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Abstract

The total amount of IoT devices has long since outgrown the human population. Yet, just as any
other technology, hackers abuse it for their personal benefit. Cyber attacks involving IoT devices are
notorious for their devastating effects. Understanding the underlying cause and working of these attacks
is paramount in order to defend ourselves against similar abuse in the future. As it turns out, hardware
capabilities, human knowledge, and financial incentives negatively affect the development process of IoT
devices. This results in security issues that were considered solved 20 years ago. However, not only the
devices, but several popular IoT protocols also prove to be inherently vulnerable.

In order to study the techniques and malware binaries currently being used by hackers, data needed to
be collected on them. However, we could not risk the compromise of production network infrastructure.
As such, a network filled with various fake IoT devices was built with the intent of tricking hackers into
accessing it. We argue that no one would be fooled by the network unless it contained some consumer
devices. Thus, a comparison of several techniques to host consumer devices was made. Unfortunately,
as we found out, none of the techniques are perfect for our goal. Half of them are unusable to emulate
IoT devices realistically, while the other half have their own distinct advantages and disadvantages.
Nevertheless, to achieve the goal of building said believable, yet fake, IoT network, an informed decision
was made to choose one of the latter techniques.

After having collected data for a few months, we came to several conclusions. The first of which is that
there is not much diversity in the world of IoT malware. Most attacks, and malware binaries, follow the
same patterns. The reason being that they build upon the code of older malware that was made public.
Furthermore, IoT attacks are highly automated and generic. This allows them to spread as fast, and as
wide, as they do. Default credentials and not performing updates prove to be the two major malpractices
that allow hackers to gain access to a device. Then, the malware’s focus lies on accessing internet-facing
devices, rather than spreading through private networks that they gained access to via infected devices.
And lastly, while they are certainly functional, IoT device emulation techniques require more research
and development in order to become viable in this area of security research.
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Chapter 1

Introduction

Internet of Things (IoT) is a rapidly growing paradigm connecting everyday objects to the Internet. Be
it cameras, thermostats, routers, or fridges, IoT devices have been appearing everywhere from homes to
schools, hospitals, and businesses in the recent years. Despite growth being impacted by a worldwide
silicon shortage and the COVID-19 pandemic, the amount of connected devices in 2021 grew by a billion
compared to the year before. The total amount is predicted to keep growing significantly over the next
decade [|Sin21|. Enhancing one’s life with IoT has become the future’s way of living. The devices assist
us humans in our daily chores and as such attempt to improve our quality of life. Yet, the paradigm is
as notorious as it is popular. Every single device becomes a possible victim of abuse by being connected
to the Internet. Combine this with the huge attack surface that is the result of both malpractices and
hardware constraints and it is quickly clear why some people despise the thought of using any such device.
The integration with everyday objects makes IoT devices ever so prevalent in our lives. This results in not
only vast amounts of data, but also highly sensitive data being gathered by the devices’ various sensors.
Such information can include maps of various rooms in one’s house, daily living patterns, video/audio
recordings, movie interests, etc. Possible misuse, by hackers and corporations alike, means a privacy
nightmare is waiting to happen |Giel9; [Ren+19].

Abuse of IoT devices could physically inconvenience users, such as in 2017 when a hacker caused printers
exposed to the Internet to print messages warning their owners of the exposure |[Cim17]. A step further
would be harming both device and user. For example, excessive power consumption by malware can
result in the device’s battery being depleted and the device thus being unable to function properly. This
could quickly go south if the device is being relied on for safety purposes, such as a fire alarm or a
lock. Lastly, individual IoT devices do not provide much in terms of computing power. Yet, the sheer
amount of devices allows for the building of a network with unparalleled amounts of resources. The Mirai
botnet was one of the first of its size using IoT devices. It gathered attention by taking down services
such as cybersecurity blogs [Krel6a], hosting providers [OVH16], and DNS service providers [Int16] with
Distributed Denial-of-Service (DDoS) attacks. Despite said gathered attention, IoT security has not
notably improved since Mirai in 2016 as numerous alternative botnets with even higher throughput have
since wrecked havoc |GY21].

Security research on the paradigm has been growing along with both users’ and adversaries’ interest in it.
Among others, this includes the study of communication protocols [Kay+20; Bou+20], libraries [San+21],
and hardware |[Shu+19] specific to IoT devices. Vulnerability research by trusted sources is valuable in
that it allows vendors to produce appropriate patches. Unfortunately, unless these patches are applied,
devices will stay vulnerable. An alternative path of research is thus gathering data on attacks seen “in
the wild”. This is in order to understand the actual day to day threats to which devices are exposed. The
information can then be used by both vendors and network administrators to improve defensive techno-
logies such as Intrusion Detection Systems (IDS) and firewalls. One way of obtaining this information is
by analysing the artifacts left on production resources after being exposed to an attack. Aside from being
clearly undesirable, it is also a non-scientific method as logging mechanisms might not cover the attack
in enough detail. The adversary might even tamper with artifacts in order to leave no trails behind. An
alternative, controlled way of capturing adversaries’ behaviour is by using honeypots. These are systems
designed to be attacked while looking like production resources. This makes them a complementary
technique to the traditional defensive applications such as IDSs and firewalls [Fan+18a; Mai+11].
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From a survey on IoT honeypots performed by Franco et al., it can be concluded that numerous honeypots
with focus on imitating IoT services have been created in the past decade [Fra421]. Nevertheless,
the majority of these projects either only offer a single service endpoint, or provide adversaries with a
minimal, imperfect shell environment. Although a handful of higher fidelity projects exist, these are not
fully reproducible due to lack of source code or ethical considerations, or do not use consumer firmware.
Additionally, most research projects focus on single devices, despite interconnectedness being one of the
strengths of IoT. Covering the above shortcomings is the contributions made by this thesis. In other
words, we create a consumer firmware-based, high fidelity honeypot that exposes several IoT-related
services and is placed in a network along with other IoT honeypots.

Building a high fidelity honeypot that provides adversaries with a real consumer device’s environment
is complex. Virtualising parts of an IoT device comes with complications that are the result of the
characteristics that make IoT devices exactly so diverse and popular. That is, being designed for a
specific task and interacting with the physical world. Approaches that nevertheless do attempt this are
called firmware re-hosting techniques. No prior work exists that compares these techniques in the context
of building a honeypot. As such, as an additional contribution, we make this comparison.

The goal of this thesis is the analysis of malicious interactions with IoT devices. A high fidelity IoT
honeypot is built and connected to the Internet in order to gather sufficiently verbose data for this ana-
lysis. Unique credentials, along with assisting information, is shared online in order to lure adversaries.
The honeypot simulates embedded devices in a home environment, with network depth. Meaning, an ad-
versary is given the opportunity to move through the network. The goal of the honeypot is to be scalable,
i.e. requiring no hardware and being able to be deployed on any host, and to host consumer firmware, all
the while having the standard characteristics of a honeypot, e.g being believable. Virtualising consumer
firmware requires firmware re-hosting. However, this technology is still young and unrefined, and has
only been used once in literature to build a honeypot [VC19]. As such, this thesis presents a case study.
The intention of the thesis, discussed above, can be defined with following research questions:

1. What techniques and/or malware do adversaries employ during attacks involving IoT devices?

2. Given that IoT devices are made to solve specific problems and thus differ wildly, to what extent
do adversaries adapt to their targets. In other words, are the employed techniques and/or malware
targeted?

3. Do adversaries attempt lateral movement through an IoT network, and how effective are they at
it?

4. TIs state of the art firmware re-hosting usable to build a believable, high fidelity IoT honeypot?

We now describe the structure of the rest of this thesis. Chapter [2] is a literature study of IoT. This
includes an exploration of what IoT entails, why IoT devices are more vulnerable than traditional devices,
and a structural overview of IoT attacks. The workings and vulnerabilities of several application layer
communication protocols, which are popular in the IoT world, are also studied. Second, a literature study
of honeypots is performed in chapter [3] This chapter not only describes the components and properties,
but also the requirements of a functional honeypot. To finish the literature study, IoT and honeypots
are brought together. In an attempt to find an appropriate technique to host consumer firmware, several
approaches are explored and compared by us. Chapter 4] discusses our implementation along with design
decisions and encountered complications. Last but not least, the captured data is analysed in chapter
and chapter [6] concludes this thesis.



Chapter 2

Internet of Things (IoT)

The universal interest surrounding IoT has resulted in rapid economical growth, which in turn fuels
development. Despite this, or maybe in spite of it, definitions are manifold. IoT is also being employed
in various fields. This leads to each device being unique in functionality and design. In order to better
understand this inherently heterogeneous concept, how IoT fits into the physical world is explored first.
Then, different types of systems are discussed based on how their firmware is designed. Tackling the issue
of security, we study how the inherent characteristics of the IoT paradigm impact security. Next, IoT
malware is dissected based on prior work. Lastly, some application level protocols that are commonly
used by IoT devices are discussed. We look at their design, high-level working, and potential security
flaws.

2.1 Informed environment or industrial control?

At the most basic level, IoT can be defined as interconnected embedded devices. Embedded devices,
in turn, being everyday objects enhanced by embedding special purpose computers that are designed to
perform a highly specific task. By embedding them in everyday objects, the computers are brought close
to the source of information and target to be affected. In this thesis, the term IoT device is interpreted
as such. Yet, as embedded devices and the IoT ecosystem evolved over time, alternate definitions arose.
For example, ENISA, The European Union Agency for Network and Information Security, defines IoT
as “a cyber-physical ecosystem of interconnected sensors and actuators, which enable intelligent decision
making” [ES21]. Not only does this definition not mention Internet-connectedness, as one would expect
given the acronym’s literal meaning, it also uses the words “cyber-physical |...]system”, which make up
the acronym CPS.

While the IEEE attempts to discuss and standardise the evolving definitions of connected devices [IEE15],
Greer et al. argues that many of the definitions are already the same [Gre+19|. Their interpretation is
as follows. IoT and CPS systems, the overarching terms for private and industrial connected devices
respectively, connect the digital and physical world. This is achieved with a continuous cycle, shown in
fig. First, information is passed through ICT systems and is processed. This causes actuators
to influence the physical world. The influence manifests as energy flowing through engineered systems,
resulting in change in the environment. Lastly, these changes are captured by sensors, producing digital
information and thus completing the cycle. Humans are tightly coupled with this cycle and can interact
with it on numerous levels. For example, they can be part of the engineered system or design the
implementation of the cycle.

2.2 Types of systems

Embedded systems are intended to perform specific tasks. Nevertheless, as both requirements and cap-
abilities change over time, so does the design and implementation of systems. Muench et al. categorises
devices based on their firmware [Mue+18a]. They argue that vulnerabilities present themselves differ-
ently based on how the resources of a system are managed. Wright et al. adopts this categorisation in
their analysis of emulation techniques for embedded devices [Wri+21]. Indeed, understanding how the

8



2.3. INHERENT RISK 9

Information

IcT
Systems

Engineered
‘Systems

Energy

Figure 2.1: The “components model” describes the continuous cycle of interactions in connected

device environments. Figure taken from |[Gre+19|.

firmware works enables the usage of specific techniques and heuristics in the design and implementation
of an emulator. Emulation techniques will be discussed in depth in section [3.4] In the rest of this thesis,
we will mainly focus on Type 1 devices.

Type 1: general purpose devices employ a generic Operating System (OS). As the name implies, the
OS aims to provide a generic environment for software to run in. It manages process, memory, and hard-
ware interactions. The OS is usually a retrofitted version of a pre-existing operating system
Wri+21]|. Changes to e.g. minimise storage usage and to the network stack are made to enable running
the OS on low power devices. Development of Type 1 systems, compared to the other types, is becoming
more enticing as system complexity and hardware capability increases p.265].

Type 2: special purpose OSes still provide separation between kernel space and user space, similar to a
general purpose OS. However, resource managing algorithms have been redesigned or dropped altogether
as to optimise for the constraints of embedded devices. Real Time OSes (RTOS) are the most prevalent
special purpose OSes. As their name implies, RTOSes are designed to respond to events in (near) real time
and process tasks within appropriate time limits. To achieve this, RTOSes minimise interrupt latency,
time spent in critical regions by means of optimised memory management, and implement scheduling
algorithms that can prioritise tasks based on priority and their supposed deadline p.401]. This
is different from general purpose OSes, which simply aim to balance resources fairly over time for all
processes.

Type 3: bare metal systems have the highest level of coupling between hardware and software. The
device is meant to do a single thing and the software reflects this fact. There is little to no abstraction
as there is no OS to manage memory, processes, and hardware interactions, leaving all the above to be
handled by custom implementations p.517-519]. Even so, some libraries do exist to handle these
and ease development. The firmware is monolithic as it contains both device management and business
logic. An example implementation is a simple infinite loop that handles some co-routines sequentially.
Bare metal software can be made highly optimised but lacks portability.

2.3 Inherent risk

The concept of IoT combines common technologies that have extensively been scrutinized over the years,
and have now seemingly become innocent. Yet, when employed within the context of IoT, they contribute
to the notoriety of it. Antonakakis et al. compares the state of IoT security to that of PCs in the
2000s [Ant+17]. The reason being that common best practices are not implemented. This includes
protection of binaries by means of e.g. Address Space Layout Randomization (ASLR) and stack canaries,
network security such as only exposing required ports, and access control by means of for example the
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concept of least privilege and complex passwords. The lack of defensive security measures means that
a malware’s minimal viable product requires a low amount of effort to create. In other words, the high
amount of vulnerable devices and ease of infecting them creates a high return on investment. Supporting
this idea are some notable differences between IoT-focused malware and more “traditional” malware,
i.e. server and PC focused malware, as will be discussed later in section 2.4:2] This lack of a security
conscious design is caused by several inherent characteristics of the paradigm and results in a large attack
surface |[MS19} [Zha+14]. Surveys such as [ES17| and [Nes+19] extensively list the causes of said insecure
design in production devices. We group these in an attempt to categorise them. However, note that
causes often go hand in hand.

Being embedded in everyday objects means that the used hardware has less capabilities than traditional
hardware, i.e. computing power, memory, available energy, etc. is limited. These properties influence
security in the following ways:

e Physical security: Due to being placed throughout the environment, human supervision is not pos-
sible at all times. A physical component accessible by adversaries opens up new attack surfaces.
For example, they could cause physical damage, read data such as encryption keys or private user
data from a debug port, or even use lasers to inject audio commands into devices with micro-
phones [Sug+20].

e Energy harvesting: Some IoT devices get power from a battery. Excessive usage may empty it
fast, which leads to a Denial-of-Service (DoS) attack [Pal20]. This could either be caused by an
adversary or by faulty design.

e Encryption: The constrained hardware prevents the implementation of strong encryption algorithms.
Such algorithms use a significant amount of resources. Thus, encrypting data with low comput-
ing power would, among others, result in non-trivial delays and high energy consumption. While
lightweight encryption algorithms are actively being researched, limitations still exist [Sin+17].
Some hardware even lacks an appropriate source of entropy [Men+19]. Encryption is an important
security tool that affects, among other things, communication, storage, and authentication. Con-
sequently, weak encryption opens up many avenues to abuse such as impersonation, data injection,
user privacy violations, etc.

e Auditing: The creation, storage, and automated processing of events is not evident. Both creation
and processing require CPU cycles, which are already limited. Storage space is also limited on
constrained devices. Additionally, local storage might not even be an option as some manufacturers
employ read-only filesystems |[Dan+19; |[Alr+21]. External storage and processing might be a pos-
sibility, but once again requires encryption to ensure confidentiality and integrity of information. A
program performing auditing must also be tamper proof to protect its working from being altered
by malware.

Developers might not have the required knowledge to properly secure the devices. IoT devices combine
multiple areas of expertise due to being a bridge between the physical world and the digital world.
Despite developers possibly being aware of best practices within one or a few areas, expecting knowledge
of all is infeasible. Assigning an expert to each is similarly difficult given the tight vertical coupling,
i.e. multi-area expertise, required. Additionally, the integration of different technologies raises additional
security challenges. For example, configuring an IoT device via a web interface commonly invokes a
system binary using the system() function. A developer knowledgeable about web technologies might
not have (enough) experience with the Unix shell. Improper sanitisation would result in a command
injection vulnerability. The rapid evolution of technology such as cloud integration, lack of generalised
device architecture due to e.g. highly specific use cases, and lack of abstraction layers further complicates
this. Users might also lack the knowledge to secure their devices as they consider these to be “different”
from everyday technological devices. All in all, lack of knowledge manifests in bad programming practices,
lacking authentication and access control methods, faulty usage of protocols, infrequent updating, lacking
physical security, etc. [ES17|. Indeed, many devices use weak default credentials, hardcoded (root) user
credentials, and/or do not require users to change the default credentials. Also, devices often lack the
proper management of permission. This results in adversaries easily being able to gain access to accounts
with high levels of permissions. These simple mistakes were at the core of the Mirai botnet [Ant+17],
despite extensive prior research [LXC12} |anol2; |Oua+17].

Vendors lack the incentive to properly secure devices and protocols. Morgner and Benenson argues
that consumers care more about accessibility, features, and interoperability than about security [MB18|.
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This results in a lack of security testing, which in turn amplifies the occurrence of earlier mentioned
malpractices. Complex security mechanisms might even completely be ignored to reduce development
time. In 2017, the European Commission noted how the proliferation of technology increases the possible
impact of attacks on Furopean Union citizens. They mention IoT devices in particular, saying that
“cybersecurity is not [. ..] prioritised in their design” [Eurl7|. At the same time, a proposal was submitted
that in 2019 resulted in a new regulation |[Eurl9]. This regulation defines a European cybersecurity
certification framework for vendors. Acquiring such certification not only tests and indicates the security
level of a product, but requires vendors to give consumers appropriate information including e.g. how to
maintain the security of their device. Unfortunately, said framework is voluntary and as such does not
contribute enough to raise incentive among vendors.

2.4 Decomposing IoT malware

The ultimate goal of studying attacks is to understand their working. This knowledge can then be used
to build defences against future attacks. Indeed, unless a defender knows what to look for, they will not
be able to stop an attack. Similarly, automated processes require some indicator to mark an interaction
as malicious. In practice, such indicators are either signatures or heuristics. Signatures are highly specific
and thus used to identify distinct attacks, or parts thereof. Heuristics, on the other hand, are used to
identify more generic patterns in e.g. the behaviour or composition of a binary. This section describes
several ways of classifying IoT malware.

2.4.1 File-based vs. fileless malware

Traditionally, malware is thought to be a file that somehow ends up on a system. This file, when
executed, will spawn its own process(es) and perform malicious actions such as encrypting the filesystem,
add the system to a botnet, or install itself in multiple locations to ensure persistency. File-based
malware is popular as all desired functionality can be provided by a single file. However, Mansfield-Devine
argues that advances in understanding of file-based malware spurred improvements in detection and
prevention techniques [Manl7]. For example, warning users when running untrusted software, scanning
for unexpected files on the filesystem, or scanning files being sent over the network are effective defensive
techniques. Similarly, security researchers are taught to look for unconventional files when performing
forensic analysis of an infected system [Kum+20]. In other words, file-based malware has a high chance
of being fingerprinted.

In contrast, fileless malware does not require a file being dropped on a victim’s filesystem. Instead,
adversaries leverage trusted resources such as already installed software, or OS features such as the
command-line shell. Malicious code and/or instructions are loaded into memory [Kum+20; Dan-+21].
Sometimes fileless malware does use the filesystem, but not in a traditional sense. For example, the Kovter
virus adds entries containing shell commands to the Windows registry that are automatically read and
executed when certain events occur [Sanl7|. Fileless malware may be slightly harder to create than
the alternative, but it has the advantage of a drastically lower fingerprint. Signature-based detection is
not as effective for fileless malware. Leveraged trusted resources are by definition not marked suspicious.
Additionally, scanning memory is more complicated than scanning the filesystem. Instead, using heuristics
to look for certain patterns, e.g. in the behaviour of software by means of process or system log inspection,
is more effective [Kum+20].

The effectiveness of file-based malware against traditional computers, e.g. PCs and servers, has decreased
over time. Yet, it is still effective against IoT devices. Unsurprisingly, the reason for this is the constrained
hardware used by IoT. It complicates running signature-based detection software on the device itself.
Network administrators can install e.g. an IDS or firewall with deep packet inspection capability in a
business environment. In a home environment, however, usage of such a system is not always feasible.
Heuristic-based detection techniques are even more resource intensive than their counterparts. Fileless
malware is thus equally hard to combat in constrained devices. Dang et al. found that fileless malware
in ToT manifests mainly as only shell commands |Dan+19]. Inspecting log files could thus be a viable
defensive technique. Yet, the authors note that in order to prevent file-based malware, some vendors
implement read-only filesystems. This hinders auditing. As an alternative, they recommend vendors to
remove as many unused executables, i.e. trusted resources, as possible.
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2.4.2 The attack lifecycle

Malware attacks are complex, multistage processes. Each malware implementation differs slightly in how
the stages are performed. Simpler attacks may even skip some to decrease complexity in exchange for a
loss in effectiveness. MITRE has mapped out these stages along with numerous techniques used within
each stage. Their framework, called MITRE ATT&CK®), allows one to study adversaries’ actions in a
structured manner [MIT21]. Although Type 1 devices are Unix-like, the MITRE Linux framework does
not apply in full to IoT-focused malware. This is due to how IoT devices differ from more traditional
devices, such as PCs and servers. The IoT platform’s malpractices and design decisions, discussed in
section influence the way adversaries approach the attack process. For example, many firmwares do
not employ proper access control and instead run everything as the root user. The MITRE framework’s
Privilege Escalation step is thus not applicable to IoT devices.

Palo Alto Networks, Inc. instead identifies eight stages, of which most match or aggregate the stages
described by MITRE [Pal20]. Despite not classifying it under the same stages, the data captured with
ToT-focused honeypots by the authors of [Pa+15], [Dan+19], and [TOS21] confirm that all but the
Lateral Movement stage are common occurrences in practice. Additionally confirming and highlighting
the differences with traditional malware, i.e. malware targeting PCs, servers, and mobile devices, Alrawi
et al. and Vignau, Khoury and Hallé studied the workings of numerous IoT malware families |Alr4-21}
VKH19]. They note the usage of a subset of techniques used in traditional malware. Although the actual
malware implementations are commonly less sophisticated, in practice they end up being more effective
than their traditional counterparts. Indeed, the lack of proper security measures in combination with
barely any human interaction, which consequently means that attacks must be fully automated, results
in a high rate of infection.

Based on above mentioned works, we will now discuss what each stage entails, give some examples of
techniques used at each stage, and indicate differences with traditional malware where appropriate:

1. Initial Access: Adversaries must first be aware of vulnerable devices in order to attack them. Public
IP addresses are continuously being scanned for various exposed and insecure protocols. Telnet and
SSH are the most common services being scanned for [MS18; [VKH19|. This is likely due to the
services providing direct shell access. Aside from tools such as nmapEI and masscaxﬂ the scanner
can be a custom implementation. It can also be made part of the malware binary itself. With
this approach, the amount of scanned devices, and consequently the number of infections, grows
exponential as the malware expands by infecting new devices. The Mirai botnet used this approach
to grow quickly in only a few days |Ant+17].

2. Execution: An attempt at executing malicious commands or code can be made after discovering
a potentially vulnerable service. First, access must be gained however. This must be automated
due to the lack of human interactions with IoT devices. This is in contrast with traditional attacks
abusing humans as they are commonly the weak link in security. The two techniques to gain
unsolicited access to an IoT device are brute forcing (default) credentials and exploiting Common
Vulnerabilities and Exposures (CVE) [Alr+21].

After having gained access, malware is downloaded and executed. The download can come in various
forms such as by FTP, HTTP, or by sending hex or base64 encoded blobs as shell commands. IoT
malware employs similar techniques to traditional malware in this regard. However, it relies heavily
on shell commands and multiple architectures are supported. The latter is especially important
given the variety in Reduced Instruction Set Computer (RISC) architectures.

While not mentioned by Palo Alto Networks, Inc., the earlier mentioned authors of the honeypot
projects, i.e. the authors of [Pa+15|, [Dan+19], and [TOS21], note that this stage already includes
collection of information and evasion. This comes in the form of shell commands used to test the
environment. This is for two reasons. First, the environments between victims may differ. In order
for the malware to download and execute properly, the adversary must identify properties such
as available tools, writeable directories, and the system architecture. Second, adversaries attempt
to evade security testers’ sandboxes and honeypots. Testing the environment’s believability and
halting execution if needed complicates the defenders’ jobs.

3. Persistence: Traditionally, persistency between reboots is ensured by writing settings that automat-
ically execute the malware on boot. For example by setting up registry keys or a system service.

Thttps://nmap.org/
%https://github.com/robertdavidgraham/masscan/
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ToT malware attempts similar techniques as well. Malware will commonly be ran as the root user
due to insufficient separation of privileges. This makes persistent installation of the malware easier
and even more effective. However, read-only filesystems may complicate this approach. As such,
ToT malware leverages the fact that the devices they run on are not frequently rebooted due to
lacking human interactions. By taking the watchdog out of the picture, a service that regularly
checks whether the system is malfunctioning or overloaded and reboots the device if so, maximum
uptime is ensured.

Persistence may also include securing the system. To be more specific, securing it from other ad-
versaries. This ensures that other malware can not compete for resources or even remove the prior
one. This is important as IoT devices use constrained hardware. Fach infected device is thus of
importance. Techniques to lock down the system include changing passwords, halting certain ser-
vices, or patching the vulnerabilities used by the original malware during its infection. In the latter
two cases, a connection must either be kept open or a backdoor must be created. A botnet client
connecting outwards is an example of a backdoor.

. Evasion: Evading detection and complicating auditing extends the lifetime of not only an instance

of malware, but the whole malware campaign. Indeed, security researchers can not shut down an
operation if they do not have enough information on its infection vector, Command and Control
(C&C or C2) server, general working, etc. As such, adversaries targeting IoT devices incorpor-
ate evasion techniques in their malware, despite auditing being less prevalent and effective than
in traditional hardware due to the constrained hardware, as discussed in section 2.3} Employed
techniques are renaming the malware binary on disk or its process to something non-suspicious,
such as a common tool, or deleting it completely from the filesystem after execution has started
and the binary is completely loaded into main memory. The Hajime botnet incorporates these
techniques [EP16]. Furthermore, the creation of logs can be prevented by disabling the firewall and
configuring the shell history file to point to the sink /dev/null. Evasion can also be applied earlier
during the infection process to prevent executing in a fake environment, as mentioned at the end of
the Execution stage’s description. Techniques to do so are discussed in section IoT-focused
malware also employs anti-analysis techniques, e.g. obfuscation, on a binary level. This helps to
evade potential IDSs and firewalls. It also complicates the work of security researchers attempting
to study the malware binary. Yet, compared to its traditional counterparts, usage is not as wide-
spread [Alr+21} |Tor+21]. Obfuscation techniques include packing the binary into a self-extracting,
compressed format with a tool such as uprL and corrupting parts of the Executable and Linkable
Format (ELF) file header that are not used by the OS to execute such files.

. Collection of Information: Aside from profiling the system in order to assist infection, malware may

also collect and exfiltrate other information. The hashed passwords of all users are an easy target.
They are stored in the /etc/shadow file on Unix systems. This file is only accessible by the root
user. However, inadequate access control results in adversaries easily gaining access to said user
and thus the credentials. Cracking the password hashes is simple given the fact that IoT devices
use weak algorithms to save CPU cycles and battery power. Other artifacts can be stolen based on
the type of device infected. For example, a Network Attached Storage (NAS) device may contain a
large collection of sensitive files. A router, on the other hand, may be used as a Man-In-The-Middle
(MITM) for collecting network data.

. Command and Control: Once installed, most malware clients will periodically contact a server for

instructions. This server is called the C&C server. Instructions are not only limited to executing
shell commands or attacking a certain host. Management related instructions such as changing
C&C server and even self-removal are important as these can be used to stay undetected. That
said, Alrawi et al. notes that the usage of C&C servers in IoT malware is not as sophisticated in
comparison with desktop malware. IP addresses are hardcoded and employed topologies are much
simpler. This might hamper scalability and redundancy [Alr+21]. Communication between client
and server can go over custom protocols, or established protocols such as T01E| or Peer-to-Peer
(P2P) protocols.

. Lateral Movement: IoT malware is automated due to the lack of human interaction. This means

that infections happen via publicly accessible services rather than being initiated from the inside.
However, a device may also scan and propagate to the internal network after being infected via the

Shttps://upx.github.io/
“https://wuw.torproject.org/
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Internet. The attack lifecycle for such an attack looks identical to the eight stages being described
here, with the small difference of initial access being performed over a private network. The authors
of the IoT honeypot projects, mentioned at the start of this section, did not record data on lateral
movement. The likely reason for this being the lack of network depth in their setups.

8. Impact: Impact refers to the malware’s actions. In [Dan+19] and [Pa+15] it is called Monetization
as malware is commonly used to profit the adversary. However, this is not always the case. For
example, the Silex malware’s sole purpose is to destroy the device it infects [Mic19]. The resource
limitations of individual IoT devices are offset by the collective size of the networks they are a part
of. As such, possible attacks range from cryptocurrency mining [Merl8], despite the arguable low
return on investment, to high volume DDoS attacks. Instructions to perform actions are received
from the C&C server.

