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Preface

Dear reader, welcome to this work about unsupervised detection of the auditory
attention, wherein approaches are investigated to decode whether a listener is at-
tentive to an auditory stream. This work serves as the thesis dissertation for my
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through the initial versions of the thesis text and for providing feedback about the
presentations.

I would also like to thank assessor dr. ir. Jonas Vanthornhout for the explanation
about his dataset, on top of which a great part of this work is built. The same goes
for Elly Brouckmans and Linsey Dewit-Vanhaelen for granting me access to their
dataset. Furthermore, I would like to thank thesis supervisor prof. dr. ir. Alexander
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for providing feedback after the midterm presentation. This resulted in a fresh look
at my research results and presentation. Also my gratitude towards thesis supervisor
prof. dr. ir. T. Francart for co-supervising this work. Finally, I would like to thank
my friends, family and especially my girlfriend Ellen for their support during this
work in particular, and my studies in general.

There is still a lot to be explored in the field of biomedical signal processing and
certainly in the conversion of these algorithms into unsupervised ones. I hope that
this work may serve as a building block in future research. In addition, I hope that
this work persuades you, the reader, about the importance of research in this domain.
However, foremost, I hope you enjoy reading this thesis dissertation.

Arnout Roebben
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Abstract

Hearing-impaired people lack the ability to tune towards a speaker of interest in
a multispeaker environment. For this purpose, neurosteered hearing devices are
designed, wherein an auditory attention decoding (AAD) algorithm selects the at-
tended speaker. Subjects could nevertheless be inattentive to any auditory stream,
interfering with the setup. To this end, this work focuses on auditory attention mea-
sures. In addition, state-of-the-art attention detection requires subject-specific data,
posing practical constraints, such that unsupervised implementations are pursued.

A first objective is the selection of the auditory attention features themselves. A
second objective is the conversion of these features into unsupervised ones. A third
objective consists in the application of these features in an AAD framework. A dataset
concerning auditory and visual attention is used, as well as a dataset concerning atten-
tion towards audio, mathematical exercises and texts for validating final performance.

Regarding the first objective, least squares and canonical correlation analysis (CCA)
prove discriminating between the attention cases. Furthermore, spectral entropy
proves discriminating, whereas the band-power does not. In addition, a novel,
Kullback-Leibler divergence (KLD) based feature attains a higher mean accuracy
than the aforementioned features on low decision lengths. Combining the KLD and
entropy features seems beneficial in both datasets. Finally, common spatial pattern
attains the highest performance, yet suffers from a lack of interpretability.

Regarding the second objective, results are focused on the least squares feature. CCA
and principal component analysis (PCA) are applied to the EEG of both a source
subject (not under study) and target subject (under study) in a domain adaptation
manner. CCA proves to outperform the unadapted feature, whereas PCA does not.
In addition, a novel discriminator-based approach is proposed. This method proves
to be inferior to the unadapted feature, possibly due to the limited flexibility of said
feature. Neither method does achieve correlation levels equal to the state-of-the-art
iterative design, although the CCA method yields comparable differences in mean
correlation. In fact, combining CCA and the iterative procedure seems to boost
the mean difference in correlation significantly with respect to the individual methods.

Regarding the third objective, auditory attention detection seems to allow for a
reduction in the AAD training set size without compromising on performance.
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Chapter 1

Introduction

1.1 Introduction
This chapter aims to outline the goal of this thesis dissertation, namely detecting
the (in)attention of a subject with respect to an auditory stream. To tackle this
problem, electroencephalogram (EEG) signals are utilised. These EEG signals are
detailed in section 1.2: What these EEG signals are, what the associated properties
are, by what artefacts these signals can be corrupted and how these signals relate
to auditory stimuli. Using this EEG concept, the thesis is motivated and the
corresponding aims are elaborated in section 1.3. Finally, section 1.4 concludes by
means of a chapter-by-chapter overview.

1.2 The electroencephalogram
In short, the electroencephalogram (EEG) measures the electrical activity of the
brain [1]. The brain indeed consists of fundamental cells, called neurons, which can
be modelled as dipoles [1]. Synchronised activity of large groups of these ’dipoles’
generates electrical activity/potentials, measurable in a noninvasive way by placing
sensors across the scalp. Since this electrical activity manifests itself as a potential,
the sensor signals need to be measured with respect to a reference sensor [1]. An
example of an EEG cap consisting of 64 electrodes, also called electrodes or channels,
can be seen in figure 1.2.

Now, since the EEG sensors capture the electrical ’image’ of the brain in a realtime
way, EEG has a good temporal resolution [1]. On the other hand, the spatial res-
olution of this electrical ’image’ is poor because the electrical signals get filtered
by the structures in the brain on their path from source to electrode [1]. In addi-
tion, neighbouring electrodes pick up similar signals originating from the same sources.

These EEG signals can nevertheless be subdivided based on their sensor position.
Indeed, the sensors are grouped based on the cortical area they belong to and their
distance from the midline of the head [2]:

1



1.3. Aims

• The character prefix links the EEG sensor to a specific cortical area: frontal
(F), anterior (A), parietal (P), central (C), temporal (T), occipital (O) and
inion (I). Sensor names in between these areas are made up of combinations of
these prefixes.

• The character postfix is negative for sensors in the left hemisphere and vice
versa for positive postfixes. Larger values denote larger distances from the
midline and z denotes a sensor on the midline.

Similarly, the EEG signals can be subdivided in a spectral manner into 6 different
frequency bands: delta ([0.5, 4] Hz), theta ([4, 8] Hz), alpha ([8, 13] Hz), beta ([13, 30]
Hz), gamma ([30, 90] Hz) and high gamma (>90 Hz) [1].

However, in addition to electrical brain activity, the EEG sensors also record electrical
activity from other sources, either from a physiological origin (e.g. muscle activity
and eye movement) or a technological origin (e.g. electrode pop and power grid
interference) [3]. As an example, figure 1.31 shows an EEG signal corrupted by eye
blink (red) and muscle (lime) artefacts. Eyeblink artefacts manifest themselves as
high amplitude peaks in the frontal channels. Spectral-wise these eye blinks overlap
with the delta and theta band [4]. Muscle artefacts, e.g., caused by ear and neck
movement, mainly manifest themselves as fast-varying signals, overlapping with the
beta and gamma frequency bands (typically [20, 60] Hz) [4].

In addition, the neural response of the brain tracks the slow variations of
a speech signal, the so-called auditory envelope [5]. Figure 1.1 shows such
an envelope over an accompanying auditory signal. This envelope tracking process
in the brain is referred to as neural phase locking and starts as soon as the speech
signal enters the early auditory areas in the brain [6].

1.3 Aims
The overall goal of this thesis dissertation is to detect whether a subject is atten-
tively listening to a speaker, i.e., being able to differentiate between subjects who
are attentive to an auditory stream and subjects who are not. To this end, auditory
streams and accompanying EEG data are leveraged. In the next paragraph, we
illustrate the potential relevance of this thesis by means of a possible application:
enhancing auditory attention decoding (AAD) for the cocktail party problem [7, 8].

The human auditory system possesses the capability to tune towards a speaker of
interest in a crowded room while filtering out competing speakers [7]. However,
hearing-impaired subjects lack the ability to do so [9]. This problem is generally
referred to as the cocktail party problem [7]. Indeed, while hearing aids are equipped
to enhance source signals using beamformers [10], the question still remains which
speaker to enhance. To tackle this problem, auditory attention decoding (AAD) is

1This plot has been generated using EEGLab, as available at https://github.com/sccn/eeglab
on 28/10/2021.
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Figure 1.3: EEG signal with indicated muscle artefacts (lime) and eye blink
artefacts (red). Eyeblink artefacts appear as high amplitude peaks in the frontal
channels, whereas muscle artefacts appear as white noise-like signals.

introduced [8]. The goal of this AAD algorithm is to select the speaker of interest,
i.e., to select the speaker that the user is currently paying attention to. A user is
however not necessarily attentive to any auditory stream, which might interfere with
the AAD setup. To this end, it might be useful to detect whether the user is being
(in)attentive to any auditory stream and this is exactly where our research comes in.

To achieve this goal, we will follow a classic machine learning approach, as illustrated
in figure 1.4. The audio and EEG data first pass through a preprocessing step
to prepare the data for feature extraction. Thereafter, handcrafted features are
extracted and a binary classifier categorises the data either as attentive to the
auditory stream or not attentive to it.

Pre-
processing

EEG
Audio

(Unsuper-
vised)
feature

extraction

(Unsuper-
vised)

classification
Attentive to audio?

Figure 1.4: High-level overview of the framework attained in this work.

This approach, nonetheless, still suffers from two problems. Firstly, feature extractor
and classifier design are typically performed in a subject-specific manner [8, 11, 12].
Therefore, training data need to be acquired for each subject, which poses prac-
tical constraints on the methods. Secondly, the design typically happens under
stationarity assumptions. However, in practise these assumptions do not hold due

4



1.4. Chapter-by-chapter overview

to environmental changes such as a displaced EEG cap, malfunctioning sensors and
changes in background EEG activity [13]. This motivates us to look into unsupervised
approaches, mitigating the above problems.

Taking the above considerations into account, we can formulate the following high-
level objectives:

1. Which features can discriminate between attention and inattention to an
auditory stream?

2. What classification performance can be attained by a feature extractor-
classifier combination?

3. How can the classic machine learning framework be converted into an unsu-
pervised one?

4. Does the selection of high attention time frames improve the auditory
attention decoding (AAD) framework?

These objectives allow to take a step towards the ultimate goal of integrating an
unsupervised auditory attention selection framework into an unsupervised AAD
framework, as illustrated in figure 1.5, with practical applications in neurosteered
hearing devices. This work indeed investigates the subparts of the auditory attention
selection algorithms, the combination of these algorithms with AAD designs and the
conversion of these attention selection algorithms into unsupervised ones.

Unsupervised
AAD

Unsupervised
auditory

attention selection
Communication

Figure 1.5: Connection between AAD and detection of the auditory attention.

1.4 Chapter-by-chapter overview
This text contains the following chapters:

Chapter 2: Preprocessing

This chapter describes the preprocessing methodology regarding EEG and audio
data. Herein, two important concepts are artefact removal and envelope extraction.
The artefact removal combats the influence of other electrical sources in the EEG
and is based on a multichannel Wiener filtering (MWF) framework. The envelope
extraction distils the envelope of the audio signal since the brain locks to these
slow auditory variations. Thereafter, these blocks are incorporated into a joint
preprocessing framework for EEG and audio.
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1.4. Chapter-by-chapter overview

Chapter 3: Feature extraction

A theoretical overview of the feature extraction methodologies is given in this chapter.
Based on their operational principles, the features can be divided into two classes:
neural envelope tracking based features and brain activity based features. The
envelope tracking features relate the neural tracking of the speech envelope to the
ground truth envelope and the brain activity features solely exploit properties of the
EEG signals themselves. Within the class of neural envelope tracking based features
a novel feature extractor, based on the concept of the Kullback-Leibler divergence, is
presented as well. Furthermore, practical estimation of the features on finite length
data and methodologies to avoid overfitting are discussed. In addition, there is a
discussion about the neurological interpretation of the designed feature extractors.

Chapter 4: Classification

This chapter treats the classification step in the classic machine learning approach.
In this work, we will focus on a particular classifier, namely the linear discriminant
analysis (LDA) classifier. This chapter also looks into regularisation and input
normalisation methods.

Chapter 5: Conversion to unsupervised algorithms

Due to the practical constraints of acquiring subject-specific data and due to changing
statistics at inference time, the feature extraction and/or classification methods
should be converted into unsupervised ones. To this end, the concept of domain
adaptation is leveraged: the adaption of a feature extractor to combat the changing
statistics at inference time. Herein, five such methods are described, including one
novel expression (least squares-linear discriminant analysis discriminator domain
adaptation (D-DA)). The other methods are novel in the sense of the application
domain.

Chapter 6: Experimental procedures

Before being able to perform experiments, the experimental procedures need to be
determined. This chapter describes the validation methodologies and presents the
hyper-parameter choices, which will be adhered to in chapters 7-10. Furthermore,
hypothesis testing, based on a framework of linear mixed-effects models and analysis
of variance hypothesis tests, is described, as well as the correction of the resulting
p-values. Subsequently, an overview of the dataset is given.

Chapter 7: Differentiating nature features

This chapter treats the first high-level objective: Which features can discriminate
between attention and inattention to an auditory stream? To this end, the features
as described chapter 3 are applied to the dataset.
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1.4. Chapter-by-chapter overview

Chapter 8: Feature extractor-classifier performance

This chapter treats the second high-level objective: What classification perfor-
mance can be attained by a feature extractor-classifier combination? The features
of chapter 3 are combined with the classifier of chapter 4 to study the combined
performance and to gain additional insight into the feature extraction approaches.
Moreover, the window length influence of this performance is investigated.

Chapter 9: Performance unsupervised algorithms

This chapter treats the third high-level objective: How can the classic machine
learning framework be converted into an unsupervised one? Herein, the domain
adaptation methodologies from chapter 5 are compared to the supervised ones.

Chapter 10: Boosting auditory attention decoding

This chapter treats the fourth and final high-level objective: Does the selection of
high attention time frames improve the auditory attention decoding (AAD)
framework? Herein, it is investigated whether training feature extractors solely on
high attention segments leads to an increased performance of said auditory attention
decoding framework.

Chapter 11: Conclusion and future work

This chapter winds up the thesis dissertation with a conclusion and an outlook to
future work.

Appendices

Appendix A provides a non-convexity proof for the novel Kullback-Leibler divergence
feature extractor and for the novel least squares-linear discriminant analysis discrimi-
nator domain adaptation (D-DA) method, as will be presented respectively in sections
3.3.5 and 5.3.2. Appendix B shows that there is evidence against the normality
assumption of the feature space and the assumption that attention and inattention
classes have the same covariance matrix, desirable for the linear discriminant analysis
classifier. Subsequently, appendix C shows the topographic patterns, generated by
yet another feature extractor of chapter 3, namely common spatial pattern. This
appendix has to be seen in conjunction with the experiments of chapters 7 and 8.
Finally, appendix D provides detailed numeric mean and standard deviations of the
classification accuracies, according to the experiments of chapter 8.
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Chapter 2

Preprocessing

2.1 Introduction
Before being able to reliably extract features, the EEG and audio data need to be
preprocessed. Herein, two important building blocks are EEG artefact removal and
auditory envelope extraction. As noted in section 1.2, artefact removal is important
to diminish the impact of interfering electrical sources (e.g. eyes and muscles) in the
feature values. Indeed, features could possibly exploit the artefacts, exaggerating
their performance, or the other way around, features could fail due to the artefact
influence. To this end, a general artefact removal procedure based on generalised
eigenvalue decomposition (GEVD) multichannel Wiener filters (MWF) [14] is detailed
in section 2.2. Furthermore, as noted in section 1.2, envelope extraction is necessary
since the EEG signals track this envelope [5]. The procedure to achieve this envelope
extraction is described in section 2.3 [15]. These two building blocks are integrated
into a larger preprocessing framework, as is detailed in section 2.4 [16]. Finally,
section 2.5 concludes this chapter.

2.2 EEG artefact removal
As detailed in section 1.2, the EEG signal is polluted by interfering electrical
sources, such as the eyes or muscles. These artefacts may be exploited by
the features, overvaluing their performance. Alternatively, features might
suffer from the influence of these artefacts. Therefore, the artefacts need to
be removed before issuing a feature extraction phase. To this end, in [14], a generic
EEG artefact removal framework is presented. The general idea is to reconstruct
the artefact from the EEG data and thereafter to subtract this artefact from the
recorded EEG signal. Firstly, the mathematical solution is described. Thereafter,
automated eye and muscle artefact detection procedures are detailed.
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2.2. EEG artefact removal

Generalised eigenvalue decomposition based multichannel Wiener
filter

Let Xc(t) ∈ R represent the EEG signal at time t ∈ N in channel c ∈ N0, x(t) ∈ RC×1

the channel-stacked EEG signal at time t and x(t) ∈ RLdC×1 the channel-stacked
and time-lagged EEG signal at time t with starting lag Ld−s ∈ N and ending lag
Ld−e ∈ N:

x(t) =
[
X1(t) X2(t) . . . XC(t)

]⊤
;

x(t) =
[
x1(t)⊤ x2(t)⊤ . . . xC(t)⊤

]⊤
;

xc(t) =
[
Xc(t + Ld−s) Xc(t + Ld−s + 1) . . . Xc(t + Ld−e − 1)

]⊤
, c = 1..C.

(2.1)
This artefact-corrupted EEG signal x(t) can be seen as the combination of artefact-
free EEG v(t) ∈ RC×1 and the artefact a(t) ∈ RC×1 itself, i.e., x(t) = v(t) + a(t).
All signals are assumed to be zero-mean. The goal is to reconstruct the artefact a(t)
and to subsequently subtract it from the artefact-corrupted EEG x(t). This artefact
reconstruction is achieved by designing a filter W ∈ RLdC×C , called a multichannel
Wiener filter (MWF), according to the following cost function [14]:

min
W

E{∥a(t)−W ⊤x(t)∥22}. (2.2)

This cost function can be interpreted as retrieving the artefact EEG by minimising
the mean squared error between the artefact data and the filtered artefact-corrupted
data. Define Rxx = E{x(t)x(t)⊤}, Rvv = E{v(t)v(t)⊤} and Raa = E{a(t)a(t)⊤} ∈
RLdC×LdC respectively as the artefact-corrupted, artefact-free and artefact correlation
matrices. Then, it can be shown that the following expression minimises equation
2.2 [14]:

Rxx = Qdiag
(
λx,1, . . . , λx,LdC

)
Q⊤;

Rvv = Qdiag
(
λv,1, . . . , λv,LdC

)
Q⊤;

W = R−1
xx Qdiag

(
λx,1 − λv,1, . . . , λx,LdC − λv,LdC

)
Q⊤

[
e1 . . . eC

]
.

(2.3)

Herein, the columns of Q ∈ RLdC×LdC are called the generalised eigenvectors of
the matrix pencil (Rxx; Rvv) corresponding to eigenvalues (λx,1, . . . , λx,LdC ; λv,1, . . . ,
λv,LdC) ∈ R. In addition, ec ∈ RLdC×1, c = 1..C denotes the vector with element 1
at the position (c−1)Ld +1 and 0 elsewhere. Given the GEVD nature of the solution,
filter W is referred to as a generalised eigenvalue decomposition multichannel Wiener
filter (GEVD-MWF). The artefact-free EEG v(t) can subsequently be approximated
as follows:

v(t) = x(t)− a(t);
≈ x(t)−W ⊤x(t).

(2.4)
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2.3. Envelope extraction

Automated eye and muscle artefact detection

The question remains how to annotate the EEG data as being artefact-free or artefact-
corrupted. To this end, we opt for automated artefact detection techniques. These
techniques leverage the spatial and spectral properties of the specific artefacts, as
detailed in section 1.2 [4, 16].

