of the formation energy
in the validation set and test set would come with large errors.

Limiting the depth of the tree to avoid overfitting based on the number of
samples can be done with the following parameters in scikit-learn. The parameter
min_samples_leaf guarantees a minimum number of samples in a leaf node and
min_samples_split is the minimum number of samples required to split an internal
node. An example clarifies the practical implementation of these parameters.
Suppose we have min_samples_split= 10, min_samples_leaf= 5 and 15 samples arrive
at an internal node. The split is allowed because 15 ≥ 10. Let’s say that it results
in two leaves: one with 4 samples and one with 11 samples. However, as we end
up with 4 samples in one internal node and min_samples_leaf= 5, the split won’t
be allowed because the resulting leaf with 4 samples does not have the minimum
number of samples required to be at a leaf node.

n_estimators

Another important parameter is n_estimators, which defines the number of trees in
the random forest. As the random forest averages the predictions of all trees in the
forest, it is important to have plenty of trees. The default value of n_estimators is
100, but how can we tell if this is enough? We can investigate this by obtaining the
predictions of each individual tree and watch what happens to the root-mean-square
error (RMSE) of the predictions in the validation set as more trees are added. The
RMSE as a function of the number of trees in the forest is plotted in Figure 3.4. At

FIGURE 3.4: The RMSE as a function of the number of trees in the
random forest.

around 100 trees, the RMSE is seen to stagnate. The default value of 100 trees thus
seems fit for our purposes.

3.3.1 Results

The results of the formation energy predictions on the test set are plotted in
Figure 3.5. They are obtained with n_estimators=100, min_samples_split= 5 and
min_samples_leaf= 5. The results for the training and validation set are included in
Appendix A.1. Figure 3.5a shows the predictions of the formation energy in function
of the true formation energy, along with a linear regression fit. On the outer vertical
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(A)

(B)

FIGURE 3.5: The results of the formation energy predictions on the
test set with a random forest.

Predicted

Stable Unstable

A
ct

ua
l

Stable 0.750 0.250

Unstable 0.013 0.987

TABLE 3.2: Normalized confusion matrix for the classification of
stable and unstable elpasolites in the validation set after 25 epochs,
with a random forest.

and horizontal axis, a histogram3 that indicates the data distribution of the opposing
axis is shown. The error histogram on Figure 3.5b shows the distribution of the
absolute errors on the predictions, i.e. the true formation energy minus the predicted
formation energy. The mean absolute error (MAE), which is the mean value of the
difference between the true and the predicted formation energy in absolute value, is
also shown on the plot.

We see that the MAE is 0.157 eV/atom, meaning that the predictions of the formation
energy were over- or underestimated by 0.157 eV/atom on average. What does
this mean in practice for the prediction of stable and unstable materials? As we
remember from Figure 3.2, most elpasolites in our dataset are unstable. They are
characterized by a positive formation energy value. The stable elpasolites have a
negative formation energy. After the predictions of the formation energy by the
random forest, the materials can again be classified as stable or unstable, but now
based on the predicted value of the formation energy. The confusion matrix of the
classification into stable and unstable elpasolites is shown in Table 3.2.

The diagonal represents the normalized percentage of correct predictions for the
stable and unstable materials. The incorrect predictions are represented by the

3More specifically, a kernel density estimate (KDE) plot is shown here. KDE visualizes the
distribution of the data with a continuous probability density curve in one or more dimensions.
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off-diagonal elements. Almost all of the unstable materials were correctly predicted
as unstable, but 25% of the stable materials were incorrectly classified as unstable,
based on the prediction of the formation energy. As most of the formation energies in
the dataset are positive, the random forest is more likely to predict a stable elpasolite
as unstable. Hence, we must turn to another approach.

Tshitoyan et al. have recently shown[1] that embeddings can be of use in machine
learning models. Inspired by this, we will apply deep learning and neural networks
to get better predictions for the stable elpasolites, hereby including embeddings.
Before constructing our own neural network with embeddings, we will first
introduce the basic concepts of deep learning.

3.4 The basics of deep learning and neural networks

As stated by Goodfellow et al. in their book ’Deep Learning’[25], deep learning
is a specific kind of machine learning. The notion ’deep’ indicates that the input
data travels a longer path before it reaches the output of a deep learning model, as
compared to models in machine learning. More specifically, we say that multiple
layers are present between the input and output of the model.

With deep learning, one can construct a deep neural network. A deep neural
network tries to mimic the brain functionality of a human being with artificial
neurons. There are different types of neural networks, but they always consist of
the following components: neurons, synapses, weights, biases, and activation functions.

Much like biological neurons, artificial neurons are the basic units of neural networks
that receive information, perform calculations and then pass it on. Three classes
of neurons can be distinguished: input neurons (receive information), hidden
neurons (process information) and output neurons (produce conclusion). Neurons
are organized in layers. Input neurons make up the input layer, hidden neurons come
from the hidden layers and the output neurons are situated in the output layer. As
opposed to the input and output layer, multiple hidden layers can exist in the deep
neural network. An illustration of the neurons and the layers in a neural network is
given in Figure 3.6.

