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Abstract

Speech synthesis, the artificial production of speech, is indispensable as assistive tech-
nology. Speech-generating devices help people with speech impairments communicate,
screen readers help people with visual and reading impairments understand, and virtual
assistants help many people live their daily lives.

Recent neural-based text-to-speech models are able to produce natural speech from
some input text. However, humans use speech to express more than what is written
down. Thus, many techniques have also been developed to make the synthesized speech
more expressive. These techniques model and control the prosody (intonation, stress,
and rhythm) of the synthesized speech. However, the controllability of these techniques
is still limited. On the one hand, many techniques only allow control over the global
style of the speech and do not allow fine-grained adjustments. On the other hand,
manipulating fine-grained prosody attributes in order to obtain a desired speaking style
is difficult.

The aim of this thesis is thus to create a model that can produce speech in a certain
speaking style, while also allowing local adjustments to the prosody of the generated
speech. To that end, ConEx, a novel model for controllable expressive speech synthesis, is
proposed. ConEx builds on the non-autoregressive architecture of FastSpeech, but adds
components to control and model prosody. In particular, a reference encoder is used to
learn global prosody embeddings, and a vector quantized variational autoencoder is
used to create fine-grained prosody embeddings. Furthermore, an autoregressive prior
model is trained over the fine-grained prosody embeddings. A new method to edit local
prosody is proposed, which uses the predictions from this prior model.

The controllability of the proposed model is evaluated on two datasets. Experiments
show that the model can indeed be used to control the global speaking style and change
the local prosody of the synthesized speech. However, the kind of dataset that is used
strongly influences the success of the control. Audio samples from the experiments are
available on the demo page1.

1https://bit.ly/conex-samples
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Samenvatting

Spraaksynthese, of het kunstmatig genereren van spraak, is onmisbaar als vorm van
assistieve technologie. Spraakcomputers helpen personen met een spraakbeperking,
schermlezers helpen personen met een visuele beperking of leesstoornissen, en virtuele
assistenten kunnen ons allemaal helpen.

Recente text-to-speech-modellen op basis van neurale netwerken slagen erin een tekst
om te zetten naar natuurlijke spraak. Menselijke spraak kan echter meer dan woorden
alleen uitdrukken. Daarom zijn er ook technieken ontwikkeld om meer expressieve
spraak te produceren. Deze technieken modelleren en controleren de prosodie (intona-
tie, klemtoon, en ritme) van de gesynthetiseerde spraak. Het niveau van controle over
de prosodie is echter beperkt bij deze technieken. Vele technieken kunnen enkel de
globale spreekstijl aanpassen en laten dus geen lokale wijzigingen toe. Er bestaan wel
technieken die de prosodie op een fijner niveau modelleren, maar daarbij is het dan
weer moeilijk om een bepaalde spreekstijl te bekomen.

Het doel van deze thesis is dus om een model te ontwerpen dat spraak in een bepaalde
stijl kan produceren en dat ook lokale prosodiewijzigingen toelaat. Het resultaat is
ConEx, een nieuw model voor controleerbare expressieve spraaksynthese. ConEx bouwt
verder op de niet-autoregressieve FastSpeech-architectuur en voegt componenten toe
om prosodie te modelleren en controleren. Zo gebruikt ConEx een reference encoder om
globale prosodie-embeddings te leren, en een vector quantized variational autoencoder
om prosodie-embeddings op foneemniveau te leren. Verder wordt er ook een autore-
gressief priormodel getraind op basis van de fijne prosodie-embeddings. Ten slotte,
wordt er een methode voorgesteld die de voorspellingen van dit priormodel gebruikt
om prosodie lokaal aan te passen.

Deze thesis gebruikt twee verschillende datasets om te evalueren hoe controleerbaar
het voorgestelde model is. Experimenten tonen aan dat het model in staat is om spraak
in een bepaalde spreekstijl te genereren, en dat de prosodie lokaal gewijzigd kan worden.
Welke dataset er gebruikt wordt, beïnvloedt echter sterk in welke mate beide aspecten
controleerbaar zijn. Audiofragmenten van de experimenten zijn beschikbaar op de
demo webpagina1.

1https://bit.ly/conex-samples
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Chapter 1

Introduction

1.1 Problem statement

Many great inventions have their origins in helping people with impairments. Pellegrino
Turri invented the typewriter for a blind friend, so she could write more legibly. Vint
Cerf helped create the email, as it allowed him and his wife, who both have hearing
impairments, to communicate more easily (Kuang and Fabricant, 2019). Similarly,
speech synthesis, which now powers the virtual assistants in our devices, has helped
people with disabilities for decades.

Speech synthesis technology gives a voice to people who can not speak, such as people
with severe speech impairments1 or people with nonverbal autism. Moreover, speech
synthesis is used in screen readers to help people with visual impairments and reading
disorders. The technology has improved greatly over the years, with the latest neural
network-based techniques generating highly natural speech.

Even with all the achieved progress, synthesized speech still does not match human
speech in many situations. One major problem is that speech synthesis systems often
generate dull, expressionless speech. Meanwhile, humans use expressive speech to
convey much more than words. We can express emotions, communicate our stance on
a topic, and even add additional meaning (e.g. irony) through our way of speaking. A
goal of current speech synthesis research is thus to give speech synthesis systems the
ability to produce more expressive speech. Furthermore, the expressive features of the
synthesized speech should also be controllable, so that the right meaning and emotion
can be expressed.

The key to expressive speech synthesis is to model and control the prosody of speech.
Prosody refers to the collection of musical aspects of speech, including intonation, stress,
and rhythm. Using prosody, speech can be produced with a desired speaking style in

1One of the most famous users of a speech-generating device was Stephen Hawking. He used the same
standalone voice synthesizer from 1988 until 2014, when it needed to be replaced. Even then he wanted to
keep the same voice, so Hawking’s assistants had to track down an employee of the company that made the
original synthesizer (which had gone out of business already) and emulate the original system (Medeiros,
2015).
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1.2. Contributions

order to convey the right emotion and meaning. Many techniques have been proposed
to model prosody, but controlling the prosody remains an issue in many systems. One
approach is to only model the global speaking style, but then it becomes impossible to
make fine-grained edits (such as emphasizing a word). Another approach is to model
and control prosody on a finer level. However, then it becomes difficult to manipulate
all of the fine-grained prosody attributes to obtain a desired speaking style.

1.2 Contributions

The aim of this thesis is to create a speech synthesis system that enables control over
the global speaking style of the generated speech, while also allowing local prosody
adjustments. To this end, a number of contributions are made:

• ConEx, a novel model for controllable expressive speech, is proposed. This model
extends FastSpeech (Ren et al., 2019), a state-of-the-art text-to-speech model.
Specifically, components are added to model and control prosody.

• A prosody encoder is developed to model both the global speaking style and the
prosody at a fine level. It consists of two parts. First, a reference encoder (Skerry-
Ryan et al., 2018) is used to capture the global speaking style of speech utterances.
Second, a vector quantized variational autoencoder (van den Oord et al., 2017) is
used to learn discrete fine-grained prosody embeddings.

• A new method for making local edits to the prosody of the synthesized speech is
introduced. This method allows a user to change the fine-grained prosody embed-
dings, and thus change the prosody locally, while still maintaining the naturalness
of the output speech. The method uses the predictions of an autoregressive prior
model trained over the fine-grained prosody embeddings (Sun et al., 2020).

• Experiments are carried out to evaluate the controllability of the proposed model.
The results on two datasets show that the model can indeed be used to control
the global speaking style and change the local prosody of the synthesized speech.
Limitations related to the datasets used and the proposed local prosody editing
technique are discussed.

1.3 Thesis outline

Chapter 2 gives an extensive overview of expressive speech synthesis. First, the problem
of mapping text to speech is detailed. The next section describes techniques that break
down the problem to make it easier to solve. Then, two early speech synthesis methods
are described, namely concatenative speech synthesis and statistical parametric speech
synthesis. Next, Tacotron and FastSpeech, two state-of-the-art neural text-to-speech
methods, are detailed. Finally, different techniques to model and control prosody are
described.

2



1.3. Thesis outline

In the next chapter (chapter 3), ConEx, a novel model for controllable expressive speech
synthesis, is proposed. First, the different components of the model are motivated. Next,
the model is positioned in relation to some related works. Then ConEx is detailed, with
a focus on the architecture, how the model is trained, how it can be used at inference,
and what capabilities it offers for controlling prosody. Finally, the implementation of
the model is briefly discussed.

Chapter 4 describes the different experiments carried out to validate the proposed model.
The training set-up (including the datasets used) and methodology are first described.
Then, the results of the initial experiment, which uses a simplified version of ConEx, are
described. Afterwards, the results of the experiments evaluating the complete ConEx
model are described. Both the level of control over the global speaking style and the
ability to make local prosody edits are assessed in these experiments.

3



Chapter 2

Background

This chapter introduces the problem of speech synthesis. It describes two existing
methods to make mapping text to speech easier. Next, it gives an overview of the different
techniques that were developed to solve the text-to-speech mapping problem. Special
attention is paid to current text-to-speech methods that use deep neural networks.
Finally, this chapter gives an overview of methods to model and control prosody, which
is the cornerstone of expressive speech synthesis.

2.1 The text-to-speech problem

The task of speech synthesis or text-to-speech (TTS) is to generate speech, in the form
of an acoustic waveform, from some input text. To solve this problem, a computer
program needs to know or learn the mapping between text on the one hand, and speech
represented as a waveform on the other hand. At inference, when a certain text is
input, the computer program uses that mapping to generate a speech utterance that
corresponds to the input text.

Mapping text to speech is a one-to-many mapping problem, as a text fragment can be
uttered in many different plausible ways. Intonation, stress, and rhythm can all vary
independently of the text content. These attributes are collectively referred to as prosody.
Speech synthesis systems need a way of modeling this prosody to solve the one-to-many
mapping problem1.

Moreover, by varying the prosody of an utterance, humans can convey information that
is not included in the text. This information can, for example, express the emotion of
the speaker, or can even change the meaning of the text drastically (e.g., in the case of
irony). Controlling prosody is thus highly desirable and is the key to more expressive
speech synthesis. Modeling and controlling prosody will be further detailed at the end
of this chapter.

1Allophones, the different phones that represent the same phoneme (see further), are another source
of variation when mapping text to speech, but this topic is out of scope of this work.

4



2.2. Easing the text-to-speech mapping problem

Figure 2.1: The components of a modern text-to-speech system.

2.2 Easing the text-to-speech mapping problem

Directly generating an acoustic waveform from text is challenging for a number of rea-
sons. One issue is that text does not always indicate how a word should be pronounced.
Another issue is that speech is represented digitally as tens of thousands samples per sec-
ond. Generating that many samples accurately can be challenging for a text-to-speech
system.

To solve these issues, text-to-speech systems typically consist of multiple different
components. Figure 2.1 shows the different steps in a modern text-to-speech system.
The text-to-phoneme conversion step can help with pronouncing text correctly, while
using spectrograms as intermediate features can help with the issue of having to generate
too many outputs per second. This section describes both solutions in more detail. The
remainder of the thesis will focus on the phoneme-to-spectrogram mapping.

2.2.1 Text-to-phoneme conversion

How humans write down language varies widely around the world, and has an impact
on how hard it is to map text to speech. Some languages like Chinese use logograms,
characters that represent entire words. These give very little information about the
pronunciation of the words they represent. Sound-based writing systems are closer to
speech, and are used by many languages such as English, Arabic and Japanese. However,
in some languages, like English, it is still hard to derive the correct pronunciation of a
word solely from the way it is written.

To more easily map text to speech, it is therefore often helpful to first convert the input
characters from standard alphabets to special characters from a phonetic alphabet. The
characters in such an alphabet represent phonemes or phones1– segments of speech
that represent distinct sounds. When using phonetic characters as the input to a speech
synthesis system, the sounds of the characters are thus already determined, which
makes generating speech easier.

1Phones and phonemes are actually somewhat different concepts. Phones and phonemes both repre-
sent the sounds speech is made up of, but a phone is only a phoneme when it can distinguish one word
from another. For example, in Spanish, the “v” and “b” are different phones, but not different phonemes,
as they can be used interchangeably. This thesis uses phonemes as the basic units of speech.

5



2.2. Easing the text-to-speech mapping problem

Figure 2.2: A mel spectrogram of the utterance “Performed by Catherine Byers”.

Converting text to phoneme sequences can be achieved using phonetic dictionaries,
rule-based algorithms, or more advanced machine learning methods. Dictionaries
alone do not solve the problem, since real-world text often contains words that are not
included in them (such as named entities or words with typos). Homographs can pose a
problem as well. These are words that are pronounced differently in different contexts;
e.g., “tear” in “I tear the paper” versus “a tear rolled down his face”. Nonetheless, text to
phoneme conversion is often used in text-to-speech systems.

It is important to note that it is still not trivial to map phonemes to actual waveforms, as
phonemes do not determine the prosody of an utterance. For example, a phoneme like
the /U/ in /gUd/ (“good”), can be uttered with a certain duration and at a certain pitch
depending on the context (e.g. when it is part of a question). Techniques for modeling
prosody are described at the end of this chapter.

2.2.2 Intermediate feature representation: the spectrogram

Speech is naturally an analog signal. Speech can be represented digitally by sampling
the amplitude of the speech signal a certain number of times per second (=the sampling
rate) and quantizing these samples (i.e., representing them as a number of bits). Typical
sampling rates are 16, 22.05, or 44.1 kHz for voice recordings. This means that a text-to-
speech system has to generate tens of thousands of output samples per second.

To deal with the complexity of generating that many samples, splitting the text-to-speech
system in two separate steps is often well worth the effort. In the first step, a TTS system
maps the input text/phonemes to a high-level intermediate feature representation of
the output speech. Secondly, a separate system takes this representation and maps it to
the samples that make up the final waveform.

A commonly used intermediate feature representation is the mel spectrogram. A spec-
trogram is a representation of an audio signal at lower time resolution than a waveform.

6



2.2. Easing the text-to-speech mapping problem

A spectrogram is a sequence of frames, each of which contains information on the dif-
ferent frequency components of a signal during a time step. For speech purposes, a mel
spectrogram is often used. This is a spectrogram that uses the mel scale – a frequency
scale that corresponds to human hearing (our hearing is not sensitive to all frequencies
equally). Figure 2.2 shows a mel spectrogram.

A vocoder is a system that converts these mel spectrograms to a waveform, which is
the final output of the speech synthesis process. mel spectrograms are coarser, more
compressed speech representations than waveforms, so it is not trivial to perform
this conversion. Algorithms such as the one introduced by Griffin and Lim (1984) are
commonly used to approximate this conversion. More recent vocoders use more sophis-
ticated learning techniques, such as deep neural networks. These can achieve better
performance, as they are specifically trained for processing speech data.