As mentioned in section 1.2, eye blink artefacts appear as high amplitude peaks
in the frontal channels. Therefore, the segments are labelled as artefact segments
whenever the power in the frontal channels1 is 5 times larger than the average power
in those channels [4, 16].

Similarly, muscle artefacts, caused by ear and neck movement, situate themselves
around the sensors at the side of the head. Furthermore, these muscle artefacts
typically live within the [20, 60] Hz frequency range [4]. Therefore, to detect these
artefacts, the EEG data are firstly bandpass filtered using a zero-phase Chebyshev
type 2 filter that attains an 80 dB attenuation at the frequency 10% out of the
[20, 60] Hz passband. Segments are subsequently labelled as muscle artefacts if the
power in the channels at the side of the head2 have a power 60 times larger than the
average power in those channels.

2.3 Envelope extraction
Before extracting features, the envelope of the speech signal needs to be extracted
since the EEG signal tracks this speech envelope [5, 8, 15]. In this way, features
can exploit this neural tracking property. In [15], a framework to extract this auditory
envelope is proposed using three steps: filter bank filtering, power law application
and subband combining.

Firstly, the audio signal is split into 28 subbands using a gamma-tone filter-bank
consisting of 28 filters. Within this filter-bank, the filters have centre frequencies
ranging from 50 Hz to 5 kHz, spaced according to 1 equivalent rectangular bandwidth
[17, 18]. This filter-bank models the frequency-selectivity of the human auditory
system. Indeed, the human auditory range is partitioned into critical bands which
increase in width with increasing frequency, and within such a critical band, humans
cannot distinguish sounds whenever other sounds are present [15, 19].

Secondly, a power law is applied to each subband, i.e., |yk(t)|0.6, k = 1..28, with
yk(t) ∈ R the kth subband signal. This operation extracts the stimulus envelope per
subband and compensates for the fact that the connection between the intensity of

1More specifically, the available subset of following channels is used: Fp1, AF7, AF3, Fpz, Fp2,
AF8, AF4 and AFz.

2More specifically, the available subset of following channels is used: AF7, F7, F5, FT7, FC5,
T7, C5, TP7, CP5, P7, P5, P9, PO7, AF8, F6, F8, FC6, FT8, C6, T8, CP6, TP8, P6, P8, PO8 and
P10.
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2.4. Preprocessing framework

the auditory signal and the perceived loudness is nonlinear [15, 20].

Finally, the 28 subbands are recombined into a single auditory envelope using equal
weights per subband [15].

2.4 Preprocessing framework
The previously presented blocks (artefact removal and envelope extraction) fit into
a general framework of jointly preprocessing EEG and audio data3,4. This scheme
is proposed in [16] and summarised in figure 2.1. Only the muscle artefact removal
block (shaded in red) is additionally included with respect to [16]. Moreover, the
blocks which are shared in the preprocessing of audio and EEG are shaded in lime.
The goal of this preprocessing is fourfold: extracting the auditory envelope, selecting
’interesting’ frequency ranges, removing artefacts and downsampling the signal. In-
deed, the filtering operation is introduced to leverage the spectral characteristics of
the EEG and the downsampling operation allows to reduce the computational cost
of the feature extractor-classifier framework.

Regarding the auditory data stream, the envelope is extracted following the pro-
cedure of section 2.3. Thereafter a linear-phase, antialiasing filter is applied and
the envelope is downsampled to 256 Hz. Following, the signal is bandpass filtered
using a zero-phase Chebyshev type 2 filter that attains an 80 dB attenuation at
the frequency 10% out of the passband. In this work, the passband is chosen to
correspond to the following frequency ranges: [0.5, 4] Hz (delta band), [4, 8] Hz (theta
band), [8, 13] Hz (alpha band), [13, 30] Hz (beta band) and [0, 128] Hz (Unfiltered).
Afterwards, another linear-phase, antialiasing filter is applied and the envelope is
further downsampled to 128 Hz.

The EEG signal is first filtered with a linear-phase, antialiasing filter and downsam-
pled to 256 Hz. In order to mitigate the effect of muscle and eye blink artefacts, the
GEVD-MWF procedure of section 2.2 is adhered to, wherein an EEG time-lag of
3 samples, both positive and negative, is used. To this end, data are grouped per
subject and the MWFs are computed in a subject-specific manner on the first 10
minutes of the associated EEG data. Succeeding, the EEG signals are referenced
with respect to channel Cz by subtracting the Cz channel content from all other
channels, and the signal is bandpass filtered using the same filter as for the audio
preprocessing. Finally, after passing through another linear-phase, antialiasing filter,
the signal is downsampled to 128 Hz.

3The code of the preprocessing framework has been generated based on the OMSI coding
framework, developed by ExpORL KU Leuven, as available on 10/10/2021. This framework is not
publicly accessible.

4For MWF based artefact removal, an MWF framework, developed by B. Somers as available
on 10/10/2021 at https://github.com/exporl/mwf-artifact-removal, is utilised.
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2.5. Conclusion

Periods of longer silence (> 0.25 s) are not considered in further design. To this end,
segments are labelled as silence whenever the normalised amplitude of the audio
signal is smaller than 0.05.

Audio
γ-tone
filter-
bank

|yk(t)|0.6

power
law

Linearly
combine

sub-
bands

Down-
sample
to 256

Hz

Bandpass
filter
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(a) Audio

EEG
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removal

Cz-ref-
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Bandpass
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sample
to 128
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(b) EEG

Figure 2.1: Joint EEG-audio preprocessing schematic. Except for the addition of
the shaded block in red, this framework is implemented as proposed in [16]. Blocks,
shaded in lime, are shared between the audio and EEG preprocessing.

2.5 Conclusion
Before feature extraction, the auditory stream and EEG data pass through a pre-
processing step as introduced in figure 2.1. This framework consists of an envelope
extraction block since the EEG signal tracks the speech envelope. The framework
also consists of an EEG artefact removal block to remove signals from interfering
electrical sources. Furthermore, bandpass filters select ’interesting’ frequency ranges
to exploit the spectral EEG characteristics, and downsampling blocks are introduced
to reduce computational cost at the feature extraction and classification level.
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Chapter 3

Feature extraction

3.1 Introduction
This chapter gives a theoretical overview of features that show conceptual potential
to discriminate between auditory attention and inattention states. This feature
extraction phase forms the first step in the classic machine learning approach as
illustrated in figure 1.4. Since some of these features are based on the concept
of power spectral density (PSD), its definition and estimation are discussed first
(section 3.2). Nevertheless, the main part of this chapter consists in introducing
the features themselves, which are split into two groups: neural tracking based
features, exploiting the envelope tracking property of the brain, and brain activity
based features, exploiting solely EEG properties. The neural envelope tracking based
features are described in section 3.3 and can be subdivided into a least squares (LS),
a least absolute shrinkage and selection operator (LASSO), a canonical correlation
analysis (CCA) and a novel Kullback-Leibler divergence (KLD) feature. Similarly,
the brain activity based features are described in section 3.4 and can be subdivided
into common spatial pattern (CSP), band-power (BP) and entropy. Figure 3.1
provides a schematic overview of each of these studied features and serves as visual
support throughout this chapter. Moreover, both EEG and audio signals are assumed
to be zero-mean. After this theoretical analysis, the estimation on real data and
regularisation procedures are discussed respectively in sections 3.5 and 3.6. Indeed, in
practise, only limited and possibly badly conditioned data are available. Thereafter,
the visualisation procedure of the data-driven features is detailed in section 3.7.
Finally, section 3.8 concludes this chapter.
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Figure 3.1: Schematic overview of the features.
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3.2. Power spectral density estimation

3.2 Power spectral density estimation
The power spectral density (PSD) provides a way to assess the signal power per
frequency bin, i.e., it provides a frequency domain representation of the signal power
[21, 22]. The PSD PU (f) ∈ R of an infinite-length discrete time random process
u(t) ∈ R, with sampling frequency fs ∈ R is defined as follows [21, 22]:

PU (f) = lim
T →∞

1
f2

s T
E
{
|uT (f)|2

}
;

uT (f) =
T −1∑
t=0

u(t)e−j2π f
fs

t
.

(3.1)

Herein, uT (f) ∈ R corresponds to the discrete Fourier transform of the truncated
random process consisting of T ∈ N0 samples. Furthermore, j represents the
imaginary unit, and t and f respectively denote time and frequency. Since the power
spectral density PU (f) reveals the frequency distribution of the signal power, the
band-power P ∈ R of u(t) between frequencies f1 ∈ R and f2 ∈ R can be calculated
as follows [21, 22]:

P =
f2∑

f=f1

PU (f). (3.2)

However, equation 3.1 only holds for ideal, infinite-length random processes, whereas
real life signals are finite length and noisy. Therefore, an estimation procedure needs
to be implemented using finite length data. This estimation procedure furthermore
need to cope with the following problems [21, 23]:

• Bias: Real life data are finite length, such that the time domain signals can be
seen as a multiplication of an infinitely long signal by a rectangular function.
Equivalently, in the frequency domain, this corresponds to a convolution
between the Fourier transformed infinite-length signal and a sinc function,
which distorts the frequency domain representation due to its main and side
lobes. Indeed, the main lobe determines the spectral resolution (δf ∈ R) of
the frequency domain signal (narrowband bias) and the side lobes result in
spectral leakage (broadband bias).

• Variance: Real life data are corrupted by noise, which results in noisy spectral
estimations.

In order to limit the bias and variance in the spectral estimation, multitaper spectral
analysis is utilised [21, 24]. In this method, L ∈ N0 separate PSD estimations are
performed by multiplying the time domain signal, of length T ∈ N0, by L distinct
window functions (tapers) and subsequently Fourier transforming the windowed time
domain signals. This windowing smoothens the time domain signal, hence limiting
the broadband bias. Thereafter, the L PSD estimations are averaged to limit the
noise influence and to arrive at one estimation.

These tapers are chosen to be orthogonal to one another and to have optimal time-
frequency concentration. This allows for uncorrelated PSD estimates and reduced

15



3.3. Neural envelope tracking based features

narrowband bias. In practise, a good choice for the number of tapers L ∈ N0 for a
desired frequency resolution δf , corresponding to a signal of T samples, is computed
according to the following heuristic [21, 23, 25]:

L ≤ ⌊fsTδf⌋ − 1, (3.3)

wherein fsTδf ≥ 2. In what follows, P̄U (f) (note the overbar) will be used to denote
the PSD estimate of a finite-length and noisy signal u(t) ∈ R using multitaper
spectral analysis.

3.3 Neural envelope tracking based features
Firstly, this section expands the concept of neural envelope tracking and its impli-
cations. Thereafter, a description of four features, based on this envelope tracking
concept, is given: least squares (LS), least absolute shrinkage and selection opera-
tor (LASSO), canonical correlation analysis (CCA) and the novel Kullback-Leibler
divergence (KLD) based approach.

3.3.1 Neural envelope tracking

As noted in section 1.2, the brain tracks the envelope of speech signals [5, 8, 26, 27].
In fact, a higher level of auditory attention leads to improved envelope tracking
[8, 16]. In [16], it has indeed been shown that subjects attentive to an auditory
stream track the auditory envelope to a higher extent than subjects ignoring that
auditory stream while focusing on a visual stream instead. In addition, in the AAD
domain (see section 1.3), it has been proven that the degree of envelope tracking lies
higher for attended than for unattended streams whenever multiple auditory streams
are present at the same time [8, 11, 15, 28]. To characterise this envelope tracking,
the time-lag between stimulus onset and EEG response, and the associated spectral
EEG bands are leveraged [8, 16].

Regarding the time-lags, the EEG data track the auditory envelope approximately
until 500 ms after stimulus onset [16, 27]. Indeed, due to causality, the EEG response
always lags with respect to the auditory stimulus, explaining the positive delay.
Further, both ignored and attended auditory streams seem to be tracked equally
well in the early neural responses ([0, 85] ms), while the attended stream seems to
be tracked to a higher degree in the late neural responses ([85, 500] ms) [27]. In
[16] however, already a difference in the responses at lags [0, 75] ms has been found
between subjects attending or ignoring an auditory stream.

Regarding the spectral EEG distribution, the delta and theta bands appear to be
most important in this envelope tracking [5, 8, 16]. These frequency bands indeed
enclose the word and phrase rate ([1, 4] Hz), and syllable rate ([4, 8] Hz) [29, 30]. In
addition, the high gamma band seems to encode differences in neural tracking [31].
Regarding the alpha band, debate exists in literature: In [32], envelope tracking has
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3.3. Neural envelope tracking based features

been observed in the alpha band, although in [33], this effect is devoted to the alpha
power and not to envelope tracking properties.

In order to reveal the level of envelope tracking, based on the time-lag and spectral
properties, the EEG and/or audio signals get filtered by the feature extractor. There
exist multiple approaches to do so and we will discuss four of them in the following
subsections.

3.3.2 Least squares

This procedure consists in relating the EEG data to the ground-truth auditory
envelope. As illustrated in figure 3.1a, this can be achieved by introducing a
spatiotemporal multiple input single output (MISO) filter (called decoder)
at the EEG side, with the goal to reconstruct the auditory envelope
from the EEG data. In order to design this decoder, a least squares procedure is
adhered to. To subsequently measure the degree of envelope tracking, the correla-
tion between the reconstructed envelope and the ground truth auditory envelope is
calculated. Higher correlation levels indeed denote higher attention levels: In [16], it
has been shown that these correlations reach higher levels in subjects attending an
auditory stream than in subjects ignoring this stream while focusing on a visual task.
Furthermore, in [8], it has been shown that higher correlation levels are reached
for attended streams than for unattended streams in a multiple speaker AAD scenario.

As in section 2.2 (equation 2.1), let x(t) ∈ RLdC×1 represent a concatenation of
EEG signals across C channels and across time-lags Ld−s..Ld−e (Ld = Ld−e − Ld−s).
Furthermore, let y(t) ∈ R represent the stimulus envelope at time t. Both EEG
and audio are assumed to be zero-mean, in this and all following sections. The
spatiotemporal MISO filter or decoder d ∈ RLdC×1 is then retrieved by minimising
the mean squared error between the reconstructed (d⊤x(t) ∈ R) and original stimulus
(y(t) ∈ R) [8]:

min
d

E{(d⊤x(t)− y(t))2}. (3.4)

Setting the derivative of equation 3.4 to 0, yields the solution [8, 15]:

d = E{x(t)x(t)⊤}−1E{x(t)y(t)}
= R−1

xx rxy.
(3.5)

In this equation, Rxx = E{x(t)x(t)⊤} ∈ RLdC×LdC denotes the autocorrelation
matrix of concatenated EEG channels across time-lags Ld−e..Ld−s and rxy =
E{x(t)y(t)} ∈ RLdC×1 denotes the cross-correlation vector between the time-lagged
and channel-concatenated EEG and the stimulus envelope.
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3.3. Neural envelope tracking based features

From another viewpoint, these least squares decoders can also be retrieved (up to a
scaling) by maximising the following benefit function [15]:

max
d

ρ(d⊤x(t), y(t));

max
d

E{d⊤x(t)y(t)}√
E{(d⊤x(t))2}E{y(t)2}

,
(3.6)

i.e., the decoder d also represents the spatiotemporal filter that maximises the
Pearson correlation coefficient ρ(.) between the filtered EEG data and the stimulus
envelope [15]. Therefore, this scale-invariant correlation measure can be used to
quantify the degree of neural tracking. In what follows, we will utilise another
flavour of correlation coefficient, namely the Spearman correlation coefficient [34],
as measure of envelope tracking. This Spearman correlation coefficient corresponds
to the Pearson correlation where the data are replaced by their rank values. As
such, the Spearman correlation coefficient assesses monotonic relations, whereas the
Pearson correlation assesses linear relations [34].

3.3.3 Least absolute shrinkage and selection operator

In addition to investigating the correlation using least squares decoders, in [35], it is
proposed to promote the sparsity of said decoders and to use this sparsity
as a measure for envelope tracking. They claim decoders, related to subjects
tracking the neural envelope well, to consist of a mixture of large nonzero and zero
weights. On the contrary, they claim decoders, related to subjects tracking the neural
envelope less well, to have smaller, more randomly distributed weights. The main
idea is thus to train decoders on data at inference time and to assess the sparsity
of these trained decoders. A comparative study did however not find the same
differentiating nature [28].

It is important to note that the studies of [28] and [35] took place in an AAD setting.
The introduction of this sparsity intuition into our domain of differentiating between
auditory (in)attention is novel. In addition, the combination of least squares decoders
and the Gini-index sparsity measure, introduced below ,is novel as well.

In addition, it is important to understand the inherent difference in setup between
this sparsity feature and the LS feature. In the LS setting, a decoder is calcu-
lated on a training set. At inference, this decoder is applied to the EEG data
and the correlation between the reconstructed and ground truth envelope delivers
the actual feature value. On the contrary, in this sparsity setting, a decoder is
calculated at inference time and the sparsity of this decoder corresponds to the
actual feature value. Figure 3.1b yields a visual representation of this sparsity feature.

The sparsity induction can be achieved by adding a sparsity-promoting least absolute
shrinkage and selection operator (LASSO) term with weight γ ∈ R+

0 to the LS cost
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function of equation 3.4 [36]:

min
d

E{(d⊤x(t)− y(t))2}+ γ||d||1. (3.7)

This problem is well-defined since it can be shown to correspond to a convex problem
(more specifically a convex quadratically constrained quadratic problem (QCQP)),
wherein each minimum corresponds to a global minimum [36, 37].

To assess the degree of sparsity, an appropriate measure is required. There can
be formulated 6 properties, which are ideally satisfied by such a sparsity measure
[38, 39, 40]:

• Robin hood: Subtracting a value from a large coefficient and redistributing
it over the other coefficients decreases sparsity.

• Scaling: Scaling does not influence sparsity.
• Rising Tide: Adding the same value to each coefficient decreases sparsity.
• Cloning: The sparsity of a vector d or any positive number of concatenations

of d is the same.
• Bill Gates: Increasing the value of the highest coefficient increases sparsity.
• Babies: Extending a vector with zero values increases sparsity.

The Gini-index is a sparsity measure that satisfies all of these properties, although
it can only be applied if all elements of d are nonnegative [38]. Therefore, the
Gini-index can be applied to the least squares decoder, wherein all elements are
replaced by their absolute value. This Gini-index can subsequently be formulated as
follows [38, 39, 41]1:

S(d) = 1− 2
LdC∑
n=1

(
|d(n)|
|| |d| ||1

(
LdC − n + 1

2
LdC

))
. (3.8)

Note that this metric allows to compare the sparsity of vectors of different lengths
since the vector length does not influence this sparsity measure [38]. This property
allows, e.g., to still use the Gini-index whenever multiple sensors are malfunctioning.

