
Thesis submitted in partial fulfillment of the requirements for the degree of Master
of Science in de Ingenieurswetenschappen: Computerwetenschappen

NEURAL TREE DISTILLATION TO
EXPLAIN DEEP
REINFORCEMENT LEARNING
POLICIES

Senne Deproost

2020-2021

Supervisor: prof. dr. Ann Nowé
Advisor: Youri Coppens
Sciences and Bio-Engineering Sciences

Proef ingediend met het oog op het behalen van de graad van Master in de In-
genieurswetenschappen: Computerwetenschappen

NEURALE BOOM DISTILLATIE
VOOR HET VERKLAREN VAN
DEEP REINFORCEMENT
LEARNING STRATEGIEËN

Senne Deproost

2020-2021

Promotor: prof. dr. Ann Nowé
Begeleider: Youri Coppens
Wetenschappen en Bio-ingenieurswetenschappen

Deze masterproef is (ten dele) tot stand gekomen in de periode dat het hoger onderwijs
onderhevig was aan een lockdown en beschermende maatregelen ter voorkoming van de ver-
spreiding van het COVID-19 virus. Het proces van opmaak, de verzameling van gegevens, de
onderzoeksmethode en/of andere wetenschappelijke werkzaamheden die ermee gepaard gaan, zijn
niet altijd op gebruikelijke wijze kunnen verlopen. De lezer dient met deze context rekening te
houden bij het lezen van deze masterproef, en eventueel ook indien sommige conclusies zouden
worden overgenomen.

This masters thesis came about (in part) during the period in which higher education was
subjected to a lockdown and protective measures to prevent the spread of the COVID-19 virus.
The process of formatting, data collection, the research method and/or other scientific work the
thesis involved could therefore not always be carried out in the usual manner. The reader should
bear this context in mind when reading this Master’s thesis, and also in the event that some
conclusions are taken on board.

1

Abstract

In recent years we saw the rise of self-adapting computer algorithms take over as a widely used
form of automation. Most often these smart programs are heavily influenced by machine learning
(ML), a domain within the field of artificial intelligence. The goal of ML is to train a learning
algorithm on experiences to be able to perform a task. Within ML, several sub-domains are
present. Algorithms can both learn with or without the supervision of an overseer. These
are respectively called supervised and unsupervised learning. A third category, reinforcement
learning (RL), uses the environment where it operates in to gain feedback in the learning process.
The merger of RL together with the human brain-inspired deep learning approach gave rise to a
method called deep reinforcement learning (DRL). Many applications, such as self-driving cars
and robot control, are recently developed to take advantage of the DRL setup. However, just as
the brain itself, the DRL algorithms are difficult to be interpreted by a human being. This so-
called “black box” problem doesn’t provide any meaningful insights in the model’s inner workings
causing difficulties in understanding, debugging and trusting the system.

In the field of explainable artificial intelligence (XAI), and by extension explainable reinforce-
ment learning (XRL), techniques are developed to enhance the interpretability (and explainabil-
ity) of a model. With a technique called knowledge distillation, the behaviour from one black box
model could be transferred to a interpretable surrogate model, mimicking the behaviour of the
black box model. Recently, this has been done with the distillation of DRL policies into a type
of neural tree. The used tree model, called soft decision tree (SDT), was capable of mimicking
the original DRL policy in a gaming environment, making the policy more interpretable due to
its simpler structure.

A disadvantage of using an SDT is its static structure when initialised. A better approach
would be to learn the optimal tree architecture during the training process. Adaptive neural tree
(ANT) is a type of neural tree model capable of learning an optimal structure.

In this thesis, we wanted to make an initial incorporation of ANT into a XRL context by mak-
ing several contributions. First, we developed a framework to facilitate the distillation process
and for the visualisation of the learned structure and features. Secondly, we trained several SDTs
and ANTs on games in the OpenAI Gym and we compared both models on both performance
and interpretability criteria. The scores of the algorithms are benchmarks for performance while
the visualisations of the tree, in combination with a newly developed complexity measurement,
provides a measurement of interpretability.

For one of our evaluated environments, we can conclude that both ANTs and SDTs are ca-
pable of reproducing the DRL policy. For other gaming environments, the distillation couldn’t
provide a performant surrogate model. However we do analyse the learned behaviour and com-
pared the models. Observable is a trade-off of reduced performance compared to the original
DRL policy in exchange for increased interpretability of the tree models. In comparison to each
other, the largest trained SDTs can outperform ANTs but this depends on the learned task or
environment. When compared to the relative performance per node in the tree, we can state
that ANTs perform better with the same number of nodes. For the interpretability criteria, most
often the ANT is less complex in its structure.

However, the structure of the ANTs overdepends on the neural network classifiers in the leafs
and therefore internal routing is less obvious. To resolve this, we introduced a technique called
smart routers, dumb solvers (SRDS) as a third contribution to enforce the internal nodes to train
more. This made the internal routing of the input frames more understandable in ANTs.

Acknowledgements

To start, I want to thank my supervisor prof. dr. Ann Nowé and advisor Youri Coppens for giving
me the opportunity of doing this thesis. The past year and a half since I started writing were
challenging. Throughout these difficult periods, the advise and help I received were indispensable
in following the path towards researching, reasoning and eventually writing this thesis. I’m
grateful for every minute spent (online) meeting and correcting the manuscript as well as the
support for continuing until the end.

I sincerely want to thank my incredible mothers for the upbringing, love and support over
the years. It was not easy during the past months. Yet, even in those times, they were always
there for me. Even when I didn’t know I needed a helping hand, I could always find it in the
comfort of their presence.

I want to thank my friends for the support as well. It always cheered me up when we came
together (in limited gatherings of course) and it always charged me with positive energy.

Finally, I want to thank every docent and teacher I had over the years from Koninklijk In-
stituut Woluwe, Sint-Jozef Ternat and Vrije Universiteit Brussels. They learned me to stand on
my own feet in this world both as an individual person and as a member of society.

We are living in challenging times with even more difficult problems to solve. Let us therefore
remember the adage this university is built upon and build further towards a bright future:

Scienta vincere tenebras.
Conquering darkness by science.

Senne Deproost

1

Acronyms

A2C Advantage Actor Critic.

A3C Asynchronous Advantage Actor Critic.

ACG Automatic Code Generation.

AI Artificial Intelligence.

ANN Artificial Neural Network.

ANT Adaptive Neural Tree.

DL Deep Learning.

DQN Deep Q Network.

DRL Deep Reinforcement Learning.

LMS Least Mean Squares.

MDP Markov Decision Process.

ML Machine Learning.

MLP Multi-layer Perceptron.

MSE Mean Squared Error.

NN Neural Network.

PPO Proximal Policy Optimization.

RL Reinforcement Learning.

SDT Soft Decision Tree.

XAI Explainable Artificial Intelligence.

XRL Explainable Reinforcement Learning.

2

Contents

1 Introduction 5
1.1 Machine Learning . 6
1.2 Interpretability in machine learning . 7
1.3 Problem statement . 9

2 Reinforcement learning 10
2.1 Fundamentals . 11

2.1.1 The RL framework . 11
2.1.2 Markov decision process . 13
2.1.3 Value functions . 14
2.1.4 Exploration-exploitation trade-off . 15
2.1.5 Temporal difference . 16

2.1.5.1 On-policy . 18
2.1.5.2 Off-policy . 19

2.1.6 Policy-based RL . 19
2.1.7 Continuous input space . 21

2.2 Deep Reinforcement Learning . 22
2.2.1 Deep Learning . 22
2.2.2 Algorithms for Deep Reinforcement Learning 24

2.2.2.1 Value-based DRL: Deep Q-learning 25
2.2.2.2 Actor-Critic methods: A3C . 25
2.2.2.3 Policy-based DRL: Proximal Policy Optimization 26

3 Explainable AI 28
3.1 Motivations . 30
3.2 Use cases . 31
3.3 Performance-readability trade-off . 33
3.4 Taxonomy . 34
3.5 Conventional techniques . 43

3.5.1 Inherently interpretable model: decision trees 43
3.5.2 Post-hoc representation: feature visualisation 45
3.5.3 Additive explaining model: rule list . 47

3.6 Knowledge distillation . 48
3.6.1 Soft decision tree . 50

3.6.1.1 Training a SDT . 51
3.6.2 Adaptive Neural Tree . 53

3.6.2.1 Training an ANT . 55

3

3.7 Explainable Reinforcement Learning . 57
3.7.1 Transparent algorithms . 57
3.7.2 Post-hoc explainability . 58
3.7.3 Other literature . 58

4 Methods and setup 59
4.1 Experimental setup . 60

4.1.1 Training and policy selection . 60
4.1.2 Knowledge distillation . 60
4.1.3 Analysis . 61

4.2 Network and policy architectures . 62
4.2.1 The Deep Q-value network . 62
4.2.2 The synchronous Actor-Critic model . 63
4.2.3 PPO parameters . 64

4.3 Models and adaptations . 65
4.4 Measuring complexity . 67
4.5 Prototype Framework . 70

4.5.1 Technical details . 70
4.5.2 Web interface . 70

5 Evaluation 74
5.1 Motivation and goal . 75
5.2 Environment simulation . 76

5.2.1 OpenAI Gym . 76
5.2.2 Preprocessing for DRL . 77

5.2.2.1 Preprocessing for Neural Trees 81
5.3 Experiments . 82

5.3.1 MNIST dataset . 82
5.3.2 Ms Pacman . 93
5.3.3 Enduro . 111

5.4 Results . 117

6 Conclusions 118
6.1 Contributions . 119
6.2 Discussion . 120
6.3 Future work . 121

A Graybox 122

B MNIST 124

C OpenAI Gym 128

4

Chapter 1

Introduction

Computers are wonderful machines. It is almost impossible to remove them out of our daily
life without sacrificing a certain degree of comfort, convenience and luxe we all expect. They
are powerful devices that allow us to program automation with code rather than build it from
mechanical fine tuning, often with complex specialized hardware. Flexible tools with human
readable interfaces to facilitate the coding of their inner mechanisms, giving it the power to
do our bidding. Controlling vast networks of systems like the internet or insuring the precise
dosage of medicine to a patient. Steering large dump trucks in open air coal mines or performing
lightning fast exchanges on the stocks market. Their use cases are endless yet the need for their
integration far outweighs the available human expertise to program them. To write efficient,
performant and safe code that works as expected one should learn the art of software engineer-
ing or at least specialize in programming within a certain language or framework. However, it
can not be expected from every programmer to deliver the same high quality of code for every
case. The mythical 10x developer, capable of doing 10 times the work of an average developer
with the same pristine quality is a very high standard to reach and is completely unrealistic.
When quantity outweighs quality, bugs and errors are inevitable. Unintended behaviour of the
software system could result in dangerous situations when dedicated to healthcare or other del-
icate domains. The emergence of Automatic Code Generation (ACG) could be an answer to
facilitate software production [1]. With it, code is produced using several generative techniques
and based upon a given software architecture the user requires from the system. However it has
the disadvantage to create large amounts of repeatable code that are difficult to maintain by
a programmer. Lacking clear separation in several files, it is more often uncertain which part
is human written and what are machine generated lines of code. Furthermore, it is quite an
investment to switch to a generative scheme for partly or full development of a system [2]. It is
therefore impossible to write software dealing with every scenario a computer controlled device
could encounter. If not counted for, the device will handle its tasks incorrect when it is outside
the intended scope. That is why we see powerful factory robot arms assembling cars behind cages
and big red emergency buttons next to them. When introduced to a unprogrammed situation
like a human standing in the way it would just operate as normal, harming the person in a best
case scenario. Components like safety rails and obstructions are needed to ensure demarcation
from the operating area. Rather than handling this safe-to-be-sure approach, we could create
adaptive systems that change their behaviour based on the situation currently ongoing. Remind
that we cannot hardcode the system for every possible situation, so we have to rely on a scheme
to find a suitable handling by the system. This could be accomplished by a form of learning that
the machine can do in such a scenario.

5

The field of Artificial Intelligence (AI) tries to bring awareness, reasoning and adaptation
to the computer. It is the study of understanding intelligence and how it could be built in a
system, allowing it to be used in different specialized applications [3]. An individual instance
of AI is called an intelligent agent. This agent uses a computational approach to reasoning in
order to fulfil an assigned task. A task could be one we humans know the answer to, like how to
assemble a car, or a task for which we don’t know the answer, like finding where in the universe
exoplanets could reside. Most of these unknown tasks are ones regarding search and optimization.

1.1 Machine Learning

Machine Learning (ML) is a subfield of AI where the agent tries to improve automatically by
gathering experience [4]. This experience most often comes in the form of a dataset where a
computational model can learn from. The goal is to create a so called learning system that can
learn correlations in a given dataset. In the past, most of these correlations were handwoven
into the system with logic rules. Nowadays, thanks to the advent of internet and smart mobile
devices, we can use a huge amount of available data to automatically train the model. If we have
a look at ML as a domain, we can distinguish several other subdomains as shown in figure 1.1.

ML

SUPERVISED
LEARNING

UNSUPERVISED
LEARNING

REINFORCEMENT
LEARNING

Fraud detection -

Image classification -

Customer retention -

Diagnostics -

- Forecasting

- Predictions

- Process optimization

- New insightsCL
AS
SI
FI
CA
TI
ON

REGRESSION

DI
ME

NS
IO
NA

LIT
Y

RE
DU

CT
IO
N

CLUSTERING

Big data visualisation -

Meaningful compression -

Structure discovery -

Feature elicitation -

- Recommended
systems

- Customer
segmentation

CONTROL

- Game AI

- Robot navigation

- Skill aquisition

- Real-time decisions

Figure 1.1: An overview of subdomains within the machine learning domain. 1

In supervised learning the model receives feedback from a supervisor during learning. This
is most often done with the use of labeled datasets where for each given input x a target y is
specified to be the correct prediction. Two distinctive learning tasks within the subdomain are
classification and regression. The first is a problem where the model has to predict one of

1Source: https://medium.com/ml-research-lab/machine-learning-algorithm-overview-5816a2e6303

6

https://medium.com/ml-research-lab/machine-learning-algorithm-overview-5816a2e6303

several countable outcome classes for any given input it gets. A popular application is the recog-
nition of objects in images and the detection of medical conditions from patient data. Regression
is the prediction of a continuous function given input data. It is most often used in financial
and meteorology forecasting and optimization problems. Unsupervised learning lacks super-
vision and can learn a task completely based on a non-targeted dataset. Here clustering tries
to group inputs most similar to each other in relational clouds. From these clusters meaningful
information about the input’s distribution could be examined. Marketing and recommendation
systems heavily rely on clustering for their predictions. Dimensionally reduction reduces the
complexity of inputs to bring new insights in their relations. Most often big data visualization
and compression tasks take advantage of this technique. At last, we have the subdomain of
reinforcement learning (RL) and the main focus of this thesis. RL is neither supervised or
unsupervised learning as the role of the supervisor is completely omitted. Instead the model
relies on the feedback and experiences it makes in an environment. Game AI and robotics are
well known applications of RL.

In the past decades, RL has proven to be a potential powerful technique to tackle on several
ambitious problems. From self-driving cars [5] to robotic control [6] to defeating the best go
player in the world [7]. These applications are challenging to learn in a supervised or unsupervised
learning context because of the difficulty of generating enough and relevant data to be used as
input. The environments where the algorithms operate in are often too complex to be generated
by hand. Instead, models have to learn from observations in simulators or in the real world used
to generate input data. The state-of-the-art RL techniques uses a deep neural network to learn
their behaviour. This is a supervised learning technique inspired by the human brain. However,
just like the brain, these models are difficult to be understood by a user. This makes adapting
and controlling these so-called deep reinforcement learning (DRL) applications very challenging.

1.2 Interpretability in machine learning

The structures we use to learn a ML task can be varied. Each model’s structural representation
can be described by parameters. By examining these values one can retrieve meaningful insight
on how the model handles the learning task. However not every structure has a representation
that can be easily understood by a human. In fact, it is quite difficult to explain the agent’s
behaviour when dealing with models of high complexity. Take for instance the example of an
artificial neural network. Its parameters decide both the structure composition (how many
layers and neurons are included, the type of nodes, ...) as well as the individual behaviours of its
components (weights, biases, activation function, ...). One could understand the behaviour of a
single perceptron, as shown in figure 1.2 but would comprehend less of the multi-layer variant
due to the increase in descriptive variables.

We could define interpretability as the degree to which a human can understand the cause
of a decision by the model [8]. It also means someone could consistently predict results up
to a certain degree, allowing the user to comprehend why specific decisions made by the model.
Explainability implies that an explanation exists for the behaviour of the model. This is achieved
when an answer to a why-question can be provided [9]: why does the model prefer one class
above the other and why does it come up with a certain regression value? Both terms are closely
related but differ in means of time and way information is provided. While interpretability is
considered as a priori insight, meaning the inner workings of the system are observable given the
input, explainability gives a posteriori understanding by using a second method to generate an
explanation [10]. When a model’s inner workings cannot be explained to the user or understood

7

Figure 1.2: A single perceptron vs a multi-layer perceptron (MLP). Both models have 6 input
nodes and one output. The one on the left needs 6 weights parameters while the one on the right
needs 39, increasing its complexity.

by a domain expert it is a black box type model. Some examples include artificial neural networks
and several ensemble methods. If the model can provide results associated to their behaviour
that are at least comprehensible by an expert, then it is of the white box kind. These include
decision trees and linear regression models. While a white box allows the exploitation of a prior
knowledge it will perform weak in situations where randomness is present in the object and its
environment. This is an advantage in black box cases, using statistical methods, but these have
the disadvantage of generating reproducible results without full certainty [11]. Between these
two there exists a grey box category representing systems that contain information about their
behaviour but still need to be tested against experimental data [12]. In thesis we focus more on
the explainability of black box models not in a white but grey kind of manner. We want to use an
interpretable machine learning structure who’s internal decision making isn’t fully interpretable
but gives meaningful insights into the decision making process.

Why interpretability could be important in a model is motivated by several reasons [13, 8]:

• One of the most important reasons for introducing interpretability is the detection of faults
and subsequent debugging of the system. If its behaviour could be interpreted the resulting
response can be easier examined against what is expected from the model.

• For many users there is still a lacking confidence in made predictions by a machine. This
social acceptance could be improved by giving an open view inside the algorithm or by
analogous explaining what the machine is doing/thinking in a simplified manner.

• Made decisions are subject to bias when the latter is present in the training dataset. This
could lead to discriminating predictions against certain ethnicities or minorities. Necessary
tweaking to the model should be done to counteract this bias in order to obtain fair results.

• When deployed in delicate situations like on public roads or inside a human body we want
to guarantee a high degree of safety. Human assessment could be necessary in the system
when we can detect and correct those parameters that lead to unsafe handling.

• It is also from a scientific point of view interesting to examine complex models like neural
networks while also being able to point out the parts needed for certain actions. This stems
mainly from human curiosity and the nature of understanding how we learn and why we
behave as we do.

8

1.3 Problem statement

This thesis builds further on work done by Coppens et al. on the use of interpretable ML struc-
tures to learn DRL policies, specifically decision trees [14]. Their work focused on the use of Soft
Decision Trees (SDT) [15] as a model for learning to play levels in the MarioAI environment
[16]. This was accomplished by using a technique called Knowledge Distillation [17] to transfer
a learned policy from a deep neural network to a SDT. Coppens et al. have shown that this
creates usable models while achieving a degree of interpretability by visualizing learned weights
of the tree nodes. These visualizations are represented as heatmaps of the nodes and can be
combined with tile maps to bring meaningful insight in the agents behaviour. This increase in
explainability comes at the cost of delivering slightly less performant models compared to the
original trained neural networks. The authors remarked the shortcoming of SDTs of having a
predefined depth which could result in a non-optimal tree structure. A proposed solution is the
use of adaptive growing structures called Adaptive Neural Trees (ANT) [18]. Here the user can
decide upon the balance between interpretability and complexity of the model by specifying how
long the model could learn its optimal structure.

With this thesis, we tried to accomplish several objectives. The main goal was examining the
usability of ANTs and their performance both in terms of learning and interpretability. Secondly
we wanted to generalize the use of decision trees to other environments compatible with OpenAI
Gym, a commonly used training environment for RL policies [19]. To facilitate the learning
process, we created a command line interface (CLI) program, called Graybox, to train, distillate
and test DRL models. It accomplishes the need of only 3 commands in the terminal to go
through all stages of distilling a SDT or ANT policy. This approach makes training models on
external computing servers much easier and allows for an easy interface to further build upon.
We developed a visual component of Graybox in the form of a small web application that can run
in a browser. This allows us to show the learned structures of the trees as well as the real-time
interactions with the Gym environment. At last we tackled on an inherent issue with ANTs
and their interpretability. Because they learn with relatively powerful leaf nodes compared to
the internals, parameters of these internals are not as much optimized. This causes the routing
behaviour of the tree to be less deterministic, decreasing the interpretability of each of these
components. To solve this, we introduce a technique called SRDS (smart routers, dumb solvers)
to encourage an ANT to focus more on its internals while optimizing parameters during training.

We start by having a short introduction to the field of (deep) reinforcement learning and deep
learning. Afterwards we continue the literature section describing the current state of Explainable
Artificial Intelligence (XAI) followed by the description of the used environments in the project.
We continue with the methodology and setup of performed experiments and the evaluation of our
results. Lastly we dedicate a section to discussion of the work done as well as possible expansions
for future endeavours.

9

Chapter 2

Reinforcement learning

Reinforcement learning (RL) is a subfield of machine learning that studies a computational
approach to understanding and implementing goal-directed learning and decision-making tech-
niques in intelligent systems [20]. Instead of elaborating on a learning method to solve a defined
problem, RL lays focus on the problem itself to be resolved. Every technique that is capable in
doing this could be considered as a reinforcement leaning technique. Compared to the supervised
learning paradigm of machine learning RL differs in where received feedback, used by the agent
to learn a certain desired behaviour, originates from. In the supervised case an external overseer
judges the agent upon its decisions, traditionally if the predicted classification is correct or how
close the regression approaches the target. This intervention is most often done by labeling a
target value to each input in accordance to the preferences of the overseer. This labeling proce-
dure follows the logic of a certain task the agent has to learn. It is this logic that will dictate
the behaviour the agent can learn from a resulting dataset the user created. An RL program,
also called agent, retrieves feedback of the current residing environment, shaped in the form of
positive or negative feedback. This feedback is also prone to delay as it could be only given
when a terminal state has been reached. Another characteristic of reinforcement learning in
comparison to supervised learning is the balancing between exploration and exploitation. The
objective of an RL agent is to learn the behaviour that would yield the highest positive feedback
when achieving its terminal state. This type of feedback indicates the agent performs certain
behaviours that are in accordance to the ultimate goal it has to learn. Most often this takes on
the form of a numeric value called reward. The more reward an agent gathers, the more positive
the feedback and the better it tries to achieve its expected goal. To obtain this an agent could
exploit the knowledge from past experiences that yielded high rewards. In addition it could
explore new behaviour that yields more reward than from knowledge of past behaviour.

The first mentions of Reinforcement Learning can be traced back to the first half of the 20th
century. In his book Animal Intelligence: Experimental Studies, psychologist Edward Thorndike
tried to explain the emergence of learned behaviour in animals [21]. He noticed that an animal
can learn how it has to interact in its environment in order to gain recompense by recalling this
experience numerous times. Each pass through of the situation reinforces the perception of both
positive, rewarding interactions and negative, punishable ones. Eventually the animal will learn
a series of actions to perform that will lead to the most efficient way of achieving its goal in
the environment or the most profitable one based on stimuli like food or pleasure. This training
by trial and error is what Thorndike calls The Law of Effect by reinforcing experiences through
repetition. This term coins both the selective (seeking out new behaviours and comparing their

10

impact) and associative (linking the instances with specific situations) aspect of learning by
trial-and-error. The principle of natural selection, which in the context of evolution theory and
evolutionary computing is applicable, only stands on the first aspect while supervised learning
is considered associative alone. The strength of both combined form the essence of the Law of
Effect, linking both a reinforced memory process that recalls lucrative behaviours as well as a
search process towards new ones. Aside from the biological approach of animal learning, RL roots
from the rise of optimization techniques in dynamic systems. These optimal control problems
seek approaches to maximize or minimize the outcome of these systems in function of time.
One solution was the introduction of dynamic programming [22] and the subsequent Bellman
equations. These were value functions describing the optimal return a certain system could have,
indicating an optimal way to achieve this. Later, optimal control problems were expanded into
a discrete stochastic variant by Bellman called Markov Decision Processes (MDP’s), laying the
fundamentals of how RL problems could be formulated [20].

2.1 Fundamentals

In this section, we give an overview of crucial terms used within RL. We discuss the general
framework together with the logic behind concepts such as return and value. At last we immerse
ourselves into the well-know methods of performing RL.

2.1.1 The RL framework

ENVIRONMENT

AGENT

at

Action State Reward
st+1 rt+1

ObservationInteraction

Figure 2.1: Schematic representation of an RL agent residing within an environment at time t.
A step in an episode consists of an interaction with the environment followed by the observation
of the new state and the accompanied reward. The time indicator t is incremented by one to
t+ 1 for taking a single step.

We describe the most basic elements of a reinforcement learning framework as described by
[20]. We summarize the essential parts that make up the basic reinforcement learning model
scheme as shown in figure 2.1. To provide a concrete example during this section, we will use the

11

case of a vacuum cleaner robot that has to navigate through the room with the goal of cleaning
the entire room as fast as possible. Its actions will be the direction to go, indicated with going
forward or backwards at a certain angle or to stop moving at all. Its start state will be the
station where it can charge its batteries.

Environment
We model our intelligent instance as an software agent that has to learn and decide which
behaviour to perform in order to achieve its goal. It therefore needs a time-bound space in
which it could perform. We therefore say that the agent resides in an environment, implemented
as either the real world or a simulation depending on the context of the problem. Current
applications train the agent in a simulated environment and afterwards deploy it in the real
world [23]. Training in a simulator has the benefit of being a magnitude faster compared to
leaning in the actual world. In terms of descriptive variables, an environment could be either
dynamic or static meaning the properties of the world could change or not respectively.

Episode
We define an episode e ∈ {1, 2, ..., E} as part of a learning session. Every episode contains a series
of steps indicated by a timestamp t ∈ {1, 2, ..., T}. The initial step is taken at the starting state
s0 of the agent and ends at sT where the agent resides in a terminal state. The terminal state
could be a goal state, indicating a successful episode, or a failure state, with possible punishment
as a result. For a next episode in the session, t is initialized back to 0 and the agent in the
starting state. For some RL applications, the use of episodes is discarded as it could be the
learning of a continuing task where no clear end could be formulated. The final step T would be
equal to ∞.

Action
Initially the agent has no model describing the environment and its details so it has to interact
with it to gain information. This is done by performing an action at ∈ A, representing a chosen
action at time t from the set of all possible actions A, and observing its effects in the environment.
An action can be described at a high or low level of implementation. In the case of our vacuum
robot this could be ”navigate to the door” or ”direct 5 volts of power to the left wheel’s motor”
respectively. This set is predefined before the agent starts learning but could be regulated with
constraints and extensions depending on which RL model is followed. This is mostly done in real
life applications where constraining is seen as a form of safety or when the agent has the ability
to create higher level actions from a combination of many lower level actions.

State
A state is a signal from the the environment to the agent containing information about properties
of that environment. An agent resides in a current state st ∈ S (with S being the collection
of all possible states) which can be discrete or continuous. Discrete observations are part of a
countable set of possible states while continuous ones aren’t. In the latter case, an observation is
described in terms of continues variables like position and power. States could also be described
at different levels of abstraction just like actions do. A state could be described as numerical
values like sensory data or as situations like “cleaning carpet”. When an interaction at has been
made, the agent can observe two variables from the environment: a perception of the next state
st+1 ∈ S and a reward rt ∈ R (with R the collection of all possible rewards).

12

Reward
The reward is an instance of the reward function, a mapping of the state to a number. This
number represents the feedback of entering the new state st+1 and is a measurement of intrinsic
desirability of that state [20]. Reward indicates which actions are good or bad in a certain state.
It is the objective of the agent to maximize its cumulative reward during an episode. Formulating
a reward function, that is deciding when reward is given or not to the agent in a state, is non-
trivial and could be approached by several strategies. The reward function can be implemented
with sparsely signals (minimal feedback or only at a terminal state) or generously (in almost
every state). Punishment in the form of negative reward can also be used when achieving a
terminal state that isn’t a goal state. When time-efficiency should be considered, a punishment
per step can be accumulated to stimulate the agent of finding the best policy with as little steps
as possible.

Policy
The behaviour of an agent can be formulated as the action it most likely will take in every
individual state. This is also known as the policy πt(s, a), a function that maps the chance of
taking action a in state s at time step t. Intuitively, at state st, the action at will be the one
with the highest chance in accordance with the policy πt.

Return
As stated before, the objective of the agent is to maximize its rewards while trying to reach
a goal state. Preference goes to gaining the highest accumulative reward over the run of a
session rather then immediate one on short term. The expected return is the sum of rewards
Rt = rt+1 + rt+2 + ... + rT , indicating the future cumulative sum from timestamp t till T . A
better indication of return is discounted return

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =

∞∑
k=0

γkrt+k+1 (2.1)

where γ represents the discount factor with 0 ≤ γ ≤ 1. This formulates return k steps in
the future as the sum of all expected rewards, weighted by a factor of γ. The further we count
a reward, the higher k is and the higher the discount will effect that value. Choosing γ has an
impact on what kind of reward the agent will focus. If γ = 0, the agent is “short-sighted” and
is only concerned with immediate reward. All other values will ensure that the agent considers
the future as well. Discounted return guarantees that even when dealing with an infinite sum,
the resulting value for the sequence will always be finite.

2.1.2 Markov decision process

A state signal should contain information from immediate senses, like sensory data, and more. A
state could include details about past signals and therefore a sort memory of past interactions.
Differently, not everything could be informed by the state, even when it is favorable in the
decision making process of the agent. If our robot cleaned half the area and resides in a corner,
the state signal could reveal its position in the room. What the signal couldn’t provide is the
presence of walls that form the corner (if it has no proximity sensor for example). In this case
the agent can only learn that at this position its direction should be changed because it wouldn’t
advance by going forward. If walls are detected it could learn to change direction based on this
alone. Another example, where the robot is wall-sensitive, it could detect a cul-de-sac. The
state still only contains position and wall placement, but implicitly it also contains information

13

of being a dead end. The best action to take is to turnaround and go into opposite direction to
escape this dead end. We don’t expect to know the sequence of every previous state we visited
like a path since this would require more memory and brings computational overhead traversing
the sequence every time the agent observes a state signal. In general, we expect from the state
to be a summary of the past so it could learn and decide upon it in the future. A state capable
of these expectations is called to have the Markov Property or is Markovian. This is a state that
occurs independently of previous encountered states in the past. We can formulate an episode
transition

Prob {st+1 = s′, rt+1 = r | st, at, rt, st−1, at−1, ..., r1, s0, a0} (2.2)

as the probability of observing state s′ with reward r at time t + 1 when the history
st, at, r1, s0, a0 happened. If history doesn’t effect the episode transition, we can formulate

Prob {st+1 = s′, rt+1 = r | st, at} (2.3)

indicating the transition is only dependent on the current state st when action at is performed.
The state signal is Markovian if (2.3) and (2.2) are equivalent for all s′, r, st, ..., r1, s0, a0. This
would allow us to predict the next s′ and r as well as all other future states and expected reward
by iterating on (2.3). This implies that choosing a best action in a state is the same as choosing
it as the best action after a certain history. Defining the optimal policy becomes a search process
that only has to consider the present situation, greatly simplifying the calculation of it.

When a reinforcement learning problem satisfies the Markov property, it is called a Markov
Decision Process (MDP). Depending on having a finite state-action space or not, we can distinct
between a finite and infinite MDP. The state transitions of such task can be modeled as a
Markov Chain, summarizing all possible state transitions for the system as a directed graph.
The probability of a transition occurring is equal to

Prob {st+1 = s′ | st = s, at = a} = Pass′ (2.4)

(the transition function of the MDP) and the the expected reward function

E {rt+1 | st = s, at = a, st+1 = s′} = Rass′ (2.5)

MDPs containing states whose information is not fully observable are called partially observ-
able markov decision processes (POMDPs). An example is a self-driving car on a road through
a densely forest. An animal could suddenly appear from the bushes, trying to run across the
asphalt. This is a signal the driver cannot anticipate on until the beast reveals itself.

2.1.3 Value functions

For indicating “how good” an agent is when in a certain state we can formulate a value function
V π. This calculation depends on expected return estimating how much future reward to gain
starting from the current state s and following a policy π:

V π(s) = Eπ {Rt | st = s} = Eπ

{ ∞∑
k=0

γkrt+k+1 | st = s

}
(2.6)

This indicates a measure of future performance of the policy with Eπ representing the ex-
pected value of that policy. When including an action variable a, we can define the Q-value
function as

14

Qπ(s, a) = Eπ {Rt | st = s, at = a} = Eπ

{ ∞∑
k=0

γkrt+k+1 | st = s, at = a

}
(2.7)

formulating an estimate more specific to the chosen action in the state.
Both value functions could be estimated purely from experience. For instance, we could cal-

culate the return of a particular state by averaging all possible future rewards. The state’s value
function V π(s) when the number of passes of that state goes to infinity. When dividing averages
based upon the action taken, we can approach Qπ(s, a) as well. These methods of averaging
random samples are called Monte Carlo Methods and are distinct from dynamic programming
methods in that they don’t require knowledge about the environment as a whole.

Value functions satisfy recursive properties that allow to derive the Bellman equation for V π:

V π(s) = Eπ {Rt | st = s}

= Eπ

{ ∞∑
k=0

γkrt+k+1 | st = s

}

= Eπ

{
rt+1 + γ

∞∑
k=0

γkrt+k+2 | st = s

}

=
∑
a

π(s, a)
∑
s′

Pass′

[
Rass′ + γEπ

{ ∞∑
k=0

γkrt+k+2 | st+1 = s′

}]
=
∑
a

π(s, a)
∑
s′

Pass′ [Rass′ + γV π(s′)]

(2.8)

The value function V π is the only solution to its Bellman equation. Current state s values and
the value of successor states s′ are related in that the current state st can be valued by averaging
the possible states S weighted by the probability of that successor state st+1 occurring. It
also concludes that the value of a current state is equal to the discounted value γV π(s′) of the
expected successor state plus the reward Rass′ encountered.

