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Abstract

On February 24th, 1987, a supernova explosion in the Large Magellanic Cloud was observed.

At a distance of approximately 50 kpc, it is the most recent close-by core-collapse supernova

observed. It is also the only one to date that has been observed not only in optical observations,

but also by a neutrino observatory (Hirata et al., 1987). This event, better known as SN1987A,

has since provided the world with a wealth of knowledge about core-collapse supernova

explosions and their connection to neutrino physics.

Since then, the observatories have improved and as of a few years ago, another entirely new

field of observation has come within reach: gravitational waves. While they do not consist of

two bodies like the binary black hole mergers that have already been observed, core-collapse

supernovae are generally thought to be capable of producing gravitational radiation. This

means that the next galactic supernova will potentially again be a huge source of information,

at least if we are prepared to process the detection. That is why there is already a lot of research

into what the gravitational emission of core-collapse supernovae would look like and how far

away a supernova may be before it is outside of the detection range.

This thesis investigates, given that the next galactic core-collapse supernovawould be detectable,

what could be learned from its gravitational radiation alone. Areas of interest are its physical

properties, like for example the mass of the stellar progenitor, and its underlying characteristics,

like the explosion mechanism. For this purpose, a machine learning algorithm is trained and

tested on the expected observational data from a set of simulated gravitational waves. The

performance evaluation on the test data serves as a measure of how precise the value of a

property or the presence of a characteristic can be determined.



Table of Contents

Table of Contents i

List of Figures iv

List of Acronyms vi

1 Introduction 1
1.1 Supernovae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Stellar evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Core-collapse supernovae . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Equation of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.4 Explosion mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.5 Standing accretion shock instability . . . . . . . . . . . . . . . . . . . 4

1.1.6 Prompt convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.7 g-modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Single object GWs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Methods 9
2.1 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 S11 (Andresen et al., 2017) . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 M15FR (Andresen et al., 2019) . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 H (Bugli et al., 2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.5 TM1 (Kuroda et al., 2016) . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.6 S11.2 (Kuroda et al., 2017) . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.7 C15-3D (Mezzacappa et al., 2020) . . . . . . . . . . . . . . . . . . . . . 13

2.1.8 Mesa20_pert (O’Connor & Couch, 2018) . . . . . . . . . . . . . . . . . 13

2.1.9 S27-fheat1.00 (Ott et al., 2013) . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.10 S40_FR (Pan et al., 2021) . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.11 S18 (Powell & Müller, 2019) . . . . . . . . . . . . . . . . . . . . . . . . 15

i



2.1.12 M39 (Powell & Müller, 2020) . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.13 Z100_SFHx (Powell et al., 2021) . . . . . . . . . . . . . . . . . . . . . . 17

2.1.14 S9 (Radice et al., 2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.15 R4E1FC_L (Scheidegger et al., 2010) . . . . . . . . . . . . . . . . . . . . 17

2.2 Model simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 BayesWave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Data selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.3 Classifiers and regressors . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Results 27
3.1 BayesWave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Rotational velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Explosion mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 SASI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.3 Prompt convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.4 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Two models confused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Future work 37
4.1 Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.2 New detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.3 New models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Simulation and data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Incremental models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Dimensionality expansion . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Parameter grid search . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.2 Different algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.3 Multilabel classification . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Conclusion 41

References 42

A Fysische eigenschappen van supernovae bepalenuit observaties van zwaartekrachts-
golven 46

ii



A.1 Introductie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.2 Methoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.3 Resultaten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.4 Toekomstig werk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.5 Conclusie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

B Comments on source code 49
B.1 SN toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B.2 Generating the waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B.3 Preparation and setup for BayesWave runs . . . . . . . . . . . . . . . . . . . . 50

B.3.1 Rescaling the waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B.3.2 Preparing the configuration files . . . . . . . . . . . . . . . . . . . . . 51

B.3.3 Combining and executing . . . . . . . . . . . . . . . . . . . . . . . . . 51

B.4 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B.4.1 Supporting functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B.4.2 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

iii



List of Figures

1.1 Simplified diagram of an Advanced LIGO detector . . . . . . . . . . . . . . . . 6

1.2 GW150914 projected onto H1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 An input waveform from the Andresen S11 model . . . . . . . . . . . . . . . . 10

2.2 An input waveform from the Andresen M15FR model . . . . . . . . . . . . . . 11

2.3 An input waveform from the Bugli H model . . . . . . . . . . . . . . . . . . . 12

2.4 An input waveform from the Kuroda TM1 model . . . . . . . . . . . . . . . . . 12

2.5 An input waveform from the Kuroda S11.2 model . . . . . . . . . . . . . . . . 13

2.6 An input waveform from the Mezzacappa C15-3D model . . . . . . . . . . . . 14

2.7 An input waveform from the O’Connor Mesa20_pert model . . . . . . . . . . 14

2.8 An input waveform from the Ott S27-fheat1.00 model . . . . . . . . . . . . . . 15

2.9 An input waveform from the Pan S40_FR model . . . . . . . . . . . . . . . . . 16

2.10 An input waveform from the Powell S18 model . . . . . . . . . . . . . . . . . . 16

2.11 An input waveform from the Powell M39 model . . . . . . . . . . . . . . . . . 17

2.12 An input waveform from the Powell Z100_SFHx model . . . . . . . . . . . . . 18

2.13 An input waveform from the Radice S9 model . . . . . . . . . . . . . . . . . . 18

2.14 An input waveform from the Scheidegger R4E1FC_L model . . . . . . . . . . . 19

2.15 O5 detector sensitivities for LIGO, Virgo and KAGRA . . . . . . . . . . . . . . 20

2.16 Detection efficiency curves as a function of injected SNR . . . . . . . . . . . . 21

2.17 Example of a principal component analysis . . . . . . . . . . . . . . . . . . . . 24

2.18 Example of a decision tree classifier . . . . . . . . . . . . . . . . . . . . . . . . 25

2.19 Example of a multiclass support vector machine classifier . . . . . . . . . . . . 26

3.1 BayesWave reconstruction of a waveform with a low SNR . . . . . . . . . . . 28

3.2 BayesWave reconstruction of a waveform with a high SNR . . . . . . . . . . . 28

3.3 Preliminary results of dimensionality reduction on a subset of the data . . . . 29

3.4 UMAP representation of the entire dataset . . . . . . . . . . . . . . . . . . . . 30

3.5 Error on predicted mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Error on predicted rotational velocity . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Accuracy of predicted explosion mechanism . . . . . . . . . . . . . . . . . . . 32

3.8 Accuracy of predicted presence of SASI . . . . . . . . . . . . . . . . . . . . . . 33

3.9 Accuracy of predicted presence of prompt convection . . . . . . . . . . . . . . 33

3.10 Accuracy of predicted presence of rotation . . . . . . . . . . . . . . . . . . . . 34

iv



3.11 Confusion matrix of the identification of separate supernova models . . . . . 35

3.12 Accuracy of predicted explosion mechanism (excluding M15FR) . . . . . . . . 36

3.13 Error on predicted rotational velocity (excluding M15FR) . . . . . . . . . . . . 36

v



List of Acronyms

AGB asymptotic giant branch

BH black hole

CCSN core-collapse supernova

DT decision tree

EGO European Gravitational Observatory

EoS equation of state

ET Einstein Telescope

GW gravitational wave

HB horizontal branch

HRD Hertzsprung-Russell diagram

KAGRA Kamioka Gravitational Wave Detector

KNN K-nearest neighbour

LASSO least absolute shrinkage and selection operator

LIGO Laser Interferometer Gravitational-Wave Observatory

LISA Laser Interferometer Space Antenna

LR linear regression

LS Lattimer-Swesty

MHD magnetohydrodynamics

vi



ML machine learning

MS main sequence

NaN not a number

NN neural network

NRMSE normalized root mean squared error

O4 observing run 4

O5 observing run 5

PCA principal component analysis

PNS proto-neutron star

RGB red giant branch

RJMCMC Reversible Jump Markov Chain Monte Carlo

RMF relativistic mean field

SASI standing accretion shock instability

SGD stochastic gradient descent

SN supernova

SNR signal to noise ratio

SVM support vector machine

TM Thomas-Fermi

UMAP uniform manifold approximation and projection

XOR exclusive or

vii



Chapter 1

Introduction

1.1 Supernovae

1.1.1 Stellar evolution

The life cycle of a star is a much studied subject. Starting on the main sequence (MS), a star

traverses a path of increase and decrease in brightness as it goes through different phases of

nuclear burning. This path is usually captured on a Hertzsprung-Russell diagram (HRD), which

plots the luminosity of a star as a function of its temperature. Highly populated areas of this

diagram have their own names, such as the red giant branch (RGB), the horizontal branch (HB)

and the asymptotic giant branch (AGB). Stars often eject mass during their life cycle, as a result

of which it is a bit ambiguous to talk about the mass of a star. That is why in most contexts,

the mass of a star refers to its mass at the start of its life on the main sequence, before any

significant amount of mass has been ejected.

The path of each star is unique and depends on a number of factors, the most important of

which is its main sequence mass. Most stars will go through the phases associated with the

previously mentioned highly populated branches, but the end of their life cycle may differ

quite a bit. The heaviest stars will reach a point where they collapse under their own gravity

and form black holes (BHs). The black holes formed in this way are classified as stellar black

holes and their masses range from 5 M⊙ up to 100 M⊙ after black hole formation. The lightest

stars, up to approximately 8 M⊙, lose enough mass during their life cycle so that in the end,

when nuclear burning stops, the electron degeneracy pressure of the stellar core can support

the remaining mass. The maximum remaining mass for which this is possible is known as the

Chandrasekhar limit, which lies around 1.44 M⊙.

In between these two mass ranges is a category of medium mass stars that, contrary to their

lighter and heavier counterparts, literally go out with a bang. They exceed the Chandrasekhar

limit at the end of their lives, meaning the electron degeneracy pressure cannot prevent their

collapse. While collapsing into increasingly higher densities, they reach a point where even the
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nucleons start to become degenerate. As the nucleon degeneracy pressure is much higher than

that of the electrons, the material of the collapsing core bounces off itself, creating a shock

wave outwards into the infalling material from the outer shells. When this shock wave reaches

the surface of the star, the supernova explosion is complete.