3.3.4 Canonical correlation analysis

As with the LS feature, canonical correlation analysis (CCA) tries to assess the
level of envelope tracking by measuring the correlation between (a filtered version
of) the EEG signal and (a filtered version of) the auditory envelope, as illustrated
in figure 3.1c [11, 42, 43]. To this end, again, a spatiotemporal MISO filter (de-
coder) is inserted at the EEG side. However, CCA also introduces a temporal
MISO filter (encoder) at the auditory side. In other words, both EEG and audio
are transformed to a latent space, where a correlation coefficient mea-
sures the level of envelope tracking [11, 28, 42]. As before, both EEG and
audio are assumed to be zero-mean. CCA has been seen to lead to higher accuracies

1|d| represents the elementwise absolute value operation of vector d.
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3.3. Neural envelope tracking based features

in the AAD domain [11, 42], but has not yet been introduced in our domain of interest.

Mathematically speaking, CCA finds a decoder d ∈ RLdC×1 and an encoder e ∈ RLe×1

jointly such that the filtered EEG and filtered audio data are maximally correlated
according to the Pearson correlation coefficient ρ(.), i.e.[11, 42, 43]:

max
d,e

ρ(d⊤x(t), e⊤y(t)). (3.9)

Herein, x(t) represents the channel-concatenated and time-lagged EEG, as defined
in equation 2.1, and y(t) ∈ RLe×1 represents the time-lagged stimulus envelope
corresponding to time-lags Le−s..Le−e (Le = Le−e − Le−s):

y(t) =
[
y(t + Le−s) . . . y(t + Le−e − 1)

]⊤
. (3.10)

Utilising the definition of the Pearson correlation coefficient and substituting correla-
tion matrices Rxx = E{x(t)x(t)⊤} ∈ RLdC×LdC , Ryy = E{y(t)y(t)⊤} ∈ RLe×Le and
Rxy = E{x(t)y(t)⊤} ∈ RLdC×Le , equation 3.9 can be rewritten as follows [11, 42, 43]:

max
d,e

E{(d⊤x(t)y(t)⊤e)}√
E{d⊤x(t)x(t)⊤d}

√
E{e⊤y(t)y(t)⊤e}

; (3.11)

max
d,e

d⊤Rxye√
d⊤Rxxd

√
e⊤Ryye

. (3.12)

Since d and e are only defined up to a nonzero scalar, d⊤Rxxd and e⊤Ryye are
constrained to 1, i.e., the variances of the projected data are constrained to 1 [11, 42]:

max
d,e

d⊤Rxye

s.t. d⊤Rxxd = 1
e⊤Ryye = 1.

(3.13)

By writing down the necessary conditions for first order optimality (so-called Karush-
Kuhn-Tucker (KKT) conditions) [44], it can be shown that equation 3.13 (a QCQP)
boils down to a generalised eigenvalue decomposition (GEVD) [11, 42, 43]:[

0LdC×LdC Rxy

R⊤
xy 0Le×Le

] [
d
e

]
= λ

[
Rxx 0LdC×Le

0Le×LdC Ryy

] [
d
e

]
. (3.14)

The resulting decoder d and encoder e match the eigenvectors corresponding to the
largest eigenvalue [11, 42, 43]. This solution can be extended to include additional
decoders dj ∈ RLdC×1 and encoders ej ∈ RLe×1, j = 1..P with P maximally equal
to min(rank(Rxx), rank(Ryy)) ∈ R. To this end, these additional decoders also
maximise the correlation of the projected data, yet under additional uncorrelatedness
constraints with respect to previous projections, i.e.,
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3.3. Neural envelope tracking based features

djRxxdi = 0, i ̸= j;
ejRyyei = 0, i ̸= j, ∀i, j = 1..P.

(3.15)

Defining D =
[
d1 . . . dP

]
∈ RLdC×P and E =

[
e1 . . . eP

]
∈ RLe×P , these addi-

tional constraints lead to the following optimisation problem [11, 42, 43]:

max
D,E

Tr{D⊤RxyE}

s.t. D⊤RxxD = IP ×P

E⊤RyyE = IP ×P .

(3.16)

Indeed, given the similarity in structure between equations 3.9 and 3.16, it can be
seen that equation 3.16 serves as a generalisation of equation 3.9. The solution of
this equation 3.16 thus also boils down to a generalised eigenvalue decomposition,
wherein Λ ∈ R2P ×2P contains the eigenvalues on its diagonal:[

0LdC×LdC Rxy

R⊤
xy 0Le×Le

] [
D
E

]
=
[

Rxx 0LdC×Le

0Le×LdC Ryy

] [
D
E

]
Λ. (3.17)

The decoders and encoders correspond to the eigenvectors related with the subsequent
P largest eigenvalues. In other words, by choosing decoders and encoders correspond-
ing to the subsequent largest eigenvectors, a multidimensional latent space can be
constructed of maximal dimension P = min(rank(Rxx), rank(Ryy)) [11, 42, 43].

Finally, note that the LS approach is actually a special case of the CCA approach
[11, 42]. Both paradigms indeed optimise the Pearson correlation coefficient, yet,
the CCA approach also filters the auditory envelope. Nevertheless, whenever the
time-lag of the temporal filter is chosen to be 0, this filter reduces to a scaling. Since
the filters are only defined up to some nonzero scaling, due to the scale-invariance of
the Pearson correlation coefficient, the CCA approach is in that case fully equivalent
to the LS approach.

3.3.5 Kullback-Leibler divergence

Finally, envelope tracking can be studied in the frequency domain, based on the
concept of the PSD (see section 3.2). A normalised PSD sums to 1 and only contains
values between 0 and 1, such that normalised PSDs satisfy all the properties of
probability density functions (PDF) [45, 46]. This insight provides a gateway for
utilising measures from probability theory to quantify the level of neural envelope
tracking. To this end, we leverage a similarity measure between distributions, the
Kullback-Leibler divergence (KLD), as a neural envelope tracking feature. This
approach plus-minus consists in a binwise comparison of the power distri-
bution in the EEG signal and the audio envelope.
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3.3. Neural envelope tracking based features

Although the KLD has already been used to relate PSDs to one another (e.g. [47, 48]),
it has not yet been used to relate EEG to auditory envelopes. Furthermore, we
present late and early fusion methods, novel as such to our best of knowledge, to
fuse the C EEG channels into one KLD based feature.

Firstly, the concept of the KLD as a measure from probability theory is expanded.
Thereafter, the KLD calculation between one EEG channel and the auditory envelope
is detailed. Finally, both late and early fusion approaches are introduced to relate
multiple EEG channels to the auditory envelope.

Probabilistic view

The Kullback-Leibler divergence (KLD) ≥ 0 between two discrete probability density
functions fX (x) and gX (x), each consisting of P ∈ N0 probability values, is defined
as follows [49, 50]:

KLD (fX (x) ||gX (x)) =
P∑

p=1
fX (xp) log2

(
fX (xp)
gX (xp)

)
, (3.18)

and evaluates the difference between these probability distributions fX(x) and
gX(x). Larger values denote less similarity in distribution. However, note that
this metric does not correspond to a distance-metric since KLD (fX (x) ||gX (x)) ≠
KLD (gX (x) ||fX (x)). Indeed, in KLD (fX (x) ||gX (x)), whenever ∃p : fX(xp) = 0,
there is no contribution to the KLD. Yet, whenever ∃p : gX(xp) = 0 the KLD
becomes equal to ∞. The metric is thus typically utilised when a distribution gX(x)
is known and one would like to quantify how close another distribution fX(x) is to
that ground truth distribution gX(x).

Relating one EEG channel to the stimulus envelope

These KLD properties are leveraged in a neural tracking setting. After normalising
the PSD estimate of the channel-c EEG signal P̄Xc ∈ R and the PSD estimate of the
auditory envelope P̄Y ∈ R to their respective band-power, the KLD can be readily
computed as follows 2:

KLDc =
f2∑

f=f1

P̄Xc,n(f)log2

(
P̄Xc,n(f)
P̄Y,n(f)

)
. (3.19)

Therefore, as illustrated in figure 3.1d, the Kullback-Leibler divergence (KLD) can
be utilised as a novel neural envelope tracking feature. This metric roughly consists
in a binwise comparison between the PSD of the EEG and the PSD of the audio data.
This feature thus comes with an additional neurological interpretation: Due to the
binwise comparison, the KLD inherently assumes that the frequency content of the

2Subscript n denotes normalisation of the PSD with respect to the band-power.
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3.3. Neural envelope tracking based features

auditory envelope is stored at the same frequencies in the EEG data. This require-
ment is not straightforward due to nonlinear processing in the brain, although in
[51] it has been shown that the brain locks to the modulation frequency of sinusoidal
waves. Therefore, this KLD measure shows the potential of providing additional
insights into the mechanisms underlying the neural envelope tracking.

This procedure can readily be repeated for each EEG channel, yielding C KLD
values. Nonetheless, in order to transform them into one interpretable KLD metric,
we present two approaches: a late fusion and an early fusion one.

Late fusion

Regarding the late fusion approach, the C KLD values are first computed and
only thereafter combined. This can, e.g., be achieved by a classifier, by using
equal weights or by solving a custom optimisation problem. The latter approach is
opted in this work to optimally control the interpretation of the resulting, averaged
value. To this end, the KLD values are linearly combined according to the following
cost function:

min
a

a⊤k + γ||a||22
s.t. 0C×1 ≤ a

1⊤
C×1a = 1.

(3.20)

Herein, k = [KLD1 . . . KLDC ]⊤ ∈ RC×1 represents a stacking of the C KLD values,
a ∈ RC×1 represents the weights attributed to each channel and γ ∈ R denotes a
nonzero weight to control the relative importance of each of the two cost terms. In
other words, the linear combination is sought that minimises the overall combined
KLD. In this light, the first constraint expresses that all elements in the weighting
need to be larger than 0. This constraint guarantees that the overall feature is larger
than 0, enabling interpretation as a KLD. The second constraint expresses that all
elements must sum to 1, such that a can in fact be interpreted as a weighted sum.
The term γ||a||22 moreover is added to the cost function, to favour solutions with
smaller weights. There are two reasons for this: Firstly, in general, adding this
term leads to better generalising solutions [52]. Secondly, without this term, the
solution would just boil down to selecting the channel with minimal KLD, rendering
the optimisation problem useless. After solving equation 3.20 at training time, the
weighting vector a can readily be applied to PSD estimates at inference time.

Early fusion

Regarding the early fusion approach, the PSD estimates of the C EEG channels
are first combined and only thereafter the KLD is computed. To this end,
the normalised PSDs are first weighted by weighting vector a ∈ RC×1, prior to
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3.4. Brain activity based features

calculating the KLD, according to the following cost function:

min
a

KLD

 ∑C
c=1 a(c)P̄Xc,n(f)∑f2

f=f1

∑C
c=1 a(c)P̄Xc,n(f)

||P̄Y,n(f)


s.t. a ≥ 0C×1

||a||2 = 1.

(3.21)

The normalising denominator in the EEG weighting of the cost function and the first
constraint (a ≥ 0C×1) are added to enforce the PDF properties to the averaged PSD.
Indeed, the combination of both makes sure that the resulting averaged PSD sums
to 1 and that all its elements remain between 0 and 1. The normalisation factor
nevertheless makes the cost function scale-invariant. To combat this scale-invariance,
the second constraint (||a||2 = 1) is added to retrieve the solution with unit L2-norm.
This constraint yields the interpretation of optimising the cost function over a hyper-
sphere. A drawback of equation 3.21 is its non-convexity, which means that there
may be local critical points present, which do not correspond to a global minimum.
The interested reader can find a proof of this statement in appendix A.2.

3.4 Brain activity based features
In addition to relating the EEG signal to the auditory envelope, there are techniques
to exploit properties of the EEG signal itself. Firstly, a brief overview of work related
to brain activity (features) in the broad field of attention is given. Next, three brain
activity based features are described: band-power (BP), common spatial pattern
(CSP) and entropy.

3.4.1 Brain activity

In literature, the frontal and parietal-occipital regions (see figure 3.2) are associated
with the concept of attention [53, 54, 55]. However these studies are not entirely
the same as our domain of interest: In [53], visual sustained and working memory
have been investigated and in [55], localisation, mathematical, spatial, verbal and
multisource interference tasks have been studied. Nevertheless, the goal of this
study is not focused on the broad concept of attention, but on attention towards an
auditory stream and more specifically, discriminating this auditory attention state
from auditory inattention states. Furthermore, subjects being inattentive to
an auditory stream, could still be attentive, yet to another stimulus such
as a visual or a sensory one. In [54], the difference between auditory and visual
attention has been studied: Subjects were displayed a signal with the instruction to
attend either to a visual or an auditory unit of a subsequent compound audiovisual
task. Specifically, these subjects needed to attend either a beep sound or a flash in a
beep-flash combination. They found that subjects attending the beep had higher
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Figure 3.2: Broca’s and Wernicke’s areas mapped to a 64-channel EEG cap. The
convention of [57] is adhered to.

power in the parietal-occipital region. However, our setup is still more general, using
real life stimuli. Therefore, results will not necessarily coincide.

Moreover, two brain regions, Broca’s and Wernicke’s areas, are related to language
processing and are correspondingly of interest [56, 57]. To relate these brain areas to
specific EEG sensors we use the same mapping as proposed in [57] and as shown in
figure 3.2. However, this mapping is not strict since the EEG sensors further away
may still measure signals originating from these areas, albeit to a lesser extent. In
addition, EEG has a poor spatial resolution, as indicated in section 1.2.

Frequency-wise, the alpha and beta bands are classically related to the concept of
attention [12, 58, 59]. However, again, these studies mainly treat the general concept
of attention, whereas our setup also needs to permit differentiation between different
attention cases. Referring back to the study in [54], they have found differences in
the alpha band-power, yet again, our setup is tailored towards real life stimuli and
hence somewhat different.

3.4.2 Band-power

It is expected that different brain regions are less or more active whenever
a subject is being (in)attentive to an auditory stream. This activity can,
e.g., be characterised by the power, as illustrated in figure 3.1e. In [54], this
approach has been applied in differentiating between attention to an auditory stream
and attention to a visual stream. Nevertheless, whereas in [54] beep sound were
utilised, we use real-life stimuli.

This band-power (BP) measures the power PBPc ∈ R of a channel-c EEG signal
Xc(t) ∈ R in a certain frequency range [f1, f2] ∈ R, e.g., by using its PSD estimate
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Figure 3.3: 64-channel EEG cap: division of the sensors into groups.

P̄Xc(f) ∈ R:

PBPc =
f2∑

f=f1

P̄Xc(f). (3.22)

This approach can be taken for every channel separately. Nonetheless, for visualisation
and interpretation purposes, the band-power is aggregated into regions, as shown
in figure 3.3. This is, the sensors are divided into a front-back and left-right grid,
resulting in 11 groups. However, again, this subdivision does not result in a perfect
separation due to neighbouring sensors picking up similar signals and due to the
EEG’s poor spatial resolution, as detailed in section 1.2.

3.4.3 Common spatial pattern

As illustrated in figure 3.1f, common spatial pattern (CSP) [60, 61] tries to differenti-
ate between two classes, solely based on the EEG data, by applying a spatial MISO
filter to the EEG data. The underlying idea is that the two classes (here attention
and inattention to the auditory stimulus) result in different brain activity, which can
be exploited by applying a spatial filter.

CSP has already been used in other brain computer interface (BCI) applications,
e.g., in [62] and [60], and in [12] CSP was introduced into the AAD domain, where
they found CSP to outperform LS- and CCA-approaches. However, it has not yet
been applied in our domain of interest.

To exploit this spatial information, CSP maximises the output energy of one
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class K1, while minimising the output energy of another class K2
3, i.e.,

CSP defines a filter w ∈ RC×1 according to the following benefit function:

max
w

w⊤R1w
w⊤R2w . (3.23)

Herein, the subscript 1 denotes instances belonging to class K1 and, similarly,
the subscript 2 denotes instances belonging to class K2. As such, the channel-
concatenated normalised EEG signals of classes K1 and K2 are respectively denoted
by x1(t) ∈ RC×1 and x2(t) ∈ RC×1. The autocorrelation matrices Ri ∈ RC×C ,
i = 1, 2 are subsequently defined as follows [60]:

R1 = E{x1(t)x1(t)⊤};
R2 = E{x2(t)x2(t)⊤}.

(3.24)

Equation 3.23 can be converted into a constrained optimisation problem (a QCQP),
since w is only defined up to a nonzero scalar. In fact, constraining the denominator
to 1 results in the following problem [60]:

max
w

w⊤R1w

s.t. w⊤R2w = 1.
(3.25)

Using the conditions for first order optimality (KKT-conditions), this problem
subsequently boils down to solving the following equation [60]:

R1w = λR2w. (3.26)

Thus, the filter w can be retrieved as the solution of a generalised eigenvalue problem.
In fact, w corresponds to the eigenvector with respect to the largest eigenvalue
λ ∈ R [60].

Of course, one could also design a filter corresponding to the inverse optimisation
problem of equation 3.23:

max
w

w⊤R2w
w⊤R1w . (3.27)

Nonetheless, it turns out that this problem boils down to the same generalised
eigenvalue decomposition of equation 3.26, with the only difference that now the
eigenvector corresponding to the smallest eigenvalue needs to be retained [60]. Both
problems therefore reduce to the same joint diagonalisation problem, although still
two separate filters are obtained.

Common spatial pattern can also be extended to generate P ∈ N0 ≤ C filters by
imposing additional uncorrelatedness constraints on the projections. For example, for

3Note the connection with the band-power feature, although the CSP feature firstly applies a
filtering stage.
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the filters that maximise the output energy of class K1
(
W =

[
w1 . . . wP

]
∈ RC×P

)
,

the following problem is solved [60]:

max
W

Tr{W ⊤R1W}

s.t. W ⊤R2W = IP ×P .
(3.28)

Similar as before, this optimisation problem corresponds to a generalised eigenvalue
decomposition, i.e., a joint diagonalisation of R1 and R2 with Λ1, Λ2 ∈ RP ×P diagonal
matrices containing the eigenvalues [60]:

W ⊤R1W = Λ1;
W ⊤R2W = Λ2.

(3.29)

Similarly, the inverse optimisation problem of 3.28 corresponds to the same joint
diagonalisation.

At inference, after the CSP-filtering step by P filters for maximising the output
energy of class K1 (w1,p ∈ RC×1, p = 1..P ) and P filters for maximising the output
energy of class K2 (w2,p ∈ RC×1, p = 1..P ), features f ∈ R2P ×1 are often extracted
by computing the log-energy of the channel-concatenated EEG signal x(t) ∈ RC×1

over some time window T ∈ N0 [12, 60]:

f =
[
log

(
σ2

1,1

)
. . . log

(
σ2

1,P

)
log

(
σ2

2,1

)
. . . log

(
σ2

2,P

)]⊤
;

σ2
i,p =

T −1∑
t=0

(
w⊤

i,px(t)
)2

, i = 1, 2, p = 1..P.
(3.30)

3.4.4 Entropy

The entropy characterises the level of uncertainty in a distribution. There-
fore, high attention levels connect to high entropy levels (and thus high
uncertainty in distribution). The reverse holds true for low attention
levels [6, 63]. In [6], the spectral entropy in alpha and beta band, and in frontal and
parietal-occipital sensors has been used as a metric to discriminate between active
and passive segments within the same EEG stream. In addition, in [63], the entropy
allowed to distinguish between subjects attentive to a flashing screen from passive
subjects. However, again, these setups are different from our application domain.