2.5 Communication of constrained devices

Inter-device communication is a core feature of IoT devices. However, their capabilities, mentioned in
section[2.3] also influence the design and choice of communication protocols. Indeed, hardware constraints,
such as the usage of a battery, demand small overheads in packet sizes and processing. Furthermore,
the physical environment, and placement of devices therein, may impact the reliability and effective
bandwidth of communication. This demands Quality of Service (QoS) features to manage the network
being lossy while simultaneously minimising latency and managing congestion. Vulnerabilities exist on
every layer of the OSI model: in the 4G hardware modules [Shu+19] and microphones [Sug+20], TCP/IP
libraries [San+21|, the networking protocols ZigBee [Ron+17] and Z-Wave [Bou+20], and application
protocols like MQTT [Jia+20; MVQ18] and CoAP [MVQ18|[SHB14, Chapter 11]. Given the context of
building a honeypot that faces the Internet, physical access for adversaries is impossible. As such, we will
now study the high-level workings and features, as well as vulnerabilities, of some popular application
level protocols.

2.5.1 MQTT

The messaging protocol MQTT is standardised by OASIS and described in [Ban+19|. The protocol is
designed to be easy and fast to implement. This allows for rapid development, as well as low storage
and usage overhead, which makes it attractive for IoT projects. MQTT works over TCP/IP. It uses a
client-server network architecture and a publish-subscribe messaging model. The model can be compared
to publishing and subscribing to a newsletter. The broker, i.e. server, is the distributor while every client
is simultaneously a reader and a publisher of messages.

No clients communicate directly. Instead, all communication is done via the broker. Clients may subscribe
to topics by means of SUBSCRIBE messages. Any client may also publish application data to topics
by sending PUBLISH messages to the broker. The broker relays received published messages to all
subscribers of the appropriate topic. In practice, it duplicates and pushes the messages to all clients
who subscribed to the topic. Topics follow a hierarchical tree-like structure. Unsurprisingly then, topic
semantics are similar to directory paths, i.e. levels are separated by a /. When subscribing, wildcards
can be used to indicate multiple topics at once.

While the above is enough for a working communication protocol, MQTT includes some additional core
features useful in constrained and unreliable environments. First, a Will message can be configured per
connected client. This is a message to be published when the client unexpectedly loses connection with
the broker. For example, the client may indicate its connection status in a topic. A Will message can
make sure this is set to “not connected” in the case of unexpected failure of the client. Further, it is
possible to indicate that a message should be retained. The broker must store such messages and publish
them to all clients who in the future subscribe to the topic to which the message was published. Last but
not least, MQTT includes three levels of QoS: at most once delivery (0), at least once delivery (1), and
exactly once delivery (2). In order to manage topics as well as these features, the broker must manage
some state. This is done using sessions. When connecting to the broker, a client provides a ClientID.
This associates a session, possibly from an earlier interaction, with the client. In this regard, ClientIDs
are similar to cookies on the web. Sessions store a client’s subscriptions and state of delivery of messages
with QoS 1 or 2.
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Numerous problems have been found over time in the MQTT protocol itself. Frequently the cause of
these vulnerabilities is, sometimes indirectly, the protocol’s focus on only requiring a small core set of
features to be implemented. By only sparingly using forceful language, e.g. must or required [Bra97], the
specification leaves many implementation details up to the developers. This leads to malpractices and
inconsistencies between implementations. For example, the standard states that a receiving entity may
close the connection if a message containing specific Unicode code points is received [Ban+19, Section
1.5.4]. If a broker decides not to implement this check, it will relay the received message to the subscribing
clients without problems. Any receiving client that does implement this check will now disconnect.
Combining this with the retain feature, forcing the broker to send the same message to the clients every
time they attempt to re-connect, essentially causes a DoS attack against these clients. This is only one
of the implementation-based weaknesses discussed by Maggi, Vosseler and Quarta [MVQ18§].

In terms of authentication, the standard provides for simple authentication schemes. Even so, despite be-
ing recommended, how and whether authentication is performed is left up to the implementation [Ban+19,
Section 4.12]. Among other authorization problems, both Jia et al. and Wang et al. describe the well-
known problems with ClientIDs [Jia+20; [Wan+21]. Despite serving similar purposes, both the standard
and industry do not handle ClientIDs with the same care as cookies. Instead, they are sometimes shared
publicly and/or generated based on predictable patterns. ClientIDs are also disjunct from credentials.
Thus, a client may authenticate with a set of credentials but provide the ClientID of another client. This
may cause problems as IDs are considered to be unique within a broker. The specification states that,
when a client provides a duplicate ClientID, the broker must disconnect the client that used said ID up
till that moment [Ban+19, Section 3.1.4]. Doing this repetitively is a DoS attack against the original
client. Additionally, the session associated with the ClientID is not reset, unless requested by the newly
connecting client. Essentially, this allows for session hijacking attacks. Last but not least, the standard
does not dictate the authorization of topics. Using wildcards, i.e. subscribing to #, allows a rogue client
to eavesdrop on all traffic.

2.5.2 UPnP & SSDP

The Universal Plug-and-Play (UPnP) protocol was a collaborative effort between vendors to standard-
ise the discovery and control between consumer devices. Nowadays it is being managed by the Open
Connectivity Foundation [Fou22]. UPnP was not explicitly designed for the IoT space. It is a “chatty”
protocol, which makes it unfavourable for low-powered devices. Yet, the protocol has been widely adopted
in the IoT space. This is due to their similar interests of providing convenience to users through seamless
interoperability [Kay+20]. UPnP is a Machine-to-Machine (M2M) protocol leveraging zero-configuration
networking. Meaning, devices create a network between themselves without human intervention. This
encompasses the configuring of IP addresses and host names, as well as the discovery of services on the
network [Corl2|. Discovery of other devices is done using an HTTP-like message structure over UDP by
means of the Simple Service Discovery Protocol (SSDP), a separate protocol that has been absorbed into
UPnP. Data exchange, configuration, and control is done over TCP/IP using the Simple Object Access
Protocol (SOAP). SOAP allows for a structured way of exchanging application data using XML over
HTTP.

The UPnP specification [Don+15] distinguishes between the terms service, device, and control point.
A service logically models (parts of) the state, and features of, a physical device. A device is a logical
model grouping multiple services or other devices. These concepts disconnect the physical device from
its virtual UPnP representation. Lastly, the control point can be seen as the client. It performs all UPnP
related tasks such as discovery, fetching information on other devices, and passing instructions to its own
devices and services.

The UPnP protocol follows a distributed M2M approach. A device can advertise its capabilities in two
different ways over UDP. First, by multicasting HTTP-like messages using the NOTIFY method to
239.255.255.250:1900. Alternatively, it can reply to an M-SEARCH message if it is able to provide
any of the services requested in said message. These search messages are sent either unicast or multicast.
A device’s advertisement contains basic information on one of its devices such as UUID, type, and a
URI locating the device description for further interactions. The resource at this URI lists additional
device information, and most importantly, extensive information on the available services. This service
information includes possible actions to get and set data, along with the required parameters and URIs for
said actions. UPnP defines XML schemes in order to standardise the structure of the above. Furthermore,
URIs for presentation and eventing can be found in the device description. The presentation URI points
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to a page showing the same information, and allowing for the same control, as above, but it is designed
for human consumption. Eventing, on the other hand, allows a control point to subscribe to changes in
the state of another device.

SSDP can be abused to launch reflection attacks. This is the result of combining the concepts of amplific-
ation and IP spoofing. First, it is possible to send an M-SEARCH message requesting all capabilities from
a device using the ssdp:all filter. This will result in a response per available service. In other words, the
replying device will amplify the amount of messages being sent, and consequently the used bandwidth.
The size of a response also tends to be bigger than that of the corresponding request. The second concept,
IP spoofing, allows one to change the source IP address of a message. This is only possible due to UDP
being a connectionless protocol. In conclusion, an adversary can send a small number of packets, with the
source IP spoofed to be that of their victim, to UPnP enabled devices. These devices essentially reflect
packets onto the victim. Unfortunately, misconfigurations expose enough UPnP enabled devices on the
Internet such that this attack can be used to generate up to 1004+Gbps of bandwidth [Maj17a].

Aside from generic exploits such as command injection [Squ08| and stack overflows [Mool3] due to im-
plementation bugs, the SOAP services of UPnP devices tend to be vulnerable to protocol abuse [Squ08;
Kay—+20]. The UPnP specification does not impose the implementation of any authentication or author-
ization. This means that anyone with network access can invoke service actions. While Squire describes
this attack for Internet Gateway Devices (IGD) specifically, any UPnP enabled device may include se-
curity critical actions. They exemplify this attack with the AddPortMapping action that, as the name
implies, registers a new port mapping. An attacker may have access to the IGD’s SOAP service due to
e.g. a firewall misconfiguration and leverage this to expose other internal network services to the outside
world. It is also possible to map external resources. This converts the IGD into a proxy for the attacker
to leverage in other attacks |[Resl§|. Lastly, we also mention the possibility of spoofing SSDP advertise-
ments, which in turn enables phishing. This is again due to the lack of access control and verification of
advertised services [Kay+20].

2.5.3 CoAP

The Constrained Application Protocol (CoAP) is specified in RFC7252 [SHB14]. It is an M2M protocol
specifically designed for constrained devices and networks. Similar to UPnP, it supports discovery of
services, and a client-server interaction model for control. This client-server interaction resembles that of
the web. Furthermore, CoAP follows a RESTful design in order to allow for compatibility with existing
web resources, all the while avoiding HTTP’s relatively big complexity and packet sizeﬂ CoAP was
designed such that no fragmentation should occur, i.e. a message fits into a single datagram. The state-
lessness of the protocol allows for the implementation of caches and, due to the similarity with HTTP,
cross-protocol proxies. These can further aid to reduce resource usage of the constrained devices. Addi-
tionally, CoAP works over UDP as the connectionless protocol uses less resources than TCP. However,
optional reliability, i.e. QoS, and encryption are supported. UDP also enables multicast communication.
Requesting the path /.well-known/core on a device, optionally with a filter, allows a CoAP client to
discover the services offered by the device. CoAP is conceptually split into two models: one handles
the lack of connections and reliability of UDP (messaging model), and the other manages the web-like
provisioning of application resources (request/response model). Figure illustrates the difference in
models by means of three different scenarios.

The messaging model consists of four possible message types: CON, NON, ACK, and RST. Application
data is sent using either CON or NON messages, with the prior demanding confirmation of delivery by
means of an ACK message. An exception to this may be made when the application presents the response
data in time. This data may then “piggyback” on the ACK message, saving resources by foregoing an
additional round trip. This can be seen in fig. Retransmission is attempted if no confirmation
is received in time. The retransmission mechanism implements exponential back-off and a maximum
amount of attempts as to prevent flooding. An RST message is sent in response to a CON or NON in
case of a processing error. The difference with an application error is shown in fig. [2:2b] The first message
in this figure is malformed. This results in the CoAP service being unable to process the message, causing
it to reply with an RST. The message that follows after the retry delay is properly formatted. However,
the requested resource is unavailable, which results in a 4.04 application error. Message IDs are used to

5Unlike HTTP/1.x, which uses plain ASCII, HTTP/2 implements compression [BPT15|. This helps to bring HTTP/2’s
packet sizes closer to those of CoAP.
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uniquely identify sent CON and NON messages, and to match corresponding confirmations. Note that
responses must be sent with the same QoS as the request they are answering.

Exchanging resources is done using an HTTP-like format. Requests must specify a method and a URI.
Optional are a payload, if the method requires it, and options, the equivalents of HTTP headers. Re-
sponses contain a status code and optionally media corresponding to the requested resource. The sup-
ported status codes are a subset of HT'TP, leveraging the existing categories of e.g. 2XX for success and
5XX for a server error, enriched with codes specific to CoAP. The strength of CoAP is that these features
are encoded in a more compact way than HTTP, despite their conceptual resemblance. For example,
status codes are encoded as a single byte with the first 3 bits specifying the code class and the last 5
bits the specifying the code detail. Tokens are used to identify corresponding requests and responses.
They differ from message IDs as can be seen in both fig. and fig. In the latter, the message
IDs differ as the messages are unrelated on the messaging model level. Indeed, NON messages follow a
fire-and-forget approach. Yet, the tokens match as the two messages carry a request for data, and the
response containing said data, respectively.

COM (Message 1D: Ox1all) MOM (Message |D: Oxlall)
<invalid= ftime (Token: 0x5a) GET ftime (Token: Ox5a)
» >
RST (Message ID: Ox1all)
COM (Message ID: Oxladl) P
GET fime (Token: Ox5a) -
> S [retry delay] S S [processing delay] %
ACK (Message |D: Ox1all)
2.05 Content (Token: 0x5a) COM (Message 1D: 0xb230) NOM (Message 1D: 0xb230)
1215 GET ftime (Token: 0xc2) 2.05 Content (Token: 0x5a)
< "12:15"

> «
(a) Piggybacking application re-

sponse. ACK (Message |D: Oxb230)

4,04 Mot Found {Token: OxcZ)

o
X

(b) Message processing errors differ (¢) Message IDs and tokens are parts
from application level errors. of different conceptual CoAP models
and thus serve different purposes.

Figure 2.2: Three example CoAP interactions attempting to fetch the current time. These ex-
emplify the relations between messaging model and request/response model. Selected headers for
both models are shown as the first and second line respectively in each message block.

Packet encryption is supported with IPsec or Datagram TLS (DTLS) . Encryption can
introduce delays and consume high amounts of energy given the computation costs. This has promp-
ted research towards more optimised DTLS implementations [Har+17; MEB16; |(Cap+15|. Certificates
can also be leveraged to implement authentication and authorization. The original RFC does not sup-
port DTLS for multicast communication as DTLS handshakes, and consequently connections, are made
between unique pairs of entities. This means that in order to emulate encrypted multicast, a CoAP client
would have to establish an encrypted session with each server that responds to the multicast message.
This is not feasible due to performance reasons. However, it is possible to extend CoAP with the concept
of “group keys” in order to support the above .

The CoAP RFC Section 11] itself explicitly discusses likely security vulnerabilities and pos-
sible mitigations. These concerns include implementation errors such as incorrect parsing, amplifica-
tion and IP spoofing, the limitations of constrained devices such as lacking entropy limiting proper
encryption, and MITM attacks resulting from improper proxy usage and implementation. Despite the
RFC’s warnings, Wang et al. was able to identify production implementations vulnerable to reflection

attacks |Wan+21|.
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2.6 Conclusion

Concluding this chapter, we learned that IoT is a highly heterogeneous concept. The hardware, design,
protocols, and goal of each device are vastly different. This leads to the creation of products of which the
security is 20 years behind current best practices. Adversaries are able to easily exploit these weaknesses
and consequently have significant impact on society. However, not only do the devices lack a secure
design, the popular application layer protocols do as well. A security by design approach should thus be
required. Additionally, more abstraction layers might aid in both the secure design and implementation
of IoT devices.



Chapter 3

Honeypots

One of the first books written on the topic of honeypots is that of Spitzner from 2002 [Spi02|. In 2012, a
comprehensive guide on honeypots was published by ENISA |[ES12]. And in 2021, Franco et al. surveyed
honeypot projects focusing on IoT and CPS [Fra+21]. While far from being all the literature on the
topic, these works spanning almost two decades prove that honeypots are a well-established concept in
both academia and the industry, and applicable in various areas of technology. All these sources define
honeypots similarly. The goal of a honeypot is to incite and capture unauthorized interactions with
it. It does this by looking like a real production resource to adversaries. Analysing these interactions
can lead to a better understanding of the state of security surrounding the resource imitated by the
honeypot. The lack of actual production value means that any interaction is assumed to be suspicious
by definition.

Caution must be taken during design and deployment to ensure a honeypot does not interfere with an
actual production environment, as interference may cause poisoning of assets. This can happen in both
directions. For example, fake data from the honeypot can pollute production data. This can happen either
accidentally, or intentionally by an adversary who discovers the honeypot’s nature. Production systems
may also be infected or even taken over if the honeypot is not properly segregated from the production
environment. However, the production environment can also pollute the honeypot. While all interactions
with the honeypot are assumed to be malicious, this only applies if the system is implemented correctly.
Otherwise, unaware, well-intentioned users may produce honeypot logs. These can hinder analysis.

In order to build one, we first need to understand the components that make up a honeypot as well as its
requirements. Only by doing so will the final product be able to perform as intended. Architecturally, a
honeypot consists of two parts as defined by Fan et al.: the decoy and the captor [Fan+18b]. These are
to attract and handle interactions respectively. The decoy can be any type of resource and is only limited
by the honeypot’s goal. This in turn is defined by the operator and environment the honeypot has to
fit into. The captor, on the other hand, must be hidden as to not alert the intruder. Its responsibilities
are securely handling all data served to the intruder, as well as captured for the owner. These two
components will now be discussed in further detail, along with associated requirements.

3.1 Decoy

The decoy part of a honeypot is, as the name implies, a resource used to capture the attention of
adversaries. This means it must be visible, believable, and desirable to potential adversaries. Fan et al.
mentions several specific characteristics of a decoy |[Fan+18b|. These can be summarised under the more
generally used concepts of role and level of interaction, which we discuss below.

It is important to consider the type of resource, goal, and target audience of the honeypot before building
its decoy. This ensures that efforts are appropriately allocated and the resulting product achieves its
goal. It is only by hooking and keeping an attacker engaged, that they will share relevant data. For
example, a honeypot could be designed to research the current threats by black hat hackers to a certain
service. The honeypot system would then require said service to be exposed to the Internet. The service,
and possibly the whole system, would have to be highly realistic in order to imitate an actual system as
closely as possible. Only as such is capturing accurate data on the currently employed attacks possible.

19
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On the other hand, a honeypot might instead be designed for detecting abuse in a company’s network,
similar to an IDS but without signature requirements. As the goal would be to determine whether an
attack happens, rather than how it happens, simple logging and limited believability of the service would
suffice.

3.1.1 Role

The role of the honeypot in an interaction is dictated by the resource it imitates. We can think of this
classification as “what is the honeypot?”.

A honeytoken is a honeypot in the form of a piece of data [Spi03]. It can be a file, a database
record, credentials, etc. Despite looking like production data, it should not interfere with, i.e. poison, the
actual data. Honeytokens allow detection of unauthorized access, as well as fingerprinting of adversaries.
Tokens should be unique to ensure accuracy. Keeping all this in mind, proper generation of tokens is not
trivial |Ber+11].

Client-side honeypots emulate client applications, such as browsers. They are an active type of honey-
pot, purposefully connecting to servers with the intention of evoking an attack from said server [SWK+07].

In contrast to client-side ones, server-side honeypots are passive systems. They emulate and expose
services to be abused. The goal of server-side honeypots is to capture automated or manual scans and
probes, as well as post-intrusion interactions [Naw+16]. The placement of server-side honeypots dictates
their use case, as explained by Spitzner [Spi02, Section 12.4]. Honeypots in the DMZ might deter
adversaries as it wastes their time. Additionally, given that honeypots look like production systems,
placing them in the DMZ allows one to study how an infection/intrusion looks. This knowledge can be
used to search for abuse of actual production systems. Similarly, a honeypot on the internal network can
be used to detect infections from within, e.g. coming from a malicious e-mail attachment. This internal
placement also has the advantage of being able to detect insider threats, such as a rogue employee.
Research honeypots are less restrictive for an attacker as to allow more detailed information gathering.
However, this puts production systems at risk. Meaning, the two should be separated as much as
possible.

3.1.2 Level of interaction/fidelity

A honeypot is meant to imitate a production resource. Its goal dictates the extent to which the imple-
mentation of the decoy must look and feel real to adversaries. In other words, any resources spent on an
interaction with an adversary, after acquiring the desired information from them, is wasted. However,
insufficient fidelity may also adversely affect the honeypot’s effectiveness. A system that is discovered to
be a honeypot loses its value. Adversaries may prematurely end interactions, block list its IP address, or
even poison it with false data. The efforts spent on the implementation result in differences in fidelity and
possible levels of interaction [Spi02, Chapter 5]|Fra+421; [Fan+18b]. We can think of this classification as
“what does the honeypot do?”.

In their book Honeypots: tracking hackers, Spitzner defines a low and a high level of interaction [Spi02,
Chapter 5]. Due to being on a continuous scale, a medium level theoretically exists and is sometimes
used in literature. However, a more interesting third option exists that combines both low and high
level components, that is the hybrid interaction honeypot. The differences between levels of interaction
fall into following categories: cost and complexity of implementation, risk/impact of abuse, fidelity of
environment and recorded data, and lastly scalability and maintenance [Fra+21]. While measuring these
characteristics objectively and discretely is difficult, the relative relations can be represented as in fig.
Note that these characteristics are heavily codependent in practice. For example, consider a project with
high cost and theoretical infinite scalability. In practice, all this scalability will be for naught as it is
limited by to the costs. Deducing these characteristics from existing honeypots is a trivial academic
exercise. However, the inverse process, i.e. determining the resulting level of interaction given the desired
levels of characteristics, is interesting in practice. Exploring the goals of a honeypot project enables
a more efficient and streamlined development process, and consequently results in a more appropriate
product. We will now go a bit more in depth on the three levels of interaction using the descriptions
provided in [Spi02, Chapter 5], [Fra+21|, and |[Fan-+18b].
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Figure 3.1: The characteristics impacted by the level of interaction of a honeypot can be placed
on a continuous scale. The arrows indicate the direction of “increase”. For example, the cost of a
low interaction honeypot is low while its scalability is high. Figure taken from |Fra+21]|.

A low interaction honeypot only provides limited functionality compared to the resource it simulates,
while attempting to look as similar as possible at first sight. The implementation uses the original service
or re-implements a bare bones version of it, allowing it to be set up easily and quickly. Due to being
small and simple, maintenance and scaling is easy. There is also little risk that an adversary misuses
the system, given the lack of features. However, the lack of features limits the possible interactions and
increases the possibility of detection, consequently limiting the captured data. These honeypots work
well to detect simple contextual data such as meta data and initial payloads.

High interaction honeypots are on the other end of the spectrum. They are (nearly) fully authentic
emulations of a system, providing a full OS and file system for adversaries to interact with. It is possible
to adapt an existing system, but this does not make it easier to build the honeypot. In contrary, due to
adversaries being given access to a full system, the risk of abuse is high. In other words, the honeypot
might become complicit in illegal activities. Proper management, such as the configuration of firewall
rules, bandwidth limitations, and access control, is essential. Honeypots with a high interaction level are
very effective at capturing end-to-end attacks and logging them in detail.

Lastly, hybrid interaction honeypots exist. These are setups combining low and high interaction hon-
eypots, effectively providing the benefits of both techniques [ES12, p.19-20]. Low interaction honeypots
are deployed lavishly as endpoints to increase the reach of the system. These decoys perform an initial
assessment of the intruder. If deemed appropriate, intruders are passed on to high interaction honeypots
as to acquire higher fidelity data. The handover happens transparently as to not alert the intruder. It
is also possible to pre-configure the high interaction honeypot with earlier captured data. This increases
the accuracy of the honeypot.

3.1.3 Visibility

Naturally, adversaries must be aware of the existence of a honeypot’s hosted services in order for inter-
actions with it to happen. Discovery of the honeypot can happen similarly to the initial access stage
mentioned before in section [2.4:2] That is, exposed services can be found by scanning public IP addresses
using automated tools. Nevertheless, automation hampers flexibility of attacks. Malware that propag-
ates by means of self-replication will scan and attempt to intrude following a certain set of rules it was
programmed to do. Humans, on the other hand, understand context. This allows for more tailor-made
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interactions. The target may also contain artifacts of interest, such as documents containing confidential
information, that humans have an easier time interacting with [TOS21; BN17]. Differences in experience
and background may also affect a human’s actions. Post-intrusion behaviour of humans and bots is thus
different. Although exposing a honeypot’s decoy publicly on the Internet is simple and certain to yield
results, directly “advertising” it to humans should be considered by its operators.

It is important to note that the advertisement’s goal is attracting adversaries. It is thus a part of the
honeypot’s decoy and must thus have the same properties of being believable, desirable, and visible.
In practice this means that the advertisement’s story must be appropriated to fit both the context of
the honeypot, as well as that of the distribution medium. It must also reach as wide an audience as
possible. Going a step further, the advertisement may be made to contain honeytokens, which enables
the fingerprinting of adversaries.

In order to reach possible adversaries, advertisements should be made in locations that they normally
visit. The most popular avenue for advertising honeypots is Pastebin-like web sites [Mis+18; [Fra+18a;
BN17; [LOS16; Hil+20; [OMS16]. It is not uncommon for adversaries to share actual (samples of) stolen
data on these web sites. These sites are also being crawled with the purpose of discovering real credentials
in e.g. config files posted by security-unaware users. The authors of both [Mis+18] and [BN17| created
bots that posted periodically to several Pastebin-like web sites. This increased their chances of being
noticed. The importance of visibility is made clear by Hilt et al., whom only made two posts and
reported no interactions based on them [Hil4+20]. A similar outlet is hacker forums used to trade in
leaked information [Fra+18a; BN17; (OMS16]. Researchers mostly craft similar stories when posting on
these sites. They pretend to be in possession of a great amount of credentials and offer to share a small
sample. However, the sample contains only honeytokens for the researcher’s honeypots. Sometimes dark
web alternatives to both Pastebin-like web sites and hacker forums are also used.

Taking a step back from pretending to be sharing leaked information, some researchers create leaks
themselves. For example, services such as Google Docs(R) are a popular way, for businesses and individuals
alike, to share documents online. However, faulty configuration of access control policies can lead to the
disclosure of their contents [LOS16]. Thus, a way to advertise is by creating a document containing a
fake story and honeytokens, and then sharing it publicly. Another example is purposefully installing
malware, known to contain a keylogger, in a Virtual Machine (VM) and then interacting with it [OMS16;
Aki+18]. This can be a very effective approach as it is known that the information will reach adequately
skilled adversaries. Nevertheless, this is also the most laborious technique as it requires the acquisition of
appropriate malware and proper handling of the malware in order to prevent accidental infections.

3.1.4 Believability

As mentioned in section [3.1.2] a honeypot that is detected as such loses all its value. Honeypots differ
from real resources at some level, be it by being a complete re-implementation or simply due to the
presence of instrumentation. These differences can be detected by fingerprinting techniques. Some
examples are simple banner-based detection [Mor+19| or a more advanced detection of discrepancies in
re-implementations of protocols [VC18]. Furthermore, the complete lack of some tools or commands
can be detected. For example, Mirai variants echo binaries to standard output at the initial stages of
infection. The system architecture can then be determined based on the strings within said binaries. This
information is needed such that the correct malware sample can be downloaded. Yet, the attack may be
cancelled prematurely if the honeypot does not implement the correct behaviour |morl7]. Similarly, the
command busybox <random_string> is commonly used for the detection of discrepancies in behaviour
of commands. BusyBoxH is a customisable collection of common Unix tools compiled into a single
static binary. It is frequently used in IoT firmware due to its portability and small size. However,
the invocation of a non-existing command may not be handled properly by honeypots providing re-
implementations of tools, instead of the original tools themselves [Pa+15]. While seemingly naive, these
techniques are effective at detecting numerous low to medium interaction open source honeypot projects.
Although each instance of these issues could individually be fixed with little engineering effort, fixing each
occurrence in order to near perfectly imitate the original resource can quickly become an impossible task.
Questions regarding the intended interaction level of the honeypot should arise at this point. Researchers
using off-the-shelve honeypot solutions are recommended to make the system as unique as possible while
simultaneously making it blend in with the environment in order to thwart fingerprinting. Examples of

Thttps://wuw.busybox.net/
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such tweaks are configuring which services are exposed, customising the presented banner and hostname,
and matching the OS used by surrounding production systems.

On the other hand, high interaction honeypots tend to use parts of an actual system as a basis. This
foregoes or complicates some of the aforementioned fingerprinting techniques. Unfortunately, many other
methods exist. These methods attempt to detect the virtualisation software, e.g. emulator or VM, in which
the malware is being executed. Commonly, this is done such that the binary refuses to run in a malware
researcher’s sandbox. However, nowadays this approach is not as applicable for malware targeting servers
and PCs, as virtualisation is highly prevalent due to e.g. cloud computing. For IoT malware, on the other
hand, these techniques are still useful due to the lack of effective emulation environments. For example,
virtual peripherals exposed to the guest OS contain identifiable properties [SM15]. Timing attacks are
another possible technique. Virtual environments are slower than bare metal devices due to the added
layer. Recording the duration of a (set of) instructions and statistically comparing the results with control
devices could reveal that the presented system actually runs in an emulator or VM [HRO5; [SM15]. The
difference in performance between virtualised and bare metal grows smaller each day as the software is
optimised. However, even these optimisations can be leveraged to perform timing attacks. Caching is a
simple, yet effective, technique to improve performance. As intended, it changes the expected amount of
CPU cycles required for an operation. The unfortunate side effect is that this difference can now be used
for fingerprinting [Jan+19; |Gar+07]. Sometimes, Easter eggs are even added to CPUs that are not known
or overlooked by the developers of the virtual counterparts. The presence or absence of this Easter egg is
then an effective indicator to the nature of the machine |[Fer07]. Kedrowitsch et al. presented the idea of
using Linux containers to remove artifacts related to virtualisation, and to improve performance [Ked+17].
Nonetheless, Miramirkhani et al. observes that even when all the above virtualisation-related artifacts are
gone, the artificial environment can still be fingerprinted using, what they call, wear-and-tear artifacts.
The idea is simple to understand: usage of a real device creates artifacts such as temporary files on the
filesystem. However, honeypots are deployed in a clean state and frequently reset in order to keep it that
way. Looking for these wear-and-tear artifacts is simple and their presence or absence says a lot about the
device [Mir+17]. Similar to the discussion on lower levels of interaction, attempts at preventing detection
can be made. Some may be as simple as matching the VM’s resources to that of the original hardware or
masking virtual peripherals’ properties. However, others require huge engineering efforts such as making
the emulator time-accurate |[CNZ20].