While the overall mechanism is the same for all core-collapse supernovae (CCSNe), they are

usually separated into subcategories based on their emission spectra. For the purpose of this

thesis, only one distinction is of importance, which is the distinction between supernovae

(SNe) of type Ia, which have a slightly different mechanism than the one described above, and

core-collapse supernovae, regardless of their emission spectra. A type Ia supernova occurs

when a white dwarf in a binary system grows in mass by accretion from its binary counterpart.

When this causes it to exceed the Chandrasekhar limit, a supernova explosion is set in motion

as if it were a more massive star all along. Since their mass at the point of explosion is always

the same, so are their light curves. This makes type Ia supernovae very useful in astronomy as

standard candles. However, even if they are asymmetric enough to produce gravitational waves

(GWs), these would be the faintest ones possible from a supernova explosion. That is why this

thesis will focus on core-collapse supernovae. They originate from heavier progenitors
1

, they

do not require a binary system and they can potentially produce a detectable GW signal.

Further reading about stars and their evolution on a BSc physics and astronomy level can be

done in Dálya (2021).

1.1.2 Core-collapse supernovae

While the mechanism of CCSNe described in the previous section might sound simple enough,

there are still a lot of challenges in explaining the physical details of a supernova explosion.

Simulations show a number of phenomena occurring under the stellar surface during the

imploding and exploding phases, like sloshingmovements, convection and oscillatory behaviour.

There are also multiple proposals for a mechanism to push further the shock front, which has

been shown not to be able to sustain itself. The initial shock wave after core bounce stops after

a few tens of milliseconds and needs another process to restart it. A discussion of the proposed

mechanisms can be found further on in section 1.1.4.

One particular difficulty in studying supernovae is their distance. While the occurence of

supernovae anywhere in the universe may be quite high, most of them occur in distant galaxies

and can only be seen through the light they emit. It is only for close-by occurences that the

neutrino and gravitational radiation can lead to a useful detection. For state-of-the-art neutrino

detectors like the proposed Hyper-K, ’close-by’ would extend to a fewMpc (Migenda, 2017).

For GWs, even that is too far and the limits lie around a few tens or at best a few hundreds of

kpc (Szczepańczyk et al., 2021). That is why the astrophysics community is eagerly awaiting

the next galactic supernova. They may however need quite some patience, as supernovae inside

our galaxy are quite rare. According to recent predictions, they only occur once or twice per

century (Rozwadowska et al., 2021).

1

pre-collapse stars, also referred to as proto-neutron star (PNS)
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Listed below are a few characteristics of and proposed phenomena occurring during supernova

explosions and the implications on physics if they would be present in observations.

1.1.3 Equation of state

The equation of state (EoS) relates several properties of a gas, like pressure, temperature and

density. While the most basic equation of state, the ideal gas law, may be well known and

simple to understand, the same cannot be said about the equation of state of supernovae. As

the gas consists of nuclear matter rather than atoms in molecules, factors like the proton-

neutron asymmetry or iso-spin dependence become of importance. This immediately links

the study of supernovae to high energy nuclear physics, since these kinds of asymmetries

in the proton-neutron balance can only be achieved on earth in rare isotopes resulting from

accelerator collisions.

As with many physical problems, finding the exact solution for the supernova equation of state

will probably never happen. Rather the existing numerical solutions will be able to improve

upon themselves as observations confirm or exclude a certain parameter range for the variables

that need to be fit. As no sufficient amount of observations exists yet, there are currently

quite a lot of different equations of state used in different models. Some recurring EoSs are

the Lattimer-Swesty (LS) equation of state, which uses a compressible liquid drop model, EoSs

based on the Thomas-Fermi (TM) model and variational approximations with a relativistic

mean field (RMF) model, as well as the more recently added SFH models (Steiner et al., 2013).

Equations of state are usually presented in EoS tables after being calculated using a parameter

grid for the temperature, density and composition, as was done for example in Shen et al.

(2011).

When it comes to comparing equations of state, apart from looking at the exact parameter values,

there’s not much to go on. One characteristic that can be used as a comparison mechanism

is the softness or stiffness. A stiff equation of state is one where pressure rises sharply with

density. If a star would exhibit such an EoS, it would not be easily compressible and hence

be more resistant to implosion under gravity. This of course would influence a supernova

explosion as that requires an implosion to begin with. A soft equation of state only has a small

response in pressure for a given change in density, hence the corresponding star would be

more easily compressed.

1.1.4 Explosion mechanism

The first explosion mechanism, or more accurately shock revival mechanism, was proposed

as early as 1985 by Bethe and Wilson (1985). It depends on the realization that even though

neutrinos have an incredibly small cross section, the density inside the collapsing star is so high

that even they cannot escape its interior freely. Instead, like the rest of the material moving

outward after bouncing off the core, they accumulate at the stalled shock front and part of

their energy is transferred to the nuclear material. It is this deposition of energy that ultimately

revives the shock wave and allows it to reach the surface of the exploding star.
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The mechanism described above is called neutrino heating, the corresponding supernova is

said to exhibit a neutrino-driven explosion. Less than two years after its proposition, the core-

collapse supernova SN1987A was observed, for the first time adding a neutrino observation

to the usual optical signal. While at the time only 25 neutrino events were observed in three

detectors combined, a future supernova would certainly be very clear, producing possibly

thousands of events in the current detectors. Adding gravitational wave (GW) observations to

such a detection would be the icing on the cake.

Of course, neutrino heating is not the only thing people have come up with over the years. A

second mechanism that gained some popularity is the magneto-rotational or magnetohydro-

dynamics (MHD) explosion mechanism. Like the previous mechanism, it was proposed quite

early on, this time by Bisnovatyi-Kogan (1971). With a strong magnetic field and a rotating

stellar progenitor, it is possible to revive the shock wave by the transfer of momentum from

the core outward to the stalled shock wave, pushing the outgoing material towards the surface.

Unfortunately, not many successful simulations exist yet that show this explosion mechanism

at work, so only two of them can be included in this thesis.

A third mechanism is acoustic in nature. It involves, among other things, the g-modes de-

scribed in section 1.1.7. Burrows et al. (2006) found that when neither neutrino heating nor

magnetorotational effects become dominant too early in the simulation, sound waves can build

up an acoustic power large enough to drive the supernova explosion.

1.1.5 Standing accretion shock instability

While carrying out idealized 2D simulations of an accretion shock, Blondin et al. (2003) found

that a standing accretion shock in an axisymmetric environment would become unstable under

radial perturbations. The standing accretion shock instability (SASI) emerges as asymmetric

sound waves characterized by low-order spherical harmonics (l = 1, 2). These waves grow

until they eventually begin to impact the shock wave itself.

One effect of the SASI is the expansion of the average shock radius. Its sloshing-type motion

thus generally pushes material outwards, lending a helping hand in the fight against the stalled

shock front. This makes it potentially crucial in the explosion mechanism, which is why it is

one of the reasons its signature will be searched for in the gravitational wave observations.

A second reason is its potential connection to the equation of state, which will be explained

in section 2.1.5. While it was discovered in 2D simulations, a lot of 3D simulations also show

SASI activity. The difference is that in 3D it has more complex, nonaxisymmetric modes and

has been observed to redistribute angular momentum.

1.1.6 Prompt convection

When the supernova shock wave stalls, there are quite strong gradients left in its path, since

it blew almost everything away in front of itself. An example is the negative lepton gradient,

caused by the increased interaction of electron neutrinos resulting in a drop in their density.
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When gradients are concerned, convection is never far away, and prompt convection is the

result of physics trying to smooth out the contrast between the regions in front of and behind

the shock wave. This in itself may then cause even more energy-producing interactions, thus

creating another way of refueling the shock wave. While its exact impact may be still up

for discussion, prompt convection itself has been observed in simulations, so determining its

presence in observations would certainly matter in establishing the different contributions to

shock revival.

1.1.7 g-modes

Apart from the SASI, other oscillatory behaviour may occur in a supernova explosion. One of

the most common type of oscillations is known as g-modes. They are a global oscillation with a

number of nodes that is not predefined. Because gravity is the dominant force in restoring them,

they are called gravity modes, or shorter g-modes. As they involve large-scale movements of

mass, they will also produce a signature in the gravitational waves emitted from a supernova.

However, since they are so common, they are present in all the simulations included in this

thesis. Hence it will not be investigated if the machine learning algorithm can distinguish them,

as there are no counterexamples present.

1.2 Gravitational waves

Supernovae, while fascinating events on their own, are not new to humanity. While the first

observations were seen only with the naked eye, recorded events might go back thousands

of years
2

(Hamacher, 2014). The increased interest in supernovae in the past few decades has

been on par with advances in observational techniques, which can now be extended to not only

include the visible light, but also consist of neutrino observations and of course, as of a few

years ago, gravitational waves. In order to understand what can be learned about supernovae

from gravitational wave observations, it is important to first get a good understanding of what

gravitational waves are and how supernovae can produce them.

1.2.1 Measurement

Gravitational waves are the result of mass that is accelerated in an asymmetric way. An

example of this consists of two objects that are orbiting each other. While in theory these

bodies can have any mass, they will need to have quite a significant mass, of the order of a

few solar masses, in order to be detectable, so things like exoplanets orbiting their star will

not suffice
3

. Describing a gravitational wave can be done using the same properties used for

light waves. They are, however, measured by completely different instruments and as a result

of that, they are usually characterised differently as well. Where light already has a broad

2

The uncertainty originates in the dating of the records in question as well as the uncertainty if said records

pertain to a supernova or another unrelated event in the sky.

3

Not yet at least, maybe the heaviest ones will in the future, but as exciting as that may sound, it is off topic

here.
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Figure 1.1: Simplified diagram of an Advanced LIGO detector, not to scale (Abbott et al., 2016).

range of detection techniques, going from giant radio antennae on earth to x-ray observatories

mounted on satellites, gravitational wave observatories are mostly limited to one technique:

laser interferometry.

Figure 1.1 shows the setup of the Laser Interferometer Gravitational-Wave Observatory (LIGO),

consisting of two identical detectors on opposite sides of the United States. A laser beam is sent

from the source through a beam splitter, producing two beams that travel through the 4 km long

perpendicular arms of the detector to eventually come together again in the photodetector. In

an ideal scenario, without gravitational waves, these beams are finetuned to cancel each other

out through destructive interference. Should the length of the arms change, the interference

will no longer be exactly destructive and the laser signal measured by the photodetector can be

translated into the strain, which is the ratio by which lengths are shortened or elongated in the

two arms due to the passing of the wave. As a ratio of lengths, the strain is unitless.