Reusing the idea of normalised PSDs satisfying all properties of a PDF, the spectral
entropy Sc [f1, f2] ∈ R in a certain frequency band [f1, f2] ∈ R can be calculated
using the PSD estimate P̄Xc(f) ∈ R of a channel-c EEG signal Xc(t) ∈ R (see also
figure 3.1g) [45, 46] 4:

Sc [f1, f2] = −
f2∑

f=f1

P̄Xc,n(f) log2

(
P̄Xc,n (f)

)
. (3.31)

4Subscript n denotes normalisation with respect to the band-power
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This entropy is an appropriate measure for the uncertainty in distribution since it
satisfies the following properties; the entropy is [50]:

• non-negative;
• zero when the outcome is deterministic;
• maximal when all P ∈ N0 outcomes are equiprobable, i.e., when the distribution

is uniform the entropy equals log2(P );
• smaller for a uniform distribution consisting of P outcomes than for a uniform

distribution consisting of Q ∈ N0 outcomes, whenever P < Q;
• a continuous function of the probabilities.

As with the BP feature, the entropy values are aggregated over the groups as shown
in figure 3.3 for visualisation and interpretation purposes.

3.5 Estimation on real data
The LS, LASSO, CCA and CSP feature extraction methodologies utilise the auto-
and/or cross-correlation matrices/vectors of the EEG and/or audio input data. In
sections 3.3 and 3.4, these matrices were defined using the expected value operator
E{.}. However, in practise, EEG and audio signals are finite length and only one
observable is available, such that the expected value operator cannot be calculated
as is. Therefore, stationarity [50] and ergodicity [50] are assumed and the auto-
and cross-correlation matrices and vectors are estimated using sample averages (e.g.
see [8] and [15]). Assuming EEG and audio signals of length T ∈ N0, the estimate
R̄xy ∈ RLdC×LeC (note the overbar) of cross-correlation matrix Rxy can be calculated
as follows:

R̄xy = 1
T

T −1∑
t=0

x(t)y(t)⊤. (3.32)

Other correlation matrices/vectors can be estimated in a similar fashion. Nonetheless,
note that these stationarity and ergodicity assumptions are rarely met in practise,
e.g., due to changing brain activity [13].

3.6 Regularisation
In the estimation of the correlation matrices on this finite data, mainly two problems
occur: Firstly, (too) large models tend to result in a poor fit on unseen validation
data, despite almost fully fitting the training data; A concept known as overfitting
[52, 64]. Secondly, the correlation matrices may be badly conditioned, introducing
numerical errors in the design of the feature extractors [65].

In order to avoid this overfitting and cope with these badly conditioned correla-
tion matrices, regularisation is introduced. This regularisation denotes a variety of
methods, with the shared goal of decreasing the degrees of freedom in the system,
in order to reduce the model’s complexity. In this way, variance is diminished at
the expense of introducing bias in the design [52]. Popular approaches to achieve
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this regularisation, are adding a weighted norm term to the cost functions of the
feature extractors and/or applying a prior dimensionality reduction on the EEG data
[15, 42, 52]. In fact, there are underlying relations between these two methods, as
discussed in [52]. In this text, we will detail this norm-weighted regularisation and
the accompanying closed-form solution and we will also detail principal component
analysis (PCA) as a dimensionality reduction approach [52, 66, 67]. For the sake of
clarity, but without loss of generality, we will tailor this section to the least squares
cost function of equation 3.4.

Norm-weight regularisation

In norm-weighted regularisation, a weighted norm-term is added to the feature
extractor’s cost function in order to drive the feature extractor weights to 0 and as
such reduce the complexity of the model. Regarding the LS cost function, this looks
as follows (γ ∈ R+) [52]:

min
d

E{(d⊤x(t)− y(t))2}+ γ||Γd||2p. (3.33)

Herein, Γ ∈ RLdC×LdC can be chosen freely to incorporate prior model beliefs. A
popular choice is nevertheless to equate Γ to the identity matrix ILdC×LdC [16, 65].
Moreover, the notation ||Γd||p =

∑LdC
l=1 |Γl,:d|p, p ≥ 1 represents the p-norm of the

vector Γd ∈ RLdC×1 5.

One popular option is to choose p = 1, which is referred to as LASSO- or L1-
regularisation [35, 52]. As already detailed in section 3.3, this results in a convex
LS cost function (namely a convex QCQP) that induces sparsity [36]. Another
popular choice is to set p = 2. This method is referred to as Tikhonov-regularisation,
L2-regularisation or ridge regression [52, 68]. Setting the gradient of equation 3.33
to 0, yields the solution:

d = (Rxx + γΓ⊤Γ)−1rxy. (3.34)

Regularising least squares using L2-regularisation thus corresponds to adding a
matrix with weight γ to the autocorrelation matrix. Similarly, CCA can be regu-
larised by adding a weighted matrix to both autocorrelation matrices Rxx and Ryy

[69]. Regarding CSP, adding a L2-penalty in the denominator of the cost function
(equations 3.23 and 3.27), results in adding a weighted matrix to that denominator
autocorrelation matrix [70].

Ledoit-Wolf closed-form for L2 correlation matrix regularisation

Concerning the L2-regularisation term γ, one could tune this parameter using a
parameter sweep or, alternatively, one could find an estimated correlation matrix

5Mkl represents the element of matrix M at row k and column l. Herein, k = : and l = : refer
respectively to selecting all elements in that respective row/column.

30



3.6. Regularisation

R̄∗
xx = αILdC×LdC + βR̄xx ∈ RLdC×LdC using weighting parameter α ∈ R for the

identity matrix ILdC×LdC and weighting parameter β ∈ R for the sample correlation
matrix R̄xx ∈ RLdC×LdC in an analytic fashion, optimal with respect to some optimi-
sation problem [65].

Indeed, in [65], such analytic values α and β are calculated, optimal with respect to
the Frobenius norm (||.||F ). This is, the resulting correlation matrix estimate R̄∗

xx

asymptotically converges to the ground-truth correlation matrix Rxx ∈ RLdC×LdC ,
with respect to the Frobenius norm, as the number of observations and variables go to
infinity. Assume N ∈ N0 observations of a time-lagged EEG vector x(n) ∈ RLdC×1,
n = 1..N are available. The correlation matrix estimate R̄∗

xx can be found by first
solving the following optimisation problem [65]:

min
α,β

E{||R∗
xx −Rxx||2F }

s.t. R∗
xx = αILdC×LdC + βR̄xx,

(3.35)

and thereafter replacing the variables in the solution R∗
xx ∈ RLdC×LdC by consistent

estimators to arrive at R̄∗
xx. In this way, the strategy to calculate R̄∗

xx is as follows
[65]:

R̄∗
xx = b2

d2 mILdC×LdC + a2

d2 R̄xx;

m =
Tr
(
R̄xx

)
LdC

;

d2 =
Tr

((
R̄xx −mILdC×LdC

) (
R̄xx −mILdC×LdC

)⊤
)

LdC
;

c2 = 1
N2

N∑
n=1

Tr

((
x(n)x(n)⊤ − R̄xx

) (
x(n)x(n)⊤ − R̄xx

)⊤
)

LdC
;

b2 = min(c2, d2);
a2 = d2 − b2.

(3.36)

Dimensionality reduction: principal component analysis

Another way to regularise the cost functions of feature extractors is to perform a
dimensionality reduction on the input EEG data. Indeed, by reducing the number
of input channels, the models become less complex and hence regularisation is
achieved. Principal component analysis (PCA) is a popular method to perform such
a dimensionality reduction [52, 66, 67]. In this PCA method, the zero-mean data are
first projected onto the vector (called principal component) that captures most of
the variance of said data. In addition, subsequent P ∈ N0 ≤ C principal components
also try to maximise the variance of the projected data, however, with the additional
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constraints of being orthogonal to previous principal components. Mathematically
speaking, this can be expressed as follows [52]:

min
W

Tr
(
W ⊤RxxW

)
s.t. W ⊤W = IP ×P .

(3.37)

Herein, W ∈ RLdC×P holds the P ≤ C principal components in its columns. In fact,
this problem boils down to finding the best rank-P approximation of the EEG data
[67].

After applying W to the EEG data, filter design can be performed identically as
described in sections 3.3 and 3.4, albeit with a reduced amount of EEG channels.

3.7 Visualisation: a neurological interpretation
The LS, LASSO, CCA, CSP and KLD feature extraction design approaches, as
described in sections 3.3 and 3.4, have in common that filters are designed and
applied to the EEG data. It is important to note that the accompanying filter
weights do not allow for a neurological interpretation as such [71]. To clarify
this, assume the EEG data satisfy the following data model [71]:

x(t) = As(t) + n(t), (3.38)

wherein s(t) ∈ RP ×1 and n(t) ∈ RC×1 represent respectively the P ∈ N0 ≤ C EEG
source signals of interest and the additive noise signals. Furthermore, A ∈ RC×P

denotes the mixing matrix from source to sensor. The columns of A can be
neurologically interpreted, i.e., the columns represent the transfer functions from
the source to the sensor (up to a nonzero scaling), whereas this same property does
not hold for the designed filters W ∈ RC×P . Nevertheless, in [71], a transformation is
proposed to transform the spatial filters W into a mixing matrix estimate Ā ∈ RC×P

as follows:
Ā = R̄xxWR̄−1

ss , (3.39)

wherein R̄xx ∈ RC×C denotes the measured EEG autocorrelation matrix and
R̄ss ∈ RP ×P denotes the source signal EEG correlation matrix. Moreover, when W
corresponds to a square matrix, it can be shown that this equation reduces to [71]:

Ā =
(
W ⊤

)−1
. (3.40)

Note however that this result still needs to be interpreted with caution since the
resulting mixing matrix might not be optimally regularised [72].
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3.8 Conclusion
In this section both existing (LS, LASSO and CCA) and novel (KLD) neural envelope
tracking based features were described (section 3.3). In addition, existing brain
activity based methods (CSP, BP and entropy) were detailed (section 3.4). Except for
the LS estimator, the application domain with real life stimuli is novel for all feature
extractors, to our best of knowledge. Furthermore, due to finite data set length,
the parameters of these methods need to be estimated on a finite-length training
set (section 3.5). This might introduce overfitting effects and badly conditioned
correlation matrices, which may be tackled using regularisation methods such as
norm-weight regularisation and dimensionality reduction mechanisms (section 3.6).
Finally, it is important to note that one cannot interpret the filter weights of the
described methods as such, although transformations exist to convert the filter to
neurologically interpretable variants (section 3.7).
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Chapter 4

Classification

4.1 Introduction
This chapter treats the classification step in the classic machine learning approach,
as illustrated in figure 1.4. Indeed, after a feature extraction phase, one lever-
ages these features to decide whether the subject is being attentive to an auditory
stream. Mathematically speaking, this corresponds to a binary classification problem.

These binary classifiers are based on the concept of a discriminant function, as will
be detailed in section 4.2. Thereafter, a popular classifier is described in section
4.3, namely the linear discriminant analysis (LDA) classifier [12, 52, 64]. After
presenting this LDA method, section 4.4 treats its regularisation and describes an
input normalisation strategy. Finally, section 4.5 concludes this chapter.

4.2 Discriminant function
A discriminant function characterises the decision boundary between classes [52, 64].
Let f =

[
1 f⊤

]⊤
∈ RF +1×1 be constructed as the stacking of feature vector f ∈ RF ×1

of dimension F ∈ N0 and a bias term 1. For the binary classification case, this
stacked feature vector f is subsequently assigned to class K1 whenever the discriminant
function y(f) ∈ R is positive and to class K2 whenever the discriminant function is
negative:

y(f) = h(θ, f);
sign(y(f)) = +1, f ∈ K1;
sign(y(f)) = −1, f ∈ K2.

(4.1)

Therefore, in its most general form, the discriminant function appears as a function
h(.) with U ∈ N0 parameters, stacked in parameter vector θ ∈ RU×1. Nonetheless, a
common choice of this discriminant function is a linear form [52, 64]:

y(f) = β0 + β⊤f . (4.2)
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4.3. Linear discriminant analysis

Herein, β ∈ RF ×1 denotes the slope and β0 ∈ R the bias term, i.e., this discriminant
function tries to linearly separate the feature space. Therefore, it readily follows
that: θ =

[
β0 β⊤

]⊤
and h(.) equals a unit transform. Note that the separation

by this linear discriminant in fact poses no hard constraints on the classification.
Indeed, prior to classification, the features can be nonlinearly transformed, such that
the transformed feature space is linearly separable [52, 64].

From a probabilistic perspective, the discriminant function can be related to the
posterior class distributions (probability of a class given a feature vector) [52]. In
order to reveal this relation, let X ∈ RF ×1 and K ∈ R represent respectively the
random variable for the feature vector and the random variable for the class label.
The posterior class distributions can now be expanded using Bayes rule and the
definition of the logistic function

(
σ(a) = 1

1+e−a

)
[52, 64]:

P (K = K1|X = f)

= P (X = f |K = K1)P (K = K1)
P (X = f |K = K1)P (K = K1) + P (X = f |K = K2)P (K = K2) ;

= 1
1 + exp(−a) ;

= σ(a).
(4.3)

Herein, a ∈ R can be equated to y(f) of equation 4.1, i.e., one could assign the feature
vector to the class with the largest posterior class probability. Indeed, a takes the form
of the log-ratio of both class posteriors (P (K = K2|X = f) = 1−P (K = K1|X = f))
[52, 64]:

a = log

(
P (K = K1|X = f)
P (K = K2|X = f)

)
. (4.4)

4.3 Linear discriminant analysis
Linear discriminant analysis (LDA) leverages this linear discriminant model by
constructing a linear discriminant function according to equation 4.2 [52]. This is
achieved by utilising the expression of equation 4.4, under the following assumptions
[52]:

• The class conditional distribution (P (X = f |K = Ki), i = 1, 2) is multivariate
normal distributed.

• The class conditional distributions for both classes have equal covariance
matrices.

• Both classes have equal class prior distributions (P (K = K1) = P (K = K2)).
Let µi ∈ RF ×1 (i = 1, 2) denote the mean of the class conditional distributions and
Σ ∈ RF ×F the accompanying covariance matrix. It can subsequently be shown that,
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4.4. Regularisation and normalisation

under these assumptions, the slope β and bias term β0 take the following form [52]:

β = Σ−1(µ2 − µ1);

β0 = −1
2 β⊤(µ1 + µ2).

(4.5)

Note that, in practise, the means and covariance matrix have to be estimated using
sample averages, corresponding to the procedure of section 3.5.

4.4 Regularisation and normalisation
The curse of dimensionality [52, 73] denotes the effect that a space is sampled more
sparsely if its dimensionality increases while the amount of data points is kept the
same. This manifests itself, e.g., in the training of classifiers. Indeed, if the feature
vector dimensionality is increased and the training data samples the space sparsely,
there are many ways to separate the training data. However, that does not necessarily
mean that this separation generalises well. The classification performance might
subsequently go down when adding additional features to the feature vector, although
this expanded feature space inherently encodes more/the same information as the
unextended feature vector.

Thus, as in section 3.6, the classification methods may suffer from overfitting. Again,
one can add additional norm-weighted terms to combat this problem. In the case of
the LDA classifier, this boils down to adding a weighted matrix to the covariance
matrix, which is consistent with the results of section 3.6 [52].

Further, features may operate at different scales [74]. This interferes with the norm-
weighted regularisation, where penalties are applied according to the magnitude of
the feature values. Therefore, the features are normalised using a z-score in advance
of being fed into the classifier [74]:

z(i) = f(i)− µf (i)
Σf (i, i) , ∀i = 1..F. (4.6)

Herein, µf ∈ RF ×1 and Σf ∈ RF ×F respectively correspond to the mean and
covariance matrix of the training set features.

4.5 Conclusion
Classification methods, such as the LDA classifier, are based on the concept of a
discriminant function, which mathematically defines the decision regions in a feature
space. To this end, the LDA classifier defines a linear decision boundary. As with the
feature extraction methods, the classification methods may overfit the input data,
such that regularisation methods are desired. However, due to this regularisation,
input normalisation techniques are required as well. Indeed, different features might
operate at different scales, which is alleviated by this normalisation.
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Chapter 5

Conversion to unsupervised
algorithms

5.1 Introduction
This chapter discusses the conversion of the classic machine learning approach, as
illustrated in figure 1.4, towards unsupervised algorithms. Indeed, the supervised
framework poses practical problems: Firstly, the feature extractor-classifier design
is typically performed in a subject-specific manner, requiring more resources than
subject-independent ones [75]. Secondly, the stationarity assumptions, on which
the designs are based, rarely hold in practise, e.g., due to EEG cap displacements
and changes in EEG background activity [13]. Introducing unsupervised algorithms
mitigates the above problems in order to arrive at practical implementations.

Formally, the initial training set is referred to as the source domain, consisting
of an L-dimensional source data space X S ∈ RL and accompanying source la-
bel space YS ∈ R [76]. Designs trained on this source domain cannot be read-
ily applied to other subjects or to the same subject in a nonstationary environ-
ment, i.e., to the target domain, due to a mismatch between both domains. Sim-
ilarly to the source domain, this target domain consists of an L-dimensional tar-
get data space X T ∈ RL and accompanying target label space YT ∈ R. The
mismatch between both domains is characterised by a shift in distribution, i.e.,
P (YS , XS) ̸= P (YT , XT ), YS ∈ YS , YT ∈ YT , XS ∈ X S , XT ∈ X T [76].

To combat this distribution shift problem, we look into the conversion of the feature
extractors of chapter 3 into unsupervised ones. The goal of these unsupervised
algorithms is to exploit labelled source domain data and unlabelled target domain
data to tailor the source trained feature extractors to the target domain1. This

1Since we leverage methods from the field of computer vision, we adhere to the definition of
unsupervised methods prevalent in that field [77, 78]. Algorithms are referred to as unsupervised
if solely unlabelled data is assumed for the target domain. No restrictions are imposed on the
availability of labels in the source domain data. Nevertheless, one might argue that methods requiring
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5.2. Iterative least squares

procedure allows to arrive at practical algorithms since labelled source domain
datasets are readily available and unlabelled target domain data can be collected at
inference time. More specifically, we will tailor our research towards the
least squares feature extractor. Although most discussed procedures are more
generally applicable to any data-driven feature extractor, using least squares as a
running example improves readability. Moreover, the least squares feature extractor
is popular in other domains, such as in the AAD field [8, 15, 28].

State-of-the-art unsupervised least squares design involves an iterative procedure
and serves as a benchmark for subsequent methods [75]. To this end, the iterative
procedure is briefly detailed in section 5.2. Nevertheless, we take a different approach
to tackle the domain shift, namely using unsupervised domain adaptation (DA) [78].
Section 5.3 introduces this DA concept and discusses accompanying procedures in
sections 5.3.1 and 5.3.2. Finally, section 5.4 concludes the chapter.