The neurons are connected with one another by synapses. Every synapse has a
weight. As the name ’weight’ suggests, this is a way to lower or raise the effect of a
particular neuron on the neuron with which it is connected through the synapse.
The results of neurons with high weights will be dominant, while neurons with
low weights will be granted little influence. In the beginning, all of the weights
are randomly initialized. They are optimized during the training process of the
deep neural network. Apart from weights to steer the processing of information,
a bias is added to every layer. A bias is a constant value (i.e. not influenced by the
previous layer) and can be compared to the intercept of a linear equation. Just like
the weights, the value of the bias is optimized during the training process. We thus
get the following computation in a neuron j for input values xi and synapses with
weights Wij

yj = f (∑
i=1

Wij · xi + b), (3.1)

with yj the output of the neuron and b the bias term. The function f is the activation
function, which maps its argument to a certain range before being sent as output to
the next layer. The activation function that is used in this chapter is the Rectified
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FIGURE 3.6: An illustration of the neurons and layers in a neural
network[26]. The input layer contains input neurons, the neurons
in the hidden layers are hidden neurons and output neurons are
situated in the output layer. These neurons respectively receive
information, process information and produce conclusions.

Linear Unit (ReLU) function:

f (x) = max(0, x) =

 xi, if xi ≥ 0

0, if xi < 0
. (3.2)

Another popular activation function is the sigmoid function, which has a
characteristic S-shaped form. A common example of a sigmoid function is the
logistic function:

S(x) =
1

1 + e−x . (3.3)

However, in our neural network, it will not be implemented as an activation
function. Instead, the sigmoid function will be used to translate the predictions of
the formation energy to a number in between the range of the formation energy in
our dataset, which is approximately [−3.5, 6] eV/atom as can be seen on Figure 3.2.

Now that we know the general components of a neural network, we will also go
over some relevant parameters and concepts that are of special importance during
the training process of a neural network.

Epoch

When all samples in the training dataset have passed through the neural network
once, we say that one epoch has passed. The data is not fed to the model all at once,
but is grouped together in batches. The neural network will update its performance
after one batch has passed, which is also called an iteration. For example, if we have
1000 samples and a batch size of 100, 10 iterations or updates will occur in one epoch.
To allow the neural network to learn, we will pass the entire dataset multiple times
through the neural network, meaning that multiple epochs are performed.
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Loss

What does it mean for a model to update its performance? To understand this, we
must introduce the most important concept when training a neural network: the
loss. Before we can understand the loss, we must first look at the loss function i.e.
the function that is used to calculate the loss. The loss function is important because
it allows us to evaluate the model’s weights that are present in every layer of the
neural network.

The loss function that is used in this chapter is the mean square error (MSE) loss
function, which is most commonly used in regression problems. In an ideal world,
the MSE loss with optimal weights would be zero, which means that all predictions
are exactly equal to the true values. In practice, we want to make the loss as
low as possible by gradually optimizing the weights. This is a high dimensional
optimization problem given that we have lots of weights.

During the training process of a neural network, the weights are optimized with
gradient descent. The idea behind gradient descent is as follows. After every
iteration, the gradient of the loss function is calculated. The gradient is a vector
that contains all of the partial derivatives of the loss function. The partial derivative
is calculated by derivation of the loss function with respect to one weight, while
keeping the other weights constant. As we know from high school, the derivative
of a function tells us the slope of that function. Given that we are looking for the
minimum loss, a very large slope (in absolute value) suggests that we are still far
removed from this objective, while a small slope (in absolute value) hints that we
are almost there. The sign of the derivative tells us which way to go. These basic
principles are used to find the minimum loss in gradient descent.

FIGURE 3.7: Using gradient descent to find the minimum of a
function. The derivative (green) is largest in absolute value the
further we are from the minimum of the function (blue). Taking
the sign of the derivative into account, we must simply step down
the curve until the derivative flips sign. When it does, we know
we have crossed the minimum of the function[25].

A simplified example of gradient descent with one variable from the book ’Deep
Learning’ by Goodfellow et al.[25] is given in Figure 3.7. On the figure, the function
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1
2 x2 (blue) and its derivative (green) are plotted. The minimum of the function is at
x = 0, where also the derivative has its minimum value. The further away we are
from the minimum, the greater in absolute value the derivative becomes. When the
sign of the derivative is negative, we must move to the right to find the minimum.
When it is positive, we must go left. Stepping down the curve until the derivative
changes sign, will give us the minimum of the function.

The neural network will perform a similar analysis (but now with a lot more
variables) to decide on how to change the weights. The weights are changed with
a so-called step size. The step size is determined by multiplying the gradient by a
number of our own choosing: the learning rate.

Learning rate

The learning rate is a parameter used for the gradient descent. Choosing the learning
rate is important because a learning rate that is too small will require the model to
take a lot of steps before the minimum is reached. Also, we must be careful not to
get stuck in a local minimum, which can happen if the step size is too small. With a
learning rate that is too high, we risk overshooting the minimum with a diverging
loss as result. To help us with this decision, the learning rate finder can be used.
The learning rate finder plots the learning rate in function of the loss. An example is
plotted in Figure 3.8. After some initial fluctuations we can see that the model’s loss
stays more or less constant, i.e. the model does not train, in the range 10−6 to 10−4.
Then the loss starts decreasing and eventually it reaches a minimum after which
the loss diverges. A rule of thumb for picking a learning rate is to choose a value
that lies comfortably before the minimum, but still in the range where the loss was
clearly decreasing. For this particular example, a learning rate around 10−3 would
be appropriate.

FIGURE 3.8: An example of the learning rate finder, which plots the
learning rate in function of the loss.

3.5 Neural network with Mat2vec embeddings

After the theoretic foundation of the previous section, it is now time to turn this
into practice. Fastai[27] and PyTorch[28] will be used to construct and train the
neural networks. We will use the Mat2vec embeddings of the constituent elpasolite
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atoms as weights for the neural network in the input layer. In contrast to Chapter
1, the embeddings of the elements are retrieved by their respective element symbol
(e.g. ’H’). We now put these embeddings in a tensor, which can be described as
a collection of numbers in a particular shape. As there are 118 elements in total
and each element has an embedding vector of 200 dimensions, we create a PyTorch
tensor of shape 118× 200. It would be convenient to identify the embedding of an
element by its atomic number, so we add a row of zeros to the tensor. The final tensor
thus has a shape of 119× 200 and allows for the retrieval of the correct embedding
with the atomic number of an element. This tensor will be called the embedding
tensor.