Instead of the maximal amplitude of the strain, a GW detection usually records its instantaneous

value. Because gravitational wave events are (luckily) so far away, the strain is extremely small,

of the order of 10−21
, as can be seen in figure 1.2 for the first observed black hole merger event.

Apart from a time vs. strain analysis, a gravitational wave can also be evaluated in terms of

frequency. Possibilities include a power spectrum, a time vs. frequency plot and a spectrogram.

While those last two both have frequency and time on the axes, the latter measures the energy

for each frequency as a function of time, instead of just showing which frequencies are present

like the time vs. frequency plot.

6



Figure 1.2: Full bandwidth estimated gravitational-wave strain amplitude from GW150914

projected onto H1 (LIGO Hanford), along with illustrations of the binary black hole system

(Abbott et al., 2016).

Apart from the two LIGO detectors, two more detectors are simulated in this work. The first

one is Virgo, a detector in Italy operated by the European Gravitational Observatory (EGO)

collaboration. It has arms of 3 km long and the first joint detection with LIGO was GW170814

(Abbott et al., 2017). The Kamioka Gravitational Wave Detector (KAGRA) in Japan also has

3 km arms. A full joint observing run with LIGO-Virgo-KAGRA is yet to start, but KAGRA

was active at the end of the third LIGO-Virgo observing run. Other detectors, like GEO600 in

Germany, are not included in this thesis and neither are future detectors like LIGO-India, the

Einstein Telescope (ET) and the Laser Interferometer Space Antenna (LISA).

1.2.2 Single object GWs

As opposed to all of the GW events that have been observed to date, supernovae originate in a

single stellar object instead of a binary system of black holes or neutron stars. The reason they

too are capable of producing gravitational radiation is their asymmetry. A perfectly spherically

symmetric supernova explosion, although quite luminous in optical and neutrino observations,

would result in no gravitational waves. It is only because of the previously described effects
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like SASI, prompt convection and g-modes that large portions of the stellar mass accelerate

in an asymmetric way, inevitably resulting in gravitational waves. As the relative velocity of

two black holes or neutron stars in a merger far exceed any velocity reached in supernova

explosions, it can be no suprise that the GW strain for the latter is also much smaller, hence

making them virtually undetectable beyond the local universe.

1.3 Roadmap

After this introduction to the necessary concepts related to supernovae and gravitational

waves, Chapter 2 will dive deeper into the techniques that will be used to manipulate the

data, from the input of the simulations up to the machine learning algorithms. Chapter 3 will

discuss the results of this analysis, followed by some thoughts on improvements in Chapter 4.

Appendices A and B contain a summary in Dutch and an in-depth commentary of the source

code respectively.
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Chapter 2

Methods

2.1 Model selection

For this thesis, a selection of 14 waveform families has been made from various sources. This

selection attempts to include as much variety in the characteristics of the supernova and GWs

as possible, in order to cover a large volume in the parameter space. Provided below is a short

summary for each of these 14 waveform families, so as to get familiar with their common traits

and the differences between them and highlight the characteristics that will play an important

role later on
1

. The properties of these waveform families are all explained in more details in

the respective papers where they were first published, as well as in Szczepańczyk et al. (2021),

where most of them have been presented in a single overview.

In order to become familiar with what these waveforms look like and to see how similar and

yet how different they are, a plot is included for each of the models along with their summaries.

The plots all have the same horizontal scale, whereas vertically they have only been made to be

symmetrical, as their amplitudes differ too much to use a common scale there. The waveforms

will look differently in the four different detectors due to differences in detector capabilities and

orientations. This has been taken into account in these plots. The detector noise however has

not been added yet. Each of the plotted waveforms was randomly selected from the waveforms

simulated for the purpose of this thesis.

2.1.1 Parameters

One of the main characteristics dividing the models is their mass, where the given mass always

concerns the zero-age main sequence mass. The fact that some masses are recurrent is not mere

coincidence, but rather originates in the fact that multiple studies used the same proto-neutron

star progenitor from yet another study preceding the both of them. For example, progenitors

1

Since no single model is more important than any of the others, they are listed here in alphabetical order by

the authors of the papers as part of which they were published.
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Figure 2.1: An input waveform from the Andresen S11 model.

consisting of 11.2M⊙ and 15M⊙ are popular, as well as those with a mass of 20M⊙ and 27M⊙.

These specific progenitors are based on the works of Woosley and Weaver (1995), Woosley

et al. (2002) and Woosley and Heger (2007).

Of course, as a supernova explosion and its progenitor star can be observed optically as well,

the mass might not be the most exciting characteristic to predict using GW observations. That

is why, for all models involved, the list of predicted traits not only involves mass, but also the

explosion mechanism, the presence of SASI and prompt convection, as well as the rotational

velocity.

2.1.2 S11 (Andresen et al., 2017)

The S11 waveform family is the one with the lightest progenitor that is discussed in Andresen

et al. (2017). Contrary to its 20 M⊙ and 27 M⊙ counterparts from the same study, this 11.2 M⊙

model does not show strong SASI activity or prompt convection. Non-resonant g-modes are

present, whereas resonant g-mode oscillation is suppressed compared to previous (2D) models.

The supernovae simulated by this waveform family are neutrino-driven. Over the course of

350 ms after core bounce, they produce GWs with an energy of roughly 1.1 · 10−10 M⊙c
2
and

a frequency peak around 642 Hz.

2.1.3 M15FR (Andresen et al., 2019)

Andresen et al. (2019) simulated three 15 M⊙ models, of which the fast rotating one (M15FR) is

used here. With an artificially enhanced rotational velocity of 0.5 rad s−1
comes also powerful

SASI activity, resulting in a higher GW energy than the previous model at 2.7 · 10−10 M⊙c
2
.

The neutrino-driven explosion reaches a frequency peak around 689 Hz during the 460 ms that

were simulated after core bounce. One of the effects of the fast rotation is that unlike in the

slowly rotating and non-rotating models, resonant g-modes are present in this model.
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Figure 2.2: An input waveform from the Andresen M15FR model.

2.1.4 H (Bugli et al., 2021)

To explain some of the more energetic supernova explosions, a neutrino-driven scenario does

not suffice. Instead, Bugli et al. (2021) combined a fast rotating 35 M⊙ star with high magnetic

fields in order to achieve an MHD-driven explosion.

2.1.5 TM1 (Kuroda et al., 2016)

While there already is a 15 M⊙ model, this waveform family differs from the one in section 2.1.3

in two aspects. The first difference is that it is non-rotating. The second, more important

difference is the equation of state. Kuroda et al. (2016) studied the effect of different equations

of state on the supernova characteristics and found that the softer the EoS is, the more the SASI

develops. This means that the presence and strength of SASI activity holds information about

the EoS as well, which is one of the reasons detecting SASI activity would be quite exciting.

Besides SASI activity, g-mode oscillation is also present in the neutrino-driven explosion

simulated here. The model reaches a total GW energy of 1.7 · 10−9 M⊙c
2
in the first 350 ms

post bounce and has a peak frequency of 714 Hz.

2.1.6 S11.2 (Kuroda et al., 2017)

Once again the mass of this model has been selected before and once again there are still a few

key differences between this waveform family and the one in section 2.1.2. Kuroda et al. (2017)

studied SASI activity, specifically the correlation of its effect on neutrino and GW signals, a

topic even beyond the scope of this project. A first difference is the equation of state, which is

softer here. This immediately explains why SASI activity was present here, while it was not in

the other model of the same mass, as the previous paper by the same authors already showed

a correlation between EoS softness and SASI growth (section 2.1.5). Another novelty is that
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Figure 2.3: An input waveform from the Bugli H model.

Figure 2.4: An input waveform from the Kuroda TM1 model.
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Figure 2.5: An input waveform from the Kuroda S11.2 model.

this non-rotating, neutrino-driven model not only shows g-modes, but also develops prompt

convection. Last but not least, in the rather short simulation time of 190 ms post bounce, the

peak frequency reached is 195 Hz and the GW energy emitted is 1.3 · 10−10 M⊙c
2
.

2.1.7 C15-3D (Mezzacappa et al., 2020)

Mezzacappa et al. (2020) produced yet another 15 M⊙ model. While, like the model in sec-

tion 2.1.5, it is a non-rotating, neutrino-driven model exhibiting SASI and g-mode activity, it

is still included here. In the 420 ms simulation, the waveform is significantly more spread

in frequency than the other waveforms (Powell et al., 2019) and its peak frequency is also

quite high compared to the others: 1064 Hz. Its GW energy lies in the same energy range at

6.4 · 10−9 M⊙c
2
.

2.1.8 Mesa20_pert (O’Connor & Couch, 2018)

The Mesa20_pert simulation by O’Connor and Couch (2018) started from a non-rotating 20 M⊙

progenitor, but with velocity perturbations added into the silicon and oxygen shell. Apart from

that, it is like many others a neutrino-driven explosion with SASI and g-modes present. Its

peak frequency is 1033 Hz and it produces GWs with an energy of 9.5 · 10−10 M⊙c
2
in the

530 ms after the bounce.

2.1.9 S27-fheat1.00 (Ott et al., 2013)

Of the four models present in the work of Ott et al. (2013), S27-fheat1.00 is the one with the

lowest scaling factor (fheat = 1.00) in the neutrino heating rate. The neutrino heating rate is a

term that is of importance in determining if neutrinos can provide energy for the shock wave
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Figure 2.6: An input waveform from the Mezzacappa C15-3D model.

Figure 2.7: An input waveform from the O’Connor Mesa20_pert model.
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Figure 2.8: An input waveform from the Ott S27-fheat1.00 model.

to continue expanding into a supernova explosion. As the name suggests, the progenitor is a

27 M⊙ star. As in section 2.1.6, prompt convection shows up here next to SASI activity and

g-modes. The non-rotating, neutrino-driven explosion produces 4.0 · 10−10 M⊙c
2
of energy in

190 ms post bounce, with a peak frequency of 836 Hz.