Why the spectrogram? (optional reading)

The goal of an intermediate representation is to contain the most relevant speech
information in a feature sequence that is as short as possible. This way, the TTS
model has to generate far fewer output values. This section tries to explain why
spectrograms are so widely used as an intermediate feature representation.

First, phonemes can be used to achieve a short feature sequence. The idea is to
represent a group of waveform samples (a frame) by the phoneme that is being
pronounced in those samples, as well as the prosody of that phoneme (how it
is pronounced). The frames should be small enough so that most frames only
contain one phoneme, but large enough, so that the frame sequence is short.

Figure 2.3: The spectrum of the vowel [ae]. Reprinted from Jurafsky and Martin (2009).

How can this phoneme-plus-prosody frame be represented so that a speech
synthesis system can use it? The answer is found in spectral analysis. Fourier
analysis shows that every wave can be decomposed as a sum of sinusoids of
different frequencies. The representation of those different frequencies and their
amplitudes is called the spectrum of a signal. It can be represented visually as a

7



2.3. Early speech synthesis methods

graph where the x -axis shows the frequency, and the y -axis shows the amplitude
of each frequency component (in dB). Figure 2.2.2 shows the spectrum of a frame
containing a vowel. The spectrum of a frame can be efficiently computed using
the Fast Fourier Transform algorithm.

The spectrum can now be used to represent a phoneme-plus-prosody frame. The
reason for this is that each phoneme has a characteristic spectral fingerprint. By
looking at the shape of the spectrum, the phoneme and the way the phoneme is
pronounced can be detected. Thus, we can represent the different frames of a
waveform as a series of coefficients, each containing the amplitude corresponding
to a certain frequency band (Jurafsky and Martin, 2009).

The sequence of frames of a waveform can now be represented by a spectrogram. A
spectrogram shows the spectrum (the frequencies and amplitudes) of each frame.
A spectrogram’s x -axis represents time in seconds, just like the waveform graph,
but the y -axis now represents the frequency in Hertz. To show the amplitude of
a frequency component of a frame, different colors are used.

2.3 Early speech synthesis methods

Many TTS methods have been developed over the years. Some approaches have tried
to model the human vocal tract in detail, while others have focused more on manip-
ulating waveform parameters to generate speech. A simple and successful technique,
concatenative synthesis, is described first. Then the statistical parametric models are
introduced, as they form the basis of modern techniques. Currently most research and
applications make use of deep neural networks to synthesize speech. Because of their
importance for this thesis, these modern methods are described extensively in the next
section (2.4).

2.3.1 Concatenative synthesis

Concatenative synthesis is perhaps the easiest paradigm to understand. At its core,
it tries to generate speech by stitching together prerecorded speech segments. The
segments can be recordings of one phoneme, two phonemes (diphone synthesis), or
longer segments with no fixed length (unit selection synthesis). Sometimes, there might
be different recordings corresponding to the same part of a text, to account for differences
in prosody.

One of the main drawbacks of this paradigm is that it can cause unnatural sounding
speech at the positions where two recordings are concatenated, although this can be
partly overcome by smoothing techniques. Another downside is that this technique
requires an extensive set of recordings of a single speaker to work, especially if recordings
of entire words are used instead of recordings of phonemes. These recordings are also
inflexible; if a different style of speech is desired, the whole recording process needs to
be redone.

8



2.4. Neural network-based TTS methods

Despite these shortcomings, concatenative speech synthesis has seen great success,
especially in applications within a specific domain, like weather reports or announce-
ments in airports or train stations. Even more advanced applications like Siri still use
concatenative approaches1.

2.3.2 Statistical parametric speech synthesis

To overcome some of the limitations associated with concatenative speech synthesis,
more flexible models were devised that try to learn the parameters used to synthesize
speech using extensive amounts of speech data. These parameters include the frequency
spectrum and duration associated with different phonemes. From the 1950s until the
1980s, researchers had already tried to generate speech using such features, resulting in
a paradigm called formant synthesis. However, lacking machine learning techniques,
they had to handcraft rules for these systems, which resulted in unnatural speech.

The emergence of Hidden Markov Models, which are generative sequential models,
allowed speech parameters to be learned from data. The resulting models are more
flexible than concatenative systems, as they are able to generate speech instead of using
pre-recorded speech segments. This also allows different speech characteristics to be
altered, without having to rerecord speech data. However, the generated speech is often
still less natural than speech created using a concatenative approach.

2.4 Neural network-based TTS methods

In recent years, speech synthesis has been greatly improved by using deep neural net-
works. The core idea of neural network-based TTS is to train neural networks end-to-end
on enormous amounts of raw data, i.e., on <text, audio> pairs. This way, handcrafted
features requiring domain expertise are no longer necessary. With enough data, the
neural networks learn the important features themselves. The resulting text-to-speech
systems are less brittle, as they have fewer independent components where errors can
compound.

The first neural-network based techniques for speech processing were introduced in
the 1990s2. While showing promising results early on, a lack of computational resources
meant these techniques could not compete with established techniques such as concate-
native synthesis. The advent of graphics processing units (GPUs) and APIs like CUDA
that made programming on GPUs more accessible, meant that deep neural networks
could be trained much more efficiently. This resulted in a true deep learning revolution
in the early 2010s, first in computer vision research, and later also in speech synthesis
research.

1With the introduction of iOS 11 in 2017, Apple launched a new version of Siri that uses unit selection
in combination with deep learning techniques (Capes et al., 2017).

2In fact, the first industrial application of deep learning was a system for speech recognition, developed
by SRI International and launched in 1996. This shows that the field of speech processing has been at the
frontier of deep learning for a long time.
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One early breakthrough in neural network-based TTS was WaveNet (van den Oord
et al., 2016), released by researchers at Google Deepmind in 2016. WaveNet is a deep
neural network that generates raw waveforms and can be used in a TTS system, by using
linguistic features as the input. Just one year after the WaveNet publication, Google
decided to use WaveNet instead of a concatenative synthesis technique for the voice of
Google Assistant, proving the practical use of the technique (van den Oord and Walters,
2017).

The last years have seen a staggering growth in the amount of research on neural network-
based TTS, both from academia and from “Big Tech” firms. Adoption in real-world
systems has also steadily increased. Next, two of the most important current speech
synthesis models, Tacotron (Wang et al., 2017) and FastSpeech (Ren et al., 2019), are
outlined and compared.

2.4.1 Tacotron

In an effort to move closer towards end-to-end speech synthesis, Google researchers
Wang et al. (2017) proposed Tacotron, a model that takes raw text as input and outputs
mel spectrograms1. While Tacotron does not generate raw waveforms, and thus is not
a complete end-to-end TTS model, vocoders can be used to bridge the gap from mel
spectrogram to waveform. These vocoders can even be trained jointly with Tacotron to
create a true end-to-end speech synthesis system2.

The architecture of Tacotron is based on the sequence-to-sequence (seq2seq) paradigm
(Sutskever et al., 2014). A seq2seq model learns the mapping between an input sequence
and an output sequence in two steps. First, the encoder creates a contextualized rep-
resentation of each input element (i.e. also taking the preceding input elements into
account). Then the decoder, transforms these representations into the output sequence,
which can be of another type than the input sequence. Tacotron uses a sequence of
characters as input and a sequence of mel spectrogram frames as output.

The encoder and decoder are neural networks. Typically, recurrent neural networks
(RNNs) are used, as they can model data sequences of variable length. Recurrent neural
networks have an internal memory state which they use to retain and use information
across multiple time steps. In particular, Tacotron uses gated recurrent units (GRUs)
(Cho et al., 2014) in its encoder and decoder layers. A GRU is a type of RNN that are
better at modeling long sequences1.

Even so, one input character typically still corresponds to many output mel spectrogram
frames. Thus, the decoder should know which of the encoded inputs it should use
to generate each output mel spectrogram frame. To achieve this, Tacotron uses an

1As discussed in section 2.2, using a mel spectrogram as the target of the TTS model reduces the number
of output elements the model needs to generate.

2Tacotron 2, an improved version of Tacotron, uses a WaveNet-based vocoder to achieve more natural
generated speech (Shen et al., 2018).

1Another popular type of recurrent neural network is the long short-term memory (LSTM) network
(Hochreiter and Schmidhuber, 1997). The GRU is a variant of the LSTM with fewer parameters, which
makes it faster to train.
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attention module (Bahdanau et al., 2014). This module learns the alignment between
the encoded character sequence and the output sequence. A downside of this is that
the learned alignment is sometimes imperfect, which can result in repeated or skipped
words.

Another important issue in TTS models is the one-to-many mapping problem. One
input text sequence corresponds to many plausible speech outputs, as the prosody is
not always determined by the text. A TTS model thus has to determine the prosody of
each phoneme, so that it results in a coherent speech output.

Tacotron eases this one-to-many mapping problem by conditioning an output mel
spectrogram frame on the previously generated mel spectrogram frames, i.e., Tacotron
has a autoregressive decoder. The previous frames can provide context to choose between
the many possible ways of uttering a certain phoneme. The downside of using such a
decoder, is that it can only output sequentially, and is thus very slow.

In conclusion, Tacotron is a seminal end-to-end TTS model, that generates mel spectro-
grams from characters. It is a seq2seq model with attention, consisting of a GRU-based
encoder, and an autoregressive decoder. The results Wang et al. produced with this
model, outperformed HMM-based techniques and set the bar for further neural network-
based TTS methods.

2.4.2 FastSpeech

FastSpeech is an important TTS model developed by researchers at Microsoft (Ren
et al., 2019) . It is used as the basis for the ConEx model, which will be proposed in the
next chapter. The authors of FastSpeech build on the work of Tacotron, but propose
a non-autoregressive architecture, which greatly improves the training and inference
speed. Furthermore, FastSpeech uses hard alignment to overcome the issue of skipped
or repeated words that can plague autoregressive models like Tacotron.

The fundamental building block powering FastSpeech is the Transformer architecture
(Vaswani et al., 2017). This architecture is used for both the encoder and decoder layers,
similar to the use of the GRUs in Tacotron. Because Transformers are feed-forward neural
networks (i.e. without recurrent connections), FastSpeech works in a non-autoregressive
manner. Outputs can thus be generated in parallel, as opposed to generating them one
by one when using autoregressive models. This allows FastSpeech to perform end-to-end
speech synthesis 38x faster than a similar autoregressive model.

As mentioned in the previous section, using an autoregressive decoder eases the one-to-
many mapping problem. A non-autoregressive model is not conditioned on the previous
output frames, and thus has difficulty in generating coherent speech. To solve this issue,
FastSpeech uses teacher-student knowledge distillation. Essentially, the authors first
trained an autoregressive (teacher) model and then trained their FastSpeech (student)
model to output the same mel spectrograms. Unfortunately, this makes training the
model complicated and slow, as two individual TTS models have to be trained.
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Figure 2.4: The architecture of FastSpeech. Reprinted from Ren et al. (2019)

In 2019, Ren et al. introduced FastSpeech 2, an improved version of FastSpeech. One
major change was the addition of pitch and energy information to ease the one-to-many
mapping problem. The decoder uses this information to generate speech with a certain
prosody. The model learns to predict the pitch and energy using the pitch and energy
extracted from the ground-truth utterances as targets. With this additional information,
it is no longer necessary to use knowledge distillation, thus greatly simplifying the
training process.

The FastSpeech architecture

This section gives an overview of the FastSpeech architecture, as many of its components
are used in ConEx, the model that will be proposed in this thesis. Each paragraph
corresponds to a part of figure 2.4, which shows the complete FastSpeech architecture.

(a) Feed-forward Transformer The FastSpeech architecture, which the authors call
the “feed-forward Transformer”, is based on the seq2seq architecture and is thus com-
posed of an encoder and a decoder. The encoder and decoder made up of multiple
feed-forward Transformer (FFT) blocks. The encoder takes a phoneme sequence as
its input, which makes mapping text to speech easier (see section 2.2.1). The decoder
outputs mel spectrogram frames. FastSpeech has a length regulator between the en-
coder and the decoder to deal with the length mismatch between the input and output
sequences.

(b) FFT block The feed-forward Transformer blocks are based on the Transformer
blocks from Vaswani et al. (2017). An FFT block consists of two sublayers. The first
sublayer is a multi-head self-attention mechanism, equal to the one in the original
Transformer architecture. This self-attention enables the encodings to take into ac-
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count the context. The second sublayer is a one-dimensional convolutional layer. Both
sublayers have residual connections and are normalized.

(c) Length regulator After the encoding is done, the length regulator stretches the
length of the encoded phonemes to match the length of the mel spectrogram output.
This is necessary to fix the length mismatch that occurs because one input phoneme
typically corresponds to many output mel spectrogram frames. At train time, the length
regulator uses the ground-truth durations of the phonemes. At inference time, it uses
the predicted phoneme durations output by the duration predictor.

Let Hp ho = [h1, h2, ..., hn ] denote the hidden sequence with length n , and let D = [d1,
d2, ..., dn ] denote the phoneme durations so that hi has length di . The durations are
expressed in the number of mel spectrogram frames (i.e., not in seconds). This means
that

∑n
i=1 di =m where m is the length of the complete output mel spectrogram. Fur-

thermore, the length regulator also has a hyperparameter α that can be used to control
the speech speed. Thus, the length regulator can be denoted as LR (Hp ho , D ,α) =Hme l

To match the durations, the length regulator simply has to copy the hidden state hi

bdi ·αe times, where be denotes rounding off. The length regulator thus outputs a vector

Hme l = [h1, h1, ..., h1
︸ ︷︷ ︸

bd1·αe

, h2, h2, ..., h2
︸ ︷︷ ︸

bd2·αe

, ..., hn , hn , ..., hn
︸ ︷︷ ︸

bdn ·αe

]

(d) Duration predictor When generating speech, the duration of each phoneme is not
known a priori. FastSpeech thus includes a module that predicts the durations D of the
phoneme latent sequence H . In the original paper, Ren et al. use phoneme durations
from the teacher model to train the duration predictor. The autoregressive teacher
model learns multiple possible alignment as in Tacotron, so only the best alignment is
used, which by and large avoids alignments that skip or repeat words. In FastSpeech 2,
durations are extracted from the ground-truth speech utterances, using the Montreal
forced aligner (McAuliffe et al., 2017).

The duration predictor architecture consists of two one-dimensional convolutional
layers. The output is then projected to output a scalar (the duration) in the logarithmic
domain. This is done to make the durations more Gaussian and thus easier to train.