3.2 Captor

Aside from the decoy, the implementation seen by adversaries, several considerations have to be made
concerning the implementation of the captor. The captor makes up everything behind the scenes, such
as logging, access control, and handling of responses. In other words, it is the security instrumentation
that converts an everyday resource into a honeypot. Proper implementation of the captor lowers the
risk of abuse of the honeypot. It also ensures that captured data is enough, verbose, and properly
structured. Similar to the discussion on decoys, Fan et al. goes in depth on specific characteristics of
captors |[Fan+18b|. Again these can be traced back to more general requirements, this time defined by
the Honeynet Project [Pro04; Pro06|.

3.2.1 Data control

Data control pertains to the control of an adversary’s actions. The main purpose of honeypots is aiding
in the (research towards) protection of production assets. Limiting the associated risk of compromise and
abuse, especially for high interaction honeypots, is thus of foremost importance, even above capturing
actual data. However, note that limiting an adversary increases the probability of detection.

Control of both ingress and egress traffic must be implemented. This allows proper control of adversaries’
actions. Ingress traffic can be monitored to generate intrusion alerts. Ingress traffic can also be blocked.
This allows the filtering of Internet scanning services such as Shodan from the logs |[Dan+19] or of
adversaries whom discovered the honeypot’s nature and attempt to poison the data. On the other hand,
egress traffic is harder to manage. For example, the honeypot could fall into the hands of an adversary
and join a spam e-mail botnet. In this scenario, blocking all traffic going out to port 25 (SMTP)
would be effective at preventing abuse |[ES12, p.29-30]. While the honeypot’s resources would still be
abused, no harm would be done to other Internet users. However, blocking by port or protocol is not an
effective approach in general. Adversaries may craft their own protocols on top of TCP or UDP, or use
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unconventional ports to communicate with e.g. their C&C server. The opposite is also true. Blocking
commonly used ports, e.g. port 80, to prevent adversaries from downloading their malware binaries could
potentially disrupt the normal workings of the emulated firmware. As such, data control by means of
bandwidth limitations is preferred. Using multiple control services is recommended to ensure redundancy.
In case of failure, rules should fall back to the closed state.

3.2.2 Data capture

To know what actions adversaries performed, their actions must be logged. Captured data has to be
structured, clean, and complete. This makes sure a fruitful analysis of it is possible.

To ensure that a complete picture of a situation can be formed after the fact, enough logging has to
be implemented. An attack must be logged from the start till the end, along with possible branches.
Capturing multiple features, e.g. network frames and shell interactions, allows for analysis from multiple
angles. Too much logging is theoretically not possible. Data can be filtered if unneeded, but it can not
be captured after an incident has already happened [Spi02, Section 12.5.1]. For the same reason, data
should be stored in its raw form. Processing is namely a form of filtering. However, adherence to a
standardised format, including for time stamps, facilitates analysis. Honeypots should not interfere with
the production environment. This is not only to prevent complications for the environment, but it also
prevents poisoning of captured data. Similarly, storing logs on a separate (remote) device protects its
integrity from changes by adversaries.

3.2.3 Data collection

Data collection pertains to the aggregation of captured data from multiple distributed honeypots. Such a
distributed network can be used to e.g. analyse geographic correlations in attack campaigns [Vas+15]. The
difficulty of distributed setups is to structure and synchronise data captures. For example, synchronising
time stamps and using a structured naming scheme for nodes [ES12), p.30]. This is again to ensure that
proper analysis is possible.

3.3 10T service honeypots

In 2012, an anonymous researcher created a distributed botnet that was able to scan the whole IPv4 range
in a single night. Their goal was to study the amount of devices exposing Telnet with default credentials
to the Internet. Results showed that there were “several hundred thousand unprotected devices on the
Internet” [anol2|. Despite the huge ethical debate surrounding it, the research raised awareness of the
extent of the problem. Starting around 2014, both academics and adversaries picked up interest in the
network level security of embedded devices, as can be seen in the boom of research projects [Fra+21}
Fas+21] and scanning frequency of e.g. Telnet services [Pa+15| respectively. Mainly low and medium
interaction honeypots were initially created to understand the threats.

Projects such as cowri€E| and MTP01E| provide a low interaction Telnet shell simulation. These allow
capturing shell interaction from adversaries. The shell environment is incomplete and differs from a real
one as it is simply a re-implementing of certain commands. These discrepancies can be detected, alarming
adversaries and halting interaction prematurely [morl7}; |Cab+19].

Pa et al. built a hybrid honeypot called IoTPOT [Pa+15|. Adversaries can interact with a “dumb”
but learning Telnet shell simulation. Login banners are sourced by scanning other devices. Meanwhile,
responses to shell commands are learned by running the commands in an OpenWrtEI emulation. OpenWrt
is an open source, modular, and light weight Linux-based firmware for embedded devices. This solves
the issues seen in cowrie and MTPot. Using a real OS as backend improves fidelity and decreases
the likelihood of being detected, allowing for more in-depth interactions and analysis. Multiple OS
emulations were used to support different CPU architectures. The captured data was then used to
study the general flow of Telnet based attacks, contributing to the discussion in section Similarly,
Falcom [Fra418b| implements a high interaction honeypot giving adversaries full access to a 32-bit MIPS
OpenWrt emulation. As opposed to IoTPOT, however, the Telnet service provides direct shell access to
the OS.

?https://github.com/cowrie/cowrie/
Shttps://github.com/Cymmetria/MTPot/
“https://openwrt.org/



https://github.com/cowrie/cowrie/
https://github.com/Cymmetria/MTPot/
https://openwrt.org/

3.4. FIRMWARE RE-HOSTING 25

Despite Telnet being the most popular service being scanned for |[MSI18|, other services are not being
neglected. Vulnerabilities in e.g. UPnP are not new [Squ08|. U-PoT |[Hak+18] is a framework that crawls
an existing device’s UPnP space. It does this in an attempt to collect all endpoints, and learn associated
actions and how they affect the state of the device. This data can then be used to generate a high fidelity,
full software simulation of the device’s UPnP service. Tabari, Ou and Singhal simulated an IP camera
using a low interaction web server based on D-Link@®) devices, and Telnet servers [TOS21|. They observe
that while most traffic targets Telnet, this traffic simply brute forces credentials and is done by bots.
Meanwhile, attacks on web servers tend to abuse CVEs and are done more manually. ThingPot [WSK18]
goes a step further. Instead of focusing on an individual device, it simulates a network of IoT devices
communicating using the Extensible Messaging and Presence Protocol (XMPP). The smart devices’ hub
is accessible via an HT'TP REST API and an XMPP client. Captured data showed highly device-specific
interest in the REST API, while the XMPP path was mostly ignored. The lack of interest in XMPP is
likely due to the inexperience of adversaries with the protocol.

3.4 Firmware re-hosting

Notice how the honeypot projects mentioned in section[3-3]tend to only cover one or a few IoT services and
characteristics each. The closest they come to running an actual IoT device, combining multiple services
in a way that is production ready, is the usage of OpenWrt by [oTPOT and Falcom. OpenWrt is simple to
run on arbitrary hardware as it is designed to be as generic, and thus compatible, as possible. In contrast,
using consumer firmware in research is not easy due to the limitations incurred by the hardware, e.g.
cost, scalability, and difficulty to use traditional instrumentation. The tight coupling between hardware
and firmware, such as interrupt driven code and lack of hardware abstraction layers, as well as the
heterogeneous nature of IoT devices, e.g. the variety of architectures and possibly (undocumented) custom
instruction sets, complicates the emulation of arbitrary firmwares [Spe+21]. This is a major stumbling
block for the creation of high interaction honeypots. Indeed, out of the 37 surveyed projects they studied,
Franco et al. identified only 4 that were high fidelity, full device emulations of IoT devices. Half of these
required an actual device as backend [Fra+21].

We will now explore several projects attempting to re-host IoT devices. Re-hosting is the practice of
virtualising (parts of) a device. Note that these are not all honeypot projects, but projects aiming to
emulate devices with the goal of dynamically analysing them first and foremost. That is, reviewing
software by means of executing it. This is in contrast with static analysis, which entails abstractly
reasoning over software’s workings [Ern03]. Nonetheless, an interactive emulation can be turned into
a honeypot. A classification of firmware re-hosting techniques already exists, namely that of Fasano
et al. [Fas+21]. They identify four approaches: hardware-in-the-loop, symbolic modelling of peripherals,
a hybrid of hardware-in-the-loop combined with symbolic modelling of peripherals, and pure emulation.
However, this classification was created with dynamic analysis in mind. As a result, not all of their
described approaches are suitable for interactive emulation, and consequently suitable to be turned into a
honeypot. For example, symbolic modelling is a technique that explores every possible path of execution
of a firmware, but does not allow interactivity. Due to the difference in focus, their classification also
does not discuss all properties relevant to building a honeypot with said techniques. As such, we create
our own classification that focuses on the extent of virtualisation. This classification is created by identi-
fying overarching ideas between several firmware re-hosting projects. The general ideas, strengths, and
weaknesses of each of the approaches are discussed by means of comparing them to each other.

3.4.1 Full device proxy

This approach builds a system in which the whole interactive environment is a physical device, and
software is only used as instrumentation. Practically speaking, adversaries get to interact with real
devices, both hardware and firmware, through proxies. Chameleon [Zho19|, IoTCandyJar |[Luo+17|, and
SIPHON |Gua+17] are examples of full device proxy honeypots. Both Chameleon and IoTCandyJar
consist of three major components: responder, evaluator, and scanner. The responder receives requests
and attempts to respond appropriately from cache. In the case that the responder has no fitting answer,
the scanner will search for a physical device to learn the response from. The evaluator’s job is to
scan requests for security threats. If it finds a request to be malicious, the evaluator will prevent the
relaying of said request to physical devices in order to protect them. This architecture results in high
fidelity and flexibility, allowing the setups to imitate hundreds of different devices. Machine learning is
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employed in the case of IoTCandyJar to further improve fidelity, increasing the duration of interaction
with adversaries.

These setups sound quite promising as they manage to create a flexible, scalable, and high fidelity setup
for a relatively low amount of effort. However, attacks requiring multiple consecutive malicious requests
can not be fully observed as the evaluator prevents appropriate responses from being sent at the start of
the chain of requests. Additionally, access to physical devices is required. The authors of IoTCandyJar
leveraged public devices on the Internet. This approach requires ethical consideration when performed on
a large scale. Especially considering the possibility of relaying malicious requests if the evaluator fails to
detect them. SIPHON;, on the other hand, tunnels traffic from public IPs to only a handful of self-owned
devices. This foregoes the ethical as well as some technical concerns, in exchange for less flexibility in
terms of devices being served.

3.4.2 Peripheral forwarding

The drawback of a full device proxy is that the device is essentially a black box. In order to perform
e.g. fuzzing, a security testing technique that provides random input and monitors program execution
for errors [SGAQ7|, a controlled environment with the necessary tooling, logging, and enough system
resources is required. Emulation can provide this environment. However, without access to peripherals,
most if not all emulated software will simply not function. For example, configuration options are usually
stored in Non-Volatile RAM (NVRAM). Attempting to read such option from the non-existing NVRAM
hardware causes problems for the emulation.

Avatar |Zad+14] and PROSPECT |[KPK14] attempt to solve the issue of missing hardware in emulated
environments using peripheral forwarding. This approach combines virtualising (parts of) the firmware
and using real hardware. Hardware access requests made by the emulated software are forwarded to the
actual hardware, and resulting data is fed back into the emulation. Evidently, this requires instrument-
ation for at least the following:

e Interacting with emulation: Capture hardware requests from the emulation, and replay to it the
actual hardware’s response.

e Interacting with hardware: Replay hardware requests from the emulation to the hardware, and
capture its response.

e Communication between the above.

Avatar and PROSPECT differ mainly in their way of capturing hardware requests. Avatar interfaces
directly with the used emulator, intercepting events on a high level. This includes intercepting hardware
access. Hooking into events allows for flexibility and extensibility for the researcher using the Avatar
framework. However, the authors mention that the framework introduces severe latency, despite optim-
isation efforts.

Two types of device drivers exist in Unix: character and block devices. The main difference between
them is that a character device, as opposed to a block device, does not buffer data |[K J96]. Peripherals
working with continuous data are generally interfaced with through character device drivers, while the
latter are used for storage devices. Looking at Type 1 systems, as defined in section the authors
of PROSPECT make the observation that peripherals and their (proprietary) character device drivers
differ greatly from one device to the other. Yet, hardware interactions must eventually go through the
kernel and thus use its standardised API. In order to capture hardware requests, i.e. system calls, virtual
character devices were created to be used in the emulated environment. Custom handling of system calls
was achieved by means of re-implementing the most prominent ones. PROSPECT’s authors state that
their implementation results in an insignificant latency for its intended goal of step-based debugging.
However, it might not work consistently as not all system calls were re-implemented.

Note that this approach requires dropping and executing a binary on the actual device, which might
not always be possible given that best practices dictate disabling or removing debug ports on embedded
devices. For the same reason, obtaining the firmware is another challenge. Last but not least, we mention
Avatar? [Mue+18b|, the spiritual successor to Avatar. It is a generalised orchestration framework for
hardware, dynamic analysis tools, and emulation tools. Its goal is to facilitate the building of systems
using peripheral forwarding.
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3.4.3 Virtual peripheral modelling

Peripheral forwarding still suffers from a major drawback. Namely, it incorporates hardware in the design.
Cost and scalability are directly impacted by the available hardware. Virtual peripheral modelling at-
tempts to solve this, as the name implies, by means of creating virtual peripherals functionally equivalent
to real ones, up to a certain degree. These can be attached to emulators, enabling emulated firmware to
boot as if on native hardware. The advantage of such virtual model is that it can be shared with the
community once created. Despite this, while manually creating virtual peripherals is possible, missing
documentation requires extensive reverse engineering efforts. This amount of effort for a single device is
usually not justified given the high variety in hardware.

PRETENDER [Gus+19], Conware [Spe+21], Jetset [Joh+21], and pEmu |Zho+21] attempt to solve this
predicament using automated peripheral modelling. PRETENDER and Conware leverage the Avatar?
framework to build a peripheral forwarding system, allowing them to capture interactions with Memory
Mapped I/O (MMIO) and the state of it, as well as hardware interrupts. These traces are then processed
to create state machines representing the peripherals, extended with heuristics to allow for interactions
unseen in the original traces. The authors themselves note two major pain points: modelling and handling
of interrupts and the complete lack of modelling of port-mapped peripherals. Additionally, although these
projects’ approach is indeed similar to the peripheral forwarding approach and thus comes with similar
downsides, the hardware is only required in the data capturing phase. This removes the scalability issue
for end users.

To completely remove the necessity of hardware, Jetset and pEmu employ symbolic execution to model
peripherals. Symbolic execution was first described by King [Kin76|. It is unlike “traditional” execution,
i.e. concrete execution, which replaces variables with concrete values. When encountering a conditional
test, concrete values allow exploring only one of two possible branches. An instance of concrete execution
is therefore limited to a single path through the application, determined by the actual values. On the
other hand, symbolic execution replaces variables with symbolic values. These can be seen as infinite sets
of possible discrete values. Following a conditional branch during symbolic execution places a constraint,
in accordance with each checked condition, on the corresponding symbolic value. Accordingly, the state
of an application under symbolic execution consists of a mapping between application variables and
symbolic values, as well as the path constraint. The path constraint is a boolean expression containing
all symbolic values and constraints they have to abide by to arrive at the current path, and thus stage,
of execution. Theoretically, symbolic execution would allow simultaneous exploration of all application
paths. Practically, however, not all paths can be explored as most applications contain an infinite amount
of paths, and paths that would not terminate within a human lifespan. Of course, ignoring these paths
requires crude heuristics as the halting problem prevents determining the nature of a path a priori.

The authors of both Jetset and pEmu present following insight: firmware code implicitly encodes the
expected behaviour of peripherals. For example, if a peripheral is expected to set a specific flag in
memory to indicate successful initialisation, this flag will be checked by the firmware. Conversely, faulty
data causes the firmware to raise an exception, stall execution, or even completely reset the system. This
insight is in line with the workings of symbolic execution. The technique can be applied to determine
the correct constraints on data to be returned by peripherals at a given state of execution. To guide
symbolic execution down a correct path, i.e. a path validly interacting with peripherals, errors are a
simple heuristic to use.

Being able to deduce the workings of peripherals, without requiring actual hardware, sounds promising
for the modelling of virtual peripherals. Another upside is that these projects support all three types
of embedded systems, discussed in section [2.2 However, unlike symbolic execution, which is an old
technique introduced in 1976, modelling peripherals with it is a new idea at the time of writing. While
the resulting models work as advertised, several conditions apply as discussed by the authors themselves.
First, Jetset requires researchers to input the memory layout, and entry and goal addresses, along with
the firmware. This requires some manual effort and knowledge of the target device. ptEmu attempts to
automatically determine memory layout, but improvements are to be made. Second, similarly to PRE-
TENDER and Conware, only MMIO and interrupts are handled. Third, the resulting virtual peripherals
return conditionally valid data. This does not mean it is correct data, i.e. data that makes sense. For
example, symbolic execution might recognise that a timer linearly increases its value. Yet, it might not
recognise that this happens every second. Instead, it will increase the value on every read. Last but
not least, the created models’ accuracy steeply drops when passing the point up to which it was trained.
Jetset’s implementation simply repeats the last known read or write interaction. pEmu, on the other



28 CHAPTER 3. HONEYPOTS

hand, is able to dynamically switch between the emulation and symbolic execution stage. The authors
note that the symbolic execution stage takes around 2 minutes, with the worst case taking up to 10
minutes. This is clearly not usable for interactive sessions for humans.

3.4.4 Full system re-hosting

Last but not least, full system re-hosting attempts to provide an interactive, full-software emulation
of given firmware. Whereas the previous three approaches attempt to fit the (virtual) peripherals to
the emulated firmware in some manner, this approach makes adjustments to the firmware to achieve a
functional emulation thereof. Full system re-hosting focuses solely on emulating Type 1 devices, which
use a generic OS as discussed in section The generality of the, in practice, Unix-like OSes is what is
being leveraged by this approach. Although this limits the amount of firmwares that can be emulated, the
abstractions of the OS allow for easier instrumentation. Concretely this means easier handling of missing
peripherals, and researchers being able to use traditional tooling. This in turn results in a higher rate of
successful emulations, and frameworks allowing for a simple automated setup given only a firmware blob.
Using the original firmware’s filesystem prevents issues with configuration or missing (proprietary) files
and binaries. Although the resulting environments look and feel the same as the original, the high fidelity
is only superficial due to building on abstractions [Wri+21|. Instead of attempting to perfectly emulate
hardware, high-level interventions patch problems allowing the firmware to run. Kim et al. therefore
refers to this technique as arbitrated emulation [Kim+20]. Projects following this approach are Costin,
Zarras and Francillon’s [CZF15|, Firmadyne |Che+16|, Honware [VC19], and FirmAE [Kim+20]. Each
follows roughly the same major steps while improving upon complications encountered by the previous.
The major steps are as follows:

1. Unpacking firmware: Emulators expect a filesystem and a kernel image to run. Unpacking arbit-
rary firmware blobs provided by vendors is thus the first step. This step sounds deceptively easy
considering the existence of powerful tools such as binwalkﬂ the de facto open source firmware
analysis tool. However, vendor provided blobs may use a proprietary or, by tooling, insufficiently
supported format, contain only the changes to be made in order to update the firmware, pack
multiple architectures into a single archive, or are structured in a non-standardised manner. These
complicate the process of automatically unpacking a firmware into kernel and filesystem.

2. Identifying architecture and entrypoint: The Instruction Set Architecture (ISA), its version, and
endianness must be known in order to configure the emulated hardware. The straightforward ap-
proach is to read ELF headers from firmware binaries. An alternative is to statistically determine
the most plausible architecture by analysing opcodes, strings, or other signatures in said binar-
ies [Wri4-21]. As for the entrypoint, this is the binary executed by the kernel during boot, i.e. the
init process. The difficulty is not only to identify the binary in question in the extracted filesystem
as different vendors use different file names and paths, but also the parameters used while invok-
ing said binaries. Techniques to find these range from naive find operations based on filename, to
looking for strings in the kernel binary.

3. Post-processing firmware: Modifications to both the filesystem and kernel are made to facilitate
emulation. This step includes the most interventions made to facilitate emulation. All mentioned
projects replace the kernel included in the firmware with their own. This has several advantages
such as consistency between emulations, and decoupling software from hardware as vendors provide
customised kernels and kernel modules. It also allows customisations such as logging of system
calls, changing environment variables passed to the entrypoint, changing the entrypoint itself, and
the intercepting and custom handling of signals. Filesystem changes are e.g. the creation of proper
symbolic links from text files representing these links, adding a custom libnvram.so implement-
ation, and replacing/adding binaries such as BusyBox. All these changes allow for customisation
and instrumentation of the emulation. Of course, while only one kernel per architecture is required,
maintaining them is a lot of work. The majority of firmwares require older kernel versions due to
compatibility reasons with the included services. Yet, emulators require features from newer kernel
versions. The solution, although labour intensive, is to backport said required features.

The custom NVRAM implementation deserves some additional explanation as it is one of the most
important, yet imperfect, interventions made to enable emulation. Embedded devices use NVRAM
to store configuration data that is to persist between reboots. This storage is commonly abstracted

Shttps://github.com/ReFirmLabs/binwalk/
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as a key-value store and accessed via a library. These key-values can be stored on e.g. the filesys-
tem by overriding the original library’s functions with custom implementations. This approach is
plagued by several problems. First, only roughly half of all firmwares use a library to access NV-
RAM [Che+16|. Second, returning NULL or an empty string as default value can easily cause errors
in the emulation process. This is partially solved by some firmwares that include defaults in text
files, or hardcoded in binaries. Last but not least, the function declarations might differ between
vendors.

4. Preparatory iterative emulation: All but Costin, Zarras and Francillon’s project use an preparat-
ory emulation phase. Firmwares perform numerous setup steps during the boot process, such as
configuring network interfaces with MACs and VLAN tags, mounting additional filesystems, and
generating configuration files. Of course, errors can also occur. The customised kernel captures
these by logging system calls. This information is then processed to automatically configure the
emulation environment. Some setup steps may be (indirectly) dependant on each other. For ex-
ample, the web server may not even attempt to start before a working network connection is set
up. Yet, the web server contains some important NVRAM keys that are only accessed at runtime.
These keys can thus not be registered with the custom NVRAM implementation during the initial
emulation. It is for this reason that the preparatory learning phase is iterative.

5. Emulation: Using the results of the above steps, emulation of the firmware is performed. The
emulator of choice is QEMUEL QEMU is the de facto, open source machine emulator. Success of
emulation is tested by checking for working networking by sending an ICMP ping and, if applicable,
performing a GET request to the web server.

3.4.5 Evaluation

In this section, we evaluate the applicability of each technique in building a high interaction honeypot
using consumer firmware. To recap, table[3.1]lists all discussed firmware re-hosting techniques and related
projects. High interaction honeypots are expected to be hard to manage in exchange for higher fidelity,
as is implied by their characteristics seen in section [3.1.2] Yet, some limits must exist in order for the
honeypot project to be usable and viable in practice. This leads us to comparatively evaluate these
characteristics per technique first. Note that honeypot operators are assumed to have permission to use
all involved devices. As a result, the amount of available hardware units in this discussion is limited to
roughly a dozen. The results of the comparison are shown in table After the comparison, we will
argue the usefulness of each firmware re-hosting technique. The goal is to determine the technique best
fit for a user friendly, high fidelity honeypot.

Re-hosting approach Projects

Full device proxy IoTCandyJar |Luo+17], SIPHON |Gua+17|, Chameleon [Zho19)
Peripheral forwarding Avatar |[Zad+14], PROSPECT |[KPK14]

Virt. peripheral (forwarding) PRETENDER |Gus+19|, Conware |[Spe+21]

Virt. peripheral (symbolic exec.) Jetset [Joh+21|, pEmu |Zho+21|

Full system re-hosting Costin, Zarras and Francillon’s [CZF15|, Firmadyne [Che+16|,

Honware [VC19|, FirmAE [Kim-+20]

Table 3.1: Listing of all firmware re-hosting projects, per re-hosting approach.

e Cost: The financial cost of running a honeypot heavily depends on the amount and the computing
power of hardware involved, and the necessary maintenance. Both Full Device Proxy (FDP) and
Peripheral Forwarding (PF) require actual IoT devices for the running environment. Additionally,
gear and work hours must be dedicated to studying and hooking them up to instrumentation,
e.g. find a debug port and communicate with it properly. Virtual Peripheral Modelling (VPM)
projects PRETENDER and Conware have the same constraints during the training phase. Jetset
and pEmu, on the other hand, require computing power relative to the complexity of the firmware
due to the usage of symbolic execution. Although emulation in general requires some resources
from the host computer, the virtual peripheral models are simple enough so that their impact is
negligible. Emulation of firmware itself is also relatively cheap. This is due to the constrained
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hardware used by IoT devices. As such, both the usage of virtual peripherals and Full System
Re-hosting (FSR) have a low cost.

Complexity: Some complexity is involved in the hooking up of hardware to instrumentation. Even
so, the approaches using peripheral forwarding are more complex than FDP. This is due to the
prior requiring knowledge of the framework used to facilitate the setup and of the workings of the
firmware. This framework is often Avatar? or custom made. The VPM projects Jetset and pEmu
do not require hardware. Nevertheless, they are made complex due to requiring the memory layout,
entry address, and goal address along with the firmware as input. In contrast, FSR projects are
very simple to use. They only require the user to provide appropriate firmware to emulate. All
steps from extraction to emulation are then done automatically.

Risk: The amount of risk is relative to the fidelity of the environment presented to adversaries. As
such, PF presents almost no risk as it does not allow for real time sessions with humans. Similarly,
pEmu is unsuitable for human interactions as it dynamically switches between training its peripheral
model and emulation. Both FDP and FSR present interactive, high fidelity environments and thus
present a high risk of abuse. However, while malware in FDP situations is constrained by the
hardware’s capabilities, FSR emulators have more resources that can be abused by running on
stronger host hardware. Lastly, VPM is highly dependant on the actual peripheral being emulated.
For example, it is possible that the emulated virtual peripheral is not often used or not critical for
the operations performed by malware. As long as the peripheral ensures that the firmware does
not end up in an error state, its actual fidelity does not matter. Instead, the emulator’s capability
of handling the rest of the firmware, and the malware do.

Fidelity during usage: The environments presented to adversaries by PF and VPM have a low
fidelity. PF is not suitable for interactive sessions with humans due to the delay introduced by it.
This is the result of having to communicate between software and hardware through a framework
and non-conventional hardware channels. On the other hand, VPM’s goal is not the creation
of peripheral models that return correct data, but data adhering to certain logical constraints.
Additionally, the peripherals’ fidelity drops after the point up to which they were trained. In
contrast, FDP has the highest possible fidelity as it provides fully working firmware backed by
actual authentic hardware. FSR attempts to provide an interactive and functional environment on
a surface level. Yet, compromises must be made due to the lack of hardware. For example, the
camera feed will understandably not exist when emulating an IP camera. This hampers the overall
fidelity of the approach.

Fidelity of logging: Each “angle” of a system describes events differently. To increase the fidelity
of captured data, the amount of sensors must be increased. Adding said sensors is simple in a
virtual environment. This results in high fidelity for all approaches virtualising at least a part
of the firmware. That is, all but FDP. Emulators can be hooked into by the host system. The
approaches using peripheral forwarding do this already as they are built upon the idea of capturing
and processing events. A virtual environment allows for introspection unlike a closed off, physical
system. It is for this reason that FDP’s data capture fidelity is lower. The data going through the
proxies is only superficial, e.g. web requests and responses. Capturing the lower level events in order
to study the firmware is hard to impossible, depending on the feature. For example, it could be
possible to capture signals with a logic analyser and reverse engineer the workings of some module.
However, capturing the resource usage of specific processes would be harder with only hardware
access.