When maximizing the expected return of an agent, we want to find a policy able to achieve
this. A policy π is considered better when its return is higher than an other policy π′ for every
state. An optimal policy π∗ is one that cannot be surpassed by any other policy. It is possible
to have multiple optimal policies, only when their value function is the same. These policies are
as well denoted by π∗ with their optimal value function

V ∗(s) = max
π

V π(s) for s ∈ S (2.9)

The optimal state-action value function is also shared:

Q∗(s, a) = max
π

Qπ(s, a) for s ∈ S and a ∈ A(s) (2.10)

2.1.4 Exploration-exploitation trade-off

We denote the best action to take at a step t as a∗t (2.11), which is the action that maximizes
the Q-value at that step.

15

a∗t = arg max
a

Qt(a) (2.11)

Recall that the higher the Q-value of a state-action pair the more indication there is of being
rewarded with high return in the future. It is straightforward that the agent has to exploit action
a∗t at any given moment. However, especially at the beginning of training, the agent doesn’t have
enough information of the environment to consider an action as the best one possible. Therefore
it has to explore unseen actions at random to find possible better actions. This exploration-
exploitation trade-off is determined by a action selection strategy [24]. The agent cannot rely on
a action selection strategy purely based on either one of the two. If it only exploits best found
actions, it will never find better possible actions not present in the policy. If it only explored
then it doesn’t care about best found actions, which are needed to increase accumulated reward.

A commonly used strategy is ε-greedy (2.12). In it the variable ε, with 0 6 ε 6 1, determines
the probability of an action at at time step t being a random one to explore the action space. In
all other cases, with a probability of 1− ε, the best action will be exploited. To change the rate
of exploration over time, we use a decay function that changes the setting from a exploitative
policy at the start to a explorative one at the end. This could be a linear function that decreases
the variable in function of t.

at =

{
a∗t with probability 1− ε
random action with probability ε

(2.12)

ε-greedy has the disadvantage of valuing all actions equally during an exploration move, even
the non-optimal ones. A better strategy would be to select a random action with a probability
based on the current estimate of that action. We could accomplish this by ranking the value-
function estimates using a Boltzmann distribution [25]:

π(a|s) = Prob {at = a|st = s} =
eQt(a)/τ∑
a′ e

Qt(a′)/τ
(2.13)

with τ as a positive parameter called temperature. A high temperature treats the actions
more equal while low temperature has a more greedy action selection as result. τ can also
incorporate a decay factor like ε-greedy.

2.1.5 Temporal difference

When trying to solve the RL problem we need a method to calculate the value function V π

(or Qπ when using state-action pairs). Two methods in estimating the value based on gathered
experiences are Monte Carlo methods (MC) and dynamic programming (DP). Both techniques
also solve the problem of having a delayed reward within the RL episode.

Dynamic programming
When a complete model of the environment is available to the agent dynamic programming can
be used to form an optimal policy [26]. However, obtaining a perfect model (especially in the first
episodes) is non-trivial and is resource demanding. From a theoretical standpoint DP provides
the foundations of other value estimation methods.

16

Monte Carlo methods
When an incomplete view is available, MC can be used using nothing but experiences from
averaging sample returns. No prior knowledge is necessary. MC relies on randomness to pick
out the counted experiences [27].

TD
Reinforcement learning combines the concept of learning from random experiences using Monte
Carlo methods(MC) with the sub-solution approach of Dynamic Programming (DP). The unifi-
cation of both these techniques in RL is called Temporal Difference (TD) learning. Similar to
Monte Carlo methods, TD learns from made experiences without having an internal model of
the environment. Like dynamic programming, TD bootstraps from learned estimates to learn
other estimates without arriving at a final state.

The estimation of the value function V π at a given non-terminal state st is based on the
gathered return after visiting that state. Monte Carlo methods only update the value when the
return of the next step st+1 is known, which implies that they can only estimate this when a
terminal state is reached. If we formulate the update we get

V (st)← V (st) + α [Rt − V (st)] (2.14)

with Rt as the return at t and α a step-size parameter for regulating the significance of each
value update. This method of updating is called constant-α MC. On the other hand, TD methods
are able to calculate the new value as soon as information of the next step is available.

TD(0) is the most simple method when given reward rt+1 in the next step

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)] (2.15)

with discount γ indicating the importance of the previous value in that state to calculate
the new one. This bootstrapping method is similar to dynamic programming in that an existing
local estimate is used to gain a global result. Where MC uses an estimation of (2.6), DP uses
V π(s) = Eπ {rt+1 + γV π(st+1) | st = s}. DP’s target is an estimation because at current time
V π(st+1) is not known so Vt(st+1) is used. For MC the target is based upon the sample return
at t. The TD target combines both methods forming an estimate Vt based upon the expected
value (equation 2.6).

When using the TD(0) update rule in an algorithmic estimation of V π we can write the
following pseudo code:

17

Algorithm 1 Tabular TD(0) for estimating vπ [20]

Require: the policy π to be evaluated
1: Initialize V (s) = 0, for all s ∈ S+

2: repeat
3: for each episode do
4: Initialize S
5: repeat
6: for each step of episode do
7: A← action given by π for S
8: Take action A; observe reward, R, and next state, S′

9: V (S)← V (S) + α [R+ γV (S′)− V (S)]
10: S ← S′

11: end for
12: until S is terminal
13: end for
14: until end of session

MC and TD are referred as sample backups because of the use of a succeeding state-action pair
as a sample together with the sample’s value and reward to create a backup value before changing
the value of the pair. This sampled way of making backups differs from the DP approach where
a complete probability distribution is used of all the possible succeeding states.

TD(0) has been proven to converge and will therefore always find an estimate for the MDP
[28]. Other TD methods like Sarsa and Q-learning have been proven in the past to converge as
well [29] [30].

2.1.5.1 On-policy

On-policy TD control uses the same policy to make decisions as the one it wants to improve. An
algorithm for on-policy is Sarsa which uses the quintuple (St, At, Rt+1, St+1, At+1) that makes
up the transition from one state-action to another.

Algorithm 2 Sarsa: an on-policy TD control algorithm [20]

1: Initialize Q(s, a),∀s ∈ S, a ∈ A(s), arbitrarily
2: repeat
3: for each episode do
4: Initialize S
5: Choose A from S using policy derived from Q (e.g., ε-greedy)
6: repeat
7: for each step of episode do
8: Take action A, observe R,S′

9: Choose A′ from S′ using policy derived from Q (e.g., ε-greedy)
10: Q(S,A)← Q(S,A) + α [R+ γQ(S′, A′)−Q(S,A)]
11: S ← S′; A← A′;
12: end for
13: until S is terminal
14: end for
15: until end of session

18

Action-state values at time t are updated according to the following rule:

Q(St, At)← Q(St, At) + α [Rt+1 + γQ(St+1, At+1)−Q(St, At)] (2.16)

The part that makes this formula on-policy is the usage of Q(St+1, At+1) for the difference
calculation within the update. This makes the algorithm use the available Q values of the current
policy the agent possesses.

2.1.5.2 Off-policy

Off-policy TD control uses a different policy from the one that generates the experience [31].
The learned Q-value function can directly approximate the optimal value Q∗, independent of the
used policy. The policy still has to decide which state-action pairs are visited and updated.

Algorithm 3 Q-learning: an off-policy TD control algorithm [20]

1: Initialize Q(s, a),∀s ∈ S, a ∈ A(s), arbitrarily
2: repeat
3: for each episode do
4: Initialize S
5: repeat
6: for each step of episode do
7: Choose A from S using policy derived from Q (e.g., ε-greedy)
8: Take action A, observe R,S′

9: Q(S,A)← Q(S,A) + α [R+ γmaxaQ(S′, a)−Q(S,A)]
10: S ← S′

11: end for
12: until S is terminal
13: end for
14: until end of session

The update rule becomes:

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
(2.17)

Here the agent uses maxaQ(St+1, a) for the difference calculation. This makes the agent
search for the action that maximizes the Q value of the next state St+1, making it off-policy.

2.1.6 Policy-based RL

TD-methods use value approximation to learn a state-value function. However, when dealing
with a large or continuous action space, a value-based approach becomes less suitable because
of the many values that need to be saved. It is also deterministic in providing only one optimal
action as an outcome of the policy or several if similar optimal actions exist. Since the goal is
to optimize the policy, an action-value estimation-based approach could be considered instead of
following state-value estimation-based approaches [32].

Policy gradient-based algorithms are well known in the paradigm of policy-based approaches.
In these a parametric model is used for the explicit representation of the policy. These parameters
can be optimize with the goal of finding a policy with (sub-)optimal performance. They use
gradient-ascent to optimize the policy approximation function and maximize the cumulative
reward.

19

To measure the performance of a policy, we could define a policy value J(θ) as follow:

J(θ) = E
∑
t≥0

[
γtrt|πθ

]
(2.18)

θ is the policy parameter vector, containing weights, we want to optimize. To find the optimal
parameter vector θ∗ we have to satisfy θ∗ = arg maxθ J(θ). We define τ = {(s1, a1, r2), ..., (st, at, rt)}
as the trajectory, which is the sequence of states visited in an episode. If we incorporate τ into
(2.18) we could write the policy value as:

J(θ) = Eτ
∑

P(τ ; θ)r(τ)

=

∫
τ

r(t)P(τ ; θ)τ
(2.19)

with E the expectancy of reward in a trajectory τ and P the probability of encountering
τ under policy πθ. In order to obtain the gradient of J(θ) the equation (2.19) needs to be
differentiated with respect to parameters θ:

∆θJ(θ) =

∫
τ

r(t)∆θP(τ ; θ)τ (2.20)

The problem with (2.20) is the intractable nature of it which means there exists no mathe-
matical formulation to solve this is an efficient manner. This is because we try to differentiate
the function p(τ ; θ) over the vector θ whereas that function is conditioned on the same parame-
ter [32]. If we simplify (2.20) in order to incorporate a Monte Carlo sampling part into it with
expectancy E, we get:

∆θP(τ ; θ)τ = P(τ ; θ)
∆θP(τ ; θ)

P(τ ; θ)

= P(τ ; θ)∆θ logP(τ ; θ)

therefore:

∆θJ(θ) =

∫
τ

(r(t)∆θ logP(τ ; θ))P(τ ; θ)dτ

= Eτ∼P(τ;θ) [rτ∆θ logP(τ ; θ)]

≈
∑
t≥0

r(τ)∆θ log πθ(at|st)

(2.21)

An algorithm using this combination of policy-gradient and MC is the REINFORCE algo-
rithm [33]:

Algorithm 4 REINFORCE [33]

1: Initialise θ arbitrarily
2: for each episode {(s1, a1, r2), ..., (sT−1, aT−1, rT)} ∼ πθ do
3: for each t = 1 to T − 1 do
4: θ ← θ + α∇θ log πθ(st, at)vt
5: end for
6: end for
7: Return θ

20

α is the step size of the gradient that could decay over time. Each step in the episode a
gradient step is taken in the direction that maximizes the cumulative reward we would receive
from the policy πθ. For calculating the gradient a Monte Carlo sampling could be used. Here vt
represents a unbiased estimate sample of Qπθ(st, at).

A shortcoming of REINFORCE is the high variance present in the algorithm. This could be
attributed to two factors. One is the use of absolute rewards, resulting in varying results when
using Monte Carlo to sample. The second is the attribution of reward to the specific state-action
pairs that form a episode-trajectory. Rewards are averaged over all instances of the trajectory τ
so it could be the impact of only a few good state-action pairs over a majority of lesser ones that
causes high variance in the end. A method to reduce the variance is the use of a baseline which
incorporates a discounted cumulative future reward function into the algorithm. One example
of baseline is to take the advantage of a given action in a particular state, which is equal to the
difference between the Q value Qπθ,(st,at) of that state-action pair with the value Vπθ,(st):

∆θJ(θ) ≈
∑
t≥0

(Qπθ,(st,at) − Vπθ,(st))∆θ log πθ(at|st) (2.22)

2.1.7 Continuous input space

To keep track of the used approximation (value) function most often a tabular approach is con-
sidered to store the values. In the case of TD learning, a Q-table could be implemented as
a simple two-dimensional matrix or dictionary depending on the used programming language.
This approach is only applicable in discrete state- and action-spaces which is not always usable
for real-world applications. Especially the input state-space could be large when dealing with
image data from a camera sensor or sounds from a microphone. As shown in the policy-based
RL method REINFORCE, we could use optimized parameters in a function to approximate the
policy or value function. This can be both done in a linear and non-linear way. In the linear
approach we could discretize the observation space using tile coding by dividing the space into
a number of disjoint sets [34]. This method however is not injective as a tile encoding function
φ does not imply φ(s) = φ(s′) ; s = s′ meaning this causes the MDP to become POMDP. A
POMDP is a MDP which is only partial observable instead of being fully observable. Because
of this, the agent has to make belief assumptions on these non-observable states that still could
have an impact on the MDP process. One could also use fuzzy sets which introduce a fuzzy
membership meaning that an element can belong partially in a set instead of being confined to
false or true [35].

The disadvantage of using linear approximations is the need for good informative features,
which may require hand-picking and domain knowledge [36]. The non-linear approach could
approximate a function with better accuracy than a linear approximator using the same input
features [37]. One example of non-linear approximator is the artificial neural network, which
forms the basis for deep reinforcement learning (DRL).

21

2.2 Deep Reinforcement Learning

Since its popularisation in 2015 by DeepMind [38], the incorporation of deep artificial neural
networks into RL lead to the emergence of the field of Deep Reinforcement Learning (DRL). In
the years after many achievements have been made using DRL ranging from defeating experts
in games [7, 39] to vehicle and robot control [5, 6, 40] to infrastructure managing [41].

We introduce the basic concepts behind deep learning and discuss some well known DRL
algorithms.

2.2.1 Deep Learning

We humans have always found answers and inspiration from this world we live in. To quote the
Catalan architect Antonio Gaudi: “Nothing is invented, for it is written in nature first.”. The
same is true within the computer science and engineering community for domains like Swarm
Intelligence [42], originated from the study of ant colonies, and Robotics [43], most often inspired
by the study of the human body and animal movement. Deep Learning (DL) is a field of
machine learning where computational models are based on the structure of the human brain
[44]. With DL we try to approach the fundamental parts and interactions inside our head with
a computational model which in turn can be fine-tuned to learn a certain behaviour.

a: Biological neuron 1

W1

Wn

W3

W2

X1

X2

X3

Xn

Inputs
Output

b: Artificial neuron

Figure 2.2: Representation of a biological neuron from a human brain compared to a mathemat-
ical schematic of an artificial one.

Our brain consists of billions of specialized cells called neurons. These interact with each
other in such complex manner intelligence can emerges from [45]. A signal can be sent from one
neuron to another by means of connections called synapses. The neuron can receive signals from
several neighbouring cells and could output a signal of its own when a threshold activation is
reached. It is this kind of interactions DL tries to reproduce inside a computer.

The most simple structure, mimicking a biological neuron, is the perceptron [46] (figure 2.1b).
This structure takes in several inputs Xi weighted by a factor Wi. A summation is made of all
incoming signals, resulting in a single output by the neuron. The weights are variables we have
to finetune, representing the importance of other connected neurons when used in a multi-layer
context. To mimic the rate of action firing in a cell an activation function can be applied to
the sum of signals [47]. In the case of a biological neuron this is the Heaviside step function
[48] while a popular function for artificial neural networks (ANNs) is the Rectified Linear Unit
(ReLU) and sigmoid function [49].

1Source: https://library.kissclipart.com/20180911/giq/kissclipart-motor-neuron-diagram-unlabeled-clipart-
neuron-wiri-95afea43233b17ec.png

22

https://library.kissclipart.com/20180911/giq/kissclipart-motor-neuron-diagram-unlabeled-clipart-neuron-wiri-95afea43233b17ec.png
https://library.kissclipart.com/20180911/giq/kissclipart-motor-neuron-diagram-unlabeled-clipart-neuron-wiri-95afea43233b17ec.png

Groups of neurons can be divided into layers where each neuron has a one-way connection
to neurons of a subsequent layer. Because of the unidirectional nature of the connections we can
define an input and output layer in the case of a multi-layer perceptron (MLP) which is equivalent
to biological senses (eyes, ears, nose ...) and actuators (like muscles and glands) respectively.
When the number of layers is bigger than 2, the network contains hidden layers. This kind of
architecture is also referred to as a deep neural network (DNN).

Input Hidden Output

Figure 2.3: A simple 3 layer neural network consisting of an input, hidden and output layer. The
arrow indicated the unidirectional flow of signals through the layers.

There exist different types of neural networks based on their layer compositions. If the layers
only contain ordinary perceptrons then the network is classified as a feed-forward neural network.
Convolutional neural networks (CNN) are a type of ANN that uses filters in the first layers of
the architecture to mimic cortical neurons in the visual cortex of our brain [50]. These kind
of networks are most useful in learning tasks where local features within the input data can be
separated like in the case of image classification. A third kind of network is the recurrent neural
network (RNN) based on neurons with an internal state [51]. Because these can memorize they
are useful in cases where the input data is variable like speech and handwriting recognition.

As stated before, one of the variables in the networks are the weights of each connection.
To find the most fitting values for these parameters, minimizing the loss function of the model
given a certain learning task, we use a learning algorithm or optimizer [44]. Gradient descent
[52] can be used to optimize by calculating the gradient of the weights but this is tedious in
complex networks. Another method called backpropagation solves this by calculating the error
at the end of the network while backtracking through it to update the variables [53]. Several
other optimizers could be applied like Newton methods [54] and genetic algorithms [55]. Apart
from regular nodes a layer could contain a node to regulate the bias in the model [56]. Bias
can delay the triggering of the activation of the neurons, shifting the predictions and allowing a
better fit on the given dataset.

Large networks can be powerful but come with the risk of overfitting the dataset [57]. While
the training loss in a learning session can go down, the loss on never seen before data (validation
or test data) could rise indication a decrease in generalization. The probabilistic removal of nodes

23

from a layer, called dilution or dropout, prevents the overdependence of the layer on several of
its inputs [58]. By randomly masking nodes during training the network will consider all of the
given inputs. We could also stop the training process when the validation loss starts to rise
compared to training loss [59]. A threshold can be chosen indicating how many episodes the loss
can go up or how much increase is tolerable. When allowed for, data augmentation or increase
in the amount of data allows for a greater variance in the input. Data can also be generated by
flipping or rotating images in the case for a image dataset.

Because of their use in DRL, ANN’s could suffer from overfitting while learning a policy.
However, the usual setup of RL problems consists of continuous learning tasks without a clear
separation of training and test stages to detect this [60]. It is rather difficult to obtain general-
ization within a RL context because of the specific environment the agent is trained in. Changes
like different dynamics, visual changes and structure variation can be present in the deploy-
ment environment leading to possible overreliance on the learned characteristics of the training
environment [61]. We could inject stochasticity into the training environment with domain ran-
domization [62] or by frame skipping [63]. As of today, no standardized way of performance
measure or experimental protocol is used in the field.

2.2.2 Algorithms for Deep Reinforcement Learning

Like the more traditional form of RL, DRL has two main approaches to optimize a policy:
with value estimation and via policy gradient. In between those two categories exists a third
group of actor-critic methods who combine both the policy-gradient-based techniques with value-
estimation [32].

For each of these categories we give a state-of-the-art algorithm example together with its
main concepts. We note that for each type of algorithm many variants exists. This is because the
DRL on itself is a recent field where many problems need to be yet solved. Different algorithms
are developed to tackle on more complex environments and to reduce the computational resources
needed to learn a policy. The problem of sample efficiency, where we want to only use a fraction
of the data needed compared to the thousands of frames now, is also tackled on in several of
these newly developed algorithms.

Value Estimation Policy Gradient

Actor-Critic Methods

SARSA

Q-learning

DQN

A3C

REINFOCRE

TRPO

PPO

TD3

DDPG

Figure 2.4: Overview of the three main approaches to (D)RL. Several algorithms per category
are represented as examples.

24

2.2.2.1 Value-based DRL: Deep Q-learning

As stated before, the popularisation of DRL came with the introduction of DeepMind’s Deep
Q-learning, also called Deep Q-Network (DQN) [64, 38]. Instead of using a tabular approach,
the algorithm uses a neural network as a value approximator to store the Q-values. This network
could be an FNN or a CNN with the latter used in the original paper to learn playing video
games on a Atari 2600 console.

Made transitions are stored in memory D during the episode. These experiences are used
to train the DQN in batches, a commonly used tactic for updating ANNs [65]. The action
selection is done by a ε-greedy policy. The gradient-descent minimizing the loss in the network
is formulated as:

∇θiLi(θi) = Es,a∼ρ(·);s′∼ε
[(
r + γmax

a′
Q(s′, a′; θi−1)−Q(s, a; θi)

)
∇θiQ(s, a; θi)

]
(2.23)

Algorithm 5 Deep Q-learning with Experience Replay [64]

1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights
3: for each episode = 1,M do
4: Initialize sequence s1 = {x1} and preprocessed sequenced φ1 = φ(s1)
5: for each t = 1, T do
6: With probability ε select a random action at
7: otherwise select at = maxaQ

∗(φ(st), a; θ)
8: Execute action at in environment and observe reward rt and image xt+1

9: Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
10: Store transition (φt, at, rt, φt+1) in D

11: Sample random minibatch of transitions (φj , aj , rj , φj+1) from D

12: Set yj =

{
rj for terminal φj+1

rj + γmaxa′ Q(φj+1, a
′; θ) for non-terminal φj+1

13: Perform a gradient descent step on (yj −Q(φj , aj ; θ))
2 according to (2.23)

14: end for
15: end for

2.2.2.2 Actor-Critic methods: A3C

The Actor-Critic architecture, as the name implies, is comprised of two main parts [32]. The
actor is a model suggesting actions the agent could take according to a certain policy. Meanwhile
the critic will give feedback on the chosen action by generating Q-values indicating how good or
bad it is in the state.

Asynchronous Advantage Actor-Critic (A3C) [66] is a actor-critic method that uses threaded
workers to parallelize the training process. These workers use a global parameter network θ and
θ− where newly created workers can get their starting values from while better trained ones
can update the network with their found policies. θ is used by the actor while θ− is the target
network used by the critic.

A synchronous, deterministic variant of the algorithm is A2C. A disadvantage of A3C is the
asynchronous itself. If agents in parallel train they independently sync with the global networks.
This means agents could work with outdated values for the parameters for a while, causing

25

Algorithm 6 Asynchronous one-step Q-learning - pseudocode for each actor-learner thread [66].

1: // Assume global shared θ, θ−, and counter T = 0.
2: Initialize thread step counter t← 0
3: Initialize target network weights θ− ← θ
4: Initialize network gradients dθ ← 0
5: Get initial state s
6: repeat
7: Take action a with ε-greedy policy based on Q(s, a; θ)
8: Receive new state s′ and reward r

9: y =

{
r for terminal s′

r + γmaxa′ Q(s′, a′; θ−) for non-terminal s′

10: Accumulate gradients wrt θ: dθ ← dθ + ∂(y−Q(s,a;θ))2

∂θ
11: s = s′

12: T ← T + 1 and t← t+ 1
13: if T mod Itarget == 0 then
14: Update the target network θ− ← θ
15: end if
16: if t mod IAsyncUpdate == 0 or s is terminal then
17: Perform asynchronous update of θ using dθ.
18: Clear gradients dθ ← 0.
19: end if
20: until T > Tmax

unstable training and a not so smooth convergence. If we let the agents communicate with each
other to guarantee a synchronous update of the networks, the issue is resolved. This could be
seen as a form of mini-batch gradient update since the number of steps for each agent is the
same and a global average of the found gradients is used to update the global network.

2.2.2.3 Policy-based DRL: Proximal Policy Optimization

Proximal Policy Optimization (PPO) [67] is a gradient method that is derived from the Trust
Region Policy Optimization algorithm (TRPO) [68].

The main idea behind TRPO is to constraint the size of the update to the policy by enforcing
a KL divergence, which measures the divergence of one probability distribution from a second
one [69]. It uses the following objective function that needs to be optimized [70]:

J(θ) = Es∼ρπθold ,a∼πθold

[
πθ(a|s)
πθold(a|s)

Âθold(s, a)

]
(2.24)

where πθold is the behaviour policy for collecting trajectories and ρπθold the discounted state

distribution or the probability of visiting one state from another state according to the policy. Â
is the estimated advantage function, which is the estimated difference between the Q-value of a
state-action pair and the value function of the state. It is an estimation because of the unknown
nature of the true rewards. Maximizing the objective function has to be done in accordance to
the trust region constraint, enforcing the distance between the old an new policy measured by
the KL-divergence to be within parameter δ [70]:

Es∼ρπθold [DKL(πθold(.|s) ‖ πθ(.|s)] ≤ δ (2.25)

26

ensuring the policy doesn’t diverge too much.

The PPO algorithm simplifies TRPO by using a clipped surrogate objective with LCLIP
(shown in figure 2.5).

Figure 2.5: One single timestep visualized on surrogate LCLIP in function of probability ratio r.
The red dot represents the starting point for the optimization. The left curve shows a positive
advantage, indicating a good action has been taken. The right one is of negative advantage,
showing the impact of a bad action [67].

If we substitute r(θ) = πθ(a|s)
πθold (a|s)

we can simplify the TRPO objective to:

JTRPO(θ) = E
[
r(θ)Âθold(s, a)

]
(2.26)

In TRPO we don’t specify a limitation on the distance between θold and θ leading to instability
when applying big updates to the parameters and high values for the ratio r(θ). PPO constraints
the ratio to be a small interval around 1, defined in [1− ε, 1 + ε] with ε as a hyperparameter (not
to be confused with ε from ε-greedy). The objective for PPO becomes:

JCLIP(θ) = E
[
min(r(θ)Âθold(s, a), clip(r(θ), 1− ε, 1 + ε)Âθold(s, a))

]
(2.27)

Because PPO can be implemented using several workers (processes that have their own
threads to run on) a A2C inspired algorithm is given in the pseudocode.

Algorithm 7 PPO, Actor-Critic Style [67]

1: for each iteration= 1, 2, ... do
2: for each actor= 1, 2, ..., N do
3: Run policy πθold in environment for T timesteps

4: Compute advantage estimates Â1, ..., ÂT
5: end for
6: Optimize surrogate L wrt θ, with K epochs and minibatch size M 6 NT
7: θold ← θ
8: end for

27

Chapter 3

Explainable AI

Before going forward with the subject of Explainable Artificial Intelligence (XAI), we first de-
fine two of the most important yet often falsely interchanged terminologies: interpretability and
explainability. Interpretability is the degree to which a human can understand the outcomes of
a system [8]. It is the ability to explain or to provide the meaning in understandable terms
to a human [71]. Differently, explainability implies that the system provides an explanation of
some kind why a certain outcome has been produced [9]. The term is linked to the notion of
explanation as an interface between humans and a decision maker that is both an accurate proxy
of the decision maker and comprehensible to humans at the same time [71]. According to Gilpin
et al., who did a recent and comprehensive survey on the field, interpretability alone in an AI
system is insufficient [72]. In order for humans to gain trust in black box models, insights into the
process should be provided (providing interpretability). However, there is a need for the model
to be completed with the capacity to defend chosen actions and provide relevant responses to
questions from the user [72].

White box Grey box Black box

- Deterministic
- Logical
- Transparent

- Stochastic
- Fuzzy logic
- Opaque

- Partial interpretable
- Hybrid logic
- Semi-transparent

Figure 3.1: Three types of boxes for AI models, each given with characteristics. The darker we
go, the less transparent and interpretable the model becomes [12, 11].

We briefly touched upon black box in the previous paragraph, which is one of 3 types of
box models we can distinguish within ML. A black box model is a kind of machine learning
model that is very hard to explain and to be understood by at least an expert in the practical
domain [73, 11, 10]. Examples of these are ANNs and support vector machines (SVM) [74]. They
are very powerful techniques yet their complexity doesn’t allow for a clear view into their inner

28

workings. On the opposite side of the spectrum we have white box models. These are comprised of
ML techniques inherently transparent and interpretable to a human user. They provide results
associated to their models that are easy to understand by domain experts in the application
domain [11]. ML types included are decision trees, k-nearest neighbours and linear regression.
The terms understandable and interpretable are often used interchangeably in describing the
properties of these kind of models. However their meaning differ since understandable models
refer to ML that needs an additional model or technique to provide an explanation while an
interpretable model can provide an explanation on its own [11]. Between black and white exits
a grey area of box models. These grey boxes combine traits from both sides and are described as
semi-transparent [75]. They use a priori knowledge concerning the process and unknown parts
of the model are estimated using measured data [12]. This means only partial interpretability
could be gained from these kind of boxes.

The first examples of XAI date back from the 70’s [76, 77] where the main focus was on
consultation systems. In earlier days when most expert systems were based on human-created
rules in a knowledge base (KB), interpreting these models were accessible [78]. This kind of tech-
nique required the involvement of domain experts providing the necessary expertise to populate
the database with relevant information. Next to KB systems a range of tree-based techniques
were introduced with one of the most popular ones the decision tree [79, 80]. We will dedicate
a further section on the subject of trees but note that their use could be dated as early as the
80’s. In 1988, Michie proposes a criteria for AI to gain a level from weak to ultra-strong [81].
The ultra-strong criterion states that the system should be capable not only explaining how it
has structured its acquired skills but also should be able to teach them. This is open for inter-
pretation as it could mean the ability to teach to humans. The ambition to achieve this criterion
is still relevant today [81]. From Swartout and Moore’s review of expert systems (1993), we can
summarize five desiderata for useful AI explanations [82]:

• Fidelity: the explanation must be a reasonable representation of what the system actually
does.

• Understandability: terminology, user competencies, levels of abstraction and interactiv-
ity should be incorporated into the explanation.

• Sufficiency: the explanation should be able to explain function and terminology of the
context. It has to be detailed enough to justify a made decision.

• Low construction overhead: providing explanations shouldn’t dominate the cost of
designing an AI system.

• Efficiency: the system shouldn’t slow down significantly when a explanation needs to be
given. This applies to both the AI itself as a potential sub-system providing the explanation.

These are only desiderata from one point of view as one can add many more like universality,
meaning the agent doesn’t rely on one particular language or dialect to communicate to the user,
and time awareness, where the explanation can be different depending on time context and/or
amount of seen training data. However, the summed up five points form a decent base on which
an XAI architecture can be build on. With its rise in popularity starting in the early 2000’s,
deep learning brought forward inherently unexplainable black box models. It is a misconception
that XAI started in this period, but in reality it gained a significant boost in popularity thanks
to the unexplainable nature of ANNs [83]. A recent spike in interests came from the initiation
of the DARPA’s XAI program from 2017 [84]. With the program, the agency tries to improve
explainability of AI in military applications.

29

XAI
Machine
Learning

Visual
Analytics

Explanation of
Human Experts

Iterative
ML

Human
Computer
Interface

Human
Experts
Dialog

Figure 3.2: Interaction of different areas forming the origins of XAI as a field [9, 11].

The field of XAI is the culmination of three separate areas (figure 3.2). The field of ML con-
tributes to the AI part of XAI. Human expertise explanations and human-computer interactions
(HCI) contribute to the explainable part [9].

3.1 Motivations

Now that we know the origins of XAI, we have to motivate its usage and what purpose it
can fulfill. Literature studies have underlined the importance of the purpose of explanations
coupled with AI systems [85]. From a recent systematic literature review in XAI for robotics by
Anjomshoae et al. we can list these motivations into seven categories [86]:

• Transparency: if the explanation increases the transparency of the model, a user can
better predict what the model would recommend next. Humans have the ability to under-
stand other human beings (and sometimes animals) but this assumption is not conform to
complex mechanisms like computers and robots [87].

• Trust: human confidence isn’t simple to gain. When the user (partially) knows how
the agent thinks, the trust in it increases. This assumption is only accurate when the
explanation facilitate the decision-making process. Explanations where ambiguity is present
on how to act on the recommendation have no beneficial effect at all [88].

• Collaboration: with collaboration comes the benefit of increased efficiency and team
performance. Sharing goals between users and agents increases the total work effort signif-
icantly more than when beliefs, the information about the environment which are perceived
via the agents, are shared [89]. This is the main idea behind the collaborative robots move-
ment or COBOTs where cooperation with robots rather then full replacement of human
labour is proposed as a productivity enhancer [90].

• Intent communication: In situations where emphasis lies on human-agent interaction,
intent communication is an important motivation in order to make the internal state of the

30

robot (its goals and intentions) understandable to humans [91]. When the agent assumes
a leading role for the group, clear communication should convince the participating users
that the system can provide competent instructions and strategies to manage the team.

• Control: as our military use case example implies, human should retain control over the
AI by knowing what it is thinking about and to correct its policy where necessary. One
should always consider which level of autonomy the system can be granted to based on the
situation [92].

• Education: curiosity has lead many advances in sciences. Studying the behaviour of
intelligent agents could lead to new insights in human an behavioural sciences [93]. These
concepts could be used in education to learn more about robots and AI in general [94].
This educational aspect is also applicable for children [95] with the use of simplified and
kid-friendly user interfaces like Scratch [96].

• Debugging: it is easier to debug or correct a system when the inner workings are known.
For Agent Oriented Programming (AOP) one can already use debugging tools for intelligent
systems [97]. This is done by 1) deriving the agent’s choice of action from their beliefs and
goals (providing reasons for doing something) and 2) evaluating the rule-based structure
of these AOP applications to determine the program’s behaviour [97].

From this review, they concluded that trust and transparency are the most prominent drives
of the explanation in order to boost the user’s confidence in the system [86].

3.2 Use cases

Nowadays, AI is used in applications from a variety of sectors (table 3.1). We analyse several
use cases where XAI can bring added value to the product or service and its end user. Note that
most examples are from situations where AI could have a noticeable impact when incorporated
into the decision process [98]. The users effected should get insights in this impactful process in
order for the system to motivate its findings.

The transport and logistics sector could benefit from AI with intelligent scheduling and fleet
control systems based on multi-agent AI. Intelligent Transport Systems (ITS) have been expanded
drastically due to cost-effective sensor networks and different kinds of distributed and cloud-based
computing [99]. With the rise of the internet of things (IoT) and the promise of low latency 5G
mobile networking, explainable ITS could be expanded upon to enhance and communicate the
scheduling of the fleet to its stakeholders. The introduction of autonomous vehicles would require
motivation how certain routes are driven and what happened inside the system’s moments before
a potential mayor failure like a crash [100].