2.5 Modeling and controlling prosody

Prosody refers to expressive aspects of speech, such as intonation, stress, and rhythm.
Prosody manifests itself in speech aspects such as pitch, energy, and phoneme duration.
Using prosody, speech can convey more than words; information such as (un)certainty,
speaker identity (gender, age, and dialect among others), and affective information
(emotions) can all be expressed. To make synthesized speech sound natural and con-
vey the appropriate meaning, prosody needs to be modeled and controlled in speech
synthesis systems.

The previous section already introduced the fact that for autoregressive models (such as
Tacotron), determining the right prosody is easier, as these models can reuse prosody
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Figure 2.5: Prosody information in a seq2seq TTS model.

information from previously generated outputs. However, these models still have to
determine the initial prosody. Furthermore, recent research has also led to successful
non-autoregressive models (such as FastSpeech), for which the prosody needs to be
determined for all output frames independently. Thus, dedicated components for
modeling prosody are needed.

A first approach might be infuse the text with all additional prosodic information, i.e., to
add prosody labels to the input. The effects of these additional labels would be learned
by the text-to-speech model, and changing the prosody labels could enable control over
the prosody at inference time. An example of a labeling scheme that could be used, is
ToBI (Silverman et al., 1992). However, such labels are expensive to acquire, and there
can be significant disagreement between human annotators.

Instead, prosody is typically extracted automatically from the ground-truth speech
fragments and used to train the system to produce the correct prosody. At inference
time (i.e., when generating speech), the prosody information can be generated by a
dedicated component or taken from a different audio fragment (style transfer). The
prosodic information can sometimes be controlled to obtain a certain speaking style or
to make local adjustments to the prosody.

Concretely, prosody information is typically added after the encoder in modern seq2seq
TTS models (shown in figure 2.5). This way, the decoder is conditioned on the phonemes
and the prosody, and can learn to generate speech in the given prosody. To input
prosodic information, a fitting representation needs to be found, and the level at which
to represent prosody needs to be chosen. The next section describes the different levels
prosody can be represented at.

Furthermore, there are two main ways of representing prosody as features for use in
speech synthesis systems. The first is to use handcrafted prosodic features, based on the
knowledge of domain experts. Section 2.5.2 details this approach and gives an example of
a TTS model using this technique. Another option is to use neural-based representations,
which are learned during the training of the TTS model. Section 2.5.3 describes four
neural-based techniques for learning such representations, each time using a concrete
architecture as an example. Finally, this chapter describes the limitations of techniques
to model and control prosody.
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2.5.1 Prosody level

Prosody can be represented at different levels:

• At the utterance level, the global speaking style can be represented. This can
include aspects such as emotion, overall pitch, rhythm and energy of an utterance
and the variation in pitch and energy. Techniques using global prosody represen-
tations include those introduced by Skerry-Ryan et al. (2018); Wang et al. (2018);
Zhang et al. (2018); Hsu et al. (2018); Elias et al. (2020)

• At phoneme level, local prosodic aspects can be represented, such as the duration,
pitch and loudness of a single phoneme. The fine-grained representations can be
used to make local edits, such as emphasizing a certain phoneme. Fine-grained
representations are used in Lee and Kim (2018); Ren et al. (2020); Sun et al. (2020);
Elias et al. (2020), among others.

• Some researchers have proposed prosody representations at the syllable level,
as they state that “syllables are considered as the primary carrier of important
prosodic events like tone and stress” (Zhang et al., 2020).

• Finally, hierarchical approaches have seen increasing attention in research on
expressive speech synthesis. In these systems fine-grained representations are
typically conditioned on coarser representations. Hierarchical representations
are proposed by Sun et al. (2020); Chien and Lee (2021), among others.

2.5.2 Handcrafted prosodic features

Prosody can be modeled using attributes that are designed by domain experts. Even
though there is no definitive list of prosodic variables, pitch, loudness, and rhythm are
seen as the most characteristic attributes (Jurafsky and Martin, 2009). Acoustically, these
variables are closely related to fundamental frequency (F0)1, energy, and (phoneme)
duration, respectively. These variables can be modeled explicitly in a TTS system to
provide the necessary prosody information.

The advantage of using handcrafted prosodic features (such as pitch, loudness, and
duration) is that their effects are clear, i.e., the variables are interpretable. However, a
downside it is not easy to use these variables to create a desired prosodic effect. In order
to obtain a desired prosody, the variables sometimes have be combined in complex
ways and thus requires some domain expertise.

Handcrafted prosodic features have been used in the Tacotron architecture (Raitio et al.,
2020)2. FastSpeech 2 also makes use of these variables. The optional section below
details how these variables are used in the FastSpeech 2 architecture.

1When humans speak at a certain pitch, their vocal folds (or vocal cords informally) vibrate at a certain
frequency. This frequency is called the fundamental frequency, abbreviated as F0.

2Raitio et al. (2020) also model the timbre (or voice quality) in an utterance using the spectral tilt
variable.
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FastSpeech 2 (optional reading)

The original FastSpeech model (Ren et al., 2019) used knowledge distillation to
ease the one-to-many problem, but this created a cumbersome training process.
In the next version of the model, FastSpeech 2 (Ren et al., 2020), this knowledge
distillation step is removed. Instead, FastSpeech 2 models two prosodic features
– F0 and energy – directly. In both FastSpeech versions, the phoneme duration is
also modeled directly using the duration predictor.

Architecture FastSpeech 2 models pitch and loudness (or energy) in a similar
way to phoneme duration. Each feature has its own predictor neural network,
which consists of two one-dimensional convolutional layers. Both predictors
take the phoneme embedding sequence as input. The pitch predictor outputs a
pitch spectrogram frame per output frame, while the energy predictor outputs
the energy level for each frame. The pitch and energy information is added to
the phoneme embeddings after they have been stretched by the length regulator
(see section 2.4.2), i.e. prosody information is used at frame-level3.

Training To train the TTS model, the F0 and energy values of the ground-truth
speech utterances are used. These are extracted from the speech utterances in
a preprocessing step. To train the pitch and energy predictors, the phoneme
embedding sequence is input, and the loss between the predicted outputs and
the ground-truth prosody values is calculated.

Inference When generating speech, F0 and energy is predicted using the phoneme
embeddings, and this information is used by the decoder to synthesize speech at
the right pitch and with the right energy level.

Controllability The predicted F0, energy, and durations can be tweaked at in-
ference time to obtain an utterance with different prosody. There is extensive
research on the effects of pitch, loudness, and duration on prosody and adjust-
ments can thus be made to achieve various speaking styles. Nevertheless, tweak-
ing these parameters to get the desired prosody is still difficult, as mentioned
before. While Ren et al. did not show this kind of controllability in their paper,
Łańcucki (2021) shows that pitch can be controlled well through an intuitive user
interface. Łańcucki developed this interface for FastPitch, a TTS model similar to
FastSpeech 2.

FastPitch (Łańcucki, 2021), a model based on FastSpeech that was developed at the same time
as FastSpeech 2, uses phoneme-level prosody information.

2.5.3 Neural prosody embeddings

Another approach to modeling prosody is to have a neural network learn a representation
of prosody. Such a prosody encoder network takes a speech fragment as its input and
outputs an embedding which represents the prosody in that fragment. The embeddings
should be sufficiently small/compressed, so that they only represent general prosodic
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Figure 2.6: A TTS model with a prosody encoder that learns global prosody embeddings (top), or fine-
grained phoneme-level prosody embeddings (bottom).

features which occur in many utterances. This representation or embedding can then
be added to the phoneme embeddings created by the TTS encoder. The decoder can
then use these phoneme and prosody embeddings to generate speech with a certain
prosody. Figure 2.6 shows a TTS model architecture that uses a neural prosody encoder.

Mathematically, the goal is to discover the hidden or latent factors in speech that ex-
plain the variance due to prosody. Together, these latent factors can be seen as a high-
dimensional space, with each dimension of this space representing a latent factor. A
single prosody embedding is a point in this high-dimensional embedding space. If the
embedding space is smooth, then similar embeddings are close to each other in the
space. In the case of prosody embeddings, this means that points close to an embedding
can also be used to generate speech with similar prosody. Figure 2.7 shows an example
of a smooth embeddings space.

This section first discusses four neural-based prosody modeling techniques. The first
two, the reference encoder and global style tokens, seek to capture a single embedding
per utterance that captures prosodic information and other variance not explained by
the text input. Next, variational autoencoders are discussed, which are used for learning
smooth embeddings spaces. Finally, vector-quantized variational autoencoders are
detailed. These learn discrete embeddings, as opposed to the continuous embeddings
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Figure 2.7: A smooth embedding space visualized in 2D. Different speaking styles can form clusters in this
embedding space. A certain prosody embedding corresponds to a point in the embedding space.

of VAEs.

Reference encoder

The reference encoder is an early architecture used to learn global prosody embeddings
(i.e., one embedding per utterance)1. It was introduced as an extension to Tacotron by
Skerry-Ryan et al. (2018) of the Google Tacotron team. The reference encoder is used
in the novel model that is presented in this work (see chapter 3) and is thus detailed in
what follows.

The authors define prosody as “the variation in speech signals that remains after ac-
counting for variation due to phonetics, speaker identity, and channel effects (i.e. the
recording environment).” Because prosody is independent of phonetics in this formula-
tion, the same prosody embedding can be used for different text inputs, thus enabling
style transfer.

Architecture The reference encoder takes a reference spectrogram as its input and
inputs a single fixed-length embedding. The reference encoder consists of six 2D con-
volutional layers to downsample the input spectrogram sequence and one GRU layer
to compress the downsampled sequence to a single embedding. This embedding is
concatenated with all phoneme embeddings, before they are passed to the attention
module of Tacotron.

Training The Tacotron TTS model and the reference encoder are trained simultane-
ously using the same loss. During training, the reference encoder uses the ground-truth
spectrogram frames as its input.

1A variant of the reference encoder which learns fine-grained prosody embeddings, was proposed by
Lee and Kim (2018)
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Inference At inference time, any reference audio fragment can be input to the refer-
ence encoder. The reference encoder will then generate an embedding that represents
the prosody of this reference audio, and the decoder will generate speech with the
prosody of the reference audio.

Controllability Prosody embeddings created with a reference encoder can be used for
style transfer. The style of a reference audio fragment can be copied to another text, thus
enabling a “say it like this” mechanism. However, the individual prosody embeddings
can not be tweaked to change the prosody, as the embedding space can be sparse. In
other words, changing a prosody embedding slightly does not result in slightly different
prosody, instead, the prosody might become unusable. Additionally, the authors note
that the learned embeddings do not fully succeed in disentangling prosody from the
content of a reference audio fragment. This means that style transfer works best between
utterances of similar length and structure (Wang and Skerry-Ryan, 2018).

Global style tokens

A team of Google researchers introduced Global Style Tokens (GSTs) to deal with the
limitations of the reference encoder (Wang et al., 2018). In particular, global style tokens
capture prosodic attributes, and are disentangled from actual audio content. This allows
for better style transfer. Furthermore, the tokens can manipulated directly to change
the global style. For example, scaling the tokens tunes the strength of their attributes
and combining tokens can create complex styles. In the optional section that follows,
the GST technique is further detailed.

Global style tokens in detail (optional reading)

Architecture A global style token layer is added on top of a reference encoder
(as introduced in the previous section). The global style token layer consists of
an attention module, which uses the generated reference embedding as a query
vector. The values which are being queried, are a fixed number of global style
tokens, and these are reused for all training sequences. The reference embedding
thus determines which style embeddings will be combined and how each of
them will be scaled to create the final style embedding. This embedding is added
to all phoneme embeddings, before they are passed to the attention module of
Tacotron.

Training The reference encoder again uses the ground-truth spectrogram frames
to generate a reference embedding. This embedding is used by the attention
module to take the weighted average of the style tokens most similar to the refer-
ence embedding. A fixed number of style tokens is used and kept in a bank. They
are all randomly initialized.
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Inference Similar to the style transfer with the reference encoder, it is again
possible to input a reference audio fragment to generate a reference embedding.
This embedding is used to get a weighted combination of the style tokens in the
bank. Alternatively, any combination of style tokens in the bank can also be used
directly as style embedding.

Controllability Style transfer can be performed to achieve a certain speaking
style. Wang et al. demonstrate in their experiments that GSTs can enable style
transfer even when the target utterance differs significantly from the utterance
that was used to generate the style embedding. Furthermore, GSTs can be scaled
and combined, which enables control over various prosodic attributes. One
caveat is that one style token does not correspond to a single attribute. Thus, to
interpret the exact effects of a certain style token, extensive testing needs to be
done. Lastly, the authors show that different style tokens can be used for different
parts of an utterance, thus enabling local style control.

Variational autoencoders

Autoencoders are neural networks that compress (encode) and reconstruct (decode)
data. Internally, they learn a compact representation of the data that captures the most
salient features of the data1. Variational autoencoders (VAEs) are autoencoders that
learn smooth latent spaces, i.e. similar compressed features are close to each other in
the learned latent space2. VAEs were introduced by Kingma and Welling (2014).

Variational autoencoders learn smooth embedding spaces by not learning point rep-
resentations of the input data, but by learning distributions in the latent space. These
distributions can then be sampled and the samples can be decoded to generate outputs.
This means that not only specific points can be decoded to generate meaningful data,
but also the surroundings, creating a smooth embedding space.

VAEs can be used to represent prosody at utterance level for global embeddings (Zhang
et al., 2018; Hsu et al., 2018; Elias et al., 2020), at phoneme level for fine-grained prosody
embeddings (Elias et al., 2020), or VAEs can be used in hierarchical models (Sun et al.,
2020). The model of Zhang et al. (2018) for global prosody embeddings is detailed in the
following section (optional reading).

A VAE for Tacotron 2 (optional reading)

Architecture Zhang et al. use the Tacotron 2 (Shen et al., 2018) TTS model and
extend the reference encoder architecture (Skerry-Ryan et al., 2018) to create
prosody embeddings. As such, the input spectrogram is first fed to the reference

1A reference encoder (section 2.5.3) can be seen as an autoencoder, with the reference encoder com-
pressing the spectrogram data, and the Tacotron decoder using this data to recreate spectrograms.

2As mentioned before, the embedding space learned by a reference encoder is not smooth.
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encoder to create a global embedding. This embedding is then passed through
two fully-connected layers which predict the mean and standard deviation of the
latent prosody distribution. A prosody embedding can then be sampled from
this distribution and can be concatenated with the phoneme embeddings and
can then be sent to the decoder.

Training The VAE is trained together with the Tacotron 2 model. It takes ground-
truth frames as input and outputs the mean and standard deviation of the prosody
embedding distribution. This distribution is then sampled to obtain a prosody
embedding, which can be passed to the Tacotron decoder. When training VAEs,
it sometimes occurs that the decoder largely ignores the VAE output, and the VAE
thus does not learn the variation in the data. This issue is called posterior collapse
(van den Oord et al., 2017). Special training schemes can be used to prevent it,
although it still presents a major challenge when working with VAEs.