2.1.10 S40_FR (Pan et al., 2021)

The S40_FR model has one of the highest masses among the selected models. With its 40 M⊙

progenitor, it is only exceeded in mass by the model in section 2.1.13. As far as rapidly

rotating models go, it is even the heaviest. With a rotational velocity of 1 rad s−1
, Pan et

al. (2021) produced a neutrino-driven explosion with SASI, g-modes and prompt convection

present.

2.1.11 S18 (Powell & Müller, 2019)

To study the supernova well into the explosion phase, Powell and Müller (2019) simulated a

non-rotating 18 M⊙ star for 890 ms after core bounce. The neutrino-driven explosion shows

excitation of surface g-modes, but no emission due to SASI activity. The gravitational waves,

which have a peak frequency of 872 Hz, are quite strong, as they reach a total energy of

1.6 · 10−8 M⊙c
2
.

2.1.12 M39 (Powell & Müller, 2020)

Whereas their previous model (section 2.1.11) had no rotation, this 39 M⊙ model is a rapid

rotator (0.542 rad s−1
). Due to a change in perturbations applied, this time the SASI does

develop and so does prompt convection. One of the findings of Powell and Müller (2020) is
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Figure 2.9: An input waveform from the Pan S40_FR model.

Figure 2.10: An input waveform from the Powell S18 model.
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Figure 2.11: An input waveform from the Powell M39 model.

that despite using the neutrino explosion mechanism, the rotation and SASI aid in producing

gravitational waves which they claim to be strong enough to be detectable out to 2 Mpc with

the future Einstein Telescope. In 560 ms, the model produces an energy of 7.5 · 10−10 M⊙c
2

with a peak frequency of 674 Hz.

2.1.13 Z100_SFHx (Powell et al., 2021)

In this quite recent work, Powell et al. (2021) reach for the high end of the progenitor masses.

With a stunning 100 M⊙ progenitor, they investigate if a supernova can occur in such a heavy

star before a black hole forms and how far away the gravitational waves from such an event

would be detectable. The neutrino-driven explosion develops strong SASI activity.

2.1.14 S9 (Radice et al., 2019)

After the rather heavy model in section 2.1.13, the non-rotating S9 model has the smallest mass

(9 M⊙) of the waveform families considered. With a few low-mass, neutrino-driven models,

Radice et al. (2019) confirm that for a detection to happen at the next galactic supernova event,

the detector sensitivities of the next-generation GW detectors will be needed for stars with

relatively low masses. With a simulation extending to 1100 ms post bounce, it reaches a GW

energy of 1.6 · 10−10 M⊙c
2
and a peak frequency of 727 Hz. SASI activity is not visible in the

GW signal, but prompt convection is.

2.1.15 R4E1FC_L (Scheidegger et al., 2010)

Last but not least, the R4E1FC_L model is the second MHD-driven model in the selection. With

a rotation speed of no less than 9.4 rad s−1
, Scheidegger et al. (2010) managed to produce a
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Figure 2.12: An input waveform from the Powell Z100_SFHx model.

Figure 2.13: An input waveform from the Radice S9 model.
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Figure 2.14: An input waveform from the Scheidegger R4E1FC_L model.

model with GW energy equal to 3.9 · 10−7 M⊙c
2
. During the rather short simulation (100 ms),

they identify prompt convection in the gravitational waves, which have a peak frequency of

683 Hz.

2.2 Model simulation

The simulation of the waveforms is based on datafiles generated by the respective researchers

that created the models. These datafiles can be found on an internal LIGO GitLab page. Each

of the waveforms can be read in from their respective file and a transformation can then be

applied to randomize their incident angle and direction, as well as the distance from which they

supposedly originated. This procedure is repeated one thousand times for each of the models.

Since all waveforms need to be treated equally and they don’t all have the same length, a buffer

is added to the front and back of the wave to make each sample 10 s long. The start times of

the samples, required to determine the GPS location of the detectors at that time, are separated

by 600 s, making the total simulated time for each of the models 6 · 105 s or approximately one

week long. This removes any bias that could be introduced by the orientation of the waveforms

with respect to the detectors, as in a weeks time the detectors have each rotated along with the

earth enough to randomize orientations. Finally, noise must be injected into the signal. For

this purpose, stationary, Gaussian noise samples will be used that have an amplitude spectral

density resembling the predicted sensitivity curves of the detectors for observing run 5 (O5).

For the HLVK
2

network used here, these sensitivity curves are presented in figure 2.15.

Previous studies like Szczepańczyk et al. (2021) have focussed on determining a maximum range

to which CCSNe would be detectable with the currect detectors. However, the sensitivities of

the detectors change with consecutive upgrades, extending these limits as they go. Instead of

2

LIGO Hanford, LIGO Livingston, Virgo, KAGRA
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Figure 2.15: O5 detector sensitivities for LIGO, Virgo and KAGRA. The LIGO curve represents

both LIGO detectors. Themain frequency area where CCSNe are expected to be seen is indicated

in grey.

using random distances to see how the machine learning algorithms perform as a function

of distance, a transition will be made here to use random signal to noise ratios instead. For

this purpose, another transformation must be made. The signal to noise ratio (SNR) for the

simulated waveforms depends, among other things, on the distance that was simulated, as well

as the noise generated by simulating the passing of the waveform through the detectors. The

SNR can be calculated using a specialized function from the supernova toolbox (Szczepańczyk,

2020). New SNRs are then generated ranging from 10 to 100. Below an SNR of 10, waveforms

have been proven hard to reconstruct at all (figure 2.16), while at an SNR of 100 they can be

almost perfectly reconstructed, so going beyond this range would not be meaningful. The

waveforms are then transformed to their new SNRs by multiplying the signal with the ratio of

the old and new SNR. More details on the implementation of the simulations can be found in

Appendix B.

20



Figure 2.16: Detection efficiency curves as a function of injected SNR for example waveforms

from Szczepańczyk et al. (2021) are presented in panels (a) and (b). The numbers in the brackets

are SNRs at 50% detection efficiencies. All models used in this thesis reach nearly 100% detection

efficiency at the highest SNRs.

2.3 BayesWave

BayesWave is a piece of software designed specifically to deal with gravitational wave observa-

tions and the non-stationary, non-Gaussian noise that is inherently part of the detections. The

name "BayesWave" is derived from a concatenation of "Bayesian" and "wavelets" (Cornish &

Littenberg, 2015). BayesWave will be configured here to use wavelets or wave packets instead

of chirplets, which are used in the analysis of a binary coalescence. Chirplets have a longer left

tail and are a better fit to events like the one in figure 1.2, while wavelets are better suited for

short bursts, such as what is expected from CCSNe. BayesWave uses a Reversible Jump Markov

Chain Monte Carlo (RJMCMC) algorithm, varying both the number of wavelets used and the

parameters of said wavelets simultaneously. The success of such an algorithm is also influenced

by the chosen wavelet basis, which is the Morlet-Gabor wavelet basis for BayesWave. The

Morlet-Gabor wavelet basis is an overcomplete basis in which the wavelets are made up of an

exponential carrier multiplied by a Gaussian envelope
3

.

The Bayesian side of the algorithm is embodied by the use of Bayes’ rule. Using this theorem,

three components are needed to calculate the properties of a waveform h given data s under
model M. The first is the prior distribution p(h|M), which takes into account the assumptions

made about h in the model. The second is the likelihood p(s|h,M), which determines how

likely it is to see the data if the assumptions about the waveform and the model are correct.

The third and last component is the marginal distribution p(s|M) =

∫
p(h|M)p(s|h,M)dh,

which quantifies how well the data fits into the model, regardless of what waveform is at play.

These three components can then be used to calculate the posterior distribution p(h|s,M) =
p(h|M)p(s|h,M)

p(s|M)
, which holds all information on h that can be gathered from s given M. The

purpose of this analysis is to try to retrieve the signal h from the data s, where the latter is

3Ψ(t;A, f0, Q, t0, ϕ0) = A exp
(
−(t− t0)

2/τ2
)
cos (2πf0(t− t0) + ϕ0) with amplitude A, quality factorQ,

central time t0, central frequency f0, phase offset ϕ0 and τ = Q/(2πf0)
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defined as s = R · h+ n, with n the instrument noise and R the operator that describes the

response of the detector network to a particular gravitational wave signal.

Since BayesWave is computationally more expensive than other GW search algorithms such as

coherent WaveBurst, it is mostly used only on a preselected subset of data instead of as the

primary search algorithm (Abbott et al., 2021). While in this thesis only BayesWave is used, in

a real setup there would indeed be another algorithm preceeding it in the detection pipeline,

leaving BayesWave only the task to reconstruct a sample that has already been identified as

significant. This preceeding algorithm could be based on BayesWave, as was the case in Dálya

et al. (2021), and ensures that glitches are subtracted without compromising the signal. As a

result, the remaining noise can be modelled accurately as stationary, Gaussian noise, as will be

done in this thesis. Although the noiseless waveforms are available here as they were the result

of a simulation, this will not be the case for a real detection, so the data used here consists of

the waveforms with noise added after reconstruction using BayesWave. That way, the machine

learning algorithms described below will learn to classify the processed waveforms, as they

will need to do for a real sample. Raza et al. (2022) has investigated possible optimizations of

BayesWaves’ parameters specifically for CCSNe. They recommend to use 4 million RJMCMC

iterations, a frequency range from 16 Hz to approximately 2 kHz and a segment length of at

least 4 s. All of these recommendations will be accepted here.

2.4 Machine learning

Given all these parameters, it is now up to the machine learning (ML) algorithms to try and

predict them given the data generated by BayesWave. As stated before, the objective here

is not to create a new GW detection algorithm, but rather to determine if some property or

characteristic of a supernova can be determined from a supernova induced GW signal, knowing

the signal has been identified as a supernova. The detection itself will be done through other

methods, quite possibly aided by the simultaneous observation of a neutrino signal and later

also by an optical signal
4

.