Scalability: The scalability of a honeypot can be defined as the ratio of possible amount of simul-
taneous sessions to amount of investment. It is thus inversely proportional to cost and complexity.
FDP, PF, and the VPM projects PRETENDER and Conware incorporate hardware in their setups.
To some extent, it is possible to scale up one piece of hardware to multiple sessions. For example,
FDP can be set up such that one device has multiple proxies pointing to it. However, hardware
will always limit scalability. It must be acquired first and foremost. Then, it must be hooked up to
instrumentation. This is less complex for the FDP approach than it is for the peripheral forwarding
ones. We thus rate FDP’s scalability as medium instead of low. The fully virtual VPM projects
also have low scalability as they require engineering effort to determine the input parameters. Note
that the scalability of all VPM techniques becomes high during usage, as already modelled virtual
peripherals can be used without the original hardware. During emulation, only the lack of the host’s
resources could limit the scalability. Yet, as mentioned during the discussion of cost, the emulated
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hardware is low end and thus does not require a great amount of resources. This also applies to
FSR. As a result, it has high scalability. Deploying duplicate emulations of a firmware is viable.

e Maintenance: Honeypots require maintenance just as any other service. This includes providing
resources such as electrical power, updating software in order to lower risk of abuse, and resetting
the honeypot periodically to ensure adversaries do not alter the environment as it could affect
future interactions. As such, maintenance is yet again a characteristic influenced by the amount
of hardware involved. It is simple to restart an emulated environment and reset it to its original
state, based on an image. Automating this process is also feasible for the same reason as extensive
logging is possible in virtual settings. On the other hand, approaches incorporating hardware during
usage complicate maintenance. Hardware may end up in an invalid state or store malicious data.
Resetting it is not always evident. For example, some devices require users to press a reset button
while others require the removal of a power source. The honeypot operator must also manually
determine when to reset a system. As such, this process is hard to automate and hampers scalability

as well.
Criteria Full device proxy Peripheral forwarding Virt. peripheral Full re-hosting
Cost T (model) / | (use) 1
Complexity 1 (model) / | (use) 1
Risk peripheral dependant 1

Fidelity (usage)

I
e

b ~
Fidelity (logs) 0 0
Scalability 4 (model) / 1 (use) 0
Maintenance 1 +

Table 3.2: Relative comparison of different firmware re-hosting techniques using the characteristics
of a honeypot. A limited amount of hardware is assumed to be available to the honeypot’s operator.
The symbols 1, ~, | mean high, medium, and low respectively.

In conclusion, the current state of the art implementations of PF and VPM do not qualify for building
a honeypot. Their major drawback is their low fidelity. PF’s lack of fidelity is due to the delays when
interacting with hardware. As for VPM, the lack of fidelity is the result of how the peripheral models
are created. While VPM is not suitable for honeypots, it might work well for dynamic analysis. The
reason being that the researcher would know the nature of the system and interact with it by means of
automated tooling. Despite low logging fidelity and limited scalability, FDP is still a viable option for
building high interaction honeypots. It is possible to keep costs and maintenance down if only a few
devices are studied. The benefit of using FDP is that it allows adversaries to interact with unaltered
firmware running on the original hardware. On the other hand, FSR provides much higher scalability and
incurs less cost. The flexibility of a fully virtual environment allows for extensive logging and tweaking of
the presented environment. The downside of FSR is that it only supports Type 1 systems as opposed to
FDP, which supports any hardware as long as requests and responses can be proxied to it. Additionally,
obtaining firmware images for FSR is not trivial. And even then, emulation of the firmware might not
succeed.



Chapter 4

Implementation

The goal of this thesis is to study the current threats to IoT devices exposed on the Internet. This
requires collecting data on adversaries’ actions. Both automated and manual attacks are of interest to
us. The prior represents the main threats given the scalability of the approach. The latter is of interest
due to the high effort required by adversaries to perform such attacks. Manual attacks should present
themselves to be intricate and targeted. Unfortunately, high interaction IoT honeypots are not readily
available. Therefore, we build one ourselves using a state of the art firmware re-hosting technique.

This chapter explains our honeypot implementation. First, a schematic overview of the complete setup
is presented, along with a brief explanation of the workings of each component. Then, we discuss how
the components and related implementation choices help in fulfilling the requirements of the decoy and
captor. To finish, encountered complications and possible improvements are discussed.

4.1 System overview

A schematic overview of the complete system with all related resources and services is shown in fig.
We end up using full system re-hosting, as will be discussed in section As a result, all services
are virtual and the whole setup can be deployed in a VM. This enables portability and scalability.
The actual services acting as honeypots run in Dockelﬂ a containerisation framework. This has two
advantages: precise modelling of the “fake”, honeypot private network, and segregation between the
services on the host and inside the honeypot network. In other words, it allows us to hide the captor
part of the honeypot, i.e. instrumentation, from the decoy. This lowers the possibility of adversaries
discovering the nature of the system, and consequently harming the integrity of the captured data. A
practical example of this segregation is the network tap. This service captures all network traffic in the
192.168.0.0/24 subnet, which is the Docker honeypot network. This service could have been placed
in a Docker container and attached to the network in question. However, the tap would be exposed in
the event that an adversary gains a foothold in the private network and proceeds to scan the subnet.
Unfortunately, running an emulator in Docker is not quite performant. We attempt to remedy this by
performing the preparatory, iterative emulation phase of the emulation framework on the host. This
phase must only be performed once to determine the configuration that enables a working emulation of
the given firmware. The learned configuration can then be copied into the Docker container and used by
the emulator running inside it.

4.1.1 Honeypot services

The Docker network contains two types of honeypots: high fidelity consumer firmware emulations and
low fidelity MQTT simulations. The high fidelity devices are the IP camera D-Link@® DCS-700L with
firmware version 1.03.09, and the router Netgear®) R7000 version 1.0.11.116-10.2.100. Both IP cameras
and routers are prevalent IoT devices found in home networks. However, the ultimate reason for using
these firmwares in particular, is the complications encountered in finding firmware of which the emulation
succeeds. This is discussed further in section Nevertheless, both devices run interesting services
by default that we expose to the Internet. The IP camera presents a Telnet server on port 23 and

Thttps://www.docker.com/
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an administrative web panel on port 80. A proxy is placed in front of the Telnet server. This has
multiple uses. First, it intercepts scans coming from the outside, thus preventing the emulator from
being flooded, which could result in possible downtime. Second, it enables data capturing by logging
all Telnet interactions. Lastly, it allows authentication using multiple credential combinations. This
allows us to implement honeytokens. As for the web server, it has a lower barrier to entry than a Telnet
connection. Additionally, it is not known to contain any vulnerabilities in this version of the firmware.
Meaning, it also has a lower risk of abuse than an interactive shell. Using this, we wish to discover what
adversaries are interested in when interacting with an administration panel. Access to it is available
using HTTP basic authentication with the common default credentials of admin for both username and
password. The web server is supposed to show the camera feed and allow for configuration of the IP
camera. However, making it believable required some work due to the limitations of the emulation
framework, as discussed in section [4.2.3] The router also runs a web server, but we do not allow access
to it from the Internet as that would be redundant. It also exposes ports 1900 and 5000 however. These
are both parts of its UPnP service. Adversaries are free to interact with the service as they wish due
to UPnP not implementing any authentication and authorization, as mentioned in section Both
UPnP and associated vulnerabilities are not new, with Squire presenting the AddPortMapping protocol
abuse vulnerability in 2008. The intent of exposing it then is to gauge the interest in, and knowledge of,
older technologies.

MQTT was chosen as communication protocol for the other services. The reason being that it has con-
sistently been the most popular IoT application protocol for years, according to developer surveys |iot21]
and search trends (see fig. . The MQTT devices are only accessible from inside the honeypot network.
The goal of this part of the setup is twofold. First is determining adversaries’ knowledge of exploiting the
MQTT protocol. The second intent is to study the interest of adversaries in moving laterally through
a network. In other words, will an attacker try to move through a private network after gaining initial
access to an IoT device in said network? Only being accessible via the emulated devices is also the reason
why the MQTT devices are low fidelity. An adversary whom gains access to the IP camera or router and
then proceeds to scan the private network shows to have sufficient knowledge of how to interact with the
unique Linux environment offered by IoT devices, e.g. using BusyBox and cross-compiling their custom
tools to work on a RISC architecture. Making them prove themselves again for the internal part of the
network is unnecessary. The MQTT clients are implemented using traffic generating scripts. These pre-
tend to be either an air conditioner, smart thermometer, or smart lock. For the broker we use Mosquittcﬂ
Several vulnerabilities are introduced based on the discussion of the protocol in section 2:5.1] No encryp-
tion or authentication is configured to facilitate adversary interactions. Furthermore, the broker allows
clients to subscribe to all topics using wildcards. This enables traffic sniffing. Also, the topics to which
clients publish follow similar structures. Uniqueness is introduced by having one level of the topics be
a UUID. This UUID differs between each device. It is also their ClientID. Thus, an adversary sniffing
traffic is able to discover all clients’ IDs. By starting a new connection with the broker and providing
a sniffed ID, it can be used to DoS or impersonate the original client. Last but not least, some of the
clients periodically send the broker a request to check for updates. The broker is set to respond with
the message {"run": "date ’+%Y-Ym-%d_%H:%M:%S’ > /etc/last_update_check"}. That is, a shell
command to be ran. While in practice nothing is actually being executed, we attempt to trick adversaries
into thinking a command injection vulnerability exists.

4.1.2 Instrumentation

Instrumentation includes all supporting services. First we mention the FirmAE database and associated
Docker network. FirmAE is the firmware re-hosting framework that is used. It is discussed further in
section The database is used to store properties of emulated firmwares and is thus essential to the
framework’s functioning. The emulation running in a Docker container must have access to the database.
At the same time, the database must not be exposed to the honeypot network. We created a separate
Docker network to solve this issue. Only containers running emulations and the database are part of it.
By only routing the honeypot network interface through to the emulator, and not the database network
one, it is ensured that adversaries can not access the database. Adversaries are unable to access the
container as this would require escaping the emulator, which is not impossible but nonetheless highly
unlikely.

2https://mosquitto.org/
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Figure 4.2: Amount of searches on Google for the application protocols MQTT, UPnP, CoAP,
and AMQP. The graph goes back three years from the time of writing. The relative ranking has
stayed almost completely static, with a small burst of interest in UPnP around mid 2020.

The health and abuse checking service is created to ensure maximum uptime and lasting fidelity for all
honeypot services. Abuse of the honeypot is highly probable. One concern is that adversaries launch
processes that take up all resources. Another possibility is them attempting to take over the device by
e.g. stopping or re-configuring certain services. Both of these can result in downtime of the honeypot.
The health and abuse checking service combats this. It periodically scans all honeypot containers and
compares the running services to the intended list of services. It also checks whether resource are being
overused. If so, it reboots the honeypot. The emulations require a clean reboot from their firmware
image to ensure the clean-up of artifacts potentially left behind by adversaries.

The firewall is implemented using iptables and is essential for data control. It opens only the required
ports and routes all related traffic to the emulated honeypot devices. Additionally, it enables bandwidth
throttling using the hashlimit feature. On top of all this, it also enables the creation of a block list
for IP addresses. The scanner blocking service uses this to dynamically block IP addresses of known
legitimate Internet scanning services. It does this by reading the firewall logs and performing a reverse
DNS lookup of the IP addresses. IPs belonging to a pre-set list of domains are blocked. Filtering out
this legitimate traffic will make analysis easier. Of course, the honeypot operator can also manually add
IPs. For example to block an adversary attempting to poison the honeypot.

The Telnet proxy has already been mentioned. As noted before, the proxy has support for multiple
credential pairs. The system includes a service that dynamically updates this list of valid credentials.
The reason for this is to create a believable environment. For example, allowing the username admin
with a wildcard as password would be suspicious. Humans would notice how they are able to login with
every password on their first attempt. A more believable approach would be to use a list of commonly
used passwords. However, finding a comprehensive wordlist containing IoT-specific passwords is difficult.
As to not exclude possibly interesting attacks, we create our own IoT wordlist. Initially, no password is
valid. Over time, automated attacks will attempt to login using passwords known to them. These are
usually default passwords for some IoT device. The wordlist updating service then periodically scans the
proxy’s logs and adds the captured passwords to the allow list.

4.2 Requirements and solutions

Above section gave a general overview of each component of the system and how they relate. This section
will focus on the requirements to be met in order to appropriately implement a honeypot that can achieve
the thesis’ goals.
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4.2.1 Consumer firmware emulation

The intent is to present a high fidelity environment based on consumer firmware to adversaries. This
means firmware re-hosting is required. Looking back at our evaluation of techniques in section two
candidate approaches present themselves: full device proxy and full system re-hosting. Buying devices
for a full device proxy approach would result in a lock-in situation given the associated costs. Instead,
we opt for the full system re-hosting approach as it offers much more flexibility. This flexibility allows us
to add and replace devices on a whim, which is a major pro given the experimental nature of research.
However, this flexibility is drastically reduced by the efforts required to make the resulting environment
believable, as discussed further in section [4.2.3

Several projects following the full system re-hosting approach exist. As mentioned in section [3.4.4
these projects build upon each other’s work. More specifically, Costin, Zarras and Francillon’s and
Firmadyne were created roughly around the same time, while FirmAE and Honware separately built upon
Firmadyne’s work. While Kim et al. does mention the possibility of using FirmAE to build a honeypot,
the main goal of their paper is to improve the success rate of emulation, compared to Firmadyne, to
enable the dynamic analysis of consumer firmware. They released their code as open source on GitHulfl
Honware’s focus, on the other hand, lies in increasing network reachability of emulated firmware in order
to use the project to build a high interaction honeypot. This resulted in them setting up an online service
providing honeypots on demandﬂ Unfortunately, they did not release their code publicly. Attempts to
contact the authors of Honware were made, but no replies were received. As such, we settle on using the
FirmAE project.

4.2.2 Visibility

Luring humans into the honeypot is important. It allows us to study more intricate attacks, and possibly
observe interactions with the devices located in the back of the network. As such, the honeypot’s IP ad-
dress along with some credential pair must come to the attention of a human. Adversaries can obtain this
data either directly, or indirectly e.g. via automated data gathering. We take several different approaches
to advertising our honeypot based on the discussion had in section [3.1.3] No darknet alternatives were
used due to ethical considerations. Each individual post contains the IP address of a honeypot instance,
an indication that the ports 23 and 80 are opened, and a honeytoken made up of the username admin
and a uniquely generated password. This unique password is added to the Telnet proxy’s wordlist on the
relevant system.

Our main approach is posting text snippets online. Initially, we posted manually to the web sites https:
//pastebin.com, https://hastebin.com, https://controlc.com, http://pastie.org, and http://
codepad.org. GitHub gists used to be a popular alternative as well but, at the time of writing, it is no
longer possible to post these anonymously. Posting once is also not enough. To increase the odds of being
seen, multiple posts must be made. Thus, we wrote a script that posts four times per day. Unfortunately,
it only posts to the first three mentioned web sites due to CAPTCHA restrictions on the other two.
Adversaries gather information from these web sites using scrapers. These look for certain strings in
the posted messages. We play into this by posting using several different templates. Two templates
simply contain URIs to both the Telnet service and IP camera’s web interface. One of these follows the
standard format for URIs, i.e. <protocol>://<username>:<password>@<ip>:<port>/<path>, while the
other places the credentials separately after the URI. The third template attempts to be easily machine
readable by following the JSON format. This template is shown in fig. Lastly, each template is
accompanied with a slightly different title.

The second outlet for our advertisements is hacker forums. However, the story of selling leaked credentials,
used by prior work, can not be adapted. The reason being that we only deploy two honeypot instances
and consequently only have two IP addresses. Sharing such small amount as a sample would not be
convincing. Several dozen additional unusable IP-credential pairs could be generated. However, the
difference between the amount of working and invalid identities could also raise suspicion. As such, our
cover story mentions finding an interesting system with exposed ports, followed by asking forum users
to teach us how to hack it. By acting naive and providing only minimal information, we attempt to
imitate an inexperienced individual. Similar requests for help are not unusual on the target forums.
We thus argue that this simple story should be believable. The story is posted to hackforums.net,

3https://github.com/prOv3rbs/FirmAE/
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// exposure_report.json

{

"info": "exposureyreport",

"time": <unix_time >,

"device": |

{ "ip": "<host_ip>",
"port": 23,
"username": "admin",
"password": "<generated_password>",
"service": "telnet"

},

{ "ip": "<host_ip>",
"port": 80,
"username": "admin",
"password": "admin",
"service": "httpd",
"hostname": "DCS-700L",
"device-type": "ipcam",
"path": "/home.htm"

Figure 4.3: The JSON message template used to advertise a honeypot instance. It pretends
to be the output of a vulnerability scanner. The angle brackets indicate variables to be filled in
appropriately.

https://raidforums.com, and https://nulled.to. However, hackforums.net automatically appends
the results of a WHOIS lookup to messages containing IP addresses. This lookup shows that the IP is
not a private address but that of a hosting provider, which is in conflict with us presenting the system
as a home network.

Finally, we advertise the honeypot by making Google Docs@®) documents public. Similar to the hacker
forums approach, the story surrounding the “leak” must be adjusted to match the context of our honeypot,
i.e. it looking like a small home network. We pretend to share a document with our parents containing
credentials for various devices at home. An example document is shown in fig. [f.4] It is not uncommon to
store credentials in documents, despite it being a malpractice. The documents are publicly available from
the Internet. We also share links to the documents on https://pastebin. com/to increase visibility.

4.2.3 Believability

A honeypot’s decoy must be believable to keep adversaries hooked. This not only means that the envir-
onment must look real but it must behave real as well. In other words, believability and preventing being
fingerprinted go hand in hand. We will now discuss steps taken to trick users into thinking our honeypot
is a real system.

The compromises made by full system re-hosting to emulate firmware hamper its fidelity. The FirmAE
framework in particular was created with dynamic analysis in mind. The user interacting with the guest
system is expected to be a researcher whom knows the true nature of it. As such, the framework makes
no attempts at hiding itself. Numerous artifacts can be found in the resulting emulation, for example
framework processes, files, and environment variables. An adversary could look these unusual artifact up
and discover that they are not interacting with a real IoT device. A considerable amount of thought and
effort must be invested into hiding the artifacts from all possible angles. However, actually doing so is
relatively easy as the framework provides a modifiable shell script that hooks into the init process.

In Unix, process information can be found in the /proc directory. This is a virtual filesystem using
procfs. Meaning, the files under this directory are not actual files stored on disk, but rather information


https://raidforums.com
https://nulled.to
hackforums.net
https://pastebin.com

38 CHAPTER 4. IMPLEMENTATION

home credentials @ -
Inleggen
Bestand Bewerken Bekijken Extra Help

Do NOT share this! Especially not with uncle John.

Dad, click on this to see the camera feed
54.78.156.156/home.htm.
It also works when you are away from home!

e wifi: C64hrDBJ
e camera
o user: admin
o pass: admin
» safe bedroom: 7426
o telnet access (I use this, don't worry about what it does)
o user: admin
o pass: BV7xHUgFVgCF

Figure 4.4: Google Docs® document containing unusable data such as a home Wi-Fi password,
and information on one of our honeypot instances such as the IP address and a unique honeytoken.

gathered by the OS and presented with a file-like structure. Changing the visibility of processes requires
manipulation of the data in said directory. We consider two approaches to hide sensitive processes from
the eyes of adversaries. The first is remounting /proc using the hidepid option. This can be used to
either deny access to process information, or completely hide processes from other users |[Bow+09|. Due to
being an option of procfs itself, this approach applies to /proc and thus the whole OS directly. As usual,
the root user is unaffected as they have permission to do anything on the system. In other words, this
approach would require us to create a least-privileged user to be used by adversaries. While commonly
this is good practice, gaining root access might be an important part of exploitation. The alternative is
to preload a library like the libprocesshide project does. This library intervenes whenever data from
/proc is read by tooling. It then filters the list of processes before it is passed to the invoking application.
As a result, the filtered processes will not show in applications such as ps, 1sof, and top, even when
executed by the root user. However, the /proc directory is not directly affected by this. Listing its
contents would thus still reveal all processes. We end up using the first approach. The reason being
that it affects procfs directly, ensuring that we do not overlook anything that might still leak process
information.

All framework files, such as the custom NVRAM library and init wrapper, are contained in a directory
located at the root of the emulated guest’s filesystem. These files are of importance to the emulation.
Yet, adversaries seeing them might become suspicious. After some research, we found that the only
practical way to hide files from the filesystem is to enter a chroot environment with all but said directory
mounted in it. This also enables us to spoof system information such as the Linux version, or the fact
that peripherals are virtual and provided by an emulator. This can be done by mounting a file with the
spoofed data over the original. Lastly, the framework binaries also produce kernel logs. We configure
dmesg such that these logs are hidden from users other than root. In conclusion, when an adversary
authenticates over Telnet, they are dropped into a chroot environment as a least-privileged user. The
login binary facilitates the hiding of environment variables. Meanwhile, framework binaries are executed
by the root user, hidden from the least-privileged user by all means.

By definition, full system re-hosting has no access to hardware. In the case of the IP camera, this is clearly
noticeable when visiting the administration panel as the camera feed does not load. The DCS-700L’s
camera feed works by pointing to a path containing an image, and reloading it every few seconds with
client-side scripting. In the back-end, every few seconds the web server is supposed to call a device driver
that takes a picture and replaces the image at aforementioned path with it. We could fix this functionality
by writing a custom device driver. However, doing so would require huge reverse engineering efforts to
make the custom driver compatible with the firmware. Instead, we decide to take several pictures from
an IP camera at home and loop through them using a script. All private information is stripped from

Shttps://github.com/gianlucaborello/libprocesshider/
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these images. Another symptom of lacking hardware is that data loaded from NVRAM is either empty
or shows non-sensical values. Sane defaults for each NVRAM key must thus be set manually. Doing so
requires us to reverse engineer the web server, matching each shown value to its respective key.

The lack of actual hardware also includes networking peripherals. FirmAE makes sure emulated devices
are network reachable by setting up virtual interfaces for the emulator. The used settings are based on the
configuration requested by the firmware during the emulation framework’s incremental learning phase.
Nevertheless, circumventing the original setup routine results in unusual configurations. We encountered
misconfigured subnets for the guest devices’ interfaces, along with missing default routes and DNS servers.
This resulted in incorrect routing and no access to the Internet. Furthermore, interfaces used default
MAC addresses. We applied fixes for all of the above. Devices may also assume certain static IP addresses
and even hardcode these in their firmware. For example, a router in a private home network is likely
to use the address 192.168.0.1. But for our setup, this IP is reserved for the virtual router created
by Docker. The honeypot Docker network is incidentally configured to use the 192.168.0.0/24 subnet,
which is common for private home networks. We employ binary rewriting to ensure the emulated devices’
IP addresses match that of their Docker containers throughout the whole firmware. Doing so has several
practical constraints. First, IP addresses are commonly stored as strings in the firmware blob. This
makes them easy to find. However, the replacement string may not be longer than the original to prevent
overwriting of the trailing null-byte, or other bytes that follow. A shorter string may be used if it is
padded to the original length with null-bytes. An incorrect edit may break the file structure and corrupt
the whole firmware or one of its components. Second, firmware blobs may be quite big. The binary
rewriting software must be able to process up to hundreds of megabytes of firmware efficiently. As a
result, we implement the rewriter using a simple FlexEI program.

4.2.4 Data control

Proper data control is required to decrease the risk associated with hosting high interaction honeypots.
We already mentioned the workings of the health and abuse checking service in section It combats
abuse by periodically scanning and restarting the system if required. The Telnet proxy’s wordlist could
also be considered a data control scheme as it limits the amount of access to the Telnet service. The
disk size and main memory assigned to emulated devices are both limited to 256MB. Also, the CPU
usage of emulators is limited to a fraction of the host’s possible performance. The amount is determined
experimentally such that the emulator does not time out during boot or normal usage.

Nevertheless, arguably the most important data control component is the firewall. Handling ingress
traffic is relatively simple. The firewall can block unwanted IPs such as those of legitimate scanners.
The block list is created using the ipset utility and handled by a single iptables rule. This is done to
minimise the complexity of handling firewall rules. All ports but those pointing to honeypot services are
also blocked. As adversaries have no access to the firewall running on the host, they can not open new
ports. This helps in preventing the spread of malware that the honeypot gets infected by. The reason
being that, given this setup, our honeypot can not be turned into a server that the malware binary can
be downloaded from. However, the ports of the honeypot services can be reused by halting said services.
The infected honeypot can also act as the client and upload a sample to the next victim. As for further
configuration of the firewall, bandwidth limitations on incoming traffic are unnecessary as we do not
expect to become the victim of a DoS attack, given that there is nothing to be gained for the attacker.
Yet, a limit is added to match that of egress traffic. Invalid packets are not dropped as they might be
part of an adversary’s attempt to exploit the honeypot.

With that said, handling egress traffic is more complicated as discussed in section [3.2.1] Blocked ports
or protocols can easily be circumvented. Adversaries may also become suspicious of the legitimacy of
the system based on selective blocking. As such, we opt to implement a heavy bandwidth limitation on
all outgoing traffic. More specifically, each IP-port tuple is limited to receive a maximum of 256B/sec.
This number is chosen such that interactive shell sessions feel slow but are usable for humans. Yet, as
packets in e.g. a reflection attack can be as small as 400B [Maj17b|, the possible contribution to attacks is
practically nullified. The bandwidth limitation for the IP camera’s web server is less strict as it contains
bigger assets, such as the camera feed. Lastly, we mention how, during early testing deployment, our
honeypot received an abuse report within several hours of being online. The reason being a small firewall
misconfiguration. While this was quickly resolved, it highlights the importance of data control.

Shttps://github.com/westes/flex/
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4.2.5 Data capture & collection

Logging is performed from multiple angles. We capture all traffic sent through the honeypot Docker
network using tcpdump. This provides a full view of everything happening on a network level. As for the
Telnet proxy, it logs all shell input and associated responses. More importantly however, it takes note
of all authentication attempts, both failed and successful. The information it records includes the used
credentials, source IP, time of event, and duration of a session. While the network logs already contain
all the above, the proxy’s format facilitates analysis. Last but not least, both MQTT devices and firewall
log all events related to themselves.

While we do not expose any ourselves, we briefly discuss logging of services utilising encryption. These
services complicate logging depending on the service in question. For example, a web server’s TLS traffic
can be decrypted with the appropriate certificates. These certificates are available to the honeypot
operator as they possess a copy of the firmware. SSH traffic, on the other hand, employs session keys to
provide forward secrecy. As their name implies, these keys are unique to each session and thus harder to
acquire. Logging SSH traffic could be done via a proxy such as cowrie, or by logging events through a
custom kernel. If required, both approaches would have been feasible given that our setup already uses
a proxy for Telnet and a custom kernel for FirmAE.

Logs are rotated periodically. All services are configured to use the same date and time notation to ensure
consistency between them. Consistency between honeypot instances is ensured by using UTC for each
timestamp. Each log file also includes the name of the instance it was captured on. A host separate from
the honeypot instances is responsible for long-term storage. It periodically pulls log files, resulting from
rotation, to ensure secure storage.

4.3 Complications

Every endeavour comes paired with some difficulties. Previous sections already discussed minor issues that
were encountered and how they were handled. This section will cover the bigger complications. These are
either resolved with certain compromises being made, resolved and discussed for documentation purposes,
or unresolved altogether. We discuss these issues to highlight the downsides of our approach and the used
technologies. This information can be used as a starting point for improvements in future works.

4.3.1 Acquiring firmware

Full system re-hosting has the advantage of not requiring any hardware in principle. A firmware blob is
all that is needed to get started. The Firmadyne project contains a scrapelm for several popular vendors’
web sites that downloads provided blobs. Thus, despite being limited to Type 1 devices, we did not
consider obtaining firmware for various devices to be a possible complication at first. Yet, upon closer
inspection, the offer turned out to be severely limited due to a multitude of reasons. First, some smaller
vendors simply do not provide any downloadable files. Second, the firmwares provided are notably only
for IP cameras, routers, access points, and switches. Third, we notice that the majority of firmwares
are for older devices. We argue that the second and third reason go hand in hand. The rational being
that they are the result of vendors starting to provide update functionality via companion apps. This
removes the need for users having to manually download blobs from the vendor and upload them to their
devices. Thus, to use both newer firmware, and firmware of more diverse devices, e.g. smart lights or
thermostats, the vendors’ apps would have to be reverse engineered. This would be a major undertaking.
We thus consider it to be out of scope for this thesis. However, it can be a viable option for future work.
Lastly, we also mention that vendors only tend to provide the latest version of a firmware. This is good
practice as it prevents users from accidentally downloading an outdated, vulnerable version. Nevertheless,
it does limit security research. For our project in particular, we were unable to procure any firmware
with known CVEs that FirmAE is successfully at emulating, in order to gauge whether they are actively
being exploited.

As just mentioned, once having acquired a firmware blob, emulation is not promised to succeed. We
encountered problems in extracting the essential files from blobs. The main reasons being blobs containing
only files needed to be changed by the update, and proprietary file formats. Emulation would also fail
during the preparatory emulation phase as the framework could not arbitrate appropriately. Last but
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not least, some firmware samples would seem to boot properly and be accessible over the network. Yet,
when actually attempting to interact with the emulated environment, we would notice that some critical
services, such as the web server, would not be running. These are unresolved issues with the state of
the art implementation of the full system re-hosting approach itself. As such, one must wonder whether
using a full device proxy would not have been a better choice. This approach would have allowed us to
provide a wider variety of devices that are known to work, though as discussed at a cost of scalability of
the implementation.

4.3.2 NVRAM configuration

Ensuring that the emulated firmware has access to a working NVRAM implementation is an important
part of full system re-hosting implementations. Yet, setting sane default values for each key requires
manual work. The emulated IP camera fortunately contains only a handful of important keys. We are
thus able to make its web server look believable with minimal effort. However, the required manual work
might quickly become infeasible for firmwares that contain hundreds to thousands of keys. This is the
case for the router that is emulated in our setup. It offers an expansive web server in several different
languages. This results in numerous options and strings being stored in NVRAM. Note that this is only
one of the services using the NVRAM on said device. We attempted to set default values for only the
English language. This required reverse engineering of the web server in order to determine the used
NVRAM keys. We discovered that presented NVRAM values on web pages match with indices in the
pages’ corresponding templates. When parsing a template, the web server uses the indices to access an
array of strings containing the NVRAM keys. However, this array contains several thousands of keys.
At this point, we abandoned this work as it would have required an unreasonable amount of engineering
effort to set sane NVRAM values to make the emulation believable. We instead decided that the router’s
web server would not be needed as the IP camera already provides a similar service for adversaries to
interact with. The router’s UPnP service is exposed however. Setting sane values for it was easier as only
a handful of keys are used. In conclusion, while full system re-hosting allows firmware to run without
NVRAM hardware, it hampers fidelity due to values being missing out of the box. A possible solution
would require dumping the contents of NVRAM from an actual device. This is the approach used by
EMUXEL a Type 1 firmware emulation framework that requires extensive manual arbitration and data
acquired from an actual device.