A major use case of AI in healthcare would be the discovery of new drugs. Deepmind’s
AlphaFold is a DL based protein folding predictor that can help in the discovery of new structures
usable in medical applications [101]. In the paper they remark the interpretation of the neural
network and came up with a technique to understand how the inputs affect the final predictions.
They used integrated gradients [102] to the distogram, which is a histogram of distances between
the folds, to indicate the location of input features affecting the network’s predictions of a certain
distance [101]. Many treatment recommendation systems already exists [103]. However, the ones
based on black box models still lack the interpretability of other used techniques [104]. A recent
application, called OnocoNetExplainer, derives explainable predictions of cancer types based on
ANNs trained on gene expression data [105]. With the use of visualisation of cancer-inducing

31

genes on a heatmap, medical consultation for a treatment could be more accurate. Then there
is the usage of XAI for organizing population health and organization of medical institutions.
These should accompany directing staff and politicians to decide the most effective policy.

AI systems are already involved in the U.S.A. for deciding the sentence of criminal offend-
ers [106]. Most models have a bias towards race or gender, discriminating these groups with a
higher chance on harder punishments [98]. Because of the great impact on the convict in ques-
tion, one should review the decision of the system and let human intuition intervene with the
strict interpretation of the law the system will rely upon. Intelligent systems are also applicable
for big company mergers and acquisitions of rivals since the result could be disadvantageous
for the consumer and the competition in that particular market. To prevent unfairness, a de-
tailed motivation should be given with enough evidence to guarantee a healthy consumer market
[107, 108, 109]. Since the introduction of the European General Data Protection Regulation
act (GDPR) [110, 111], every EU citizen has the right to an explanation of an automated de-
cision [107]. The challenge here is to provide an explanation to users not familiar with digital
technologies and Internet [112].

The North Atlantic Treaty Organization (NATO) recently listed several possibilities and
challenges for the use of AI in military applications [113]. Together with robust ML, against
adversarial attacks [114], and data-efficient algorithms, AI should be sufficiently transparent and
interpretable [113]. Major use cases are surveillance, underwater mine warfare, cyber security
and many more. On the battlefield, autonomous drones could be guided by an AI which has
also to decide which targets to engage with. This target analysis should be reviewed by a hu-
man controller to avoid unnecessary civilian casualties mistaken for enemy targets. For strategy
recommendation, one should look no further than the movie WarGames form 1983 or the Ter-
minator series with supercomputers WOPR and Skynet respectively trying to end all global
military conflict by eliminating that what causes it: human nature. AI should definitely be hold
back by at least several layers of human expertise before initiating an attack with a country’s
ballistic or nuclear arsenal.

Logistics [99] Healthcare [104, 115, 116] Legal [77, 107]

- Autonomous vehicles
- Scheduling
- Fleet control

- Drug discovery
- Treatment recommendation
- Population health
- Organization planning

- GDPR
- Criminal sentencing
- Acquisition/merger evaluation

Defense [84, 117, 113] Financial [118, 119, 120] Industry [121]

- Target analysis
- Autonomous drones
- Strategy recommendation
- Swarm control

- Risk management
- Automated trade
- Investment advice

- Infrastructure planning
- Production line planning
- Resource management

Table 3.1: Use cases for sectors with potential to benefit from XAI integration.

32

Many trades on the global stock markets are already automated by a system, possibly driven
by AI [118]. Because of the huge volumes of stocks traded and the high financial risks involved,
one should keep an eye on the portfolio not getting worthless by incompetent trades [122]. Risk
analysis for credit and loans could be biased against certain ethnicities as shown in our legal
example [120]. This is certainly preventable by introducing the human element. Like the medical
centers, financial institutions can benefit from XAI powered operations and organisations [119].
These could boost the bank’s efficiency in terms of processed customers and their satisfaction
while also letting personnel participate in the planning by incorporating their suggestions into
the model.

At last we have the industry sector which includes both primary and secondary industries.
Before the production at a plant can begin, AI could help plan the infrastructure of the production
line [123]. Explainable planning should comply to several demands in order to achieve an optimal
infrastructure [124]. Besides a general motivation and a possible alternative to the chosen option,
the system should explain what could be done to make the infrastructure more productive and
efficient with the eye on achieving a higher return on investment (ROI). It also has to state
why it couldn’t get more efficient than a proposed configuration and whether or not a replan is
necessary in the case of optimizing an existing production line. Automated resource management
at the beginning of a line should communicate clearly and efficiently with suppliers to prevent a
perforced halt on the line.

3.3 Performance-readability trade-off

Most literature describes an inherent tension between performance of AI, described in terms like
accuracy, and explainability [84]. Apart from the performance-readability trade-off [125] several
other terminologies are referred in literature, e.g. accuracy-comprehensibility [126], accuracy-
interpretability [10] and performance-transparency trade-off [127]. To quote Breiman et al.:
“accuracy generally requires more complex prediction methods ...[and] simple and interpretable
functions do not make the most accurate predictors” [79]. In figure 3.3 classify several ML
techniques based upon this trade-off. The simpler the model, the more interpretable and/or
explainable it is. This however comes with a reduction in performance. The more complex the
higher the accuracy but with lower comprehensibility as a model [128, 129]. This ranking follows
the black-grey-white box spectrum as described before.

In a recent Nature article by Rudin, a motivation against such trade-off is given. She de-
scribes it as a mere misconception that there is necessarily a trade-off between accuracy and
interpretability [10]. She concludes that there is often no significant difference between complex
and simple classifiers after the data has been preprocessed in a correct manner Rudin. Accord-
ing to her, this is even true for applications like computer vision where black boxes have gained
significant popularity over the years. An artificial trade-off can always be created by removing
parts of a complex black box model, but this is not representative of the analysis such model
would perform on a real problem [10]. Furthermore, she points to the fact that the existence of
such a trade-off term has led many researches to forgo attempts to make interpretable models
instead of greying out black boxes [10]. The graph in figure 3.3 gives a suggestive view of the
relation between explainability and accuracy. It also lacks any measurement indication on the
X- and Y-axis as well. However, Rudin is the only author from the list of researched publications
who arguments against the trade-off and this purely based on her own work experience in XAI
for healthcare and finance. This assumption has to be taken lightly for it doesn’t share any
similar ones from the scientific community.

33

Explainability

Pr
ed

ic
tio

n
ac

cu
ra

cy

Neural network

Ensemble

Linear

Probabilistic

Tree-based

Distance-based
Rule-based

Figure 3.3: Visualisation of the performance-explainability trade-off from most performant, an
ANN, to the most explainable one, rule-based techniques [107, 84].

3.4 Taxonomy

There are many categorizations of XAI methods within the domain. We studied overview and
survey literature around XAI and interpretable AI in order to provide an analysis of the most
common taxonomies used. We examined work by Molnar [8], Barredo Arrieta et al. [71], Guidotti
et al. [130], Gilpin et al. [72] and Adadi and Berrada [128].

Figure 3.4 shows the used cross-referencing between the chosen publications. Note the
youngest works are from 2018 while the most recent published ones are as recent as 2020. Molnar
and Guidotti et al. form the base of this review while Barredo Arrieta et al. include all examined
publications. We think the range of surveys chosen forms a comprehensive, yet diverse view on
the current state of XAI as of 2020.

Molnar approached the terminology by going over three types of models roughly in accordance
with the 3 types of box models (table 3.2). Firstly, transparent models can be classified as white
box models. Secondly model-agnostic approaches try to grey out any type of uninterpretable
model. Lastly, Molnar’s example-based explanations category is applicable for black box models
that have a secondary model capable of generating explanations of the inner decision making.

Similar to Molnar, Barredo Arrieta et al.’s taxonomy closely correlates to the different kind
of box models (table 3.3). The difference here is Barredo Arrieta et al. don’t provide a cat-
egory for explanation generating methods. Instead they have two kinds of post-hoc methods,
techniques applicable after the model has processed the dataset and output is given. Next to
model-independent techniques, they include model-specific methods with examples from ANNs.

Guidotti et al. made a high level distinction between reverse engineering the black box model
and design of explanations (table 3.4) [130]. The first one focuses on techniques for extracting
usable information from the black box to construct answers why certain outcomes are predicted
by the model. In the second case, given a dataset of training decision records a method creates an
interpretable predictor model together with the corresponding explanation [130]. The difference
between is the resulting product of the method. Model explanation generates a comprehensible

34

global predictor that mimics the behaviour of the original and provides explanations on the
predictions made. Outcome explanation generates a local predictor that can mimic parts of the
black box, imitating the behaviour on one single input, while providing an explanation of the
prediction on that one single input.

Molnar
2018

Guidotti et al.
2018

Adadi &
Berrada

2019

Gilpin et al.
2019

Barredo
Arrieta et al.

2020

Referenced by

Figure 3.4: Dependency diagram of literature references. Arrow indicates the usage of one
publication in another.

Once again, Gilpin et al. follows a similar taxonomy to Molnar (table 3.5). The difference here
is the processing category where models are simplified rather than being inherently transparent.
The representation category uses a so called transfer task to look into individual parts of the
model.

At last we have the taxonomy from Adadi and Berrada (table 3.6). There approach follows a
pseudo ontology to categorize XAI methods [128]. First one should decide if the technique has a
global or local scope of explaining the model. For each kind of scope the model can be post-hoc
and usually model-agnostic or it could be intrinsic which is by definition also model-specific.
Examples of the local intrinsic model-specific category are not given.

As we can conclude, because of the diverse literature, there exists no conclusive taxonomy
bringing all types of XAI methods together. Apart from the reviewed publications, other related
work describes the methodologies in different terms. The categorization of Du et al. focuses
more on the global or local post-hoc aspect similar to Adadi and Berrada [131]. Another used
terminology is the one from Carvalho et al. that looks at when the explanation/interpretation
takes place. This could be before (pre-model), during (in-model) or after (post-model) building
the model [132]. The most extensive categorization would be one from Vilone and Longo who
combined every possible aspect of a method into an comprehensive categorization tree as shown
in figure 3.5 [133]. We encourage the reader to look beyond the scope of this thesis if more about
XAI methods wants to be learned.

35

Molnar
Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. [8]

Term Explanation Examples

Interpretable
models

Models inherently
interpretable by design.

- Linear regression
- Logistic regression
- Decision tree
- Decision rules

Model-agnostic
Separating the explanations
from the machine learning
model.

- Feature importance
- Feature interaction
- Partial dependence plot (PDP) [134]
- Individual conditional expectation
(ICE) [135]

- Accumulated local effects
(ALE) plot [136]

- Local interpretable model-agnostic
explanations(LIME) [137]

Example-based
explanations

Selecting particular instances
of the dataset to explain the
behaviour of ML models or
to explain the underlying
data distribution.

- Counterfactual explanations
- Adversarial examples
- Influential instances

Table 3.2: XAI taxonomy from Molnar. His division follows the different kind of box models a
ML algorithm can be: white, grey or black box. This translates into fully, partially and zero
interpretability given by the model.

36

Barredo Arrieta et al.
Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities
and challenges toward responsible AI [71]

Term Explanation Examples

Transparent
models

Models that convey some degree
of interpretability by themselves.

- Decision tree
- Logistic/linear regression
- K-nearest neighbours
- Rule-base learners
- Baysian models

Model-agnostic
(post-hoc)

Techniques designed to be plugged to
any model with the intent of extracting
some information from its prediction
procedure.

- Saliency
- Sensitivity
- Influence functions
- Shapley plots

Model-specific
(post-hoc)

Post-hoc methods designed for specific
types of models.

- Activation clusters
- Loss modification
- Layer modification
- Model combination
- Feature extraction
- Caption generation

Table 3.3: XAI taxonomy from Barredo Arrieta et al.. This follows a interpretable, semi-
interpretable scheme with the latter one being possible for model independent as well as model
specific post-hoc techniques.

37

Guidotti et al.
A survey of methods for explaining black box models [130]

Term Explanation Examples

Transparent
design

Providing a model which is locally or globally
interpretable on its own.

- Rule set [138]
- CPAR [139]
- 1Rule [140]
- IDS [141]

Black box
inspection

Providing a representation for understanding either
how the black box model works or why the black
box returns certain predictions more likely than others.

- Prospector [142]
- Auditing [143]
- TreeView [144]
- OPIA [145]
- NID [146]

Model
explanation

Providing an interpretable and transparent
model which is able to mimic the behavior
of the black box and which is also understandable
by humans.

- Tree metrics [147]
- Conjunctive rules [148]
- GoldenEye [149]
- Trepan [150]
- TSP [151]

Outcome
explanation

Providing an interpretable outcome, that is a method
for providing an explanation for the outcome of the
black box.

- LIME [137]
- MES [152]
- CAM [153]
- Grad-CAM [154]

Table 3.4: XAI taxonomy from Guidotti et al.. This taxonomy follows the different type of box
models but with two type of explanatory categories.

38

Gilpin et al.
An overview of interpretability of machine learning [72]

Term Explanation Examples

Processing

Minimize the complexity of explanations
(essentially, minimize length) as well as
local completeness (error of interpretable
representation relative to actual classifier,
near instance being explained).

- Proxy methods
- Decision tree
- Salience mapping
- Automatic-rule extraction

Representation
Characterize the role of portions
of the representation by testing the
representations on a transfer task.

- Role of layers
- Role of neurons
- Role of vectors

Explanation
producing

Generate human-readable explanations
that can be tested by similarity to test
sets, or by human evaluation.

- Scripted conversations
- Attention-based
- Disentangled representation
- Human evaluation

Table 3.5: XAI taxonomy from Gilpin et al., also largely following the box models.

39

Adadi and Berrada
Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [128]

Term Explanation Examples

Local intrinsic
model-specific

Explaining the reasons for a specific
decision or single prediction for
a specific model.

/

Global intrinsic
model-specific

Understanding of the whole logic
of a specific type of model and
follows the entire reasoning leading
to all the different possible outcomes.

- Decision tree
- Rule lists

Local post-hoc
model-agnostic

Understanding the local inner
workings, not tied to a specific
model.

- Counterfactuals explanations
- Decomposition
- Feature importance
- Saliency map
- Shapely explanations
- PDP [134]
- Rule extraction
- LIME [137]

Global post-hoc
model-agnostic

Understanding of the global
inner workings, not tied to
a specific model.

- Feature importance
- Model distillation
- PDP [134]
- Rule extraction
- Activation maximization

Table 3.6: XAI taxonomy from Adadi and Berrada. Their categorization is mainly based on the
division whether a technique is considered model-specific or model agnostic and what the scope
of interpretability is.

40

Figure 3.5: Vilone and Longo’s categorization tree for XAI methods (left) and distribution of
articles across categories (right) [133].

41

XAI categories

Inherently
interpretable models

Post-hoc
representations

Additive
explainable models

White box models who’s
inner workings are

interpretable by a human.

Grey box techniques giving
insight into parts of the model

by visualisation or other
forms of information extraction.

Secondary mechanisms able
to generate human readable

explanations from a
black box model.

- Interpretable models [8]
- Transparent models [71]
- Transparent design [130]
- Processing [72]
- Local intrinsic

model-specific [128]
- Global intrinsic

model-specific [128]

- Model-agnostic [8]
- Model-agnostic

(post-hoc) [71]
- Model-specific

(post-hoc) [71]
- Black box inspection [130]
- Representation [72]
- Local post-hoc

model-agnostic [128]
- Global post-hoc
model-agnostic [128]

- Example-based
explanations [8]

- Model explanation [130]
- Outcome explanation [130]
- Explanation

producing [72]

- Decision trees
- Rule lists
- Bayesian models
- K-nearest neighbours
- Logistic/linear regression

- Saliency maps 1

- Activation maximization
- Rule extraction
- Model distillation 3

- LIME [137] 3

- Adverserial examples
- Counterfactual

examples 2

- Scripted conversation
- Disentangled

representation
- Conjunctive rules

Table 3.7: Our categorizing taxonomy for the types of XAI approaches.

In order to achieve a summarization of all taxonomies, we propose our own taxonomy which
respects the reasoning of each categorization as much as possible (table 3.7). We present our
taxonomy together with definitions, example techniques and corresponding taxonomy from liter-
ature. We based the categorization mostly on Molnar’s work because of the link with the sort of
box models available. The first category are the inherently interpretable models. These include
all white box models as well as intrinsic model-specific methods because of their interpretable
nature. The second category, post-hoc representations, corresponds more with grey box methods
in using post-hoc methods. They provide insights into parts of the black box by using several
techniques like rule mining and visualisation methods. All model-agnostic, post-hoc methods,
representation and black box inspection methods are part of this category. Additive explainable
models are all secondary model techniques that can produce an explanation given a black box

1Technique could be classified as inherently interpretable model.
2Technique could be classified as post-hoc representation.
3Technique could be classified as additive explainable model.

42

as input. All techniques that generate an explanation are categorized under this term. Note
that several techniques like LIME and saliency maps are examples we can find in a different cat-
egory than represented in this taxonomy. These are open to interpretation but are categorized
according to the original literature they came from.

3.5 Conventional techniques

For each of our taxonomy terms, we discuss an example technique relevant to the further scope
of this thesis. We begin by discussing methods well-known inside the XAI community.

3.5.1 Inherently interpretable model: decision trees

Classification and Regression Trees (CARTs), commonly called Decision Trees (DT), are tree
structured AI techniques capable of both classification and regression tasks [79]. They are ML
methods for learning discrete-valued target functions and are one of the most popular inductive
inference algorithms in use [4].

Outlook

WindHumidity

OvercastSunny Rain

High Low Strong Weak

Yes

YesYesNo No

PlayTennis

Figure 3.6: A decision tree example for the concept PlayTennis which answers whether or not
tennis can be played according to the weather [4, 80].

Most often a DT is represented as a binary tree, asking a binary question in each of its
nodes. This can also be extended to a n-ary tree with at most n possible directions per node.
The structure consists of three types of nodes. The root node forms the start of the tree and
has no parent nodes above it. Leaf nodes form the bottom of the tree and have no children of
their own. These nodes will answer to the question the DT is trained on. All other nodes are
called internals and have both a parent and several children. Instances in the dataset are sorted
down the tree from the root down to the a particular leaf node that makes the final decision for
the instance [4]. While traversing down towards a leaf, each internal node encountered will be
compared against the attribute specified by this node in order to know which direction should
be descended to. The possible decisions the structure can make are ranges of values in the case
of regression or a single class(es) prediction.

Most algorithms developed for learning DTs are variants on a core algorithm that uses a
top-down greedy search through the space of possible DTs [4]. A well known basic algorithm is
Iterative Dichotomiser 3 (ID3) [80], shown in algorithm 8. This algorithm learns by constructing
the tree top-down by looking at which attribute should be tested at he root. A statistical test
determines the likelihood of being the one that classifies the training examples the best. The
best attribute is selected and used as the test at the root [4]. One descendent per possible value

43

of this attribute is created and the process repeats itself for every resulting child node with the
appropriate sorted set of training examples. This is done until all attributes are represented by
a node so a decision path can be made from the root to a leaf node.

To define the best classifying attribute in a node, one can calculate information gain of
selecting that particular attribute. The attribute with the highest gain would best split the
dataset at that stage of the learning process. To calculate gain, we have to first calculate entropy
[155], measuring the homogeneity or purity between examples. The entropy H(x) of examples x
relative to a classification with c possible labels is defined as in equation 3.1. Here pi is the ratio
of examples similar to i of all examples x. For a binary case this is H(x) ≡ −p⊕log2p⊕−p	log2p	
with p⊕ the probability of encountering a positive example in x and p	 a negative example (figure
3.7). The highest gain is defined by (3.2), where A is an attribute of the set. Gain measures the
expected reduction in entropy.

Algorithm 8 ID3(Examples, Target attribute, Attributes)

1: Create a Root node for the tree
2: If all Examples are positive, return the single-node tree Root, with label = +
3: If all Examples are negative, return the single-node tree Root, with label = -
4: If Attributes is empty, return the single-node tree Root, with label = most common value of

Target attribute in Examples
5: Otherwise:
6: begin
7: A← the attribute from that best1 classifies Examples
8: The description attribute for Root ← A
9: for each possible value, vi, of A do

10: Add a new tree branch below Root, corresponding to the test A = vi
11: Let Examplesvi be the subset of Examples that have value vi for A
12: if Examplesvi is empty then
13: Below this new branch add a leaf node with label = most common value of

Target attribute in Examples
14: Else below this new branch add the subtree

ID3(Examplesvi , Target attribute,Attributes− {A})
15: end if
16: end for
17: end
18: Return Root

H(x) ≡
c∑
i=1

−pilog2pi (3.1)

Gain(X,A) ≡ H(X)−
∑

v∈V alues(A)

|Xv|
|X|

H(Xv) (3.2)

Like other ML algorithms, DTs are prone to overfit. This depends on when the learning
process stops and post-processing in the form of pruning the tree. Overfit occurs because of
their data intensive nature, meaning the data is tested extensively on each possible attribute per
node. At every node the structure looks at every possible split of every independent variable.

1The best attribute is the one with the highest gain in information according to (3.2).

44

0.0 0.2 0.4 0.6 0.8 1.0
P(X)

0.0

0.2

0.4

0.6

0.8

1.0

H(
X)

Binary entropy function

Figure 3.7: Binary entropy function, H(x), relative to a boolean classification. The proportion
of positive examples, P (x), varies between 0 and 1 [4].

Early-stopping [156] can prevent the grow of the tree when overfit starts to occur when an increase
in test loss becomes present. Overfit could also be regulated by post-processing the structure.
One applicable technique is pruning of the DT. With pruning, parts of the tree are pruned down
to decrease the tree’s complexity so a simpler hypotheses could result from it [80]. According to
Occam’s Razor, simpler explanations are most often the better ones compared to more extensive
ones. Many types of pruning are possible [157], but the most basic is the reduced-error pruning
[158].

3.5.2 Post-hoc representation: feature visualisation

Two possible approaches could be considered when observing a black box model. First we
can view the model on a global scope, observing its behaviour for a given input. As a second
method we could zoom in on individual parts that make up the model and see interactions with
neighbouring components or on a individual level. For a more local view we could investigate
parameters like weights and biases in a neural network. The weight of a neuron can tell us about
the importance of that neuron when activated by a part of the input. Visualizing the weights in
a heatmap can gives us meaningful insight in how certain regions of the input are more impactful
for a decision by the layer than others [159].

45

Figure 3.8: Visualizing the weights for all the output neurons of an MNIST classifier [160].

We give an example for a simple feedforward ANN classifier with one hidden layer, trained
on the MNIST dataset. As can be seen in figure 3.8 the visualised weights resemble the digits
or classes from 0 to 9 indicating the role of a output neuron during classification. The lighter
the region, the higher the weights in that area. When most of the activation happens in this
lighter region (meaning the input mostly corresponds with these regions), it is an indication of
having that particular node deciding the outcome class. When applied on other datasets, the
visualisation of FNN weights could be insufficient. In figure 3.8 we see the weights visualisation
of a classifier trained on CIFAR-10, an image dataset with 10 classes. The input differs from
MNIST in the dimensions (32x32 instead of 28x28) but also in the amount of color channels (3
for RGB instead of 1 for greyscale). Because of the added complexity, the resulting heatmaps of
the neurons are far less interpretable. Some features we could recognize are the blue sky of the
airplane class and water of the ship class [160]. Also green for the frog class is distinctive.

Figure 3.9: Visualizing the weights for 1-layer CIFAR-10 classifier [160].

When training CNN classifiers, other components could be visualised such as the learned
feature maps [161]. These are the resulting activations when using a kernel filter on the previous
layer input. Kernels can also be visualised as seen for the CIFAR-10 dataset in figure 3.10 but
often lack meaningful context without the original input.

46

Figure 3.10: Visualization of 64 features learnt in the first convolutional layer on the CIFAR-10
dataset. Several different pooling techniques were used to learn the features. The size of each
feature is 553. (a) Features learnt with max pooling. (b) Features learnt with average pooling.
(c) Features learnt with mixed pooling [162].

3.5.3 Additive explaining model: rule list

Rule learning is one of the oldest fields of machine learning [163]. Rule-based ML techniques have
proven their use in both propositional learning and relational learning and could be integrated
into a wide range of applications. Because of their self-explanatory composition, a list of decision
rules, the interpretation is as straightforward as reading these in the correct order. A decision
rule is a simple IF-THEN statement consisting of a condition (IF) and a prediction (THEN)
[8]. Conditions can be joined together with a conjunction (AND), making the condition more
specific.

IF Conditions THEN c (3.3)

where c is the class label, and Conditions are a conjunction of simple logical tests describing
the properties of the instances that have to be satisfied for a certain rule [163]. These proposi-
tional rules are learned by a induction algorithm, of which many exist. Several well-known are
CN2 [164], RIPPER [165], and PRIM [166]. We focus on the CN2 algorithm as recently done
work by Coppens et al. incorporates the algorithm in the context of Relational Reinforcement
Learning (RLL), which is an interpretable RL approach.

Recently a policy distillation algorithm has been developed based on the CN2 rule mining
algorithm to distill a DRL policy into a rule-based decision system [167]. Apart from the use
of RRL to match performance of the original policy, the contribution added meta-information
into the formation of the rule list. This allows for choice within the rule miner by having
near-optimal actions for a certain state [167]. The second made contribution is a new two-step
approach identifying important misclassifications leading to shorter rule sets [167].

47

3.6 Knowledge distillation

We introduce several emerging methods within the field of XAI. We start by discussing knowl-
edge distillation which is a technique that can be used to transfer the behaviour of one model
into another surrogate one. Afterwards we propose two types of tree models that are used in
the context of this thesis: Soft Decision Tree and Adaptive Neural Tree. These neural trees try
to unify both the deep learning and the tree based learning paradigm by using a decision tree
where the decisions inside the nodes are made by small neural networks.

When deciding upon the architecture of a deep neural network a range of different parameters
should be considered during the design process. Hyperparameter values defining the number of
layers of a network and how these are comprised out of nodes are not chosen straightforward
and should be estimated via a machine learning modeling process. This approach considers
different kind of model classes and their configuration (the structural identification) as well as
the settings of the inner components like weights and biases (the parametric identification).
The class of network defines the values needed for parametric identification. Aside from the
composition of feed-forward network (FNN) layers, one has to specify the kernel size in the
convolution layers of an convolutional neural network (CNN) and the type of memory cells used
in recurrent neural networks (RNN). At last model cross-validation is used as a measure of
performance of a chosen layout, eventually choosing the one that gains lowest value in a given
cost function like mean squared error (MSE). Overall, finding the best suitable model depends
on a computational intensive search on both the composition of the model as well as the settings
of its parts where for each considered model we have to train it and validate using a given data
set.

A way to omit this intensive search is the use of many different yet not high accurate predictors
and compute the average of their combined predictions [168]. This ensemble method has proven
to increase the accuracy of models significantly while effort needed for individual training is
greatly reduced. The individual models themselves don’t have to gain high accuracy in their
task. Even from the aggregation of models that are slightly more efficient than a randomized one
can a good predictor emerge [169]. However, the trade off to be made for an increase in accuracy
is a higher amount of memory needed to store the models. In addition on large scale the whole
ensemble of these cumbersome models can become computationally expensive, undermining the
benefits of the performance gain. In the past several approaches have been considered with the
goal of reducing the size of these ANNs. Starting in the late eighties, Hanson & Pratt’s network
pruning was among the first techniques that tried to compress the size of an ANN model [170].
With the usage of a biased weight decay at each training step, the proposed method insures
the nullification of small weight in the network over time while retaining the larger weights. If
uniform weight decay should be considered it would result in the same decay rate for both high
and low weights. As a result of the biased version more of the model’s input is condensed into a
smaller number of weights, hence the term minimized networks they use.

In 2006, Bucil et al. propose a method based upon the generation of a new set of examples
by the original model [171]. This approach was mainly targeted towards the reduction of large
ensembles of deep learning models but is also applicable to other classes of models. The main
idea behind this technique, called network compression is to have a cumbersome model generate
pseudo training data from a large data set of unlabeled instances. This set can then be used to
train a smaller model that will learn how to predict like the original one. The predicted labels
are used as targets during the training of the second model. The newly generated data represents
how the initial model correlates the input with the output without having knowledge about its
inner workings. Several strategies can be applied when generating the pseudo data set. The

48

most straightforward one is to randomly sample values from the marginal distribution of each
attribute. This non-parametric bootstrap approach however considers the entire possible input
space, resulting in a lower focus on the important regions. Another technique is to estimate the
underlying joint distribution of the attributes. This creates samples that maintain the conditional
probabilities of the domain, representing relevant parts of the input space. These probabilities
can be estimated with an mixture model algorithm which relies on a mixture of components
with distinct distributions. Naive Bayes Estimation (NBE) [172] is such technique applicable
on both discrete and continuous values of the attributes. The drawback of NBE and mixture
model algorithms in general is the increase in computational complexity when large amounts of
attributes are considered. Bucil et al. developed a new sample technique called MUNGE which
uses a non-parametric estimate to estimate the joint distribution [171]. MUNGE chooses for each
entry in the distribution the nearest neighbour (NN) by finding the shortest euclidean distance
between both entry’s attribute values. For each attribute there is a probability p that a change
will occur. In the case of a discrete variable, we swap the value with the corresponding value
of the NN. In the continuous value case, the attribute is normalized in [0, 1] a random value is
taken from a normal distribution with the NN’s attribute as the mean and the distance between
as the standard deviation. The number of iterations over all elements in the training set k
depends on size of the pseudo data set needed to be generated. Every iteration uses the original
data set and the result will be the unification of the k sub sets generated by the algorithm.
Tests have concluded that MUNGE outperforms both RANDOM and NBE [171]. To train the
smaller model on the pseudo dataset generated by the cumbersome model a MSE cost function
is minimized between the logits, the final inputs to the softmax layer of the model.

In 2016, Hinton et al. introduce Knowledge distillation, a more generalized form of model
compression. Bucila’s motivation for the use of logits (q) instead of the softmax produced
probabilities (z) (called soft targets) is the low influence they have on the cost function. To
solve this, Hinton introduced the concept of a temperature variable T in the softmax function,
regulating the exp function’s influence on the logits. As seen in equation 3.4 a low temperature
generates harder targets while high temperatures generate higher ones.

qi =
exp(zi/T)∑
j exp(zj/T)

(3.4)

Aside from the use of soft targets, knowledge distillation uses a weighted average of two cost
functions. The first one is the cross-entropy between the logits of the large and small network
at the same high temperature as when the pseudo data is generated. The second one is cross-
entropy between the correct labels of the large model and those predicted by the distilled version
at an temperature of 1. Experiments have shown that the latter is less important and should be
weighted with a lower value.

Further work in the field concerns techniques to determine the architecture of the distilled
model [173] [174]. Because knowledge distillation isn’t the focus of this thesis but rather a tool
to incorporate explainable AI, we will not focus on these.

Distillation into other classes of models

As noted before, knowledge distillation allows us to train other classes of models different from
the original one. This provides us the flexibility of choosing a better suited model for desired
improvements in accuracy or readability. In a previous section we mentioned classes that are
more human interpretable than black box models like neural networks. In the following sections
we introduce two types of tree-based models where KD can be used with.

49

1.0 0.5 0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

5

6

7

f(x) = exp(x/T)
T = 1
T = 2
T = 4

Figure 3.11: When increasing temperature T the exponential function doesn’t rise in the same
way as for lower temperatures.

3.6.1 Soft decision tree

A soft decision trees (SDT) is a variant of decision tree where all child nodes are selected with
a certain probability rather than using hard internal nodes [15, 175] (figure 3.13). This means
that while traversing the tree all possible paths towards the leafs will be considered since every
leaf contributes to the final decision with a different probability. Different implementations of
SDT exists in literature. We will use the one introduced by Frosst and Hinton throughout this
thesis.

Each inner node i of the SDT has a learned filter wi and a bias bi [175]. Each leaf node l
has a learned distribution Ql for making a decision on the given input x. The routing function,
deciding at each internal node what the probability is of taking the rightmost child, is defined
as:

pi(x) = σ (xwi + bi) (3.5)

with σ being the sigmoid logistic function. This model is comparable to a hierarchical mixture
of experts [176] with the difference of each expert being a so-called bigot, which is another word
for “intolerant” leafs. A bigot doesn’t look at the data after training instead it always produces
the same distribution over the possible outcome classes. A hierarchy of filters is learned by the
model where each bigot is assigned to a particular path probability following the branches from
root to bottom. Each leaf learns a static softmax distribution:

Qlk =
exp(φlk)∑
k′ exp(φlk′)

(3.6)

where k is the number of possible output classes, Ql denotes the probability distribution at

the lth leaf with φl the parameters of the leaf.
Decisions in a SDT can become too “soft” during training. To prevent this, a temperature β

is introduced to regulate filter activations prior to calculating the sigmoid. The probability from
(3.5) becomes pi(x) = σ(β (xwi + bi)) at an internal node i. This parameter value is learned by
the model during the training process.

50

Figure 3.12: Diagram of a soft binary decision tree with a single inner node and two leaf nodes
[175]. Temperature β is not included in the calculations.

There are two ways an SDT can make predictions. It could use the distribution of the leaf
with the greatest path probability or it could average the distributions over all leafs weighted by
their reaching probabilities. In the first case, a single path of encountered filters would result in
a single distribution to be chosen. When taking all paths into account, an increase in accuracy
would follow as a result. However, this comes at the cost of being more computational resource
demanding since all filters of the tree have to evaluate their gating function.

SDTs have already been proven to be a suitable model for knowledge distillation by Frosst
and Hinton. They were able to create a MNIST classifier from a SDT of depth 4 and arity 2
with a deep neural network as the model to distill from. Figure 3.14 shows the visualisation of
the tree along with the used filters in the nodes to split the dataset. If we look at the rightmost
internal node, parent to leaf nodes labeling the input as 3 or 8 and indicated in red in figure 3.14,
we can see that the white area is important in deciding one of those two digits. If the area is
connected the structure classifies it as 8 but if it is open it would predict 3. It is such indications
a model should provide in order to better explain a particular path towards prediction a model
makes. Note however that the closer to the root and due to the small arity, the explanation why
a certain side is chosen by the routing function is not trivial. If we want to classify a 0, we have
to start on the left side of the root. However, no distinct indication of the number is present
in the visualisation of the root nor the child node. It is only when we arrive at the last parent
node, chosing between 0 and 5, that we clearly can see a zero in the white of the visualisation.

3.6.1.1 Training a SDT

When initializing a SDT before training, the structure is loaded with a certain depth d into
memory. For a binary tree with arity 2 the amount of nodes is equal to 2d − 1, which results

51

in a structure with 2d−1 leafs and 2d−1 − 1 internal nodes. Parameters are arbitrary set at the
beginning of the learning process. The goal is to minimize the loss function given the predefined
structure and on a certain dataset D with xj ∈ D being an input vector from the dataset. For
a given target distribution T , the used loss is the cross entropy between each leaf (weighted by
its reaching probability) and T . This is formulated as:

L(x) = − log

 ∑
l∈LeafNodes

P l(x)
∑
k

Tk logQlk

 (3.7)

where P l(x) the probability of arriving at a leaf l with given input x.

a: HDT b: SDT

Figure 3.13: Comparing the resulting interpolation (red curve) between hard and soft regression.
A smoother plot is generated in the SDT case with less splits (black vertical lines) given the
same dataset (blue dots, sampled from a sinusoidal with Gaussian noise) [15].