5.2 Iterative least squares
In [75], an unsupervised least squares algorithm is proposed by iteratively self-labelling
the data and updating the decoder correspondingly. We will thus subsequently refer
to this procedure as iterative least squares (ILS). Although this algorithm is origi-
nally tailored to the AAD domain, it can be applied to our domain of interest, as
pseudocodewise summarised in algorithm 12.

Referring to equation 3.5, a least squares decoder consists of the combination of an
EEG autocorrelation matrix and an EEG-audio cross-correlation vector. Regarding
the EEG autocorrelation matrix, source and target domain information are fused by
making a weighted average (with weight δ ∈ R) between the source attention EEG
autocorrelation matrix3 RxS,AxS,A

∈ RLdC×LdC and the target EEG autocorrelation
matrix RxT xT

∈ RLdC×LdC . This autocorrelation matrix remains fixed throughout
the remainder of the algorithm. Regarding the EEG-audio cross-correlation vector,
the source attention cross-correlation vector rxS,AyS,A ∈ RLdC×1 is used as an initial
estimate and is updated throughout the algorithm. The resulting autocorrelation
matrix and cross-correlation vector are combined, according to equation 3.5, to yield
the initial decoder d ∈ RLdC .

What follows is an iterative procedure, wherein the current decoder is applied to
the target data to retrieve an estimate of the target attention segments. Using

the availability of labelled source domain data are effectively semi-supervised methods [79].
2Nevertheless, (nontrivial) adaptations are required to adjust this iterative procedure to our

domain of interest: In the AAD domain, the EEG data of only 1 subject is present, such that the
EEG data remain fixed throughout the algorithm, whereas this assumption does not hold in our
domain of interest. We, however, justify our approach since we are only interested in utilising this
method as a benchmark. A study of the convergence effects of this change in EEG data utilisation
is beyond the scope of this text.

3Subscript A refers to ’attention’ and subscript AE refers to ’attention estimation’.
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these estimated labels, an estimate of the target attention cross-correlation vector
rxT ,AEyT ,AE ∈ RLdC×1 is computed. Thereafter, the decoder is updated by combin-
ing the fixed autocorrelation matrix and and an updated cross-correlation vector,
calculated as the weighted average between rxT ,AEyT ,AE and rxS,AyS,A (with weight
η ∈ R). This procedure is repeated until convergence.

Algorithm 1 Iterative least squares (ILS)
1: Rxx ← δRxS,AxS,A

+ (1− δ)RxT xT
;

2: rxy ← rxS,AyS,A ;
3: d← R−1

xx rxy;
4: for i = 1; i ≤ imax; i++ do
5: Apply decoder d to the target data and retrieve
6: the target attention estimation (AE) segments;
7: rxy ← ηrxS,AyS,A + (1− η)rxT ,AEyT ,AE ;
8: d← R−1

xx rxy;
9: end for

5.3 Domain adaptation
Domain adaptation (DA) takes another approach to combat the distribution shift
between source and target domain by leveraging the information of the unlabelled
target data in the calculation of the feature extractors. More specifically, we will
look into unsupervised DA methodologies using feature alignment [76]. This feature
alignment DA theoretically enforces a joint embedding of source and target domain
features, effectively mitigating the need for unsupervised classification methods.
Indeed, at inference time, one may perform DA using the training set and newly
encountered target domain data to create said joint embedding. Since the features of
both domains now ’live in the same space’, one can issue the adapted feature extractor
on the source data and train a regular, supervised classifier on the adapted source
domain features. Thereafter, the feature extractor and classifier can theoretically be
applied to the target domain data as is.

We will consider two classes of DA methodologies. A first class, EEG basis
transformation DA, consists in finding a joint basis between the source and
target EEG. In this work, we will focus on PCA and CCA based transformations, as
is detailed in section 5.3.1. The general idea of CCA and PCA based DA is not novel
(e.g. [80, 81, 82]), nevertheless, the application to EEG data in order to relate EEG
to audio data is novel to our best of knowledge. A second class, discriminator
DA, consists in introducing a source-target classifier in the feature design,
i.e., the features are designed such that it is hard for the source-target
classifier to discriminate between source and target domain. Whereas
discriminator domain adaptation has already been explored in other domains (e.g.
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[78]), the specific expression, as detailed in section 5.3.2, is novel as such to our best
of knowledge.

5.3.1 EEG basis transformation

The general goal of the EEG basis transformation is to find a common
basis between source and target EEG. This allows to train a decoder on the
transformed attention source EEG in a supervised manner, and to apply this decoder
to the target data. In order to achieve this joint EEG basis, CCA and PCA are
leveraged. Since different approaches are possible, we detail four EEG basis transfor-
mation flavours: canonical correlation analysis DA (CCA-DA), principal component
analysis DA (PCA-DA), subspace alignment DA (SA-DA) and target principal com-
ponent analysis DA (TPCA-DA). Whereas these CCA and PCA mechanisms have
been extensively used in the field of domain adaptation (e.g. [80, 81, 83]), their
application in our domain of interest is novel to our best of knowledge.

Formally, let XS , XT ∈ RT ×C contain T ∈ N0 samples of respectively source and
target EEG data (both attention and inattention) and let yS , yT ∈ RT ×1 contain
the accompanying audio envelopes. The goal of the EEG basis transformation is
to design P ∈ N0 ≤ C spatial source filters WS ∈ RC×P and P spatial target filters
WT ∈ RC×P , to transform source and target EEG data as follows: XSWS ∈ RT ×P

and XT WT ∈ RT ×P . Subsequently, the labelled attention portion of the trans-
formed source data, XS,AWS ∈ RT2×C , T2 ∈ N0 ≤ T with corresponding envelope
yS,A ∈ RT2×1, can be utilised to train a least squares decoder d ∈ RLdC×1. This
decoder d can thereafter be applied to the transformed target data XT WT to deduce
the (in)attention state.

Note that these procedures inherently regularise the problem, since only P ≤ C vec-
tors are used to construct a basis, such that a dimensionality reduction is effectively
realised.

CCA- and PCA-based domain adaptation can be performed as follows:

Canonical correlation analysis

Canonical correlation analysis domain adaptation (CCA-DA) applies the CCA pro-
cedure of section 7.2.5 to source and target EEG, i.e., by maximising the correlations
between source and target EEG, a joint EEG space is realised. A pseudocode
representation of this CCA-DA procedure can be found in algorithm 24.

4In algorithm 2, LS denotes least squares decoder design according to the procedure of section
3.3.2, and CCA and P CA respectively denote canonical correlation analysis and principal component
analysis design according to the procedures of sections 3.3.4 and 3.6 .
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Algorithm 2 CCA and PCA based domain adaptation
1: Collect and preprocess EEG and audio;
2:
3: if CCA-DA then
4: WS , WT ← CCA(XS , XT );
5: else if PCA-DA then
6: WS = WT ← PCA([X⊤

S X⊤
T ]⊤);

7: else if SA-DA then
8: W ′

S ← PCA(XS); WT ← PCA(XT );
9: WS ←W ′

SW ′⊤
S WT ;

10: else if TPCA-DA then
11: WS = WT ← PCA(XT );
12: end if
13:
14: d← LS(XS,AWS , yS,A);
15: correlation(XT WT , yT , d);

Principal component analysis

Principal component analysis domain adaptation (PCA-DA) takes a similar route
as CCA-DA, except for exchanging the CCA method with a PCA procedure on the
concatenation of source and target EEG data, as illustrated in algorithm 2.

Subspace alignment

Subspace alignment domain adaption (SA-DA) [82] also takes a PCA-based approach,
nevertheless, the subspace construction differs from PCA-DA. In SA-DA, firstly,
PCA is applied separately to source EEG data XS and target EEG data XT , to
respectively obtain filters WS and WT . Secondly, the source filters WS are linearly
transformed to be close to WT with respect to the Frobenius norm. In other words,
a matrix M̄ ∈ RP ×P of coefficients is designed by minimising the Bregman matrix
divergence [82]:

M̄ = argmin
M

||WSM −WT ||2F . (5.1)

The solution of this expression equals M̄ = W ⊤
S WT [82]. Using this matrix M̄ , the

source domain basis is thus modified to WSM̄ = W ⊤
S WT ∈ RC×P . Algorithmically,

this procedure can be summarised as shown in algorithm 2.

Target principal component analysis

The idea of subspace alignment can now be expanded: Instead of transforming the
source EEG to an intermediate basis close to the target domain, the target domain
PCA basis could be utilised as is. The principal components resulting from the
application of the PCA procedure to the target domain EEG can indeed be utilised
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as a basis for the source domain EEG. This procedure is pseudocodewise illustrated
in algorithm 2.

5.3.2 Discriminator

The discriminator domain adaptation (D-DA) methodology is of another type than
previous EEG transformation methods. The main idea is to include a source-
target classifier in the feature extractor design. By maximising the loss
of said classifier, in conjunction with regular feature design (chapter 3),
a joint feature embedding is theoretically realised. In other words, if it is
hard for a classifier to discriminate between the source domain features and the
target domain features, features of both domains should be more similar. Thus,
by concurrently pushing for this similarity between source and target domain, and
optimising a regular feature extractor cost function on the labelled source domain
data, domain adaptation is achieved.

The idea of such a discriminator is presented in [78], where this principle is applied
to neural networks. However, due to the constraints in the data-driven feature
extractors of chapter 3, the mathematical procedure, as presented here, will prove to
differ from [78], effectively creating a new methodology. Furthermore, the application
of this discriminator procedure to the domain of interest is novel to our best of
knowledge.

Schematically, the approach operates as follows:

max
d

Source attention correlation + Binary cross entropy penalty

s.t. Source− target classifier design,
(5.2)

i.e., the regular source attention correlation maximisation of equation 3.6 is biased
by a binary cross entropy (BCE) term to penalise discriminability of source (denoted
by zS = 1, zT = 0) and target domain (denoted by zS = 0, zT = 1) based on the
correlation values cl(n) ∈ R (n = 1..Nl, l = {S, T }). Indeed, the BCE is a measure
for classification performance of the source-target classifier. Assume availability of
NS ∈ N0 source and NT ∈ N0 target data frames of a predefined length of T ∈ N0
samples, this BCE term takes the following form [52]5:

penalty = −1
NS + NT

∑
l={S,T }

Nl∑
n=1

zl(n)log(PSource−T arget(cl(n)))+

(1− zl(n))log(1− PSource−T arget(cl(n))).

(5.3)

Herein, PSource−T arget(cl(n)) ∈ [0, 1] represents the probability of a correlation value
belonging to the source domain using the source-target classifier. According to the

5This BCE expression implicitly assumes an equal amount of source and target domain data,
although generalisations exist that take class imbalance into account [84].
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probabilistic classification view of section 4.2, PSource−T arget(cl(n)) can be expressed
as follows for a linear classifier with parameters β ∈ R and β0 ∈ R (σ(x) = 1

1+e−x )
[52]:

PSource−T arget(cl(n)) = σ(β0 + βcl(n)). (5.4)

Referring to section 4.3, the LDA classifier computes a closed-form solution for β
and β0.

Bringing everything together, let the time-lagged and channel concatenated EEG
data, in Hankel format, be denoted by Xl(n) ∈ RT ×LdC , and the associated audio
data be denoted by yl(n) ∈ RT ×1. Moreover, let rxS,Ay ∈ RLdC×1 and RxS,AxS,A

∈
RLdC×LdC respectively denote the audio-EEG cross-correlation vector and the EEG
autocorrelation matrix of the source attention data. Then, the discriminator LS
feature extractor cost function is expressed as follows (ν ∈ R+

0 ):

min
d

−d⊤rxS,Ay + ν

NS + NT

∑
l={S,T }

Nl∑
n=1

zl(n)σ(β0 + βcl(n))+

(1− zl(n))(1− σ(β0 + βcl(n)))
s.t. d⊤RxS,AxS,A

d = 1
cl(n) = ρ(Xl(n)d, yl(n)), n = 1..Nl, l = {S, T }

Σ̄ = 1
NS

NS∑
n=1

(cS(n)− µ̄S)2 + 1
NT

NT∑
n=1

(cT (n)− µ̄T )2

µ̄S = 1
NS

NS∑
n=1

cS(n)

µ̄T = 1
NT

NT∑
n=1

cT (n)

β = Σ̄−1(µ̄T − µ̄S)

β0 = −1
2β(µ̄T + µ̄S).

(5.5)

Note that the log(.) operator in the BCE term has been dropped to ease the tuning
of the weight parameter ν.

In summary, equation 5.5 simultaneously performs regular source domain least
squares design and minimises the discriminability of source and target domain by
maximising the binary cross-entropy between both domains using an LDA classifier.
Algorithm 3 presents this summary in a pseudocode fashion. Finally, we note that
equation 5.5 proves to be non-convex, as is described in appendix A.3.
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Algorithm 3 Discriminator (D-DA)
1: Solve equation 5.5
2: correlation(XT , yT , d)

5.4 Conclusion
Unsupervised methodologies are introduced to cope with the changing statistics in
the target domain. An iterative least squares based approach is currently state-
of-the-art. Nevertheless, we propose to utilise domain adaptation feature space
alignment techniques: Creating a joint embedding between target and source domain
to theoretically mitigate the need for unsupervised classification methods. On one
hand, EEG transformations, based on CCA and PCA procedures between source
and target EEG data, may be leveraged to create said joint space at the EEG level.
These methods are novel in our application domain to our best of knowledge. On the
other hand, discriminators introduce a source-target classifier to the feature extractor
design to create the joint embedding at the feature level. To this end, the loss of
this source-target classifier is maximised, i.e., the feature extractor should make it
difficult for the classifier to differentiate between source and target domain features.
The specific expression of this approach in an LS-LDA setting is novel to our best of
knowledge.
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Chapter 6

Experimental procedures

6.1 Introduction
In order to perform rigorous experiments, experimental procedures need to be
outlined. To this end, section 6.2 details the validation methodologies and section 6.3
the hyper-parameter choices. Section 6.4, thereafter, describes a hypothesis testing
framework, based on linear mixed-effects models and analysis-of-variance hypothesis
tests, combined with the Benjamini-Hochberg correction. Next, in section 6.5, two
auditory attention based datasets are outlined: the Vanthornhout dataset [16] and
the Brouckmans-Dewit-Vanhaelen dataset [85]. Finally, section 6.6 concludes the
chapter.

6.2 Validation methodologies
As already described in sections 3.6 and 4.4, the feature extractor and classification
designs might overfit the training data. Therefore, it is important to validate the
performance of these feature extractors and classifiers on a separate set, not seen
at training time. Such a set is called a validation set, as illustrated in figure 6.1.
Different validation strategies exist, including which [86]:

• Subject specific validation (SS-V): In advance, the data are split into a
fixed training set and a fixed validation set per subject. Subject-specific feature
extractors/classifiers are subsequently trained on the training set and validated
on the validation set.

• Subject specific cross validation (SS-CV): This procedure is similar to the
SS-V approach, with the extension that the procedure is repeated for different
choices of validation sets. Indeed, instead of fixing the training and validation
sets, the data are split into k ∈ N0 folds and there are k accompanying training-
validation rounds. In each round (k − 1)/kth of the data are used to train the
feature extractors/classifiers, after which the feature extractors/classifiers are
validated on the left-out 1/kth of the data [86]. After the k rounds, the results
are averaged over the validation folds.
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Attention

Inattention

(1) Train feature(2) Validate feature (× k)

Figure 6.1: (k-fold cross) validation strategy. Different portions of the inattention
(orange) and attention (blue) data are alternately labelled as training and validation
set until each portion has been used once as a validation set.

• Subject independent cross validation (SI-CV): In this procedure, also
referred to as leave-one-subject-out (LOSO) cross validation (CV), the data
are utilised in a subject-independent way. To this end, the feature extrac-
tors/classifiers are trained on the data of all but one subject and validated on
the left-out subject. This procedure is repeated until each subject has been
used once as a validation set and, thereafter, results are averaged subjectwise
[86]. Note that the preprocessing scheme of section 2.4 should be slightly
altered in this approach: the artefact removal MWF filters are calculated on
the first subject and readily applied to all other subjects to mitigate differences
in preprocessing between subjects.

6.3 Hyper-parameter choice
Unless explicitly stated otherwise, the hyper-parameters, as presented in table 6.11,
are utilised for the feature extractors, classifier and unsupervised methodologies.

The hyper-parameter choices are mainly based on the available literature, as described
in chapters 3-5, and we refer the reader to these chapters. We will, however, zoom in
on some choices that require special attention:

• PSD estimation: As detailed in section 3.2, multitaper spectral analysis is
issued to estimate PSDs. To this end, 7 Slepian tapers are used to create a
frequency spacing of 0.5 Hz.

• LS-CCA-CSP-regularisation: We favour Ledoit-Wolf L2 regularisation
because of its closed-form solution and thus utilise this regularisation method
in the LDA classifier and CSP feature extractor. However, due to the poor
conditioning of the dataset after preprocessing, a QR-singular value decom-
position (SVD) based approach is opted for as CCA implementation over the
GEVD method [87, 88]. Nevertheless, this QR-SVD approach does not allow
to incorporate L2 regularisation. CCA and LS designs are therefore regularised
in a PCA manner, wherein a conservative approach of 32 channels is taken
to mitigate the loss of neural envelope tracking information. The interested
reader can find this QR-SVD CCA implementation in [87, 88].

1n.a. refers to not applicable.
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• LS-CCA lag values: Regarding the LS lag values, a conservative choice of
[0, 500] ms captures the relevant neural response of the auditory stimuli [8, 16].
Subsequently, the CCA lag values (EEG: [0, 400] ms, audio: [−100, 0] ms) are
chosen such that the total model lag for LS and CCA is of equal length. This
makes the comparison between both methods fair in the sense that an equal
amount of data is leveraged in both methods, although we acknowledge that
this CCA model requires more parameters than its LS counterpart.

• KLD frequency band: Since we do not want to make prior assumptions
on the frequency band with respect to this novel feature, we will utilise the
unfiltered frequency band. Nevertheless, only the [0.5, 64] Hz frequency range is
effectively utilised after PSD estimation in order to remove the DC component,
as well as low frequency noise.

• LASSO-KLD regularisation: After performing a prior hyper-parameter
sweep (LASSO: γ ∈ [10−10, 10−5] and KLD late fusion: γ ∈ [10−10, 100]) using
a 2 fold CV procedure, the average over all folds and subjects is taken as
regularisation parameter (LASSO: 1.41 · 10−7 and KLD late fusion: 7.91 · 10−5).
For the sake of completeness, we mention that this hyper-parameter sweep has
been performed using a Bayesian optimisation framework with 30 iterations
[89]. We refer the interested reader to [89] for a discussion about this Bayesian
optimisation procedure.

• CSP frequency band: We will utilise CSP using delta, theta, alpha and
beta frequency bands, both separately and in conjunction with one another.

• BP-Entropy frequency band: As with the KLD, the unfiltered frequency
band is used to obtain a PSD estimation. Delta, theta, alpha and beta frequency
ranges are selected after PSD estimation.