As mentioned in section the function declarations used to access NVRAM might differ from vendor
to vendor. We encountered this issue in the IP camera’s firmware. Both loading default values, and
setting new values via the administration panel would fail. By tracing the web server as well as the
nvram_set binary, available in the firmware, we discovered that the original function declaration for set-
ting a value is int nvram_set(const void* _, const char* key, const char* value). This differs
from the default declaration provided by FirmAE in that it takes a third parameter in addition to the
key and value. We thus applied this change to the custom NVRAM library and cross-compiled it to the
IP camera’s architecture. We describe this process to highlight that this is a weakness of full system
re-hosting and that the approach sometimes requires great manual effort.

4.3.3 Technicalities of routing through Docker to QEMU

Running the IoT device emulations in Docker containers has several advantages, as mentioned before
in section [4] It is also a necessity when attempting to run multiple emulations side by side, as the
created virtual interfaces might otherwise interfere with each other. Yet, the incorporation of Docker
in the honeypot setup also causes several technical challenges, the biggest of which being how to route
traffic between the Docker container and the emulator hosted within. Or, more specifically, how to route
network traffic from the Docker container’s honeypot network interface to the emulator’s virtual network
interface, and vice versa. While routing in and of itself can easily be accomplished, we additionally wish
to match the IP address of the Docker container in the honeypot network to that of the emulated device.
This is in order to increase believability. An adversary scanning or moving through the internal network,
i.e. the honeypot Docker network containing other honeypot services, would otherwise be able to notice
the discrepancy between the IP seen by other devices and the IP shown inside the emulation.

Initially, traffic between the interfaces was being routed using iptables rules. This worked as intended
while the interfaces had unique IP addresses. We then attempted to implement the matching address
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constraint. Yet, as one might expect, having multiple interfaces with the same IP address results in
networking conflicts. An alternative approach was considered that would involve removing the IP address
of the emulator’s virtual interface, and using certain rules to handle the routing. Unfortunately, iptables
routes traffic by rewriting IP addresses. It was thus clear that this tool would not be usable for the given
problem. However, the idea of removing the IP address of the interface led us down the path of traffic
mirroring. The tcﬂ Unix utility is part of the iproute2 suite and is used for controlling traffic flow. It
works on the kernel level and can thus send traffic directly to interfaces, without the need of network
layer addressing. We use tc to redirect traffic between the two interfaces in both ingress and egress
directions. This is accomplished using the command shown in fig. The first command creates a
queue and attaches it to the Docker interface, while the second defines how to manage the packets stored
in said queue. This handling of packets comes in the form of a filter. It matches packets given certain
rules and performs appropriate actions. In our case, all traffic is selected and redirected to the emulator’s
interface.

tc qdisc add dev <docker_interface> ingress
tc filter add dev <docker_interface> parent ffff: protocol all u32 \
match u8 0 0 action mirred egress redirect dev <emulator_interface>

tc qdisc add dev <emulator_interface> ingress
tc filter add dev <emulator_interface> parent ffff: protocol all u32 \
match u8 0 0 action mirred egress redirect dev <docker_interface>

Figure 4.5: Shell commands instructing the redirection of traffic between the docker and emulator
interfaces. The commands are presented as two pairs, one for ingress and one for egress traffic. The
variables in angle brackets are to be replaced by the interface names in question.

4.3.4 Hosting

Our setup is fully virtual and can thus be deployed on any host. We deploy two identical instances: one
on an OVH Virtual Private Server (VPS)E and the other on an AWS ECE instance. This allows us to
capture more and diverse traffic. It also allows comparison between providers. For example, one provider
might be targeted more often than the other. However, hosting on public providers might impact the
believability of our honeypot. The reason being that both OVH’s and AWS’ IP ranges are publicly known.
An adversary can easily perform a WHOIS lookup on our instances’ IPs. This would expose them being
hosted in a cloud environment, which is in conflict with the context of our setup that is a private network
exposing IoT hardware. Supporting this concern, Dang et al. reports receiving 6.7% less traffic on their
low fidelity IoT honeypots hosted on AWS, compared to other public clouds. Due to practical constraints
this remains an unresolved issue for our implementation.

4.3.5 Effectiveness of advertisement

We extensively advertise our honeypot instances, as discussed in section [£.2.2] Unfortunately, measuring
the effectiveness of the advertisements is complicated. The honeytokens’ reach can be recorded in two
locations: when being used, and at the location they are shared at. The prior entails the recording of
interactions and filtering them based on the usage of honeytokens. This approach only reports on the
set of tokens being used and is not an indicator of the population they have reached. Yet, recording of
interactions is fully in the hands of the honeypot operator and can thus be done consistently. On the other
hand, the latter approach consists of gathering analytics at the distribution venue itself. This measures
the amount of people who interact with the resource directly. Gathering analytics on honeytokens at
the venues they are shared at is unfortunately not always possible. The only venue we use with built-
in analytics is https://pastebin.com. It reports the amount of unique views on a paste. Google
Docs®) had a similar feature but it has since been removed. In conclusion, we are able to measure the
usage of honeytokens, but not whether our advertisements reach adversaries. This is an unresolved issue
in our setup.

9https://manpages .ubuntu.com/manpages/xenial/man8/tc.8.html
10https://www.ovhcloud.com/en/vps/
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4.4 Conclusion

In conclusion, we built a honeypot exposing high interaction services by means of emulating consumer
firmware. Network depth is added by means of low interaction MQTT simulations. The setup is fully
virtual and consequently offers high portability and scalability. This allows it to be deployed on any
host such as a VM or VPS. While high interaction honeypots are known to require a relatively high
amount of effort to set up and maintain, configuring the firmware emulations to be believable proved
especially labour intensive. Both this effort being required, as well as difficulties in acquiring firmware,
raise doubts about the effectiveness of current state of the art full system re-hosting implementations for
building honeypots. Complementing the approach with data from a hardware device might be a viable
option.



Chapter 5

Data analysis

Up till this point we have studied IoT security theoretically, learned about firmware re-hosting, and built
a honeypot. Knowing whether the resulting product is believable and effective at capturing malicious
interactions, as well as studying the current state of IoT security in the wild, requires the analysis of the
logged data. This chapter is dedicated to that end. The first section is used to orientate by creating a
general overview of the captured traffic. The three following sections are intended to analyse the captured
data related to each of the three main services exposed by the honeypot instances, namely Telnet, web,
and UPnP. In each section, general trends are discussed first before zooming in on peculiar events or the
workings of specific artifacts. Last but not least, a section is dedicated to discussing whether adversaries
show interest in spreading through private networks.

As mentioned in section two identical instances of the honeypot are deployed. The OVH instance
was used for experimental purposes. On the 22nd March, 2022 it was converted to only allow logging in
by means of honeytokens, disabling the dynamic wordlist generation and the usage thereof. The reasoning
being that running malware might be interfering with human access via honeytokens. On the 5th April,
2022 the OVH instance’s Telnet proxy was disabled. Any interaction with the instance’s Telnet service
was from now on directly with the IP camera’s service. Logging in was only possible with admin as both
the username and password. Unfortunately, the AWS instance experienced technical issues between the
4th and 10th February, as well as between the 5th and 21st March, 2022. The honeypots were deployed
for production on the 27th January, 2022. The AWS instance’s network tap service failed, resulting in no
logging of the traffic within these time intervals. However, the Telnet proxy continued to log as intended.
This proves the importance of a multilevelled approach to logging. The cut-off date for data to be included
in the analysis is the 31st March, 2022. This results in a timespan of 64 days being analysed. However,
the honeypots were kept online for a longer duration. This allowed us to analyse already collected data,
while simultaneously being on the lookout for noteworthy events that deviate from the norm. Figure [5.1
shows the timeline of the experiment along with the relevant events.

Deployment Technical issue AWS 2 Cut-off date

27" Jan. 5. 21% Mar. 31° Mar.

Start data capture on hoth AWS instance fails to record Analysis covers only data unil
INStances. netwark traffic. this date.

February

Technical issue AWS Experimentation OVH Experimentation OVH 2
4th_ 10t Feb, 227 Mar, 5t apr.

AWS instance fails to record Only allow logging in to Only allow logging in to
netwaork traffic. Telnet with honeytokens. Telnet with adminfadmin.

Figure 5.1: Timeline of the events that occurred during the experimental phase of this thesis.
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5.1 Protocol interest

To start, statistics on the used protocols are extracted from the traffic captured with the network tap.
This gives an overview of all interactions made with the honeypots over their lifetime. All incoming
and outgoing frames are plotted. These are categorised based on their application layer protocol, as
determined by Wiresharklﬂ As for outgoing frames, note that these are the number of frames generated
by the honeypot instances before they hit the firewall. The actual amount of frames leaving the instances
is reduced severely by the bandwidth limitations set in place. A log scale is used to indicate the amount of
frames, i.e. for the y-axis. This is due to exceptionally high peaks of traffic at certain times. Additionally, a
high variety in protocols is identified by Wireshark. However, most of these register less than a hundred
frames per day. As such, only the top five protocols per instance in terms of frames are shown. All
remaining frames are grouped under the “other” label.

Looking at the incoming application layer data in fig. we immediately notice that the ranking of
protocols matches the findings of Metongnon and Sadre [MS18]. This confirms the validity of our captured
data. More specifically, Telnet is by far the most popular protocol and is so consistently. Similarly, HTTP
is also consistently popular. The difference in amount of captured frames between Telnet and HTTP, and
HTTP and other protocols is substantial. For example, HTTP receives more traffic than other protocols
by roughly a factor of ten. Note however how HTTP peaks from time to time, surpassing even Telnet
on those days. Speaking of peaks, SSDP generally receives only around a hundred frames per day. Yet,
on some days up to 108 frames were captured. Remarkable is that trends match between the instances.
This applies not only to the amount of frames per protocol, and thus implicitly their ranking, but also to
certain events. Days with peaks in a protocol roughly match between both instances. Lastly, note the four
peaks of DNS traffic on the OVH instance. These anomalies are worthy of further investigation.

Figure [5.3| shows the outgoing traffic on the two instances. Here the traffic labelled “data” competes
with Telnet in number of frames. It is labelled as such as the frame’s payloads contain no apparent
structure conforming to any known protocols. The honeypot implementation does not run any service
that generates this kind of traffic as it would only complicate analysis. Thus, it must be data of an
unknown kind created by the malware samples that infected the instances. The graphs also show several
peaks. These include several for SSDP matching the incoming SSDP peaks, as expected. Furthermore,
peaks in outgoing DNS traffic match the peaks of incoming HTTP traffic. This makes sense if the incoming
HTTP data is seen as the responses to outgoing requests, which in turn require DNS lookups. Both the
EC2 and OVH instance’s graphs also show big, but infrequent, peaks of Google Quick (GQUIC) and
OpenVPN traffic respectively. Contrary to the previously mentioned ones, these do not directly match
any peaks in incoming frames.

We explain the notable occurrences. Telnet, HTTP, and UPnP/SSDP are discussed in section
section |5.3] and section [5.4] respectively as they match the exposed honeypot services and thus require
more in-depth discussions. The reason for the unusual peaks of certain protocols, such as DNS and
GQUIC, can be explained more briefly. Figure [5.4] shows a sample per peaking protocol. Wireshark
indicates each of the shown frames to be malformed. Inspection of the parsed protocol fields confirms
this. For example, fig. shows supposed OpenVPN data with a network time in the year 2029. This
is nonsensical as the recordings were made in 2022. Similarly, the GQUIC packet is not valid either.
The shown packet’s flags indicate that it is a reset packet. According to early drafts [Ham+16], which
describe GQUIC more appropriately than the QUIC RFC which includes numerous improvements to
the protocol, a reset packet should contain the tags PRST followed by RNON, RSEQ, and CADR with
their respective context specific values. Tags are bytes in the payload used to distinguish variable values.
However, as seen in fig. the packet’s tags are not readable. The faulty classification is due to the
frames being sent over UDP. UDP lacks the concept of connections. As a result, Wireshark can not use
prior frames to infer application protocols and instead guesses based on other information, such as used
port numbers. For example, the source port shown in fig. |[5.4c|is 53. Thus, the frame is labelled as DNS.
Yet, that frame contains an SSDP request as payload. And indeed, the peaks of incoming DNS traffic
to the OVH instance in fig. coincide with peaks of SSDP traffic. This leads us to conclude that the
adversary purposefully crafted the packets to be misidentified. The reason being to confuse and evade
defensive tools. In the example of fig. using port 53, this would be circumventing firewall rules as
UDP for said port is rarely blocked to allow DNS traffic to pass through.

Thttps://wuw.wireshark.org/
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Last but not least, a trend in the amount of Telnet frames can be observed upon closer inspection of the
graphs. The amount of outgoing Telnet frames on the OVH instance slowly increases from 10° to 107.
The increase starts roughly halfway through the time period. Looking back at fig. this trend can be
observed for incoming frames as well. Insufficient data is available to draw any definitive conclusions on
the reason of the increased interest in Telnet within this short time period. We hypothesise that it could
be (indirectly) related to the change in political climate as a result of the war in Ukraine, which started
on the 24th February, 2022. This date roughly matches the start of the increase in interest. Further
investigation in future work would be required to draw definitive conclusions.
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Figure 5.2: Incoming application layer traffic, per instance, over the analysed duration.



5.1.

amount of frames

amount of frames

PROTOCOL INTEREST

Outgoing traffic on EC2

108
107 1
105
105 4 /
10% ]
10% 1 B
—— data
2 4
10 — dns
— gquic
10! 4 —— other
—— ssdp
— telnet
10 1
a2 o A0 A 2~ o ; A :
2 Pl 2 2 2 e 2 2 2
40 40 40 40 40 40 40 40 40
date
. Outgoing traffic on OVH
10
— data
— dns
107 — openvpn
—— other
. — ssdp
10% 7 —— telnet
105 4
104 4
By
107 1
~
102
101 4
10
2 o A0 A 2~ o A0 A 2%
2 2 2 2 2 v 2 2 2
40 40 40 40 40 40 40 40 40
date

Figure 5.3: Outgoing application layer traffic, per instance, over the analysed duration.
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No. ~ Protocol

60402 OpenVPN
60403 OpenVPN
60404 OpenVPN
60405 OpenVPN
60406 OpenVPN

PR

Length
142 MessageType: P_CONTROL_HARD_RESET_SERVER_V2[Malformed Packet]
142 MessageType: P_CONTROL_HARD_RESET_SERVER_VZ[Malformed Packet]
142 MessageType: P_CONTROL_HARD RESET SERVER V2[Malformed Packet]
142 MessageType: P_CONTROL_HARD_RESET_SERVER_V2[Malformed Packet]
142 MessageType: P_CONTROL_HARD_RESET_SERVER_V2[Malformed Packet]

Info

+ Type: 0x44 [opcode/key id]

Session ID: 6011543786655808106
HMAC: 4159634e67434641335943524c6167707849454e

Packet-ID: 1181650220
6, 2029 08:16:54.000000000 CET

Message Packet-ID Array Length: 118
+ Packet-ID Array

Net Time:

Mar

CHAPTER 5. DATA ANALYSIS

Frame 60402: 142 bytes on wire (1136 bits), 142 bytes captured (1136 bits)

Ethernet II, Src: D-LinkIn_4f:45:93 (1c:5f:2b:4f:45:93), Dst: 02:42:51:67:96:0e (02:42:51:67:96:0e)
Internet Protocol Version 4, Src: 192.168.8.3, Dst: 5.252.80.11

User Datagram Protocol, Src Port: 53137, Dst Port: 1194

OpenVPN Protocol

v [Expert Info (Error/Malformed): Malformed Packet (Exception occurred)]

(a) Frame wrongly marked as OpenVPN traffic. The parsed properties, e.g. IDs and the time, are nonsensical.

No. ~ Protocol

358337 GQUIC
358338 GQUIC
358339 GQUIC
358340 GQUIC
358341 GQUIC

PR

Length Info
1482 57577 — 39061
1482 Payload (Encrypted), PKN: 39, CID: 6442289260853821117
1482 57577 — 39061 Len=1448[Malformed Packet]

1482 Payload (Encrypted), PKN: 209, CID: 5188349322671027524

PN - |

..00
9.,
...

1482 Payload (Encrypted), PKN: 8268065123

Frame 358337: 1482 bytes on wire (11856 bits), 1482 bytes captured (11856 bits)
D-LinkIn_4f:45:93 (1c:5f:2b:4f:45:93),
Internet Protocol Version 4, Src: 192.168.0.3, Dst: 66.90.106.76
User Datagram Protocol, Src Port: 57577, Dst Port: 39061

GQUIC (Google Quick UDP Internet Connections)
~ Public Flags:

Ethernet II, Src:

oxe2

version:
Reset:
Packet Number Length: 1 Byte (@x0)
Multipath: No
Reserved: 0x0

No

Yes

Tag: t€ © € (Unknown Tag)
Tag Number: 22727
Padding: fd92

© 9 & (Unknown) (1=3293910257)

» Tag/value:

Len=

440[Malformed Packet]

Dst: 02:42:3b:37:9b:f7 (02:42:3b:37:9b:f7)

» [Expert Info (Error/Malformed): Malformed Packet (Exception occurred)]

(b) Frame wrongly marked as GQUIC traffic. The parsed properties, e.g. the tag, are corrupted.

No. Protocol

Length Info

70982 DNS

70984 DNS
70985 DNS
70986 DNS

(v v

364 Unknown operation (10) ©x4854 Unknown (25445) <Unknown extended label>[Malforme
70983 DNS 132 Unknown operation (10) @x4d2d[Malformed Packet]

132 Unknown operation (10) ©x4d2d[Malformed Packet]

132 Unknown operation (10) @x4d2d[Malformed Packet]

132 Unknown operation (10) @x4d2d[Malformed Packet]

Transaction ID: ©x4d2d

Questions: 16722

Answer RRs:

17224

Authority RRs: 8234

Additional RRs:

Queries

8264

Flags: ©x5345 Unknown operation

Frame 70983: 132 bytes on wire (1856 bits), 132 bytes captured (1856 bits)

Ethernet II, Src: ©2:42:81:43:98:d5 (02:42:81:43:98:d5), Dst: Netgear_d7:ef:61 (3c:37:86:d7:ef:61)
Internet Protocol Version 4, Src: 178.237.56.152, Dst: 192.168.0.2

User Datagram Protocol, Src Port: 53, DSt Port: 1900
Domain Name System (query)

» [Expert Info (Error/Malformed): Malformed Packet (Exception occurred)]
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(¢) Frame wrongly marked as DNS traffic.
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Figure 5.4: Samples of frames associated with the unusual peaks in certain protocols observed

in fig. [5.2] and fig.
Wireshark in red, which causes the peaks.

These frames are categorised under the wrong protocols, as indicated by
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5.2 Telnet access

Telnet is the most popular IoT protocol being scanned for on the Internet. Appropriately, it is the
biggest graphs in the figures in section Our honeypot Telnet service provides direct shell access
after authentication. However, as the environment is constrained, not all commonly used Unix tools are
available or only available via BusyBox. Additionally, custom binaries transferred onto the honeypot
must be compatible with its architecture. These are some of the considerations expected to be handled
by adversaries. This section is divided into three parts. The first part performs an analysis based on
general statistics. The second part dives into the workings of shell commands resulting from certain
interactions. The last part is dedicated to analysing captured malware samples.

5.2.1 Statistics

We analyse the Telnet proxy’s data and extract statistics to create table Note that rows with units
pertaining to uniqueness do not simply sum up into the “Total” column. Rather, the uniqueness is
calculated over the data of both instances in said row. Given the resulting numbers, the first observation
is that attacks overlap between the two honeypot instances. We also remark that the ratio of failed to
successful login attempts for the OVH instance is skewed compared to that of the EC2 instance due to
the earlier mentioned experimentations.

Statistic AWS EC2 OVH VPS Total
Unique IPs 3632 3084 5957
Login attempts 87724 131879 219603
Failed logins 67714 116079 183793
Successful logins 20010 15800 35810
Unique passwords 475 558 609
Average IPs per password 110 125 201
Average unique IPs per password 48 51 81
Sessions without commands 3997 1824 5821
Sessions with commands 16013 13976 29989
Sessions with unique command sequences 734 863 1365
Median session duration (seconds) 11.7 13.4 12.6
Median words per session 105 107 106
Unique IPs mentioned in sessions 75 113 141
Captured binaries 4392 4320 8712
Captured unique binaries 236 306 420

Table 5.1: Statistics on interactions captured by the Telnet proxy, categorised per instance.

First, notice that the amount of unique IPs is smaller than the total amount of successful logins. This
means that remote devices periodically re-visited the honeypots. Grouping logged shell commands by IP
address reveals one of the reasons for this. Namely, sessions with the same remote IP address are likely
to contain subsets of the same command sequences. More precisely, the sequences start identical but
some of them close the connection abruptly. It is unlikely that the sessions are terminated intentionally
as a result of the malware determining the instances to be honeypots. The reasoning being that the
disconnects are too sporadic and that other sessions from the same IP addresses do eventually terminate
properly, i.e. drop and run malware binaries. A more likely explanation is network failures, or timeouts
due to slow processing given the inherently weak computational power of IoT devices combined with
potentially other malware already running.

Second, we delve into the used credentials to access the Telnet service. Remember that our setup uses
a dynamic wordlist building technique, as explained in section The list starts empty. Passwords
are then automatically added after they appear in the logs. Although several thousands of unique IPs
visited the honeypots, only a few hundred unique passwords were registered. This is notable given that
theoretically the amount of credential pairs is infinite. In other words, the wordlists used by adversaries
are relatively small. Additionally, different malware implementations use (sub-)sets of the small amount
of collected passwords, and/or a large amount of the unique IPs that visited us were infected by the
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same malware. This can be confirmed by the large amount of IP addresses per password. Even after
compensating for sessions initiated by re-visiting IPs, many of them use the same passwords to access
the honeypots. The amount of IPs per password, both with and without duplicates, is also higher in
total than it is per individual instance. Meaning, attackers that exclusively visited one of the instances
share passwords with others. Furthermore, none of the distributed honeytokens have been used to access
the Telnet services. The only used outlet capable of reporting statistics is https://pastebin.com. All
honeytokens posted on this website are visited around 14 times. We theorise these visits to come from
scrapers as all pastes have been visited roughly the same amount of times. Thus, despite using several
stories and formats, and publishing on various platforms, we were unfortunately unable to incite any
human interaction using the created advertisements. Lastly, the top 10 captured passwords are shown in
table 5.2 One can identify these to be common default passwords. Although vizxv and xc3511 seem
to stick out at first, they are default passwords for Duhua(C) security cameras and HiSilicon(C) Digital
Video Recorders (DVR) respectively.

Rank Password Unique IPs using it
1 vizxv 1488
2 admin 1485
3 123 1246
4 12345 1221
5 root 1033
6 daemon 953
7 default 944
8 1234 937
9 xc3511 864
10 user 830

Table 5.2: Top 10 passwords based on the amount of unique IPs using them to access the honeypot
instances.

Further analysis of the numbers in table shows that the median duration of a session is only several
seconds. Meanwhile, the median amount of words per session is slightly over a hundred. From this it
can be concluded that the majority of interactions are automated as a human is unlikely to be able to
type at such speed. Automation of exploitation is highly important for adversaries and is certainly not
a new concept. The reasoning being that every infected device adds more computational power to the
adversary’s network. Yet, in the case of IoT devices this is doubly important as each device provides only
a small amount of resources due to low hardware capabilities.

Continuing the study of the sessions, we carve out the IP addresses mentioned in them. These are the
addresses from which adversaries download their payloads. This amount of IP addresses is considerably
smaller than the total amount of IPs that attacked the honeypot instances. However, 80 out of the 141
total IPs used for storage also attempted to open a Telnet session with one of the honeypot instances
at some point. As adversaries are highly unlikely to allow their own infrastructure to be infected, it can
be reasoned that storage servers are also used as the starting point of malware campaigns. Further, we
perform WHOIS lookups on the unique IP addresses. All hosts behind IPs used to store payloads are
property of, both small and big, hosting providers. The usage of hosting providers is to be expected. It
allows for simple re-hosting in the case of a takedown and, in combination with fake identities, provides
anonymity. Note that not all of these IPs were reachable at the time of analysis, confirming that ad-
versaries frequently (have to) switch storage hosts. On the other hand, the majority of the thousands of
remaining unique IP addresses that only attacked the honeypots, but are not known to host payloads,
belong to telecom companies. In other words, they are actual infected hosts. Furthermore, as the main
approach to intrusion is accessing the victim over Telnet, these hosts are likely to be IoT devices, rather
than PCs and servers which do not tend to expose Telnet servers nowadays. The ones that still do
belong to hosting providers are likely payload storage servers not accessed in any captured attack. The
highly disproportionate ratio of storage servers to hosts matches the structure of botnets and validates
our data. Meaning, the honeypot is believable to some extent. Lastly, notice that the amount of IPs used
to host payloads is smaller than the total amount of collected unique binaries. This holds true even when
compensating for architecture, as explained further on and seen in fig. From this it can be concluded
that adversaries distribute multiple variations of their malware. These variants are likely to include bug
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fixes, updated wordlists, and new ways of exploitation.

Last but not least, the captured binaries are studied. The small ratio of unique binaries, based on their
hash values, to the total amount of captured binaries implies that the honeypot instances have been
attacked multiple times by the same malware samples. Note that changing even the smallest detail, such
as the IP address of the C&C server which is commonly hardcoded in IoT malware, will affect the file’s
hash. Duplicate samples are thus, by definition, part of the same malware campaign. Using the network
traffic captured with tcpdump, we are able to confirm that not only did remote IP addresses visit multiple
times and deliver the same binaries on each visit, but duplicates were delivered by differing IP addresses
as well. It can be concluded that victims are intentionally re-visited in order to ensure their infection. We
argue the reason behind this to be twofold. First, it allows replacing a malware sample with the newest
version. This ensures that the latest version is being used. A naive implementation of this “update”
mechanism would simply always replace a prior malware instance on a victim, regardless of its version.
As such, replacing it with the same version would be a frequent occurence. Second, persistency between
reboots is hard to achieve for IoT malware. Being deleted from the filesystem, either by itself for evasion
purposes or by the design of the device, means that a reboot results in complete removal of the malware.
Furthermore, the overlap in unique binaries between the two instances means that both were infected
with the same malware at some point. This explains how it is possible that peaks, i.e. attacks, on some
days match between the two instances, as can be seen in fig. and fig.

We also look at the distribution of the captured unique binaries based on their target architecture.
Uniqueness is determined based on the hashes of the samples. Figure [5.5| presents this distribution based
on the architectures determined by the Unix file utility. As explained in section the Telnet
service runs in the emulation using the DCS-700L IP camera’s firmware. This firmware uses the MIPS
(32-bit LSB) architecture. Yet, 39.3% of all malware samples captured via Telnet are not compiled for
this architecture. Meaning, they would not run on the target device. Although this is a significantly
large percentage, ARM (32-bit LSB) on its own makes up almost half of this. It can thus be concluded
that, most of the time, adversaries fingerprint the victim device’s architecture and only download the
appropriate binary.

ELF 32-bit MSB, SPARC
1.2%

ELF 32-bit MSB, Motorola
3.1%

ELF 32-bit MSB, MIPS
6.4%

ELF 64-bit LSB, x86-64
2.6%

ELF 32-bit LSB, Renesas SH
2.1%

ELF 32-bit LSB, ARM
16.4%

ELF 32-bit LSB, Intel 80386
6.2%

255

ELF 32-bit LSB, MIPS
60.7%

Figure 5.5: Distribution of captured unique binaries, based on their hashes, categorised by their
target architecture.

5.2.2 Working of shell commands

In order to gain an insight in the actions performed after intrusion via Telnet, all sessions containing
shell commands are clustered. First, all commands captured by the Telnet proxies are grouped per
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session. Then, clustering algorithms require comparable quantifications, called feature vectors, for each
input sample, i.e. session, to perform clustering. As to choose appropriate algorithms, we argue that
sequences of shell commands can be compared with natural language sentences. Both consist of words
combined within a given syntactic rule set. Note that a “word” in the context of shell commands is not
fully equivalent to its definition in a natural language. Shell commands consist of names of commands
and executables, strings, and special characters. In order to properly parse and split long sequences of
instructions into “words”, the bashlexEI project is used. As for building feature vectors, this is done
using the Term Frequency-Inverse Document Frequency (TF-IDF) approach as it is often used in Natural
Language Processing (NLP) to compare documents. It builds a dictionary of all possible words and
indicates per session the amount of occurrences of each word. Then, these values are divided by the
total amount of occurrences of the respective words across all sessions. This compensates for the fact
that certain words appear more frequently than others. As a result, more weight is given to the words
that make the command sequences unique. The used clustering algorithm is K-means. Ten clusters are
created. This number is determined experimentally by performing multiple runs with decreasing amounts
of clusters. This was done until no clusters containing less than 10 sessions existed that had any obvious
overlap with others.