52

Figure 3.14: Visualization of the distilled SDT MNIST classifier. The nodes represent the used
filters on which the splits are based upon [175].

A difference with hard decision trees (HDTs) is that SDTs use mini-batch gradient descent
to optimize all parameters simultaneously instead of using a dynamic growing structure where
splits are made one node at a time [177].

To encourage each internal node to use both their respective subtrees equally, a regularization
cost C is introduced. This is based on the cross-entropy between the current distribution of a
branching node αi, formulated as:

αi =

∑
x P

i(x)pi(x)∑
x P

i(x)
(3.8)

and the discrete binary uniform distribution:

C = −λi
∑

i∈InnerNodes

0.5 log(αi) + 0.5 log(1− αi) (3.9)

where P i(x) is path probability from root to node i and λi a hyper-parameter determining the
strength of the penalty at node i. An assumption that could be made is that a tree uses alternative
sub-trees equally and that this would be better suited for a classification task. However, this is
less true the deeper one goes into the tree where a penultimate node would only responsible for
two classes of input [175]. In non-equal proportion this would have the effect of penalizing the
node for a non-equal split, decreasing the accuracy of the model. This is why a decaying penalty
cost λ is used, which starts with value λ and is decayed over the tree depth by a factor of 2−d

[14].

3.6.2 Adaptive Neural Tree

One of the disadvantages of SDT’s is the possibility of the gradient descent optimization to get
stuck in a local minimum [15]. This however can be solved with the introduction of noise in
the form of a random step in the descent algorithm. Another disadvantage is their fixed depth,

53

arbitrarily chosen when implemented. When chosen too small, the tree wouldn’t perform well.
When chosen too large, human interpretability will suffer. In a regular, not-optimized decision
tree both under- or overfitting can occur when the depth of the tree is too low or too high
respectively. Finding the optimal depth of a tree is not trivial. Nodes at a low level only use
a small fraction of the training set causing the tree to overfit. When possible an exponentially
large dataset in relation to the tree depth can prevent this [175].

Commonly used algorithms consider a top-down approach when deciding where to split the
dataset. Because each split is made independently from possible splits further down the tree,
the final resulting tree could be one unable to fully grasp the underlying characteristics of the
given training dataset, lowering performance on new data samples that were never encountered
before [178]. A frequently used strategy is to grow a tree in a top-down way as deep as possible
after which the tree gets pruned, decreasing complexity and preventing potential overfit. This
method however could waist computational resources as a large portion of the structure could
be removed during the pruning phase. One type of architecture able to dynamically grow is
the Adaptive Neural Tree (ANT) [18]. The algorithm uses several regulators to optimize the
structure in both depth and arity.

An ANT is defined as a pair (T,O) with T defining the topology of the model and O the
set of possible operators possible on the topology [18]. In the original paper the topology is an
instance of a binary decision tree but this can be expanded upon to be a tree of any arity as
long as the used routing in the nodes is capable to support this. A node can be one of three
kinds: an internal node, a leaf node or a single parent node to a leaf node. The topology itself is
denoted by T := {N,E} where N contains all nodes of the topology and E the edges connecting
the nodes. In ANTs E contains an edge connecting the input data of the model to the root node
via a transformation, which is different from a standard DT where the root routes the data first.

There are three types of operators contained in O. These modules are routers R, transformers
T en solvers S:

Routers R

Every internal node of the tree contains a router rθj ∈ R. Here θ contains the parameters of the
routing function, mapping the input Xj at node j to [0, 1]. These modules contain the necessary
computations to decide which edge the input should follow down the tree towards the next child.
An example of a router is a small neural network.

Transformers T

Every edge of the tree has one or several transformer modules. Each transformer tψe ∈ T ap-
plies a nonlinear function, parameterized by ψ, to the input it receives from previous modules.
Unlike DT’s, the edges transform the data and are allowed to grow by adding more operations,
learning deeper representations [18]. A convolutional filter could be applied as an example for a
transformer.

Solvers S

Each leaf node l ∈ Nleaf has an assigned solver sφl : Xl → Y ∈ S with parameters φ. Solvers
receive transformed input data from the transformers on the edge leading to that solver. They
output an estimate on the conditional distribution p(y | x). For example a bigger neural network,
such as a CNN, could be used as a solver.

54

Figure 3.15: Visualisation of an ANT with its components. Blue nodes represent transformers,
orange ones the routers. Solvers are indicated in green. X is the given input to the tree. [18]

3.6.2.1 Training an ANT

Pseudocode 9 gives an overview in the training process of an ANT. The learning procedure is
split into two parts: a growth phase and a refinement phase. For optimizing the parameters the
negative log-likelihood (NLL) is used as the objective function to be minimised. Backpropagation
[53] is used for the gradient computation whereafter gradient descent minimizes NLL for learning
the parameters [18].

Growth phase
In the first phase of the training process an optimal architecture T is learned. The structure
needs to be adequately complex given the training data. In the pseudocode, the while loop of
line 4 to 14 is responsible for the growth phase. Starting from the root, a leaf node is taken in a
breadth-first manner and changed by adding computational modules to it. One of three things
can happen at a leaf (figure 3.16). The first is to split the leaf node and therefore the data by
adding a new router. Initially, the identity function is chosen as the edge transformer towards
each new solver. Secondly a deepening transformation can be added to increase the depth of an
incoming edge by introducing a new transformer. As a third option the model can just be kept
as it currently is. During the growth of the tree, each encountered node is locally optimised.
The parameters of newly added modules (routers, transformers or solvers) are optimised by
minimizing NLL while the rest of the computational graph is fixed. Both the processed model as
well as the original are compared to each other using validation. If the new architecture improves
the NLL, the algorithm continues with these added modules. If NLL is not further improved or
even increases, then a roll-back to the previous model is made. We repeat this process to all new
nodes until no more component additions improve on the validation test. The model improves in
two ways: it deepens an edge seeking to learn richer representations or it splits the data which
is equivalent to the soft partitioning of the feature space.

55

...

(1) Split data (3) Keep(2) Deepen transform

Figure 3.16: Possible actions the algorithm can take when in the growing phase. Either it can
(1) add a new router with new solvers and identity functions on the edges to split the data or
(2) add a new transformer node together with a new solver to deepen transform. A third option
is to just keep the original transformer and solver and add nothing on that branch.

Refinement phase
The second phase is the one where global fine tuning of O happens. This is shown on line 15
of the algorithm. The architecture is now fixed and all parameters are again optimized with a
gradient descent on NLL. This jointly optimises the hierarchical grouping of data to paths on
the tree and down the associated expert neural network [18]. One possible option is to do global
refinement during the growth phase. When applied, the user has to chose how many epochs of
finetuning the algorithm would do after each addition of a node.

Algorithm 9 ANT Optimization

1: Initialise topology T and parameters O and one transformer
2: Optimise parameters in O via gradient descent on NLL
3: Set the root node suboptimal
4: while true do
5: Freeze all parameters O
6: Pick next suboptimal leaf node l ∈ Nleaf in breadth-first order
7: Add router to l and train new parameters (1)
8: Add transformer to l and train new parameters (2)
9: Add (1) or (2) to T if validation error decreases, otherwise set l to optimal

10: Add any new modules to O
11: if no suboptimal leafs remain then
12: Break
13: end if
14: end while
15: Unfreeze and train all parameters in O

56

3.7 Explainable Reinforcement Learning

We gave in previous sections an overview of the current state of XAI. After closer inspection,
we can observe that most XAI techniques are linked to supervised learning. By changing the
feedback-giving component from the user to an environment, we could integrate XAI techniques
into RL, creating explainable reinforcement learning (XRL). Especially in the case of DRL,
where DL techniques make policies inherently uninterpretable, we can use the benefits from
using explainability methods.

We examine a recent XRL taxonomy given by Heuillet et al. that encompasses several XAI
techniques in a RL context [179] We draw parallels to our own taxonomy and add additional
context from the few other survey papers available at the time.

XRL

Transparant
algorithms

Post-hoc
explainability

Hierchical
learning

Simultanious
 learning

Representation
learning Interaction data Saliency maps

Figure 3.17: A proposed XRL taxonomy by Heuillet et al. [179].

3.7.1 Transparent algorithms

Transparent algorithms are similar to inherently interpretable methods or white boxes. Their
strengths lie in the fact that they are designed to have a transparent architecture that makes
them explainable by themselves, without the need of any external processing [179]. Examples of
XRL techniques of this class are:

Representation learning

Representation learning algorithms focuses on learning abstract features that characterize the
data [179]. This provides extra useful information about the features that have the advantage
of having a low dimensionality, improving model performance. In a RL setting, learned features
could be representations of state, actions or the policy itself, giving a better insight in the agent’s
behaviour. State Representation Learning (SRL) [180] is an example of a technique where the
raw observational input the agent receives is used to model an observation space with meaningful
states. This is use full in applications like robotics and other control problems.

Simultaneous learning

An explanation can simultaneously be learned with the policy. The learned explanation becomes
an essential component of the model [179]. Methods involving simultaneous learning are useful
on tasks where the introduction of certain knowledge is capable of adding insights into the
learned policy. Examples are the classification of rewards by types and adding relations between
states [179]. Reward decomposition [181] decomposes the reward function into a sum of reward
types. This both results in an improvement in performance as well as readability. The related

57

decomposed reward DQN uses a vector-valued reward function to allow for decomposition. In it,
each component is the reward for a certain type allowing for the comparison of actions in terms
of trade-offs between the types [179].

Hierarchical learning

Methods that learn through hierarchical goals consist of both a high- and low-level agent [182].
The main goal is divided into sub-goals. A high-level agent tries to recognize these sub-goals.
These are then given to a low-level agent whose task it is to achieve these goals in the environment.
By learning what sub-goals are optimal for the low-level agent, the high-level agent forms a
representation of the environment that is human interpretable [179].

3.7.2 Post-hoc explainability

Like we mentioned in previous section, post-hoc methods explain via an analysis done after the
RL algorithm finishes its training and execution. Most post-hoc methods encountered in the
overview were used in a perception context on visual input [179]. The work done by Coppens
et al. is a form of post-hoc representation [14]. Same could be said about ANTs. Therefore,
within this taxonomy, we could use the proposed KD technique in combination with SDTs and
ANTs for performing XRL.

Interaction data

The agent behaviour can be explained by gathering data from its interaction with the environment
while running, and analysing it in order to extract key information [179]. This technique is rather
a secondary mechanism that produces the explanations for a black box.

Saliency maps

In image data, the most relevant elements could be highlighted to explain which parts are im-
portant to the agent. A saliency or heath map consists of a filter applied to an image that will
highlight areas salient (a.k.a. noticeable) for the agent [179]. This makes saliency mapping a
good technique to increase human interpretability. However, a disadvantage is the sensitivity
to different input variations. This makes debugging not straightforward on the produced visual
explanation.

3.7.3 Other literature

Puiutta and Veith made an overview survey based on the taxonomy of Adadi and Berrada
[127, 128]. In this work, the main differentiators between certain techniques is the scope on
which they operate as well as the time of information extraction. The scope could be local or
global while the time could be during training (intrinsic) or afterwards (post-hoc). From there
they concluded that all intrinsic methods are model-specific (which is straightforward) and that
post-hoc methods could be both model-specific and agnostic. We also acknowledge the work
done by Alharin et al. who based their taxonomy on the same distinctions as Puiutta and Veith
did, but elaborated more on the types of input data including textual, images, rules and lists.
Our work, as mentioned before, involves the usage of ANTs and SDTs to provide interpretability
of learned DL models after the training process. This thesis, with the focus on ANTs as a viable
surrogate model, is by categorization of the taxonomy a post-hoc technique of explaining learned
DRL policies.

58

Chapter 4

Methods and setup

In this chapter we give an overview of the used methodology and setup we use for the experimental
evaluation section. These are necessary to perform the research in the direction this thesis aims
to go for.

The goal of this thesis is to test work done by Coppens et al. on different environments and to
see if next to Frosst and Hinton’s Soft Decision Trees and Tanno et al.’s Adaptive Neural Trees
could be used as surrogate models for doing knowledge distillation. The main question is to
test if ANTs are better models compared to SDTs in terms of performance and interpretability.
We therefore have to both test performance by testing in a supervised/reinforcement learning
context and test on interpretability by some measurement. We begin by talking about the
proposed experimental setup we want to use in the actual evaluation. The experimental pipeline,
consisting of three main phases, encompasses the training of the best possible DRL policy, the
training of several candidate surrogate models and the evaluation of these models according to two
criteria: interpretability and performance. Afterwards an overview is given of the used network
architecture in all models as well as the main concepts and parameters behind the actor-critic
model used in A2C and PPO. Before we start distilling, we need to train a DRL policy like PPO.
We provide some implementation details as well as the used parameters for the different types
of policies we trained. We give a short overview of all made adaptations to our used surrogate
tree models. In the case of SDT this is mainly changes to the data loading mechanisms and
representations of the outcome from the model. For ANT we introduce a method called SRDS
(smart routers, dumb solvers) to improve the learning of router parameters during training to
compensate for the powerful solvers. Because of out-performance by the networks in the solvers,
the routers weights aren’t optimized during training leading to noisy visualisations of their weight
maps. By learning with sparse layers in the solvers we force the model to better optimize the
parameters of the routers, improving readability on the long term. We discuss the problem of
measuring complexity in a decision tree. Since no concrete measurement exists at the time of
writing, we propose our own formulation of visual complexity that can be used to rank different
architectures. We provide the idea behind our metric as well as its shortcomings and ways to
improve it. Currently there are no available applications that can help providing insights in
SDTs or ANTs and how their behaviour can be monitored in a XRL context. We developed a
framework to help with the visualisation of trees as well as frame-by-frame analyses of the learned
policies in their trained environment. Our developed prototype, called Graybox, is summarized
in several points including its main motivations, technical details and interface capabilities. We
give an overview of the functionalities of the system together with an explanation what it can
provide while operated in a web environment.

59

4.1 Experimental setup

To have a standardized procedure for each of our experiments, we developed an experimental
pipeline to train, distill and analyze policies. This guarantees that the best possible DRL policies
(within the resources permitted to do this thesis) are chosen for generating the best datasets for
knowledge distillation to be used to train tree models with good explainability and/or perfor-
mance characteristics. The pipeline, shown in figure 4.1 is made of three main stages: training
and policy selection, knowledge distillation and analysis.

DQN

Performance
selecttion Best performing

policy

DQN DQN...

A2C A2C A2C...

PPO PPO PPO...

...
Distillate Distillate

Training and policy selection Knowledge distillation

SDTSDT ...SDT

Distillate

ANTANT ...ANT

Analysis

Performance
selection

Interpretability
selection

Performance
comparison

Interpretability
comparison

Best performing
model

Best interpretable
model

Tr
ad

e-
of

f

Best performing
DQN policy

Best performing
A2C policy

Best performing
PPO policy

M
ul

ti-
po

lic
y

tra
in

in
g

SDT

SDT

ANT

ANT

SDT / ANT

SDT / ANT

Generate distillate datasets

Train interpretable models

DQN / A2C / PPO

Figure 4.1: The experimental pipeline.

4.1.1 Training and policy selection

The first step in the pipeline is to train several black box models on a particular environment. For
each algorithm, we train multiple DRL policies. By doing this multi-policy training, we increase
the probability of obtaining a more optimal policy compared to others. There are several metrics
for evaluating a RL policy including regret (the difference between a policy π and the optimal
policy π∗) [184, 185], cumulative reward and general intelligence test [186, 187]. We opted to use
cumulative reward over a number of episodes because of its straightforward interpretation in the
case of gaming environments: the higher the score (e.g. reward), the better the agent plays.

From each type of learning algorithm we run an evaluation of 100 game sessions each to
accumulate the total reward gained in those episodes. These are averaged over the number of
game sessions and plotted in a boxplot for analyzing the performance of each algorithm. The
best performing policy would be the one with the most total reward or average reward per game.
This best performing policy is then used for the KD part of the pipeline, where a dataset will be
generated with.

4.1.2 Knowledge distillation

The first part of the knowledge distillation phase is to generate a good dataset to train the
surrogate models on. We let our chosen agent play a series of games where the amount of frames

60

is equal to a given value. This creates two datasets of distillates, one for all observations and
one for all taken actions in the games. These are saved in separate files to minimize file size
when eventually compressed. The accumulated score of games played during the generation is
the indicator for deciding how good the dataset is. We generate several datasets and chose the
best one based on that. Because we want to examine the effects of different set sizes, we opted
to generate several datasets of different lengths.

The second part is training several neural trees of different types and with different struc-
tures/parameters. From each configuration, several models are trained to increase the sample
size to have a better indication of the effects of each parameter combination. For SDTs we
train a range of depths while for ANTs we try several combinations of finetuning and growing
episodes. We do not change the hyperparameters of the models, which has an effect on the way
they learn on the data. Further work can include this hyperparameter finetuning as part of the
experimental pipeline to observe the effects they have on the learning process.

4.1.3 Analysis

The final phase of the experimental pipeline is the analysis stage where we compare all models
according to several criteria. The first selector is to go over each type of SDT and ANT we’ve
trained and select the most performant and the most interpretable one. The result is a structure
per type of each of the two model criteria. Once we have our best performing ANT and SDT,
we again select between these two the one scoring the highest on average on a series of games.
For the determining the interpretability, we both use our complexity metric in combination
with perceived complexity while trying to derive explanations from the tree visualisation. These
visualisations are thoroughly examined on possible insights on the produced behaviours. Because
these explanations lean more towards being subjective rather than objective observations, we try
to convince the reader with gathered experiences from the tree structures in question. All of the
made explanations are open for interpretation.

61

4.2 Network and policy architectures

In this section we briefly describe the chosen network architectures for our DRL algorithms
together with a look on the used strategy for synchronising local and global networks in the
actor-critic model.

4.2.1 The Deep Q-value network

Mnih et al. propose a network architecture in their original DQN paper inspired by the Ima-
geNet architecture [188]. This was also the original motivation for using square frames with
2D convolutions as the GPU implementation of ImageNet required this. Several approaches to
parameterizing the network could be considered, the most optimal having a separate output unit
for each possible action with only having the state representation as the input [64]. In previous
attempts [189, 190], the history of the agent together with their made actions were given as an
input to the network, resulting in a cost that linearly grows with the number of actions. This is
because then a forward pass through the network is required for each action that is given as an
input.

...

32 filters
8X8

Input
105 x 80

ReLU

...

64 filters
4X4

ReLU

...

512 nodes

...

64 filters
3X3

ReLU

...

n_actions

ReLU

Figure 4.2: DQN network architecture.

The input frame, 105 by 80 pixels with one channel for luminosity, first passes through a
layer that convolves 32 8x8 filters with stride 4 (being the number of pixels shifts over the in-
put matrix when applying the convolution) [191]. A rectifier nonlinearity (ReLU) activation is
applied afterwards [192]. The second layer convolves 64 filters of 4x4 with a stride of 2 followed
by a convolutional layer of 64 filters 3x3 with a stride of 1. Both layers have a ReLU activation
in between. The convolutional layers are followed by a final fully conected hidden layer of 512
rectifier units. The output layer is a fully-connected layer with output for each single action
possible in the environment [38]. The architecture supports a number of actions between 4 and
18 depending on the game.

The chosen DQN implementation of Stable Baselines 3 [193] uses the following parameters:

62

Table 4.1: Parameters of our black box DQN agent.

Name Value Description

batch size 32 Input batch size for training.
learning rate 0,0001 The learning rate.

buffer size 1.000.000 Size of the replay buffer.
learning starts 50.000 Steps before learning starts.

tau 1,0 Soft update coefficient (Polyak update).
gamma 0,99 Discount factor.

gradient steps 1 Amount of gradient steps to do after each rollout.
exploration fraction 0,1 Fraction of training period while the exploration rate is reduced.

exploration initial eps 1,0 Initial value of random action probability.
exploration final eps 0,05 Final value of random action probability.

4.2.2 The synchronous Actor-Critic model

A2C, a synchronous variant of A3C, uses a coordinator component to regulate the updates
between the actors and the global parameters network. The algorithm waits for each actor to
finish its experience segment before an update is performed [194]. This regularization results in
a more effective use of GPUs working with large batch sizes [195]. We use the same feed forward
network architecture as the DQN variant, but note the original paper also uses long short-term
memory (LSTM) layers instead of linear ones. These are capable of holding memory of past
activations. The implementation is also done in Stable Baselines 3 [193].

Agent 1

Agent 2

Agent 3

Cordinator Global
Network

Environment 1

Environment 2

Environment 3

Figure 4.3: A2C network architecture.

The following parameters are used in the final DRL model:

63

Table 4.2: Parameters of our black box A2C agent.

Name Value Description

learning rate 0,0007 The learning rate.
n steps 5 Number of steprs to run for each environment per update.
gamma 0,99 Dicount factor.

gae lambda 1 Bias vs variance trade-off factor for advantage.
ent coef 0 Entropy coefficient for loss calculation.
vf coef 0,5 Value function coefficient for loss calculation.

max grad norm 0,5 Maximim value for gradient clipping.
rms prop eps 1e-05 RMSProp epsilon.
use rms prop True Whether to use RMSprop (default) or Adam as optimizer.

4.2.3 PPO parameters

Finally, we briefly give an overview of the used parameters in the Stable Baselines 3 version of
PPO, which uses the same CNN policy as DQN:

Table 4.3: Parameters of our black box PPO agent.

Name Value Description

learning rate 0,0003 The learning rate.
n steps 2048 Number of steprs to run for each environment per update.

batch size 64 Input minibatch size for training.
n epochs 10 Number of epoch when optimizing the surrogate loss.
gamma 0,99 Discount factor.

gae lambda 0,95 Bias vs variance trade-off factor for advantage.
clip range 0.2 Clipping parameter for the value function.

vf coef 0.5 Value function coefficient for loss calculation.
max grad norm 0,5 Maximim value for gradient clipping.

64

4.3 Models and adaptations

In this section we discuss the changes made to the code base of the original ANTs and SDTs
necessary to conduct the experiments of this thesis. The most important aspects of neural
trees is that they combine hierarchical learning (what decision trees do) with deep learning
(artificial neural networks). Both techniques are originally used in a supervised learning context
but, through the use of knowledge distillation [17], can be used in a (explainable) reinforcement
learning (XRL) context. For experiments with the MNIST dataset the code for both models
stayed mostly the same. For the usage in XRL tasks situations, the original code of both models
has to be adapted in order to work with a dataset of observation frames from the environments.
For each model, we sum up the origins of the code base together with made changes:

SDT

The original SDT code used is made by Coppens et al. 1. It is a PyTorch 2 [196] implementation
based on Frosst and Hinton’s SDT [175].

The data loading mechanisms of the SDT were optimised for handling MNIST data and such
were designed to automatically download the dataset when needed. Because because we will
distill policies from several black box agent, we will provide self-made data sets derived from
these policies, implemented as a pickled Numpy array. We also added a validation set since the
whole MNIST training set was used as training and validation was originally done with the test
set.

An additional encoding of the targets needs to happen. Per array in the dataset representing
the incoming observation, the corresponding action is saved as a single number. For it to work
with the current implementation of SDT, it needs to be converted via a one-hot-encoding proce-
dure to a binary vector of length equal to the number of actions available. A one in this vector
at a certain index indicates the representing action equal to that index.

The original SDT code was made for doing batch training only and not prediction via infer-
ence. A predict method was added to do correct predictions with the tree. The method gets a
batch of data as input and returns a tensor of the same batch length with the predicted targets.
This allows for the addition of a method to calculate the accuracy of a given input batch.

ANT

The original ANT code is made by Tanno et al. 3. ANTs use the same data loading mechanism as
an SDT. The difference is where SDT uses a one-hot-encoding for the targets, ANTs only expects
a single output value indicating the target class/action so no additional conversion is needed.

During initial testing of the experimental pipeline, we noticed noisy images from the routers
with no resemblance of the environment in it. This indicates that the routers aren’t properly
trained during the learning process. Initially their weights are randomized and are over time
optimized. The lack of training can be explained by the performance of the solver nodes which is
much higher then the routers. We get relatively high accuracy in the begin when no routers are
not present to the model. Afterwards, when they do get introduced, they don’t contribute a lot
to the performance of the tree. To solve this, we applied a new technique called smart routers,
dumb solvers (SRDS). Instead of a fully connected linear layer for the solver during the growth
phase, we only train on solvers with sparse linear layers decreasing their performance. This

1Source: https://github.com/endymion64/SoftDecisionTree
2Documentation: https://pytorch.org/docs
3Source: https://github.com/rtanno21609/AdaptiveNeuralTrees

65

https://github.com/endymion64/SoftDecisionTree
https://pytorch.org/docs
https://github.com/rtanno21609/AdaptiveNeuralTrees

allows the algorithm to better train the routers and disregard the solvers in the same node more.
Afterwards, when the finetuning begins, the solvers are turned back to their fully connected form
and the tree undergoes a global optimization with these layers included. SRDS uses a custom
sparse linear layer implemented using PyTorch’s sparse matrix to represent the weights. The
amount of sparsity is set to low and depends on the environment trained. The first root solver
should be able to classify just barely better than random while improvement would be visible
with the addition of more and more routers.

To better compare with SDTs, we opted to use the identity function as transformers for the
ANT so no operations transform the input. As routers we chose to use a perceptron with size
input size to 1 and as a solver we used a small neural network with as input size the amount of
pixels on screen to the number of classes.

66

4.4 Measuring complexity

We want to assign a metric to the perceived complexity of a decision tree to measure its inter-
pretability. It is a general rule that the more complex a model is the less interpretable it would
be. It would be better to deliver simpler models if interpretability is required. While a single sci-
ence of complexity does not exists [197], efforts of constructing a general theory of complexity are
ongoing [198]. Previously made attempts tried to evaluate complexity by deriving from boolean
functions [199] or rules [200] but these methods don’t provide a comparative metric to analyse
different topologies with resulting explanations of formed structures. Inspired by computational
complexity theory [201], we define a complex interpretable system as a system that has a high
computational complexity, denoted by the Bachmann-Landau notation O. This means when a
model is less computational complex, a human would interpret it easier. This kind of associ-
ation has already been made in previous publications [202, 203, 204, 205], even with evidence
that human visual perception of complexity outperforms that of a machine [206]. We propose a
measurement for determining perceived visual complexity of a decision tree structure:

complexitytree,path⊂tree = Φk(tree, path) = logk(nodestree) + nodespath (4.1)

with tree of arity k and path possible in the structure. This formula incorporates two possible
views on the tree: a local explanatory complexity, as indicated by a path from root to leaf, and
a global structural complexity, the whole composition of the model.

0 20 40 60 80 100
b

0

1

2

3

4

5

6

x

f(b) = log_2(b)

(a) Structural complexity

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
a

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

y

f(a) = a

(b) Explanatory complexity (c) Three-dimensional plot.

Figure 4.4: Visualisation of the proposed complexity formula z = log2(x)+y, with X representing
the number of nodes in tree (structural complexity), Y the number of layers in the structure
(explanatory complexity) and Z the complexity number Φ.

67

As mentioned by Molnar, models can be interpreted on both a local and global scale. For
trees this is equivalent to an explanation produced by a path and the node interactions of the
entire tree respectively. The explanatory complexity is given by the identity function. A linear
path is computed in O(n) with n the number of visited nodes in the path thus a path’s complexity
grows linear with its length. Per full layer we add to a tree, the total number of nodes increases
exponentially. For structural complexity we opted to chose the O(log(n)) of a regular tree search
[200]. This logarithmic function suppresses the exponential grow of nodes so the resulting value
would grow linear with the amount of layers added. This formula is applicable for trees any arity.
In the context of the used trees in this thesis, we define binary visual complexity as:

Φ2(tree, path) = log2(nodestree) + nodespath (4.2)

Three variants can be derived from Φ2:

• Φmax
2 using the longest possible path of the tree.

• Φmin
2 using the shortest possible path of the tree.

• Φavg
2 the average length of a path in the tree.

Depending on the way complexity is defined (in a best, worst or average case), a different path
selection criteria could be made resulting in one of the derivative formulas. Because the most
common analysis is that of worst case big O notation, we go further with the Φmax2 variant of

the formula. A third derivative Φexpl2 can be used to measure the complexity of a certain path
expl formed in the tree.

We define a topology t ∈ T as a tuple (Nn, Eel) with Nn the collection of n nodes and Ee

the set of e edges between the nodes (ni, nj) ∈ E connecting the nodes and forming a tree of l
levels high. Not all tuples produce valid trees. For instance, a binary tree with 4 nodes cannot
have 2 or 5 layers. For l, the range of possible nodes is n ∈

[
l, l2 − 1

]
. The possible topologies

are visualized in figure 4.5 up to a height of 10 layers.
It is a straightforward exercise to examine if the function is injective, meaning there exists no

two topologies with the same complexity Φmax2 . We can find two examples with a height of at
most 5 in the domain for binary trees: Φmax2 (5, 7) = Φmax2 (4, 14) and Φmax2 (12, 4) = Φmax2 (5, 6).
These examples are visualised in figure 4.6.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Tree height

0

10

20

30

40

50

60

No
de

s i
n

tre
e

Possible nodes per level

(a) Height ∈ [1, 5]

2 4 6 8 10
Tree height

0

250

500

750

1000

1250

1500

1750

2000

No
de

s i
n

tre
e

Possible nodes per level

(b) Height ∈ [1, 10]

Figure 4.5: Possible topologies T for a binary tree.

68

Figure 4.6: Binary trees with the same complexity value Φmax2 . Left has value 7,8073549 while
right is 7,5849625. The ones below are visually more complex than the ones above, purely from
a objective point of view

We can notice a clear, intuitive difference between each pair of trees yet their complexity has
the same value. In each column, the one above is less complex than at the bottom. In such
cases, a better approach would be to calculate the complexity using minimal or average path.
Opting for an average path results in a value dependent on the number of paths possible in the
tree witch is on its turn dependent on the number of leafs. Φavg2 therefore incorporates a third
variable into the formula

Φavg2 (tree, path) = log2(nodestree) +
1

n

n∑
i=1

nodespathi (4.3)

where n is the number of possible paths. This guarantees a more unique measurement per
topology.

We note that it is possible multiple structures can be formed per topology node t. This has
influence on the Φmin2 since a minimal path could be of different length given different resulting
structures. To counteract this, one could opt for the average minimal path of all possible trees.
From table 4.4, which has the complexity measures of the different topologies, we could conclude
that tree (5, 7) is less visual complex than (5, 6) if we use the average path metric. However,
for the two other metrics (5, 6) would be least complex. In general, both structures could be
intuitively classified as more interpretable compared to the other trees.

t Φmax2 Φmin2 Φavg2(
N7, E6

5

)
7,8073549 4.8073549 5.140688(

N14, E12
4

)
7,8073549 7,8073549 7,8073549(

N6, E5
5

)
7,584962 4,584962 6,0849625(

N12, E10
4

)
7,5849625 6,5849625 7,4182958

Table 4.4: Different complexity measures for the given topologies.

69

4.5 Prototype Framework

To facilitate the training of policies, generation of policy datasets, tree visualisation and dis-
tillation into simpler models, we developed a framework written in the programming language
Python called Graybox. The philosophy behind the design of the application is summed in several
points:

• Easy to use The user has a simple vocabulary of commands as well as a straightforward
command line interface (CLI) to conduct experiments involving distillation from the begin-
ning to the end. We restricted access to hyperparameters for finetuning the DRL policies
and instead opted for using the ones proposed in their respective paper of origin.

• Modular Graybox consists of several modules that can be used as libraries for other code
projects allowing the non-reliance on the provided interfaces. Dependencies on modules
within the project are kept to a minimum.

• Multi-profile The storage of models, datasets and distillations is profile-based. This
facilitates the used of the system by different users as well as conducting experiments with
alterations to the code base.

• Web integratable Apart from the CLI, the framework provides a graphical user interface
(GUI), executable in the browser. Its straightforward application programming interface
(API) allows for the integration into other applications when desired.

We briefly provide the technical side of the application before introducing the reader to the
capabilities of each of the two interfaces provided by the framework 1.

4.5.1 Technical details

The DRL training and playing is done via the stable_baselines3 module [193], a PyTorch-
based [196] variant of the original stable_baselines [207], which is a fork of OpenAI’s baselines
[194], originally implemented in TensorFlow [208]. The module allows for the training of models
with only a few lines of code needed, greatly simplifying its integration into the framework.

The newly created visualisation module is based on the ete3 library [209] for creating the
global tree views. In it, nodes are visualized using the cmap method of matplotlib.pyplot[210].

Prepossessing of the OpenAI Gym [19] environment frames are processed using a custom
wrapper based on the WarpFrame wrapper from baselines as well as processing via the threshold
method of Open CV [211].

For the web server side of the framework we opted to use Flask [212] because of its lightweight
Web Server Gateway Interface (WSGI) and flexibility. The API of the application can be found
in the appendix.

4.5.2 Web interface

In this section we go over all the functionalities provided by the web GUI. As of the time of writ-
ing, only the viewer page of the application is completed with pages for training and distilling
models in progress.

The interface for the viewer is split up into 2 main parts (figure 4.7). On the right side we
have controls for loading a session on the page. On the left side the initial blank canvas would

1Source: https://github.com/SenneDeproost/Gray_box

70

https://github.com/SenneDeproost/Gray_box

be filled in by a view of the asked tree model when loaded. First a profile is chosen followed by
the type of policy (original DRL model or distilled). One of the available models can be chosen
from the profile and can be initiated with the corresponding algorithm and environment it has
been trained upon. When Load session is pressed, the ALE will show up on the right side and
when a distillate is loaded, the tree is shown as well on the left. The user can step one frame
forward, play at a continuous rate or pause the session. When a session load is pressed again,
the environment and agent will be reset from the start.

Figure 4.7: Overview of the Graybox tool.

71

Figure 4.8: Global view of the tree model. Each node of the tree visualizes the weight map of
that particular instance. The logits, representing the class distributions, are plotted in the leafs
of the tree. The red path follows a trajectory towards the leftmost leaf node in the tree, which
has the highest reaching probability.

72

The view of the game environment can be overlayed with the weights map of a certain node
of the tree. By changing the slider underneath the control buttons, the opacity of this layer can
be altered. To chose a node to be viewed the user can click on the respective node in the tree.

a: Gameplay only b: With node overlay

Figure 4.9: View of the environment the agent interacts in as well as the controls needed to run
and control the session.