A schematic representation of the neural network that was constructed is shown
in Figure 3.9. The neural network will take the atomic number of the A, B, C and

1x400

4x1

1x200

4x200

1x800

1x1

1x1

embedding

reshape

L1 L2

L3

sigmoid

FIGURE 3.9: Schematic representation of the neural network
architecture.

D elements as input (a 4× 1 tensor). Each atomic number will then be converted
to its corresponding embedding of 200 dimensions through the embedding tensor
which gives us a tensor of 4× 200. This tensor thus contains the initial weights of
the neural network for a given elpasolite. After reshaping this tensor (1× 800) two
hidden layers L1 and L2 will be traversed, with 400 and 200 neurons respectively.
The weights in these layers are optimized during the training process of the neural
network. Finally, the last layer reduces the 1× 200 tensor to a single output. The
sigmoid function at the end makes sure the predicted value lies in between the range
[−3.5, 6], which is the range of the formation energy (in eV/atom) in our dataset.

3.5.1 The result after 25 epochs

The results after training for 25 epochs with a learning rate of 1 · 10−3 can be seen on
Figure 3.10 for the training set and validation set.

We immediately see that the results have improved when we compare them with
the results of the random forest. The distribution of the data points on Figures 3.10a
and 3.10b is less spread out. The predictions do deviate from the linear fit at the
edges (which are data points that originate from the tails of the data distribution),
but this can be explained by the rareness of these extreme formation energy values.
The MAE of 0.024 eV/atom on Figures 3.10c and 3.10d is significantly better than for
the random forest. The fact that we have the same MAE (up to 3 decimal places) for
both the training and validation set implies that the model does not overfit. When
overfitting occurs, the model stops finding generalizable patterns in the data and
instead starts to memorize the data in the training set. This would lead to very good
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(A) Training set (B) Validation set

(C) Training set (D) Validation set

FIGURE 3.10: The results of the training set and validation set for
the prediction of the formation energy after training the neural
network with Mat2vec embeddings for 25 epochs.

results on the data in the training set, but poor performance on the validation (and
test) set. This is luckily not the case here.

The confusion matrix of the validation set can be seen in Table 3.3. With only 2.08 %
of the stable elpasolites and 0.62 % of the unstable elpasolites wrongly classified, we
obtain a very good result.

Predicted

Stable Unstable

A
ct

ua
l

Stable 97.89 % 2.11 %

Unstable 0.63 % 99.37 %

TABLE 3.3: Normalized confusion matrix for the classification of
stable and unstable elpasolites in the validation set after 25 epochs,
with a neural network and Mat2vec embeddings.

However, the training process does not have to stop already. We can continue
training the model to see if we can achieve even better results.
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3.5.2 Final result

During the training process, it is important to plot the learning rate finder frequently
such that the learning rate can be altered in time. We performed the optimization
process several times and found that we always ended up at the same results. One
possible training procedure is shown in Table 3.4. This procedure is not set in stone,
a different number of epochs or learning rates could also be used to reach the best
possible result.

Epochs Learning rate

10 10 · 10−4

5 10 · 10−6

5 10 · 10−7

5 10 · 10−7

TABLE 3.4: Possible training procedure for the neural network to
obtain optimal results.

The final results for the training and validation set are included in Appendix A.2.
Note that these results do not differ much from the results we obtained earlier after
25 epochs, meaning that the neural network was already trained well. A histogram
with the absolute errors and the MAE of the predictions on the test set is shown in
Figure 3.11. With a MAE of only 0.021 eV/atom, we were able to improve the model
slightly.

FIGURE 3.11: The final result of the prediction of the formation
energy of elpasolites in the test set with a neural network and
Mat2vec embeddings. The MAE is also given.

The confusion matrix has also improved after fully training the model. In Table 3.5,
we can see that false classification of stable elpasolites was brought down to 1,93 %
and less than 0.5 % of the unstable elpasolites were classified as stable.

At this point, we can conclude that our neural network with Mat2vec embeddings
is fairly good at predicting the formation energy and labeling stable and unstable
elpasolites in the dataset provided by Faber et al. The next question we will examine
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Predicted

Stable Unstable
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Stable 98.07 % 1.93 %

Unstable 0.47 % 99.53 %

TABLE 3.5: Normalized confusion matrix for the classification of
stable and unstable elpasolites in the test set, with a neural
network and Mat2vec embeddings.

is whether this is due to the neural network architecture itself, due to the Mat2vec
embeddings, or due to a combination of both.

3.5.3 Neural network with random embeddings

To examine this question, we constructed a neural network and replaced the values
in the embedding tensor with random numbers. The final result for the model with
random embeddings on the test set is shown in Figure 3.12. The results for the
training and validation set are included in Appendix A.3.

FIGURE 3.12: The final result of the prediction of the formation
energy of elpasolites in the test set with a neural network and
random embeddings. The MAE is also given.

As we can see, the overall predictions for the formation energy are slightly better
with random embeddings as we obtain a mean absolute error of 0.018 eV/atom
with the final model on the test set. However, this smaller error does not result in
major differences in the confusion matrix, given in Table 3.6. Notice that the model
with the Mat2vec embeddings performs slightly better when it comes to classifying
the stable elpasolites, but the model with random embeddings does a better job
at classifying the unstable elpasolites. Overall, the differences between the model
with Mat2vec embeddings and the random embeddings are negligible. The use of
Mat2vec embeddings thus does not seem an asset, as the embedding tensor resulting
from a random initialization yields similar results.
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Predicted

Stable Unstable
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Stable 97.87 % 2.13 %

Unstable 0.38 % 99.62 %

TABLE 3.6: Normalized confusion matrix for the classification of
stable and unstable elpasolites in the test set after 25 epochs, with
a neural network and random embeddings.