Inference At inference, similar to the reference encoder, any reference audio
fragment can be input. Then we obtain a distribution for the prosody embedding,
which can be sampled to obtain different (but similar) prosodic variations.

Controllability Style transfer can be achieved in a similar way to the process
using the reference encoder. One difference is that the learned distribution needs
to be sampled now, and thus multiple variations on the same style can be created.
The smooth embedding space created by the VAE also enables the change of
a sampled prosody embedding along its many dimensions. Changing these
dimensions can change attributes such as pitch and speaking rate, among others.
Not all dimensions lead to interpretable changes, however. Lastly, interpolation
between different prosody embeddings is also possible. The authors found that
their VAE technique outperformed the global style token technique (Wang et al.,
2018), which offers similar control over the prosody.

Vector quantized variational autoencoders

van den Oord et al. (2017) introduced a kind of variational autoencoder for learning
discrete representations, which they called the vector quantized variational autoen-
coder (VQ-VAE). The authors argue that discrete representations are a natural fit for
many problems (such as language, which is inherently discrete) and show that discrete
learned representations can perform as well as continuous representations. Further-
more, quantizing the embedding solves the posterior collapse issue that plagues normal
VAEs.

VQ-VAEs can be used in expressive TTS to encode prosody. A VQ-VAE keeps a fixed
number of different discrete embeddings in a codebook1, which are used when quantiz-

1These discrete embeddings are thus similar to the collection of global style tokens (Wang et al., 2018).
However, in Wang et al.‘s approach, multiple GSTs are combined to create the final prosody representation.
As such, these GST embeddings are not truly discrete, unlike the discrete representations learned by
VQ-VAEs (Henter et al., 2018).
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ing the inputs. When encoding prosody, these discrete embeddings represent different
prosodic phenomena.

There are a number of reasons for why discrete embeddings might be a good way to
represent prosody. First, discrete representations could make prosody easier to control,
as the discrete embeddings could represent different prosodic phenomena that can be
enabled or disabled. The effects of the different dimensions of continuous embeddings
on the contrary, are hard to interpret. Furthermore, Zhang et al. (2020) remark that
“[the] discrete representation of prosody is also found to be more suitable for describing
human perception”. Lastly, Sun et al. (2020) found that “using a quantized representation
improves the naturalness over audio samples generated from the continuous latent
space, while still ensuring reasonable diversity”.

Sun et al. (2020) use a VQ-VAE to learn fine-grained phoneme-level prosody embeddings,
Zhang et al. (2020) use it to learn syllable-level embeddings and Chien and Lee (2021)
propose a hierarchical architecture based on the VQ-VAE. The approach of Sun et al.
(2020) is detailed further, as the ConEx model, which will be introduced in next chapter,
also uses a VQ-VAE for learning fine-grained prosody embeddings.

Architecture The architecture proposed by Sun et al. (2020) extends the Tacotron
2 architecture (Shen et al., 2018). To obtain fine-grained prosody embeddings (i.e.,
one embedding per phoneme), the input spectrogram first has to be aligned with the
phoneme embedding sequence. This is done using an attention mechanism. The
aligned inputs are encoded. These encodings are then quantized by replacing them with
the closest embedding from the codebook. This process is called vector quantization.
These quantized embeddings are then concatenated with the phoneme embeddings,
after which they can be used by the decoder to generate a spectrogram.

Furthermore, a separate autoregressive prior (AR) network is used to predict the discrete
prosody embeddings from the phoneme embeddings, as there is no spectrogram to run
at inference time. This AR prior consists of a single-layer LSTM with a softmax activa-
tion function, to obtain a categorical distribution over the different discrete prosody
embeddings.

Training The VQ-VAE and Tacotron 2 are trained jointly. Ground-truth spectrograms
are used to create the fine-grained prosody embeddings, as explained above. The AR
prior is trained afterwards, using the phoneme embeddings as input and the prosody
embeddings generated from the ground-truth spectrograms as targets.

Inference When generating speech, the AR prior directly predicts the prosody embed-
dings from the phoneme embeddings created by the Tacotron encoder. Alternatively, a
reference spectrogram can also be input to the VQ-VAE for style transfer.

Controllability Style transfer with fine-grained phoneme embeddings only makes
sense using an input audio fragment that has the same content as the text of the speech
to be synthesized. This is because the input audio fragment needs to be aligned with the
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2.5. Modeling and controlling prosody

phoneme embeddings. However, controllability over the prosody can also be achieved
using the AR prior. Individual prosody embeddings can be swapped out, and since the
prior is autoregressive, the rest of the phonemes can be predicted using this swapped
prosody embedding, which could lead to more consistent prosody. However, Sun et al.
do not perform such experiments. Zhang et al. (2020) do evaluate the control by swap-
ping their syllable-level prosody embeddings and find that it leads to interpretable
changes in local prosody.

2.5.4 Limitations

There exist several limitations to current techniques for modeling and controlling
prosody in speech synthesis systems. These are the focus of current research, includ-
ing this work. This section gives an overview of the most important, and gives some
proposed solutions.

Disentangling prosody from speaker and channel characteristics

Many prosodic characteristics such as overall pitch, timbre, and pitch range, are tied to
how a specific person speaks. In expressive speech synthesis, these personal character-
istics are of lesser interest, as they do not convey any extra meaning. Furthermore, there
are also other channel characteristics (such as background noise and speech distortion)
that can influence prosody embeddings.

To solve this issue, Skerry-Ryan et al. (2018) condition the decoder on the embedding
obtained by the reference encoder, but also on a speaker embedding. However, they find
that prosody and speaker representations are still entangled. For example, the prosody
representation seems to encode pitch in an absolute manner. Williams and King (2019)
proposed two autoencoders with different objective functions to disentangle speaker
characteristics from style.

Interpreting prosody embeddings

When using neural prosody embeddings, it is hard to interpret what effect the differ-
ent dimensions of the embedding space have on perceived prosody. Sometimes, a
dimension has effect on multiple prosodic attributes. This was, for example, discovered
in the global style tokens system (Wang et al., 2018), where a single token sometimes
represented a mixture of attributes. Hsu et al. (2018) show that a VAE can be used to
learn more independent prosody factors.

Even when the factors learn independent prosodic attributes, it is still necessary to
manually evaluate the effect factor. This is the case because there is guarantee that the
same factors will be learned when retraining the model. Furthermore, evaluating the
effect can be a time-consuming process, depending on how many dimensions or style
tokens are used. The evaluation is also subjective, as prosodic effects are hard to define
precisely.
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2.5. Modeling and controlling prosody

Obtaining a desired prosody

In order to obtain a desired prosody, two general approaches are available:

1. Generate speech in a certain global speaking style. This style can be obtained from
a reference speech clip, or from a set of existing style embeddings (which have to
be interpreted, see above). Small adjustments can only be made by generating
multiple versions of the same speech. The generated speech with the desired
prosody can then be selected, although there are no guarantees that the exact
right prosody will be generated.

2. Generate speech using fine-grained prosody features/embeddings. This means
the prosody has to be determined for each phoneme or syllable. Even when the
prosodic features are interpretable, it can still be a challenge to manipulate them
to obtain the desired prosody. For example, it can be hard to control these prosodic
variables in order to change the style of the speech or obtain a certain prosodic
phenomenon (such as stressing a word).

As mentioned before, hierarchical systems have been proposed (Sun et al., 2020; Chien
and Lee, 2021) to model prosody at different levels. However, the authors of these papers
have not shown how prosody can be controlled at different levels in an intuitive way.
This thus remains an important challenge for expressive speech synthesis.

Evaluating prosody modeling and control Since prosody can be subjective, it is hard
to define objective evaluation metrics. Often, research has to resort to listening tests
to evaluate expressive speech synthesis systems. These listening tests are expensive
and time-consuming to conduct. Skerry-Ryan et al. (2018) define objective metrics for
evaluating prosody transfer.
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Chapter 3

ConEx: Controllable Expressive
Speech Synthesis

Modeling and controlling prosody is necessary in order to synthesize expressive speech.
However, controlling prosody is still challenging in many current models. This work
thus proposes ConEx, a novel controllable model for expressive speech synthesis. Using
ConEx, the global speaking style of the synthesized speech can be controlled, and local
adjustments to the prosody of the generated speech can be made. To achieve this, ConEx
builds on the non-autoregressive FastSpeech architecture (Ren et al., 2019) and adds
components to model and control prosody.

In particular, ConEx utilizes a reference encoder (Skerry-Ryan et al., 2018) for modeling
the global speaking style, as well as a vector quantized variational autoencoder (van den
Oord et al., 2017) for creating fine-grained prosody embeddings. Furthermore, an au-
toregressive prior model is trained over the fine-grained prosody embeddings. This
model predicts the fine-grained prosody embeddings at inference time, based on the
input phoneme sequence and the global speaking style.

This chapter first motivates the use of the different components in ConEx. Then, the
relationship between ConEx and other related works is described. Next, the complete
architecture of ConEx is detailed, focusing on the components that model and con-
trol prosody. Subsequently, the chapter details how to train ConEx, how to use the
model at inference, and how the model can be used to control prosody. Finally, the
implementation of ConEx is briefly described.

3.1 Motivation

Current expressive speech synthesis systems often use learned representations to model
and control prosody. Prosody can either be represented on a global level (i.e., using one
embedding per utterance), or on a local level (i.e., using one embedding per syllable
or phoneme). Global prosody embeddings can be used to generate speech in a certain
speaking style. Fine-grained prosody embeddings allow for local prosody control. ConEx
aims to use both representations to allow control over both global and local prosody.
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This section motivates the use of FastSpeech as the TTS architecture, as well as the use
of a reference encoder and a VQ-VAE for modeling and controlling prosody.

Use of FastSpeech

Most expressive speech synthesis research has been carried out using autoregressive
models such as Tacotron (Wang et al., 2017) (see section 2.5). However, non-auto-
regressive models such as FastSpeech (Ren et al., 2019) allow speech to be synthesized
many times faster. Moreover, non-autoregressive models have a greater need for prosody
modeling, as the one-to-many mapping problem cannot be eased by using informa-
tion from the previously generated outputs. Thus, ConEx introduces techniques to
model and control prosody to a non-autoregressive model. Concretely, the FastSpeech
architecture is used, since it achieves strong results and has openly available implemen-
tations. Building on an existing TTS architecture also facilitates adjusting or extending
the proposed architecture in the future.

Use of a VQ-VAE and reference encoder

Section 2.5.3 described the many neural-based techniques to learn prosody embeddings.
To learn global prosody embeddings, ConEx uses a reference encoder (Skerry-Ryan et al.,
2018). The reference encoder is a simple, yet useful technique to capture the global
speaking style. The reference encoder can be also used as the basis for a variational
autoencoder in the future, as demonstrated by Zhang et al. (2018).

To represent prosody at a fine level, ConEx uses discrete embeddings, as they are easier
to control and interpret. This is because the effect of a limited number of discrete
embeddings can easily be tested individually, which is not the case for continuous
embeddings1. An additional advantage is that a simple autoregressive prior network
can predict such discrete embeddings easily when generating speech. This AR prior
network also opens up further opportunities for editing prosody while maintaining a
consistent speaking style. This will be discussed further in section 3.6.

To learn discrete prosody embeddings, a vector quantized variational autoencoder
(van den Oord et al., 2017) is used. This is a powerful generative model which has shown
great results in modeling images, music and speech. Since it does not suffer from the
issue of posterior collapse, it is easier to train than a regular VAE. Furthermore, the
VQ-VAE also has a strong theoretical background, as demonstrated by Henter et al.
(2018).

3.2 Related works

Speech synthesis is a highly active research area with many researchers from academia
and technology advancing the state of the art continuously. As such, similar ideas often

1The use of discrete embeddings does not allow the combination and scaling of embeddings, as is
the case when using global style tokens (Wang et al., 2018). Combining and scaling style tokens can have
complex effects on prosody, which makes it harder to obtain a certain prosodic phenomenon.
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emerge simultaneously1. ConEx, the proposed model, shares some similarities with
recent works. This section details these similarities and differences between ConEx and
these related works.

• Sun et al. (2020) introduced the idea of using a VQ-VAE to learn discrete fine-
grained prosody embeddings. Furthermore, the authors also showed that an
autoregressive prior can be trained to predict these discrete embeddings at in-
ference time. ConEx also uses a VQ-VAE and an autoregressive prior. However,
their work uses the autoregressive Tacotron 2 architecture and is thus slower than
ConEx. Furthermore, their model does not provide a way to control the global
speaking style. Lastly, the authors did not publish experiments on controlling
prosody, while controllability is the main focus of ConEx.

• At the end of 2020, researchers from the Tacotron team introduced Parallel Tacotron,
a non-autoregressive model similar to FastSpeech (Elias et al., 2020). The model
uses a variational autoencoder to capture the prosody and ease the one-to-many
mapping problem. The learned prosody embeddings are thus continuous, in
contrast to the discrete embeddings that ConEx learns. Elias et al. experimented
with both a global VAE and with a fine-grained phoneme level VAE. However, they
did not combine these VAEs. The authors also did not show how prosody can be
controlled with their model. Instead, more emphasis was put on the quality of the
synthesized speech.

• Sun et al. (2020) proposed a hierarchical VAE model that operates on utterance,
word, and phoneme level to achieve multilevel control of prosody. Their prosody
modeling scheme is added to the autoregressive Tacotron 2 architecture. The
VAE produces continuous latent embeddings. They showed that these embed-
dings could be used to control prosody on word and phoneme level. In particular,
they employed a training scheme so that the dimensions of the prosody embed-
dings correspond to energy, duration, and F0. ConEx aims to achieve fine-grained
prosody control by employing discrete prosody embeddings, which could rep-
resent different prosodic phenomena. Furthermore, ConEx aims to control the
global speaking style, which is something Sun et al. did not cover in their research.

• Lastly, Chien and Lee (2021) extended the FastSpeech architecture with different
prosody modeling components. For neural-based prosody embeddings, they
employed a VQ-VAE. Furthermore, they also introduced a hierarchical model
that uses word and phoneme-level prosody embeddings for natural-sounding,
accurate prosody. Their work does not include global style modeling. Furthermore,
the authors also do not experiment with controlling the prosody using the discrete
prosody embeddings. Instead, they introduce multiple methods for predicting
the prosody automatically using the input text.

1Note that many of these related works were published during the development of this thesis.
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3.3. Model architecture

Figure 3.1: The complete architecture of ConEx.

3.3 Model architecture

This section gives an overview of the ConEx architecture. The architecture largely follows
the FastSpeech structure from the original paper by Ren et al. (2019). However, ConEx
adds a residual encoder after the encoder and uses the duration predictor introduced
in FastSpeech 2 (Ren et al., 2020). Figure 3.1 depicts the complete ConEx architecture.
Appendix A contains an overview of all the hyperparameters of the proposed model.