The tree view indicates for each step of the agent the path to the leaf with the highest reaching
probabilities with a thick red outline 4.8. When using greedy traversal, these would be the only
nodes considered for a prediction. For a soft decision traversal, all possible paths of the tree are
considered however. The plots below the leaf nodes indicate the values for the leaf logits, indicat-
ing which prediction is most likely to occur when arriving at that specific node. Numbers above
the internal nodes indicate the classes of which the leafs have the highest logit values for. This
roughly translates in an indication which part of the tree is specialized to recognize a certain class.

We use Graybox to examine the created DRL policies as well as their distilled tree derivatives.
This is done for both subjective and objective measuring of the performed game play. Objectively
we can analyze commonly used strategies by the agent which is more difficult to determine on
numerical data alone. Subjectively we can compare the game play to that of a human and
determine how human-like the agent plays.

73

Chapter 5

Evaluation

In order to be able to draw conclusion on the comparisons between our proposed models, we
did an extensive analysis on several ML tasks. To begin, we give an overview of the used
environment simulator and how the observations are preprocessed before training our DRL agent
and tree policies on. This preprocessing is motivated with an example run and several considered
techniques as well.

We did experiments on the classification of the well-known MNIST handwritten digit dataset,
a commonly used benchmark. These allows us to test the capabilities of the neural trees and
to examine their learning behaviour. This concludes the supervised learning (in a XAI context)
part of our evaluation.

Within the context of XRL, we go through several passes of our experimental pipeline. We
considered training several DRL algorithms (DQN, A2C and PPO) on five different Atari envi-
ronments (Pong, Breakout, Space Invaders, Ms Pacman and Enduro). Learning these policies
has been accomplished by using by using the computing infrastructure of both the VUB AI
Lab cluster (Como PC 3) and the Hydra cluster at the VUB-ULB Shared ICT Services Cen-
tre. Results given in table 5.1, representing for each environment and used DRL algorithm the
amount of trained policies. We chose for each environment the best performing policy in terms
of accumulated reward during a test session and further went through the stages of knowledge
distillation by using our created framework. The analysis part of each experiment examines
the performance differences between our distilled models on both interpretability and in-game
achievements.

Table 5.1: Number of trained DRL policies.

DQN A2C PPO
PongNoFrameskip-v4 9 10 10 29
BreakoutNoFrameskip-v4 4 9 10 23
SpaceInvaders-v0 4 5 10 19
MsPacman-v0 9 10 10 29
Enduro-v0 15 9 9 33

41 43 49 133

74

5.1 Motivation and goal

The main reason for using structures like adaptive neural trees is their ability to learn their
optimal architecture during training. This results in a (sub-)optimal structure that doesn’t
need post-optimizations like pruning. Soft decision trees from Frosst and Hinton have a static
structure when trained and could lead to less optimal architectures. The main goal of this thesis
is to repeat work done by Coppens et al. and see if adaptively growing trees can outperform
statically ones in being a suitable surrogate model for knowledge distillation.

We included the supervised learning task of classifying handwritten digits as part of our
evaluations because of the nature of RL tasks we want to learn. The training of a DRL policy
can be translated into a classification task by learning for each given state what the best action
to perform is [14]. For the actual KD part of the pipeline, where we generate a dataset of
environment frames, we essentially let the model learn classifying its input onto the actions that
would maximize its return. The quality of the dataset could be formulated as the amount of
reward a certain DRL policy accumulated before a surrogate model is trained on it. This is the
motivation behind creating and comparing different datasets in the pipeline.

For the actual RL part of the evaluation, our goal is to answer whether or not adaptive neural
trees perform are more performant and/or interpretable by a user with limited domain knowledge.
We only expect a basic understanding of how the game is played and which are the best strategies
of a particular game. These are strategies such as using the power dots in Pacman until the last
possible moment and the usage of the shields in Space Invaders to protect from enemy fire. Our
comparison is done based on two criteria: which model is best in scoring the highest rewards in
our games and which one gives the most insights into the internal decision making process of the
model. As we discussed previously, the interpretability-performance tradeoff would be applicable
for our resulting two structures as its consequences will be discussed.

75

5.2 Environment simulation

For learning real-world applications, for instance vacuum cleaning robots or self-driving cars,
several approaches can be considered when formulating the environment. We could create a
device capable of observing and interacting with the real world and couple the cognitive part of
it into a software agent. Then, we can use the sensory data to observe the state of the world,
passing down this information to the agent to decide upon an action to take and then perform
the action immediately in the environment by actuating the device’s output. Measuring the
reward could be information directly given by an external observer or it could be judged based
upon another piece of program programmed with desired outcomes in mind. The constraints of
this immediate approach is bounded to time and can be slow. To accelerate the learning process,
we could first model the real-life environment into a simulation. We could then deploy the agent
in this simulated world and increase throughput by increasing the speed of which the simulation
runs or by parallelising the process into several workers that gather high amounts of experiences
that can be combined into one final policy. Once the policy is learned it could be deployed onto
the actual device itself. Remark that perfectly simulating a real world environment is virtually
impossible. We are bound to the capabilities of the machine the simulation runs on, which
has a limit on the amount of detail we can represent the world. A balancing of computational
resources between simulation and actual learning should be considered. It is not guaranteed that
the learned policy when applied would not perform as well as indicated in the virtual world.
Noise on both input and output is always possible and isn’t straightforward to account for on a
computer. A possible enhancement to this problem is the use of domain randomization where
small randomized changes are made in the parameters of the simulation [23]. Because of these
changes, enough variation is introduced to the training data of the learner so it could form a
more generalized policy, decreasing the gap between virtual and material world [62].

5.2.1 OpenAI Gym

Gym is a benchmark toolkit developed by OpenAI that creates an integration between simulated
environments and software agents [19]. It provides the user with a common interface providing
episodic interactions for a diverse range of tasks.

The development of the module came from the need for good benchmarks that are easily
integrated when comparing different algorithms. Existing benchmarks like the Arcade Learning
Environment (ALE) [213] lack the convenience Gym provides which allows it to be more acces-
sible for users from all kinds of background. The following design principles are considered:

Focus on environments instead of the agents interacting with it, which is up to the user
to implement. This guarantees maximum convenience for the user and the freedom of choosing
which style to integrate the agent interface with. Both online learning, where the agent updates
its policy every step of the RL process, and batch learning, where observation and reward are
collected separately to be processed later as one batched update, are supported.

Focus on sample complexity rather than final performance only. Benchmarking an RL
algorithm can be done in both a performance-based as well as a time-based manner. The first
one looks at the resulting accumulated reward to evaluate performance. This however can eas-
ily be increased when enlarging computational resources for the problem. A more comparable
estimation of performance is measuring the amount of steps needed to gain a certain amount of
reward. This threshold can be arbitrarily chosen but has to lie in a reasonable range of capabil-
ities. This threshold is environment specific and could possibly be formulated as the maximum

76

reward possible in a task.

Clear indication of environment versions facilitating the reproduction of the task by
other users. A change in version indicates a major difference in behaviour of the environment,
even if it bears the same name as previously.

Inclusion of monitoring of the steps taken in the environment. This includes retrieving
performance indicators as well as the ability to record video from a session.

Promoting peer evaluation instead of creating competitions. The OpenAI website has
an dedicated section per environment for the comparison of performance of user submitted algo-
rithms. Its main ideal is to share ideas and code to others by providing a performance overview
as well as a useful benchmark for comparing the different submissions to the platform.

5.2.2 Preprocessing for DRL

Training on environments with high dimensional input data could be computational resource
intensive and demand large amounts of memory. Even in the case of pixelated environments like
Atari games the overhead could be significant. In the original DQN paper, Mnih et al. propose
several preprocessing techniques to lower the input dimensionality of incoming environment ob-
servations [38]. To begin, they reduce the screen resolution from 210 by 160 to 84 by 84, resulting
into an input array of 21.168 values instead of 100.800. Another improvement is to grayscale the
images, only taking the luminance of all RGB (red, green and blue) channels combined. This
gives us a total input of 7056 values, a 14-fold reduction from the original frames.

Another improvement besides reducing the dimensionality, is to use two or more consecutive
frames in order to have a sense of motion and therefore time in the observation. However, because
of the visualisations used in this paper, we would like to use only one frame as input in order to
prevent a more complex observable input space for the user.

We propose a preprocessing method with the following characteristics:

• A reduced frame dimensionality with respect to the original screen ratio as the Atari
environment.

• A more simplified color space to further reduce complexity and provide better compression
when used in a dataset generation context.

• A reduced range of values a certain pixel can have.

In our neural trees we want to train, each pixel has an associated weight to it. Each weight
value closely corresponds to its importance when activated by a certain input value. Because
we want to visualize the weight maps formed in the nodes of our tree, keeping resemblance to
the original environment input is important. That’s why we opted to reduce the dimensionality
of the Atari environment instead of squeezing it into a square. We chose to half the dimensions
in pixels, producing frames of 105 by 80. This way, we can more easily overlay the weight map
with the environment during visualisation. In figure 5.1 we show the different approaches to the
Atari Ms Pacman environment.

77

rectangle (210x160) square (84x84)
gr

ay
sc

al
e

bl
ac

k
&

w
hi

te
reduced (105x80)

Figure 5.1: Comparing different frame dimensions for the Ms Pacman environment as well as
different types of coloring. The ones on the left have the original resolution, while the middle
ones are according to the DeepMind approach. Our reduction with respect to the original aspect
ratio is shown on the right.

78

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

1000

M
ea

n
re

w
ar

d

PPO on greyscale Ms Pacman

a: Grayscale

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

200

400

600

800

1000

M
ea

n
re

w
ar

d

PPO on black & white Ms Pacman

b: Black and white

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

200

250

300

350

400

450

500

550

600

M
ea

n
re

w
ar

d

PPO on Ms Pacman

Greyscale
Black & white

c: Comparison between the two types of coloring

Figure 5.2: Mean reward curves for one million frames of Ms Pacman. Both (a) and (b) show
the reward of playing five different PPO policies. (c) compares the two means the curves.

We conducted a preliminary test to see the effects of grayscaling the environment versus
contrasting it to just black & white. The results are given in figure 5.2. We trained five different
PPO policies per coloring of the Ms Pacman environment, each playing one million frames of
the game.

When comparing both curves we initially see a high peak for the grayscale curve with a
decrease towards the end. The opposite is true in the case of the black & white environment
where we can observe a downwards trend to a bottom after which a rising trend emerges. From
the comparison we could observe a better trend for in the black white case but with no large
difference with the grayscale one. We note that we limited ourselves in this preliminary test
to only the PPO algorithm, on one environment and only during one million frames. Despite
this limited scope, from the observations made we could conclude that both coloring schemes
produces similar results while training, if not better in the case of black & white.

79

binary inverse binary truncate to zero

si
m

pl
e

th
re

sh
ol

di
ng

ad
ap

tiv
e

th
re

sh
ol

di
ng

mean binary gaussian binarygreyscaleoriginal

Figure 5.3: The Ms Pac-Man environment as processed by different thresholding methods. The
above ones are simple one-valued results while below a tone measure is taken into account to
determine the optimal threshold value.

We use the WarpFrame environment wrapper from OpenAI’s baselines [194] to resize and
grayscale the image. To convert the image to a black & white color space, we use OpenCV’s
thresholding method [211]. With this method, the same threshold value is applied for every
pixel. This means if the pixel value is smaller than this value, it is set to 0. Otherwise it is set
to a maximum value. In our case the minimum value represents black (0) while white is the
maximum value (255). The result of using thresholding in the image is a matrix of either black
or white values. To further simplify the frames, we decided to replace 255 by 1, leaving us with
only binary data. This further improves the performances of our trees during training.

We examined both simple as well as adaptive types of thresholding. In the simple case, the
binary method works as described previously while inverse changes the black and white values
to 255 and 0 respectively. Truncate produces a more gradient change in tones while to zero does
the same but only for the original values between 128 and 255. Between 0 and 128 the color is
set to black. It is possible that a global threshold value is not good enough in some cases like
when many colors are close to each other. Adaptive thresholding determines a local value based
on a small region around the pixel. This generates a different theshold value for each region of
the image, in theory providing better results in frames with varying illumination. We both can
derive the value with the mean of with a Gaussian distribution making the areas “softer”.

After considering each technique (figure 5.3) we concluded that adaptive thresholding gen-
erates to much unwanted artifacts in the frame. Icons have a black border around them and
some game elements, like the dots in Ms Pacman, are jointed together. We chose to use the
simple binary thresholding because of the simplified frames it produced. The inverted version is
counter-intuitive in that the present of sprites like the ghosts are indicated in black while this
color is most often associated with the absence of any element.

80

To chose a good threshold value for each environment we plan to use, we objectively observed
the effect of different values on the first frames of a game. The processed image should visibly
contain all game sprites important to the game. Figure 5.4 showcases different values considered.
For instance, in the case of Pong, we have a usable frame when the threshold value is equal to
100. For Enduro this would be 50 because some lines of the road are not fully displayed at
higher values. All threshold values are saved in a dictionary file for usage in the experimental
framework.

Po
ng

Sp
ac

e
In

va
de

rs
M

s
Pa

c-
M

an
En

du
ro

threshold = 0 threshold = 25 threshold = 50 threshold = 75 threshold = 100grayscale original

Figure 5.4: Different gaming environments with a series of varying thresholds. Each game has
an optimal threshold for creating a binary color pallet which is dependent on the tones present
in the original grayscale version.

5.2.2.1 Preprocessing for Neural Trees

Because the nodes in our neural trees are simple one-layered perceptrons, they are limited to
the amount of complexity they can learn. To further improve training and to lower our dataset
file size, we decide to again lower our frame dimensionality by half. This results into frames
of size 52 by 40 values, 2080 in total. We inspected the feasibility of this reduction in terms
of resemblance to the original environment and concluded most most details important for the
gameplay are preserved even at such low reduction. This also reduces the complexity of weight
regions, simplifying the final visualisations when overlayed with the original frames.

81

5.3 Experiments

We first benchmark both SDT and ANT on a supervised learning task. This is the popular task
of classifying handwritten digits from the MNIST dataset. Afterwards we train both types on
tree algorithms in a RL context according to our pipeline. These are then benchmarked in the
same OpenAI Gym Atari environments as they were trained in.

5.3.1 MNIST dataset

Our first experiments will be on the MNIST dataset [214] to compare performances between
SDT and ANT for different parameters. This is a commonly used dataset to benchmark ML
algorithms on. The vanilla variant of each model is used without any adaptations to the original
code other then for retrieving metrics like accuracy, which was not implemented in the SDT
code. The MNIST dataset consists of 60.000 training and 10.000 test examples of classified
handwritten digits, as shown in figure 5.5. The inputs are 2 dimensional arrays of numbers
representing greyscale values for each of the 784 pixels making up the input. The dimensions
of the arrays are 28x28x1. As of writing this, the state-of-the-art model can predict the correct
digit with an accuracy of 99,84% [215] while humans do it with 98% [216].

(a) Single digit (b) Multiple digits

0 1 2 3 4 5 6 7 8 9
Digit

5000

5250

5500

5750

6000

6250

6500

6750

7000

Fr
eq

ue
nc

y

MNIST distribution training set

(c) Distribution of the training set.

0 1 2 3 4 5 6 7 8 9
Digit

850

900

950

1000

1050

1100

1150

Fr
eq

ue
nc

y

MNIST distribution test set

(d) Distribution of the test set.

Figure 5.5: Samples of the MNIST dataset. Figure a is an example of a single digit with
dimensions 28 by 28 pixels. Figure b is a random sample of multiple digits taken from the
dataset. Figures c and d give the digit distributions of the training and test set respectively.

82

SDT

Our measurement Φ from section 4. is used as a numeric indicator for visual complexity. We use
this metric to evaluate the complexity of the SDT models, as seen in table 5.2. Because every
SDT is a complete binary tree, where the minimal, maximal and average path length are equal,
the values of each indicator Φ are the same.

Depth # nodes Φmin2 = Φmax2 = Φavg2

0 1 1
1 3 2,5850
2 7 4,8074
3 15 6,9069
4 31 8,9541
5 63 10,9773
6 128 13
7 255 14,9944
8 511 16,9972
9 1023 18,9986

Table 5.2: Complexity of different SDTs.

We ran 5 training experiments, using different seeds for the weight initialization, for each
depth ranging from 1 to 9. Results of these tests are given in table 5.4, with indication of the
best values in bold. The predictions of these models were made using a deterministic selection
in the leafs. The following parameters were used in every experiment:

Name Value Description

batch-size 64 Input batch size for training.
lambda 0.1 Penalty strength rate.
epochs 50 Number of epochs to train

Table 5.3: Fixed parameters during the MNIST experiments on SDTs.

In the columns table 5.4 we have several metric indicators for both accuracy and loss. Min.
acc., max. acc. and avg. acc. are minimal, maximal and average accuracy respectively. This
is analogue for min. loss, max. loss and avg. loss. in the case of the resulting loss. Average is
taken after 50 epochs of training and is the mean of all 5 trained experiments per depth instance.

Lowest average loss of 0,78692 is obtained by models of depth 5 whereas the loss rises from
then on. This is because as the number of nodes grows exponentially, the loss would increase
faster then it could be reduced by the gain in testing performance. So this does not mean
SDTs tend to overfit on MNIST after reaching a depth of 5. Between depth 6 and depth 9 we
observe an increase of only 1,976% in average accuracy for an eight fold in the number of nodes.
Depending on user-defined criteria, one could be satisfied with a tree of depth 6 when complexity
has to be as low as possible while retaining a good enough predictor. The confusion matrix in
figure 5.6 shows the made classifications and misclassifications of the best performing SDT, with
the numbers indicating the amount of predicted labels for a particular class. Most predictions
happened correctly as can be seen on the diagonal. The classes with the highest percentage of
incorrect predictions is for the number 3 with 51 out of 1026 cases (4,97%) of misclassification.

83

Test and training graphs from the best resulting experiments are given in figures 5.7 to 5.10.
The transparent lines represent the actual data while the opaque ones are smoothed versions by
a factor of 0,99. The same observations can be made: the deeper the tree depth the higher the
gained accuracy on both the train and test set.

Table 5.4: Experimental data on trained SDTs of different depths.

Depth Min. acc. Max. acc. Avg. acc. Min. loss Max. loss Avg. loss

1 0 0,50 0,20684 1,872 2,183 1,93
2 0,0625 0,69 0,38488 1,434 1,809 1,4952
3 0,375 1 0,69438 0,933 1,637 1,05706
4 0,625 1 0,89002 0,7169 1,422 0,80826
5 0,6875 1 0,92558 0,7397 1,332 0,78692
6 0,75 1 0,94404 0,7969 1,321 0,8489
7 0,75 1 0,96056 0,843 1,298 0,90188
8 0,8125 1 0,959 0,9144 1,369 0,9582
9 0,6875 1 0,9638 0,971 1,423 1,0176

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

964 0 4 0 1 2 6 1 2 4

0 1122 0 0 0 2 2 3 1 4

2 2 996 8 6 0 1 13 3 0

0 3 4 975 0 27 1 2 7 7

1 1 5 1 946 2 1 2 4 18

2 1 2 6 0 836 9 0 11 2

6 2 5 1 6 8 933 0 1 0

1 1 8 8 4 0 0 996 7 8

4 3 7 6 1 8 5 5 934 8

0 0 1 5 18 7 0 6 4 958

Confusion matrix for best SDT on MNIST

0

200

400

600

800

1000

Figure 5.6: Confusion matrix of the classified digits with the most accurate SDT. We can see
that the highest numbers are on one of the diagonals. These are the values where the algorithm
predicted the correct label for a particular digit.

84

A
cc

u
ra

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5 10 15 20 25 30 35 40 45 50

Episode

Figure 5.7: Best test accuracies of the trained SDTs on MNIST.

depth = 1
depth = 2
depth = 3
depth = 4
depth = 5
depth = 6
depth = 7
depth = 8
depth = 9

L
o
ss

-0.2

0.2

0.6

1

1.4

1.8

2.2

0 5 10 15 20 25 30 35 40 45 50

Episode

Figure 5.8: Best test losses of the trained SDTs on MNIST.

depth = 1
depth = 2
depth = 3
depth = 4
depth = 5
depth = 6
depth = 7
depth = 8
depth = 9

85

A
cc

u
ra

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5k 10k 15k 20k 25k 30k 35k 40k 45k

Batch step

Figure 5.9: Best training accuracies of the trained SDTs on MNIST.

depth = 1
depth = 2
depth = 3
depth = 4
depth = 5
depth = 6
depth = 7
depth = 8
depth = 9

L
o
ss

0

0.5

1

1.5

2

2.5

0 5k 10k 15k 20k 25k 30k 35k 40k 45k

Batch step

Figure 5.10: Best training losses of the trained SDTs on MNIST.

depth = 1
depth = 2
depth = 3
depth = 4
depth = 5
depth = 6
depth = 7
depth = 8
depth = 9

86

ANT

The main objective of MNIST benchmarking ANTs is to observe their formed structure as each
model learns an optimal architecture during training. Transformations in the tree have been
omitted in order to better compare with SDT models. The used transformers use the identity
function to achieve this, by simply returning the input. We opted to use a fully connected
(FC) linear layer 784x1 for the routing components and 784x10 linear FCs for the solvers. The
maximum number of episodes dedicated for the growth phase at a node and the amount for the
global finetuning phase are considered variables during these comparative tests. Finding the right
amount of training in each phase is not straightforward depending on the learning task. The
growth phase has a early-stopping mechanism with a patience variable when the tree tends to
overfit for a number of episodes. The finetuning phase however has no regularization mechanism
and could therefore more easily overfit when the number of dedicated episodes is too high. The
following fixed parameters were used in all experiments:

Name Value Description

batch-size 64 Input batch size for training.
augmentation on False Perform data augmentation (e.g. normalisation).

lr 0.001 Learning rate.
momentum 0.5 SGD momentum.

epochs patience 5
Number of epochs to be waited without improvement at each node
during the growth phase.

Table 5.5: Fixed parameters during the MNIST experiments on ANTs.

Breadth-first forward passing of the input is considered since this is the standard when train-
ing an ANT. To be comparable to a SDT, routers in the internal nodes decide upon soft decisions
ensuring the same multi-path inferencing. Stochasticity is also introduced to the decisions of the
routers. As with the case of SDTs, we trained five models per set of parameters. We varied the
finetuning between 50 and 100 and chose values in the range of 5 to 50 for the growth phase,
roughly doubling every time. The results are given in table 5.6. We can observe that the fine-
tune 100 / growth 20 model (abbreviated as F100/G20) obtained the highest average accuracy
of 95,05% and lowest average loss of 0,1831. The highest accuracy and lowest lost observed are
from a F100/G50 model with measurements of 96,15% and 0,136 respectively. If we look at
the confusion matrix (figure 5.11) we again observe most of the made predictions to be correct.
Noticeable is the misclassifications of the digit 8. In total, 1513 out of 7199 cases (21,02%) is
misclassified.

To examine the effects of longer finetuning and/or growing, we can look at table 5.7 which
sums up the structural differences between models.

87

Table 5.6: Experimental data on ANTs learned on different amounts for growing and finetuning
steps.

Fine. Grow. Min. acc Max. acc Avg. acc Min. loss Max. loss Avg. loss

50 5 0,9006 0,9567 0,94134 0,1576 0,4776 0,22084
50 10 0,7253 0,9606 0,93682 0,1399 1,088 0,23606
50 20 0,7916 0,9587 0,93304 0,146 0,7981 0,25162
50 50 0,899 0,9604 0,94486 0,1376 0,4096 0,20028
100 5 0,8626 0,9596 0,9463 0,1436 0,4303 0,2055
100 10 0,6531 0,9598 0,94916 0,1412 1,344 0,19032
100 20 0,9129 0,9584 0,9505 0,1422 0,3105 0,1831
100 50 0,9103 0,9615 0,94944 0,136 0,3186 0,1863

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

5849 1 65 47 13 130 19 48 27 39

0 6407 11 1 11 5 4 16 8 14

2 37 5440 82 7 21 2 80 16 1

2 41 61 5760 6 283 0 42 76 86

7 4 40 3 5547 46 8 32 2 77

0 3 0 16 0 4315 10 1 7 6

19 6 71 7 43 131 5835 3 21 3

1 5 29 21 13 8 0 5847 1 62

41 232 235 166 95 449 40 83 5686 172

2 6 6 28 107 33 0 113 7 5489

Confusion matrix for best ANT on MNIST

0

1000

2000

3000

4000

5000

6000

Figure 5.11: Confusion matrix of the classified digits with the most accurate ANT.

Table 5.7: Structural differences between the varying amounts of growth and finetuning steps.

Fine. Grow. Min. ep. Max. ep. Min. nodes Max. nodes Min. level. Max. level. Avg. nodes

50 5 165 205 11 24 4 5 16,6
50 10 337 651 16 43 5 6 29,6
50 20 360 823 19 31 5 6 26
50 50 364 871 11 44 4 6 25,5
100 5 225 395 12 39 4 6 25,5
100 10 387 689 21 51 5 6 29,8
100 20 489 857 21 46 5 6 31,2
100 50 321 896 12 41 4 6 30,6

For the F50 models we see a rise in average nodes from 16,6 to 29,6 followed by a drop to

88

25,5 when at F50/G50. This trend is different for the F100 experiments were average nodes tend
to increase from 25,5 to 31,2 while slightly dropping to 30,6 at F100/G50. Height levels vary
between 4 and 6 levels of height. These compositions from 11 to 24 nodes for a F50/G5 and 21
to 51 nodes for a F100/G10.

We note that the increase in average accuracy between the most and least accurate ANT
is only 1,746% (table 5.6), which is considered rather small. In terms we only gain a small
improvement for increasing the amount of learning time for growing and finetuning (resulting
in more training episodes) and compared to the performance of the F50/G5 ANT an almost
doubling in average nodes in the tree. If reduced complexity is traded in for this small percentage
of accuracy, we could better opt for training an ANT with a lower number of F and G episodes.
Complexity metrics are given in table 5.8.

Table 5.8: Complexity of different best performing ANTs.

Fine. Grow. # nodes Min. path Max. path Avg. path Φmin
2 Φmax

2 Φavg
2

50 5 25 5 6 5,75 9,6439 10,6439 10,3939
50 10 27 5 6 5,9231 9,7549 10,7549 10,6780
50 20 32 6 7 6,3571 11 12 11,3571
50 50 45 6 7 6,6190 11,4919 12,4919 12,1109
100 5 35 6 7 6,3125 11,1293 12,1293 11,4418
100 10 52 6 7 6,9166 11,7004 12,7004 12,6171
100 20 37 6 7 6,3333 11,2095 12,2095 11,5428
100 50 29 5 6 5,9286 9,8580 10,8580 10,7866

When comparing the structures of most accurate models, we can observe the least complex
one is a F50/G5 model with 25 nodes and a average path of 5,75. This yields a Φavg2 of 10,39
which is also the lowest. The spikes in loss at the end of the tests as seen in figure 5.13 could be
explained by the nature of the finetuning phase. All episodes of finetuning are executing without
any early stopping mechanism, which could result in overfitting of the model. A solution could
be the introduction of a patience component similar to the one used in the growth phase.

In conclusion: we can state that the more finetuning an ANT is given the higher average
performance of the tree but with risks for overfitting the data. The longer the growth phase,
the more nodes in the structure are added on average (although drops could occur compared to
lower values) and the higher the accuracy of the model (for at least a small increase of about 2%
within these tests).

89

A
cc

u
ra

cy

0.91

0.93

0.95

0.97

0 200 400 600 800

Episode

Figure 5.12: Best test accuracies of the trained ANTs on MNIST.

F50/G5
F50/G10
F50/G20
F50/G50
F100/G5
F100/G10
F100/G20
F100/G50

L
o
ss

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0 100 200 300 400 500 600 700 800 900

Episode

Figure 5.13: Best test losses of the trained ANTs on MNIST.

F50/G5
F50/G10
F50/G20
F50/G50
F100/G5
F100/G10
F100/G20
F100/G50

90

A
cc

u
ra

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 10k 20k 30k 40k 50k 60k 70k

Batch step

Figure 5.14: Best training accuracies of the trained ANTs on MNIST.

F50/G5
F50/G10
F50/G20
F50/G50
F100/G5
F100/G10
F100/G20
F100/G50

L
o
ss

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10k 20k 30k 40k 50k 60k 70k

Batch step

Figure 5.15: Best training losses of the trained ANTs on MNIST.

F50/G5
F50/G10
F50/G20
F50/G50
F100/G5
F100/G10
F100/G20
F100/G50

91

Comparison

We now have the necessary data to compare both SDTs and ANTs on the MNIST dataset.
The most accurate SDT (depth 9) outperforms the most accurate ANT (F100/G20) by 1,33%
on average accuracy. If we look at average loss, the best ANTs outperform the best SDTs by
0,60382. The latter however is a bad comparison since the difference in structures means the
composition of the losses is different between models. To incorporate a structural evaluation, we
performed experiments with the best ANT configuration (F100/G20, with an average accuracy of
95,05%) and trained SDTs with similar accuracy (depth 7, with an average accuracy of 94,848%).

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 6 7 8 9

1 4 6 8 9

1 6 9

6 91 9

1 4 8 9

1 94 8

0 1 2 3 4 7 9

0 1 7 9

0 17 9

2 3 4 9

3 42 9

0 1 2 4 5 6 7 9

0 1 2 6 7 9

0 1 2 9

2 90 1

6 7 9

6 96 7

0 1 2 4 5 7 9

0 1 2 9

0 12 9

1 4 5 7

1 45 7

0 2 3 4 5 6 7 8 9

0 3 4 5 7 8 9

0 3 5 7 8 9

7 8 9

7 87 9

0 3 5 7

5 70 3

3 4 5 7 8

4 5 8

4 54 8

3 4 7

3 73 4

0 2 3 4 6 7 9

2 3 4 6 7 9

3 4 7

3 43 7

2 6 9

6 92 6

0 6 7 9

0 6 7 9

6 70 9

6 7

6 76 7

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 6 7 8 9

1 6 7 8 9

6 7

6 76 7

1 8 9

1 91 8

0 1 2 6 7 9

0 1 6 9

6 90 1

1 2 6 7

6 71 2

0 1 3 4 5 6 7 8

0 1 3 6 8

0 1 3

0 11 3

1 3 6 8

1 36 8

0 4 5 7 8

7 8

7 87 8

0 4 5

4 50 4

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 6 8 9

0 1 2 3 4 6 8 9

0 4 8 9

0 48 9

1 2 3 6

1 23 6

1 2 4 6 9

1 4 6 9

1 46 9

1 2 6 9

6 91 2

0 1 3 4 5 6 7 8 9

1 5 6 7 8 9

1 7 8 9

1 97 8

1 5 6 8

1 56 8

0 3 4 6 9

0 4 6 9

0 46 9

3 4 6 9

6 93 4

(a) SDT
0 1 2 3 4 5 6 8 9

0 1 2 3 4 5 6 8 9

0 1 2 3 4 5 6 8 9

1 2 3 5 6 8 9

1 2 3 5 6 8

1 2 3 6

1 32 6

1 5 8

1 55 8

2 5 8 9

2 85 8 9

5 95 8

0 1 2 4 5 6 8

1 2 4 5

4 51 2

0 2 6 8

0 26 8

0 1 3 5 6 8

0 1 3 5 8

1 3 5 8

1 53 8

0 1 3 5

1 30 5

1 3 5 6 8

3 8

3 8

1 3 5 6

5 61 3

(b) ANT

Figure 5.16: An ANT model compared to a SDT with similar accuracy. (Larger views are present
in the appendix).

Table 5.9: Comparison of both models on several metrics.

Model # nodes Avg. acc. Avg. loss Min. p. Max. p. Avg. p. Φmin
2 Φmax

2 Φavg
2

SDT 255 0,94848 0,8979 7 7 7 14,9944 14,9944 14,9944
ANT 37 0,9505 0,1831 5 6 5,3333 10,2095 11,2095 10,5428

From figure 5.9 we can observe great differences in complexity due to the number of used
nodes. While an SDT needs 255 nodes, an ANT learns an optimal structure of only 37 nodes to
categorize MNIST with even greater accuracy. The different path lengths (minimum, maximum
and average) are all 7 for an SDT while an ANT has shorter paths. This also translates into
lower complexity metrics compared to ANT.

From our experiments we can conclude that SDTs are more accurate for greater chosen
depths. If complexity of the tree is included in the evaluation, we can state that ANTs learn
their structure more efficiently for a given accuracy on the MNIST dataset given enough training
time in the form of finetuning and growing episodes. ANTs can be a more efficient model than
SDTs when complexity per unit of performance needs to be as low as possible.

92

5.3.2 Ms Pacman

The Ms Pacman environment is a sequel to the popular Pacman arcade game from 1980. In it,
you control Ms Pacman in a maze with dots scattered around. When a dot is eaten, the score is
increased by 10. While moving, ghost enemies will try to hunt you down. On impact with Ms
Pacman, the player loses a life. The player respawns at the center of the maze and when a third
hit occurs the game is over. In the four corners of the maze the player can grab a power dot
making Ms Pacman invulnerable and able to eat the ghosts who turn blue for a brief moment. A
ghost can be eaten during that time, which rewards the player with 100, 200, 400 or 800 points
depending on the number of enemies eaten in a row. Consuming the power dot itself is worth 50
points. At random time intervals, a bonus fruit will appear in the center of the maze. Collecting
this bonus rewards the player a score between 100 and 500 depending on the type of fruit. The
level ends when all dots are eaten. The level is reset, incremented and made more difficult for
the player. The OpenAI Gym interface to interact with this environment consists of 9 discrete
actions sequentially numbered from 0 to 8: 0 is the null operator doing nothing, (1, 2, 3, 4) are
(up, right, left, down) and (5, 6, 7, 8) are (up-right, up-left, down-right, down-left).

Figure 5.17: The Ms Pacman environment.

Policy selection

As indicated by figure 5.18, the best performing policies are ones trained with the DQN al-
gorithm. Out of 9 policies, 2 achieved average scores above 2000. None of the PPO or A2C
policies performed above this. The best performing DQN policy achieved an average score of
2416. More than half of the trained DQN models achieve a score above 1500, with an average
of 1447. The best performing PPO agent achieved a score of 1990, with all trained PPO poli-
cies having an average of 635 points. A2C only got a maximum of 775 and 226 points on average.

93

DQN A2C PPO
0

500

1000

1500

2000

2500

R
e
w

a
rd

MsPacman-v0 average reward (100 games)

Figure 5.18: Boxplots of the trained Ms Pacman policies and their performance on 100 games.
An outlier from DQN performed best with a score of 2416 points.