2.4.1 Data selection

The BayesWave reconstructions encompass a large number of data output formats. For each of

the 1000 waveforms generated for each of the 14 models, BayesWave will reconstruct the signal

as a time vs. strain plot, as well as power spectra, time vs. frequency plots and spectrograms

of the data, the median waveform and the residuals. Of these many possibilities, the power

4

Gravitational waves propagate with the speed of light, as well as both neutrinos and the optical signal

itself. The reason why the optical signal is expected to arrive later, is because neutrinos and GWs can escape the

collapsing star starting from the beginning of its collapse. The optical signal can only begin its journey towards

the detectors once the photons reach the surface of the star at the moment of supernova explosion.
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spectrum
5

, has been chosen to feed as input to the machine learning algorithms. The power

spectrum is the only one of the outputs that does not show time evolution. The time vs. strain

output for example shows a clear start and end of the waveform, which may not correspond to

the start and end points of an actual detection. Feeding the time vs. strain data to the algorithm

could potentially bias the ML algorithm to perform better on data with the same start and end

points or, even worse, bias the algorithm to make classifications based on start and end times

instead of the actual data. This is not the case for the power spectrum, as it has a power value

for each frequency in the frequency range
6

, hence there is no start or end point that can impose

such a bias.

Once the data has been gathered, part of it needs to be split off to serve as test data, since there

is no other way to validate that the algorithms are actually performing well. A train-test split

is made, resulting in a training set on which the following steps will be calibrated and a test

set. The calibrated algorithms will predict a class for the test set, resulting in a performance

score that shows how effective the algorithms are.

2.4.2 Dimensionality reduction

After selecting the input data, the next step is selecting a dimensionality reduction technique.

This serves not only the purpose of reducing the amount of data and therefore the time spent

training the algorithm, but might also improve the performance by cutting out irrelevant

information that could lead to overfitting. However, the data used here consists of very small

numbers: the power in the spectrum usually ranges from around 10−51
to around 10−47

. That’s

why it is necessary to rescale the data, although rescaling is never a bad idea, even if the data

is not unusually large or small. This is done through a simple z-score normalization, setting

the mean value to zero and the standard deviation to one. For the dimensionality reduction,

two possible techniques will be investigated.

The first technique is a principal component analysis (PCA), implemented in the Python package

scikit-learn by Pedregosa et al. (2011). It identifies, one after the other, perpendicular directions

in the high-dimensional space that have the largest remaining variance, after which it projects

the data onto these principal component directions. An example of this is shown in figure 2.17

for a two-dimensional dataset. This in itself does not reduce the dimensionality, but the data

is now stored in such a way that the first few components of each vector representing one

data sample hold the bulk of the information. In this transformed dataset, a cut can be made,

keeping only the first n components, where n can either be a chosen integer number or it

can be determined based on what percentage of the variance of the original data should be

explained by the remaining transformed data after the cut.

The second technique is a uniform manifold approximation and projection (UMAP), imple-

5

The power spectrum can be found in each output folder at /post/signal/signal_median_
frequency_domain_waveform_spectrum_H1.dat, where H1 should be replaced with L1, V1 or K1

to get the data for each of the four detectors.

6

The frequencies range from 16 Hz to 2047.5 Hz.
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Figure 2.17: Example of a principal component analysis. The line from top left to bottom right

represents the first component, the one perpendicular to it represents the second component.

mented in the Python package umap-learn by McInnes et al. (2018). It searches for a represen-

tation of the data on a manifold in order to try and reduce its dimensionality. It does this by

making use of a weighted k-neighbour graph, for which later a low-dimensional representation

is calculated. This method also includes a parameter n to control how many components the

final representation should contain.

2.4.3 Classifiers and regressors

With the reduced number of dimensions, the machine learning algorithms can be let loose on

the data. A few algorithms will be compared, such as a decision tree (DT), a support vector

machine (SVM) and a K-nearest neighbour (KNN) approach for the (binary) classification

parameters and a simple linear regression (LR) model as well as a least absolute shrinkage and

selection operator (LASSO) model for the numerical parameters.

Decision tree

A decision tree learns to predict the data labels by implementing a number of cuts, each along

a single axis in the remaining multidimensional space. It does this in such a way that the

impurity of the data is maximally reduced. The impurity, also known as Gini impurity, is

defined as

∑
k

pk(1− pk), with pk the percentage of samples left on one side of the split for

each class k. A normal decision tree will continue until only one class remains in each leaf

node, but it is possible to trim the decision tree, for example by setting a minimum value for

the impurity decrease, such that smaller decreases will be ignored and certain nodes will not
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Figure 2.18: Example of a decision tree classifier on an XOR dataset. The dataset consists of

blue samples where the x and y axis have the same sign and orange samples where they have

an opposite sign. The axes have been removed, but the decision tree splits almost reproduce

them.

be split up when they normally would be. This process is known as pruning and may improve

performance by preventing overfitting on the training set. Decision trees have the advantage

of being easily interpretable. They make consecutive splits, each involving only one dimension.

Given the set of parameters for a new sample, it is possible to simply follow these splits down to

a node and find the prediction for that sample. This also allows for numerous ways to visualize

them, such as in the example in figure 2.18, where a possible DT is visualized by horizontal

and vertical lines representing the cuts on an exclusive or (XOR) dataset.

Support vector machine

A support vector machine also makes splits, but does so in all dimensions at once, creating a

hypersurface that separates two classes. This hypersurface is positioned in such a way that the

support vectors, the margins between it and the closest sample from each class, are as large as

possible. For a multiclass classification, a one-vs-the-rest scheme will be used, virtually training

14 SVMs that each distinguish one class from all other classes in the data. A classification is

then made based on which of the 14 hypersurfaces a sample is furthest away from, placing it

the deepest into the classification area of that specific hypersurface. For example, the black

dot in figure 2.19 will be classified as green rather than red, because its distance to the green

separator is larger than that to the red one.

K-nearest neighbour

A K-nearest neighbour approach differs from the other two algorithms in that it doesn’t actively

learn anything about the data. All it does is determine for a given sample what the closest
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Figure 2.19: Example of a multiclass support vector machine classifier with one unidentified

sample (black). The unidentified sample will be classified green with the present separation

hypersurfaces.

neighbouring points in the multidimensional training set are, provided a certain distance

measure on that dataset. Its prediction is then whichever class is dominant in those k nearest

samples, with k a configurable parameter that can be chosen according to the needs of the

situation at hand. In binary classifications for example, k should probably be chosen as an odd

number in order to prevent a draw. In multiclass cases, k should be chosen high enough to

allow one class to take the upper hand instead of ending up with one sample from each of a

few different classes.

Linear regression

For predicting the numerical data, the classifiers above are not appropriate. Although there are

only a discrete number of values present in the data for both mass and rotational velocity, the

quantities themselves are continuous and thus need to be predicted in a continuous way. A first

approach to this is a simple linear regression. Predictions consist of the output of ŷ =
∑
i

widi,

where di are the data points of the sample and wi are the weights for each data point in a

sample, trained by minimizing the residual sum of squares over the training set.

LASSO

As opposed to the residual sum of squares

n∑
j=1

(yj − ŷj)
2
for predictions ŷj for a training set of

n samples with true values yj , the LASSO method adds an extra term to the error calculation. It

minimalizes

n∑
j=1

(yj−
∑
i

widij)
2+λ

∑
i

wi, where the last term serves as a penalty to keep the

weights from growing excessively large for any one data point in a sample. This also makes the

solutions nonlinear in the training set. The penalty is yet another way to keep the algorithm

from overfitting and should in theory result in an improvement over linear regression.

26



Chapter 3

Results

3.1 BayesWave

The first type of results that were generated were the reconstructions made by BayesWave.

As mentioned before, BayesWave produces a large amount of data, most of which is not used

further on. To understand what exactly BayesWave produced, figures 3.1 and 3.2 show examples

of both the time vs. strain plots and the power spectra for two waveforms of the Powell S18

model (section 2.1.11). The plots contain three colors: green, purple and grey. The green parts

represent the injected signals, while the noise is represented in grey. BayesWave had access to

these separate contributions as it had access to the noiseless waveforms. Purple then indicates

which parts of the injected waveform BayesWave was able to recover. The difference between

low and high SNR cases is clear in the images.

3.2 Dimensionality reduction

While constructing the dimensionality reduction techniques, a few preliminary tests were

run on a subset of the data to see if and how well the different models would be separable.

The result can be seen in figure 3.3. For both techniques, this seemed promising, as for this

particular subset of the data, the models could be separated in only two dimensions. For the

full dataset, more than two or even three dimensions were needed to fully separate the models

with PCA, which unfortunately cannot be represented in a plot. The same was true for UMAP,

but it already showed a decent separation in the first two dimensions, for example in figure 3.4.

Comparison of the number of dimensions before and after the reduction revealed a difference

by a factor of 45, retaining approximately 730 components as opposed to the 32508 components

each sample was represented by before processing.
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(a) Time vs. strain waveform (b) Power spectrum

Figure 3.1: BayesWave reconstruction of a waveform of the Powell S18 model with a low SNR

(11.810).

(a) Time vs. strain waveform (b) Power spectrum

Figure 3.2: BayesWave reconstruction of a waveform of the Powell S18 model with a high SNR

(90.692).
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(a) PCA

(b) UMAP

Figure 3.3: Preliminary results of dimensionality reduction on a subset of the data involving

four models: Powell M39 in red, Pan S40_FR in green, Radice S9 in blue and Scheidegger

R4E1FC_L in purple. For both techniques, the axes correspond to the first two components.
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Figure 3.4: UMAP representation of the entire dataset, colored by the presence of prompt

convection

3.3 Regression

In order to compare the different algorithms used, there was a need for an accuracy measure.

For the numerical labels, this function was chosen to be the normalized root mean squared

error (NRMSE). Its definition is NRMSE =
1

σO

√√√√ 1

n

n∑
i=0

(yi,O − yi,P )
2
, with the differences

involving the original (O) and the predicted (P) set of parameters and n samples in the test set

with a standard deviation σO. This is related to the penalty function used by linear regression

and LASSO during training. The fact that it is normalized also allows for a comparison across

algorithms, and if desired also across predicted parameters, to see where the predictions are

the most accurate. The value of this error metric has been plotted against the signal to noise

ratio, which allowed investigating what its impact was on the accuracy of the prediction. For

each parameter and for each dimensionality reduction technique, this plot shows the average

performance of the predictor. The shaded areas correspond to the standard deviation on this

average, calculated on 10 distinct executions of the algorithms. The samples were binned in

SNR bins of width 5 before calculating the error.
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(a) PCA (b) UMAP

Figure 3.5: Normalized root mean squared error on the predicted progenitor mass as a function

of SNR for both dimensionality reduction techniques.