3.3.1 TTS components

Encoder & decoder The encoder and decoder each consist of four FFT blocks as in
FastSpeech (see section 2.4.2). The encoder converts an input phoneme sequence to
a sequence of hidden phoneme embeddings. The decoder transforms a sequence of
embeddings to output mel spectrogram frames.

Duration predictor & length regulator The length regulator overcomes the length
mismatch between the input phoneme sequence and the output mel spectrogram by
duplicating the phoneme embeddings according to their durations. These durations
are learned by the duration predictor.

3.3.2 Prosody encoder

ConEx introduces a prosody encoder consisting of two components: a reference encoder
and a VQ-VAE. The reference encoder aims to capture the global speaking style, while
the VQ-VAE creates quantized fine-grained prosody embeddings. These fine-grained
embeddings can be used to control the local prosody.
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Reference encoder

The goal of the reference encoder is to represent the speaking style of an entire utterance
in a single fixed-length vector. The reference encoder in ConEx is based on the reference
encoder by Skerry-Ryan et al. (2018). The reference encoder takes a mel spectrogram as
its input and outputs a continuous global prosody embedding.

The global reference encoder consists of two 2D convolutional layers, one GRU layer,
and a final projection. The convolutional layers use a kernel size of 3 and are each
followed by a rectified linear unit (ReLU) activation function. These layers downsample
the input mel spectrogram. The GRU layer transforms the downsampled sequence into
a single embedding. To integrate the global prosody embedding with the phoneme
embeddings, the prosody embedding is first projected to match the dimensionality of
the phoneme embeddings. Finally, the prosody embedding is added to all phoneme
embeddings.

Quantized fine-grained prosody encoder

To capture prosody at the phoneme level, ConEx employs another encoder. This fine-
grained prosody encoder uses a VQ-VAE to learn discrete fine-grained embeddings.
Such a prosody encoder was first introduced by Sun et al. (2020), but ConEx more closely
follows the implementation of Chien and Lee (2021). The fine-grained encoder takes a
mel spectrogram as input and outputs one discrete prosody embedding per phoneme
embedding.

The fine-grained prosody encoder consists of two 2D convolutional layers, an alignment
layer, two linear projection layers, a vector quantization layer, and then a final projection.
The convolutional layers are shared with the global reference encoder and thus have the
same hyperparameters.

The convolutional layers first downsample the input mel spectrogram frames. The
alignment layer then aligns these to the phoneme embedding sequence, so that there is
one prosody embedding per phoneme embedding. This is achieved through phoneme-
wise mean pooling, i.e., all downsampled mel spectrogram frames that correspond to a
certain phoneme embedding are averaged together. Then, two linear projection layers
followed by ReLU activation functions map the hiddens to a latent 3D space.

Next, vector quantization (VQ) is performed, following van den Oord et al. (2017). Figure
3.2 shows this vector quantization process. The VQ-VAE contains a fixed number of
3D discrete embeddings in a codebook. These codebook embeddings are randomly
initialized and then updated during training. To quantize the latent sequence obtained
after the projection, each latent from the sequence is replaced by the closest embedding
from the codebook. Denote the latent sequence by z , the latent representation corre-
sponding to the n th phoneme by z n , and an embedding from the codebook by e k . The
index of the closest embedding is then found by computing:

k = argmin j ‖z n − e j ‖2
2 (3.1)
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3.3. Model architecture

Figure 3.2: The vector quantization process. The purple arrow indicates the copying of the gradients during
training, as described in the next section. Figure based on Sun et al. (2020).

Lastly, the final projection layer maps the 3D discrete embeddings to the dimension-
ality of the phoneme embeddings, and the fine-grained embeddings are added to the
phoneme embeddings.

Autoregressive prior

When generating speech for an unseen phoneme sequence, a ground-truth mel spec-
trogram is not available. Thus, the reference encoder and fine-grained prosody encoder
cannot be used directly. Instead, an existing global prosody embedding is used to deter-
mine the speaking style of the generated speech. However, local prosody embeddings
cannot simply be transferred to different phoneme sequences, as the local prosody is
linked to the phonemes.

To solve this issue, an autoregressive prior model is added to ConEx. This component
predicts the fine-grained prosody embeddings from the new phoneme sequence and
the given global prosody embedding. It is also autoregressive, i.e., it uses the previously
predicted prosody embeddings to generate the next one. This helps the generate more
coherent prosody.

Why is this model called a “prior”? (optional reading)

Altosaar (2016) shows that generating data such as speech can be viewed proba-
bilistically as follows:

1. Model a probability distribution over certain variables of interest: p (x ).
2. Sample the distribution to generate plausible values for the modeled vari-

ables: x i ∼ p (x ).
Let x denote the variables of interest and p (x ) their distribution. For example, if
x represents mel spectrogram variables, then p (x ) can be sampled to generate
mel spectrogram frames.

Generative models with latent variables do not model p (x ) directly, but instead
model joint probability distribution of observed variables x and some latent
variables z , i.e. they model p (x , z ). This joint distribution can be written as
p (x , z ) = p (x |z )p (z ). p (x |z ) is called the likelihood and p (z ) is called the prior.
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Now data can now be generated as follows:

1. Model the likelihood and prior probability distributions.

2. Sample z i ∼ p (z ).

3. Sample x i ∼ p (x |z = z i ) from the likelihood conditioned on the sampled
z i .

A VQ-VAE is a generative model with discrete latent variables. The likelihood is
parametrized by the decoder. The prior is taken to be fixed during training and
can be parametrized by a prior model.

The autoregressive prior consists of a single LSTM layer and a linear projection layer.
The prior takes the phoneme embeddings with the added global prosody embedding
as input. For every phoneme embedding, it outputs a categorical distribution over the
quantized fine-grained prosody embeddings in the codebook. The fine-grained prosody
embeddings are then again transformed to the dimensionality of the phoneme hiddens
by the linear projection layer.

3.4 Training

The training procedure for ConEx has two steps: First, the TTS model is trained jointly
with the duration predictor, the reference encoder, and the fine-grained prosody encoder.
Second, the autoregressive prior is trained. This section details how the two steps are
carried out.

3.4.1 Training the TTS model and prosody encoder

In the first training step, the FastSpeech encoder takes a phoneme sequence and the
corresponding phoneme durations as input and produces phoneme embeddings. The
reference encoder and fine-grained prosody encoder take the ground-truth mel spectro-
gram as input. The fine-grained prosody encoder also uses the phoneme durations to
align the input with the phoneme embeddings. The output global prosody embedding
and fine-grained embeddings are added to the phoneme embeddings. The duration
predictor uses these integrated embeddings to predict the duration of each phoneme.
However, this predicted duration is not used by the length regulator during training.
Instead, the ground-truth duration is used. Finally, the expanded embeddings are
transformed to mel spectrogram frames by the decoder.

To update the weights of the ConEx model during training, a loss needs to be backprop-
agated. The target of the TTS model is the ground-truth mel spectrogram. As such, the
mean absolute error (MAE) or L1 loss is calculated between the generated and ground-
truth mel spectrogram. This loss is used to update the parameters of the encoder, the
decoder, the reference encoder, and the fine-grained encoder. However, the fine-grained
encoder contains a vector quantization layer, and there is no real gradient defined for
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equation 3.1. To overcome this, the gradients of the decoder are simply copied to before
the VQ layer, as is done by van den Oord et al. (2017). The copied gradients are shown in
figure 3.2.

This still leaves the issue of training the VQ layer, as the method above simply copies the
gradients as if the VQ layer were not there. Thus, to update the quantized embeddings
in the codebook, a separate VQ loss is used, as proposed by van den Oord et al. (2017).
This loss consists of two components: a quantization loss and a commitment loss. The
quantization loss pushes the quantized embeddings towards the latent vectors before
the VQ layer. The commitment loss conversely pushes the latent vectors closer to the
quantized embeddings, to ensure that the embedding space does not expand too fast.
The VQ loss is computed for a sequence of N latent vectors as:

LVQ =
N
∑

n=1

�

‖sg [z n ]− en ‖2
2+β ‖z n − sg [en ]

2
2 ‖
�

(3.2)

where sg [·] represents the stop gradient operator, which ensures that its operand is
not updated (i.e. turning it into a constant during backpropagation). The first term in
equation 3.2 is the quantization loss and the second term is the commitment loss. The
hyperparameter β controls the importance of the commitment loss. ConEx uses a low
value of β = 0.05.

Finally, to train the duration predictor, a separate mean squared error (MSE) or L2 loss is
used. This error is calculated between the ground-truth phoneme durations and the
predicted phoneme durations.

3.4.2 Training the autoregressive prior model

In the second training step, the autoregressive prior model is added and only the weights
of this prior model are updated. The AR prior model takes the phoneme embeddings in-
tegrated with a global prosody embedding as input. The quantized fine-grained prosody
embeddings, generated during the first training step, are used as the targets of the AR
prior model. An MSE loss is calculated between the target fine-grained prosody embed-
dings and the predicted fine-grained prosody embeddings. This loss is backpropagated
through the LSTM to update the weights of the prior model.

3.5 Inference

To generate speech, two inputs are needed: a phoneme sequence and a global prosody
embedding. The phoneme sequence determines the content of the output speech and
the global prosody embedding determines the speaking style of the output speech. The
global prosody embedding can be input directly, or a mel spectrogram can be input
to the reference encoder to obtain a global prosody embedding. Figure 3.3 shows the
architecture during inference.

First, the FastSpeech encoder transforms the phoneme sequence into a sequence of
phoneme embeddings. Then the global prosody embedding is added to all phoneme
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Figure 3.3: The ConEx architecture at inference time. The global prosody embedding can be input di-
rectly or can be generated by the reference encoder (see 3.3.2). The quantized embeddings are predicted
autoregressively by the LSTM.

embeddings. If a mel spectrogram is input instead of a global prosody embedding, then
the reference encoder first transforms this mel spectrogram to a global prosody embed-
ding (after which it is added to the phoneme embeddings). Next, the autoregressive
prior model takes these integrated embeddings and generates fine-grained prosody
embeddings one by one1. These are added to the integrated embeddings. The duration
predictor uses these embeddings to predict the duration for each embedding in the
sequence. Then the length regulator copies the embeddings according to the predicted
durations. Finally, the decoder transforms the embeddings to output mel spectrogram
frames.

3.6 Controllability

The aim of ConEx is to obtain control over the global speaking style and the local prosody
of synthesized speech. This section details how this controllability is achieved through.
It describes the use of the global prosody embedding to achieve control over the speaking
style, and the use of the autoregressive prior to make adjustments to the local prosody
of the generated utterance.

3.6.1 Controlling the global speaking style

As described above, a global prosody embedding is required to generate speech for a
new phoneme sequence. This global prosody embedding can be obtained by choosing

1Note that the fine-grained prosody encoder is never used during inference.
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Figure 3.4: The process of generating speech in a certain style. The image on the left shows a t-SNE
visualization of the global prosody embeddings learned from the Will dataset. The user selected a point in
the blue cluster. Next, the user provided an input text (which was converted to phonemes) and selected the
speed (controlled by alpha). Next, an output sample was produced using the input text and the selected
prosody embedding.

a global prosody embedding from one of the training utterances (since they were gener-
ated during training). In this case, the style from the training utterance is transferred
to the newly generated utterance. Alternatively, a new speech fragment1 that was not
included in the dataset can also be used. In that case, the reference encoder first creates
a global prosody embedding from the new speech fragment’s mel spectrogram. The
generated speech will then have the speaking style of the speech fragment.

To facilitate choosing a suitable global prosody embedding, the global prosody embed-
dings generated during training can be visualized in a t-SNE plot2 (van der Maaten and
Hinton, 2008). Depending on the different speaking styles in the dataset, t-SNE typically
shows some clusters of similar prosody embeddings. These clusters can then be used to
choose similar, or completely different, speaking styles. Figure 3.4 shows this process
for the Will dataset (which will be introduced in 4.1.1).

3.6.2 Making local prosody adjustments

The autoregressive prior is used to generate the quantized fine-grained prosody embed-
dings during inference. One fine-grained prosody embedding represents the prosody
of a single phoneme. By changing the fine-grained prosody embeddings, the prosody
can be changed locally. This section describes a novel method to make edits to the local

1A mel spectrogram suffices, i.e. a corresponding phoneme sequence is not necessary.
2t-distributed Stochastic Neighbor Embedding (t-SNE) is a dimensionality reduction technique that can

be used to visualize high-dimensional vectors (such as embeddings) by mapping them (in a non-linear
manner) to 2D/3D points. The technique aims to display similar vectors close to each other and dissimilar
vectors far away from each other, thus typically creating clusters of similar vectors.
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Figure 3.5: Controlling local prosody using the fine-grained embeddings predicted by the autoregres-
sive prior model. Once a prosody embedding is selected from the top-k options, the following prosody
embeddings are predicted autoregressively.

prosody. This method uses the predictions of the autoregressive prior model to alter the
fine-grained prosody embeddings.

The fine-grained prosody embeddings are discrete, so they cannot be scaled or combined.
To change the prosody, the individual embeddings instead have to be swapped out
for other embeddings. This means that to obtain a desired prosody, the effect of the
quantized embeddings in the codebook on the perceived prosody has to be known.
Interpreting the quantized embeddings is impractical and time-consuming, and is only
possible with a limited codebook size. Furthermore, swapping the fine-grained prosody
embeddings for random embeddings could also hurt the naturalness of the utterance
as a whole, since the chosen prosody embedding might not fit in.

Instead, the predictions of the autoregressive prior model can be used to swap fine-
grained embeddings. As detailed before, this model outputs a categorical distributions
over the different embeddings in the codebook. Normally, the most probable embedding
would be used. To control the prosody, however, a user can choose any of the top-k
predictions. This embedding is then used by the prior model to predict the next fine-
grained embeddings, as the prior model is autoregressive. k can be set depending on
how many different prosody options are desired. There exists a trade-off for this choice,
as using a large k offers more diverse options, at a cost of possible reduced naturalness.

Figure 3.5 shows how the process of choosing a new fine-grained embedding works. First,
the AR prior generates a complete fine-grained embedding sequence. This sequence is
used to generate the first output speech. If the prosody of a certain phoneme has to be
changed, the categorical distribution predicted by the AR prior model for that phoneme
is used to show k options. When choosing an option, the rest of the fine-grained prosody
embedding sequence is generated autoregressively. This sequence can then be decoded
to speech again. The fine-grained prosody embeddings before the altered phoneme
remain unchanged. Since generating speech using the proposed architecture is fast, this
process allows local adjustments to prosody to be carried out relatively quickly. Figure
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Figure 3.6: A user interface for making edits to the local prosody. The boxes show the indices of the three
best fine-grained prosody embeddings (as predicted by the AR prior model). The user changed the prosody
of phoneme 6 by clicking on a different embedding. The remainder of the prosody embedding sequence
was then predicted autoregressively, and a new speech sample was generated.