R
ew

a
rd

0

200

400

600

800

1e+3

1.2e+3

1.4e+3

1.6e+3

1.8e+3

2e+3

2.2e+3

0 2M 4M 6M 8M 10M 12M 14M 16M 18M 20M

Timestep

Figure 5.19: Mean reward curve of the best DQN agent. The transparant line represents the
actual curve while the opaque line is a smoothed version of the reward (factor 0,99).

94

R
a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2M 4M 6M 8M 10M 12M 14M 16M 18M 20M

Timestep

Figure 5.20: Exploration rate.

Knowledge distillation

With the best DQN agent, we created two datasets to perform the second step from our experi-
mental pipeline: knowledge distillation. D1 is a dataset containing 100.000 frames of the game
played. This results in the recorded gameplay of 334 games with an average score of 2340 points
per game. For a second generated dataset D2 of 1.000.000 frames, 3467 finished games, the DQN
agent played at an average score of 2335 points per game. A hypothesis we formulate is a bigger
dataset D2, therefore a larger explored observation space, would yield higher performance from
the distilled policy. Whether this is true has to be concluded after testing.

Performance analysis

First, to determine the effects of different settings on ANTs, we examined a G20/F5 model to
observe the effects of turning on and off stochasticity in the routers and enabling soft decisions
or not. Enabling soft decision will result in a multi-path inference of the tree. This means that
a decision is made by computing the predictive distribution as an average of the conditional
distributions over all leaf nodes in the tree, weighted by their respective reaching probabilities.
If soft decisions are disables, single-path inference is performed where hard decisions based on
one solver are made. Stochasticity determines the behaviour of the routers. Stochastic inference
(performing probabilistic routing based on the probability of going left or right) is used when
traversing downwards with stochasticity enabled. If not, a greedy traversal is made using the
routes with the highest probability.

We want to test these different settings of traversal in order to obtain the optimal parameter
configuration that, given a certain distilled policy, yields the highest scores. To consider these
options, we set up four copies of an identical tree but with different options enabled. This tree
was trained on the smaller D1 dataset with stochasticity and soft decisions enabled. To examine
the performance, we calculated the average of 5 sessions of 100 games for each of the option
combinations.

95

Table 5.10: Effects on performance of different settings for the router components of ANTs on
the MsPacman environment.

stochastic deterministic
soft decision 809,38 833,92
hard decision 759,50 776,53

From table 5.10 we can observe maximal performance of 833,92 points when the routers are
deciding upon soft decisions while being deterministic in the routing they provide. The lowest
performance of 759,50 is gained when hard decisions are made using a stochastic routing func-
tion. With this information we conduct our experiments with option stochastic to be false as
well as true for soft decision for the ANT models.

For ANT models, we opted to train F5/G5 models (5 finetune episodes, 5 growth) and
F50/G20 models (50 finetune, 20 growth) on both datasets D1 and D2. Results are plotted in
scatterplot 5.21 where the gained average score is compared to the amount of nodes in a tree.
The drawn regression lines approximate the trends of the data points of using different datasets.
We can observe a best performing model of type F5/G5, trained on D1, with a gain of 1115,94
points on average. The lowest performance is 634,94 while the average of all trained models
is 865,46. We see no correlation between models that have trained longer (e.g. F50/G20) and
the performance of the model. Also the tree complexity in terms of nodes is not related to the
amount of training. The larger size of a dataset could be the reason for larger trees since on
average a tree trained on D2 has on average 9,1 nodes while one trained on D1 has 6,6. For each
regression line the slope R is indicated. RD2

, the slope for D2, is approximately -6,32. This means
for each extra node in the tree, a model trained on D2 decreases its average performance with
-6,32 points. A more pronounced negative trend is visible for RD1 with a value of ≈ −56. The
slope of all models combined is given by RD1+D2 , which is also negative. From the made sample
observations we can conclude that for both datasets the performance of a model decreases with
the number of nodes present in the tree. A conclusion on the relation between training time and
performance cannot be made since longer trained models do not result in better performances.

96

4 5 6 7 8 9 10 11
Nodes in tree

700

800

900

1000

1100

Av
er

ag
e

sc
or

e
RD1 = -55.96229

RD2 = -6.32136

RD1 + D2 = -13.66398

Performance of trained ANTs on MsPacman-v0
D1, F5/G5
D1, F50/G20
D2, F5/G5
D2, F50/G20

Figure 5.21: ANT models and their performance compared to their node complexity. Perfor-
mance is the average of 5 sessions of 100 games in a row with random seeds. From this, we can
conclude that the bigger dataset D2 produced trees with more nodes and D1 the best performing
one with a F5/G5 model. The relation between performance of a tree and the amount of nodes
is a negative trend for both datasets.

Before deciding upon the best performing model in terms of score maximisation, we first
examine if the produced score distributions of playing 1000 games can be fit with a normal
distribution. We first examine the case for the ANT and afterwards potentially the SDT.

As null hypothesis H0, we state that the average score distribution of the best performing
ANT model is normal distributed. For H0 to be acceptable with a confidence of 99,5%, we
decide upon the value of our threshold α to be equal to 0,05. Figure 5.22 visually hints at a
Gaussian distribution because of the similarities between the histogram and the plotted normal
curve. However, if we plot using a Quantile-Quantile (QQ) plot, we observe a rather significant
deviation of the data from the line that indicates normality (figure 5.23).

To statistically test on normality, we first test with Shapiro-Wilk. The resulting p-value,
using SciPy, is 8.76927127869351x10−24, which is lower than the α threshold for H0. This
means we reject H0 based on the Shapiro-Wilk test and with the given sample set. When
using SciPy ’s integrated normaltest, based on D’Agostino’s K2 test, we outcome a p-value of
1.192283989686776x10−71 which also indicates a rejection of our null hypothesis.

Based on our testing, the score distribution of our best performing ANT on Ms Pacman
cannot be proven to be normally distributed. Because of this, we make no efforts to examine
whether or not normal distribution is present for the SDT model.

97

0 1000 2000 3000 4000 5000 6000
Score

0

2

4

6

8

De
ns

ity

1e 4 Best ANT on MsPacman-v0 (mu = 1167.98, std = 647.34)

Figure 5.22: Distribution of achieved scores of the best performing ANT during 1000 completed
game sessions. The best score is 6023 while the lowest is 230 points. The red dotted line is a
Gaussian normal curve with the same mean and standard deviation as the distribution.

3 2 1 0 1 2 3
Theoretical Quantiles

1000

0

1000

2000

3000

4000

5000

6000

Sa
m

pl
e

Qu
an

til
es

Figure 5.23: Quantile-Quantile plot of the distribution. The red diagonal line indicates normality
in the distribution.

Now that we posses a best performing ANT, from now on called ANTbest, we examine the
performances of trained SDT models to find SDTbest. We perform the same strategy as before
with a scatterplot giving an overview of our trained policies (figure 5.24). We trained for depth

98

1, 2 and 3 each 5 models per dataset. Additional training is performed with D1 where models of
depth 4 and 5 are trained (figure 5.25). If we look at figure 5.21 we can observe a best performing
SDTlimited, with a depth of 2 and trained on D2. This SDT variant has a limited amount of nodes
to equalize the computational power to the best performing ANT. The average performance of
this model is 985,28 points. If we examine trends, we can observe a positive one for D1 where
the regression coefficient RD1 is equal to 14,59664. A downward trend is observable for RD2 with
a coefficient of ≈ −11, 34. The trend for models from both datasets is slightly positive at ≈ 2.

3 4 5 6 7 8 9 10 11 12 13 14 15
Nodes in tree

500

600

700

800

900

1000

Av
er

ag
e

sc
or

e

RD1 = 14.59664

RD2 = -11.33821

RD1 + D2 = 2.19028

Performance of trained SDTs on MsPacman-v0

D1, depth = 1
D1, depth = 2
D1, depth = 3
D2, depth = 1
D2, depth = 2
D2, depth = 3

Figure 5.24: SDT models and their performance compared to their node complexity. Performance
is the average of 5 sessions of 100 games in a row with random seeds. For D1 the relation between
performance and node complexity is negative, while D2 is positive. The mean trend of both
datasets combined tends to be slightly positive.

99

0 10 20 30 40 50 60
Nodes in tree

600

800

1000

1200

1400

1600
Av

er
ag

e
sc

or
e

RD1 = 2.58801

Performance of trained SDTs on MsPacman-v0 on D1

depth = 1
depth = 2
depth = 3
depth = 4
depth = 5

Figure 5.25: SDT models and their performance compared to their node complexity. Performance
is the average of 5 sessions of 100 games in a row with random seeds. The relation between
performance and number of nodes tends to be positive. The best performing SDT achieves an
average score of ≈ 1650.

When looking at figure 5.25 we observe a positive trend of 2,58801 from our samples towards
a depth of 5. One outlier at a depth of 4, with an average score of 1710,74 can be considered as
SDTbest when deriving from our sample set of trained models.

The following histograms (figure 5.26 and 5.27) represent the distributions of rewards gained
of different policies in a session of 10.000 games. In the first plot (5.26) we observe the score
distribution of SDTbest to be between ANTbest and the original DQN policy. The mean of
ANTbest is 1114,284 with a standard deviation of 594,4377, SDTbest 1664,523 and 674,6945
respectively. For the original DQN policy a mean is observed of 2345,317 with standard deviation
676,693. The largest frequency peak is for the ANTbest model with a frequency of ≈ 1100 for a
score between 1000 and 1100. Here we conclude that the best performing policy, the one with
the highest score on average, between our two tree models is SDTbest with a difference of ≈ 550
points. The spread of scores is lower for the ANT model, mainly because of higher slope between
0 and mean compared to the SDT which follows a more bell-shaped curve. We do remark that
no conclusion could be made about the distributions whether they follow a Gaussian curve or
not. The original DQN policy, where the distillation dataset is taken from still, outperforms with
a difference of ≈ 680 points. When comparing maximum achieved scores, ANTbest got a score
of 6180 points whereas DQN gained a score of 6260. This makes the gap between both models
at their maximum potential smaller to a difference of only 80 points. SDTbest managed to get a
maximum score of 5750 points, a difference of 510 points with the DQN and 430 with the SDT.

100

0 1000 2000 3000 4000 5000 6000 7000
Score

0

200

400

600

800

1000

Fr
eq

ue
nc

y
Performance of best models on MsPacman-v0 (bin = 100)

DQN
ANT
SDT

0 1000 2000 3000 4000 5000 6000
Score

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y

Performance of best DQN on MsPacman-v0 (bin = 1000)
DQN

0 1000 2000 3000 4000 5000 6000
Score

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y

Performance of best SDT on MsPacman-v0 (bin = 1000)
SDT

0 1000 2000 3000 4000 5000 6000
Score

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y

Performance of best ANT on MsPacman-v0 (bin = 1000)
ANT

Figure 5.26: Score performance histograms of the best models from 10.000 played games. Left
are The policies compared to each other with bins of size 100. Right are histograms of policies
with bin size 1000.

Looking at the first histogram, we can conclude that SDTbest clearly outperforms ANTbest.
This however is a comparison between a model of 31 nodes to one with only 5, giving more
computational power to the larger SDT model. We want to examine on a more node-efficiency
level the performance difference between the models. We do this by taking the number of
nodes in our ANTbest and setting this as an upper bound for the SDT model to be considered
for comparison. Going back to figure 5.24 only a SDT with depth 1 or 2 classifies as being
comparable. Because most computation of the model happens in the internal nodes and not the
leafs (these only contain logits compared to more complex perceptrons in the internals) we also
include SDT models of depth 3 and thus 15 nodes in the structure.

From all the trained models up until depth 3, we chose the one with a best average perfor-
mance of 985,28 points and labeled it as SDTlimited (figure 5.24). This SDT is one with 7 nodes
and thus depth 2.

101

0 1000 2000 3000 4000 5000 6000 7000
Score

0

200

400

600

800

1000

Fr
eq

ue
nc

y
Performance of best models on MsPacman-v0 (bin = 100)

DQN
ANT
SDT

0 1000 2000 3000 4000 5000 6000
Score

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y

Performance of best DQN on MsPacman-v0 (bin = 1000)
DQN

0 1000 2000 3000 4000 5000 6000
Score

0

1000

2000

3000

4000

5000

6000

Fr
eq

ue
nc

y

Performance of best SDT on MsPacman-v0 (bin = 1000)
SDT

0 1000 2000 3000 4000 5000 6000
Score

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y

Performance of best ANT on MsPacman-v0 (bin = 1000)
ANT

Figure 5.27: Same histograms but with limitations for the SDT model (visualising SDTlimited).

From the histogram of figure 5.27 we have the same DQN and ANTbest distributions as be-
fore. The new SDTlimited distribution has a mean of 986,764 and standard deviation 510,8166.
The maximum achieved score is 4660. We observe a difference of 127,52 between the two trees
with the ANT achieving higher average performance than the SDT.

Doing these comparative experiments gave us enough insights to conclude that SDTs out-
perform ANTs when following our pipeline on Ms Pacman. The performance of the best SDT
SDTbest is comparable to the results of the original DQN model. However, because SDTbest con-
tains roughly 6 times the amount of nodes ANTbest has, it is biased in the amount of computation
we give it. As a better comparison of efficiency, SDTlimited is considered with the same depth as
ANTbest. By doing this, we now observe ANTbest to achieve higher results compared to the SDT.

Interpretability analysis

As a second round of comparisons in our analysis, we now zoom in on the interpretability aspect
of the trained trees. We consider all previous trees we named as well as a second ANTrouter model
who visualizes the internal routers instead of visualising the learned classifiers during training.
This is accomplished by using our SRDS technique discussed in section 4.3. All visualisations
are given in figures 5.28, 5.31 and 5.34. An enlarged version of the SDTbest visualisation can be
found in the appendix. We begin the analysis by comparing the complexities (table 5.11). Note
that we now only count internal nodes to calculate the complexity of our SDTs and not the leaf
nodes. This more closely resembles the actual visual complexity of the figures shown. From the
table we can observe an overall lowest complexity for SDTlimited with a Φavg2 of 3. However, we
could prune ANTbest to result in the same structure architecture since its second layer nodes
only have 1 child. This is because ANTs learn their optimal structure without transformers so
extra classifying nodes could be used to perform a routing similar to one with transformations
enabled down the line.

102

1 2 4 5 6 7 8

1 2 5 6 7 8

1 2 6 7

2 71 6

5 6 8

5 85 6

4 5 6 7 8

5 7 8

5 78

4 5 6

4 65

Figure 5.28: Tree visualisation of SDTbest.

Table 5.11: Complexity of the different visualised models.

Name Min. path Max. path Avg. path Φmin
2 Φmax

2 Φavg
2

SDTbest 4 4 4 6 6 6
SDTlimited 2 2 2 3 3 3
ANTbest 3 3 3 5,3219 5,3219 5,3219
ANTrouter 2 3 2,6667 4,3219 5,3219 4,9886

With the complexity measured we can now focus on the insights individual nodes provide.
We start with SDTbest and SDTlimited and consider some examples. To remind the reader: the
brighter the spots in the node, the higher the weights in that area and the more chance to be
routed to the right side when pellets, ghosts or Ms Pacman is present there. The same is true
for darker spots but for the absence of potential activation and a routing to left.

For SDTbest’s policy we observe the following behaviours:

• The agent runs away from ghosts when there are no dots nearby. When there are pellets
behind the ghost, the agent will attempt to eat it and lose a life. In some situations, the
agent got stuck for a few frames, allowing a ghost to attack it. This behaviour however is
also present in the DQN policy and could be the result of the used prepossessing for the
incoming environment frames.

• In contrast to the DQN model, the SDTbest agent does not go into the direction of the
cherry when it is present on the screen. In the case of DQN, the agent would most likely
go to the cherry when in the neighbourhood of around 10 pixels.

• Both DQN and SDT agents know the benefits of using the power dot, turning the ghosts
vulnerable. DQN often takes the one in the bottom-right corner to start with while the
SDT agent waits longer to take the bottom-left one later in the game. When the ghosts
are weak, the agent sometimes know the benefits of eating a ghost and tries to chase them.

103

Figure 5.29: Game session played by SDTbest, visualising the leftmost node of the tree. Left:
the environment after taking 12 steps with action 5 (up-right). Middle: same situation but with
a partial overlay of the node weights and a path indicating the result of taking action 5 for 12
steps. Right: full opacity overlay of the weights over the environment.

Interesting behaviour can be seen with the SDTbest agent when starting a new game. For
around 20 frames, the agent chooses action 5 (up-right) to go to the middle-right side of the maze
while avoiding the ghosts who start by going to the top-left side. This behaviour is observable
in the tree as the leftmost node resulting in both action 5 for each resulting leaf. The node is
visualised with the sprites in figure (5.29). An indication of this behaviour being start behaviour
are the black blocks at the score board. This could indicate that the agent looks at the score
and performs this action on the absence of digits or in other words: when the score is still 0. If
the agent loses a life, it will not follow the original starting policy, rather it will most often go in
the opposite direction or downward. To substantiate our findings, we looked at the path chances
at the beginning of a gaming session and for the largest part this node has the highest influence
over the prediction of the whole tree.

104

Figure 5.30: Visualisations of SDTbest nodes deciding on action 8 (down-left) and 6 (up-left).
Left: An enemy is nearby the agent. It can escape by entering the corridor to the bottom-left
and performs action 8. Middle: once in the corridor, the agent chooses action 6 to leave the
space as soon as possible on the other side of the maze. Right: a composition of both weights
for deciding action 8 and 6. We can observe a lighter area there where the enemies are closest
to the agent, triggering it to flee the area.

Another node with strong indications is one deciding on action 8. This examples indicate the
ability of the agent to escape danger by using the corridors that transport it from one side to
the other (figure 5.30). Notice the absence of the pink ghost in the middle figure. This is due to
the flickering behaviour of the ghosts on the Atari system.

105

5 6 7 8

5 67 8

Figure 5.31: Tree visualisation of SDTlimited.

106

Figure 5.32: Nodes from SDTlimited with higher contrasts to better distinguish sides. Left: the
root node decides on actions going up or down. We can observe more bright areas on the under
half of the screen, indicating more activity of enemies and the player. Middle: This node decides
to go down left or down right. A clear divide between whiter areas left and right can be seen.
Right: same distinction but with areas closer to the middle line.

When observing SDTlimited, we notice similar behaviour to SDTbest but with a lower gain
in score on average. The visualisation of the model (figure 5.31) reveals a relation between the
highest logits in the leaf nodes and the possible routing. Each supported action is a intercardinal
direction covering all upper- and lower-bound actions. If we look at the leaves of the tree we can
observe mostly deterministic distributions over the logits. If a path with high reaching probability
is made towards a leaf node, it means the action of that node would greatly contribute with its
highest logit to the total prediction of the tree.

The left side of the tree, at second level, routes most likely to action 7 and 8 (down-right and
down-left) while the right side routes to 5 and 6 (up-right and up-left). This means that in the
first node a decision is made to ether go up or down in the maze. The second layer decides to go
left or right. Indication of this in the visualisation of the nodes (figure 5.32). The tree does also
emphasise elements on screen like the number of lives left and the score, as can be seen in figure
5.33. If all lives are still available, then the agent would have a higher tendency to go down. To
differentiate between going down-left and down-right, the absence of certain digits in the score is
considered, indicated by the black blocks. These behaviours are in line with made observations.

Figure 5.33: Score and life indicator importance for SDTlimited. Left: the root node takes into
account how many lives are available to the agent. Right: after the root node decides to go
down, the score is checked on the absence of certain digits.

107

1 8

1 8

1

1

8

8

1 2 6

1 2 6

1 6

61

2

Figure 5.34: Visualisation of ANTbest on the left side and ANTrouter on the right side. ANTbest
is visualised with the learned classifiers during training. ANTrouter visualizes the actual routers
when using the SRDS technique.

108

Now that we have examined the SDTs, we now focus on the ANTs. The following observations
in behaviour for ANTbest are made:

• Behaviour when starting a game is almost identical to SDT and the original DQN. Differ-
ence here is the tendency to stay on the bottom side of the maze, collecting the first power
dot in the down-right corner.

• The agent has the tendency to run away from ghosts, but often turns around and gets
killed by the pursuing enemy.

• In corners the agent can get stuck doing nothing. This is more noticeable than the other
policies. Getting stuck also happens when it returns from going into one direction when
hitting a corner.

• More often than normal the agent hesitates to take a power dot. Even in situations when
the agent could clearly benefit from consuming the dot while being chased, it will likely
refuse the opportunity to take it.

If we look more closely at the visualisation of ANTbest in figure 5.34 we see less distinctive
areas of dark and bright compared to the other models. This could be the result of visualising the
classifiers instead of the routers in the internal nodes. Classifiers have a fully-connected linear
layer with input size the incoming environment frames and as output the amount of possible
actions. This is different from normal routers who have layers from input size to only 1 output,
deciding on the routing left or right. In the case of Ms Pacman with 9 actions there is a 9-fold
in the amounts of weights in the layers. That is why we sum all of the 9 weights per action
to give the total weight activation of all actions, which results in this more ambiguous node
visualisations. It is therefore difficult to reason about what the internal nodes decide upon.
Furthermore, contrast is reduced because of higher average weights over the entire environment.
We observe more uniform action distributions at the leafs compared to the ones from the SDTs.

One solution to solve the problems with routers is to learn the tree with the smart routers,
dumb solvers (SRDS) approach as mentioned in section 4.3. This results in the ANTrouter model
(figure 5.34) where the internal nodes are visualised by their routers instead of the classifiers.
However, this comes at a cost of lowering average performance. Another approach is to visualise
ANTbest per weight vector of a certain action. This makes recognizing important regions for an
action easier to distinguish per class. We opted to both visualise the SRDS model ANTrouter
and a version where each action in the classifier has a different visualisation, leading to 9 SRDS
ANTs (one per action). Two of them, representing action 7 and 8, are given in figure 5.35.

109

1 2 6

1 2 6

1 6

61

2

1 2 6

1 2 6

1 6

61

2

Figure 5.35: ANTrouter with only visualising one action in the solver leafs. Left: action 7, going
down-right (ANTrouter7). Right: action 8, going down-left (ANTrouter8). Important distinct
areas are indicated with red.

All ANT router variants have in the second layer on the right a router node with random
noise in. This is because this router is not trained properly during the learning process. Its
routing behaviour closely resembles an uniform distribution over the two possible ways to go. It
could be pruned but then the root node would have three children, meaning it is not a binary
tree anymore. For ANTrouter7 , responsible for the down-right action, we see black areas at the
center and top of the maze in the middle of the screen when we go left-down in the tree. These
regions indicate absence of any enemy or player activity, meaning the agent is more decisive to
do action 7. If we look at the logits in the plot, we see a low values for action 7, meaning a
lower chance for 7 being the prediction of the tree even if the node mostly matches with the
environment state. The same reasoning can be done with ANTrouter8 where on the bottom-
right side of the tree both leaf nodes show a distinctive black area on the middle left side of
the node. Again, if the state of the environment mostly matches with the weights of action 8,
its support to the decision as a whole would be low since the logits have low values for that action.

We have proven that the experimental pipeline is applicable for the Ms Pacman Environment.
Which one of the two types of models performs best depends on the amount of nodes allowed
in the structure. When no limits are stated, the SDT models outperform ANT models. If
the number of nodes is limited (or equalized) then ANTs gain better performance. For the
interpretability part we can distinct several insights in the models that could explain its behaviour
in the environment. We now repeat the same experiments with the Enduro environment.

110

5.3.3 Enduro

In this racing game the player has to catch up to other racers from last place up to pole position.
The game is divided into several days. Each day a certain number of cars has to be surpassed
in order to progress. The objective is to pass 200 cars on the first day, 300 on the third and so
on. Visibility and steering behaviour changes over time to make driving the road more difficult.
Fog can make the visibility of the racers more difficult while randomly placed ice can make the
road slippery. In OpenAI Gym, the possible actions are going forward (action 1), steering right
and left (action 2 and 3), going left and right (7, 8) and doing nothing (0). Actions (4, 5, 6) are
for applying breaks straight, while steering right and while steering left.

Momentum is maintained when at a certain speed and the gas button is released. To slow
down, the player has to apply the breaks. This is necessary in slippery situations such as on ice.

Figure 5.36: The Enduro environment.

Policy selection

We trained 33 different policies on the Enduro environment: 15 DQNs, 9 A2Cs and 9 PPOs.
From the boxplots given in figure 5.37 it is clear that the most performant policies are generated
using the PPO algorithm. The other two types achieved only a maximum score of 8 per type.
This could be explained by the difficulty of the terrain and its varying environment throughout
the play. PPO is more suited for environments involving high risks like the slippery ice areas and
the misleading fog. The best performing PPO policy on 100 games is a outlier with an average
score of 210,96.

111

DQN A2C PPO

0

50

100

150

200

Re
wa

rd

Enduro-v0 average reward (100 games)

Figure 5.37: Boxplots of the trained Enduro policies and their performance on 100 games.

R
ew

a
rd

0

20

40

60

80

100

120

140

160

0 2M 4M 6M 8M 10M 12M 14M 16M 18M 20M

Timestep

Figure 5.38: Mean reward curve of the best PPO agent.

Knowledge distillation

For Enduro we only generated one size of dataset containing 100.000 frames. This is a set from a
selection of 10 different recordings which gained the highest commutative score during generation.
D1 contains 100.000 frames comprised of 88 games and a average score of 202,47.

112

Performance analysis

From the experiments done, the best found performing ANT consists of a single solver node
(figure 5.39). It gains a an average score of 35 points and is trained with 50 episodes of growth
and 50 finetune (F50/G50). The dot representing this model is the highest in the scatterplot.
The coefficient of our regression line is -0,68198 when applied to the scatterplot of all 30 trained
trees.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Nodes in tree

0

5

10

15

20

25

30

35

Av
er

ag
e

sc
or

e

RD1 = -0.68198

Performance of trained ANTs on Enduro-v0

D1, F5/G5
D1, F50/G20
D1, F50/G50

Figure 5.39: ANT models and their performance compared to their node complexity. Perfor-
mance is the average of 5 sessions of 100 games in a row with random seeds.

The best performing SDT, SDTbest, out of the 45 trained is one of depth 5 (figure 5.40). We
could have trained more complex trees, but as our coefficient is only 0,0562 we do not expect
much gain in score when increasing the depth of the model. Some outliers are observable for
depth 2 and 3 with a value around 11 points. SDTbest achieves an average score of 28,5363.

If we examine the histograms of figure 5.41, we can observe an indication of higher perfor-
mance for ANTbest compared to SDTbest. The average gained score of the SDT is 28,784 with
a maximum of 94. This is lower than the ANT, which has a mean of 33,377 and a maximum
score of 108 points. In comparison to the original PPO model, both trees perform noticeably
weaker. The DRL policy gained a score of 202,893 on average and achieved a maximum of 416.
This performance could be explained by the changing colors of the environment due to the day
and night cycle. The learned tree models could be confused by the preprocessed images that
also disregard the changing of the environment when applying thresholding. A better approach
would be an adaptive threshold based on the situation happening in the environment.

113

0 5 10 15 20 25 30 35 40 45 50 55 60
Nodes in tree

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

Av
er

ag
e

sc
or

e

RD1 = 0.0562

Performance of trained SDTs on Enduro-v0

D1, depth = 1
D1, depth = 2
D1, depth = 3
D1, depth = 4
D1, depth = 5

Figure 5.40: SDT models and their performance compared to their node complexity. Performance
is the average of 5 sessions of 100 games in a row with random seeds.

0 20 40 60 80 100 120
Score

0

10

20

30

40

50

Fr
eq

ue
nc

y

Performance of best models on Enduro-v0 (bin = 1)
ANT
SDT

0 100 200 300 400 500
Score

0

50

100

150

200

250

300

350

400

Fr
eq

ue
nc

y

Performance of best models on Enduro-v0 (bin = 10)
PPO
ANT
SDT

Figure 5.41: Score performance histograms of the best models from 1000 played games. Left are
the tree policies compared to each other with bins of size 1. On the right plot the original PPO
policy is included with bin size 10.

Interpretability analysis

When looking at the composition of the trees, we see that ANTbest has only a single node while
SDTbest has 64. The visualisation of SDTbest is given in figure 5.42 with a larger view given in
the appendix. ANTbest is visualised in figure 5.43. Because the simplicity of the solely classifier
in the ANT, we also visualised the weight for each of the 9 possible actions (figure 5.44). Because
no routers are included in the structure, the need for the SRDS technique is obsolete.

From the logits plot of ANTbest we can see lower values for action 5 and 6, meaning throttling
down while steering left or right is a not so common strategy. These actions are clearly distinctive

114

in figure 5.44 where the weights are trained on less frames resulting in clearer weight maps. It is
also hard to find meaningful interpretations for the single node visualisation of the solver. The
only possible insight we could make is the importance of the regions at the border below the
road. The middle has a darker area while the left and right side are brighter. This could indicate
a reliance on these areas when the agent tries to pass by a competing player’s car. Overall the
ANT has visualisations that are not entirely interpretable. The SDT’s visualisations are also not
easy to interpret but offer more distinct features in the resulting maps.

We finally can conclude that in the Enduro environment ANTs gain higher performance
compared to SDTs with lower amounts of nodes in the structure. In fact, they are as simple as
possible, containing only one node. However, when looking at the provided insights, SDTs still
provide more information. We encourage the reader to find further possible interpretations of
these models.

Figure 5.42: Tree visualisation of SDTbest.

0

0

Figure 5.43: Visualisation of the only solver node in ANTbest.

115

Figure 5.44: Each frame is from an action of the ANTbest solver (above the first five actions,
below the last four.)

Table 5.12: Complexity of the different visualised models.

Name Min. path Max. path Avg. path Φmin
2 Φmax

2 Φavg
2

SDTbest 5 5 5 10,9773 10,9773 10,9773
ANTbest 1 1 1 1 1 1

116

5.4 Results

We briefly summarize the findings from our experiments and what this has to contribute to the
thesis topic. We will mainly focus on experiments done within the Ms Pacman environment since
it could provided most of the analysis we could do in this evaluation.

In our first experiment we trained vanilla SDT and ANT without any changes to the code.
This was to subject the models to a commonly used benchmark and to compare their perfor-
mances on both interpretability and performance. We trained several models per possible pa-
rameter: per depth for the SDT and per amount of grow/finetune for the ANT. We found that,
using the parameters given in the respective paper, SDTs deliver higher accuracy performances
compared to ANTs. This however comes at the cost of being exponentially more complex in the
number of nodes the more layers we add to the SDT architecture. The differences between the
most accurate ANT and SDT are significantly low, with the best SDT only performing 1,33%
better in accuracy than the best performing ANT. For this difference, the SDT needs almost 7
times the amount of nodes making it more complex in a interpretability context as well as need-
ing more computational resources. We could measure this visual complexity with our created
indicator, confirming our claims that a best performing SDT is more complex.

For our in-depth analysis in a XRL context we followed our proposed experimental pipeline
for a first time on the Ms Pacman environment. There we distilled from a best performing DQN
model several datasets to train different tree models with. At the analysis part of the pipeline
we compared the found models on both interpretability as well as performance in-game. First we
tested several parameters settings of the ANT to see which ones are the most optimal. These were
ANTs with deterministic routers and where soft decisions were made. We then first analysed
our trained ANTs to find the highest performing one. Afterwards we considered the possibility
of the gained scores of the best models playing to be normal distributed or not. This was not
the case according to both visual and statistical tests. We analysed with the same strategy our
trained SDTs and found a best performing one as well as a best model with a limited amount of
nodes.

Comparing the best models was done using an average performance test over 10.000 games
where distributions of the average scores could be made from. From this we concluded that a
best performing SDT achieves higher scores than an ANT. Once again, we acknowledge the fact
that the SDT has a significantly higher amount of nodes compared to the ANT demanding more
resources and making it more visually complex. We compared the models with a limited SDT
model with a similar amount of nodes to the ANT. From that we could conclude that an ANT
outperforms an SDT for roughly the same amount of nodes.

At last we did an extensive visual analysis of all found best models. Here we brought forward
some insights that the models could provide. We do notice that it is more difficult to hypothesise
the meaning of nodes in an ANT because of the complexity in their solvers. This we tackled on
with our SRDS approach but still managed to get less descriptive conclusions from the visualised
weight maps.

For a second iteration of the experiment, on the Enduro environment, we did the same
performance testing and visualisation. There we found out that a simple node ANT structure
outperformed the best playing SDT with 63 nodes. Interpretability-wise the ANT was of course
less complex according to our metric but the made observations indicate that the SDT has more
distinct features that could be distinguished from the weights map.

117

Chapter 6

Conclusions

In the final section of this thesis we state our conclusions made surrounding the topic and exper-
iments done, overview the made contributions, discuss the results and how they were achieved
and look towards possible future work.

From the made literature research we can state that the field of explainable artificial intel-
ligence (XAI) is in an early state yet we acknowledge the broad history forgoing the field on
making machine learning models more interpretable. For six important economic sectors (lo-
gistics, healthcare, legal, defense, financial and industrial) we discussed several applications and
potential use cases for future XAI integration. The examples given are situations where we could
see benefits within the next 10 to 20 years while the field matures. We conclude that most
taxonomies used in XAI literature are closely related to one of the three types of box models
there could be: white, grey and black box models. As an even more recent field, explainable
reinforcement learning (XRL) is a merger between XAI and the field of RL. Because the pop-
ularity of deep reinforcement learning (DRL), the need to explain black box models like deep
neural networks only increased over the years. Techniques from XAI can therefore be used to 1)
explain certain behaviours from an RL agent, 2) give insights into the black box models or 3)
train or substitute with an surrogate model that is inherently interpretable.

We proposed a combination of two types of box models, white and grey box models, to be used
with the upcoming knowledge distillation technique to make DRL policies more interpretable:
weight map visualisations in combination with a tree-based model. For the models we opted to
use a Soft Decision Tree (SDT), because of its proven ability to be a good surrogate model, and
an Adaptive Neural Tree (ANT), which learns its optimal structure during the training process
rather than being static from the beginning. We compared both models on several tasks. The
first one was on the MNIST dataset benchmark where trained SDTs performed only slightly
better than ANTs on prediction accuracy. However, if using the same amount of nodes as the
ANT, the SDT underperformed. Because of the high number of nodes, the visual complexity of a
SDT was much higher than an ANT. We conclude that an SDT is a better MNIST classifier but
for a very small accuracy trade-off of around 1% we can make the model much more interpretable
by using an ANT.