Cleaning up of the data was required to achieve proper results. First, some commands have been logged
incorrectly resulting in words not being space-separated. Second, several interactions contain less than
a handful of words. We consider these to be sessions that ended prematurely due to unknown reasons.
These sessions are not included in the clustering process. Lastly, as discovered in section [5.2.1] numerous
remote IPs re-visited the honeypot instances. As such, many of the sessions are duplicates attempting
to infect the instances with already seen malware. Only sessions with unique shell command sequences
are used to compensate for this. Similarly, command sequences that are subsets of other sequences are
also removed as these are likely the result of network failure, as discussed earlier. The resulting clusters
are plotted in two dimensions in fig. Information on each cluster is shown in table The most
influential words per cluster are listed in the table. These give an insight in the commands used in said
clusters.

'.
)

Figure 5.6: Graphical representation of the clustered sessions based on their associated commands.
Only sessions with unique command sequences are included. Each color represents a different
cluster, with each dot being a session.

%https://github.com/idank/bashlex/
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Cluster  Unique  Top 10 most influential words

sessions

1 (o) 611 /bin/busybox, sh, cd, -rf, rm, busybox, BOTNET, ||, +x, —en

2 (o) 130 /bin/busybox, -e, rm, > cat, echo, ECCHI, /dev/.nippon, dvrHelper,
/dev/pts/.nippon

3 (o) 91 /bin/busybox, =-e, rm, cat, >, echo, /tmp/.none, /dev/.none,
/home/admin/.none, /sys/.none

4 (o) 85 &&, >, /bin/busybox, cd, Iusrfg, .06, nya, -rf, AA, wget

5 (o) 33 telnet, t.telnet, /bin/busybox, tftp, http://45.134.225.20/telnet,
telnetd, 777, chmod, 45.134.225.20, sh

6 (o) 27 &%, /bin/busybox, >, hu87VhvQPz, cd, Switchbladesl, ha7665caZS, -rf,
./hu87VhvQPz, /var

7 (o) 12 cat, echo, >, BOTNET, /bin/busybox, rm, /dev/.nippon, -e, /mnt/.nippon,
/var/.nippon

8 (o) 7 whattttttlol.sh, whattttttloll.sh, whattttttlol2.sh, 23.94.50.159,
http://23.94.50.159/whattttttlol.sh, ||, anonymous, cd, sh, 777

9 (o) 6 /bin/busybox, if=/bin/busybox, bs=22, | |, count=1, dd, SATORI, while, do
<

10 (o) 5 /bin/1ls, ||, adminpass, -n, ||, cd, $i, done, read, <

Table 5.3: Ranking of the clusters of sessions based on amount of associated sessions. Several words
that influenced the clustering the most are shown per cluster, in decreasing order of importance.
The colours match those used in fig.

Despite best efforts to create unique clusters and using a relatively small number of them, fig. [5.6] still
reveals several clusters related to each other. Similarities can be confirmed by comparing their lists of
influential words. For example, the two clusters in the upper-left corner of the scatter plot, i.e. clusters
with index 2 (light green, ) and 3 (blue, ), lay close to each other. And indeed, their first six words
match. The reason for this can be determined by comparing any of the two clusters’ sessions. Both clusters
start and end with different shell commands. Yet, halfway through they perform the same actions in order
to find a writeable directory. Other pairs of clusters found close to each other in fig. [5.6] can be compared
similarly. In conclusion, malware implementations are closely related based on these similarities. This also
explains the relatively small number of unique passwords as related implementations are likely to share
wordlists. Antonakakis et al. confirms this idea as they state that various malware implementations and
their wordlists evolved from Mirai’s source code, which was made public by its alleged author [Ant+17;
Krel6b).

We remark that all sessions successful at infecting the honeypots follow roughly the same pattern after
intrusion of victim configuration, information gathering, dropping malware, executing it, and cleaning up.
Manual analysis of samples from each cluster allows us to explain these steps in more detail. Following
observations are made:

e Configuration: Vendors originally intend shell access for development and management purposes.
To prevent unintended access, they might expose customised shells. These shells allow only certain
commands to be executed. To escape this restricted environment, adversaries execute privileged
actions, i.e. backdoors, or invoke traditional shells. This is such an important step that only 29
out of the 1365 unique sessions do not perform it. The others start with varying assortments of
such commands. Examples are enable, system, linuxshell, shell, config, terminal, start,
telnetadmin, development, .., nc 1 1, sh, and bash. Our honeypot implementation presents a
traditional shell by default.

Other, less frequently occuring, commands that adjust the environment are the following: passwd,
iptables -F, and mount -o remount,rw,exec <path>. The first is used to change the current
user’s system password. Adversaries do this to lock out other malware, essentially claiming the
device for themselves. Yet, their password of choice is adminpass. This itself is easy to guess and
thus makes the practice of changing the password not all that effective. Although our honeypot
implementation presents real firmware with a real passwd binary, changing the password requires
entering the original user password. However, adversaries only have access to the least-privileged
user created by us. Given that the password of this user is purposefully made to be complex
and that the Telnet proxy handles authentication, adversaries are unable to actually go through
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with any credential changes. The second command, iptables -F, flushes, i.e. deletes, all existing
firewall rules. All further interactions, e.g. downloading the malware payload, talking to a C&C
server, and starting and exposing custom services, are made possible by removing all networking
restrictions. Again, this does not apply in our honeypot instances however. The reason being that
the emulated environment does not contain any firewall settings. Data control is instead handled on
the host, and consequently unaffected from commands performed by adversaries. Lastly, the mount
command is used to change system permissions for storage devices mapped to certain paths. As
mentioned before, vendors might mount parts of the filesystem as read-only. The above command
attempts to remount a given path as both readable and writeable, and enables execution of files
stored under it. While this command does technically work in the honeypots, all paths should be
writeable by default resulting in this command to be a no-op.

Information gathering: Just as the hardware between IoT devices differs greatly, so does the firm-
ware. Malware must know varying pieces of information to be able to work in an automated manner.
First, we discuss an alternative to the one discussed above for acquiring a filesystem path that is
writeable. In practice, a completely read-only filesystem is inconvenient. For example, firmware
updates must be downloaded or configurations must be written to files. As a result, certain paths
are mounted as writeable by the firmware developers. Adversaries search for these paths in the
following manner. Executing cat /proc/mounts lists all mounted paths. Then, a keyword along
with the appropriate path is written to a file in each mount point’s path. Depending on the result
of reading back the files’ contents, the adversary can determine which path can be used to store
data.

The second important piece of information is the CPU architecture of the victim device. In sec-
tion [5.2.1] it was established that the captured binaries’ architecture mostly match that of the vic-
tim. Although multiple variants of shell commands exist to get the information, they all work
the same. Namely, by reading the header of the BusyBox binary that contains the architec-
ture it is compiled for. This can be done by printing the binary to standard output with e.g.
cat /bin/busybox or while read i; do echo $i; done < /bin/busybox. However, the binary
data might corrupt the Telnet session. Thus, more preferable is to convert the binary to hex with e.g.
hexdump -e ’16/1 "Y%c"’ -n 32 /bin/busybox. Third, some adversaries carve out only the AS-
CII text indicating the architecture from the header using dd bs=52 count=1 if=/bin/busybox.
Last but not least, a handful of interactions include the listing of /proc/cpuinfo. This virtual
file contains all CPU information including the architecture. Our high interaction implementation
gives adversaries real binaries to work with, making this step work as intended for them.

Lastly, several sessions are observed to read the contents of /etc/passwd, which is the list of all
users on the system. The reason for this is unclear. However, all sessions doing this show similar
command sequences and are thus of the same malware family.

Dropping the payload: Two distinct approaches to transferring a malware binary onto the victim
can be identified. These are downloading a payload over HTTP or FTP, and sending it over
the already established Telnet connection. The latter is done by sending data encoded with the
uuencode utility, hex encoded data, or base64 encoded data over Telnet, decoding it using an
appropriate utility on the victim, and writing the resulting bytes to a file. Sometimes a shell script
is fetched that in turn downloads multiple variants of the actual malware binary, each compiled for a
different architecture. No fingerprinting is done when employing this latter method, which confirms
the findings in section Note that the act of sending encoded binaries instead of downloading
them is highly uncommon. Only 4 out of the 255 unique MIPS (32-bit LSB) binaries, counted
in fig. are acquired this way. Lastly, occasionally a common Unix utility such as telnetd is
removed and the malware binary is saved using its name. This helps to prevent detection as both
the process and the file on the filesystem will look unsuspicious.

Execution: Once the malware binary has been downloaded to the victim’s filesystem, its permissions
are adjusted to make it executable. After that, it is ran. No other notable shell commands are used
in this step.

Clean-up: As the name implies, in this step adversaries remove traces of the infection process or
the malware itself from the filesystem. This includes clearing shell history, removing the files used
to determine writeable paths, emptying or removing the payload file, and even removing all files
under the current path. While commonly the last step, clean-up can also be performed at the start
of a session. This prevents conflicts with already running malware instances. The approach is to
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list all running processes and halt all recognised malware instances. Then, the old malware’s file is
removed from the filesystem. Out of the 1365 sessions with unique command sequences, 669 clean
up to some extent. Furthermore, 261 out of these 669 check the running processes. However, as
will be seen in section clean-up functionality is sometimes included in the malware binary,
removing the need to perform this step in the shell.

Inspection of command sequences also reveals techniques enabling automated exploitation. A new com-
mand can only be sent after the previous one has finished. Nevertheless, waiting for a specific line of
output is not viable as most commands will output either nothing or non-deterministic text. The solution
is to send two consecutive commands at once using the non-conditional separator ;. The first command is
the one with unknown output while the second one’s output is static and thus known beforehand. For ex-
ample, echo can be used to print a static string. However, a more prominent alternative is the command
/bin/busybox <string>, where <string> can be any string except a valid BusyBox subcommand. Usu-
ally the string is random, the name of the malware, or the nickname of the person or group operating the
malware. The error indicating an invalid BusyBox subcommand is static. It thus allows the adversary to
know when the previous command has finished execution. The BusyBox approach is preferred as it has a
second use case. That is, it allows one to confirm whether BusyBox is available on the system as the error
message indicating its absence differs from that of the string not being recognised as a valid subcommand.
This leads into the second technique enabling automation. Adversaries can not know beforehand what
tools are available on the victim. Therefore, multiple possible alternatives are invoked and the first avail-
able one is chosen. This is done using the | | separator. It only invokes the next command if the previous
one returns an error code. A simple example is checking which base64 decoding utility is available using
/bin/busybox baseb64 --help || base64 --help || openssl base64 --help.

Notably, no techniques to fingerprint honeypots could be identified with certainty in the recorded sessions.
Nevertheless, we mention several commands that could be theorised to function as fingerprinting. First,
the preference of using the BusyBox technique over the simpler echo one, to indicate finished commands,
could be due to it also being used to detect low-interaction honeypots. Honeypots might not re-implement
BusyBox properly, resulting in the invalid subcommand to not be handled appropriately. Second, several
sessions execute uname -r and read the contents of the virtual file /proc/sys/kernel/osrelease. These
should both return the same string, namely the kernel release. Although this can simply be a way
to confirm whether a victim device is vulnerable, it could also be used to fingerprint low-interaction
honeypots as, again, they might not implement both of these commands correctly. Lastly, as mentioned
before, listing the contents of /proc/cpuinfo reveals the CPU architecture. However, it might also expose
the fact that the CPU is a virtual device. In other words, it might expose that the victim environment is
not running directly on physical hardware. The emulation of real firmware ensures yet again that these
checks pass by returning valid data.

5.2.3 Malware samples

To study the workings of the collected malware samples, we construct an analysis pipeline. The pipeline
first uploads a given binary to VirusTotaﬂ The VirusTotal web site provides, among others, scans by
various antivirus services and IDSs, and community feedback. Then, the pipeline checks if the sample is
packed with UPX and, if so, attempts to unpack it. In the next step, the malware binary undergoes static
analysis. This consists of running it through YARAE| with a collection of publicly available rules, strings,
and ELF Parselﬂ These are respectively a signature-based scanner, a tool to extract human-readable
data from blobs, and a tool that determines the capabilities of a binary, e.g. whether it reads files or
creates network sockets. Last but not least, the malware samples are subjected to dynamic analysis by
running them with QEMU for a set period of time. For this, we use the tools open sourced by the authors
of |Alr+21]. Output logs, network logs, and traces of system calls are collected in this step. Only MIPS
(32-bit LSB) binaries are analysed as the other captured samples differ solely in terms of architecture, as
discussed in section dropping the payload.

The VirusTotal and YARA steps of the pipeline show the capability of industry-leading tooling to identify
the malicious samples. VirusTotal reports three-fourths of all samples to be Mirai, with the rest being
identified as the Gafgyt malware. Similarly to Mirai, Gafgyt’s source code has been made public over
time [Lev16]. However, it is older than Mirai. Age is thus likely the reason for Mirai having a larger share

Shttps://www.virustotal.com/
4https://github.com/VirusTotal/yara/
Shttps://elfparser.com/
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in the data. In terms of functionality, Mirai focuses on access by means of default credentials. Gafgyt, on
the other hand, focuses on exploitation by means of abusing CVEs |[Dav19)]. Yet, even the earliest version
includes a wordlist to access services with default credentialsﬂ As both Mirai’s and Gafgyt’s source code
is public, mixed variants have started to appear |[Sea2l]. This makes classification hard. In the rest of
this section the malware families will be compared, instead of the honeypot instances. Table [5.4] lists
statistics related to the preliminary steps of the pipeline.

Statistic Mirai Gafgyt Total
Unique MIPS (32-bit LSB) binaries 192 63 255
New to VirusTotal 39 13 52
Median detection rate (%) 425  33.8 40.5
Unique CVEs detected 8 2 8
Median CVEs used 0 0 0
UPX packed 93 13 106
UPX unpacking failed 6 12 18

Table 5.4: Statistics on the captured MIPS (32-bit LSB) binaries in the preliminary stage of the
analysis pipeline, categorised per malware family.

To our surprise, 20.4% of all captured MIPS (32-bit LSB) binaries did not have their hashes registered
on VirusTotal prior to the analysis. This is based on the “first submission date” reported on the web
site. The honeypot instances thus captured previously unknown malware samples. Given that there are
only two big families, we assume this percentage to be so high due to the ease of creating variants. The
ease of (re-)infection, due to lacking security measures, makes frequent adjustments to the malware code
possible. An adversary is able to take the public source code of either malware type, apply their own
customisations and/or improvements, and start a new malware campaign. Additionally, in section
we hypothesized that adversaries distribute updated versions of their malware. Despite influencing the
hashes of the malware binaries that result from these changes, large portions of their code, and thus
functionality, remain unchanged. Antivirus software can use these characteristics, among others, to
determine which malware family the submitted binary belongs to. Furthermore, VirusTotal aggregates
various antivirus services. Not each service can detect each malware with the same accuracy however.
We call the ratio of services that detect a sample as malicious, to the services that do not, the detection
rate. As can be seen in table Gafgyt is harder to detect. The reason for this is unknown to us as it
would require intrinsic knowledge of each antivirus service. Lastly, YARA was able to identify only eight
unique CVEs with the given collection of rules. These are as follows: CVE-2014-2321, CVE-2014-8361,
CVE-2016-10372, CVE-2017-17215, CVE-2017-18368, CVE-2017-18369, and CVE-2018-10561. However,
only two CVEs were detected in the captured Gafgyt samples. This is remarkable given that its focus
lies in abusing CVEs. We hypothesise the reason for this to be a combination of a small sample size,
binaries failing to unpack, and insufficient coverage with our collection of YARA rules.

UPX packed binaries make up 41.6% of all MIPS (32-bit LSB) binaries. However, notice that 18 of these
samples failed to unpack. Although the percentage of packed Gafgyt samples is smaller than that of
Mirai, all but one of the packed Gafgyt samples failed to unpack. Further review shows that the binaries
that fail to unpack still execute successfully in the dynamic analysis stage. Thus, it can be concluded that
the authors tweaked some headers not essential to execution, as previously mentioned to be a possibility
in section 2.4.2} evasion. Indeed, comparing the first few hundred bytes of a random binary packed by
us with such a malware sample reveals a discrepancy between the two. A side by side comparison of the
binaries’ headers in hex format can be seen in fig. Notice how the amount of bytes up till the second
ELF magic bytes, marked in pink, is less in the malware binary (fig. than in the control binary
(fig. . Additionally, the malware binary does not contain the magic bytes UPX!. The malware author
thus removed (parts of) the UPX header. In conclusion, the small amount of UPX packed samples that
are also tweaked implies a low amount of effort to obfuscate IoT malware. This leads us to believe that
the main purpose of using UPX is not to evade detection, but rather to decrease payload size. However,
this only applies to the Mirai family. When the authors of a Gafgyt sample decide to pack their malware,
they go the extra mile to make analysis harder. This is a surprising conclusion as Mirai is the younger
malware family of the two. One would expect that adversaries gain experience over time, thus resulting in
Mirai samples being more sophisticated than the older Gafgyt. We argue the opposite however. Mirai’s

Shttps://github.com/hammerzeit/BASHLITE/
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popularity attracted new, inexperienced adversaries, which further contributed to the malware family’s
growth. Yet, these new people do not possess the knowledge to protect their malware samples. They
are also not required to gain said knowledge as the infection process does not necessitate it. On the
other hand, the older, more experienced Gafgyt operators, whom wish to stay in business by occupying
a niche, must better protect their binaries as defenders have learned and developed defensive measures
over time.

00000000
00000012
00000024
00000036
00000043
00000B5A
0000006C
0000RO7E
00000090
000000A2
00e000B4
000000C6
000000D3
00RORREA
000000FC
0000010E
00000120
00000132
00000144
00000156

(a) The first few hundred bytes of a random binary packed by us. The UPX header is unaltered and contains the magic
bytes UPX!.

00000000
00000012
00000024
00000036
00000043
00000@5A
0000006C
0000007E
00000090
000000A2
000000B4
000000Ce
000000D8
000OQOEA
000000FC
0000010E
00000120
00000132
00000144
00000156

(b) The first few hundred bytes of a malware sample that failed to unpack. The UPX header is altered as the amount of
bytes between the two sets of ELF magic bytes is small, and the magic bytes UPX! are not present.

Figure 5.7: Comparison of a packed control (top) and malware (bottom) binary. Corresponding
ELF magic bytes are marked in pink.

Next, we look at the capabilities of the malware samples. The ELF Parser utility uses several heuristics
to determine what possible actions an ELF executable can perform. Figure shows a measurement of
the detected capabilities. A skewed ratio between Mirai and Gafgyt binaries is expected as the amount
of captured samples differs between them. As such, comparing them in absolute numbers is not fitting.
We instead focus on explaining what each capability entails, exemplifying where appropriate, and how
they tie into the general workings and goal of IoT malware by combining this data with the results of
the dynamic analysis phase.

The popularity of shell commands contained within the samples comes as no surprise given that they
propagate by sending commands. The strings labelled as HTTP functionality give more insight however.
First, various HTTP user agent strings, both of well-known software and random strings, are detected.
Using a different user agent on every request hinders detection. Furthermore, presenting a user agent
used by other software prevents being blocked based on this value. Other strings classified under HT'TP
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W Mirai B Gafgyt

Shell commands

HTTP functionality
Hardcoded IPv4 addresses
File paths
Strippedfobfuscated
Packed

Anti-debug techniques
Network functions

Process manipulation

Information gathering

Figure 5.8: Capabilities of captured binaries, per malware family. The total number of analysed,
unique MIPS (32-bit LSB) binaries is 255.

functionality are paths and XML payloads. We identify these to be parts of HTTP and UPnP SOAP
requests that exploit known vulnerabilities. Manual review reveals at least six more vulnerabilities not
detected by the YARA rules. These are the following: RCE in Linksys E-series devices [Ull14], RCE in
TVT Shenzhen DVRs , CVE-2019-9082, CVE-2020-8958, CVE-2020-10173, and CVE-2021-44228.
CVE-2021-44228 is more commonly known as Log4Shell, an arbitrary command execution vulnerability
in the popular Java logging library Log4j. The library’s prevalence and relative ease of exploitation
quickly made the weakness notorious. Including the CVEs mentioned earlier, the samples can exploit
weaknesses spanning almost a decade. However, age is not an issue for IoT malware as the target
devices are rarely updated due to a lack of human supervision. Although old, the vulnerabilities share
certain characteristics. Namely that they are easy to exploit and have high impact. More specifically,
they are unauthenticated shell command injection vulnerabilities. Combined with the poor permission
and user management of IoT devices, adversaries are able to gain root privileged shell access without
much effort by abusing these vulnerabilities. As for hardcoded IP addresses, 61 unique public addresses
are identified. Roughly half of them overlap with the IP addresses used in Telnet sessions to download
payloads, as described in section[5.2.1] The other half consists of either unidentified storage hosts or C&C
servers. WHOIS information of the latter half reveals that they belong to hosting providers, supporting
the possible use cases. Furthermore, three unique addresses belonging to private IP address ranges are
contained in the binaries. All three are part of larger strings that are components of exploits mentioned
above. How these are used is explored further in section [5.5]

The hardcoded paths also confirm previously discussed behaviour. Identified paths can be grouped into
three groups:

e Payload file path: This group consists of paths such as /tmp/.e and /tmp/aqua.mpsl. These are
hardcoded paths to which the malware will write itself when infecting another device. Dynamic
analysis shows that the malware sample’s location on the filesystem can also be used to remove
itself after having started in order to leave no traces.

e System configuration files: These are file paths such as /etc/resolv.conf, /etc/services, and
/proc/cpuinfo. These files were not accessed during the dynamic analysis phase, meaning that
they are to be used during interactions with victims. The files can be read to gather information
on how to proceed with intrusion, as well as check whether the victim environment is a real device.
The capability of information gathering lists these paths as well.

e System tooling: This group contains e.g. /usr/bin/echo, /dev/watchdog, and /usr/1lib/systemd.
We choose these examples as they match three possible actions to be undertaken using system
tooling:
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— First, when intruding on a device, the malware will use already existing system tooling to
prepare and infect the device. This has been discussed in section The malware binary
needs these strings to be able to send them to the victim.

— Second, in section [2.4.2] it was mentioned that malware attempts to gain persistence by pre-
venting a reboot. This requires fooling the watchdog of the OS. The Linux watchdog works as
follows [WOOQ7|. A service in user space of the OS is responsible for periodically notifying the
kernel watchdog. This kernel watchdog in turn notifies a hardware watchdog. If everything
works as intended, no timeout occurs and no hard reset happens. Unresponsiveness of the user
space service will result in missing notifications and thus a reboot. This may be caused by any
kind of system failure including lack of resources or the halting of the user space service, which
can both be caused by the malware binary. The dynamic analysis reveals how this is solved
in practice by malware authors. Namely, they create their own service that notifies the kernel
watchdog. Doing so is as simple as forking a thread that periodically writes random data to
the watchdog file. However, note that /dev/watchdog is not the only possible location, and
name, for this file. /etc/watchdog, /dev/misc/watchdog, and /dev/FTWDT101_watchdog are
only some of the alternatives checked for by the captured malware samples. Vendors are free
to customise their firmware and rename this file as needed. As a result, malware authors
must include various paths in an attempt to find the watchdog file. If finding and writing
to it is unsuccessful, they can either ignore the functionality or halt the infection completely.
Remember, as described in section our implementation gives intruders no root permis-
sions. Yet, writing to the watchdog file requires said permissions. Although the intrusion and
binary would already be logged by the honeypot at this point, it nevertheless hampers the
believability of our implementation.

— After having infected a device, malware will try to hide itself on the victim to evade detection
as discussed in section [2.4.2} evasion. The third type of paths to system tooling contains tools
that are not used during intrusion, but are well-known utilities nevertheless. Malware can
fool human and naive automated detection tools by removing such utility from the victim and
replacing it with itself.

Continuing with evasion techniques, we discuss the capability of process manipulation. Using the system
call prctl, malware samples rename their reported process’ name. Furthermore, dynamic analysis reveals
the scanning of all running processes by reading files in the /proc directory. Processes with the same name
as the malware are halted. This enables re-infection by preventing duplicate instances of malware to be ran
simultaneously. Indeed, several samples contain the string [single-instance] killing other bot: %s

- pid: %s, confirming that duplicate instances are undesired. Despite not observing it in our test setup
performing dynamic analysis, IoT malware is also known to scan and halt competing malware [Voo+19).
Manual review of all human-readable strings in the captured binaries reveals one sample that contains
a list of more than 300 competing malware names. Note that, as explained above, preventing access to
the root user might affect interactions with the watchdog. However, the decision to do so also allows us
to hide processes of the emulation framework from the least-privileged user. This is important here as it
future-proofs the implementation from being detected by malware.

The packed capability indicates binaries packed with UPX. However, not all samples are detected by the
ELF Parser utility due to modified UPX headers. Further, anti-debug techniques pertains to stripped or
obfuscated ELF headers. Upon further inspection of samples with this capability, we discover that some
adversaries have implemented their own simple packer. The entry point of the malware loads a chunk of
bytes from a different part of the binary, performs some decoding operations, and then directs execution
to it. Storing instructions in such obfuscated way complicated malware analysis.

Last but not least, the capability of network functions, as expected, contains functions to handle net-
work sockets. From the functions to open, send, receive, and close sockets, the setsockopt used
to configure socket options stands out. An example invocation captured during dynamic analysis is
setsockopt (3<RAW: [1073]>, SOL_IP, IP_HDRINCL, [1], 4). This applies the IP_HDRINCL option to
the socket. It allows the malware binary to tweak the IP header of packets it sends instead of using
the header created by the kernel. The use case for this is spoofing the source IP address either during
network scanning, as to prevent being blocked, or when performing e.g. SSDP reflection attacks.
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5.3 HTTP usage

To gain an understanding of the captured web traffic, all HT'TP requests are first classified into sequences.
A sequence is a directed graph and represents the browsing behaviour of a client. Each node is a web
resource fetched by the client, and each edge indicates the order in which the nodes, i.e. resources, are
visited. An edge can be determined based on the resource that lead the client to the current resource,
i.e. using the Referer HTTP header. Sequences may also branch when a web page automatically fetches
resources. They illustrate the browsing behaviour of clients and are thus fitting representations due to
the web’s linked structure. Then, all sequences are grouped together by merging nodes that have the
same URL, same depth, and matching ancestry. This creates a directed graph with the shape of a tree
that shows all possible paths taken by clients.

To start, incoming requests will be analysed. Figure[5.9shows the merged sequences for incoming requests.
Several limitations apply to the figure to retain clarity. Due to the exponential nature of branching of
the graph, only two levels of depth are shown, i.e. the first and second requested resource when visiting.
For the same reason, resources at a depth of two are only displayed if they have been visited a minimum
number of times. Additionally, only the destination path is shown when the target host is one of the
honeypot instances. Several observations can be made about the behaviour of clients when they visit our
honeypot instances using this graph.
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Figure 5.9: The first and second step in the HTTP sequences of clients visiting the honeypot
instances’ web services. Only the destination path is shown when the target host is a honeypot
instance. The color of each circle indicates the reason for the request, while the size is proportional
to the amount of requests made. Long URLs are cut off and indicated with [...].
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First, notice that clients supposedly start their browsing on popular web sites such as https://baidu.
com, https://binance.com, and https://google.com. The second step in their sequences reveals their
intention however. The children of e.g. the https://google.com node point to common paths that are
almost all not available on the honeypot’s web server. Despite the size of the parent node, all child nodes
have individually been visited a small number of times. The number of visits is also roughly the same
for all child nodes. It can be concluded that these visits are the result of automated scanners. For these
scans, adversaries manually set the Referer header to a popular web site. We theorize that by doing this,
the traffic is made to look like a human happened to stumble upon the victim through the parent node’s
web site. This might confuse naive defensive systems. Such scanners are able to generate a substantial
amount of requests. This explains at least some of the peaks of incoming HTTP traffic in fig.

Second, other requests attempt to exploit vulnerabilities in the web server of the IoT devices. As es-
tablished in section aside from intruding on Telnet with default credentials, IoT malware also
attempts to exploit well-known vulnerabilities in the firmware of devices. For example, the most visited
path with the intent of attacking a honeypot instance is /boaform/admin/formLogin, which is disguised
to be coming from /admin/login.asp with the Referer HTTP header trick. This path is the target of
CVE-2020-8958, which we earlier identified to be used by several of the captured malware binaries. In
other words, these requests are a confirmation of our prior observation that IoT malware employs CVEs
to infect victims.

Third are the requests made to resources hosted on the honeypot instances. As discussed in section
our implementation hosts a web administration panel for an IP camera. Accessing it requires authen-
ticating with the username and password admin. Table [5.5] lists the three stages of interacting with the
web administration panel. As mentioned in the introduction to this chapter, logs of the AWS instance
were lost between certain periods of time. Due to a big discrepancy in the amount of captured visits,
we also show the statistics of the OVH instance after compensating for said period. The concrete reason
for the discrepancy is unknown. However, we hypothesise following properties to be influencing this
phenomenon. As mentioned before in section [£.3:4] the hosting provider may impact the audience that
targets each instance and how they behave. Next, both honeypots are installed on hosts that received a
clean OS install beforehand. Yet, while the AWS instance along with its IP address have been acquired
new, the OVH instance has previously been used for a different research project. Not only did its IP
address remain unchanged, a DNS A record that points to it also still exists at the time of analysis. None
of the clients include said DNS record in the Referer HTTP header however. This indicates that they did
not land on the web page of the honeypot through existing links. Thus, a more likely explanation is that
the age of the IP address and the DNS record improve the believability of the host, and consequently the
honeypot instance hosted on it. The Internet scanning service Shodarﬂ provides an API that attempts
to identify whether a host behind an IP address is a honeypot or not. Remarkably, the AWS instance
is, with certainty, marked as a honeypot while the OVH instance is not. This not only supports our
hypothesis, but it might be increasing the legitimacy of the OVH host even further. This information
can be used for future implementations. It either encourages honeypot operators to ensure no hosts are
reused from prior work, or they might deliberately use older IP addresses and/or DNS records to achieve
better results. Nevertheless, the two should not be mixed to prevent harming the integrity of the captured
data, as happened in this thesis.