3.6 shows a user selecting a different fine-grained embedding for a phoneme using the
novel method.

3.7 Implementation

Successfully implementing a deep neural network is no mean feat, as modern neural
network architectures can be highly complex and contain many components. All of
these components need to be carefully implemented so that they use the right inputs
and produce a correctly shaped output. Since neural networks operate on vectors, the
inputs and outputs can be difficult to comprehend and debug. Furthermore, the flow of
the loss signal through the network also needs to be considered, as this signal is used to
update the model parameters, i.e. to train the model. Lastly, training neural networks
requires large amounts of data, and thus also entails complicated pipelines to collect,
transform, and utilize that data for training and evaluation.

Luckily, several mature frameworks for machine learning exist and make implementing
neural networks more manageable. Frameworks such as PyTorch1 and Tensorflow2

provide high-level APIs to create and train neural networks. Basic neural network com-
ponents such as projection layers, but also LSTMs, are included in these frameworks.
Furthermore, these frameworks also offer automatic differentiation engines, which can
automatically compute the gradients necessary to update the model parameters.

The ConEx model introduced in this chapter was implemented in Python using PyTorch
(Paszke et al., 2019). Furthermore, it was implemented as an addition to ESPnet, an
open-source speech processing toolkit (Hayashi et al., 2020). The implementation of

1http://pytorch.org/
2https://www.tensorflow.org/
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the FastSpeech encoder, decoder, and length regulator was adapted from the implemen-
tation of FastSpeech in ESPnet. The implementation of the vector quantization layer is
based on an open source PyTorch implementation by Subramanian (2020).

That being said, the model was not implemented in one go. Instead, it was developed
iteratively by starting from the ESPnet FastSpeech implementation and progressively
adding components to model and control prosody. For example, first only a global
prosody encoder was implemented in the model. 4.3 describes this earlier iteration of
ConEx, as it is used for an initial experiment on the use of a VQ-VAE for global prosody
embeddings. The iterative process allowed some of the basic model components (such
as the VQ-VAE) to be implemented and tested before other more advanced components
were added.

Other than the model itself, the user interface described in section 3.6.1 and 3.6.2 was im-
plemented in a Jupyter notebook1. This interface can be used to generate speech for any
input text, while controlling the global speaking style and the local prosody. Addition-
ally, a data pipeline was implemented using Python and Bash scripting. This pipeline
allows ConEx to be trained using the datasets introduced in section 4.1.1. This proved
challenging, as for example the phoneme durations had to be transformed and adapted,
without any documentation. Finally, all the experiments were also implemented in
Python, mostly in Jupyter notebooks.

3.8 Conclusion

This chapter introduced ConEx, a new neural network-based model for controllable
expressive speech synthesis. Using ConEx, speech can be generated in a certain speaking
style and the prosody of the generated speech can be adjusted locally. ConEx thus aims to
solve the issue of controlling both global style and local prosody, as these both contribute
to expressive speech.

ConEx is based on the non-autoregressive FastSpeech(Ren et al., 2019) architecture, but
adds a prosody encoder that explicitly models prosody. The prosody encoder of ConEx
consists of a reference encoder (modeled after Skerry-Ryan et al. (2018)) which encodes
the global style, and a vector quantized variational autoencoder (inspired by (Sun et al.,
2020)) which creates quantized fine-grained prosody embeddings. Both components
use ground-truth mel spectrograms as inputs. The prosody encoder and the FastSpeech
components are trained jointly.

When generating speech, ConEx takes a phoneme sequence and a global style embed-
ding as inputs. The global embedding can be obtained from any reference speech clip.
This global embedding thus enables control over the global speaking style. The fine-
grained prosody embeddings, however, cannot be obtained from any reference clip,
since the fine-grained embeddings are linked to the phonemes. Instead, a separate net-
work, called the autoregressive prior, predicts the fine-grained embeddings at inference

1https://jupyter.org/
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time. It is trained using the phoneme embeddings and global style embedding as inputs
and the prosody embeddings from the VQ-VAE as targets.

To make adjustments to the local prosody of an utterance, the fine-grained prosody
embeddings can be manipulated. The autoregressive prior model outputs the most
probable fine-grained prosody embeddings for each phoneme. Instead of choosing
the most probable embedding, any embedding of the top-k embeddings can be used,
thus changing the prosody locally. The following prosody embeddings are generated
autoregressively, and should thus ensure that the output speech is still consistent and
natural.

The proposed model was implemented as an extension to ESPnet, a popular speech
processing toolkit. It was implemented in Python using the PyTorch machine learning
framework. Furthermore, a data pipeline and user interface for controlling the prosody
were also implemented.
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Chapter 4

Experiments

This chapter details the experiments that were carried out to test the ConEx architecture
proposed in the previous chapter. In particular, this chapter aims to evaluate if the
proposed architecture can be used to control the global speaking style and to make local
adjustments to the prosody of the generated speech. Furthermore, this chapter also
describes an initial experiment that was conducted using a simplified version of the
architecture. This initial experiment evaluates the use of a VQ-VAE for learning prosody
embeddings.

To conduct experiments on a TTS model, the model first needs to be trained. This
chapter first describes the training set-up and the datasets used. Next the methodology
and the evaluation metrics are discussed. Then the initial experiment using a simplified
architecture is described and the results are discussed. Finally, two experiments are
conducted on the complete ConEx architecture. The first experiment gauges the ability
to control the global speaking style by performing style transfer. The second experiment
aims to evaluate if fine-grained prosody embeddings allow control over the local prosody,
in the way described in section 3.6.

4.1 Training set-up

This section first describes the two datasets used in the experiments and relevant training
details. Then, the section details the hardware used to train the models.

4.1.1 Datasets

To train a deep neural network like ConEx, a great deal of training data is needed. Since
this work is limited to single-speaker TTS, datasets containing a few dozen hours of
speech recordings are necessary. For the different experiments described in this chapter,
two different single-speaker datasets were used.

The first speech dataset is a proprietary dataset provided by Acapela Group. The dataset
consists of 23.5 hours of speech data in US English. To obtain this data, a professional
voice actor (Will) recorded 13686 utterances in one of seven styles. Of the seven styles, six
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were used for the experiments: normal, happy, sad, old man, villain, and from afar/loud.
In what follows, this dataset will be referred to as the “Will dataset”.

The second dataset is the often-used 2013 Blizzard Challenge dataset (King and Karaiskos,
2013). This dataset consists of 147 hours of speech data taken from 49 audiobooks
narrated by Catherine Byers. Since the recordings come from narrations of classic
novels, the utterances are highly expressive. However, the dataset does not include any
additional style, prosody, or genre annotations.

For all experiments, phonemes were used as input to the encoder instead of characters.
This is done to disambiguate the pronunciation of the input words and ease the text-
to-speech mapping problem (see section 2.2.1). Acapela Group provided the software
needed to convert text to phonemes.

In addition to this software, Acapela Group also provided the durations of the phonemes
in the recordings. These durations are used to train the model’s duration predictor as
well as align the ground-truth mel spectrogram to the phoneme embeddings for learning
fine-grained prosody embeddings.

Before training the models, the datasets were first split into three distinct sets: a training,
validation, and test set. The <phoneme, audio> pairs in the training set were used to
train the model. The validation set was used to track the performance of a model during
training and to choose the best versions of the model. Finally, the test set (also called
the holdout set) contains examples that were only used for evaluation purposes after
training.

4.1.2 Training details

All models used for the experiments were trained for 400.000 steps. Training one model
takes 42-48 hours using the hardware described in the next section. The Adam optimizer
(Kingma and Ba, 2014) was used (β1 = 0.9, β2 = 0.999, and ε= 10−4) with the learning
rate schedule described in Vaswani et al. (2017).

As detailed in section 3.4.2, the autoregressive prior model should not be trained together
with the TTS architecture. Instead, it was trained after the TTS model for 25.000 steps.
The same optimizer and learning schedule were used. This process took around 3h30
on the hardware described in the next section.

As explained in section 2.5.3, VQ-VAEs do not suffer from the posterior collapse issue,
which plagues regular VAEs. However, another problem occurred when training the
VQ-VAE in the ConEx model. The number of active prosody embeddings collapsed on
multiple occasions, as shown in figure 4.1. This issue, called index collapse (Kaiser et al.,
2018), can occur when an embedding is close to many encoder outputs initially. In that
case, the VQ loss will push the encoder outputs even closer to this embedding and the
embedding closer to the outputs. This feedback loop causes only a limited number of
discrete embeddings to represent the data, resulting in an underused latent space.

To combat this issue, Kaiser et al. (2018) proposed decomposing the encoder outputs.
However, such a method was not used in this work. Instead, by initializing the em-
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Figure 4.1: Index collapse occurring during training of the VQ-VAE in ConEx on three separate occasions.
The perplexity metric indicates how many embeddings are active on average.

Figure 4.2: The perplexity during VQ-VAE training with the embeddings initialized close to the initial
encoder outputs.

beddings using a normal distribution close to the initial encoder outputs, the issue of
index collapse was prevented. The result was that around 8 embeddings were active on
average for the validation set, as shown in figure 4.2.

4.1.3 Hardware

Training deep neural networks requires a powerful GPU. The resources and services
used in this work were provided by the VSC (Flemish Supercomputer Center), funded by
the Research Foundation - Flanders (FWO) and the Flemish Government. Concretely, a
single NVIDIA P100 GPU (SXM2 at 1.3 GHz with 16 GB GDDR) GPU was used to train
the models.

Generating speech using the model does not require a GPU or special powerful hardware.
Thus, an Intel Core i73610QM CPU (at 2.3 GHz with 4 cores and 8GB RAM) was used for
generating speech for the various experiments.

4.2 Methodology & evaluation

The main aim of the experiments is to evaluate the controllability of the proposed model,
i.e., whether the global speaking style and the local prosody can be controlled. Two
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kinds of experiments are conducted: global style transfer experiments and local prosody
control experiments. This section discusses the methodology behind these experiments,
and how they will be evaluated.

4.2.1 Global style transfer

The goal of style or prosody transfer is to generate a speech utterance in the style of a
reference speech utterance using a latent representation of the reference utterance. The
text of the generated utterance and the reference utterance do not have to match. The
latent representation is a global, fixed-length vector and represents a certain speaking
style.

To evaluate style transfer, two speech outputs, X and Y , are generated. Speech sample X
is generated conditioned on the style embedding from a reference utterance A. Speech
sample Y is a baseline speech utterance not conditioned on the style embedding. Then
the style transfer can be evaluated by comparing the two speech outputs to the reference
utterance. If the style transfer was successful, then X should be more similar to A than
Y . The similarity can either be measured objectively or subjectively.

Objective measures for evaluating style transfer have been proposed by Skerry-Ryan et al.
(2018) and Tits (2020). Skerry-Ryan et al. adapt metrics from general audio processing
to measure differences1 in properties relating to prosody, and Tits proposes additional
objective measures. In this work, the Mel Cepstral Distortion (MCD) and the F0 MSE are
used.

Mel Cepstral Distortion This metric, originally introduced by Kubichek (1993), is a
measure of the difference between two speech samples. It is defined in terms of the mel
frequency cepstral coefficients (MFCCs) of the speech samples. It is computed as:

MCD=
1

T

T−1
∑

t=0

√

√

√

√

K
∑

k=1

(ct ,k − c ′t ,k )2

where ct ,k , c ′t ,k are the k th MFCCs of the t th frame of the two speech samples. The first
coefficient (ct ,0) is skipped.

F0 Mean Squared Error This metric measures the distance between the F0-contours
of two speech samples. It is defined as:

F0 MSE=
1

T

T−1
∑

t=0

(F0 t − F ′0 t )
2

These metrics directly compare corresponding MFCCs and F0 values respectively. This
implies that the speech sequences being compared have to be of the same length. In the

1When using metrics that measure the difference between the reference utterance and the generated
utterance, then successful style transfer means that the difference between X and A is smaller than the
difference between Y and A.
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case of comparing a generated speech sequence to a reference speech sequence, this
requirement is not met. The speech sequences thus have to be aligned before calculating
the metrics.

To align the sequences, Dynamic Time Warping (DTW) can be used. However, aligning
the sequences changes the phoneme durations and thus the rhythm of the speech. This
means that the metrics can not show if the rhythm of the generated speech sample
matches the reference speech utterance.

Style transfer can also be evaluated subjectively by conducting a listening test. A listening
test for style transfer is usually structured as a AX Y discrimination test, as proposed by
Skerry-Ryan et al. (2018). This entails that the human taking the test has to choose if the
style of speech sample X is more similar to the reference A, or if Y is closer. Usually, a 5
or 7-point scale is used to obtain finer results. Conducting such a listening test is out of
scope of this work, as it is costly to conduct properly.

4.2.2 Control over local prosody

In the second kind of experiment, the aim is to evaluate the level of control over local
prosody. To evaluate this, different qualitative tests are carried out, whereby the effects
of changing the fine-grained prosody embeddings are analyzed. This approach is similar
to the controllability experiments carried out by Sun et al. (2020); Zhang et al. (2020).

In ConEx, local prosodic information is encoded in the fine-grained (phoneme-level)
prosody embeddings, which are generated by the autoregressive prior model at inference
time. These fine-grained prosody embeddings can be swapped to change the prosody,
as described in section 3.6.2. The tests aim to answer three questions relating to this
procedure:

• Can the fine-grained prosody embeddings be swapped to obtain the desired local
prosody?

• How local are the effects of changing a fine-grained prosody embedding?

• How diverse are the top-k embeddings proposed by the AR prior model?

Furthermore, the effect of the AR prior model on the prosody is also tested by comparing
it against a random sampling scheme. This test aims to determine if the AR prior
model can learn to predict the fine-grained prosody embeddings, such that the resulting
speech sounds natural. The test should also offer insight into the effect of the different
fine-grained prosody embeddings, as the random sampling scheme can also generate
embeddings that are not natural for a certain sentence.

Quantitative results could additionally be obtained by labeling the prosody of a test utter-
ance before and after a change, and seeing if the desired effect was achieved. However,
as mentioned in section 2.5, it is not easy to label prosody completely. Even complex
prosody labeling systems still suffer from inter-annotator disagreement, because human
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Figure 4.3: Architecture of the global prosody embedding model.

annotators can perceive and interpret prosodic phenomena differently. The experiments
thus do not use any ground-truth prosody labels for evaluation.