3.5.4 Discussion

We thus find that the Mat2vec embeddings do not improve the predictions of the
formation energy of elpasolites. Maybe our large dataset is the reason for this?
After all, one can expect that both methods will converge given there are millions of
data points to extract relevant information from and quite some epochs to optimize
performance. However, when testing with only a fraction of the dataset and less
epochs, similar results were obtained.

We also tried to construct the embeddings of the elpasolites in a different way.
Instead of concatenating the embeddings of the constituent elements, we averaged
the 1× 200 embeddings of the A, B, C and D elements into one embedding of 1× 200
for the elpasolites. The number of weights in the subsequent layers was also lowered
as the input layer now consisted of only 200 weights. Unfortunately, this worsened
the performance of the neural network.

One last effort was done by fine-tuning the model after unfreezing the embeddings,
i.e. also training the input embeddings instead of only the linear layers. In other
words, we first trained the model with the embeddings kept constant and then we
continued training the model whilst allowing the input embeddings to be altered.
However, we did not obtain a better result.

3.6 Conclusion

In this chapter, our aim was to predict the formation energy of elpasolites, which are
quaternary materials with the general formula ABC2D6. The dataset that was used
for the predictions contained 2 · 106 elpasolites with the corresponding DFT-quality
formation energies as provided by Faber et al. A random forest was the first
method that was used for the predictions. As the performance of the random
forest was rather poor when it came to classifying the stable elpasolites, we moved
on to a neural network. We constructed a neural network that used the Mat2vec
embeddings of the A, B, C and D elements of the elpasolites as input. Very good
results were obtained. However, when initializing the model parameters with
random numbers, we obtained similar results. We thus conclude that the use of
Mat2vec embeddings to predict the formation energy of elpasolites did not turn
out to be helpful. Nonetheless, this does not undermine the results of our neural
network, which was able to achieve an almost perfect score on classifying stable and
unstable elpasolites after prediction of the formation energy.

As we have seen in this chapter, our neural network did not ’need’ the embeddings
in order to make good predictions. They are simply very efficient at learning and are
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able to capture complex relationships between data points by themselves. In the next
chapter, we will exploit the context-based nature of the embeddings to see if they can
be helpful when mining a database of materials. More specifically, we will try to find
good candidates for thermoelectric purposes with the help of embeddings.
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Chapter 4

Predicting thermoelectric materials
with embeddings

In this final chapter, we will try to predict thermoelectric materials with embeddings.
As opposed to the previous chapter, we will not use a neural network to do this.
Instead, we will rely on the contextual nature of the embeddings in the Word2vec
model. Closely related words will be in close proximity in the 200-dimensional
embedding space, whilst completely different words will be further apart. The
distance between word vectors can be expressed by means of the cosine distance
or cosine similarity, i.e. the cosine of the angle between them. As discussed in
Section 1.3.2, Tshitoyan et al. were able to predict new thermoelectric materials
by calculating the cosine similarity between the word ’thermoelectric’ and the
embeddings of materials. Thermoelectrics are materials that efficiently convert heat
into electric power, making them interesting candidates to recover waste heat for
useful purposes.

We will implement the same approach to predict thermoelectric materials in an
in-house database from the Center for Molecular Modeling (CMM) at Ghent
University. The database contains about 10,000 quaternary materials, which are
promising thermoelectric candidates as they fulfill one of the necessary conditions:
they have a sufficiently complex crystal structure. The objective of this chapter is to
rank the quaternary materials by order of their expected thermoelectric performance
with the help of embeddings. However, as the embeddings for the materials in
the CMM database are not included in the Mat2vec model, we will look for two
alternative approaches to construct material embeddings.

In order to test the validity of these approaches, we will compare our results to those
of Jasper De Witte. In his master’s thesis at the CMM, he constructed a deep learning
model with ab-initio data to predict the thermoelectric power factor of materials.
As we know from Section 1.3.2, the thermoelectric power factor is able to capture
the performance of thermoelectric materials. The higher it is, the more suitable a
material is for thermoelectric purposes. Jasper also applied his deep learning model
to the materials in the CMM database. With the predictions of the thermoelectric
power factor, Jasper was able to identify the 99 best thermoelectric materials in the
CMM database. In what follows, we will investigate how many materials in the top
99 we are able to identify by using two approaches to construct embeddings for the
materials.



42 Chapter 4. Predicting thermoelectric materials with embeddings

4.1 The CMM database

The CMM database contains 10,527 quaternary materials and was constructed over
the years by the Center for Molecular Modeling (CMM). However, we will not
retain all of the materials. As we are specifically looking for usable thermoelectric
materials, we applied a selection procedure beforehand. The same selection criteria
were applied by Jasper De Witte on the database during his master’s thesis.

First of all, materials likely to be thermodynamically unstable were removed. In the
previous chapter, the formation energy was used to distinguish stable from unstable
materials. However, as was briefly mentioned, the same chemical composition can
possibly have a more negative formation energy for other crystal structures. For this
reason, the database does not mention the formation energy, but instead the energy
above the convex hull (Ehull) calculated with DFT for each quaternary material. The
convex hull connects the most stable configurations for a given fraction of chemical
elements. It is the energy distance to the convex hull that determines the true
stability of the material. A stable material has an Ehull of zero as it lies precisely
on the convex hull. The larger Ehull , the less likely the material will be stable in
nature[29].