3.3.1 Mass

For the case of mass predictions, figure 3.5 suggests that the linear regression was slightly more

accurate. The expected drop of error with increasing SNR is present, at least at first, but the

error goes up again for some reason at higher SNR. This issue seems to be less pronounced when

using UMAP, but the curve still flattens out instead of continuing its downwards trend.

3.3.2 Rotational velocity

While for mass predictions UMAP outperformed PCA, this was no longer the case for the

predicted rotation velocities (figure 3.6). Both machine learning algorithms in combination

with both dimensionality reduction techniques performed worse than their counterparts for

mass predictions.

A trend that can be seen across the numerical algorithms is that the PCA-based predictors are

showing a more stable behaviour, while the UMAP-based ones are showing more variance on

their results.

3.4 Classification

As the characteristics that are predicted here could not be represented numerically, a different

performance measure had to be chosen. Because there weren’t an equal amount of samples for

each class for the different characteristics, the balanced accuracy was used. It is defined as the

recall for each class separately, averaged out over the different classes. Recall (R) for a class C is

defined asR =

∑n
i=0(yi,O = C&yi,P = C)∑n

i=0(yi,O = C)
, the number of correctly predictedmembers of class

C divided by the total number of samples of class C. This would make the balanced accuracy

BA =
m∑
j=1

∑n
i=0(yi,O = Cj&yi,P = Cj)∑n

i=0(yi,O = Cj)
, where m = 2 for all cases considered here.
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(a) PCA (b) UMAP

Figure 3.6: Normalized root mean squared error on the predicted progenitor rotational velocity

as a function of SNR for both dimensionality reduction techniques.

(a) PCA (b) UMAP

Figure 3.7: Balanced accuracy of the predicted explosion mechanism as a function of SNR for

both dimensionality reduction techniques.

3.4.1 Explosion mechanism

With both dimensionality reduction techniques, the KNN classifier achieved a poorer perfor-

mance than the decision tree or the SVM, as evidenced by figure 3.7. Keeping the mechanism

behind KNN in mind, this suggested that some models with different explosion mechanisms

partly occupied the same region of space in the reduced but still high-dimensional dataset and

their proximity confused the KNN algorithm. This will be further investigated in section 3.5,

where the offending models will be sought out.

3.4.2 SASI

The three ML algorithms performed quite well, apart from a slight underperformance of the

decision tree combined with PCA when compared to the other algorithms. The standard

deviations in figure 3.8 are also smaller than they were for the explosion mechanism.
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(a) PCA (b) UMAP

Figure 3.8: Balanced accuracy of the predicted presence of SASI as a function of SNR for both

dimensionality reduction techniques.

(a) PCA (b) UMAP

Figure 3.9: Balanced accuracy of the predicted presence of prompt convection as a function of

SNR for both dimensionality reduction techniques.

3.4.3 Prompt convection

As was the case for SASI, the PCA-DT combination had more trouble detecting the presence

of prompt convection than any other combination (figure 3.9). The SVM and KNN had no

problem separating the presence from non-presence for sufficiently high SNR and neither did

the UMAP-DT combination, so the issue must have had another source. It might be that the

cuts required to separate the classes did not align with the axes of the high-dimensional space,

which is a known flaw of the decision tree algorithm.

3.4.4 Rotation

Since the predictions of rotational velocity (section 3.3.2) weren’t all that great, a different

approach has been taken here. Instead of predicting the numerical value of the rotational
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(a) PCA (b) UMAP

Figure 3.10: Balanced accuracy of the predicted presence of rotation as a function of SNR for

both dimensionality reduction techniques.

velocity, the predicted characteristic is the presence or non-presence of rotation altogether.

This resulted in figure 3.10, which shows much better results than the numerical analysis.

3.5 Two models confused

Looking at the original waveforms themselves (section 2.1) and the confusion matrix in fig-

ure 3.11, it became apparent that the main source of confusion between different models

originated in the confusion between the Andresen M15FR (section 2.1.3) and the Bugli H

(section 2.1.4) models. Both waveforms are low in the number of distinct parts in the original

waveforms, which can lead to them having similar parametrizations in the reduced dimension

space. To see what the impact of this confusion is, the machine learning algorithms have been

executed a second time, but without including the Andresen M15FR waveform.

Excluding one waveform did indeed improve the results. For example, the increased accuracy

for the prediction of the explosion mechanism and the rotational velocity can be seen in

figures 3.12 and 3.13 respectively.
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Figure 3.11: Confusion matrix of the identification of separate supernova models. A perfect

prediction would render this matrix diagonal.
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(a) PCA (b) UMAP

Figure 3.12: Balanced accuracy of the predicted explosion mechanism as a function of SNR for

both dimensionality reduction techniques after excluding the Andresen M15FR model.

(a) PCA (b) UMAP

Figure 3.13: Normalized root mean squared error on the predicted progenitor rotational velocity

as a function of SNR for both dimensionality reduction techniques after excluding the Andresen

M15FR model.
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Chapter 4

Future work

This chapter gathers some ideas on improvements and extensions that can be made to the

simulations and the further processing thereof, all the way to the machine learning part.

4.1 Physics

4.1.1 Real data

The first and most obvious addition to this work would be its application on a real data sample.

Since that doesn’t exist yet, this will just have to be put on the sidelines until the Milky Way

happens to produce its next core-collapse supernova. Until then, preparations will of course

continue, certainly by expanding the detector capabilities and perhaps also by an expansion of

the techniques presented in this thesis.

4.1.2 New detectors

A second addition which will have to wait until new data becomes available is the inclusion of

more detectors. Four detectors were included here, but a few years from now, there may be a

need to add the ones that are still in the planning phase now. All that’s needed for this essentially

boils down to the sensitivity curve. In fact, the sensitivity curves that were used here (figure 2.15)

could even be considered as future detectors, as they are the projected O5 sensitivities for the

detectors that are now upgrading to prepare only for observing run 4 (O4). The sensitivity

curves allowed the simulation to assess which signals are detectable by a certain detector,

resulting in the different amplitudes for each detector as seen in figures 2.1 through 2.14. There

is no practical difference between a new detector and an update to an already included detector,

both come down to including the new sensitivity curve in the simulation process.
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4.1.3 New models

Apart from detectors, new supernova models are also being created. While some will have

similar features as the ones that are already included, there might be others that can definitely

extend the parameter space that is covered. For example, there are currently only two models

included with MHD-driven explosions, so there’s certainly room for more of those. A few more

high-mass models also wouldn’t hurt, as well as models with some more different rotation

velocities. Adding models requires a datafile with a generic waveform, as well as some coding

to format them in the same way the other waveforms are formatted (e.g. random incident

angles, 10 s long samples, etc.). Along with new models, it’s also possible to look through the

unused existing models and see if some of them extend the parameter space as well. A good

place to start looking for those is in the same place the currently used models were found,

as their authors rarely simulated only one model at a time. While doing this, the results of

section 3.5 need to be kept in mind, meaning that adding models carries a risk of having more

and more confusion between two specific models with different characteristics but similar

waveforms due to a low number of distinct frequencies.

4.2 Simulation and data preparation

4.2.1 Incremental models

While adding new data to the simulations will probably improve performance, not all additions

are equally simple. Adding more samples of an already incorporated model for already incor-

porated detectors should present the least trouble. The data from different samples only comes

together after extraction from the BayesWave reconstructions, so it’s just a matter of getting it

labeled correctly and that’s that. The same is true for adding a new model. In both cases, it will

however be necessary to retrain both the dimensionality reduction techniques as well as the

machine learning algorithms, except if the extra samples would only be used for testing. This

is where the trouble begins, as retraining requires the original training data to still be present.

While it can be kept in its extracted form and not necessarily in the original BayesWave output

format, data files can still easily take up a few gigabytes worth of storage for the thousands of

samples that were generated here. Luckily, there exist methods like incremental PCA
1

for an

incremental approach to dimensionality reduction. For the classification or regression part,

stochastic gradient descent (SGD) based algorithms
2

can handle adding data at later times and

so can neural networks (NNs)
3

, since they process all data sample by sample or in small batches

anyway.

A completely different problem arises when a new detector is to be added. Since detector

response is taken into account during the BayesWave reconstruction and the combination of

detector responses is used to increase the reconstruction, it is no longer possible to linearly

1IncrementalPCA in sklearn.decomposition
2SGDClassifier or SGDRegressor in sklearn.linear_model
3MLPClassifier or MLPRegressor in sklearn.neural_network
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add new data. It is possible to add a new detector response in the simulated waveforms, as

the detectors are still separated there, but the data for different detectors needs to go through

BayesWave together for each sample of every model. Were it not BayesWave, then surely the

next steps would raise the same issue, as they too take data from all detectors into account at

once. Apart from the first simulation step, adding a detector thus involves virtually starting

over. The decision on whether or not to add a detector will therefore involve a trade-off between

resources invested and accuracy gained, where the latter remains to be investigated. The former

however can already be estimated, as acquiring the BayesWave reconstructions for the 1000

samples for each of the 14 models in this thesis took at least a few weeks of computation time

on a multicore computer grid
4

. Compared to that, the few hours it took to extract the data from

the BayesWave output and to train the ML algorithms were negligible
5

.

4.2.2 Dimensionality expansion

As the data were transformed into a lower dimensional representation, it’s hard to visualize

what exactly the components represent, even more so because the input data are power spectra

instead of the time vs. strain data format that is easier to assign physical meaning to. This

makes it hard to grasp what kind of separation the ML algorithms learn, even though most

of the algorithms themselves are not that hard to interpret. It would therefore be interesting

to try to reverse the transformation and see what the principal components or the UMAP

dimensions look like when transformed back into the power spectrum domain or even into

the time vs. strain domain, which is after all only a Fourier transform away. As the principal

components basically serve as a basis in which all samples can be represented, this might

reveal possible improvements to be made in the basis functions used by BayesWave for CCSNe

specifically.