When comparing both models in a XRL context (playing Ms Pacman in the OpenAI gym
environment), we can state that a SDT gains higher performance in scoring. We note however
that like in the MNIST case the number of nodes in the best SDT is substantially higher than in

118

the best trained ANT, giving more computational power to the SDT. When comparing the best
ANT to a limited version of the SDT, we can conclude that a ANT gains higher performance if
the SDT has around the same number of nodes. On the interpretability side, if we compare the
best models, the visual complexity of ANT is lower than SDT. However, if we try to equalize
the number of nodes between the models, then the SDT gains a lower complexity measurement.
One difficulty of ANT is the way the nodes are visualised and therefore interpreted. In the
original model we visualised the classifiers, giving a more complex and actually incorrect insight
into the routing behaviour of the internal nodes. We solved this issue with smart routers, dumb
solvers (SDRS) but still had to rely on a hybrid version where the solvers’s weights need to be
visualised per possible action. This makes the needed number of trees to be visualised equal
to the number of actions, which further complicates interpretation. Combined with their non-
deterministic action distributions, we can conclude that ANTs are more complex than SDTs in
their provided insights but can be on a per-action base more interpretable due to their reduced
structure. When it comes to giving insights into the RL agent’s behaviour by providing an inside
look via the node visualisations, a SDT can provide more information than an ANT.

When the experiments were conducted in the Enduro environment instead, we concluded
that the best trained ANTs outperformed the found SDTs. This however was at the cost of a
having significant worse performance compared to the original PPO model the trees were distilled
from. SDTs were still more complex than ANTs but gave better insights in their learned features
compared to ANTs.

6.1 Contributions

We made four new contributions to the field of XAI and XRL with this thesis. In the literature
research we did a comprehensive study into commonly used XAI techniques and some emerging
and state-of-the-art methods. We provided a categorization of techniques based on the most
recent works of XAI overview literature that mostly resembles the different kind of box models.
Inherently interpretable models are synonymous with white boxes while post-hoc representations
give more insight into the black box by graying it out with meaningful information. The third
category is on itself not based on a black box, but rather tries to provide explanations to a black
box using secondary mechanisms. The naming of the classes, their definitions and compositions
are open for discussion.

Because of the lack of a metric for visual complexity in trees in scientific literature, we devel-
oped our own measurement. Partially based on computational complexity theory, we stated that
perceived complexity both arises from a global and a local view of the tree. This is both the tree
structure as a whole as well as an explanatory path from root to leaf respectively. For the global
view part we chose an logarithm with base k to combat exponential growth in the number of
nodes for a k-ary tree. The path is analog to traversing a list of nodes, so its complexity would
be the number of nodes in that path. The summation of both structural complexity as well as
explanatory complexity gives us a usable indicator for any kind of k-ary tree. We demonstrated
that the variant using maximal path length is not injective, so we proposed to use the average
path length to create a more unique measure.

The Graybox prototype framework could be considered as a key contribution to be able to
conduct the experiments we had in mind. It has been extensively used throughout the thesis
to train, analyse and develop the many models and datasets needed to test both tree types.
The main three additions provided by the framework are its complete KD process based on our

119

experimental pipeline, its ability to create visualisations of different types of trees and the web
interface. For the comparison of ANTs and SDTs, the KD process required us to facilitate the
different versions of sets and experiments we wanted to set up. By introducing the profile-based
storage and clear naming convention, creating many different experiments was uncomplicated.
Its command-line interface (CLI) also facilitated the execution of experiments on resources man-
aged remote machines using the terminal and a SSH connection. Code for the visualisation is
provided within one module file and is adaptable for other types of tree structures implemented
in PyTorch. With ETE3, it is easy to change the layout of the tree to the desires of the user.
Finally the web interface provides an interactive environment between the user and the agent.
The functionality of running OpenAI gym in a browser can be used to showcase the behaviour
of the tree or DRL agent. Combined with the visualisation of the policy using the tree view with
path indicator, a simpler manner is provided to study the policy’s actions for both experimental
and demonstrative showcase.

Finally, we provided extensive MNIST benchmarks for both different types of ANTs and
SDTs. With the resulting data we compared the two and took conclusions on both interpretability
and accuracy performance. The same comparisons were done with games of the OpenAI gym
with an in depth analysis of the Ms Pacman environment.

6.2 Discussion

The literature review is done using a broad range of publications. However, we note that for
creating our XAI categorization we only relied on four papers and one book. For a more extensive
literature research the amount of publicised works should be higher. An improvement could be
a broader coverage in publication time of the papers. We only discussed overview papers from
the past 3 years. Whereas XAI is a young field, it is build upon a rich history of interpretable
machine learning techniques that forms a significant basis.

There could be disagreement over the classification of certain techniques into our taxonomy
study. Techniques like model distillation could both be classified as a post-hoc representation
technique as well as a additive explainable model depending on the resulting model the policy is
distilled into. This can both be a grey box model or a secondary model producing explanations
about the original model. The relation between the categories and the types of box models
we made could be questioned. The most significant property of white box models is that they
are inherently interpretable by definition. Grey boxes give some insights into the models that
were previously not easily observable, so they represent details in a post-hoc manner. The third
category does not explicitly result in black box models, but rather uses a mechanism that would
produce written explanations describing the behaviour of the models. We could state that the
explanations themselves are white box models like rule lists or could be even more ambiguous
with limited rule extractions. Therefore the analogy between a black box and an explanatory
mechanism is not entirely correct.

For the MNIST dataset benchmarking we only used a sample of 5 trained trees per param-
eter configuration. This could be increased to a more significant sample size that would better
describe the population. We also didn’t compare models based on more statistical indicators like
recall, precision and F1 score. We note however that these different performance measurements
are partially irrelevant in the context of RL, which is the ultimate application of both models
for this thesis. If the focus was more DL-related, then these indicators would have been more
relevant.

120

The same small sample size has been used when training models for the XRL setting. However
we did combine several models with different parameters in our scatterplots for the analysis of
the datasets and possible trends. The negative trends when more nodes are present in the tree
are at first sight counterintuitive in that we expected an increase in performance. This could
be the result of the small amount of trained models. Our goal was to find a best model of each
type and not to correctly analyse the population. We did a normal distribution test on only
one metric, mainly the resulting performance of the best ANT on playing 10.000 games of Ms
Pacman. It would be interesting to know if every performance distribution follows a normal
distribution or not.

For all experiments done using a sample of models, they are still open for more experimenta-
tion and analysis. Permitted the resources, a broader more generalized study could be conducted
where the testing result would be more significant.

6.3 Future work

The field of XRL, built upon the broader domain that is XAI, is relatively young. As the field
grows over the years, we expect more and more XAI methods to be applicable into a RL context.
Agnostic and intrinsic post-hoc interpretability-enhancing techniques are already well known to
work within RL problems, yet methods that provide insights during training are not as numer-
ous. Because of the importance for debugging and controlling the agent, more focus should be
laid on developing and adapting ad-hoc (model-specific) methods.

Graybox, together with its interactive web GUI, could be used to train a broader range of
policies together and provide tools to derive explanations from its visualisations. Its interface is
basic but expandable to give more control to the user like rewinding sessions and frame storage
features. With the framework, it is feasible to chose another (white box) surrogate model as the
target structure to perform knowledge distillation on. The model-view part of the web interface
should allow for an easy integration of such models if the accompanied visualisation library is
provided.

As of today, most literature surrounding XRL involves toy environments like Atari games. For
the field to mature further, techniques for training policies for usable applications like machine
control and productivity enhancing should be developed in order to make them more useful as a
real tool. An example would be the explanation of behaviour in robotic control done in Mujoco,
a realistic physics simulator. For it, we lack the visual input like in our game examples since the
environments only provide variables for instance joint angle and position to the agent. However
this could be visualised with additional visual information such as the inclusion of the current
state of the robot in a small figure. We don’t know the limits of the knowledge distillation
technique, but believe that it has huge potential to become a powerful method within XRL.

121

Appendix A

Graybox

Command Line Interface

Optional arguments are denoted with (argument) while expected ones are noted with [argument].

Info
gray info

gray help

Display information and commands available in the application.

Profile management
gray profile-create [profile]

Create a new profile.

gray profile-set [profile]

Set currently using profile so repetition of the profile argument in other commands is not nec-
essary.

gray profile-delete (profile)

Delete the current profile or another given one.

Train
gray train (profile) [environment] [algorithm] [steps]

Train a new policy with the training algorithm algorithm in environment environment and for
steps steps. The result will be saved under the name environment_algorithm_steps.zip.

Generate
gray generate (profile) (environment) (algorithm) [model] [steps]

Generate a dataset of state-action pairs while playing steps steps in the environment. Because
of the used naming convention of the policy file, information contained in the file name like
environment and algorithm are not needed as parameters in the call.

Distill
gray distill (profile) [dataset] [tree_type] [args_file] (parameters)

122

Distillate a DRL policy into a tree-based model. At the moment of writing, the only values for
tree_type are SDT and ANT. args_file is the path to a argument parser file containing the basic
parameters for the model to be trained. Additional parameters can be given/changed with the
(parameters) option.

Web
gray web

Launch the Flask server and provide the web GUI in the browser.

Code repository

Source code of the framework is available at https://github.com/SenneDeproost/Gray_box.

123

https://github.com/SenneDeproost/Gray_box

Appendix B

MNIST

124

S
D

T
d

e
p

th
9

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

51

1
.0

5

(a
)
T
es
t
a
cc
u
ra
cy

0
.9

0
.9

51

1
.0

5

1
.1

1
.1

5

1
.2

1
.2

5

1
.3

1
.3

5

1
.4

1
.4

5

1
.5

(b
)
T
es
t
lo
ss

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

51

0
5

k
1

0
k

1
5

k
2

0
k

2
5

k
3

0
k

3
5

k
4

0
k

4
5

k

(c
)
T
ra
in
in
g
a
cc
u
ra
cy

0

0
.51

1
.52

2
.5

0
5

k
1

0
k

1
5

k
2

0
k

2
5

k
3

0
k

3
5

k
4

0
k

4
5

k

(d
)
T
ra
in
in
g
lo
ss

F
ig

u
re

B
.1

:
E

x
p

er
im

en
ta

l
re

su
lt

s
fo

r
S

D
T

s
w

it
h

d
ep

th
9

125

A
N

T
2
0

g
ro

w
th

1
0
0

fi
n

e
tu

n
e

0.
90

5

0.
91

0.
91

5

0.
92

0.
92

5

0.
93

0.
93

5

0.
94

0.
94

5

0.
95

0.
95

5

0.
96

0.
96

5

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0

(a
)
T
es
t
a
cc
u
ra
cy

0

0.
050.
1

0.
150.
2

0.
250.
3

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0

(b
)
T
es
t
lo
ss

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

1.
1

0
10

k
20

k
30

k
40

k
50

k
60

k

(c
)
T
ra
in
in
g
a
cc
u
ra
cy

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

0
10

k
20

k
30

k
40

k
50

k
60

k

(d
)
T
ra
in
in
g
lo
ss

F
ig

u
re

B
.2

:
E

x
p

er
im

en
ta

l
re

su
lt

s
fo

r
A

N
T

s
w

it
h

2
0

g
ro

w
th

st
ep

s
p

er
n

o
d

e
a
n

d
1
0
0

g
lo

b
a
l

fi
n

e
tu

n
e.

126

C
o
m

p
a
ri

so
n

S
D

T
to

A
N

T

0
 1

 2
 3

 4
 5

 6
 7

 8
 9

0
 1

 2
 3

 4
 5

 6
 7

 8
 9

0
 1

 2
 3

 4
 5

 6
 7

 8
 9

0
 1

 2
 3

 4
 6

 7
 8

 9

1
 4

 6
 8

 9

1
 6

 9

6
 9

1
 9

1
 4

 8
 9

1
 9

4
 8

0
 1

 2
 3

 4
 7

 9

0
 1

 7
 9

0
 1

7
 9

2
 3

 4
 9

3
 4

2
 9

0
 1

 2
 4

 5
 6

 7
 9

0
 1

 2
 6

 7
 9

0
 1

 2
 9

2
 9

0
 1

6
 7

 9

6
 9

6
 7

0
 1

 2
 4

 5
 7

 9

0
 1

 2
 9

0
 1

2
 9

1
 4

 5
 7

1
 4

5
 7

0
 2

 3
 4

 5
 6

 7
 8

 9

0
 3

 4
 5

 7
 8

 9

0
 3

 5
 7

 8
 9

7
 8

 9

7
 8

7
 9

0
 3

 5
 7

5
 7

0
 3

3
 4

 5
 7

 8

4
 5

 8

4
 5

4
 8

3
 4

 7

3
 7

3
 4

0
 2

 3
 4

 6
 7

 9

2
 3

 4
 6

 7
 9

3
 4

 7

3
 4

3
 7

2
 6

 9

6
 9

2
 6

0
 6

 7
 9

0
 6

 7
 9

6
 7

0
 9

6
 7

6
 7

6
 7

0
 1

 2
 3

 4
 5

 6
 7

 8
 9

0
 1

 2
 3

 4
 5

 6
 7

 8
 9

0
 1

 2
 6

 7
 8

 9

1
 6

 7
 8

 9

6
 7

6
 7

6
 7

1
 8

 9

1
 9

1
 8

0
 1

 2
 6

 7
 9

0
 1

 6
 9

6
 9

0
 1

1
 2

 6
 7

6
 7

1
 2

0
 1

 3
 4

 5
 6

 7
 8

0
 1

 3
 6

 8

0
 1

 3

0
 1

1
 3

1
 3

 6
 8

1
 3

6
 8

0
 4

 5
 7

 8

7
 8

7
 8

7
 8

0
 4

 5

4
 5

0
 4

0
 1

 2
 3

 4
 5

 6
 7

 8
 9

0
 1

 2
 3

 4
 6

 8
 9

0
 1

 2
 3

 4
 6

 8
 9

0
 4

 8
 9

0
 4

8
 9

1
 2

 3
 6

1
 2

3
 6

1
 2

 4
 6

 9

1
 4

 6
 9

1
 4

6
 9

1
 2

 6
 9

6
 9

1
 2

0
 1

 3
 4

 5
 6

 7
 8

 9

1
 5

 6
 7

 8
 9

1
 7

 8
 9

1
 9

7
 8

1
 5

 6
 8

1
 5

6
 8

0
 3

 4
 6

 9

0
 4

 6
 9

0
 4

6
 9

3
 4

 6
 9

6
 9

3
 4

F
ig

u
re

B
.3

:
S

D
T

0
 1

 2
 3

 4
 5

 6
 8

 9

0
 1

 2
 3

 4
 5

 6
 8

 9

0
 1

 2
 3

 4
 5

 6
 8

 9

1
 2

 3
 5

 6
 8

 9

1
 2

 3
 5

 6
 8

1
 2

 3
 6

1
 3

2
 6

1
 5

 8

1
 5

5
 8

2
 5

 8
 9

2
 8

5
 8

 9

5
 9

5
 8

0
 1

 2
 4

 5
 6

 8

1
 2

 4
 5

4
 5

1
 2

0
 2

 6
 8

0
 2

6
 8

0
 1

 3
 5

 6
 8

0
 1

 3
 5

 8

1
 3

 5
 8

1
 5

3
 8

0
 1

 3
 5

1
 3

0
 5

1
 3

 5
 6

 8

3
 8

3
 8

1
 3

 5
 6

5
 6

1
 3

F
ig

u
re

B
.4

:
A

N
T

127

Appendix C

OpenAI Gym

128

Ms Pacman
L

o
ss

0

10

20

30

40

50

60

0 2M 4M 6M 8M 10M 12M 14M 16M 18M 20M

Timestep

Figure C.1: Training loss of the best DQN agent.

F
ra

m
es

700

800

900

1e+3

1.1e+3

1.2e+3

1.3e+3

0 2M 4M 6M 8M 10M 12M 14M 16M 18M 20M

Timestep

Figure C.2: Mean episode duration.

129

1
 2

 4
 5

 6
 7

 8

1
 2

 5
 6

 7
 8

1
 2

 6
 7

2
 7

1
 6

5
 6

 8

5
 8

5
 6

4
 5

 6
 7

 8

5
 7

 8

5
 7

8

4
 5

 6

4
 6

5

F
ig

u
re

C
.3

:
T

re
e

v
is

u
a
li

sa
ti

o
n

o
f
S
D
T
b
e
s
t
.

130

Enduro
L

o
ss

0

0.5

1

1.5

2

2.5

0 2M 4M 6M 8M 10M 12M 14M 16M 18M 20M

Timestep

Figure C.4: Training loss of the best PPO agent.

F
ra

m
es

4.4e+3

4.45e+3

4.5e+3

4.55e+3

4.6e+3

4.65e+3

4.7e+3

4.75e+3

0 2M 4M 6M 8M 10M 12M 14M 16M 18M 20M

Timestep

Figure C.5: Mean episode duration.

131

F
ig

u
re

C
.6

:
T

re
e

v
is

u
a
li

sa
ti

o
n

o
f
S
D
T
b
e
s
t
.

132

Bibliography

[1] H. Liao, J. Jiang, and Y. Zhang, “A study of automatic code generation,” in Proceedings -
2010 International Conference on Computational and Information Sciences, ICCIS 2010,
2010, pp. 689–691.

[2] V. Y. Rosales-Morales, G. Alor-Hernández, J. L. Garćıa-Alcaráz, R. Zatarain-Cabada,
and M. L. Barrón-Estrada, “An analysis of tools for automatic software development and
automatic code generation,” Revista Facultad de Ingenieria, vol. 2015, no. 77, pp. 75–87,
2015.

[3] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. USA:
Prentice Hall Press, 2009.

[4] T. M. Mitchell, Machine Learning, 1st ed. USA: McGraw-Hill, Inc., 1997.

[5] S. Nageshrao, H. E. Tseng, and D. Filev, “Autonomous Highway Driving using Deep
Reinforcement Learning,” in 2019 IEEE International Conference on Systems, Man and
Cybernetics (SMC), oct 2019, pp. 2326–2331.

[6] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates,” in Proceedings - IEEE International
Conference on Robotics and Automation. Singapore: IEEE, 2017, pp. 3389–3396.

[7] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, jan 2016.

[8] C. Molnar, Interpretable Machine Learning. A Guide for Making Black Box Models Ex-
plainable., 2019. [Online]. Available: https://christophm.github.io/interpretable-ml-book

[9] T. Miller, “Explanation in artificial intelligence: Insights from the social sciences,” Artificial
Intelligence, vol. 267, no. June 2017, pp. 1–38, feb 2017.

[10] C. Rudin, “Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead,” pp. 206–215, may 2019.

[11] O. Loyola-Gonzalez, “Black-box vs. White-Box: Understanding their advantages and weak-
nesses from a practical point of view,” pp. 154 096–154 113, 2019.

[12] B. Sohlberg and E. Jacobsen, “Grey box modelling branches and experiences,” in IFAC
Proceedings Volumes (IFAC-PapersOnline), vol. 17, no. 1 PART 1, 2008.

133

https://christophm.github.io/interpretable-ml-book

[13] F. Doshi-Velez and B. Kim, “Towards A Rigorous Science of Interpretable Machine
Learning,” Tech. Rep., 2017. [Online]. Available: http://arxiv.org/abs/1702.08608

[14] Y. Coppens, K. Efthymiadis, T. Lenaerts, and A. Nowé, “Distilling Deep
Reinforcement Learning Policies in Soft Decision Trees,” in Proceedings of the IJCAI
2019 Workshop on Explainable Artificial Intelligence, 2019, pp. 1–6. [Online]. Available:
https://cris.vub.be/files/46718934/IJCAI 2019 XAI WS paper.pdf

[15] O. T. Yildiz, E. Alpaydin, and O. Irsoy, “Soft decision trees,” in Proceedings of the 21st
International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 2012.

[16] S. Karakovskiy and J. Togelius, “The Mario Ai benchmark and competitions,” IEEE Trans-
actions on Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 55–67, mar 2012.

[17] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a Neural Network,”
Tech. Rep., mar 2015. [Online]. Available: http://arxiv.org/abs/1503.02531

[18] R. Tanno, K. Arulkumaran, D. C. Alexander, A. Criminisi, and A. Nori, “Adaptive neural
trees,” in 36th International Conference on Machine Learning, ICML 2019, vol. 2019-June,
jul 2019, pp. 10 761–10 770. [Online]. Available: http://arxiv.org/abs/1807.06699

[19] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, “OpenAI Gym,” Tech. Rep., jun 2016. [Online]. Available:
http://arxiv.org/abs/1606.01540

[20] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed. Cam-
bridge, MA, USA: The MIT Press Cambridge, 2018.

[21] E. L. Thorndike, Animal Intelligence: Experimental Studies, ser. Animal behavior series.
Macmillan, 1911.

[22] R. Bellman, “The Theory of Dynamic Programming,” p. 27, 1954.

[23] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin,
P. Welinder, L. Weng, and W. Zaremba, “Learning Dexterous In-Hand Manipulation,”
The International Journal of Robotics Research, vol. 39, no. 1, pp. 3–20, nov 2019.
[Online]. Available: http://arxiv.org/abs/1808.00177

[24] S. Varges, G. Riccardi, S. Quarteroni, and A. V. Ivanov, “The exploration/exploitation
trade-off in reinforcement learning for dialogue management,” in Proceedings of the 2009
IEEE Workshop on Automatic Speech Recognition and Understanding, ASRU 2009. IEEE,
2009, pp. 479–484.

[25] M. Tokic and G. Palm, “Value-difference based exploration: Adaptive control between
epsilon-greedy and softmax,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7006
LNAI, 2011, pp. 335–346.

[26] L. Busoniu, R. Babuska, B. D. Schutter, and D. Ernst, Reinforcement Learning and Dy-
namic Programming Using Function Approximators, 1st ed. USA: CRC Press, Inc., 2010.

[27] D. P. Kroese, T. Brereton, T. Taimre, and Z. I. Botev, “Why the Monte Carlo method
is so important today,” Wiley Interdisciplinary Reviews: Computational Statistics, vol. 6,
no. 6, pp. 386–392, nov 2014.

134

http://arxiv.org/abs/1702.08608
https://cris.vub.be/files/46718934/IJCAI_2019_XAI_WS_paper.pdf
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1807.06699
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1808.00177

[28] H. Van Hasselt and M. A. Wiering, “Convergence of model-based temporal difference learn-
ing for control,” in Proceedings of the 2007 IEEE Symposium on Approximate Dynamic
Programming and Reinforcement Learning, ADPRL 2007, 2007, pp. 60–67.

[29] T. Jaakkola, M. L. Littman, C. Szepesvari, and S. Singh, “Convergence Results for Single-
Step On-Policy Reinforcement-Learning Algorithms,” Machine Learning, vol. 39, no. 1998,
pp. 287–308, 2000.

[30] T. Jaakkola, M. I. Jordan, and S. P. Singh, “On the Convergence of Stochastic Iterative
Dynamic Programming Algorithms,” Neural Computation, vol. 6, no. 6, pp. 1185–1201,
1994.

[31] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3, pp.
279–292, may 1992. [Online]. Available: https://doi.org/10.1007/BF00992698

[32] M. Sewak, Deep Reinforcement Learning - Frontiers of Artificial Intelligence. Springer,
2019.

[33] R. J. Williams, “Simple Statistical Gradient-Following Algorithms for Connectionist Rein-
forcement Learning,” Machine Learning, vol. 8, no. 3, pp. 229–256, 1992.

[34] A. A. Sherstov and P. Stone, “Function approximation via tile coding: Automating pa-
rameter choice,” in Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3607 LNAI, 2005, pp.
194–205.

[35] L. A. Zadeh, “Fuzzy Sets,” Information Control, vol. 8, pp. 338–353, 1965.

[36] H. van Hasselt, “Reinforcement learning in continuous state and action spaces,” in Adap-
tation, Learning, and Optimization, 2012, vol. 12, pp. 207–251.

[37] G. Engeln-Müllges and F. Uhlig, Linear and Nonlinear Approximation. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1996, pp. 179–218. [Online]. Available:
https://doi.org/10.1007/978-3-642-61074-5 8

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level
control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, feb
2015.

[39] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dȩbiak, C. Dennison, D. Farhi,
Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov,
H. P. d. O. Pinto, J. Raiman, T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever,
J. Tang, F. Wolski, and S. Zhang, “Dota 2 with Large Scale Deep Reinforcement
Learning,” Tech. Rep., dec 2019. [Online]. Available: http://arxiv.org/abs/1912.06680

[40] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning.” in ICLR, Y. Bengio
and Y. LeCun, Eds., 2016. [Online]. Available: http://dblp.uni-trier.de/db/conf/iclr/
iclr2016.html#LillicrapHPHETS15

[41] I. Arel, C. Liu, T. Urbanik, and A. G. Kohls, “Reinforcement learning-based multi-agent
system for network traffic signal control,” IET Intelligent Transport Systems, vol. 4, no. 2,
pp. 128–135, 2010. [Online]. Available: www.ietdl.org

135

https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/978-3-642-61074-5_8
http://arxiv.org/abs/1912.06680
http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#LillicrapHPHETS15
http://dblp.uni-trier.de/db/conf/iclr/iclr2016.html#LillicrapHPHETS15
www.ietdl.org

[42] E. Bonabeau, M. Dorigo, and G. Theraulaz, From Natural to Artificial Swarm Intelligence.
USA: Oxford University Press, Inc., 1999.

[43] S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introduction to Humanoid
Robotics. Berlin: Springer Publishing Company, Incorporated, 2014. [Online]. Available:
http://www.springer.com/series/5208

[44] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA,
USA: MIT press, 2016. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=
ebf85b30d2d751196275d5dd14968935

[45] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Eds., Principles of Neural Science, 3rd ed.
New York: Elsevier, 1991.

[46] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and orga-
nization in the brain,” Psychological Review, vol. 65, no. 6, pp. 386–408, 1958.

[47] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and
its application to conduction and excitation in nerve,” Journal of Physiology, vol. 117, pp.
500–544, 1952.

[48] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, ninth dove ed. New York: Dover, 1964.

[49] B. Ding, H. Qian, and J. Zhou, “Activation functions and their characteristics in deep
neural networks,” Proceedings of the 30th Chinese Control and Decision Conference, CCDC
2018, pp. 1836–1841, 2018.

[50] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position,” Tech. Rep. 4, 1980.

[51] M. I. Jordan, Serial order: A parallel distributed processing approach., ser. Advances in psy-
chology, Vol. 121. Amsterdam, Netherlands: North-Holland/Elsevier Science Publishers,
1997.

[52] H. B. Curry, “The method of steepest descent for non-linear minimization problems,”
Quarterly of Applied Mathematics, vol. 2, no. 3, pp. 258–261, 1944.

[53] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Representations by
Back-propagating Errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986. [Online].
Available: http://www.nature.com/articles/323533a0

[54] J. Martens, “Deep learning via Hessian-free optimization,” in ICML 2010 - Proceedings,
27th International Conference on Machine Learning, 2010, pp. 735–742.

[55] D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and neural networks:
optimizing connections and connectivity,” Parallel Computing, vol. 14, no. 3, pp. 347–361,
1990.

[56] C. R. Reeves, “Bias Estimation for Neural Network Predictions,” in Artificial Neural Nets
and Genetic Algorithms. Vienna: Springer Vienna, 1995, pp. 242–244.

[57] S. Geman, E. Bienenstock, and R. Doursat, “Neural Networks and the Bias/Variance
Dilemma,” Neural Computation, vol. 4, no. 1, pp. 1–58, 1992.

136

http://www.springer.com/series/5208
http://gen.lib.rus.ec/book/index.php?md5=ebf85b30d2d751196275d5dd14968935
http://gen.lib.rus.ec/book/index.php?md5=ebf85b30d2d751196275d5dd14968935
http://www.nature.com/articles/323533a0

[58] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” Journal of Machine Learning
Research, vol. 15, pp. 1929–1958, 2014.

[59] L. Prechelt, Early Stopping — But When? Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 53–67. [Online]. Available: https://doi.org/10.1007/978-3-642-35289-8 5

[60] C. Zhang, O. Vinyals, R. Munos, and S. Bengio, “A Study on Overfitting in
Deep Reinforcement Learning,” CoRR, vol. abs/1804.0, 2018. [Online]. Available:
http://arxiv.org/abs/1804.06893

[61] K. Lee, K. Lee, J. Shin, and H. Lee, “Network Randomization: A Simple Technique for
Generalization in Deep Reinforcement Learning,” in ICLR 2020, 2020. [Online]. Available:
http://arxiv.org/abs/1910.05396

[62] J. Tobin, R. H. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain random-
ization for transferring deep neural networks from simulation to the real world,” in IEEE
International Conference on Intelligent Robots and Systems, vol. 2017-Septe. Vancouver,
BC, Canada Domain: IEEE, 2017, pp. 23–30.

[63] A. Braylan, M. Hollenbeck, E. Meyerson, and R. Miikkulainen, “Frame skip is a
powerful parameter for learning to play atari,” in AAAI Workshop - Technical Report,
vol. WS-15-10, 2015, pp. 10–11. [Online]. Available: www.aaai.org

[64] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing Atari with Deep Reinforcement Learning,” ArXiv, 2013. [Online].
Available: http://arxiv.org/abs/1312.5602

[65] I. Kandel and M. Castelli, “The effect of batch size on the generalizability of the
convolutional neural networks on a histopathology dataset,” ICT Express, 2020. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S2405959519303455

[66] V. Mnih, A. Puigdomènech Badia, M. Mirza, T. Harley, T. P. Lillicrap, D. Silver,
and K. Kavukcuoglu, “Asynchronous Methods for Deep Reinforcement Learning,”
International Conference on Machine Learning, vol. 48, 2016. [Online]. Available:
http://arxiv.org/abs/1301.3781

[67] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
Policy Optimization Algorithms,” ArXiv, jul 2017. [Online]. Available: http:
//arxiv.org/abs/1707.06347

[68] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, “Trust region policy
optimization,” in 32nd International Conference on Machine Learning, ICML 2015, vol. 3,
feb 2015, pp. 1889–1897. [Online]. Available: http://arxiv.org/abs/1502.05477

[69] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” Annals of
Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951. [Online]. Available:
https://doi.org/10.1214/aoms/1177729694

[70] L. Weng, “Policy Gradient Algorithms,” lilianweng.github.io/lil-log, 2018. [Online]. Avail-
able: https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

137

https://doi.org/10.1007/978-3-642-35289-8_5
http://arxiv.org/abs/1804.06893
http://arxiv.org/abs/1910.05396
www.aaai.org
http://arxiv.org/abs/1312.5602
http://www.sciencedirect.com/science/article/pii/S2405959519303455
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1502.05477
https://doi.org/10.1214/aoms/1177729694
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

[71] A. Barredo Arrieta, N. Dı́az-Rodŕıguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado,
S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and F. Herrera, “Explain-
able Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and
challenges toward responsible AI,” Information Fusion, vol. 58, pp. 82–115, jun 2020.

[72] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal, “Explaining
explanations: An overview of interpretability of machine learning,” in Proceedings - 2018
IEEE 5th International Conference on Data Science and Advanced Analytics, DSAA 2018.
Institute of Electrical and Electronics Engineers Inc., jan 2019, pp. 80–89.

[73] G. Dong, “Exploiting the Power of Group Differences: Using Patterns to Solve Data Analy-
sis Problems,” Synthesis Lectures on Data Mining and Knowledge Discovery, vol. 11, no. 1,
pp. 1–146, feb 2019.

[74] Y. Ma and G. Guo, Support Vector Machines Applications. Springer Publishing Company,
Incorporated, 2014.

[75] T. Bohlin, “Derivation of a designer’s guide’ for interactive grey-box’ identification of non-
linear stochastic objects,” International Journal of Control, vol. 59, no. 6, pp. 1505–1524,
1994.

[76] A. C. Scott, W. J. Clancey, R. Davis, and E. H. Shortliffe, “Explanation Capabilities of
Production-Based Consultation Systems,” American Journal of Computational Linguistics,
pp. 1–50, feb 1977. [Online]. Available: https://www.aclweb.org/anthology/J77-1006

[77] W. R. Swartout, “Explaining and Justifying Expert Consulting Programs,” in Explaining
and Justifying Expert Consulting Programs, J. A. Reggia and S. Tuhrim, Eds. New York,
NY, USA: Springer New York, 1985, vol. 2, ch. 29, pp. 254–271. [Online]. Available:
https://doi.org/10.1007/978-1-4612-5108-8 15

[78] F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. Zhao, and J. Zhu, “Explainable AI: A Brief Survey
on History, Research Areas, Approaches and Challenges,” in Natural Language Processing
and Chinese Computing, J. Tang, M.-Y. Kan, D. Zhao, S. Li, and H. Zan, Eds. Cham:
Springer International Publishing, 2019, pp. 563–574.

[79] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression
Trees. Monterey, CA: Wadsworth and Brooks, 1984.

[80] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, no. 1, pp. 81–106,
1986.

[81] D. Michie, “Machine learning in the next five years,” in Proc. Third European Working
Session on Learning, ser. EWSL’88. USA: Pitman Publishing, Inc., 1988, pp. 107–122.

[82] W. R. Swartout and J. D. Moore, “Explanation in Second Generation Expert Systems,”
in Second Generation Expert Systems, J.-M. David, J.-P. Krivine, and R. Simmons, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 543–585.

[83] L. K. Hansen and L. Rieger, Interpretability in Intelligent Systems A New Concept?,
ser. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Springer, jan 2019, pp. 41–49.

[84] D. Gunning and D. W. Aha, “DARPA’s explainable artificial intelligence program,” AI
Magazine, vol. 40, no. 2, pp. 44–58, 2019.

138

https://www.aclweb.org/anthology/J77-1006
https://doi.org/10.1007/978-1-4612-5108-8_15

[85] S. R. Haynes, M. A. Cohen, and F. E. Ritter, “Designs for explaining intelligent agents,”
International Journal of Human Computer Studies, vol. 67, no. 1, pp. 90–110, jan 2009.

[86] S. Anjomshoae, D. Calvaresi, A. Najjar, and K. Främling, “Explainable agents and
robots: Results from a systematic literature review,” in Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 2, 2019,
pp. 1078–1088. [Online]. Available: www.ifaamas.org

[87] R. H. Wortham, A. Theodorou, and J. J. Bryson, “What Does the Robot
Think? Transparency as a Fundamental Design Requirement for Intelligent
Systems,” in IJCAI-2016 Ethics for Artificial Intelligence Workshop, 2016. [Online].
Available: http://www.robwortham.com/instinct-planner/http://opus.bath.ac.uk/50294/
1/WorthamTheodorouBryson{ }EFAI16.pdf

[88] N. Wang, D. V. Pynadath, and S. G. Hill, “The impact of POMDP-generated
explanations on trust and performance in human-robot teams,” in Proceedings of the
International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS,
2016, pp. 997–1005. [Online]. Available: www.ifaamas.org

[89] S. Li, W. Sun, and T. Miller, “Communication in Human-Agent Teams for Tasks with Joint
Action,” in Coordination, Organizations, Institutions, and Norms in Agent Systems XI,
V. Dignum, P. Noriega, M. Sensoy, and J. S. Sichman, Eds. Cham: Springer International
Publishing, 2016, pp. 224–241.