Lastly, a subjective listening experiment could be carried out, as is common in speech
synthesis research. However, most listening tests evaluate the naturalness of the gen-
erated outputs (Sun et al., 2020; Zhang et al., 2020), while controllability is of greater
interest in this work. Thus, a listening experiment is not conducted in this work.

4.3 Initial experiment results

The section details the set-up and results of the initial experiment, which used a simpli-
fied version of ConEx. This experiment is a stepping stone to the experiments on the
proposed ConEx architecture in the next section. First, this simplified architecture is
described and then the results of the experiment are discussed.

The aim of the initial experiment was to assess whether a vector quantized variational au-
toencoder (introduced in section 2.5.3) could be used to learn global style embeddings,
and if these embeddings could be used for global style transfer. The Will dataset (de-
scribed in section 4.1.1), was used, as the six distinct speaking styles make it well-suited
for evaluating the learned global prosody embeddings and global style transfer.

Simplified model architecture

This experiment did not use the full ConEx architecture described in section 3.3. Instead,
only a single VQ-VAE was used to encode the prosody globally. Figure 4.3 shows this
simplified architecture. Implementing this simplified architecture first, proved to be
valuable for the development of the complete ConEx model.

The architecture of the global prosody encoder is similar to that of the reference encoder
(Skerry-Ryan et al., 2018), but includes a vector quantization layer. This layer acts as a
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Figure 4.4: t-SNE visualization of the global prosody embeddings and the different speaking style they
represent. Left: the embeddings after 12 hours of training. Right: the embeddings after the training was
completed (after 42 hours).

bottleneck for the information that can flow from the ground-truth mel spectrogram to
the decoder.

The global prosody encoder consists of 6 one-dimensional convolutional layers with 128
hidden channels, a kernel size of 4, and a stride of 2, followed by one 1-D convolutional
layer with 64 channels, a kernel size of 3, and a stride of 1. After this, the downsampled
mel spectrogram frames are quantized using a codebook of 32 vectors with 64 dimen-
sions. Finally, a 64-width GRU layer is used to compress the sequence of quantized
latents to a fixed-length prosody embedding.

Qualitative results

First, the learned global prosody embeddings are inspected visually by using a t-SNE
visualizations. Figure 4.4 shows a t-SNE visualization of the learned embeddings during
and after training. After 12 hours of training, the embeddings could differentiate between
three of the six speaking styles in the dataset; the old, sad, and villain utterances already
appear in different clusters in the t-SNE visualization. After the training was completed,
all of the six speaking styles in the dataset are separated into their own clusters in the
t-SNE plot with minimal overlap.

Next, to evaluate the model outputs, random examples from the holdout dataset were
used to generate speech utterances. The Griffin-Lim algorithm (Griffin and Lim, 1984)
was used as the vocoder. For this test, the model used the ground-truth audio to create
the global prosody embedding. Thus, the prosody of the generated utterances should
match the prosody of the original utterances. Generated speech samples confirm that
the model can indeed reproduce the different speaking styles. Readers are encouraged
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Figure 4.5: Mel spectrograms with F0 contours for the sentence “She was a cheerleader and played the
saxophone” in the six distinct speaking styles of the Will dataset. The mel spectrograms were generated
using the simplified model.

to listen to these audio samples on the demo page1.

To evaluate if these learned embeddings allow for global style transfer, speech utterances
were generated using the same phoneme sequence and six different prosody embed-
dings. The prosody embeddings were chosen to be good representatives for one of the
six speaking styles. The mel spectrograms generated by the model were converted to
waveforms using a pretrained parallel WaveGAN vocoder (Yamamoto et al., 2020). The
vocoder was trained on the LibriTTS corpus (Zen et al., 2019) by Tomoki Hayashi2 3.

1https://bit.ly/conex-samples
2https://github.com/kan-bayashi/ParallelWaveGAN
3Because the vocoder was trained on a different corpus than the TTS model, the voices sound a little

distorted and some artifacts are audible in the generated utterances. However, the speech still sounds
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Speaking style Mean MCD (↓) Mean F0 MSE (↓)
AX AY AX AY

Happy 3.74 3.60 7274.82 7562.63
Loud 5.13 6.14 6559.18 8024.88
Old 3.55 3.85 4653.62 6001.33
Sad 4.45 4.56 3506.03 5627.45
Villain 3.84 3.75 3202.86 6014.79

Table 4.1: Mean MCD and mean F0 MSE values for the difference between the samples generated using a
global prosody embedding and the reference sample (AX ) and the difference between baseline samples
and the reference sample (AY ). The samples were generated using the simplified model trained on the Will
dataset.

The demo page shows the results of this style transfer test for the phrase “She was a
cheerleader and played the saxophone”. Listening to the audio samples reveals that the
six styles are transferred well. The ‘happy’ style is the least distinct style, but this is also
the case in the reference audio samples.

Figure 4.5 shows the mel spectrogram and F0 or pitch contour of the six generated speech
samples shown on the demo page. The figure clearly shows that the sad, old, and villain
speaking styles cause the phonemes to be much longer. The pitch also changes between
the samples; the normal and happy speaking style have a large pitch range, the old and
villain samples have a low pitch, and the sad speaking style’s pitch always bends down
at the end of a word. Finally, the energy also differs between the speaking styles; the
figure shows that the loud utterance retains a high energy level throughout the clip1.

Quantitative results

To evaluate global style transfer quantitatively, an objective AXY test was carried out as
described in section 4.2.1. In particular, five global prosody embeddings were extracted
from reference samples (the A’s), each representing a different speaking style. Speech
samples (the Y ’s) were generated using all of the input phoneme sequences in the hold-
out set combined with the extracted global prosody embeddings. The baseline set (the
Y ’s) consisted of all of the input phoneme sequences in the hold-out set mapped to
speech with a normal speaking style.

Table 4.1 shows the results of the AXY objective test using the simplified model. All
utterances generated using a global style embedding, except for the happy and villain
utterances, score better than the baseline on both metrics. These results thus indicate
that the simplified model is capable of transferring the style of a reference utterance to
the generated speech, by using a global prosody embedding.

The higher MCD value for happy utterance is likely due to the fact that the happy style
is very similar to the baseline normal style. Because of this, the MFCCs of the normal
baseline is closer to the MFCCs of the reference happy utterance on average. This is

more natural than when using the Griffin-Lim algorithm.
1The energy or loudness is marked by the colors, with a lighter color representing more energy.
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also supported figure 4.4, as both styles are very close and even have some overlap in
the t-SNE visualization. The MCD value for villain is more surprising, since the F0 MSE
seems to indicate that the pitch is predicted very well. This could indicate that the
energy of the villain utterances is not transferred well.

4.4 ConEx experiments results

This section describes the results of the experiments carried out using the ConEx model
architecture. Both the Will and Blizzard dataset (described in section 4.1.1), were used
in the experiments. As mentioned before, the main goal is to assess the controllability
ConEx offers.

The proposed architecture uses global prosody embeddings to enable control over the
global speaking style. Specifically, style transfer can be performed to change the global
speaking style. Thus, this section first describes the qualitative and quantitative results
of style transfer experiments.

ConEx also uses an autoregressive prior model to predict fine-grained prosody embed-
dings when generating speech. The sequence of fine-grained embeddings can be altered
as described in 3.6.2. Thus, after the style transfer experiments, the results of using this
local prosody control method are described.

4.4.1 Global style transfer

Qualitative results

Figure 4.6: t-SNE visualization of the global prosody embeddings learned from the Will dataset. The colors
indicate the different speaking styles in the Will dataset. Left: the embeddings after 6 hours of training.
Right: the embeddings after the training was completed (after 48 hours).

Figure 4.6 shows a t-SNE visualization for the learned global prosody embeddings when
training ConEx on the Will dataset. The styles in the Will dataset were separated into one
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Figure 4.7: t-SNE visualization of the global prosody embeddings learned from the Blizzard dataset (after
the training was completed). The six global prosody embeddings that were chosen for the style transfer
experiments are marked in different colors.

or more clusters per different speaking style in the dataset. What is more, this separation
occurred earlier during training than when training the simplified model. There is also
fewer overlap between styles.

Figure 4.7 shows the same figure, but when the ConEx model was trained on the Blizzard
dataset. This dataset does not contain distinct labeled speaking styles, and thus, the
figure can not be colored according to speaking styles. The t-SNE visualization shows
no distinct clusters, which indicates that the global speaking styles in the dataset are
not very distinct.

As in the initial experiment, the next test consists of comparing the generated samples
with the ground-truth samples. For this test, the global and fine-grained embeddings
are extracted from the ground-truth mel spectrograms. As such, the prosody of the
generated samples should match the prosody of the ground-truth sample precisely.
Listening to some random generated samples, confirms that the model successfully
encoded the global speaking style and the fine-grained prosody, both when trained on
the Will dataset and on the Blizzard dataset.

To evaluate the global style transfer qualitatively, speech samples were generated in the
style of some reference samples. To do so, the global style embeddings of the reference
samples were used. For the Will dataset, one global prosody embedding was chosen
per speaking style in the dataset (six in total). For the Blizzard dataset, six reference
utterances with distinctive prosody were chosen manually. Figure 4.7 shows the chosen
global prosody embeddings in the 2D t-SNE space. The distances between the points in
the t-SNE plot correspond largely to subjective listening experience, as style 2, 3, and 4
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indeed sound the most alike.

Three input sentences were mapped to speech in the different styles. A parallel Wave-
GAN vocoder (Yamamoto et al., 2020), pre-trained on the LibriTTS corpus (Zen et al.,
2019)/footnoteThe LibriTTS corpus consists of many speakers, both male and female,
and can thus be used as the vocoder for the Will and the Blizzard dataset. However,
since the exact voices of Will and Catherine Byers are not included in the dataset, the
generated audio samples distort their voices., was used. The resulting audio samples
are included on the demo page.

Listening to the audio samples reveals that the distinct speaking styles of the Will dataset
were all transferred well. The chosen styles were also transferred when using the Blizzard
dataset, but not as well as the speaking styles of the Will dataset. Styles 4, 5, and 6 can
be recognized well in the generated samples, but style 1, 2, and 3 sound rather alike
and miss some of the characteristics of the reference samples. In particular, it appears
that the speaking rate and rhythm do not seem to be transferred. This is for example
apparent for style 2, which is fast and agitated, while the generated samples are not.

The results for the test phrase “She was a cheerleader and played the saxophone” are
visualized in figure 4.8 and 4.9 for the Will and the Blizzard dataset, respectively. The
figures show the mel spectrograms and the F0 contours. Note that the pitch contours
are rather noisy and thus hard to analyze.

The mel spectrograms of the different styles in the Will dataset resemble the mel spec-
trograms from the initial results strongly (see figure 4.5). The same prosodic patterns
can be noted. For the Blizzard dataset, variations in the pitch contours and phoneme
durations can be noted, although it is harder to discern specific styles visually, as they
are less distinct compared to the speaking styles in the Will dataset

Quantitative results

Finally, an objective AXY test was carried out to evaluate global style transfer with the
ConEx model. Tables 4.2 and 4.3 show the mean MCD and F0 MSE values. For both
datasets, the results show that the samples generated using the global prosody em-
bedding are closer to the reference sample than the baseline samples (created using a
neutral style).

The only exception is the F0 MSE for the fourth style for the Blizzard dataset, although
the mean MCD is significantly smaller. These good results further indicate that the
problems noted in the qualitative analysis for the Blizzard dataset are due to phoneme
durations, as the durations are altered by DTW (see section 4.2.1).

4.4.2 Fine-grained prosody control

This section describes the experiments that were carried out to evaluate fine-grained
prosody control with the ConEx model. Specifically, section 3.6.2 introduced a new
method for editing local prosody by choosing fine-grained prosody embeddings from
the outputs of the autoregressive prior. This section first evaluates the AR prior and
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Figure 4.8: Mel spectrograms with F0 contours for the sentence “She was a cheerleader and played the
saxophone” in the distinct speaking styles of the Will dataset. The mel spectrograms were generated using
the ConEx model.
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Figure 4.9: Mel spectrograms with F0 contours for the sentence “She was a cheerleader and played the
saxophone” in different speaking styles extracted from the Blizzard dataset. The mel spectrograms were
generated using the ConEx model.
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Speaking style Mean MCD (↓) Mean F0 MSE (↓)
AX AY AX AY

Happy 3.61 3.97 6992.11 7270.97
Loud 5.30 6.61 8102.28 10089.48
Old 2.55 3.05 3721.09 5635.80
Sad 4.16 4.63 3090.39 5820.60
Villain 3.32 3.83 1164.74 9991.15

Table 4.2: Mean MCD and mean F0 MSE values for the difference between the samples generated using a
global prosody embedding and the reference sample (AX ) and the difference between baseline samples
and the reference sample (AY ). The samples were generated using the ConEx model trained on the Will
dataset.

Speaking style Mean MCD (↓) Mean F0 MSE (↓)
AX AY AX AY

Style 1 3.49 3.70 11270.39 11806.36
Style 2 3.44 3.56 11469.32 11338.54
Style 3 3.29 3.74 14614.33 14778.82
Style 4 3.22 3.75 15728.65 14835.17
Style 5 3.56 3.67 9979.27 10403.00
Style 6 3.79 4.04 15230.49 15340.72

Table 4.3: Mean MCD and mean F0 MSE values for the difference between the samples generated using a
global prosody embedding and the reference sample (AX ) and the difference between baseline samples
and the reference sample (AY ). The samples were generated using the ConEx model trained on the Blizzard
dataset.

the learned fine-grained embeddings. Then it describes the tests used to evaluate the
controllability and the results. Finally, the results of the local prosody transfer test is
described.

AR prior & fine-grained prosody embeddings evaluation

When generating speech using ConEx, the fine-grained prosody embeddings are gen-
erated using an autoregressive prior model. A first experiment compared this autore-
gressive prior to randomly sampling fine-grained prosody embeddings, without taking
into account any prior information. For the experiment, all example phrases in the
hold-out set were used to generate speech samples, first using random sampling of the
fine-grained prosody embeddings, then using the autoregressive prior model. Some
random output samples are included on the demo page.

The results for the Blizzard dataset show that random sampling lead to incoherent
speech, with strange prosody that changes heavily during the samples. The samples also
show that words in these samples were emphasized often. This result indicates that the
fine-grained prosody embeddings indeed encode local prosody not determined by the
global prosody embedding. Furthermore, using the fine-grained prosody embeddings
from the autoregressive prior improved the prosody dramatically. This finding confirms
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the usefulness of an autoregressive prior, as proposed by Sun et al. (2020).

The samples from the Will dataset paint a different picture. Here, it seems that there is
less variety in prosody for the samples generated by randomly sampling fine-grained
prosody embeddings. This could indicate that most of the prosody is already determined
by the different speaking styles (which are captured by the global prosody embeddings),
and that there is very limited prosodic variation within the styles. Unfortunately, this
means that local prosody edits will have limited effects, as there is less room for changing
the prosody.