• Classifier choice: The classifier can also be seen as a hyper-parameter. To
this end, we utilise the LDA classifier. This LDA classifier assumes normality
of the feature space and equal covariance matrices for the class conditional
distributions. Although this LDA classifier could still prove its worth if these
assumptions do not hold [52], it is insightful to assess them. Using Mardia’s
test [90], evidence is found against this normality assumption, although this
deviation from normality seems rather limited for the mean cases. Similarly,
using Box’s M test [91], evidence is found against the equal covariance assump-
tion. Nonetheless, the mean ratio between the covariance matrices does seem
to have the proper order of magnitude O(1). The interested reader can find
these experiments in appendix B.

• Unsupervised regularisation: To allow for a fair comparison between the
unsupervised methodologies and the PCA-regularised LS supervised feature
extractors, wherein 32 channels are kept, CCA-DA, PCA-DA, SA-DA and
TPCA-DA all utilise 32 bands as well.

• D-DA discriminator weight: The weight ν of the discriminator term is
fixed to 10−2. Indeed, a prior sweep (5 log-spaced values between [10−4, 102])
has shown that this weight value corresponds to the lowest weight to yield a
significant difference between D-DA and regular supervised designs, i.e., this
weight is large enough to reflect the discriminator term reliably.
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• D-DA initial value: Since the D-DA problem formulation (see equation 5.5)
is non-convex, an iterative strategy is required. To this end, an optimisation
algorithm (interior point) is utilised, which is initialised with a supervised
source trained LS decoder.

• ILS weights: The weights δ and η are both fixed to 0.5.

6.4 Hypothesis testing
In order to make statistically significant conclusions about any results, hypothesis tests
are required. These tests assume a null-hypothesis (i.e. some belief one would like to
examine, e.g., discriminability of a feature between the attention and inattention case)
and return a p-value denoting the probability that the null-hypothesis holds true [92].
In this work, we will combine the concepts of linear mixed-effects models and analysis
of variance tests for hypothesis testing purposes. These concepts are described,
respectively in sections 6.4.1 and section 6.4.2. Furthermore, after performing
simultaneous hypothesis tests, the resulting p-values need to be corrected, as will
be explained in section 6.4.3 [92]. To this end, we leverage the Benjamini-Hochberg
correction [93].

6.4.1 Linear mixed-effects models

A linear mixed-effects model (LME) essentially amounts to an extension of linear
regression models to include both fixed and random effects [94, 95, 96]. Herein,
coarsely put, a fixed effect represents the effect under study and a random effect
represents the effect that influences the outcome variable, but which is not under
study [95]. Mathematically speaking, the following data model is used:

v = Hβ + Zb + ϵ. (6.1)

Herein, v ∈ RN×1 denotes the response vector, with N ∈ N0 the number of outcomes.
The right hand side is constructed using three terms: one corresponding to the fixed
effects (Hβ), one corresponding to the random effects (Zb) and one corresponding to
the residuals ϵ. More specifically, H ∈ RN×Q corresponds to the design matrix of the
fixed effects and β ∈ RQ×1 contains the associated Q ∈ N0 fixed effect parameters.
Correspondingly, Z ∈ RN×P and b ∈ RP ×1 denote respectively the random effect
design matrix and the random effect parameter vector of dimension P ∈ N0. Finally,
ϵ ∈ RN×1 denotes the residual vector.

Moreover, the following model assumptions are made in an LME [96, 97]: The
random effect vector and residuals are assumed to have a normal distribution with
covariance matrices respectively σ2D(θ) ∈ RP ×P and σ2U ∈ RN×N , while being
independent of one another [96, 97]:

b ∼ N (0P ×1, σ2D(θ));
ϵ ∼ N (0N×1, σ2U);

b and ϵ independent.

(6.2)
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6.4. Hypothesis testing

The covariance matrices are also assumed to be positive semidefinite and parametrised
by σ ∈ R and θ ∈ R. Yet, these constraints are not enough to provide a unique
solution and an additional assumption on the covariance matrix of the residuals has
to be made [96]. In this work, the following constraint is adhered to [96, 98]:

σ2U = σ2IN×N . (6.3)

In words, this choice of covariance matrix implies uncorrelatedness of the residuals.
Given a response vector v and design matrices H and Z, the parameters β, b, σ and
θ can be estimated using a maximum-likelihood framework, for which the interested
reader is referred to [96, 97].

6.4.2 One-way analysis of variance

One-way analysis of variance (ANOVA) [99, 100] corresponds to a hypothesis test on
P ∈ N0 groups, each with Np, p = 1..P observations, under the null-hypothesis of
equal means:

H0 : µ1 = µ2 = · · · = µP , (6.4)

wherein µp, p = 1..P represents the mean of each group. Furthermore, the test
operates under the following assumptions [99, 100]:

• independent observations;
• independent groups;
• data are drawn from a normal distribution;
• equal standard deviations within groups.

Intuitively, the corresponding F-statistic equals the ratio of the variation between
groups to the variation within groups [100]. Formally, let xp,n refer to the nth
(n = 1..Np) data-sample of the pth group (p = 1..P ). Then, the F-statistic can be
computed as follows:

µ̄p = 1
Np

Np∑
n=1

xp,n;

N =
P∑

p=1
Np;

µ̄ = 1
N

P∑
p=1

Np∑
n=1

xp,n;

F =
1

P −1
∑P

p=1
∑Np

n=1 (µ̄p − µ̄)2

1
N−P

∑P
p=1

∑Np

n=1 (xp,n − µ̄p)2 .

(6.5)

Note that this F-statistic follows an F-distribution F (P − 1, N − P ), which is used
to calculate the associated p-value, i.e., the probability that the null-hypothesis is
true [100].
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This ANOVA hypothesis test can subsequently be issued in conjunction with the LME,
regarding the test whether the fixed effect vector estimate β̄ ∈ RQ×1 significantly
differs from zero [101]:

H0 : β̄(q) = 0,∀q = 1..Q. (6.6)

In other words, this test checks whether the fixed effect parameter is necessary to fit
the data [101]: If the p-value is smaller than some significance level (in this work: 5%)
the fixed effect parameter is assumed to be necessary to explain the response variable
v. Under this null-hypothesis of equation 6.6, the F-statistic can be computed as
follows [101]:

F =

(
β̄(q)− 0

)2

V ar(β̄(q))
, ∀q = 1..Q. (6.7)

6.4.3 Correcting p-values

When performing a hypothesis test under significance level α ∈ R, the probability of
falsely rejecting the null-hypothesis (so-called false positive or false discovery) equals
α [92]. When performing L ∈ N0 simultaneous hypothesis tests under that same
significance level α, the probability of having false positives increases to a level αL
[92]. In order to deal with this multiple testing problem, a group of methods exist to
ensure that the probability of falsely rejecting the null-hypothesis is kept below the
significance level α [92].

One such method to control this false discovery rate (FDR) is the Benjamini-Hochberg
correction, which is used in this work [93]. To achieve an FDR of α, the L p-values
are sorted in decreasing order and corrected in the following way [93]:

pcorrected(l) = p(l), l = 1;

pcorrected(l) = min

(
p(l − 1), L

L− l + 1p(l)
)

, l = 2..L.
(6.8)

6.5 Datasets
Ideally, the goal is to find feature extractor-classifier combinations that can differen-
tiate between attention to an auditory stream and any form of inattention to that
stream. Unfortunately, no such dataset exists at present time and could no longer be
recorded within the time span of this thesis. The following two datasets concerning
auditory attention can nonetheless be leveraged:

• Vanthornhout dataset: This dataset is concerned about auditory versus
visual attention [16].

• Brouckmans-Dewit-Vanhaelen dataset: This dataset contains auditory
attention conditions, as well as conditions wherein subjects are instructed to
solve mathematical exercises or to read a text while an auditory stimulus is
present [85].
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The Vanthornhout dataset originates from [16], wherein 20 normal-hearing and
unpaid subjects participated in (one of) the following experiments:

• actively listen to a stimulus and answer some questions afterwards;
• watch a silent, subtitled cartoon movie while ignoring the stimulus.

These subjects were volunteers between 18 and 35 years old and were native Dutch
(Flemish) speakers [16]. Regarding the stimulus, two different speech types were
used: a story stimulus and concatenated sentences of the Flemish Matrix Test [102].

The story stimulus corresponds to the story ’Milan’, as narrated by the Flemish male
speaker Stijn Vrancken, and resembles a real life continuous auditory stream [16].
This stimulus consists of continuous speech, has a length of about 15 minutes and
was presented using a signal-to-noise-ratio (SNR) of 100 dB.

On the other hand, the sentences of the Flemish Matrix test follow a fixed pattern
of ’name verb numeral adjective object’ (e.g. Ellen ziet twee beige fietsen), wherein
for each grammatical category 10 options are available [16, 103]. The corresponding
matrix-stimulus is subsequently created by concatenating 20 such sentences and
adding a random silence, ranging from 0.8 s to 1.2 s, between these sentences. Each
such matrix-stimulus was presented between 1 and 7 times, effectively creating an
audio fragment between 2 minutes and 14 minutes. Moreover, these sentences were
presented at various SNR-levels between −12dB and 100 dB. On the plus side, the
phoneme occurrence count in this stimulus type is close to the distribution of the
Dutch language [103]. On the minus side, these sentences may be dull to actively
listen to, interfering with the experiment setup.

There are 7 subjects for which data for all cases (attention-story, attention-matrix,
movie-story and movie-matrix) are available. For the union of the attention-story,
attention-matrix and movie-matrix cases, 17 subjects are available. EEG has been
recorded using a 64-channel BioSemi EEG cap2 in a radio frequency shielded room.

Furthermore, a subset of the Brouckmans-Dewit-Vanhaelen dataset, originating from
[85], is utilised. 10 Flemish speaking and unpaid subjects, between 21 and 27 years
old, engaged in the following experiments:

• actively listen to a stimulus;
• solve as many mathematical exercises (e.g. 1012 − 448) as possible while

ignoring the auditory stimulus;
• read a text while ignoring the auditory stimulus.

In each of these conditions different story stimuli were utilised: ’Bianca en Nero’
narrated by Luc Nuyens (male) in the auditory attention condition, ’Ver van het
kleine paradijs’ narrated by Iris Van Cauwenbergh (female) and ’Milan’ narrated
by Stijn Vrancken (male) in the mathematical exercises distraction condition, and

2https://www.biosemi.com/
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’Eline’ narrated by Luc Nuyens (male) in the text reading distraction condition.

In total, about 20 minutes of the auditory attention condition, about 5 minutes of
the mathematical exercise distraction condition and about 13 minutes of the text
reading distraction condition are available. Contrary to the Vanthornhout dataset,
a smarting3 mobile EEG cap, consisting of only 24 EEG channels, is utilised 4,5.
Furthermore, data were collected in a non-radio frequency shielded room.

Note that the datasets have a major downside: the setup permits solely to distin-
guish between subjects actively listening and subjects under dedicated distraction
conditions (while passively listening), whereas the general goal is to detect any form
of inattention to the auditory stimulus. Therefore, it is difficult to draw general
conclusions from these datasets. We will nevertheless refer to auditory attention as
’attention’ and visual attention as ’inattention’ or ’movie’. The mathematical exercises
and text reading distraction conditions will also be referred to as ’inattention’ or
respectively ’mathematics’ and ’text’.

Throughout this work, mainly the Vanthornhout dataset will be leveraged for ex-
perimental explorations, whereas the Brouckmans-Dewit-Vanhaelen dataset will be
used to validate performance of the final feature extractor-classifier proposal. Thus,
unless specifically stated otherwise, usage of the Vanthornhout dataset is assumed.

6.6 Conclusion
In order to assess the performance of feature extractor-classifier combinations SS-
V, SS-CV and SI-CV approaches are used. Moreover, the corresponding hyper-
parameters can be found in table 6.1. In order to perform statistical evaluation,
hypothesis testing using a framework of LME, ANOVA and Benjamini-Hochberg
corrections is utilised. Finally, the Vanthornhout dataset and the Brouckmans-Dewit-
Vanhaelen dataset will be used in the remainder of this work. The Vanthornhout
dataset consists of two states: attention to an auditory stimulus and attention to a
visual stimulus while ignoring the auditory stimulus. To this end, two types of stimuli
are leveraged: a continuous story and concatenated sentences of the Flemish matrix
test. The Brouckmans-Dewit-Vanhaelen dataset consists of an auditory attention
condition and two distractors, namely mathematical exercise solving and text reading.
In this dataset, only story stimuli are utilised. Note that the limited number of
attention conditions might hamper the drawing of general conclusions.

3https://mbraintrain.com/
4The 24-channel EEG cap consists of channels Fp1, Fp2, Fz, F7, F8, FC1, FC2, Cz, C3, C4,

T7, T8, CPz, CP1, CP2, CP5, CP6, TP9, TP10, Pz, P3, P4, O1 and O2. These channels are
further treated exactly the same as the 64-channel EEG cap. Only the TP9 and TP10 channels
are not available in the 64-channel cap and are added respectively to the left-temporal (LT) and
right-temporal (RT) groups.

5Raw EEG data are converted into a .mat format using OpenVibe software available at http:
//openvibe.inria.fr/converting-ov-files-to-matlab/.
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Chapter 7

Differentiating nature features

7.1 Introduction
This chapter presents the experiments, linked to the first high-level objective: Which
features can discriminate between attention and inattention to an auditory
stream? We will inspect this differentiating nature for each of the features, as
introduced in chapter 3.

Section 7.2 presents the low-level research questions and corresponding experiments.
Thereafter, section 7.3 concludes this chapter.

7.2 Experiments
This section presents the low-level research questions and corresponding experimental
results in subsections 7.2.1-7.2.10. Referring to section 6.2, we will utilise the
Vanthornhout dataset in the following ways:

• SS-CV: A 10 fold cross validation approach is taken, wherein the attention-
story and movie-story data are partitioned into 10 folds. To this end, data
of 7 subjects are available.

• SS-V: The attention-story and movie-story data are used as a training
set and the attention-matrix and movie-matrix data as a validation
set. The union of attention-matrix, attention-story and movie-story contains 17
subjects. Therefore, the LS, KLD, BP and entropy experiments are conducted
using these 17 subjects. However, when adding the movie-story condition to
the union, only 7 subjects remain. Therefore, the LASSO and CSP experiments
are conducted using 7 subjects.

We reemphasise that the hyper-parameters remain fixed as shown in table 6.1, unless
explicitly stated otherwise. Hypothesis tests are performed according to the proce-
dures of section 6.4, where the subject identifier and SNR level are incorporated as a
random effect, and the feature value and offset as a fixed effect. Furthermore, these
hypothesis tests are performed using a significance level of 5%.
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We also reemphasise that the features are either novel as such (KLD), novel in the
domain (LASSO, CCA and CSP) or novel in the setup (BP and entropy) to our best
of knowledge; except for the LS feature. Indeed, in [16], the LS feature has already
been investigated on the same Vanthornhout dataset. Nevertheless, our research is
complementary: Firstly, in [16], the effect of the different SNR levels was studied,
whereas here we aggregate over SNR levels using an LME. Secondly, in [16], only
an SS-V approach was adhered to, whereas we also leverage an SS-CV approach.
Finally, in [16], only delta and theta band and EEG lags [0, 75] ms and [0, 500] ms
were studied, whereas we issue a more fine-grained LS hyper-parameter evaluation.

7.2.1 Least squares frequency band influence

Research questions

1. Which frequency bands reflect the level of attention to an auditory stream
when using an LS approach?

2. Which frequency band is most differentiating?

Hypothesis

Since, in [16], a significant difference was found in the delta band between the
attention and inattention state, we hypothesise the delta band to be differentiating.
This hypothesis is strengthened by the overlap of the delta band with the word and
phrase rate [29, 30], as described in section 3.3. In [16], furthermore, no significance
was found between attention and inattention in the theta band such that we do not
expect to find significant differences in this theta band. Moreover, debate exists
in the literature on whether the alpha band decodes attention to auditory stimuli
[32, 33]. Finally, regarding the beta band, we expect no significant differences since
it does not overlap with word, phrase or syllable rate.

We further hypothesise the delta band to be most differentiating, given the results of
[16] and the classic relation of the delta band to auditory stimuli [8, 33].

Experiment

The frequency bands are varied between delta, theta, alpha and beta band. Firstly,
to assess the differentiable nature of the frequency bands with respect to the LS
feature extractor, hypothesis tests are performed between attention and inattention
correlations per frequency band. Subsequently, hypothesis tests on the difference
in correlation between attention and inattention (attention-inattention) per band
with respect to the delta band are performed to assess which frequency band is most
differentiating.
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Delta Theta Alpha Beta
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Figure 7.1: The spearman correlation, using an SS-CV approach, shows a significant
difference in correlation regarding the delta band. In addition, the alpha band is
almost differentiating. No significant differences are observable in the theta or beta
band.

Result

Figure 7.11,2,3 displays the Spearman correlation coefficients, adhering to the SS-CV
strategy. The delta band is differentiating between the attention and movie cases
(p=7.3 · 10−4) and the alpha band is almost so (p=7.6 · 10−2). On the contrary, the
theta and beta band do not result in any form of significance (respectively p=3.1·10−1

and p=6.2 · 10−1). Using the SS-V approach, different results are obtained: The
alpha and beta bands prove to be differentiating (respectively p=1.6 · 10−2 and
p=1.3 · 10−2), whereas the delta and theta band do not (min(p)=1.2 · 10−1).

Furthermore, when comparing the attention-movie correlation difference for each
band with respect to the delta band, significance is obtained in each case, when
adhering to the SS-CV approach (max(p)=9.8 · 10−4).

1This and all subsequent violin boxplots were generated using code developed by B. Bechtold
and available at https://github.com/bastibe/Violinplot-Matlab. This framework was accessed
on 19/10/2021.

2MATLAB figures were converted into tikz format using code mainly developed by N. Schlöme
and available at https://github.com/matlab2tikz/matlab2tikz on 11/11/2021.

3Asterisks * denote significance with respect to a level of 5%.
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Discussion

Surprisingly, using an SS-V approach, alpha and beta decoders yield significant
differences, whereas delta and theta decoders do not. Nevertheless, these results
need to be interpreted with care. Indeed, correlation values of both alpha and beta
decoders lie close to zero. In fact, the mean correlation averaged over the SNR
levels, is of order of magnitude O(10−3), both for the attention and the movie case.
Therefore, this significance may possibly be attributed to the finite dataset size and
not (entirely) to the underlying differentiating nature of these bands. This statement
is strengthened by the fact that delta and theta bands are not differentiating in this
SS-V approach, despite these bands classically being related to envelope tracking
[8, 33]. Furthermore, the results of the SS-CV approach seem to confirm this state-
ment as well.