An example for Al-Fe is given in Figure 4.1, taken from Jasper De Witte’s master’s
thesis. The AlFe2 compounds with varying crystal structures, for example, do not
lie on the convex hull and are therefore unstable. Instead, they will decompose to a
combination of AlFe3 and AlFe as these are the closest stable materials on the convex
hull.

FIGURE 4.1: Example of a convex hull diagram for Al-Fe alloys. Blue
dots represent stable compounds[29].

In the database of quaternary materials, we removed all of the materials for which
Ehull > 0.050 eV/atom. This serves as a safety margin for numerical errors,
systematic deviations of the simulation method and the possibility of metastable
materials.

We also selected on the band gap Eg of the materials, also calculated with DFT
for the materials in the database. The existence of a non-zero band gap is of
great importance for thermoelectric materials. As the thermoelectric power factor
is calculated as σS2 with σ the electrical conductivity and S the Seebeck coefficient, a
lot depends on the Seebeck coefficient. It was empirically found that the Seebeck
coefficient for semiconductors, which have a non-zero band gap, is orders of
magnitude larger than for metals (no band gap)[30]. For this reason, we removed
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the quaternary materials with a band gap under 0.050 eV as band gaps smaller than
0.050 eV become almost indistinguishable from metals.

After applying these selection criteria on the database, we end up with 1,198
materials and nine different stoichiometries with general formulae ABCD4,
A6BC4D3, A2BCD4, A18B6CD14, A8B24CD3, A7B6CD16, A4B2CD4, A2BCD2 and
ABCD3. A histogram with the occurrence of each stoichiometry in the database is
included in Appendix B, along with an overview of the A, B, C and D elements.

4.2 Approach

Our aim is to calculate the cosine similarity of the embedding vectors with the word
’thermoelectric’ for the remaining 1,198 materials in the CMM database. The manner
by which the embeddings were constructed will be discussed shortly, but first we
will explain the idea behind calculating the cosine similarity to predict applications
of materials.

The cosine similarity of two vectors A and B is:

similarity = cos(θ) =
A · B
‖A‖‖B‖ =

∑n
i=1 AiBi√

∑n
i=1 A2

i

√
∑n

i=1 B2
i

. (4.1)

Using only the positive space, the cosine similarity of two vectors is limited to the
range [0, 1]. The closer to 1, the more alike two vectors are. As the Mat2vec model
was trained specifically to maximize the similarity of the word vectors for words
that are used frequently in the same context (i.e. they have the same meaning),
we expect the cosine similarity to be high for similar words. The idea is now that
various applications of materials are also encoded in the embeddings. For instance, a
material that is popular for the fabrication of fuel cells will frequently be mentioned
in this context. The Mat2vec model will pick up the co-occurrence of our example
material with fuel cells, which will result in two word vectors that live in close(r)
proximity in the word embedding space as compared to other materials. This feature
can be exploited to link materials to applications. However, what Tshitoyan et
al.[1] have found and what was discussed earlier in Section 1.3.2, is that we can
predict new material applications for materials that were never explicitly mentioned
together with a specific application.

We will exploit this approach to predict thermoelectric materials in the CMM
database, but with one major difference. Tshitoyan et al. used the embeddings of
the materials that were present in the Mat2vec model to predict new thermoelectric
materials. Unfortunately, we can not follow the same approach as only 14 out of the
1,198 materials are included in the vocabulary of Mat2vec. These 14 materials are
only mentioned 5 times or less in the entire text corpus that the model was trained
on. As a consequence, their embeddings will be of poor quality. We thus have to
find a way to retrieve qualitative embeddings for materials that are not included in
the Mat2vec vocabulary.

An alternative to construct embedding vectors for the materials in the quaternary
database is to add up the constituent element vectors. For example, the embedding
vector for K2MgSnSe4 can be constructed as

vector(’K’) + vector(’Mg’) + vector(’Sn’) + vector(’Se’). (4.2)
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This is one possible way to construct an embedding vector out of the constituent
elements. However, the database contains various stoichiometries (see Figure B.1 in
Appendix B). The above method assigns the exact same embedding vector to crystals
that contain the same elements, but have a completely different stoichiometry. It
would be interesting to compare the first method where we solely added up the
constituent vectors to a method where the stoichiometry of the materials is explicitly
taken into account. In order to construct an embedding vector that contains the
stoichiometry, we can construct the embedding vector of K2MgSnSe4 as

2 · vector(’K’) + vector(’Mg’) + vector(’Sn’) + 4 · vector(’Se’). (4.3)

Multiplying a vector with a positive scalar does not change its direction, but only
its magnitude. By multiplying the word vectors of the elements with the respective
stoichiometry number, we are able to give certain elements a higher weight in the
final embedding vector.

Both approaches will be used to construct material embeddings for the materials
in the CMM database. Subsequently, a ranking of the materials can be made
based on the cosine similarity of the word vector for ’thermoelectric’ and the
material embeddings. Before comparing our ranking to Jasper De Witte’s results, the
differences of both approaches to construct the embedding vectors are discussed.