Statistic AWS EC2 OVH VPS (comparable) OVH VPS (full)
Visit /home.htm 5 37 177

Successful login 0 28 119

Continue to browse 0 8 16

Median browsing duration (seconds)  / 54.6 57.6

Shortest browsing duration (seconds) / 20.2 20.2

Longest browsing duration (seconds) / 94.1 236.4

Table 5.5: Statistics on the three stages of interacting with the web administration panel honeypot
service, categorised per instance. A / means that no applicable value exists.

We continue analysis on all interactions due to the small sample sizes. Only roughly two-third of all
clients manage to properly authenticate against the IP camera’s administration panel, as can be seen in
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table[5.5] An even smaller fraction of clients go on to actually interact with the web site. Comparing the
duratlon of the interactions with those of Telnet sessions, discussed in section [5.2.1] it can be concluded
that these are performed by humans. Unfortunately, none of the 16 browsing client’s IP addresses appear
in the Telnet proxy’s logs. This means that they did not use any honeytoken. We thus can not know
how they came to find the honeypot instance. Although each visitor shows interest in the camera feed,
watching it for several seconds, the general behaviour of clients can be divided into three groups:

e The first group only views the camera feed and leaves relatively fast.

e The second group is more interested in the camera feed. They attempt to interact with it by e.g.
toggling night mode or the audio on/off. Yet, as explained in section the emulation of the IP
camera’s firmware is not perfect. As a result, we had to implement a patch to be able to show a
camera feed. Unfortunately, the patch turned out to be too simplistic as the said clients left right
after observing no changes resulting from their actions.

e The last group is less interested in the camera feed, and decides to browse to the settings and
system statistics pages. However, they do not change any settings, i.e. interact with these pages.

Thus, when a human happens to login to an exposed IP camera, they will be drawn to the camera feed.
Some might explore further, but none are eager to start changing any settings. Note that this conclusion
is limited by both the small sample size and the mistake of reusing an older host with a registered DNS
record, as discussed above. Furthermore, the latter in combination with the lack of knowledge as to
how the clients found the honeypot means that it can not be assumed that the clients are visiting with
malicious intent. This could also explain why none of them proceeded to change any settings. What
can be said with certainty, however, is that a proper patch for the camera feed would have benefited the
honeypot implementation. More detailed logs can be gathered if visitors are kept engaged for longer.
Future work must ensure high fidelity on all fronts of the implementation.
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Figure 5.10: Hosts that have been visited at least a hundred times by the honeypot instances
over the analysed time period. The color of each circle indicates the reason for the request, while
the size is proportional to the amount of requests made. Long URLs are cut off and indicated with

[..].
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Last but not least, we also have a look at outgoing HTTP requests. Figure shows URLs that have
been visited at least a hundred times by the honeypot instances. This limitation must be applied for
clarity of the figure. It prunes hundreds of nodes that have been visited only a handful of times. In the
figure, several groups can be identified. First are the endpoints that were targeted during DoS attacks.
Shortly after becoming infected by a malware sample, a honeypot instance would receive a TCP packet
from a supposed C&C server. Using the options in said packet, the honeypot would then participate
in the attack by sending numerous HTTP requests. The start of an attack targeting https://gov.uk
is shown in fig. 5.11] A large amount of HTTP requests is matched by a similar amount of HTTP
responses from the victim. This explains some of the peaks of incoming HTTP traffic, such as the one
that occurred on the OVH instance between the 10th and 17th March, 2022. As a reminder, the firewall
described in section [£:2.4] severely limits outgoing bandwidth. As such, the contribution of our instances
to such attacks is negligible. Nevertheless, it shows that our implementation is not only capable of hosting
firmware with a fidelity that allows infection and even usage of the malware, but also allows recording all
related traffic.

No. Source Destination Protocol Length Info
192.168.0.3 101 5555 - 45684 [PSH, ACK] Seq=1412 Ack]

556740 192.168.0.3 45.10.24.245 TCP 66 45684 — 5555 [ACK] Seq=1409 Ack=1447
556741 192.168.0.3 151.101.120.144 TCP 74 55754 . 80 [SYN] Seq=0 Win=29200 Len
556742 151.101.120.144 192.168.0.3 TCP 74 80 - 55754 [SYN, ACK] Seq=0 Ack=1 Wi
556743 192.168.0.3 151.101.120.144 TCP 66 55754 — 80 [ACK] Seg=1 Ack=1 Win=292
556744 192.168.68.3 151.101.120.144 TCP 74 55755 — 80 [SYN] Seg=0 Win=29200 Len
556745 192.168.0.3 151.101.120.144 TCP 74 55756 — 80 [SYN] Seq=0 Win=29200 Len
556746 192.168.0.3 151.161.120.144 TCP 74 55757 — 8@ [SYN] Seq=0 Win=29200 Len
556747 151.101.120.144 192.168.0.3 TCP 74 80 . 55755 [SYN, ACK] Seq=0 Ack=1 Wi
556748 151.161.120.144 192.168.0.3 TCP 74 80 — 55756 [SYN, ACK] Seq=0 Ack=1 Wi
556749 192.168.0.3 151.101.120.144 TCP 74 55758 — 80 [SYN] Seq=0 Win=29200 Len
556750 151.101.120.144 192.168.0.3 TCP 74 80 -~ 55757 [SYN, ACK] Seq=0 Ack=1 Wi
556751 192.168.0.3 151.101.120.144  TCP 66 55755 — 80 [ACK] Seg=1 Ack=1 Win=292
556752 192.168.68.3 151.101.120.144 TCP 66 55756 — 80 [ACK] Seg=1 Ack=1 Win=292

» Transmission Control Protocol, Src Port: 5555, Dst Port: 45684, Seq: 1412, Ack: 1409, Len: 35

000 1c 5F 2b 4f 45 93 02 42 ea e7 ©d 86 08 00 45 00 _t0E- B - - -E:
001 0@ 57 42 dd 40 ee 2f @6 02 la 2d @a 18 f5 cO a8 WB-@ /- -
R YRR I

002 00 03 15 b3 b2 74 b8 95 a6 85 d4 76 af 98 80 18
003 01 fe 09 e6 00 00 61 @1 08 0a ea 4a le 63 00 ab
CILIIcRcy 00 23 00 00 00 le ©@a 01 97 65 78 90 20 03
ClL{MO7 02 38 30 08 @a 77 77 77 2e 67 6f 76 2e 75 6b)
Clelolml18 03 31 32 30

Figure 5.11: Excerpt from the captured network logs showing the start of a DoS attack. A TCP
packet is received containing the strings 80, www.gov.uk, and 120. These are the port, URL, and
extent of attack options respectively. Several requests targeting the victim follow.

The second group of visited endpoints consists of the ones used to download malicious payloads, i.e.
malware samples. These can mainly be identified by the paths being requested. Speaking of payloads,
the third group consists of a single URL, namely http://upgrade.bitdefender.com/netgear_r7000p_
boxlight/versions3.id. This was being visited by the router honeypot service, which emulates the
firmware of a Netgear®) R7000. The reason for these visits is that the router attempts to fetch automatic
updates to one of its services. This brings up a downside of emulating consumer firmware in a high
interaction honeypot. Consumer firmware is configured by the vendor to automatically start services that
will attempt to contact outside resources. The honeypot’s operators must be aware of all such services
included in the base firmware and handle related data appropriately. This removes possible confusion and
misinterpretation of results. Despite filtering out the data related to vendor services during the analysis
phase, we did not consider the existence of such services during the implementation of our honeypot.
This is a necessary improvement in future work.

We also have a look at the endpoints that have been visited less than a hundred times, and are thus
not shown in fig. Aside from containing IP addresses hosting malware samples that have been
fetched less frequently, two more groups can be identified within the data. Both groups are related to the
workings of the malware samples that infected the honeypot instances. The first group consists of APIs
that respond with the client’s public IP address. This is part of the information gathering step of malware
binaries. The public IP address of the infected victim is reported to the adversary’s C&C server such
that commands can be issued at a later date. The second group contains attempts at exploiting other
IoT devices’” web services, similar to the captured exploits and the ones discussed in section [5.2.3
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http://upgrade.bitdefender.com/netgear_r7000p_boxlight/versions3.id
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5.4 UPnP/SSDP abuse

The UPnP protocol has been designed for M2M communication. The SOAP API presented by UPnP
services enforces this philosophy. This API informs control points of the device’s capabilities and provides
a structure to follow during further communication. It not only removes the need for automated scanning,
but ensures that possible interactions are limited and well-defined. This, in turn, facilitates the analysis
of the traffic hitting a UPnP service. We can deduce how adversaries intend to misuse the exposed
service by looking at incoming traffic that attempts to invoke a response from it. The logs show only
a handful of unique interactions. These are, aside from harmlessly listing the possible actions of the
device, M-SEARCH and POST requests to interact with the SSDP and SOAP parts of the UPnP service
respectively.

No. Source Destination Protocol Length Info
484383 47.94.165.165 192.168.0.2 SSDP 132 M-SEARCH * HTTP/1.1
484384 47.94.165.165 192.168.08.2 SSDP 132 M-SEARCH * HTTP/1.1
484385 192.168.0.2 47.94.165.165 SSDP 354 HTTP/1.1 200 0K
484386 47.94.165.165 192.168.0.2 SSDP 132 M-SEARCH * HTTP/1.1
484387 192.168.0.2 47.94.165.165 SSDP 356 HTTP/1.1 200 OK
484388 47.94.165.165 192.168.0.2 SSDP 132 M-SEARCH * HTTP/1.1
484389 192.168.0.2 47.94.165.165 SSDP 292 HTTP/1.1 280 OK
484380 47.94.165.165 192.168.0.2 SSDP 132 M-SEARCH * HTTP/1.1
484391 47.94.165.165 192.168.08.2 SSDP 132 M-SEARCH * HTTP/1.1
484392 192.168.0.2 47.94.165.165 SSDP 301 HTTP/1.1 200 0K
484393 192.168.0.2 47.94.165.165 SSDP 364 HTTP/1.1 280 OK
484394 192.168.0.2 47.94.165.165 SSDP 301 HTTP/1.1 200 0K
484395 192.168.0.2 47.94.165.165 SSDP 340 HTTP/1.1 280 OK
484396 192.168.0.2 47.94.165.165 SSDP 301 HTTP/1.1 200 OK
484397 192.168.0.2 47.94.165.165 SSDP 360 HTTP/1.1 280 OK
484398 192.168.0.2 47.94.165.165 SSDP 356 HTTP/1.1 200 OK
484399 192.168.0.2 47.94.165.165 SSDP 372 HTTP/1.1 200 OK
484400 192.168.0.2 47.94.165.165 SSDP 366 HTTP/1.1 280 OK
484401 192.168.0.2 47.94.165.165 SSDP 354 HTTP/1.1 200 0K
484402 192.168.0.2 47.94.165.165 SSDP 356 HTTP/1.1 280 OK
484403 192.168.0.2 47.94.165.165 SSDP 292 HTTP/1.1 200 0K
484404 192.168.0.2 47.94.165.165 SSDP 301 HTTP/1.1 280 OK
484405 192.168.0.2 47.94.165.165 SSDP 364 HTTP/1.1 200 0K
484406 192.168.0.2 47.94.165.165 SSDP 301 HTTP/1.1 280 OK
484407 192.168.0.2 47.94.165.165 SSDP 340 HTTP/1.1 200 0K
484408 192.168.0.2 47.94.165.165 SSDP 301 HTTP/1.1 280 OK
484409 192.168.0.2 47.94.165.165 SSDP 360 HTTP/1.1 200 OK
484410 192.168.0.2 47.94.165.165 SSDP 356 HTTP/1.1 200 OK

]

» Internet Protocol Version 4, Src: 47.94.165.165, Dst: 192.168.8.
+ User Datagram Protocol, Src Port: 4859, Dst Port: 1900
- Simple Service Discovery Protocol
- M-SEARCH * HTTP/1.1\r\n
+ [Expert Info (Chat/Sequence): M-SEARCH * HTTP/1.1\r\n]
Request Method: M-SEARCH
Request URI: *
Request Version: HTTP/1.1
Host:239.255.255.250:1900\r\n
Man:"ssdp:discover"\r\n
MX:3\r\n
\ri\n

v}

Figure 5.12: Excerpt from the captured network logs showing an SSDP reflection attack in the
works.

As described in section 2.5.2] the SSDP component of UPnP can be abused in a reflection attack. Fig-
ure shows an example of one of the honeypot instances being misused for this purpose. The attacker
spoofed their IP address to be that of the victim, i.e. 47.94.165.165, and sent thousands of M-SEARCH
requests to the honeypot’s UPnP service. The Search Target (ST) field is set to ssdp:all, which requests
all services that the device has to offer. The UPnP service in turn sends a 200 OK response per available
service to the victim. The Netgear®) R7000’s firmware, of which the honeypot UPnP service is part of,
provides 41 services. Figure [5.13|shows a direct comparison of the amount of incoming to outgoing SSDP
frames over time. A log scale is used to retain clarity despite the occasional high peaks of traffic. As can
be seen, the amplification is between one or two factors of ten on the average day. Yet, when the graph
peaks, the difference between the amount of incoming and outgoing frames decreases. The reason for this
is twofold. First, the emulation is unable process, and keep up with, the amount of requests. Second,
the honeypot implementation uses an abuse checking service, discussed in section [£:2.4] A short period
after detecting abuse, here identified by unusually high amounts of outgoing traffic, it clean resets the
honeypot instance. This results in numerous SSDP requests that end up not being answered. Neverthe-
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less, as can be seen in fig. [5.12] the size of an M-SEARCH frame is only between half to a third of the
size of a response. Thus, it is evident that this attack is simple and capable of generating large amounts

of traffic.
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Figure 5.13: Direct comparison of incoming and outgoing SSDP traffic, per instance, over the

analysed duration.

The SOAP APIs of the honeypots were also targeted. The behaviour of the adversaries, of which there
are only two distinct ones, is peculiar however. The used IP addresses do not belong to publicly known
scanning services and are thus hosts that are being abused. Furthermore, they do not appear in any
other service’s captured logs. Both would first request /Public_UPNP_gatedesc.xml, i.e. the root path
describing the possible actions for an IGD. This is likely in order to confirm whether the discovered port
is indeed exposing an IGD’s UPnP service. After that, they would attempt to interact a single time with
the device. This would repeat for the whole duration of the honeypots being online. Each adversary would
send the same, although different from each other, requests each time. Examples of the two interactions
are shown in fig. It can be seen that both requests are answered with an error.
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POST /Public UPNP_gatedesc.xml HTTP/1.1

Host: 51.91.9.167:5000

Accept-Encoding: identity

Content-Length: 338

SOAPAction: "urn:schemas-upnp-org:service:WANIPConnection:l1#GetGenericPortMappingEntry"
Content-Type: text/xml

<?xml version="1.0" ?><s:Envelope s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"><s:Body><u:GetGenericPortMappingEntry
xmlns:u="urn:schemas-upnp-org:service:WANIPConnection:1"><NewPortMappingIndex>0</

NewPor tMappingIndex></u:GetGenericPortMappingEntry></s:Body></s:Envelope>HTTP/1.0 404 Not
Found

Content-type: text/html

<html>

<head><title>404 Not Found</title></head>

<body><h1>404 Not Found</hl>

<p>The resource you have requested is not available.</p></body>
</html>

(a) An attempt to fetch the first entry in the port mapping table. However, it was sent to the wrong path.

POST /Public_UPNP_C3 HTTP/1.0

HOST: 192.168.0.2:5000

SOAPACTION: "urn:schemas-upnp-org:service:WANIPConnection:1#AddPortMapping”
CONTENT-TYPE: text/xml ; charset="utf-8"

Content-Length: 637

<?xml version="1.8" encoding="utf-8"?>

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>

<u:AddPortMapping xmlns:u="urn:schemas-upnp-org:service:WANIPConnection:1">
<NewRemoteHost></NewRemoteHost>
<NewExternalPort>25473</NewExternalPort>
<NewProtocol>TCP</NewProtocol>
<NewInternalPort>80</NewInternalPort>
<NewInternalClient>172.217.20.78</NewInternalClient>
<NewEnabled>1</NewEnabled>
<NewPortMappingDescription>sync-25473</NewPortMappingDescription>
<NewlLeaseDuration>608</NewlLeaseDuration>

</u:AddPortMapping>

</s:Body>

</s:Envelope>

HTTP/1.1 500 Internal Server Error

EXT:

CONTENT-TYPE: text/xml

SERVER:Linux/2.6.12 UPNP/1.0 NETGEAR-UPNP/1.0
CONTENT-LENGTH: 421

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s:Body>

<s:Fault>

<faultcode>s:Client</faultcode>
<faultstring>UPnPError</faultstring>

<detail>

<UPnPError xmlns="urn:schemas-upnp-org:control-1-0">
<errorCode>402</errorCode>
<errorDescription>InvalidArgs</errorDescription></UPnPError=>
</detail>

</s:Fault>

</s:Body>

</s:Envelope>

(b) An attempt to add a new port mapping entry. However, the server was unable to process the request.

Figure 5.14: Two distinct attempts at interacting with the SOAP part of the honeypot’s UPnP
service. Both received an erroneous reply. The attacking client is marked in red, while the honey-
pot’s response is blue.

The first request is shown in fig. This attempts to perform the GetGenericPortMappingEntry
action, which is used to retrieve configured port mappings from an IGD [Sta+10]. To get all mappings,
control points must repetitively call this action with incremental indices until no more mappings are
returned. Yet, the adversary immediately received an error. The reason for this is that they sent the
POST request to the incorrect path. Thus, they attempted to start an information gathering routine on
the honeypot but it short-circuited due to an unforeseen error. The AddPortMapping request in fig.
on the other hand, was sent to the correct path. As explained in section [2.5.2] this attempts to add a new
entry in the NAT table and can force the IGD to either expose additional internal ports, or become a
proxy for the adversary to use. The example shown in fig. [5.14b] attempts to map 172.217.20.78’s port
80 to the honeypot’s port 25473. In other words, they tried to proxy a remote web server through the
honeypot. If this test would have succeeded, the attacker would have known that the service is vulnerable
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and continued their attack. However, the UPnP service was unable to process the request and returned
an application error mentioning invalid arguments. Debugging reveals that the Netgear@®) R7000’s UPnP
implementation does not allow for public IP addresses to be mapped. Indeed, this is the correct behaviour
needed to halt the attempted attack. Note that in our implementation no additional ports can be accessed,
even if the action would have succeeded, due to the firewall.

In conclusion, despite lacking variety in the types of attacks, UPnP is still actively being exploited.
However, our choice of firmware is unfortunate as its service is not vulnerable. This prevented capturing
further interactions. Experimentation shows that, if the adding of a port mapping would have succeeded,
the request to fetch an added entry with GetGenericPortMappingEntry would have returned a mapping
as expected. Emulating a UPnP service with high fidelity is thus feasible. Nevertheless, it requires some
configuration to return values matching the honeypot’s context due to not acting as the actual IGD of
the network.

5.5 Lateral movement

As explained in section [4.1.1], our implementation features several low-interaction MQTT services. These
are only accessible from within the honeypot private network. To end the analysis, we thus must check
whether any intrusion, or subsequent infection, attempted to spread through the internal private network.
To gain insight into the endpoints that communicated over the time period that the honeypots were online,
all TP level conversations [SWL| are extracted from the network logs using Wireshark. A conversation
is registered as soon as an endpoint sends at least one IP packet to another endpoint. Whether or not
a response is sent and received, or the IP packet arrives at all, is irrelevant. This consequently defines
entities by their IP addresses.

Table lists all possible combinations of endpoint pairs along with the amount of data sent in each
direction. This includes potential network scanning due to the above definition of IP level conversations.
The Telnet proxy runs on the host and is thus listed separately from the IP camera, which is the
emulated device that runs the environment to which Telnet provides access. Note that the data is
extracted from the comparable time period only. Meaning, periods in which either of the two honeypot
instances did not record network traffic are excluded. Yet, the data outside this time period does not
contain any additional conversing source-target pairs. Following normal behaviour, only two pairs of
internal endpoints are supposed to communicate. Those are the IP camera with the Telnet proxy, and
the MQTT hub with the MQTT clients. And indeed, the data in the table shows only the expected
conversations. As such, we conclude that the most prominently available IoT malware does not attempt
to spread through private networks. Note that in section [5.2.3] several private IP addresses were found
in malware samples. Given that other malware samples were able to run in the emulated environment,
we reason that the IP addresses are not actually used during exploitation. Rather, they are meant as
placeholders and replaced at runtime. Further research of the strings that the IP addresses are part of
reveals them to be part of publicly available Proof of Concepts (PoC) to exploit related vulnerabilities.
This confirms the hypothesis of the IPs being placeholders.

External IPs  Telnet proxy IP camera Router MQTT hub MQTT clients

External IPs | 0/0 0.34/0.28  0.42/0.36 0/0 0/0
Telnet proxy  0/0 / 1.80/3.09  0/0 0/0 0/0

IP camera 52.65/26.57  7.16/6.41 / 0/0 0/0 0/0
Router 0.62/0.81  0/0 0/0 / 0/0 0/0
MQTT hub 0,0 0/0 0/0 0/0 / 0.10/0.09
MQTT clients  0/0 0/0 0/0 0/0 0.15/0.15 |

Table 5.6: GigaBytes of data sent between entities over the comparable duration of the experiment.
The source entities are listed in the rows, while the columns list the targets. Cells containing
amounts of sent data list first the values for the AWS EC2 instance and then for the OVH VPS
instance, separated by a /. A cell with only a / means that no applicable data exists.



Chapter 6

Conclusion and future work

In this thesis we implemented, deployed, and eventually analysed the data of a high interaction IoT
honeypot that exposes consumer firmware. To achieve this, we first studied why IoT devices have no-
toriously bad security. This turns out to be a combination of three factors. Namely, limited hardware
resources which hampers the implementation of sophisticated security features, lack of human knowledge
due to the combination of various technologies and areas of expertise, and financial interests resulting in
security being given less thought altogether. This led into learning about the workings of IoT malware,
which can be divided into several stages. Furthermore, we studied how several popular IoT application
layer protocols could be exploited. It became evident that a security by design approach, along with a
restrictive design, is required to prevent both inherently vulnerable devices, as well as protocols. Then,
to be able to design and implement the honeypot, an understanding of their general structure and core
principles had to be acquired. Consideration and care must be given to the design and implementation of
both the decoy, the part of the honeypot that adversaries end up interacting with, and the captor, which
handles the data, in order to capture information relevant to the operator’s goals. However, hosting
consumer firmware turns out to be complicated due to devices being highly customised, which in turn
results in heterogeneity and tight coupling between software and hardware. Last but not least, we created
our own classification for firmware re-hosting techniques with a focus on their applicability in building
a honeypot. The techniques were reviewed, and an evaluation of their practicality and applicability for
building a honeypot was performed.

With the knowledge gained from the literature study, through implementing the honeypot, and from the
data analysis, we are now ready to answer our research questions:

1. What techniques and/or malware do adversaries employ during attacks involving IoT devices?
The different steps that IoT malware performs, along with examples, are discussed in section [2:4.2]
based on prior work. Our captured data confirms their findings, and its analysis explains several
examples in practice. The main takeaway from these discussions is that, despite IoT malware
employing techniques similar to traditional malware targeting PCs or servers, the implementations
tend to be less advanced. Yet, they have a big impact due to the security malpractices in IoT
devices. As opposed to traditional malware, however, the amount of families of IoT malware are
limited. They consequently all share similarities. Malware samples are updated frequently. This is
done to add new features, and to change the IP addresses of the C&C and payload hosting servers.
Nevertheless, the act of re-infecting victims to replace previous malware instances, along with the
intrusion process being heavily automated, ensures a high infection rate. Lastly, the age of the used
techniques is irrelevant as long as they are simple to automate and effective, as is demonstrated by
the usage of old CVEs and UPnP/SSDP being abused.

2. Given that IoT devices are made to solve specific problems and thus differ wildly, to what extent
do adversaries adapt to their targets. In other words, are the employed techniques and/or malware
targeted?

The differences between exploitation of distinct devices is relatively small. These include, but are
not limited to, using device-specific credentials, CVEs, paths to files, commands to escape the
vendors’ restricted shell environments, and considering the victim’s device architecture. Reducing
the amount of properties that need to be considered between devices, while simultaneously covering
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as many devices as possible for properties that can not be avoided, is of importance for malware
creators. To this end, adversaries leverage the fact that Type 1 devices use generic, Unix-like OSes.
It allows them to create a single malware binary that is as generic as possible. This increases the
possibility of infecting a target, and consequently increases the rate at which the malware spreads.

3. Do adversaries attempt lateral movement through an IoT network, and how effective are they at
it?
The analysis of our captured data in section reveals no attempts at lateral movement by ad-
versaries. This is a surprising finding as connectedness, and thus having multiple devices in a
network, is a selling point of the IoT paradigm. Given the generally weak security of devices, they
should prove to be easy targets for adversaries. However, our honeypot instances only captured
automated attacks. This conclusion thus only applies to malware binaries belonging to the captured
families, i.e. Mirai and Gafgyt. A manual attack might be conducted differently.

4. Is state of the art firmware re-hosting usable to build a believable, high fidelity IoT honeypot?

As seen in section [3.4.5] not every approach to firmware re-hosting can be used to build practical,
high interaction honeypots. The primary challenge encountered by peripheral forwarding and vir-
tual peripheral is lack of fidelity. However, the latter approach is the youngest across the board,
which leaves room for improvement. Furthermore, the usable techniques, i.e. full device proxy and
full system re-hosting, differ greatly. Their positives and negatives must be considered in the con-
text of the honeypot operator’s requirements. As for our implementation, built upon full system
re-hosting, it was effective at capturing data covering the whole lifecycle of IoT malware. That is,
from its initial access until it was used maliciously. Providing real services and system files increased
the honeypot’s fidelity. However, some difficulties were encountered, such as acquiring appropriate
firmware and patching the emulated firmware in a manner that is believable. Furthermore, the used
framework limited the implementation’s fidelity as it required the usage of a least-privileged ac-
count, instead of providing intruders access to the root account. As it stands, if the requirement is
to capture shell-based automated attacks with a honeypot that runs a RISC architecture, emulating
OpenWrt is both less complex and has the same effectiveness. The reason being that current IoT
malware performs barely any fingerprinting, and is designed to be as generic as possible. Yet, if the
honeypot must look like a consumer device, i.e. contain appropriate files and branded services such
as an administrative panel, full system re-hosting can be used, given a considerable time investment
to set it up. This especially applies if the intent is to capture human interactions, as they are more
sensitive to differences between a generic OpenWrt host and a consumer device. Nevertheless, full
system re-hosting, and re-hosting in general, is still largely in its infancy.

Several complications were encountered during the implementation and analysis of our work. We use
these to formulate important points to consider in future work. First, despite the decoy being the part of
the honeypot that is seen by adversaries, the captor is similarly important and must receive ample care.
Capturing data on multiple layers is important to fully reconstruct events that occurred on the honeypot.
Also, every property of interest should be logged twice as to have a fallback in case of failing logging
services. Furthermore, proper data control is paramount. Our intention is to study abuse in order to
prevent it in the future. As such, utmost care must be taken to not inconvenience others. Related to
data processing, when building a honeypot using existing firmware, the honeypot operator must be aware
of the data generated by pre-existing services. For example, a baseline can be recorded in a controlled
environment, and afterwards used to filter the noise from the actual maliciously generated honeypot
data.

Next, hosting can impact the believability of the resulting honeypot instance. The provider and prior
usage of the host contribute to this. Then, acquiring the firmware to use for the honeypot implementation
is not simple. Aside from vendors not making blobs easily accessible, the current state of the art, full
system re-hosting frameworks are not capable of emulating all firmware samples. Furthermore, the project
at hand might require the firmware to include a specific vulnerability or (version of) software. Last but not
least, full system re-hosting has inherent limitations due to no actual hardware being available. Patching
these shortcomings is not to be taken lightly as they are the details that make or break whether humans
continue interacting with the honeypot.

Throughout this work, we also encountered questions and difficulties that were either not answered with
the data that we captured, or out of the scope of this thesis. We list these as research questions to
be answered in future work. Note that the answers to our own research questions are based on the
technology, both utilised frameworks and malware, available at the time. Thus, future work will also
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have to re-visit these in due time.

e Do adversaries, when manually attacking a device, attempt lateral movement through an IoT
network, and how effective are they at it?

e How can firmware re-hosting be improved, both in general and with a focus on building honeypots?

e How can firmware acquisition for security research purposes be improved? Is reverse engineering
companion apps a viable option? And how effective is full system re-hosting at emulating the
firmware acquired in this manner?