Indeed, using this SS-CV approach, the delta band is (most) differentiating and
seems to encode differences in neural envelope tracking between attention
and inattention states. As hypothesised, neural tracking is possibly induced due
to overlap with word and phrase rate [29, 30]. Although the theta band achieves
correlations that are significantly different from zero (p=7.2 · 10−4 for attention
and p=7.2 · 10−4 for movie), theta band decoders do not result in a significant
difference between attention and inattention. Therefore, the theta band appears to
encode some level of envelope tracking, possibly due to overlap with the syllable
rate [29, 30], albeit in a similar manner regarding the attention and inattention
cases. The fact that the alpha band results in almost-significance is in line with [32],
although according to [33], this result needs to be interpreted with caution since the
dominant alpha power might interfere with the results. Also, as hypothesised, the
beta band does not result in a significant difference between attention and inattention.

Taking these arguments into account, we may possibly state that the SS-V approach
does not result in ’meaningful’ significance. This ’insignificance’ may be caused by
interference in the setup: The sentences of the Flemish matrix test are dull to listen
to, such that the actual attention state might have differed from the requested one
[16].

7.2.2 Least squares starting lag influence

Research questions

Does the difference in correlation between attention and inattention (i.e. the difference
in neural envelope tracking) increase when the early EEG lag values are excluded?

Hypothesis

It is argued that the brain tracks both attended and ignored auditory streams at early
lag values [0, 85] ms, while suppressing the ignored auditory streams with respect to
the attended streams at later lag values > 85 ms [5, 27]. In [16], however, tracking
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differences between attention and inattention states has already been observed at an
ending lag value of 75 ms. Altogether, we hypothesise that excluding the early lag
values will result in a larger difference in correlation between attention and inattention.
However, we also hypothesise that excluding too much data will eventually result
in a lower correlation difference since in that case (too much) envelope tracking
information will be thrown away.

Experiment

The starting lag value is varied over the following values: 0, 75, 100, 200, 300 and
400 ms. A hypothesis test between attention and inattention for each pair of lag
values [x, 500] ms (x ∈ N0) is performed, as well as a hypothesis test on the difference
between attention and inattention (attention-inattention) correlations for each lag
value pair with respect to the [0, 500] ms base case.

Result

Figure 7.2 presents the Spearman correlations using an SS-CV approach. Excluding
EEG lag values results in decreasing correlation values, regarding both the attention
and the movie case. Nevertheless, all correlation values are (almost) significantly
different from 0, e.g. , the [300, 500] ms movie case (p=4.9 · 10−3) and the [400, 500]
ms movie case (p=6.0 · 10−2). Moreover, all lag value pairs result in a significant
difference between the attention and movie case (max(p)=3.8 · 10−2).

The attention-movie correlation difference of each lag value pair is also compared
with respect to the [0, 500] ms base case: This base case proves to yield a significant
higher correlation difference with respect to the [200, 500] ms, [300, 500] ms and
[400, 500] ms cases (max(p)=2.8 ·10−2). However, the base case does not significantly
outperform the [75, 500] ms and [100, 500] ms cases (min(p)=1.1 · 10−1). Using an
SS-V approach, no differences between attention and movie are observed for any of
the lag value pairs (min(p)=1.3 · 10−1).

Discussion

The results suggest that there is a loss in envelope tracking whenever EEG
time lags are excluded. Indeed, the decreasing trend in correlation values, for both
the attention and the inattention case, points to a loss in envelope tracking. However,
more importantly, there also seems to be a loss in the difference in envelope tracking
between the two cases. Indeed, the difference between attention and inattention
correlation is significantly different, with respect to the [0, 500] ms case, regarding
the [200, 500] ms, [300, 500] ms and [400, 500] ms cases. In addition, there does
not seem to be any gain in excluding early lag values since the [0, 500]
ms case does not perform significantly different from the [75, 500] ms and
[100, 500] ms cases.
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Figure 7.2: The spearman correlation, using an SS-CV approach, shows a significant
difference in correlation regarding all shown lag values. However, the overall trend of
correlation magnitude is declining.

7.2.3 Least squares ending lag influence

Research questions

To what extent can late neural responses be excluded, i.e., to what extent do late
neural responses influence the envelope tracking?

Hypothesis

Given that in [16] a significant difference was found (at the −6.9 dB SNR level) using
an SS-V approach with [0, 75] ms decoders, we hypothesise that the late neural lag
values can be excluded to [0, 75] ms. However, we do not expect to find a significant
difference between attention and inattention when using too low ending lag values (<
75 ms). Indeed, in [27], it has been observed that simultaneously played, attended and
ignored auditory streams are tracked similarly at these low lag values. Nonetheless,
we note that our domain of interest is somewhat different from this AAD domain.

Experiment

The ending lag value is varied over the following values: 1
128 , 10, 20, 50, 75 and 500

ms. Note that an ending lag value of 1
128 ms effectively corresponds to a spatial

decoder since the sampling rate equals 128 Hz. Further, hypothesis tests between
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Figure 7.3: The spearman correlation, using an SS-CV approach, shows a significant
difference in correlation regarding all shown lag values. The overall trend of correlation
magnitude is increasing with increasing ending lag value regarding the attention case,
and about stationary regarding the movie case.

attention and inattention are performed for each pair of lag values [0, x] ms (x ∈ N0),
as well as between the attention-inattention correlation differences for each lag value
pair with respect to the [0, 500] ms base case.

Result

Figure 7.3 displays the Spearman correlation coefficients, using an SS-CV approach.
All ending lag values result in a significant difference between the attention and
movie case (max(p)=1.2 · 10−3). Moreover, whereas the trend in correlations is
nominally increasing with increasing ending lag value regarding the attention case,
the same does not hold true regarding the movie case. Median movie correlations
indeed remain about stationary with respect to this movie case. Furthermore, no
attention-movie correlation difference significantly differs with respect to the [0, 500]
ms base case (min(p)=1.5·10−1). Using an SS-V approach, no significance is obtained
for any lag value pair (min(p)=5.4 · 10−1).

Discussion

In line with our hypothesis, decoders whose ending lag value exceeds 75 ms, are
differentiating between the attention and movie case using an SS-CV approach.
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Figure 7.4: Topographic map of the filter weights when using a spatial decoder
under an SI-CV approach. Structuring around the temporal lobes is clearly visible.
Note that the filter weight structuring would be more smooth if regularisation would
be added.

However, contrary to our hypothesis, decoders with even lower lag values are also
differentiating between both cases. In fact, there is no significant difference between
the lagged and spatial decoders. Since the EEG response always follows the stimulus
onset, due to causality, it seems unlikely that these spatial decoders are effectively
decoding the stimulus envelope. Yet, figure 7.4 may be utilised to assess our claims.
This topographic plot shows the (normalised) filter weight distribution across the
scalp when adhering to an SI-CV approach without any regularisation4. Referring
to section 3.7, we acknowledge this topographic plot cannot be interpreted as such.
Nevertheless, the highly structuring of the weights around the temporal sensors may
be used to assess the spatial decoder’s functionality [8]. Remains the question how
this spatial decoder operates if it is only marginally causal. One hypothesis is that
this spatial decoder is performing segmentation based on brain activity. However,
this does not explain why the correlations at these lag values are significantly different
from 0 (p=1.1 · 10−7 for attention and p=9.8 · 10−5 for movie). Moreover, the LS
decoders do not process any inattention data at training time. Other hypotheses
are mixing in acausal information due to MWF artefact removal, such that the
decoder is not entirely acausal, and a small misalignment between EEG and stimulus,
although the bottom line still remains that lagged decoders do not seem
to significantly outperform their spatial counterparts.

4The SI-CV approach mitigates subject-specific influences for the sake of interpretability of the
topographic plots. Preprocessing has been repeated by applying the MWF filters for the first subject
to all subjects to limit differences in preprocessing between subjects.
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7.2.4 Significance of least absolute shrinkage and selection operator

Research questions

Does the sparsity of decoders reflect the level of attention to the auditory stream?

Hypothesis

Despite contradictory results in the AAD domain [28, 35], we expect a significant
difference in sparsity between LASSO regularised decoders trained on attention and
inattention data. Decoders trained on attention data are hypothesised to be more
sparse due to higher levels of envelope tracking, whereas decoders trained on the
inattention data are expected to be less sparse [35].

Experiment

The sparsity of LASSO regularised decoders, trained on the attention and inattention
data, is compared using the Gini-index.

Result

Figure 7.5 shows the Gini-indices of the LASSO regularised decoders, trained on
attention and movie data, using an SS-CV approach. Visually, the Gini-indices (and
thus sparsity) of the attention decoders exceed the Gini-indices of the movie decoders.
Indeed, for 4 out of 7 subjects the sparsity decreases when going from the attention
to the movie case. However, no significance is obtained (p=2.9 · 10−1). In addition,
no significance is obtained using an SS-V approach (min(p)=6.3 · 10−1).

Discussion

Contrary to our hypothesis, the sparsity of the LASSO regularised decoders does
not result in a significant difference in the experimental setups. In fact, even
using the entire Vanthornhout dataset (instead of a 10 fold SS-CV), no statistical
significance (p=2.9 · 10−1) is obtained. Therefore, it might be that the sparsity
of LASSO regularised decoders does not (reliably) reflect the difference
in (in)attention towards an auditory stream.

7.2.5 Significance of canonical correlation analysis

Research questions

1. Does canonical correlation analysis reflect the level of attention to the auditory
stream?

2. How does canonical correlation analysis perform with respect to least squares?
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Figure 7.5: Gini-indices of LASSO-regularised LS decoders, when adhering to an
SS-CV strategy. Larger Gini-indices denote sparser solutions.

Hypothesis

As mentioned in section 3.3, CCA corresponds to a generalisation of least squares
due to the introduction of filters on the auditory side. Considering the significance
of least squares decoders, we hypothesise to subsequently obtain significance using
the CCA approach. Furthermore, we expect to find higher correlations in the first
CCA filters with respect to the LS approach due to CCA’s model being more flexible,
although this flexibility does not necessarily imply that the difference in correlation
will be larger. Indeed, CCA tries to maximise the correlation of the attention case
and does not try to maximise the difference in correlation between the attention and
inattention cases as such.

Experiment

The LS and CCA approaches are both applied to the dataset. As before, hypothesis
tests are performed both within a setup (i.e. LS or CCA filter) and between attention-
inattention correlation differences across setups with respect to the LS base case.

Result

As displayed in figure 7.6, the SS-CV approach on the Vanthornhout dataset re-
sults in a significant difference between the attention and movie case for the first
(p=3.6 · 10−3), second (p=8.4 · 10−3) and fourth (p=1.2 · 10−2) CCA filter. Further-
more, the fifth filter results in almost significance (p=7.1 · 10−2). In line with the LS
results of section 7.2.1, significance is obtained for the LS decoder (p=1.8 · 10−4).
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Figure 7.6: Spearman correlations of the LS decoder and CCA filters, when using an
SS-CV approach. The ’CCA+number’ notation reflects subsequent filters generated
by the CCA algorithm. The correlation trend is decreasing for these subsequent
CCA filters. Furthermore, the LS correlations do not significantly differ from the
corresponding CCA1 correlations.

In addition, the overall trend for both attention and movie correlations is decreasing
for increasing CCA filter. The correlations of the first CCA filter do visually not differ
much from the LS correlations and, mathematically, neither attention (p=4.9 · 10−1)
nor movie (p=2.6 · 10−1) differ significantly. In fact, the difference in correlation
between attention and movie condition does not differ significantly between the LS
decoder and the first CCA filter (p=8.5 · 10−1).

An SS-V approach does not result in any significance for any CCA filter (min(p)=3.1 ·
10−1).

Discussion

As hypothesised, the CCA filters do result in significant differences between
the attention and inattention states. Note that the fact that the third filter is
not significant, whereas the fourth filter is, does not violate any theory. As mentioned
in the hypothesis, the CCA filters try to maximise the correlation of the attention
case under orthogonality constraints. However, this does not imply anything about
the difference in correlation between the attention and inattention cases.
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Furthermore, the decreasing trend of CCA correlation values is as expected, due to
the addition of the orthogonality constraints. Yet, surprisingly, the correlations
of the CCA filters are not significantly different from the LS correlations.
Apparently, time-lagging the stimulus envelope does not result in a signif-
icant performance gain. Furthermore, this time lagging comes at the expense of
a more complex model, such that the individual CCA filters might not be beneficial
with respect to the LS approach. However, the entire CCA approach can still be
advantageous with respect to the LS approach: CCA designs multiple filters of which
the correlations can be optimally combined (in some sense) in a classifier. On the
contrary, LS only yields one correlation value. Therefore, we will have to resume this
discussion in chapter 8.

7.2.6 Significance of Kullback-Leibler divergence

Research questions

1. Does the Kullback-Leibler divergence late fusion approach reflect the level of
attention to the auditory stream?

2. Does the Kullback-Leibler divergence early fusion approach reflect the level of
attention to the auditory stream?

Hypothesis

Since the neural envelope is tracked less well in the inattention case (section 7.2.1),
it is hypothesised that the KLD is larger for the inattention than for the attention
case. Indeed, the KLD is an envelope tracking feature extractor, and a larger KLD
value reflects less correspondence in distribution. Furthermore, we hypothesise the
early fusion approach to be more discriminating than the late fusion approach since,
in the former, information is already aggregated prior to computing the KLD.

Experiment

Both the late and early fusion KLD approaches are applied to the dataset.

Result

As presented in figure 7.7, the median movie KLD visually exceeds the attention one,
when using an SS-CV approach. This observation holds regarding both the late and
early fusion approaches. However, despite 4/7 subjects attaining a larger KLD value
in the late-fusion movie case, no significance is obtained (p=2.4 · 10−1). Similarly,
KLD values of the early fusion approach increase for 6/7 subjects from the attention
to the movie case. Yet, again, no significance is obtained (p=2.4 · 10−1) since most
increases happen only marginally.

On the contrary, significance is obtained using an SS-V approach, both regarding
the late fusion (p=1.8 · 10−5) and the early fusion (p=7.3 · 10−5) approaches.
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(a) The KLD late fusion approach results in larger KLD values for 4 out of 7 subjects.
Nevertheless, no significance is obtained.
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(b) The KLD early fusion approach results in larger KLD values for 6 out of 7 subjects.
Nevertheless, no significance is obtained.

Figure 7.7: KLD methodologies, using an SS-CV approach.
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7.2.7 Discussion

Overall, the inattention median KLD values visually exceed the attention KLD
values. However, the differentiating nature of the results is inconsistent
regarding the SS-CV and the SS-V approaches: The SS-V approach does
result in differentiating results, whereas the SS-CV approach does not.
Undifferentiating results could originate from the noise component (i.e. background
EEG) overwhelming the desired component (i.e. neural tracking information) in the
PSD estimation, such that the neural tracking information might not be sufficiently
encoded in this PSD estimate. Furthermore, the finite length of the data introduces
edge effects in the PSD estimation, which are similar for all PSDs and therefore work
as a similarity force. Nevertheless, the differentiating results in the SS-V approach
might indicate that the method is viable.

To gain more insight into the operation of the novel KLD metric, the topographic
maps of the filter weights, using an SI-CV approach, are displayed in figure 7.8.
Mostly, large weights in the frontal(-right temporal) region are observed. We would
have expected these high weight values to be structured around the temporal sen-
sors at both sides of the head, as was the case for the LS decoders (section 7.2.3).
Therefore, it is not entirely clear what data characteristics the novel KLD method is
exactly exploiting.

Further, no proof is found for the hypothesis of a more discriminating early
fusion approach. Indeed, a hypothesis test on the difference in attention-inattention
KLD between both approaches does not result in significance (p=5.5 · 10−1).

Finally, we note that these results might come with an interesting byproduct: As
explained in section 3.3, the KLD approach assumes that the frequency content of
the stimulus envelope is preserved in the EEG signal. Since significance is obtained
using the KLD approach in an SS-V evaluation setting, we can at least not reject
this hypothesis. Furthermore, this assumption is in line with the brain locking to
the modulation frequency of sine waves [51].

7.2.8 Significance of band-power

Research questions

1. Does the band-power reflect the level of attention to the auditory stream for
any frequency band-sensor combination?

2. Does the band-power reflect the level of attention to the auditory stream for
any frequency band in Broca’s or Wernicke’s areas?

Hypothesis

Given the discussion in section 3.4, we hypothesise to find a difference in parietal-
occipital and frontal regions in the alpha and beta bands. Although, again, since
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(a) KLD late fusion (b) KLD early fusion

Figure 7.8: Topographic map of the KLD weights, under an SI-CV approach. Both
fusion methods result in large weight values in the right frontal-temporal region.

these features have not yet been applied to our setup, results might differ. The
closest work is [54], where a subject was informed to either pay attention to a beep
tone or to a flashing screen in a compound beep-flash task. In that work [54], a
higher band-power has been observed in the parietal-occipital region in the alpha
band regarding subjects attending the beep tone.

In addition, since Broca’s and Wernicke’s areas (figure 3.2) are related to language
processing, we hypothesise to find a difference in band-power in these regions [56, 57].

Experiment

The band-power is calculated for each sensor region (see figure 3.3) and frequency
band combination, and also in Broca’s and Wernicke’s areas (see figure 3.2).

Result

No significant difference in band-power is obtained for either sensor region-frequency
band combination, both using the SS-CV (min(p)=1.4 · 10−1) and using the SS-V
(min(p)=5.9 · 10−1) approaches. Similarly, no significance is observed in Broca’s
(SS-CV: min(p)=2.0 · 10−1 and SS-V: min(p)=5.9 · 10−1) or Wernicke’s (SS-CV:
min(p)=5.3 · 10−1 and SS-V: min(p)=7.6 · 10−1) areas.

Discussion

Contrary to our hypothesis, no significance is obtained in any frequency band,
for any sensor group. However, this does not necessarily mean no significance can
be found using a brain activity exploiting feature extractor. Firstly, neighbouring
EEG sensors pick up similar signals and EEG signals have a poor spatial resolution,
such that it is difficult to localise the origin of a source. Secondly, EEG signals are
bipotential signals, such that the reference also influences these power measurements.
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Thirdly, as with the KLD experiment, the PSD calculation introduces edge effects,
which are similar for attention and inattention cases, interfering with the setup.
Finally, the band-power could just not be an appropriate measure to exploit brain
activity differences in the current setup. However, since ideally we would
like to find universal measures of attention to an auditory stream, the
band-power does not seem a suitable feature extractor.

The fact that there is no significance found in Broca’s and Wernicke’s areas
might be due to similar reasons. Nevertheless, setup specifics could also be in play:
The subjects inattentive to the stimulus were watching a subtitled movie, which
means language processing was involved in the inattention task as well [56].

7.2.9 Significance of common spatial pattern

Research questions

Does common spatial pattern reflect the level of attention to the auditory stream for
any frequency band?

Hypothesis

Since classically the alpha and beta band are related to the concept of attention
[58, 59], and since the beta band has been proven profound for good CSP performance
in the AAD domain [12], differences in the alpha and beta band might be hypothesised.
Nonetheless, we reemphasise that the target problem is not exactly the same as this
AAD domain since multiple states of attention exist.

Experiment

The common spatial pattern approach is conducted for the delta, theta, alpha and
beta band separately.

Result

Using an SS-CV approach, we obtain rather spectacular results: For the first 2 filters
that maximise the output energy of the attention case and the first 2 filters that
maximise the output energy of the movie case (see figure 7.9), significant results are
obtained for all frequency bands (max(p)=8.3 · 10−3). Also, visually, the attention
and movie boxplots are well separated in figure 7.9.