4.2.1 Comparing different approaches to construct embeddings

For both approaches, we calculated the cosine similarity of the embeddings and the
word vector for ’thermoelectric’. The results of these calculations are depicted on
Figure 4.2 by means of a histogram with the distribution of the cosine similarity.
On Figure 4.2a the embeddings were obtained by summation of the constituent
elements, on Figure 4.2b the stoichiometry was explicitly taken into account.
Embeddings without explicit multiplication for the stoichiometry, have a cosine

(A) (B)

FIGURE 4.2: The results for the cosine similarity of the word
’thermoelectric’ and the material embeddings. On 4.2a, the
stoichiometry was not explicitly included in the material
embeddings. On 4.2b, the stoichiometry was explicitly included
in the embeddings.

similarity in between the range [0.24, 0.44]. With the stoichiometry of the crystals
explicitly taken into account, we find a range of [0.21, 0.49]. The range of the cosine
similarity thus seems rather similar for both approaches. Both histograms also
exhibit a maximum count at a cosine similarity of about 0.35. Note that Figure 4.2a
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contains a lot of duplicates as materials with the same constituent elements but a
different stoichiometry were assigned the same embedding vector.

Of course, the most important question is: are the highest ranked materials similar
with both approaches? To answer this question, we ranked the materials in the
database by decreasing order of cosine similarity with the word ’thermoelectric’.
The 50 highest ranked materials for both approaches are included in Appendix B. Of
these 50 materials, we find that 44 materials appear in both rankings. It thus seems
that the different methods to construct the embeddings do not radically change the
ranking of the materials. This is a positive result as we find that solely adding up
the constituent elements of the quaternary materials does implicitly seem to capture
stoichiometric information.

We will now investigate whether the embeddings were able to retrieve the same
materials as Jasper De Witte found with his thermoelectric power factor predictions.

4.3 Comparison to Jasper De Witte’s results

Jasper De Witte’s top 99 of thermoelectric candidate materials is given in Figure
4.3. We also made a ranking of the 99 materials with the highest cosine similarities
of the embeddings and the word ’thermoelectric’, hereby using both methods with
and without explicitly taking into account the stoichiometry in the embeddings. The
materials in Jasper’s top 99 that also appeared in our top 99 were indicated on Figure
4.3 with black borders. The method that didn’t take the stoichiometry into account
yielded a total of 17 matches in the top 99, the method that did take the stoichiometry
into account matched with Jasper’s ranking for the same 17 materials and one extra
(BiCsSrTe3, indicated with a grey border). At first, it looks disappointing that we did
not find any of the fifteen highest ranked materials. Note however the small range
in the predictions of the thermoelectric power factor. The difference in predicted
thermoelectric performance between the first and the ninety-ninth material is not
large.

How should we interpret this result then? If we were to randomly pick 99 materials
out of the 1,198 that we started with, how many of them would be in the top 99?
To get an idea of this number without having to do statistical combinatorics, we
randomly picked 99 materials out of the database and calculated how many of them
were in Jasper’s top 99. After doing this a million times, we found on average 5.7
materials that matched with Jasper’s top 99. Only 56 times in one million attempts
did we find 17 or more matches. We thus find that the probability that our result
with the embeddings was purely based on chance is 0.006 %.

4.4 Conclusion

In this chapter, we examined the potential of predicting thermoelectric materials in
an in-house quaternary database of the CMM by calculating the cosine similarity
with the word ’thermoelectric’ and the embedding vectors of the materials. None of
the materials in the database were (sufficiently) included in the Mat2vec vocabulary,
so we decided to construct our own embeddings based on the constituent elements
of the quaternary materials. Two approaches were tested. The first approach solely
added up the elemental word vectors to obtain the word vector of the material. The
second approach took into account the stoichiometry of the materials by multiplying
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FIGURE 4.3: The 99 best performing quaternary materials in the
CMM database, according to a prediction of the thermoelectric
power factor performed by Jasper De Witte. PF denotes the power
factor in ln(µW/cmK2s)[29]. The materials that are indicated by
black borders matched with our top 99 with both methods. The
method that took into account the stoichiometry of the materials
yielded one extra match, indicated by a grey border.

the elemental vectors with the corresponding stoichiometry number. With both
approaches we found quite similar results.

Finally, we compared our result to Jasper De Witte’s ranking of the materials that
was based on the prediction of the thermoelectric power factor. In the top 99,
we respectively found 17 matches and 18 matches for both methods to construct
the embeddings, which is much more than a random sample would be able to
achieve. Along with confirming that embeddings can be useful to predict material
applications, this result further promotes the idea that quaternary materials may
indeed harbor interesting candidates for application as thermoelectrics.
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Chapter 5

Conclusion and outlook

5.1 Conclusions

Throughout this work, we have explored the potential of natural language
processing (NLP) in materials science. More specifically, we applied the
unsupervised NLP model Mat2vec that was constructed by Tshitoyan et al.[1] with
3.3 million abstracts of materials science articles. The resulting 200-dimensional
word embeddings from the Mat2vec model were used in this work to investigate
whether materials science knowledge can be extracted from them.

First of all, we started with the embeddings of chemical element names. A
two-dimensional projection of the 200-dimensional embeddings was made to get
some visual insight in the embedding space. On the two-dimensional projection,
we were able to observe the clustering of elements from the same category in the
periodic table. However, some elements seemed a little out of place, which was
contributed to the contextual nature of the embeddings (such as the clustering of
radioactive elements) and the fact that a lot of information was lost due to the
two-dimensional projection of the 200-dimensional embeddings.