4.3 Machine learning

4.3.1 Parameter grid search

A number of the machine learning algorithms used here have tunable parameters that can

significantly influence their performance. Examples are the number k for KNN, the minimum

impurity decrease for a decision tree or the λ parameter for LASSO. This may even be extended

back to the dimensionality reduction techniques, where the final number of dimensions n holds

power as well. Parameter variations like this are mostly performed on a search grid, usually

combined with cross-validation, which splits up the training data into even more parts, all of

which are in turn used as validation set for the ML models that are now trained on a slightly

smaller training set. Performing multiple nested cross-validation grid searches, for example

to determine which algorithm performs best and with which parameters at the same time,

4

Note that this grid is being used by a large number of people, so this time estimate may involve waiting

periods when these computations are put on hold in favor of higher priority tasks.

5

Unless of course it is time to go debugging, then those few hours are annoyingly long.
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requires keeping track of the different parts of the training set quite meticulously, as in such

endeavours it’s increasingly easy to mix up which chunks of data should go where.

4.3.2 Different algorithms

Despite the number of machine learning algorithms already included in this thesis, there are still

many more possible classifiers and regressors that can be applied to the data. As suggested in

section 4.2.1, SGD-based approaches or neural networks might provide an advantage. However,

more complex algorithms don’t necessarily outperform the simpler ones and are almost always

harder to interpret. Looking back at figure 2.18 for example, a neural network could probably

learn the boundaries given enough training data, but so can the decision tree, and one of those

two is definitely superior in interpretability. Nevertheless, the best suited algorithm is unique

for each dataset, so trying new ones is always an option.

4.3.3 Multilabel classification

In this thesis, all ML algorithms have been trained on one feature at a time only. This restriction

is not required, as most machine learning algorithms are capable of predicting multiple labels

simultaneously for each sample. Not only could the classifiers benefit from this if some features

can be predicted more accurately together than alone, but if that is the case, such performance

improvement would also implicate a correlation between the features involved. That may in

turn help to get a better understanding of the underlying physics, which is after all still the

goal.
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Chapter 5

Conclusion

This thesis investigated what characteristics of the next galactic supernova can be predicted

given a gravitational wave observation. Using a number of selected supernova models, data

was simulated for a weeks worth of observations for each model. Stationary, Gaussian noise

was added with varying signal to noise ratios. The data was then reconstructed using a wavelet-

based gravitational wave search algorithm called BayesWave. Using a range of applicable

Python packages, a machine learning environment was set up, where a number of techniques

were compared.

To make predictions for the numerical characteristics, mass and rotational velocity, linear

regression slightly outperformed the more complex LASSO approach, although there is quite

a lot of room for improvement for both of them. For the non-numerical characteristics, the

K-nearest neighbour approach had more trouble predicting the explosion mechanism, while

for the presence of standing accretion shock instability, prompt convection and rotation the

decision tree classifier suffered the lesser performance. The support vector machine classifier,

using a one-versus-the-rest approach, generally achieved the best results with an accuracy

vs. SNR curve flattening near 100% accuracy above a signal to noise ratio of about 30 to 40

for every predicted characteristic. While there are certainly aspects that can be improved

upon or extended, the idea of using machine learning to extract information from gravitational

wave observations about the underlying physics of supernovae has certainly been proven to be

achievable.
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Appendix A

Fysische eigenschappen van supernovae bepalen
uit observaties van zwaartekrachtsgolven

Op 24 februari 1987 werd de meest recente supernova in het nabije universum waargenomen.

De explosie vond plaats in de Grote Magellaanse wolk, op een afstand van ongeveer 50 kpc.

Het speciale aan supernova SN1987A is dat deze niet enkel optisch waargenomen werd. Voor

de eerste (en voorlopig ook laatste) keer werden ook neutrino’s geobserveerd die afkomstig

waren van een supernova. Sinds enkele jaren zijn de mogelijkheden uitgebreid met nogmaals

een nieuw waarnemingsgebied: zwaartekrachtsgolven. Computersimulaties tonen aan dat

supernovae in staat zijn om zwaartekrachtgolven te produceren. Daarom is de voorbereiding

op de volgende supernova binnen de Melkweg nu al begonnnen.

Het doel van deze thesis is te bepalen welke informatie er uit de waarneming van zwaartekracht-

golven kan geëxtraheerd worden. Hierbij ligt de focus zowel op fysische eigenschappen zoals de

massa en rotatiesnelheid als op kenmerken van de explosie zoals het explosiemechanisme. Een

machine learning algoritme zal getraind en getest worden op gesimuleerde data. Aan de hand

van de testdata wordt gemeten hoe nauwkeurig elke eigenschap bepaald kan worden.

A.1 Introductie

Wanneer de nucleaire brandstof in de kern van een ster is opgebrand, stort de ster in onder

zijn eigen zwaartekracht. Voor sterren onder de Chandrasekhar-limiet
1

resulteert dit in een

witte dwerg, ondersteund door de ontaardingsdruk van de elektronen. Voor zwaardere sterren

is verdere instorting onvermijdelijk tot op het punt waar de ontaardingsdruk van de nucleo-

nen voelbaar wordt. Door die plotse extra uitwaartse druk kaatst de kern terug en wordt de

instortende materie door een schokgolf naar buiten geduwd. Wanneer de schokgolf het opper-

vlak van de instortende materie bereikt, wordt een enorme hoeveelheid energie in de vorm

van licht het heelal in gestuurd, waarbij de supernova vaak helderder is dan het omringende

sterrenstelsel.

1

ongeveer 1.44M⊙
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Na de initiële instorting zijn nog weinig details bekend over supernovae. Aangezien licht pas

vrijkomt op het einde van de explosie, wanneer de schokgolf het oppervlak bereikt, zijn andere

soorten waarnemingen nodig om binnen in de exploderende ster te kijken. Observaties van neu-

trino’s en zwaartekrachtsgolven hebben echter een beperkt bereik, waardoor supernovae buiten

het Lokale Universum
2

geen waardevolle detectie kunnen opleveren. Er zal dus gewacht moeten

worden tot de volgende ster binnen de Melkweg explodeert, wat helaas slechts één of twee keer

per eeuw gebeurt. Daarom is het belangrijk dat uit de volgende waarneming zo veel mogelijk

informatie gehaald wordt, zoals bijvoorbeeld de toestandsvergelijking, het explosiemechanisme,

en de aanwezigheid van instabiliteiten, convectie en andere oscillaties.

Zoals eerder vermeldt, zijn zwaartekrachtsgolven één van de mogelijke observabelen om

binnenin de supernova te kijken. Ze worden veroorzaakt door de veranderende versnelling van

grotemassa’s, onder de voorwaarde dat deze niet sferisch symmetrisch zijn. Supernovae voldoen

aan deze voorwaarde, aangezien er bij het optreden van de verschillende effecten hierboven geen

sferische symmetrie meer overblijft. Wanneer deze zwaartekrachtsgolven de aarde bereiken,

zullen ze waargenomen worden door verschillende zwaartekrachtgolfdetectoren. Vier van deze

detectoren worden hier gesimuleerd: de twee detectoren van LIGO in de Verenigde Staten, de

Virgo detector in Italië en de KAGRA detector in Japan.

A.2 Methoden

Om te bepalen hoe zwaartekrachtsgolven afkomstig van supernovae eruitzien, zijn reeds vele

modellen ontwikkeld. Van deze modellen zijn er 14 geselecteerd die in deze thesis gesimuleerd

zullen worden. Bij de selectie zijn de modellen zo gekozen dat een zo groot mogelijk volume

in de parameterruimte gevuld wordt. Van elk model zijn vervolgens 1000 zwaartekrachtsgol-

ven gesimuleerd, met willekeurige invalshoeken en signaal-ruisverhoudingen tussen 10 en

100.

De gesimuleerde golven worden vervolgens verwerkt met BayesWave, een programma dat aan

de hand van golfpakketten en de regel van Bayes de golven zonder ruis probeert te reconstrueren.

Hoewel de originele golven beschikbaar zijn omdat ze hier gesimuleerd zijn, moet gebruik

gemaakt worden van de verwerkte golven om zo dicht mogelijk aan te sluiten bij een reële

waarneming.

Van de vele uitvoermogelijkheden die BayesWave biedt, is hier het vermogensspectrum gekozen

als representatie van de gereconstrueerde golven. Na opsplitsing van de data in training- en

testdata wordt eerst een dimensieverlaging uitgevoerd. Twee technieken worden hiervoor

getest: PCA (componentanalyse) en UMAP (projectie op basis van lokale topologie). Voor de

niet-numerieke kenmerken worden na deze projectie een decision tree, een support vector

machine en een nearest neighbour algoritme getest. De numerieke eigenschappen worden

bepaald aan de hand van een lineaire regressie en een uitbreiding daarop genaamd LASSO.

2

enkele honderden kpc
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A.3 Resultaten

De dimensieverlagingstechnieken waren succesvol en konden de data met een factor 45

verkleinen. Een algemene trend in de prestaties van de machine learning algoritmes was

het dalen van de foutmarge met toenemende signaal-ruisverhouding, hoewel de fout soms

onverklaarbaar toch toenam bij de allerhoogste signaal-ruisverhoudingen. Verder waren de

voorspellingen voor de niet-numerieke eigenschappen over het algemeen nauwkeuriger dan

die voor de numerieke. Of de combinatie van algoritmes met PCA of UMAP beter was, hangt

af van de eigenschap waar het over gaat. Opvallend zijn 2 modellen die vaak met elkaar ver-

ward werden, dit komt waarschijnlijk omdat ze uit weinig componenten bestaan en daardoor

gelijkaardig voorgesteld werden. Het weglaten van één van deze modellen uit de analyse

verbeterde de prestaties van de voorspellingsalgoritmes.

A.4 Toekomstig werk

Natuurlijk is er altijd ruimte voor verbetering en kunnen de hier beschreven algoritmes uitge-

breid worden. Zo kan er bijvoorbeeld rekening gehouden worden met nieuwe detectoren of

kunnen er nieuwe supernovamodellen toegevoegd worden. Voor sommige van deze uitbreidin-

gen zal een deel van de analyse opnieuw moeten plaatsvinden. Ook een mogelijkheid is het

zoeken naar aanpassingen aan de gebruikte algoritmes die incrementeel werken vergemakke-

lijken.

Verder kan het de moeite lonen om eens dieper in te gaan op de dimensieverlaging. Zo

is het niet ondenkbaar dat er informatie verscholen zit in de representatie van de data na

dimensieverlaging. Ook hebben sommige van de machine learning algoritmes een afstelbare

parameter die de prestaties kan beïnvloeden en waarvoor de optimale waarde kan gezocht

worden.