Controllability

For local prosody control, experiments were carried out to test the local prosody control
method introduced in section 3.6.2. First, an output speech utterance was generated
using the top fine-grained prosody embeddings predicted by the AR prior model. Then,
the prosody embeddings for a certain phoneme were edited by selecting one of the other
top-3 embedding options. The experiments used the parallel WaveGAN vocoder for the
Blizzard dataset and Griffin-Lim was used for the Will dataset. The results of these tests
are now detailed, starting with the Blizzard results.

The first test input is “I didn’t say he stole the money”. This sentence is interesting since
each word can be emphasized to alter the meaning of the sentence1. The goal of this
first test was thus to assess if the local prosody could be edited to emphasize each word
individually. Thus, seven samples were generated.

For the Blizzard dataset, the local prosody editing technique was successful at empha-
sizing 4 out of the 7 words. The initial predictions of the AR prior model lead to the
emphasis on “didn’t”. By choosing a different fine-grained embedding for the phoneme
corresponding to “I”, this phoneme was emphasized. However, the result was not very
clear. As such, a pause was also added to the phoneme sequence, but this resulted in less
natural speech. Next, “say” was emphasized. An alternative version was also generated
by also changing the beginning of the sample. Figure 4.10 shows both changes visually.
Lastly, “stole” was emphasized.

“he”, “the”, and “money” could not be emphasized by choosing different fine-grained
prosody embeddings from the top 3. Changing the prosody embedding of the phoneme
embedding corresponding to “he” lead to a change in prosody for “say”. The edit’s
effects are were thus not local. Furthermore, to investigate if the “o” in “money” could
be emphasized at all by changing the fine-grained prosody embeddings, every one of
the 32 fine-grained embeddings was used for that phoneme. The results show that two
embeddings indeed result in an emphasized “o”. However, the majority of the codes
caused changes in the prosody of “stole”.

The results for the second example sentence (“Whenever you feel like criticizing anyone,
he told me, just remember that all the people in this world haven’t had the advantages

1For example, when saying “I didn’t say he stole the money”, the speaker indicates that he previously
said something different, e.g. that the other person borrowed the money
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Figure 4.10: Mel spectrograms for the sentence “I didn’t say he stole the money” generated by the ConEx
model trained on the Blizzard dataset. The top image shows the resulting spectrogram when using the
predictions from the AR prior. The middle image shows the sample, where the fine-grained prosody
embedding corresponding to the “a” in “say” was replaced by a different prosody embedding, resulting in
more emphasis on the word. The bottom image shows an alternate edit, where the first phonemes of the
sentence were also altered. The differences are subtle, but easy to discern when listening.
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that you had”) for the Blizzard dataset show that the diversity of the the top-3 fine-
grained prosody embeddings can sometimes be limited. When the prosody embedding
for the phoneme corresponding to the “a” in “anyone” was changed for the second
option, the output speech only changed slightly: the boundary between “criticizing”
and “anyone” disappeared, making the words sound more linked.

Furthermore, the third prosody embedding option for that phoneme caused a change
in a previous phoneme: the pitch of “ci” in “criticizing” was altered. This means that
changing the fine-grained prosody embeddings does not only result in local changes.
This complicates the process of making targeted edits to local prosody.

The third example sentence (“This would have changed the grand result of the war”)
also showed this effect when paired with the Blizzard dataset. When the fine-grained
prosody embeddings were swapped for the phonemes corresponding to “wa” in “war”,
the prosody of “sult” in “result”changed. The fine-grained prosody embeddings thus
not only effect their corresponding phonemes, but also other prior phonemes.

The results for the Blizzard dataset thus show that effects of the edits are not always
local. How can this happen, given that each fine-grained prosody embedding is only
added to the single corresponding phoneme embedding? The answer is that the ConEx
decoder relies on self-attention to transform the embeddings into mel spectrogram
frames. This self-attention mechanism allows the decoder to use information from
multiple embeddings to generate a spectrogram frame.

When using the model trained on the Will dataset, the first example sentence already
showed that the proposed technique fails to make edits to the local prosody. The top
predictions from the AR prior model all resulted in the same prosody. Even when using
the “happy” speaking style, which is more varied than the other styles in the dataset, the
technique failed to offer local prosody control.

To investigate the reason, all fine-grained embeddings were tried out for the phoneme
corresponding to the “a” in “say” and the “o” in “stole”. The results showed that most
embeddings resulted in the same prosody. Only very few embeddings changed the
prosody noticeably, and mostly affected the phoneme duration. Figure 4.11 shows
the effect of a prosody embedding. This lack of diverse prosody embeddings can be
explained by the fact that the Will dataset contains less variety in fine-grained prosody, as
the voice actor focused on speaking in a certain global speaking style, while not varying
other speech characteristics much. Thus, the fine-grained prosody embeddings do not
encode diverse prosodic phenomena, and the embeddings thus do not result in great
changes. Since many embeddings do not have any effect, the top options predicted by
the AR prior model all result in the same prosody.

For the second and third example sentence, the AR prior technique also failed to change
the prosody. However, in the experiments a fine-grained prosody embedding was found
that results in shortening the phoneme. Audio samples using this prosody embedding
are included on the demo page. Thus, when a dataset contains fewer fine-grained
differences in prosody, the local prosody can be controlled by changing the fine-grained
prosody embeddings directly (instead of using AR prior predictions). To make this
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Figure 4.11: Mel spectrograms for the sentence “I didn’t say he stole the money”. The top image shows the
resulting spectrogram when using the predictions from the AR prior. The bottom shows an edited version,
where the fine-grained prosody embedding corresponding to the “o” in “stole” was replaced by a different
prosody embedding, causing a the phoneme duration to decrease.

process more intuitive, the number of fine-grained embeddings could be reduced; the
effects of the prosody embeddings could then be assessed more easily. The downside of
such a process is, that it could lead to reduced naturalness, but this is less of a problem
if the effects of the fine-grained prosody embeddings are only small.

4.5 Conclusion

Multiple experiments were carried out, with as main objective to gauge the controllability
of the proposed ConEx model. Two datasets were used: a proprietary dataset (Will) with
distinct speaking styles, and a dataset with expressive speech gathered from audiobooks
(Blizzard).

An initial experiment used a simplified architecture with a global prosody encoder based
on a vector quantized variational autoencoder. After training the model on the Will
dataset, the experiments showed that the discrete embeddings learned by the VQ-VAE
can represent the different speaking styles in the dataset. Furthermore, the embeddings
can be used for performing global style transfer. This way, the global speaking style of a
generated speech utterance can be controlled.

The global style transfer experiment for the ConEx architecture showed that style transfer
could be performed using the global prosody embeddings learned by the model. When
the model was trained on the Will dataset, the quantitative and qualitative analyses
showed that the distinct styles in the dataset could be transferred successfully. When
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using the proposed architecture with Blizzard dataset, global style transfer was less
successful. First, the dataset does not contain very distinct speaking styles, making
choosing styles harder. Next, only some styles were recognizable in the output speech.
The model seemed to fail to transfer the rhythm characteristics of the reference sample
to the generated speech. However, the objective metrics still indicated that other aspects
of the generated speech were closer to the reference sample than a baseline.

The ConEx model uses an autoregressive prior to predict fine-grained prosody embed-
dings at inference time. When comparing the predicted fine-grained prosody embed-
dings with randomly generated prosody embeddings, the experiments showed that
predicted embeddings lead to more natural generated speech. The AR prior is thus
a useful addition to the model. Random sampling especially lead to very unnatural
speech for the model trained on the Blizzard dataset. The effect of random sampling
was significantly smaller for the model trained on the Will dataset. The largest variations
were noticeable for the normal and happy speaking styles, but even then, the changes
were only limited to the phoneme durations. This indicates that there is less fine-grained
variation in this dataset.

To evaluate the proposed technique to make local prosody edits, multiple speech ut-
terances were created and edited. The results on the Blizzard dataset showed that the
method could indeed change the prosody to emphasize words, change the intonation,
etc. However, editing the prosody of a phoneme sometimes also changed the prosody
of other phonemes, i.e., the results of the edits were not local. This makes the process of
editing prosody less predictable and more complicated. Capturing and editing prosody
at a higher level (syllable or word-level), could make the method more reliable and
intuitive.

Furthermore, the AR prior did not always suggest options that led to diverse prosody.
Instead, some options had the same effect, or even no effect. This issue was largest when
using the model trained on the Will dataset. Using that dataset, the prosody seemed
to be locked to the global prosody style, which made editing local prosody impossible
in many cases. Using a dataset with enough fine-grained prosodic diversity is thus
important when using the proposed technique. Furthermore, a mechanism could be
introduced to rank diverse options higher. However, there is always a trade-off between
naturalness and diversity.
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Chapter 5

Conclusion

5.1 Overview of this thesis

In this thesis, ConEx, a novel model for controllable expressive speech synthesis, was
proposed. ConEx brings control over global speaking style and over local prosody to a
neural-based text-to-speech system. In particular, global style transfer can be used to
generate speech with different speaking styles, and a novel method was proposed to
enable editing prosody at the phoneme level.

ConEx builds on the architecture of FastSpeech, a non-autoregressive text-to-speech
model. ConEx adds a prosody encoder, which models prosody at both global and
phoneme level. This prosody encoder consists of two parts: a reference encoder is used
to extract global prosody embeddings, and a vector quantized variational autoencoder
is used to learn discrete fine-grained prosody embeddings.

At inference time, a global prosody embedding from a reference speech sample can
be used to control the speaking style of the output speech. An autoregressive prior
model is used to predict the fine-grained prosody embeddings based on the phoneme
embeddings and the global prosody embedding. To make a local edit to the prosody
of the output speech, a fine-grained prosody embedding can be replaced by another
embedding with a high probability of fitting, as predicted by the AR prior.

The ConEx architecture was implemented using PyTorch as an extension to ESPnet, an
open-source speech processing toolkit. Furthermore, a user interface was developed,
to allow users to select a global prosody embedding from a t-SNE plot, and make local
prosody edits by the proposed technique.

Multiple experiments were carried out, with as main objective to gauge the control-
lability of the proposed ConEx model. Two datasets were used for the experiments:
the proprietary Will dataset, which contains speech samples from a professional voice
actor in six distinct speaking styles, and the Blizzard dataset, which contains expressive
speech from readings of audio books performed by Catherine Byers.

The experiments showed that model succeeds at providing control over both global and
local prosody. However, the level of control depends strongly on the dataset used. In
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particular, the Will dataset, with its distinct styles, proved to be great for controlling the
global speaking style, but editing prosody locally was often impossible. Whereas when
ConEx was trained on the Blizzard dataset, local edits could be made to the prosody
of the synthesized speech. This is due to the dataset containing more fine-grained
differences in prosody. Control over the global speaking style was also possible, but
limited, since the global speaking styles in the Blizzard dataset are not diverse.

Experiments also showed some limitations to the proposed local editing technique.
First, edits did not always have local results, which makes the editing process more
cumbersome. Related to that, when trying to change a certain phoneme, multiple edits
are sometimes needed. Lastly, when there is little diversity in the fine-grained prosody
embeddings, the auto-regressive prior top-k predictions tend to have the same effect,
which makes editing the local prosody impossible using the proposed technique.

5.2 Future work

In order to overcome some of the limitations found in relation to the use of ConEx, and
to further improve the model, several improvements could be analyzed in future work:

• Deep learning models, such as ConEx, rely on large amounts of data. In speech
synthesis research, there are only a few datasets with expressive speech. A new
dataset, which includes both large differences in global speaking style and varied
fine-grained prosody, could improve the controllability over the global speaking
style and local prosody.

• The ConEx decoder could further be conditioned on a speaker embedding, such
that the model can generate speech in different voices. In order for this to succeed,
the dataset should include many voices, each with enough diversity in speaking
style and fine-grained prosody.

• The proposed local editing technique could be improved by learning and manip-
ulating fine-grained embeddings at a higher level, such as syllable or word level.
Furthermore, a different ranking scheme for the top-k options could be used to
offer more diverse prosody embedding options. A parameter could be introduced
to control the trade-off between naturalness and diversity.

• Implementing a decomposed vector quantization scheme, as proposed by Kaiser
et al. (2018), could make the training of the VQ-VAE more stable and prevent index
collapse issues. This would replace the somewhat arbitrary initialization scheme
used in this work.

• ConEx uses a simple reference encoder for learning global prosody embeddings.
More advanced models have been proposed, which try learn representations with
disentangled and interpretable dimensions. For example, a Gaussian mixture VAE
could be used, as proposed by Hsu et al. (2018). These disentangled dimensions
can then be directly manipulated to control the global speaking style, instead of
having to rely on style transfer.
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• The experiments in this work focused on testing the controllability of the proposed
model. In order to convert the mel spectrogram outputs the model generated into
waveforms, a vocoder was used that was trained on a different dataset. As such, the
generated audio samples distorted the voice of the speakers and led to unnatural
audio. By training a neural-based vocoder on the dataset used, more natural
results can be obtained. Furthermore, using modern vocoder architectures such
as MelGAN (Kumar et al., 2019) can speed up the vocoding many times, leading to
almost real-time speech synthesis.

• In order to carry out the experiments, a Jupyter notebook was implemented which
allowed selecting a global prosody embedding from a t-SNE visualization, and
changing fine-grained prosody embeddings by selecting one of the top-3 pre-
dictions. This proof-of-concept could be expanded into a real user interface for
controlling expressive speech synthesis. User experience research could offer
insights into what such a user interface should look like to make controlling the
global speaking style and local prosody as intuitive and efficient as possible.
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Model hyperparameters
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Name Value
Phoneme embedding dimension 128
Encoder layers 4
Encoder conv1D kernel size 3
Encoder conv1D channels 1536
Encoder attention heads 2
Encoder dropout 0.2
Decoder layers 4
Decoder conv1D kernel size 3
Decoder conv1D channels 1536
Decoder attention heads 2
Decoder dropout 0.2
Duration predictor conv1D layers 2
Duration predictor conv1D kernel size 3
Duration predictor conv1D channels 128
Duration predictor dropout 0.2
Postnet layers 5
Postnet conv1d channels 256
Postnet conv1d filter size 5
Postnet dropout 0.5
Reference encoder conv2D layers 2
Reference encoder conv2D kernel size 3
Reference encoder conv2D channels 32
Reference encoder conv2D stride 2
Reference encoder GRU units 32
Number of discrete FG prosody embeddings 32
Discrete FG prosody embedding dimension 3
VQ-VAE beta 0.05
FG alignment dropout 0.2

Table A.1: ConEx hyperparameters
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