[90] J. E. Colgate, W. Wannasuphoprasit, and M. A. Peshkin, “Cobots: robots for collaboration
with human operators,” in American Society of Mechanical Engineers, Dynamic Systems
and Control Division (Publication) DSC, vol. 58, 1996, pp. 433–439.

[91] K. Baraka, A. Paiva, and M. Veloso, “Expressive Lights for Revealing Mobile Service Robot
State,” in Robot 2015: Second Iberian Robotics Conference, L. P. Reis, A. P. Moreira,
P. U. Lima, L. Montano, and V. Muñoz-Martinez, Eds. Cham: Springer International
Publishing, 2016, pp. 107–119.

[92] D. Holliday, S. Wilson, and S. Stumpf, “The Effect of Explanations on Perceived
Control and Behaviors in Intelligent Systems,” in CHI ’13 Extended Abstracts on
Human Factors in Computing Systems, ser. CHI EA ’13. New York, NY, USA:
Association for Computing Machinery, 2013, pp. 181–186. [Online]. Available:
https://doi.org/10.1145/2468356.2468389

[93] F. Kaptein, J. Broekens, K. Hindriks, and M. Neerincx, “The role of emotion in self-
explanations by cognitive agents,” in 2017 7th International Conference on Affective Com-
puting and Intelligent Interaction Workshops and Demos, ACIIW 2017, vol. 2018-Janua,
2018, pp. 88–93.

[94] M. Harbers, K. van den Bosch, and J.-J. C. Meyer, “A Study into Preferred Explanations
of Virtual Agent Behavior,” in Intelligent Virtual Agents, Z. Ruttkay, M. Kipp, A. Nijholt,
and H. H. Vilhjálmsson, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp.
132–145.

[95] J. M. Alonso, “Explainable artificial intelligence for kids,” in Proceedings of the
11th Conference of the European Society for Fuzzy Logic and Technology, EUSFLAT 2019,
2020, pp. 134–141. [Online]. Available: https://demos.citius.usc.es/ExpliClas/

139

www.ifaamas.org
http://www.robwortham.com/instinct-planner/ http://opus.bath.ac.uk/50294/1/WorthamTheodorouBryson{_}EFAI16.pdf
http://www.robwortham.com/instinct-planner/ http://opus.bath.ac.uk/50294/1/WorthamTheodorouBryson{_}EFAI16.pdf
www.ifaamas.org
https://doi.org/10.1145/2468356.2468389
https://demos.citius.usc.es/ExpliClas/

[96] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The Scratch
Programming Language and Environment,” ACM Trans. Comput. Educ., vol. 10, no. 4,
nov 2010. [Online]. Available: https://doi.org/10.1145/1868358.1868363

[97] K. V. Hindriks, “Debugging is explaining,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
7455 LNAI, 2012, pp. 31–45.

[98] C. Rudin and B. Ustunb, “Optimized scoring systems: Toward trust in machine learning
for healthcare and criminal justice,” Interfaces, vol. 48, no. 5, pp. 449–466, 2018.

[99] I. Lana, J. J. Sanchez-Medina, E. I. Vlahogianni, and J. Del Ser, “From Data to Actions
in Intelligent Transportation Systems: a Prescription of Functional Requirements for
Model Actionability,” ArXiv, 2020. [Online]. Available: http://arxiv.org/abs/2002.02210

[100] L. Zhu, F. R. Yu, Y. Wang, B. Ning, and T. Tang, “Big Data Analytics in Intelligent Trans-
portation Systems: A Survey,” IEEE Transactions on Intelligent Transportation Systems,
vol. 20, no. 1, pp. 383–398, jan 2019.

[101] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Ž́ıdek,
A. W. Nelson, A. Bridgland, H. Penedones, S. Petersen, K. Simonyan, S. Crossan, P. Kohli,
D. T. Jones, D. Silver, K. Kavukcuoglu, and D. Hassabis, “Improved protein structure
prediction using potentials from deep learning,” Nature, vol. 577, no. 7792, pp. 706–710,
jan 2020.

[102] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic Attribution for Deep Networks,” in
Proceedings of the 34th International Conference on Machine Learning - Volume 70, ser.
ICML’17. JMLR.org, 2017, pp. 3319–3328.

[103] A. O. Afolabi and P. Toivanen, “Recommender systems in healthcare: Towards practical
implementation of real-time recommendations to meet the needs of modern caregiving,” in
Handbook of Research on Emerging Perspectives on Healthcare Information Systems and
Informatics, 2018, pp. 323–346.

[104] A. Adadi and M. Berrada, “Explainable AI for Healthcare: From Black Box to Interpretable
Models,” in Embedded Systems and Artificial Intelligence, V. Bhateja, S. C. Satapathy, and
H. Satori, Eds. Singapore: Springer Singapore, 2020, pp. 327–337.

[105] M. R. Karim, M. Cochez, O. Beyan, S. Decker, and C. Lange, “OncoNetExplainer: Ex-
plainable predictions of cancer types based on gene expression data,” Proceedings - 2019
IEEE 19th International Conference on Bioinformatics and Bioengineering, BIBE 2019,
pp. 415–422, 2019.

[106] A. Deeks, “The judicial demand for explainable artificial intelligence,” Columbia Law Re-
view, vol. 119, no. 7, pp. 1829–1850, 2019.

[107] P. Hacker, R. Krestel, S. Grundmann, and F. Naumann, “Explainable AI under contract
and tort law: legal incentives and technical challenges,” Artificial Intelligence and Law,
2020.

[108] T. Jiang, “Using Machine Learning to Analyze Merger Activity,” Tech. Rep., 2018.

140

https://doi.org/10.1145/1868358.1868363
http://arxiv.org/abs/2002.02210

[109] K. Li, F. Mai, R. Shen, and X. Yan, “Corporate Culture and Merger Suc-
cess: Evidence from Machine Learning,” UBC Sauder Working Paper, 2018. [On-
line]. Available: https://editorialexpress.com/cgi-bin/conference/download.cgi?db name=
CICF2018&paper id=394

[110] Council of European Union, “Council regulation (EU) no 269/2014,” 2014.

[111] 2018 reform of EU data protection rules. [Online]. Available: https://ec.europa.eu/
commission/sites/beta-political/files/data-protection-factsheet-changes en.pdf

[112] L. Mitrou, “Is the General Data Protection Regulation (Gdpr) Artificial Intelligence-
Proof,” SSRN, no. December, 2018. [Online]. Available: https://ssrn.com/abstract=
3386914

[113] P. Svenmarck, L. Luotsinen, M. Nilsson, and J. Schubert, “Possibilities and Challenges for
Artificial Intelligence in Military Applications,” Proceedings of the NATO Big Data and
Artificial Intelligence for Military Decision Making Specialists’ Meeting, pp. 1–17, 2018.
[Online]. Available: https://www.researchgate.net/publication/326774966

[114] J. Su, D. V. Vargas, and K. Sakurai, “One Pixel Attack for Fooling Deep
Neural Networks,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 5,
pp. 828–841, oct 2019. [Online]. Available: http://arxiv.org/abs/1710.08864http:
//dx.doi.org/10.1109/TEVC.2019.2890858

[115] U. Pawar, D. O’Shea, S. Rea, and R. O’Reilly, “Explainable AI in Healthcare,” in 2020
International Conference on Cyber Situational Awareness, Data Analytics and Assessment,
Cyber SA 2020, 2020.

[116] M. A. Ahmad, A. Teredesai, and C. Eckert, “Interpretable machine learning in healthcare,”
in Proceedings - 2018 IEEE International Conference on Healthcare Informatics, ICHI
2018, 2018, p. 447.

[117] M. Van Lent, W. Fisher, and M. Mancuso, “An explainable artificial intelligence system
for small-unit tactical behavior,” in Proceedings of the National Conference on Artificial
Intelligence, 2004, pp. 900–907. [Online]. Available: www.aaai.org

[118] M. van den Berg and O. Kuiper, “XAI in the Financial Sec-
tor. A Conceptual Framework for Explainable AI (XAI),” Tech. Rep.,
2020. [Online]. Available: https://www-researchgate-net.ezproxy2.utwente.
nl/publication/344079379 XAI in the Financial Sector A Conceptual Framework
for Explainable AI XAI%0Ahttps://www.hu.nl/-/media/hu/documenten/onderzoek/
projecten/explainable ai in the financial sector van den b

[119] M. D. Fethi and F. Pasiouras, “Assessing bank efficiency and performance with operational
research and artificial intelligence techniques: A survey,” pp. 189–198, jul 2010.

[120] C. Chen, K. Lin, C. Rudin, Y. Shaposhnik, S. Wang, and T. Wang, “An Interpretable
Model with Globally Consistent Explanations for Credit Risk,” in Proceedings of
NeurIPS 2018 Workshop on Challenges and Opportunities for AI in Financial Services:
the impact of Fairness, Explainability, Accuracy and privacy, 2018. [Online]. Available:
http://arxiv.org/abs/1811.12615

141

https://editorialexpress.com/cgi-bin/conference/download.cgi?db_name=CICF2018&paper_id=394
https://editorialexpress.com/cgi-bin/conference/download.cgi?db_name=CICF2018&paper_id=394
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ssrn.com/abstract=3386914
https://ssrn.com/abstract=3386914
https://www.researchgate.net/publication/326774966
http://arxiv.org/abs/1710.08864 http://dx.doi.org/10.1109/TEVC.2019.2890858
http://arxiv.org/abs/1710.08864 http://dx.doi.org/10.1109/TEVC.2019.2890858
www.aaai.org
https://www-researchgate-net.ezproxy2.utwente.nl/publication/344079379_XAI_in_the_Financial_Sector_A_Conceptual_Framework_for_Explainable_AI_XAI%0Ahttps://www.hu.nl/-/media/hu/documenten/onderzoek/projecten/explainable_ai_in_the_financial_sector_van_den_b
https://www-researchgate-net.ezproxy2.utwente.nl/publication/344079379_XAI_in_the_Financial_Sector_A_Conceptual_Framework_for_Explainable_AI_XAI%0Ahttps://www.hu.nl/-/media/hu/documenten/onderzoek/projecten/explainable_ai_in_the_financial_sector_van_den_b
https://www-researchgate-net.ezproxy2.utwente.nl/publication/344079379_XAI_in_the_Financial_Sector_A_Conceptual_Framework_for_Explainable_AI_XAI%0Ahttps://www.hu.nl/-/media/hu/documenten/onderzoek/projecten/explainable_ai_in_the_financial_sector_van_den_b
https://www-researchgate-net.ezproxy2.utwente.nl/publication/344079379_XAI_in_the_Financial_Sector_A_Conceptual_Framework_for_Explainable_AI_XAI%0Ahttps://www.hu.nl/-/media/hu/documenten/onderzoek/projecten/explainable_ai_in_the_financial_sector_van_den_b
http://arxiv.org/abs/1811.12615

[121] K. Gade, S. Geyik, K. Kenthapadi, V. Mithal, and A. Taly, “Explainable
AI in Industry: Practical Challenges and Lessons Learned,” in Companion
Proceedings of the Web Conference 2020, ser. WWW ’20. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 303–304. [Online]. Available:
https://doi.org/10.1145/3366424.3383110

[122] S. Luo, X. Lin, and Z. Zheng, “A novel CNN-DDPG based AI-trader: Performance and
roles in business operations,” Transportation Research Part E: Logistics and Transportation
Review, vol. 131, pp. 68–79, nov 2019.

[123] A. Kusiak, “Artificial Intelligence Approach to Production Planning,” in Computer-Aided
Production Management, 1988, pp. 149–166.

[124] M. Fox, D. Long, and D. Magazzeni, “Explainable Planning,” ArXiv, sep 2017. [Online].
Available: http://arxiv.org/abs/1709.10256

[125] F. K. Dosilovic, M. Brcic, and N. Hlupic, “Explainable artificial intelligence: A survey,”
2018 41st International Convention on Information and Communication Technology, Elec-
tronics and Microelectronics, MIPRO 2018 - Proceedings, pp. 210–215, 2018.

[126] A. A. Freitas, “Comprehensible Classification Models: A Position Paper,” SIGKDD
Explor. Newsl., vol. 15, no. 1, pp. 1–10, mar 2014. [Online]. Available: https:
//doi.org/10.1145/2594473.2594475

[127] E. Puiutta and E. M. Veith, “Explainable Reinforcement Learning: A Survey,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 12279 LNCS, may 2020, pp. 77–95. [Online].
Available: http://arxiv.org/abs/2005.06247

[128] A. Adadi and M. Berrada, “Peeking Inside the Black-Box: A Survey on Explainable Arti-
ficial Intelligence (XAI),” IEEE Access, vol. 6, pp. 52 138–52 160, sep 2018.

[129] S. Sarkar, T. Weyde, A. D. Garcez, G. Slabaugh, S. Dragicevic, and C. Percy, “Accuracy
and interpretability trade-offs in machine learning applied to safer gambling,” in CEUR
Workshop Proceedings, vol. 1773, 2016.

[130] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi, “A survey
of methods for explaining black box models,” ACM Computing Surveys, vol. 51, no. 5, aug
2018.

[131] M. Du, N. Liu, and X. Hu, “Techniques for interpretable machine learning,” Communica-
tions of the ACM, vol. 63, no. 1, pp. 68–77, jan 2020.

[132] D. V. Carvalho, E. M. Pereira, and J. S. Cardoso, “Machine learning interpretability: A
survey on methods and metrics,” aug 2019.

[133] G. Vilone and L. Longo, “Explainable Artificial Intelligence: a Systematic Review,”
ArXiv, may 2020. [Online]. Available: http://arxiv.org/abs/2006.00093

[134] J. H. Friedman, “Greedy Function Approximation: A Gradient Boosting Machine,” Annals
of Statistics, vol. 29, pp. 1189–1232, 2000.

142

https://doi.org/10.1145/3366424.3383110
http://arxiv.org/abs/1709.10256
https://doi.org/10.1145/2594473.2594475
https://doi.org/10.1145/2594473.2594475
http://arxiv.org/abs/2005.06247
http://arxiv.org/abs/2006.00093

[135] A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin, “Peeking Inside the Black Box:
Visualizing Statistical Learning With Plots of Individual Conditional Expectation,”
Journal of Computational and Graphical Statistics, vol. 24, no. 1, pp. 44–65, 2015.
[Online]. Available: https://doi.org/10.1080/10618600.2014.907095

[136] D. W. Apley and J. Zhu, “Visualizing the effects of predictor variables in black box su-
pervised learning models,” Journal of the Royal Statistical Society. Series B: Statistical
Methodology, vol. 82, no. 4, pp. 1059–1086, 2020.

[137] M. T. Ribeiro, S. Singh, and C. Guestrin, “”Why Should I Trust You?”: Explaining the
Predictions of Any Classifier,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY,
USA: Association for Computing Machinery, 2016, pp. 1135–1144. [Online]. Available:
https://doi.org/10.1145/2939672.2939778

[138] T. Wang, C. Rudin, F. Velez-Doshi, Y. Liu, E. Klampfl, and P. MacNeille, “Bayesian Rule
Sets for Interpretable Classification,” in 2016 IEEE 16th International Conference on Data
Mining (ICDM), dec 2016, pp. 1269–1274.

[139] X. Yin and J. Han, “CPAR: Classification based on Predictive Association Rules,” in SDM,
2003.

[140] D. M. Malioutov, K. R. Varshney, A. Emad, and S. Dash, “Learning Interpretable Classi-
fication Rules with Boolean Compressed Sensing,” Transparent Data Mining for Big and
Small Data, pp. 95–121, 2017.

[141] H. Lakkaraju, S. H. Bach, and J. Leskovec, “Interpretable Decision Sets: A Joint
Framework for Description and Prediction,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ser. KDD ’16. New
York, NY, USA: Association for Computing Machinery, 2016, pp. 1675–1684. [Online].
Available: https://doi.org/10.1145/2939672.2939874

[142] J. Krause, A. Perer, and K. Ng, Interacting with Predictions: Visual Inspection of
Black-Box Machine Learning Models. New York, NY, USA: Association for Computing
Machinery, 2016, pp. 5686–5697. [Online]. Available: https://doi.org/10.1145/2858036.
2858529

[143] P. Adler, C. Falk, S. A. Friedler, T. Nix, G. Rybeck, C. Scheidegger, B. Smith,
and S. Venkatasubramanian, “Auditing Black-Box Models for Indirect Influence,”
Knowl. Inf. Syst., vol. 54, no. 1, pp. 95–122, jan 2018. [Online]. Available:
https://doi.org/10.1007/s10115-017-1116-3

[144] J. J. Thiagarajan, B. Kailkhura, P. Sattigeri, and K. N. Ramamurthy, “TreeView: Peeking
into Deep Neural Networks Via Feature-Space Partitioning,” 2016. [Online]. Available:
http://arxiv.org/abs/1611.07429

[145] J. Adebayo and L. Kagal, “Iterative Orthogonal Feature Projection for Diagnosing
Bias in Black-Box Models,” CoRR, vol. abs/1611.0, 2016. [Online]. Available:
http://arxiv.org/abs/1611.04967

[146] J. D. Olden and D. A. Jackson, “Illuminating the black box: a randomization
approach for understanding variable contributions in artificial neural networks,”
Ecological Modelling, vol. 154, no. 1, pp. 135–150, 2002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0304380002000649

143

https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939874
https://doi.org/10.1145/2858036.2858529
https://doi.org/10.1145/2858036.2858529
https://doi.org/10.1007/s10115-017-1116-3
http://arxiv.org/abs/1611.07429
http://arxiv.org/abs/1611.04967
http://www.sciencedirect.com/science/article/pii/S0304380002000649

[147] H. A. Chipman, E. I. George, and R. E. Mcculloch, Making sense of a forest of trees 1
Introduction 2 Methods for generating trees, 1998.

[148] M. Craven and J. W. Shavlik, “Using Sampling and Queries to Extract Rules from Trained
Neural Networks,” in Proceedings of the Eleventh International Conference on Interna-
tional Conference on Machine Learning, ser. ICML’94. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1994, pp. 37–45.

[149] A. Henelius, K. Puolamaki, H. Bostrom, L. Asker, and P. Papapetrou, “A peek into the
black box: exploring classifiers by randomization,” Data Mining and Knowledge Discovery,
vol. 28, no. 5-6, pp. 1503–1529, sep 2014.

[150] M. W. Craven and J. W. Shavlik, “Extracting Tree-Structured Representations of Trained
Networks,” in Proceedings of the 8th International Conference on Neural Information Pro-
cessing Systems, ser. NIPS’95. Cambridge, MA, USA: MIT Press, 1995, pp. 24–30.

[151] H. F. Tan, G. Hooker, and M. Wells, “Tree Space Prototypes: Another Look at Making
Tree Ensembles Interpretable,” Proceedings of the 2020 ACM-IMS on Foundations of Data
Science Conference, 2020.

[152] R. Turner, “A model explanation system,” in 2016 IEEE 26th International Workshop on
Machine Learning for Signal Processing (MLSP), 2016, pp. 1–6.

[153] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning Deep Features for
Discriminative Localization,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), jun 2016, pp. 2921–2929.

[154] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM:
Visual Explanations from Deep Networks via Gradient-Based Localization,” in 2017 IEEE
International Conference on Computer Vision (ICCV), oct 2017, pp. 618–626.

[155] C. E. Shannon, “A mathematical theory of communication.” Bell Syst. Tech. J., vol. 27,
no. 3, pp. 379–423, 1948. [Online]. Available: http://dblp.uni-trier.de/db/journals/bstj/
bstj27.html#Shannon48

[156] F. Girosi, M. Jones, and T. Poggio, “Regularization Theory and Neural Networks
Architectures,” Neural Computation, vol. 7, no. 2, pp. 219–269, 1995. [Online]. Available:
https://doi.org/10.1162/neco.1995.7.2.219

[157] N. Patel and S. Upadhyay, “Study of Various Decision Tree Pruning Methods with
their Empirical Comparison in WEKA,” International Journal of Computer Applications,
vol. 60, no. 12, pp. 20–25, 2012.

[158] J. Mingers, “Rule induction with statistical dataa comparison with multiple regression,”
Journal of the Operational Research Society, vol. 38, no. 4, pp. 247–251, 1987. [Online].
Available: www.jstor.org

[159] S. Klinke and J. Grassmann, “Visualization and Implementation of Feedforward Neural
Networks,” Tech. Rep., 1996.

[160] G. Kogan, “ml4a: Looking inside neural nets,” 2020. [Online]. Available: https:
//ml4a.github.io/ml4a/looking inside neural nets/

144

http://dblp.uni-trier.de/db/journals/bstj/bstj27.html#Shannon48
http://dblp.uni-trier.de/db/journals/bstj/bstj27.html#Shannon48
https://doi.org/10.1162/neco.1995.7.2.219
www.jstor.org
https://ml4a.github.io/ml4a/looking_inside_neural_nets/
https://ml4a.github.io/ml4a/looking_inside_neural_nets/

[161] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), vol. 8689 LNCS, no. PART 1, 2014, pp.
818–833.

[162] D. Yu, H. Wang, P. Chen, and Z. Wei, “Mixed pooling for convolutional neural networks,”
in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), vol. 8818. Springer Verlag, 2014, pp.
364–375.

[163] J. Fürnkranz, D. Gamberger, and N. Lavrac, Foundations of Rule Learning, ser.
Cognitive Technologies. Springer, 2012. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-75197-7

[164] P. Clark and T. Niblett, “The CN2 induction algorithm,” Machine Learning, vol. 3, no. 4,
pp. 261–283, 1989. [Online]. Available: https://doi.org/10.1007/BF00116835

[165] W. W. Cohen, “Fast Effective Rule Induction,” in In Proceedings of the Twelfth Interna-
tional Conference on Machine Learning. Morgan Kaufmann, 1995, pp. 115–123.

[166] J. H. Friedman and N. I. Fisher, “Bump hunting in high-dimensional data,” Statistics and
Computing, vol. 9, no. 2, pp. 123–143, 1999.

[167] Y. Coppens, D. Steckelmacher, C. M. Jonker, and A. Nowé, “Synthesising Reinforcement
Learning Policies through Set-Valued Inductive Rule Learning,” 2020.

[168] T. G. Dietterich, “Ensemble Methods in Machine Learning,” in Proceedings of the First
International Workshop on Multiple Classifier Systems, ser. MCS ’00. London, UK:
Springer-Verlag, 2000, pp. 1–15. [Online]. Available: http://dl.acm.org/citation.cfm?id=
648054.743935

[169] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms, 1st ed. Chapman &
Hall/CRC, 2012.

[170] S. J. Hanson and L. Y. Pratt, “Comparing Biases for Minimal Network Construction with
Back-Propagation,” Advances in Neural Information Processing Systems (NIPS), vol. 1, pp.
177–185, 1989. [Online]. Available: http://portal.acm.org/citation.cfm?id=89851.89872

[171] C. Bucil, R. Caruana, and A. Niculescu-Mizil, “Model compression,” in Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol.
2006, 2006, pp. 535–541.

[172] D. Lowd and P. Domingos, “Naive Bayes models for probability estimation,” in ICML
2005 - Proceedings of the 22nd International Conference on Machine Learning, 2005, pp.
529–536.

[173] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio, “FitNets:
Hints for thin deep nets,” in 3rd International Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings, Y. LeCun and Y. Bengio, Eds., San Diego,
CA, USA, may 2015. [Online]. Available: http://arxiv.org/abs/1412.6550

[174] G. K. Nayak, K. R. Mopuri, V. Shaj, R. Venkatesh Babu, and A. Chakraborty, “Zero-shot
knowledge distillation in deep networks,” in 36th International Conference on Machine
Learning, ICML 2019, vol. 2019-June, 2019, pp. 8317–8325.

145

http://dx.doi.org/10.1007/978-3-540-75197-7
http://dx.doi.org/10.1007/978-3-540-75197-7
https://doi.org/10.1007/BF00116835
http://dl.acm.org/citation.cfm?id=648054.743935
http://dl.acm.org/citation.cfm?id=648054.743935
http://portal.acm.org/citation.cfm?id=89851.89872
http://arxiv.org/abs/1412.6550

[175] N. Frosst and G. Hinton, “Distilling a Neural Network Into a Soft Decision Tree,” Tech.
Rep., nov 2017. [Online]. Available: http://arxiv.org/abs/1711.09784

[176] M. I. Jordan and R. A. Jacobs, “Hierarchical Mixtures of Experts and the EM
Algorithm,” Neural Computing, vol. 6, no. 2, pp. 181–214, mar 1994. [Online]. Available:
https://doi.org/10.1162/neco.1994.6.2.181

[177] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, ser.
Springer Series in Statistics. New York, NY, USA: Springer New York Inc., 2001.

[178] D. Bertsimas and J. Dunn, “Optimal classification trees,” Machine Learning, vol. 106,
no. 7, pp. 1039–1082, jul 2017.

[179] A. Heuillet, F. Couthouis, and N. Dı́az-Rodŕıguez, “Explainability in deep reinforcement
learning,” arXiv, aug 2020. [Online]. Available: http://arxiv.org/abs/2008.06693

[180] T. Lesort, N. Dı́az-Rodŕıguez, J. F. Goudou, and D. Filliat, “State representation
learning for control: An overview,” pp. 379–392, feb 2018. [Online]. Available:
http://arxiv.org/abs/1802.04181http://dx.doi.org/10.1016/j.neunet.2018.07.006

[181] Z. Juozapaitis, A. Koul, A. Fern, M. Erwig, and F. Doshi-Velez, “Explainable Reinforce-
ment Learning via Reward Decomposition,” Proceedings of the IJCAI 2019 Workshop on
Explainable Artificial Intelligence, pp. 47—-53, 2019.

[182] H. Van Seijen, M. Fatemi, J. Romoff, R. Laroche, T. Barnes, and J. Tsang,
“Hybrid Reward Architecture for Reinforcement Learning,” in Advances in Neural
Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates, Inc.,
2017, pp. 5392–5402. [Online]. Available: https://proceedings.neurips.cc/paper/2017/file/
1264a061d82a2edae1574b07249800d6-Paper.pdf

[183] A. Alharin, T.-N. Doan, and M. Sartipi, “Reinforcement Learning Interpretation Methods:
A Survey,” IEEE Access, vol. 8, pp. 171 058–171 077, sep 2020.

[184] Z. Zhang and X. Ji, “Regret minimization for reinforcement learning by evaluating the
optimal bias function,” 2019.

[185] T. Jaksch, R. Ortner, and P. Auer, “Near-optimal regret bounds for reinforcement learn-
ing,” Journal of Machine Learning Research, vol. 11, pp. 1563–1600, 2010.

[186] J. Insa-Cabrera, D. L. Dowe, and J. Hernández-Orallo, “Evaluating a reinforcement learn-
ing algorithm with a general intelligence test,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), vol. 7023 LNAI, 2011, pp. 1–11.

[187] J. Hernández-Orallo and D. L. Dowe, “Measuring universal intelligence: Towards an any-
time intelligence test,” Artificial Intelligence, vol. 174, no. 18, pp. 1508–1539, dec 2010.

[188] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90,
may 2017. [Online]. Available: https://doi.org/10.1145/3065386

[189] S. Lange and M. A. Riedmiller, “Deep auto-encoder neural networks in reinforcement
learning.” in IJCNN. IEEE, 2010, pp. 1–8. [Online]. Available: http://dblp.uni-trier.de/
db/conf/ijcnn/ijcnn2010.html#LangeR10

146

http://arxiv.org/abs/1711.09784
https://doi.org/10.1162/neco.1994.6.2.181
http://arxiv.org/abs/2008.06693
http://arxiv.org/abs/1802.04181 http://dx.doi.org/10.1016/j.neunet.2018.07.006
https://proceedings.neurips.cc/paper/2017/file/1264a061d82a2edae1574b07249800d6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/1264a061d82a2edae1574b07249800d6-Paper.pdf
https://doi.org/10.1145/3065386
http://dblp.uni-trier.de/db/conf/ijcnn/ijcnn2010.html#LangeR10
http://dblp.uni-trier.de/db/conf/ijcnn/ijcnn2010.html#LangeR10

[190] M. Riedmiller, “Neural Fitted Q Iteration – First Experiences with a Data Efficient Neural
Reinforcement Learning Method,” in Machine Learning: ECML 2005, J. Gama, R. Cama-
cho, P. B. Brazdil, A. M. Jorge, and L. Torgo, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 317–328.

[191] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-stage
architecture for object recognition?” in Proceedings of the IEEE International Conference
on Computer Vision. IEEE, 2009, pp. 2146–2153.

[192] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann
Machines.” in ICML, J. Fürnkranz and T. Joachims, Eds. Omnipress, 2010, pp. 807–814.
[Online]. Available: http://dblp.uni-trier.de/db/conf/icml/icml2010.html{#}NairH10

[193] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann, “Stable
Baselines 3,” https://github.com/DLR-RM/stable-baselines3, 2019.

[194] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman,
S. Sidor, Y. Wu, and P. Zhokhov, “OpenAI Baselines,” https://github.com/openai/
baselines, 2017.

[195] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo, R. Munos, C. Blundell,
D. Kumaran, and M. Botvinick, “Learning to reinforcement learn,” ArXiv, nov 2016.
[Online]. Available: http://arxiv.org/abs/1611.05763

[196] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A Matlab-like Environment for
Machine Learning,” in BigLearn, NIPS Workshop, 2011.

[197] M. Mitchell, Complexity: A Guided Tour. Oxford University Press, USA, 2009.

[198] M. Lima, Visual Complexity: Mapping Patterns of Information. Princeton Architectural
Press, 2013.

[199] H. Buhrman and R. De Wolf, “Complexity measures and decision tree complexity: A
survey,” in Theoretical Computer Science, vol. 288, no. 1, 2002, pp. 21–43. [Online].
Available: www.elsevier.com/locate/tcs

[200] I. Chikalov, “Bounds on Average Time Complexity of Decision Trees,” Intelligent Systems
Reference Library, vol. 21, pp. 15–39, 2011.

[201] J. Hartmanis and R. E. Stearns, “On the Computational Complexity of Algorithms,”
Journal of Symbolic Logic, vol. 32, no. 1, pp. 120–121, 1967.

[202] P. Bossaerts and C. Murawski, “Computational Complexity and Human Decision-Making,”
pp. 917–929, dec 2017.

[203] D. Peebles and R. P. Cooper, “Thirty years after Marr’s vision: Levels of analysis in
cognitive science,” Topics in Cognitive Science, vol. 7, no. 2, pp. 187–190, apr 2015.

[204] D. Marr, Vision: a computational investigation into the human representation and pro-
cessing of visual information. London, UK: The MIT Press, 1982.

[205] M. Pantsar, “Cognitive and Computational Complexity: Considerations from Mathemati-
cal Problem Solving,” Erkenntnis, 2019.

147

http://dblp.uni-trier.de/db/conf/icml/icml2010.html{#}NairH10
https://github.com/DLR-RM/stable-baselines3
https://github.com/openai/baselines
https://github.com/openai/baselines
http://arxiv.org/abs/1611.05763
www.elsevier.com/locate/tcs

[206] J. K. Tsotsos, “How does human vision beat the computational complexity of visual per-
ception,” in Computational processes in human vision: an interdisciplinary perspective,
1988, pp. 286–338.

[207] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse,
O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu, “Stable
Baselines,” https://github.com/hill-a/stable-baselines, 2018.

[208] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, and Others, “Tensorflow: A system for large-scale machine learning,”
in 12th Symposium on Operating Systems Design and Implementation, 2016, pp. 265–283.

[209] J. Huerta-Cepas, F. Serra, and P. Bork, “ETE 3: Reconstruction, Analysis, and Visu-
alization of Phylogenomic Data,” Molecular Biology and Evolution, vol. 33, no. 6, pp.
1635–1638, jun 2016.

[210] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in Science & Engi-
neering, vol. 9, no. 3, pp. 90–95, 2007.

[211] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[212] M. Grinberg, Flask web development: developing web applications with python. ” O’Reilly
Media, Inc.”, 2018.

[213] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The Arcade Learning Environ-
ment: An Evaluation Platform for General Agents,” J. Artif. Int. Res., vol. 47, no. 1, pp.
253–279, may 2013.

[214] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

[215] A. Byerly, T. Kalganova, and I. Dear, “A Branching and Merging Convolutional Network
with Homogeneous Filter Capsules,” ArXiv, vol. abs/2001.0, 2020.

[216] P. Simard, Y. Le Cun, and J. Denker, “Efficient Pattern Recognition Using a New Trans-
formation Distance,” in Advances in Neural Information Processing Systems 5, 1992, pp.
51–58.

148

https://github.com/hill-a/stable-baselines
http://yann.lecun.com/exdb/mnist/

	Introduction
	Machine Learning
	Interpretability in machine learning
	Problem statement

	Reinforcement learning
	Fundamentals
	The RL framework
	Markov decision process
	Value functions
	Exploration-exploitation trade-off
	Temporal difference
	On-policy
	Off-policy

	Policy-based RL
	Continuous input space

	Deep Reinforcement Learning
	Deep Learning
	Algorithms for Deep Reinforcement Learning
	Value-based DRL: Deep Q-learning
	Actor-Critic methods: A3C
	Policy-based DRL: Proximal Policy Optimization

	Explainable AI
	Motivations
	Use cases
	Performance-readability trade-off
	Taxonomy
	Conventional techniques
	Inherently interpretable model: decision trees
	Post-hoc representation: feature visualisation
	Additive explaining model: rule list

	Knowledge distillation
	Soft decision tree
	Training a SDT

	Adaptive Neural Tree
	Training an ANT

	Explainable Reinforcement Learning
	Transparent algorithms
	Post-hoc explainability
	Other literature

	Methods and setup
	Experimental setup
	Training and policy selection
	Knowledge distillation
	Analysis

	Network and policy architectures
	The Deep Q-value network
	The synchronous Actor-Critic model
	PPO parameters

	Models and adaptations
	Measuring complexity
	Prototype Framework
	Technical details
	Web interface

	Evaluation
	Motivation and goal
	Environment simulation
	OpenAI Gym
	Preprocessing for DRL
	Preprocessing for Neural Trees

	Experiments
	MNIST dataset
	Ms Pacman
	Enduro

	Results

	Conclusions
	Contributions
	Discussion
	Future work

	Graybox
	MNIST
	OpenAI Gym