A more rigorous assessment of the embeddings of chemical elements was made by
predicting several atomic and thermodynamic properties with a linear regression
model. With 5-fold cross validation, we used the embeddings of the elements as
input and the true value of a specific property as output for the linear regression
model. As we only had 100 data points at most per property, given the limited
number of chemical elements in the periodic table, the 200-dimensional embeddings
were first reduced to 15 dimensions with principal component analysis (PCA). The
R2 values of the true values and the predictions for the atomic and thermodynamic
properties varied between 0.45 and 0.75. When we compared this result to a similar
procedure by Tshitoyan et al., we noticed that their results were noticeably better.
However, the omission of certain elements before performing the linear regression
procedure was the reason for this. As they were not clear in which embeddings
they removed, we decided to use all of the elements and draw our own conclusions.
One apparent problem that was identified by analyzing the results, was that very
rare elements did not have qualitative embeddings. These poor embeddings can be
ascribed to the fact that they almost never appeared in the materials science articles
on which the Mat2vec model was trained. We can try to remove these from the
dataset, but the problem is that we end up with even less data points. Furthermore,
we noticed that the normalization of the word embeddings could be beneficial. This
way, element names will refer to one unique embedding, instead of having multiple
possibilities (e.g. ’tungsten’, ’wolfram’ and ’W’ all refer to the same element, but



48 Chapter 5. Conclusion and outlook

have different embeddings in Mat2vec). The normalization of the embeddings could
be achieved by averaging over all possible embeddings that refer to one specific
element name. Also in some cases, the opposite was true. For example, sometimes
’carbon’ is mentioned in the context of diamond and sometimes it refers to graphite.
One could try to separate these different contexts during the construction of the
embeddings. Of course, the results in this chapter were obtained with a linear
regression model. More complex non-linear models should be investigated to assess
whether they are better suited to link the word embeddings of chemical elements to
specific atomic and thermodynamic properties.

More complex models were applied in the third chapter of this work to predict
the formation energy of elpasolites. Elpasolites are quaternary crystal structures
with the general formula ABC2D6. We first tested the prediction of the formation
energy by applying a random forest where the atomic numbers of the A, B, C and
D elements served as input. As the formation energy distinguishes stable (negative
formation energy) from unstable materials (positive formation energy), we were able
to compare the classification of stable and unstable materials based on the predicted
formation energy. The random forest struggled to correctly classify the stable
elpasolites as most of the elpasolites in the dataset had a positive formation energy.
Hence, the random forest is more likely to predict unstable elpasolites. Inspired by
the positive results from Tshitoyan et al. to use embeddings as feature vectors in
machine learning[1], we constructed a neural network with Mat2vec embeddings.
We concatenated the embeddings of the A, B, C and D elements to serve as input
in the neural network. Our neural network obtained an almost perfect score for
the classification of stable and unstable materials. However, we wondered whether
this was mostly due to the embeddings or due to the fact that neural networks are
very efficient at learning. The latter seemed to be the case, as a neural network
with randomly initialized embeddings was able to reach similar results. Some
modifications were tried, such as averaging the embeddings of the A, B, C and D
elements and unfreezing the embeddings (i.e. allowing the embeddings to be altered
by the neural network), but no noticeable difference was observed with the neural
network of the randomly initialized embeddings. We conclude from this that neural
networks are simply able to capture complex relationships by themselves. Hence,
the embeddings were not essential to make good predictions of the formation energy
in our neural network. In order to test extensively the potential of embeddings
in neural networks, one could look at different stoichiometries instead of solely
taking into account the elpasolite structure. This hypothesis was tested for the
quaternary materials of the in-house database that was used in the final chapter.
While not included in this work, initial tests show no difference with the randomly
initialized embeddings. However, the good news is that the inclusion of different
stoichiometries did not lead to performance loss. This opens perspectives for
larger databases where multiple stoichiometries are included. Also, another neural
network architecture with a different number of layers could be implemented. It is
most likely that the potential of the embeddings will become apparent when using
less layers in the neural network. When there are less parameters to be optimized,
the embeddings are allowed to play a more important part in the neural network.
However, the question whether this will negatively impact the predictions is unclear
and is left for future research.

In the final chapter, we examined the potential of embeddings to identify
thermoelectric materials in an in-house database with quaternary materials. To do
this, the cosine similarity between the word ’thermoelectric’ and the embeddings of
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the materials in the database was calculated. Embeddings that yield a high cosine
similarity are, as Tshitoyan et al. have shown[1], good candidates for thermoelectric
purposes. As the materials in the database were not included in the vocabulary of
Mat2vec, we applied two different methods to construct the material embeddings.
One method did take the stoichiometry of the materials explicitly into account, the
other did not. We found that both methods yielded similar results, which lead us
to conclude that the stoichiometric information was somehow already contained
in the embeddings. After comparing our results to those of thermoelectric power
factor predictions previously performed by Jasper De Witte[29], we concluded that
we were able to identify 17 materials that are expected to be good candidates for
thermoelectric purposes. We thus obtain promising results. However, in order to
truly validate this approach, we must test our method on databases that contain
different material structures and also investigate other interesting applications (e.g.
photovoltaics, superconductors,...).

5.2 Outlook

In this work, we have seen that NLP holds a lot of promise for the field of materials
science. The performance of the elemental embeddings clearly showed they capture
important chemical information. Using our simple machine learning models, high
quality predictions on key properties for material discovery such as formation
energies, were made. With the neural network that was constructed in this thesis,
other material property predictions could also be performed. For example, zero
versus non-zero band gap classification. The role of embeddings in these predictions
can be further assessed and eventually be increased by altering the architecture of
the neural network.

Various other applications of the Word2vec model, such as the classification of
materials science articles and the generation of synthesis pathways for materials,
were not explored in this work, but are applied extensively by other materials
scientists. However, NLP continues to evolve outside of the materials science
department. The breakthroughs and developments in NLP are occurring at an
unprecedented pace. Recent developments in advanced context-aware embeddings
stemming from deep learning, such as transformers, will likely be able to
capture much more detailed information than the Word2vec model. As opposed
to Word2vec, transformers process words in relation to all other words in a
sentence. For example, Google’s BERT framework (short for Bidirectional Encoder
Representations from Transformers) is able to tell the difference between the
different uses of the word ’running’ in ’he is running a company’ and ’he is running
a marathon’.