All in all, writing this thesis taught us a lot about the world of IoT security and cyber defence. However,
it was difficult not to stray too far from the intended goals. Due to the interconnectedness of various
disciplines, every resource would only increase the amount of ideas and previously unknown concepts,
and consequently widen the scope of our research. As such, it was difficult to choose what should and
should not be included in this thesis. While researching on our own taught us a lot, a drawback was
that not considering something beforehand would come back later to bite us. One such example is not
creating a baseline of the pre-existing services. Luckily, our mistakes were manageable in post. We hope
that our lessons learned will benefit future work.
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Appendix A

Nederlandse samenvatting

A.1 Introductie

Het aantal apparaten die deel uitmaken van het internet der dingen, ook wel Internet of Things (IoT)
genoemd, is in de recente jaren sterk toegenomen. Het doel van deze apparaten is om onze levenskwaliteit
te verbeteren. Dit wordt mogelijk gemaakt door het sterk integreren van computers met dagdagelijkse
apparatuur. Te sterk afhankelijk worden van deze apparaten is echter gevaarlijk. Indien ze worden
gehackt kan dit zowel onze privacy als fysieke veiligheid ondermijnen.

Om te kunnen verdedigen tegen het misbruik van deze apparaten moet er eerst geweten worden hoe
hackers te werk gaan. Het achterhalen van de grondoorzaken helpt verder niet enkel met het verstaan
van het geobserveerd misbruik, maar ook bij het formuleren van preventieve maatregelen. Informatie over
misbruik kan vergaard worden door het analyseren van log data. Data van productiesystemen opvragen
bij gehackte bedrijven of individuen is echter niet doenbaar. Deze kunnen namelijk persoonlijke gegevens
bevatten, onvolledig zijn, of hun integriteit verloren hebben door de aanval. Een gecontroleerde omgeving
is dus benodigd om informatie te verzamelen. Zo een omgeving noemt een honeypot.

Honeypots met focus op het nabootsen van IoT-apparaten zijn geen nieuw concept. Eerdere projecten
zijn echter gebrekkig. Zo focussen ze zich op individuele services en/of apparaten, voorzien geen echte
shell-omgeving, of doen zich niet voor als consumentenapparatuur. Met andere woorden, ze zijn niet
waarheidsgetrouw. Het doel van deze thesis is dan ook het analyseren van het IoT-bedreigingslandschap
met behulp van waarheidsgetrouwe honeypots op basis van consumentenfirmware. Het blijkt echter
dat het virtualiseren van consumentenfirmware niet eenvoudig is. Onze onderzoeksvragen zijn dus als
volgt:

e Welke technieken en/of malware gebruiken hackers bij aanvallen waarbij IoT-apparaten betrokken
zijn?

e Slimme apparaten worden gemaakt om zeer specifieke problemen op te lossen. Ze verschillen dus
veel van elkaar. Hoe passen hackers zich aan aan deze verschillen?

e Proberen hackers zich door privénetwerken te verspreiden, en hoe goed lukt hen dat?

e Zijn state of the art virtualisatietechnieken bruikbaar om geloofwaardige honeypots te bouwen op
basis van consumentenfirmware?

A.2 Internet der dingen (IoT)

Ondanks dat elk apparaat gemaakt is voor een specifiek doel, en ze dus sterk van elkaar verschillen,
kunnen er toch structurele gelijkenissen geidentificeerd worden. Op een technisch niveau kan er een ver-
schil worden gemaakt in de manier waarop de firmware van een apparaat functioneert. Hierin bestaan
er drie types. Type 1 maakt gebruik van een generiek besturingssysteem dat is aangepast geworden
om performant op zwakkere hardware te draaien. Type 2 systemen maken gebruik van speciale bestur-
ingssystemen. Deze zijn ontworpen met specifieke use cases in gedachten. Ten laatste, Type 3 apparaten
gebruiken geen besturingssysteem. Het beheren van het systeem ligt compleet in de handen van de
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ontwikkelaar. Deze thesis focust zich verder enkel op Type 1 apparaten. Deze zijn op het moment van
schrijven populair doordat de flexibiliteit van het besturingssysteem meer complexiteit in het eindproduct
toelaat.

Eerdere studies constateerden dat IoT-apparaten zeer onveilig zijn. De reden hiervoor is dat de best
practices van de laatste twee decennia niet toereikend worden toegepast. Volgende achterliggende redenen
werden ontdekt:

e De hardware beschikt over minder mogelijkheden vergeleken met traditionele hardware, zoals servers
en pc’s. Het gebruiken van een batterij voor stroomtoevoer is hier een voorbeeld van. Deze kan snel
leeg getrokken worden door excessief gebruik van de processor. Zo is bijvoorbeeld het implementeren
van sterke encryptie niet mogelijk. Dit beinvloedt dan weer data opslag en het veilig versturen
hiervan, wat detectie van ongewone activiteiten compliceert.

e Menselijke kennis is niet altijd adequaat. IoT combineert meerdere technologieén, en dus expert-
isegebieden. Elk project is anders doordat er geen standaardsysteemarchitectuur en weinig ab-
stractielagen bestaan. Het kan dus niet verwacht worden van ontwikkelaars dat ze van alles op de
hoogte zijn. Verder zijn veel eindgebruikers niet technisch ingesteld en hebben ze weinig kennis van
beveiligingspraktijken. Als gevolg worden apparaten niet gelipdatet, standaardwachtwoorden niet
aangepast, enzoverder.

e Er ontbreekt ook een drijfveer voor bedrijven om in veiligheid te investeren. Consumenten blijken
meer geinteresseerd te zijn in bruikbaarheid, functies en interoperabiliteit dan in veiligheid. Snel
iets op de markt brengen is financieel voordeliger dan extra tijd en geld te investeren in het testen
van een nieuw product.

Cyberaanvallen worden in meerdere stappen uitgevoerd. Elke stap kan op verschillende manieren worden
gerealiseerd. Eerdere studies van malware die zich richtten op IoT onthulden dat de gebruikte technieken
overgenomen zijn van traditionele malware. Het verschil is dat de implementaties minder gesofisticeerd
zijn, vergeleken met de traditionele versies. In combinatie met het gebrek aangepaste beveiligings-
maatregelen zijn de gevolgen echter zwaarder. De stappen genomen door malware die zich richt op
IoT zijn als volgt:

1. Initiéle toegang: Netwerken worden gescand voor mogelijke onveilige services. De scanner wordt
verwerkt in de malware die op het slachtoffer wordt geinstalleerd. Dit resulteert in een exponentiéle
groei van het aantal IP-adressen die gescand kunnen worden binnen een bepaalde tijd, per nieuw
geinfecteerd apparaat.

2. Uitvoeren van instructies: Doordat er weinig menselijke interactie is met IoT-apparaten, wordt er
sterk ingezet op het automatiseren van aanvallen. Binnendringen in apparaten gebeurt voornamelijk
dan ook met behulp van standaardinloggegevens en publiek bekende kwetsbaarheden.

3. Persistentie: Na het infecteren worden enkele acties ondernomen om te verzekeren dat het apparaat
ook geinfecteerd blijft. Bijvoorbeeld, het herstarten zou ervoor zorgen dat het malwareproces
gestopt wordt. Door het gebrek aan menselijk toezicht moeten IoT-apparaten zichzelf controleren
en herstarten indien iets verkeerd gaat. Malware kan deze controle beinvloeden om zo het herstarten
te voorkomen.

4. Detectie ontwijken: Malware probeert zo veel mogelijk onder de radar te blijven, alsook zijn sporen
te wissen. Dit verkleint de kans dat de malwarecampagne wordt opgedoekt. Het hernoemen van
het malwareproces en het toepassen van obfuscatie op de binaire code zijn enkele technieken om
detectie te ontwijken.

5. Informatie vergaren: Een geinfecteerd systeem bevat mogelijks gevoelige informatie. Dit kan worden
gestolen.

6. Command and control: Geinfecteerde apparaten moeten opdrachten kunnen ontvangen van de
hacker. Hiervoor communiceren ze met een zogenaamde Command and Control (C&C) server.
Deze communicatie kan geimplementeerd worden over verscheidene protocollen. Dit helpt zo ook
weer om detectie te ontwijken.

7. Lateral movement: Dit slaat op het verspreiden naar andere systemen op een privénetwerk waar
men toegang tot heeft gekregen door het infecteren van een apparaat.
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8. Gevolgen: Het geinfecteerde apparaat wordt misbruikt om de hacker zijn uiteindelijke doel te
bereiken. Dit kan gaan van het mijnen van cryptomunten tot het kapotmaken van het apparaat.

Communicatie tussen apparaten is een van de kernkenmerken van IoT. Zwakke hardware en mogelijks
slechte netwerkverbindingen vereisen dat protocollen bepaalde karakteriseren bevatten, zoals een lage
overhead en het kunnen garanderen dat berichten aankomen bij de ontvanger door middel van Quality
of Service (QoS) opties. In deze thesis werden drie applicatielaagprotocollen onderzocht:

e MQTT: In dit protocol communiceren cliénten door zich te abonneren op, en berichten te publiceren
naar, onderwerpen. De netwerkstructuur volgt een client-servermodel. De server associeert cliénten
hun staat met ClientIDs, en niet met hun inloggegevens. Dit kan session hijacking tot gevolg
hebben. Verder kan men zich abonneren op alle onderwerpen, met behulp van wildcards, om zo
berichten af te luisteren.

e UPnP/SSDP: Dit protocol laat apparaten toe om, zonder menselijke interventie, elkaar rechtstreeks
te ontdekken, configureren en aan te sturen. De ontdekking van apparaten gebeurt over UDP. Dit
kan misbruikt worden in een reflectieaanval om grote hoeveelheden trafiek te generen. Verder is er
geen authenticatie voorhanden om acties uit te voeren, aangezien alles automatisch moet kunnen
verlopen. Afhankelijk van de actie in kwestie kan dit ook een beveiligingsrisico vormen.

e CoAP: Dit protocol is ontworpen met IoT, alsook compatibiliteit met het web, in gedachten. Het
lijkt dus op HTTP, maar is veel compacter zodat er geen fragmentatie van pakketten benodigd is.
Doordat het over UDP werkt, is er, buiten de applicatielaag, ook een laag voor connecties en QoS
voorhanden. Het gebruik van UDP maakt echter weer reflectieaanvallen mogelijk.

A.3 Honeypots

Honeypots imiteren productiesystemen om zo hackers te lokken, in de hoop dat ze hun technieken en
intenties prijsgeven. Een honeypot bestaat uit twee delen: de decoy en de captor.

De decoy is wat de aandacht van de hackers moet trekken. Het moet dus opvallen, maar ook geloofwaar-
dig uitzien en aantrekkelijk zijn om mee te interageren. Honeypots die services imiteren kunnen gevonden
worden door middel van netwerkscans. Het is echter ook mogelijk om ze te “adverteren” door hun in-
formatie te publiceren, bijvoorbeeld in een online document met foutieve permissies of op fora. Indien
een honeypot niet geloofwaardig is, zullen hackers dit opmerken en vroegtijdig hun aanval stopzetten.
Het verbeteren van dit kenmerk vergt echter extra werk. De geloofwaardigheid wordt dus best afgestemd
op het doel van de honeypot. Dit heeft tot gevolg dat er een onderscheid tussen low en high fidelity
projecten wordt gemaakt. Een low fidelity honeypot is meestal een software her-implementatie van een
systeem. High fidelity honeypots zijn daarentegen gebaseerd op echte systemen. Verscheidene karakter-
istieken zoals mogelijke acties, kost, complexiteit, risico tot misbruik en onderhoud nemen toe indien de
geloofwaardigheid toeneemt. Schaalbaarheid en geloofwaardigheid hebben daarentegen een omgekeerd
evenredig verband.

De captor is alle achterliggende infrastructuur. Het moet ervoor zorgen dat het systeem niet misbruikt
wordt, alsook dat gegevens correct verzameld en beschermd worden. Dit omvat het opslaan van ruwe,
ongefilterde data op een plaats die niet toegankelijk is vanuit de honeypot en het correct samenvoegen
van verschillende honeypots hun data. Verder moeten er ook genoeg gegevens verzameld worden om
zo gebeurtenissen naderhand correct te kunnen reconstrueren. Hoog geloofwaardige honeypots geven
hackers meer vrijheid. Dit laat toe om meer informatie te verzamelen, maar kan er ook toe leiden dat
de honeypot misbruikt wordt voor illegale activiteiten. Dit moet zo veel mogelijk voorkomen worden,
bijvoorbeeld door een firewall in te stellen.

Het doel van deze thesis is om een geloofwaardige honeypot te bouwen op basis van consumentenapparat-
uur. Om de captor te implementeren moeten delen van het apparaat gevirtualiseerd worden. Dit noemt
firmware re-hosting. We bestuderen vier technieken:

e Full device proxy: Deze aanpak kan gezien worden als een gesofisticeerde proxy die hackers indirecte
toegang verleent tot echte apparaten. De proxy probeert toepasselijk te antwoorden op netwerk-
verzoeken. Indien er geen antwoord geweten is, wordt het verzoek doorgestuurd naar een achter-
liggend apparaat. Verzoeken worden echter eerst gescand om misbruik te voorkomen. Een nadeel
van deze aanpak is dat de apparatuur de schaalbaarheid, kost en onderhoud negatief beinvloedt.
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e Peripheral forwarding: De hardware en firmware van IoT-apparaten zijn sterk gekoppeld. De
kans is dus hoog dat generieke, virtuele randapparatuurimplementaties een crash veroorzaken in
een firmware-emulatie. Deze techniek probeert dit op te lossen. De firmware wordt gevirtualiseerd.
Alle verzoeken om de hardware te gebruiken worden doorgestuurd naar een echt apparaat. Opnieuw
beinvloed de benodigde apparatuur deze aanpak. Verder is het verbinden van de emulatie met de
hardware niet enkel technisch complex, maar introduceert het ook een significante vertraging in alle
interacties.

e Virtual peripheral modelling: Deze techniek probeert automatisch virtuele randapparatuurimple-
mentaties te genereren zodat de firmware kan geémuleerd worden zonder een achterliggend apparaat.
Sommige implementaties van deze techniek hebben een echt apparaat nodig om de juiste werking
ervan te leren, terwijl anderen het proberen af te leiden uit de werking van de firmware. Het
resultaat is een software-implementatie van de randapparatuur. Het gebruik ervan benodigd dus
geen hardware meer. Het nadeel van deze aanpak is dat de geloofwaardigheid van de gegenereerde
randapparatuur niet te vergelijken valt met echte hardware.

e Full system re-hosting: In plaats van de randapparatuur aan de geémuleerde firmware aan te passen,
wordt in deze techniek de firmware gepatcht. Aanpassingen omvatten, onder andere, het aanmaken
van virtuele netwerkinterfaces, het vervangen van NVRAM-opslag met een speciaal gemaakte library
en het aanpassen van het init-proces. Het leren van de benodigde aanpassingen is een iteratief
proces. Deze techniek benodigd geen hardware. De geloofwaardigheid is echter enkel oppervlakkig
door de vele aanpassingen benodigd om de emulatie te laten werken.

We maken onze eigen vergelijking van de vier technieken in tabel gebaseerd op honeypot kenmerken,
om te weten te komen hoe toepasselijk ze zijn bij het bouwen van een honeypot. De conclusie is dat
de geloofwaardigheid van de apparaten gevirtualiseerd met behulp van peripheral forwarding en virtual
peripheral modelling niet voldoende is. De andere twee technieken hebben beiden hun eigen voor- en
nadelen.

Criteria Full device proxy Peripheral forw. Virt. peripheral  Full re-hosting
Kost 0 0 1 (genereren) / |

1 (gebruik)
Complexiteit ~ 0 1 (genereren) / |

J (gebruik)

Risico 0 1 Randapparatuur 1
afhankelijk
Geloofwaardig (gebruik) 1 1 + ~
Geloofwaardig (data) i T 0 T
Schaalbaarheid ~ l | (genereren) /1
T (gebruik)
Onderhoud T T + J

Table A.1: Relatieve vergelijking van verschillende firmware re-hosting technieken op basis van de
karakteristieken van een honeypot. Er wordt verondersteld dat de onderzoeker maar een beperkt
aantal apparaten bezit. De symbolen 1, ~, | betekenen hoog, gemiddeld en laag respectievelijk.

A.4 Implementatie

We bouwen een netwerk uit honeypot apparaten met behulp van Docker. Dit laat ons toe om het
honeypotnetwerk (decoy) van de infrastructuur (captor) te scheiden. Alle componenten zijn virtueel.
Het systeem kan dan ook simpel in een VM of op een VPS worden geinstalleerd. Wij hosten onze
implementatie op de cloud providers AWS en OVH.

Om manuele interacties uit te lokken, adverteren we de honeypots op fora, websites gelijkaardig aan
Pastebin en door Google Docs®) documenten publiek te maken. Er wordt vier keer per dag gepubliceerd
om de kans tot interactie te verhogen. Elke advertentie heeft een uniek wachtwoord voor mensen om
mee in te loggen op de honeypots. Zo weten we welke bezoeken het gevolg zijn van het lezen van een
advertentie.
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Het honeypotnetwerk bevat een IP-camera en een router die worden geémuleerd met behulp van FirmAE,
een framework dat de full system re-hosting techniek gebruikt. De emulatie met FirmAE is niet gegarand-
eerd om te slagen. Het vinden van werkende firmwarebestanden nam dan ook wat tijd in beslag. De
camera draait een Telnet- en webserver. De router draait daarentegen een UPnP/SSDP-service. Deze
services worden aan het internet blootgesteld. Voor de Telnet-service plaatsen we ook een proxyserver.
Buiten het loggen van de sessies, laat deze ook toe om in te loggen met verschillende wachtwoorden. Dit
kan gebruikt worden om niet enkel te bestuderen welke wachtwoorden in het algemeen gebruikt worden,
maar ook om unieke wachtwoorden toe te laten die enkel via de advertenties geweten kunnen worden. En-
kele aanpassingen moesten worden gemaakt om de web- en UPnP-services geloofwaardig te laten lijken.
De NVRAM van een loT-apparaat bevat normaal zijn instellingen. Bij full system re-hosting is deze
echter initieel leeg. Als gevolg ontbreken er waardes in de antwoorden van applicaties. De vervanging
van de NVRAM moest dus manueel aangevuld worden. Ook dit was moeizaam werk. Verder werd de
webserver aangepast zodat het een nep videobeeld toont. Ten laatste moesten bestanden en processen
van het FirmAE framework verborgen worden om detectie van de honeypot tegen te gaan.

Het netwerk bevat ook enkele gesimuleerde MQTT-cliénten, alsook een MQTT-server. MQTT werd
gekozen omdat het het populairst is van de drie bestudeerde protocollen. Dit zijn “low fidelity” honeypots.
Ze worden niet rechtstreeks aan het internet blootgesteld. Hun doel is namelijk het verspreiden door het
privénetwerk uit te lokken. Er is geen authenticatie en encryptie ingesteld op de MQTT-server. Verder
laat het, onder andere, session hijacking aanvallen en het afluisteren van trafiek toe.

De instrumentatie op de host bevat ook nog volgende services:

e Internettap: Met behulp van tcpdump wordt alle trafiek dat door het honeypotnetwerk gaat op-
geslagen.

e Misbruik detectie: Deze service reset de honeypot zodra het misbruik detecteert. Dit is zodat
één aanval niet alle toekomstige datacollectie kan beinvloeden door bijvoorbeeld bestanden te ver-
wijderen of het systeem te zwaar te belasten.

e Firewall: De firewall zorgt ervoor dat enkel de honeypot services kunnen worden blootgesteld aan
het internet. Ook plaatst het een zwaar maximumlimiet op de bandbreedte. Zo wordt de bijdrage
van een geinfecteerde honeypot aan een aanval gelimiteerd, en worden de emulaties niet overspoeld
met trafiek.

A.5 Analyse

Deze analyse omvat de data die werd verzameld over een periode van twee maanden. De honeypots
werden echter langer online gehouden in het geval dat een opmerkelijke gebeurtenis zou worden gedetect-
eerd.

De verhouding tussen de hoeveelheden aan netwerktrafiek per protocol komt overeen met eerder on-
derzoek. Zo kreeg Telnet de meeste trafiek met tussen de 10 en 10* binnenkomende pakketten per dag
op een honeypot. HTTP staat tweede met een factor 10 minder binnenkomende pakketten op gemid-
delde dagen. HTTP en SSDP trafiek piekten echter van tijd tot tijd boven Telnet uit. Deze pieken
komen overeen met misbruik van de honeypot. Verdere analyse van de trafiek toont dat door malware
gegenereerde trafiek soms zo geconstrueerd is dat het als een ander protocol wordt herkend. Dit kan
detectie belemmeren.

Tabel [A.2] toont Telnet-sessie statistieken. We maken enkele observaties:

1. Het aantal unieke IP-adressen is minder dan het aantal succesvolle logins. De reden is dat aanvallen
soms sporadisch falen en ze op een later moment opnieuw worden gestart. De meest waarschijnlijke
reden hiervoor is netwerk timeouts als gevolg van een zwakke netwerkconnecties en/of hardware.

2. De duur van sessies in combinatie met het aantal getypte woorden impliceert dat aanvallen auto-
matisch gebeuren.

3. Sessies bevatten ook IP-adressen. Deze worden gebruikt om malwarebestanden van te downloaden.
Merk op dat het aantal unieke IPs minder is dan het aantal unieke malwarebestanden. Uniekheid
van bestanden wordt bepaald door hun hashwaardes. Bepaalde IP-adressen hosten dus meerdere
bestanden. We veronderstellen dat dit is doordat hackers hun malware soms aanpassen.
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4. Het aantal verzamelde malwarebestanden is ettelijke keren groter dan het aantal unieke bestanden.
Met andere woorden, men probeerde de honeypots meerdere malen met dezelfde malware te in-
fecteren. Aangezien het herstarten van een apparaat genoeg kan zijn om malware te verwijderen,
speculeren we dat hackers op deze manier proberen te verzekeren dat zo veel mogelijk apparaten

geinfecteerd zijn op een gegeven moment.

Statistiek AWS EC2 OVH VPS Totaal
Unieke IPs 3632 3084 5957
Succesvolle logins 20010 15800 35810
Sessies met unieke instructies 734 863 1365
Mediane sessieduur (seconden) 11,7 13,4 12,6
Mediane woorden per sessie 105 107 106
Unieke IPs vermeld in sessies 75 113 141
Verzamelde malwarebestanden 4392 4320 8712
Verzamelde unieke malwarebestanden 236 306 420

Table A.2: Statistieken gehaald uit interacties gelogd door de Telnet proxy, per honeypot.

Om de algemene werking van aanvallen gestuurd over Telnet-sessies te bestuderen, clusterden we ze met
K-means. Het resultaat wordt getoond in figuur De instructies binnen een sessie kunnen in de
volgende stappen worden opgedeeld: configuratie, informatie verzamelen, malware bestand downloaden,
executie en schoonmaak. Merk op dat enkele clusters in de figuur dicht bijeen liggen. De reden is dat ze
enkele stappen gelijkaardig aanpakken.

¥
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Figure A.1: Grafische representatie van de clustering van unieke sessies gebaseerd op hun geasso-
cieerde instructies. Clusters worden aangeduid met kleuren. Elke sessie is een bolletje.

De verzamelde unieke malwarebestanden zijn hoofdzakelijk gecompileerd voor de MIPS (32-bit LSB)
architectuur. Dit komt overeen met de architectuur van de IP-camera-emulatie. Meestal worden dus
enkel toepasselijke bestanden gedownload in een aanval. We uploaden de unieke MIPS-bestanden naar
VirusTotal, een website die meerdere virusscanners publiek aggregeert. Uit de resultaten van VirusTotal
blijken de bestanden toe te behoren aan twee grote malwarefamilies: Mirai en Gafgyt. Deze hun pro-
grammacode is publiek beschikbaar. Dit maakt het gemakkelijk om nieuwe IoT-malwarecampagnes te
starten. Het is dan ook geen verrassing dat, van de 255 unieke MIPS-bestanden, 20, 4% nog niet eerder
gekend was op VirusTotal. Verder observeren we dat 41,6% van de bestanden met UPX gecomprimeerd
zijn. Dit obfusceert de binaire code. Opvallend is echter dat enkel 18 van de gecomprimeerde bestanden
ook aangepast zijn geworden zodat decomprimeren niet meer mogelijk is. We veronderstellen dus dat het
gebruik van UPX eerder is om bestanden kleiner te maken, dan de analyse te compliceren.
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Binnenkomende HTTP-trafiek kan in drie groepen gesplitst worden. De eerste groep bestaat uit scans die
zoeken naar beschikbare paden op de webserver. Hackers proberen detectie te omzeilen door populaire
zoekmachines in de Referer HTTP-header te vermelden. Dit laat het lijken alsof de bezoeker de honeypot
heeft gevonden via de zoekmachine. De tweede groep bestaat uit pogingen om de webserver te misbruiken.
In de laatste groep zitten fatsoenlijke visites aan de webserver van de IP-camera. De duur van de bezoeken
impliceert dat sommige manueel gedaan zijn. De bezoekers tonen interesse in de systeemopties en het
videobeeld. Ze passen echter niets aan en verlaten de website vlak na het interageren met de video. We
concluderen dat onze aanpassing om de video te kunnen tonen niet geloofwaardig genoeg is.

Buitengaande HT'TP-trafiek bestaat daarentegen hoofdzakelijk uit websites die werden aangevallen nadat
de honeypots waren geinfecteerd, en IP-adressen om malwarebestanden van te downloaden. Het bevat
ook verzoeken om een update te downloaden voor een van de services van de router. Het gebruik van
consumentenfirmware betekent dat standaardservices zullen draaien op de honeypot. Hier moet aan
gedacht worden tijdens de designfase om de integriteit van de data te waarborgen.

Het bestuderen van UPnP- en SSDP-trafiek toont dat deze service op twee manieren werd misbruikt.
Enerzijds werden reflectieaanvallen gebruikt om grote hoeveelheden trafiek te genereren, en anderzijds
probeerde men een poort te mappen door acties te misbruiken. Het tweede werkt echter niet omdat de
UPnP-service zichzelf hiertegen beschermt. Afhankelijk van het doel van de honeypot is het dus van
belang om firmware met gepaste services uit te kiezen.

Ten laatste analyseren we alle trafiek die door het honeypotnetwerk ging om te kijken of dat hackers
hebben geprobeerd andere systemen, zoals de MQTT-simulaties, aan te vallen. Helaas is dit niet het
geval.

A.6 Conclusie en toekomstig werk

Aan de hand van de verworven kennis kunnen de onderzoeksvragen als volgt beantwoord worden:

e Welke technieken en/of malware gebruiken hackers bij aanvallen waarbij IoT-apparaten betrokken
zijn?
De malwarebestanden vallen onder de families Mirai en Gafgyt. Indringen gebeurt door middel van
standaardinloggegevens en publiek bekende kwetsbaarheden. De specifieke technieken, zoals het
gebruik van UPX en het hernoemen van processen, zijn niet nieuw. De effectiviteit en proliferatie
van loT-malware is te wijten aan het gebrek van best practices.

e Slimme apparaten worden gemaakt om zeer specifieke problemen op te lossen. Ze verschillen dus
veel van elkaar. Hoe passen hackers zich aan aan deze verschillen?
Alhoewel er kleine verschillen zijn, zoals de architectuur van een apparaat en de inloggegevens
benodigd om toegang te krijgen, proberen hackers hun malware zo generiek mogelijk te maken. Dit
laat toe om zo veel mogelijk apparaten te infecteren. Het generieke besturingssysteem van Type 1
apparaten faciliteert dit.

e Proberen hackers zich door privénetwerken te verspreiden, en hoe goed lukt hen dat?
We hebben geen pogingen hiertoe kunnen detecteren. Dit is verrassend aangezien connectiviteit
een kernkenmerk is van IoT.

e Zijn state of the art virtualisatietechnieken bruikbaar om geloofwaardige honeypots te bouwen op
basis van consumentenfirmware?
Om alledaagse, geautomatiseerde aanvallen te verzamelen is firmware re-hosting niet aan te raden.
Deze aanvallen zien namelijk geen verschil tussen een generieke firmware en een consumentenfirm-
ware. Indien men menselijke interacties wil bestuderen, kunnen full device proxy en full system
re-hosting mogelijks gebruikt worden, mits voldoende inspanning om de honeypot geloofwaardig te
maken. In het algemeen zijn verbeteringen vereist om firmware re-hosting praktisch bruikbaar te
maken.

Uit onze ervaringen geven we mee dat er zeker genoeg data verzameld moet worden. Ook moet er gedacht
worden aan eventuele standaardservices van de firmware die data genereren. Verder is het belangrijk om
de gevolgen van misbruik te beperken. Ten laatste, indien firmware re-hosting wordt gebruikt, merken
we op dat het vinden van toepasselijke consumentenfirmware niet simpel is.

We geven volgende onderzoeksvragen mee voor toekomstig werk:
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e Proberen hackers, indien ze manueel te werk gaan, zich door privénetwerken te verspreiden, en hoe
goed lukt hen dat?

e Hoe kan firmware re-hosting verbeterd worden voor algemeen gebruik, alsook voor het bouwen van
honeypots?

e Hoe kan het verwerven van firmware voor veiligheidsonderzoek verbeterd worden? Is het reverse
engineeren van begeleidende mobiele apps een mogelijke aanpak? Hoe effectief is firmware re-hosting
voor het emuleren van firmware die op deze manier werd vergaard?
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