Ten slotte is het ook mogelijk om compleet nieuwe algoritmes te testen. De gebruikte algoritmes

zijn goed interpreteerbaar, maar complexere systemen als neurale netwerken kunnen ook het

proberen waard zijn. Een uitbreiding aan de algoritmes kan ook gebeuren door meerdere

kenmerken tegelijk te proberen voorspellen. Als de nauwkeurigheid daardoor stijgt, kan

daaruit iets bijgeleerd worden over de fysica achter deze kenmerken en hun correlatie.

A.5 Conclusie

In deze thesis werd onderzocht welke eigenschappen van een supernova bepaald kunnen

worden aan de hand van de waarneming van zwaartekrachtsgolven. Na het simuleren van een

selectief aantal modellen, inclusief ruis, werd een poging gedaan om hun eigenschappen te

voorspellen op basis van de gereconstrueerde data. Enkele machine learning algoritmes werden

hierbij vergeleken met elkaar. Hoewel er zeker ruimte is voor verbetering en uitbreiding, is het

basisidee om machine learning te gebruiken om de onderliggende fysica te onderzoeken wel

werkbaar gebleken.
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Appendix B

Comments on source code

The aim of this appendix is to take a more detailed look at the source code used to create the

results. This may give a better insight into why some choices were made or what obstacles

were overcome to get to the final version. All source code was written in Python 3, except for

some necessary control commands or scripts, which were implemented in bash.

There are some general considerations about possible improvements that apply to all code

presented. As a first remark, a lot of the code still contains hardcoded file paths. While that

was no problem for the analysis here, it may be cumbersome to change them all during further

research. This may incentivize a revision of the code to make it more accessible.

An even more courageous undertaking would be an attempt to standardize a data format for

GW data, so there would no longer be a need for model-specific processing.

A second path that may prove beneficial involves rewriting the existing functions into command

line programs or building a class structure around them, which would provide even more

modularity and make it easier to redo a certain part of the analysis without the need to rewrite

the subsequent parts.

B.1 SN toolbox

The appendix file sn_library.py contains the code described in this section. This is a

shortened version of the original SN toolbox (Szczepańczyk, 2020). It uses numpy and scipy
to implement some often used data transformations. The only small modification here is the

addition of the smoothing parameter s in the sn_resample_wave call signature to be set

upon function call rather than to use a default value of zero. This is used in cases where the

default behaviour leads to the presence of NaNs.
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B.2 Generating the waveforms

The appendix file create_gwf.py contains the code described in this section. After loading

in some GW specific packages, the library functions from section B.1 are included through an

exec function call. They could not be imported in the usual way, since thesn_library.py
file resided in another folder on the computer grid.

The next few lines after that set up the model specific configuration. Datafiles and output

folders are identified and created and the length and number of samples are set
1

.

Next up are a few helper functions. so3_matrix generates a random SO(3) matrix that is

necessary for some models to give a random orientation to the general waveforms that are

loaded in by ampl. Because the data is not available in a standard format, the function ampl
needs to be finetuned for each model, for example to use an SO(3) matrix if the data is delivered

as quadrupole contributions instead of the usual h+ and h× polarization data. Data encoded in

milliseconds instead of seconds also belongs to the possibilities. The second pair of functions

cooperate to form a high pass filter.

After that, the same code is run 1000 times to generate the 1000 samples needed for each model.

Resampling is important to make sure all timestamps are evenly spaced, as the remaining steps

depend on that consistency. The equidistantly sampled data is then ready to be projected onto

the detectors. What follows is a long list of operations aimed at the padding of the data into

exactly 10 s long samples, ending in a conversion to an appropriate data format, which is then

saved in the preconfigured file location. Finally, the randomly generated parameters are also

saved in order to later confirm their true randomness.

B.3 Preparation and setup for BayesWave runs

B.3.1 Rescaling the waveforms

The appendix file rescale_definitions.py contains the code described in this sec-

tion. It encompasses all code required to rescale the generated waveforms to a new, randomly

distributed set of signal to noise ratios. After importing the required packages, where necessary

through another exec call, all other functionality is gathered in functions. The function

get_wave_filenames is pretty straightforward and mainly keeps the long list compre-

hension out of the way in further uses. The next function, get_channels_fasds_asds,
gathers the sensitivity curves for the four detectors to be used in the SNR calculations. With

sn_library_snr, the total SNR for one waveform is then determined as the square root of

the sum of squared SNRs of the individual detector components. It is then up to the rescaler
to combine these calculated values with the new ones generated by get_random_snrs and

refactor the data through a multiplication of the ratio of old and new SNRs. During the setup

of this code, a comparison was made between the calculated values with sn_library_snr

1

As indicated before, 1000 samples of length 10 s with an intersample distance of 600 s
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and those calculated by BayesWave later on. This produced a discrepancy factor of approx-

imately 1.068, which has been added to the code. It is however not yet understood where

this discrepancy originates. A comparison between the source codes might be a valid next

step in investigating this. The functions described above are combined in rescale_auto,
which finishes with a call to write_snr_info to gather the new and old SNRs in a data

file, which may prove convenient later on.

B.3.2 Preparing the configuration files

The appendix file preparation_definitions.py contains the code described in

this section. The structure is similar to rescale_definitions.py as the final func-

tion, prepare_auto, gathers the others in one call. This creates the auxiliary files that

BayesWave uses to find the data and set up its own configuration. It even executes one of the

scripts it generated earlier, after which the start of the BayesWave reconstruction process is

only one prewritten command away.

B.3.3 Combining and executing

The appendix file prepare.py contains the code described in this section. This script does

not much more than combining the functions rescale_auto and prepare_auto from

rescale_definitions.py and preparation_definitions.py respectively.

If a different setup would be preferred, which wouldn’t use the default options of all the

intermediate functions, this could also be done here. The only thing that does need to be set

here is the correct path, so the functions will perform their actions in the right place.

B.4 Machine learning

B.4.1 Supporting functions

The appendix file ml_defs.py contains the code described in this section. It contains code

that is often reused during the gathering and processing of the data for the machine learning

algorithms.

The first two functions serve solely to extract the data from the BayesWave output. As that

output is always structured the same way, the relevant subpaths can be hardcoded without

causing trouble across different models. Because opening and reading files is a slow process, a

multiprocessing pool is used to speed this up by handling multiple files in parallel.

The two functions succeeding these first two are in charge of handling the data from that point

on. Once the data has been extracted from Bayeswave output, it is saved into a few centralized

files, allowing for a faster readout since less files need to be opened
2

.

2

a few minutes as compared to a few hours
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Next up is a class built to gather information on the parameter values for each model. It also

aids in retrieving that data efficiently during the training and testing process.

With acc_snr_plots, the data gathered during the ML phase is transformed into error or

accuracy vs. SNR plots. This function mainly takes care of presenting the data correctly and

adjusting the plot to maximize readability.

The last function, sn_gw_ml_alg, does the heavy lifting during the ML phase. It takes

a certain dataset, already split into training and test data, and trains the accompanying ML

algorithm on this data. It then continues with a prediction of the test data, followed by scoring

these predictions per SNR bin through get_snr_scores, which is defined just before it

and applies the correct performance measure depending on the feature being numerical or

not.

B.4.2 Execution

The appendix file ml.py contains the code described in this section. The first 60 lines

approximately are concerned with importing the correct machine learning models, as well as

defining the data locations and model parameters. If the data has not been extracted yet, this

is then the next step, otherwise this has already been completed before and this step can be

skipped.

The main part of this program is the quadruply nested for loop that follows. The outer loop

ensures that the whole analysis is performed for both dimensionality reduction techniques.

Two score lists are defined, one for the numerical features and one for the non-numerical.

Each of the combinations of a dimensionality reduction technique with a machine learning

algorithm is then trained ten times, each time saving the result, which in the end is plotted

using the function described in the previous section.

A few choices were made regarding the models used, which can be described here alongside

their programmatic definition. It is for these values that section 4.3.1 prescribes a future grid

search to finetune them. The principal component analysis is set to retain an appropriate

amount of data to cover 98% of the variance in the original data. As mentioned before, this

reduces the number of components to approximately 730. The uniform manifold approximation

and projection does not have the option to cover a percentage, it needs an integer number of

components to retain. To this end, the average number of components from the PCA coupled

algorithms is used for UMAP. This has as a benefit that both techniques have the same amount

of data available, meaning the results can be used to figure out which is the better representation.

The train-test split is a 90%− 10% split of the data. This split is stratified using not only the

model a sample belongs to, but also the SNR bin it is a part of. This ensures that all models and

all SNR ranges within those models are represented in a similar ratio in the training and in the

test set. A choice was made to discard the original data after performing the dimensionality

reduction, as keeping it in memory proved to cause a larger slowdown than reading it in for

every loop.
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The machine learning algorithms themselves also come with some adjustable parameters,

where a choice was made here based on intuition. The decision tree classifier has been set to

use a minimum impurity decrease of 0.01, as opposed to the default value of 0, which would

produce the complete tree and have a large chance of overfitting the trained model. It has also

been configured to use a balanced error measure, to account for any remaining imbalance in

the classes put into the algorithm. This last statement is also true for the SVM. Additionally,

the SVM has been set to fit the intercept, as the normalization of the data is not necessarily

maintained by the dimensionality reduction. The KNN algorithm has been set to use 3 times as

much neighbours as there are classes to be predicted. The predictions have also been set to take

into account the distance between a sample and one of its nearest neighbours, as opposed to

treating each neighbour equally, regardless of its distance. This weighting factor also prevents

draws, rendering the choice of an odd number of neighbours as mentioned in section 2.4.3

unnecessary. For both numerical algorithms, nothing more than a fit of the intercept was set

up, all other parameters, if present, keep their default value.

Running this program takes quite a while. Depending on whether or not the data extraction

has already been completed, a few hours can be spared there already. Nevertheless, the PCA

reduction on the full dataset can take over an hour each time. The UMAP reduction performs

better in terms of timing and only needs about 15 minutes to get the job done. After that, the

ML algorithms can take anywhere between a few seconds to a few minutes to train and test,

with the largest time consumer being the SVM.
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