One thing is for sure: transformers are already transforming the world of NLP, and
will keep doing so in the future. This will surely bring along exciting applications
for materials science, waiting to be discovered in future research.





51

Appendix A

Appendix for Chapter 3

A.1 Random forest

(A) Training set (B) Validation set

(C) Training set (D) Validation set

FIGURE A.1: Results on the training set and validation set for the
predictions of the formation energy with the random forest.
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A.2 Neural network with Mat2vec embeddings

(A) Training set (B) Validation set

(C) Training set (D) Validation set

FIGURE A.2: Results on the training set and validation set for the
predictions of the formation energy with the neural network with
Mat2vec embeddings.
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A.3 Neural network with random embeddings

(A) Training set (B) Validation set

(C) Training set (D) Validation set

FIGURE A.3: Results on the training set and validation set for the
predictions of the formation energy with the neural network with
random embeddings.
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Appendix B

Appendix for Chapter 4

B.1 The quaternary database after application of the
selection criteria (Ehull < 0.050 eV/atom and Eg > 0.050
eV)

FIGURE B.1: The number of occurrences of each stoichiometry in the
CMM database after applying the selection criteria.
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FIGURE B.2: The occurrence of the A, B, C and D elements in the
CMM database after applying the selection criteria.
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B.2 Top 50 of thermoelectric predictions with embeddings

Embeddings without stoichiometry Embeddings with stoichiometry

AsKNaTe3 0.445 K2SnSrTe4 0.424 AlKSiTe4 0.493 AlCsKTe3 0.480
CsKSbTe3 0.445 KSbSeSi4 0.424 AlKSiTe4 0.493 BiCaKTe3 0.479
BiKNaTe3 0.443 Ca2GeKTe4 0.423 AsKNaTe3 0.490 InRbSiTe4 0.479
BiKNaTe3 0.443 Ge2KMgTe4 0.423 CsInKTe3 0.488 Ge2KSrTe4 0.478
BiCsKTe3 0.440 BaBiKTe3 0.423 K2MgSnTe4 0.487 CsKSiTe3 0.478
BiCsKTe3 0.440 AlKNaTe3 0.422 Ca2KSnTe4 0.486 InKRbTe3 0.477
CsInKTe3 0.438 BiKSeSi4 0.422 CsInSiTe4 0.486 InKRbTe3 0.477
BiKMgTe3 0.438 Ba2KSnTe4 0.421 GaKSiTe4 0.486 AlCsSiTe4 0.477
CsKSnTe3 0.437 BaKSnTe3 0.421 BiKNaTe3 0.484 Ba2KSiTe4 0.477
CsKSnTe3 0.437 AsKRbTe3 0.421 BiKNaTe3 0.484 AsRbSiTe4 0.477
CsInSiTe4 0.433 BiGeKSe4 0.420 K2SnSrTe4 0.484 AsKRbTe3 0.476
BiCaKTe3 0.431 Ge2KSrTe4 0.419 BiKMgTe3 0.483 BiKSrTe3 0.476
GaKSiTe4 0.431 KRbSnTe3 0.418 K2MgSiTe4 0.483 Ba2GeKTe4 0.475
AlKSiTe4 0.431 KRbSnTe3 0.418 CsKSbTe3 0.482 AlCsGeTe4 0.474
AlKSiTe4 0.431 InKRbTe3 0.417 Ca2KSiTe4 0.482 AlCsGeTe4 0.474
KRbSbTe3 0.430 InKRbTe3 0.417 Ge2KMgTe4 0.482 KRbSbTe3 0.474
KRbSbTe3 0.430 CsGaKTe3 0.417 AlKNaTe3 0.482 KRbSbTe3 0.474
Ca2KSnTe4 0.429 AlCsGeTe4 0.416 BiCsKTe3 0.481 BiKRbTe3 0.473
CsKSiTe3 0.426 AlCsGeTe4 0.416 BiCsKTe3 0.481 BiKRbTe3 0.473
BiKSrTe3 0.426 GeKSSb4 0.416 CsKSnTe3 0.481 AlRbSnTe4 0.473
K2MgSnTe4 0.426 Ba2GeKTe4 0.416 CsKSnTe3 0.481 BaKSnTe3 0.472
BiKRbTe3 0.425 AsRbSiTe4 0.415 Ca2GeKTe4 0.480 BaBiKTe3 0.472
BiKRbTe3 0.425 InRbSiTe4 0.414 Ba2KSnTe4 0.480 KRbSnTe3 0.471
AlCsKTe3 0.424 CsMgSbTe3 0.414 K2SiSrTe4 0.480 KRbSnTe3 0.471
AlCsKTe3 0.424 Ca2KSiTe4 0.412 AlCsKTe3 0.480 CsGaSiTe4 0.470

TABLE B.1: Top 50 of the results of the cosine similarity with the word
’thermoelectric’. On the left, the stoichiometry of the embeddings
was not taken into account. On the right, the stoichiometry was
taken into account when constructing the embeddings.
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Appendix C

Science communication

In order to communicate my master’s thesis topic to the general public, I wrote an
introductory article in Dutch about NLP for the website of the VVN (Vereniging
voor Natuurkunde). The VVN is a Ghent University related student association that
encourages science communication by organizing lectures and other activities about
physics and astronomy. The article can be read on https://vvn.ugent.be/blog/
taalles-voor-computers/.

https://vvn.ugent.be/blog/taalles-voor-computers/
https://vvn.ugent.be/blog/taalles-voor-computers/
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