Nevertheless, no significance is obtained using an SS-V approach (min(p)=1.9 · 10−1).

Discussion

CSP seems to be a promising feature extraction methodology since it
results in major significance. Although results need to be interpreted
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Figure 7.9: The log-energy of the CSP filter output, using an SS-CV approach,
shows significance for both the first two filters that maximise attention output energy
and the first two filters that maximise the movie output energy. These filters are
denoted by ’F + filter number + state of which the energy is maximised’.
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with care:

Firstly, an SI-CV approach does not result in significance. Neither the first
nor the second filter maximising the attention or movie output energy proves to be
significant (p=3.4 · 10−1). This possibly denotes poor generalisation of CSP as a
subject-independent feature extractor.

Secondly, we reemphasise the ’black-box’ nature of CSP: It is difficult to assess
what data properties CSP is effectively exploiting, although muscle and eye blink
artefacts were (largely) removed by the preprocessing framework. As a result, it
is difficult for CSP to exploit these artefacts, yet not impossible since residual
artefacts can still be present. Moreover, the pattern topographic plots, using an
SI-CV approach (see section 3.7), may guide the interpretation. Regarding the
delta band, structuring around the temporal lobes can be observed (see figure 7.10).
On one hand, this may refer to the relationship between the delta band and the
temporal lobes. On the other hand, this pattern is not entirely apparent in the filters
maximising the movie output energy, and no clear patterns are observed for the
other frequency bands. This means we still cannot give much interpretation to the
CSP filters. The interested reader can find the first two topographic patterns, for
both movie and attention, in appendix C, and this for each frequency band.

7.2.10 Significance of entropy

Research questions

1. Does the entropy reflect the level of attention to the auditory stream for any
frequency band-sensor combination?

2. Does the entropy reflect the level of attention to the auditory stream for any
frequency band in Broca’s or Wernicke’s areas?

Hypothesis

In [63], the entropy, calculated over the [0.5, 25] Hz range, has been reported dis-
criminatory between subjects, attentive to a screen projecting different colours, and
subjects at rest. Likewise, the entropy in the [8.5, 32] Hz range (≈ alpha and beta
band) has proven lower in passive than in auditory attention states [6]. However,
since in the Vanthornhout dataset the distractor effectively corresponds to a visual at-
tention condition, we will not necessarily find similar results [6]. Nevertheless, both
alpha and beta bands are classically related to the concept of attention [12, 58, 59],
such that we hypothesise to find differences in these frequency bands.
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(a) Attention pattern 1 (b) Attention pattern 2

(c) Movie pattern 1 (d) Movie pattern 2

Figure 7.10: SI-CV pattern topographic plot of delta band CSP. Some structuring
around the temporal lobes is visible.

Experiment

The entropy is calculated for each sensor region-frequency band combination and
also in Broca’s and Wernicke’s areas5.

Result

Significance is obtained in the RB (p=4.1 · 10−3) and RT (p=3.3 · 10−3) group in
the beta band, when using an SS-CV approach. In both groups, the movie entropy
values exceed the attention entropy values. Also, note that the RC, CC and LB
group result in almost significance (p=5.8 · 10−2). No significant results are found in
the other frequency band-sensor region combinations (min(p)=2.1 · 10−1). Moreover,
using an SS-V approach, no significance is obtained in any frequency band-sensor
region combination (min(p)=6.7 · 10−1).

5See figure 3.3 for the sensor group naming convention and figure 3.2 for the mapping of Broca’s
and Wernicke’s areas to the EEG sensors.
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Figure 7.11: Entropy in the beta band, averaged over the sensors in each group,
when using an SS-CV evaluation methodology. Significantly higher movie entropy
values are obtained in the RT and RB group with respect to the attention condition.
Group indices refer to the naming convention as introduced in figure 3.3.

In addition, no significance is obtained in Broca’s (SS-CV: min(p)= 3.6 · 10−1

and SS-V: min(p)=6.7 · 10−1)) or Wernicke’s (SS-CV: min(p)=5.8 · 10−2 and SS-V:
min(p)=6.7 · 10−1) areas, for both validation approaches.

Discussion

The entropy values are differentiating in the beta band. This result might
not be so surprising since the beta band is classically related to the concept of
attention [12, 58]. The inattention entropy values exceed the movie condition in the
RT and RB regions, such that it seems that these sensor regions are affected by
larger levels of distribution uncertainty in the movie condition. Yet, in [6], entropy
values of auditory attentive subjects were found to exceed entropy values of subjects
in a passive state. Therefore, the relevant entropy values seem to increase
from a passive state over the state of attention to an auditory stream to
attention to a visual stream.

Moreover, we note that the entropy in the RT and RB group cannot be
directly mapped to cortical activity. Indeed, referring to section 7.2.8, EEG
signals are bipotential and hence the mapping of sensor-regions to cortical activity is
influenced by the reference signal. Furthermore, EEG has a poor spatial resolution.
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As with the band-power feature, no significance is obtained in Broca’s or
Wernicke’s areas. We refer to the poor spatial resolution of the EEG signal and the
fact that there are subtitles present in the cartoon movie as possible explanations
for this insignificance.

7.3 Conclusion
Table 7.1 provides a summary of the (in)significance of the feature extraction method-
ologies. Herein, CSP seems to be the most promising one, resulting in low p-values
(max(p)=8.0·10−4 for the first two attention and inattention filters). Nevertheless, the
CSP performance needs to be interpreted with caution since CSP operates somewhat
like a ’black-box’ and does not seem to generalise well to subject-independent designs.

As can be seen in table 7.1, feature significance also depends on the validation
strategy: Almost no significance is obtained on the sentences of the Flemish matrix
test. Only the LS and KLD approaches prove to be differentiating. Yet, the LS
significance might be explained by the finite length of the dataset (see section 7.2.1),
such that only the KLD approaches truly seem to be differentiating. This general
insignificance can possibly be explained due to the difficulty of subjects to perform
the task as instructed. Indeed, these Flemish matrix-sentences do not provide a
coherent story, which promotes interference in the setup.

The novel KLD early fusion approach is not yet fully understood. It comes with the
interpretation of binwise linking of frequency information and seems mostly focused
on the frontal-(right temporal) region. Nonetheless, no KLD significance is obtained
using an SS-CV approach, whereas significance is obtained using an SS-V approach.
Possibly, edge effects in the PSD estimation and poor SNR conditions, in terms of
envelope encoding EEG versus background EEG, influence the results.

Furthermore, regarding the LS approach, lagged decoders do not significantly outper-
form spatial decoders. This paves the way for computationally cheap, spatial decoders.

Finally, note that the limited amount of attention conditions in the dataset hampers
the drawing of general conclusions.
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Significant Insignificant
LS LASSO

CCA KLD late fusion
CSP KLD early fusion

Entropy BP

(a) SS-CV

Significant Insignificant
LS LASSO

KLD late fusion CCA
KLD early fusion BP

CSP
Entropy

(b) SS-V

Table 7.1: Summary of the feature extraction experiments: Features are classified
according to their (in)significance between the attention and inattention states.
Nevertheless, LS significance in the SS-V approach appears most likely due to finite
dataset length effects, as explained in section 7.2.1.

75



Chapter 8

Feature extractor-classifier
performance

8.1 Introduction
This chapter presents the experiments, linked to the second high-level objective:
What classification performance can be attained by a feature extractor-classifier
combination? To this end, we will study combinations of the chapter 3 features, in
compound with the LDA classifier of chapter 4. Note that the LDA assumptions of
normality and equal covariance matrices of the class conditional distributions do not
seem to be entirely satisfied (see section 6.3 and appendix B.1), although this LDA
classifier can still prove its worth [52]. Furthermore, classification performance will
be evaluated for different window lengths. Larger window lengths indeed allow to
incorporate more information in the decision making process, although this comes at
the cost of a reduced latency of the decision itself.

Although not every feature has proven to yield significant differences between the
attention and inattention states, classification performance-wise, it still might be
useful to consider them in conjunction with other features. Indeed, features without
classification power when considered alone might still add information in conjunction
with other features [104]. In fact, only if two features fully correlate, no theoretical
gain in classification performance is possible in comparison with the individual fea-
tures, i.e., if features fully correlate, no complementary information can be exploited
[104]. This motivates us to also include the LASSO and KLD features in this study.

Section 8.2 provides the low-level research questions and the accompanying experi-
ments. Thereafter, section 8.3 concludes this chapter.

8.2 Experiments
Since an LDA classifier needs to be trained, the validation procedure of chapter 7
needs to be altered somewhat. To this end, figure 8.1 shows a graphical summary of
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the feature extraction-classification strategy, as will be adhered to in this chapter.

Ignoring steps (2), (5) and (8) for now, the basic idea consists of the combination
of an outer and inner 10 fold cross validation. The left-out outer fold serves as a
validation set for the final trained feature extractor-classifier combination, and the
left-in outer folds are utilised to train both the feature extractor and the classifier.
To this end, the left-in outer folds can readily be leveraged as a training set for the
feature extractor. This does however not hold true regarding the classifier, such
that the inner-fold cross validation comes into play. Separate validation features
are indeed required to train the classifier. For this purpose, the inner-fold cross
validation consists of a 10 fold partitioning of the left-in outer folds. A feature
extractor is trained on the left-in inner folds and applied to the left-out outer fold.
By repeating this inner-fold cross validation, inner validation features are acquired
that can subsequently be fed to the LDA classifier training algorithm. As a result,
both a trained feature extractor and classifier are acquired.

In addition to this basic schematic, windowing is incorporated ((5) and (8)), as
can be observed in figure 8.1. The validation folds are not utilised as a whole, but
partitioned in non-overlapping windows. This step is required because the distri-
bution of the validation feature values depends on the window size. In addition,
normalisation using z-scoring (see section 4.4) proves necessary ((2), (5) and (8)).
Indeed, due to the regularisation of the LDA classifier, the magnitude of the features
becomes important. Not all features however operate at the same scale, hence
the need for normalisation. This normalisation is implemented by prior window-
ing of the left-in outer folds to calculate the mean and standard deviation of the
training data features. This mean and standard deviation are subsequently used to
z-score both the windowed inner and outer validation folds, according to equation 4.6.

Using this evaluation strategy, the following experiments are conducted:

8.2.1 Feature extractor-classifier performance

Research questions1

1. To what extent does the number of CCA filters influence the classification
performance?

2. Does CCA outperform the LS feature extractor in terms of classification
performance?

3. To what extent does the frequency band choice influence the CSP classification
performance?

4. Which combination of feature extractors results in the highest classification
performance?

5. How do the feature extractor-LDA combinations perform in function of the
window length?

1Of course all research questions only hold with respect to the LDA classifier.
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Outer fold CV

(3) Take all but 1 outer fold

Inner fold CV

(4) Train feature
(5) Windowing
+ normalisa-
tion using (2)

(6) Validate feature

(7) Train
classifier

(1) Train feature

(2) Normalisation parameters

(8) Windowing + nor-
malisation using (2)

(9) Validate feature

(10) Classify

Figure 8.1: Schematic overview of the general classification strategy.

Hypothesis

Regarding the first research question, including more CCA filters does inherently
result in, at least, an equal amount of information. However, an increase in the num-
ber of filters entails an increase in the dimensionality of the feature space, worsening
the curse of dimensionality. Therefore, we hypothesise to not observe a monotonic
increase in classification performance with an increasing number of CCA filters, but
to find an optimal number of filters, in terms of classification performance, instead.
Moreover, this curse of dimensionality has a bigger impact on the features with
increasing window length since an increasing window length is associated with fewer
feature data. Therefore, the optimal number of CCA filters might differ per window
length.

Regarding the second research question and referring to section 7.2.5, CCA can
be seen as a generalisation of LS due to CCA’s more flexible model. In addition,
multiple CCA filter correlations can be optimally combined (with respect to the
LDA classifier). Therefore, we hypothesise the CCA approach to outperform the
LS one, at least when the number of CCA filters is not too large to let the curse of
dimensionality dominate performance.
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Regarding the third research question and given the results in section 7.2.9, we
hypothesise CSP’s classification performance to exceed the performance of other
feature extractors for each frequency band version of CSP. However, since the alpha
and beta bands are classically related to attention [12, 58, 59], we hypothesise CSP
to mostly rely on alpha and beta bands. Although, again, our setup is somewhat
different from the setups in [12], [58] and [59], such that results might differ.

Regarding the fourth research question, again, the tradeoff between encoding more
information and the curse of dimensionality needs to be taken into account. Never-
theless, we hypothesise feature combinations to outperform the individual features
since different feature designs are based on different principles (e.g. neural envelope
tracking versus brain activity) and are subsequently expected to encode complemen-
tary information with respect to the LDA classifier.

Finally, regarding the fifth research question, we hypothesise to find a tradeoff between
the window length and the classification performance. Indeed, larger window lengths
allow to incorporate more information and therefore are expected to yield an increase
in classification performance. However, the curse of dimensionality and the interplay
of normalisation and finite data lengths need to be taken into account as well.

Experiment2

The validation scheme, as summarised in figure 8.1, will be adhered to for window
lengths 1, 5, 10, 20, 30 and 60 s and this for different feature extractor combinations
and hyper-parameter settings (different CSP frequency bands and CCA number of
filters). However, in order to keep the experiment tractable, the number of combina-
tions is somewhat limited.

To this end, the CCA feature extractor is explored in isolation, for amount of filters
ranging from 1 to 5. In this way, the influence of the number of CCA filters can be
studied individually. In addition, the CSP feature extractor is studied in isolation,
both for each individual frequency band (delta, theta, alpha and beta) separately
and for the combination of all frequency bands. Moreover, in order to limit the curse
of dimensionality, this experiment is limited to only one filter to maximise attention
output energy and one filter to maximise inattention output energy. This study in
isolation can be justified due to CSP’s spectacular separation performance in the
experiments of section 7.2.9. Indeed, combining CSP with other feature extractors
might not be insightful due to the CSP’s expected performance gain with respect to
the other methods. Furthermore, regarding the KLD feature extractor, only the early
fusion approach will be included since both fusion approaches seem to be based on
the same information, as they both have large weights in the frontal(-right temporal)
sensor region (see figure 7.8). Regarding the remaining left-in feature extractors (LS,

2Figures 8.2a-8.2c only provide a summary of the most important results for the sake of avoiding
figure clutter. Nevertheless, the interested reader can find means and standard deviations of all
considered feature combinations in appendix D.
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LASSO, KLD early fusion and entropy), all 15 combinations are evaluated.

Regarding the hyper-parameter choice, we refer the reader to table 6.1. In addition,
the beta-band entropy will be averaged over both the RT and RB groups (see figure
3.3), as both regions have proven differentiating in section 7.2.10. In addition, only
the continuous story data are utilised, given that the results of chapter 7 suggest
that task interference might have occurred in the matrix data.

To compare the classification performance of the features with a random classifier,
the upper bound of a 95% one-sided confidence interval of a binomial distribution
with success-rate 0.5 serves as chance level. Correspondingly, to compare methods
with one another, the LME and ANOVA framework is applied to window lengths
10 s and 30 s, in combination with the Benjamini-Hochberg correction and a 5%
significance level. A fixed effect on the accuracy and offset, and a random effect on
the subject identifier are assumed.

Result

Figure 8.2a3 displays the mean classification accuracies of the LS and CCA feature
extractors in combination with the LDA classifier. Only the LS standard deviation
is shown for the sake of avoiding figure clutter and since this standard deviation
is representable for the CCA methods as well. Comparing the methods per win-
dow length, the mean accuracy of the 1-filter CCA approach exceeds the mean
accuracy of the other ones at a window length of 1 s. Similarly, the 2-filter CCA
approach attains the highest performance at window lengths 5, 30 and 60 s, and
the LS approach does so at window lengths 10 and 20 s. Nevertheless, pairwise
hypothesis tests with respect to the LS feature at the 10 s window show no significant
differences (min(p)=7.1 · 10−1) between the LS method and any CCA design, as
is the case at the 30 s window (min(p)=7.1 ·10−1). All methods lie above chance level.

Correspondingly, figure 8.2b displays the mean accuracies and accompanying stan-
dard deviations of the CSP feature extractor. As expected from section 7.2.9, mean
classification accuracies all outperform chance level. In fact, the minimal mean
accuracy for any frequency band and for any window size still equals 0.86 (theta
band, 1 s window). Furthermore, all frequency band CSP classifies all cases correctly
from a window length of 10 s onwards. Similarly, alpha band CSP achieves this
maximal performance starting from a window length of 30 s and beta band CSP
achieves this maximal performance at window lengths 20 and 30 s. At a window
length of 10 s, all frequency band CSP significantly outperforms the individual CSP
methods (max(p)=4.8 · 10−2). At a larger window length of 30 s, all frequency band
CSP still achieves this significance in comparison to delta (4.7 · 10−2) and theta
(4.7 · 10−2) band CSP. However, insignificance is attained in comparison with alpha
(p=1.5 · 10−1) and beta band CSP (p=1.5 · 10−1). In fact, this can also be seen

3This and subsequent line plots have been converted into tikz format using an unpublished
matlab2tikz function written by S. Geirnaert as available on 11/11/2021.
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visually in figure 8.2b, where either all frequency band CSP alone or all frequency
band CSP together with alpha and beta band CSP achieve the highest classification
accuracy. Moreover, alpha, beta and all frequency band CSP achieve lower standard
deviation values than delta and theta band CSP.

Next, figure 8.2c displays the mean accuracies and accompanying standard deviations
of relevant LS, LASSO, KLD early fusion and entropy combinations. Whereas the
KLD metric accuracy initially increases with increasing window length, the mean
accuracy drops at the 20 and 30 s windows. The resulting mean accuracy nevertheless
lies above chance level, and the KLD achieves higher mean accuracies at the 1, 5, 10
and 20 s windows than the LASSO, entropy and LS methods individually. On the
minus side, the standard deviation of the KLD feature is about 0.5 · 10−2 higher than
for the other individual features. Next, the entropy feature outperforms chance level
for every window length. Finally, in line with section 7.2.4, the LASSO feature does
not prove to be discriminating between attention and inattention since the mean
accuracy lies around chance level at every window length.

When combining the features, the LASSO-KLD-entropy combination yields the
highest mean accuracy at window length 1 s, the LS-KLD-entropy combination yields
the highest mean accuracy at window lengths 5, 10, 20 and 60 s and the KLD-entropy
combination yields the highest mean accuracy at window length 30 s. However, in
pairwise comparison with respect to the LS-KLD-entropy combination at the 10 and
30 s windows, the difference between these methods is insignificant (min(p)=9.4·10−2).
At the 10 s window, the LS-KLD-entropy combination furthermore proves insignifi-
cantly different from the KLD feature (p=8.5 ·10−2), whereas the combination proves
differentiating with respect to the entropy feature (p=4.3 ·10−2). The reverse story is
true at the 30 s window length, where the LS-KLD-entropy combination significantly
outperforms the KLD feature (p=8.5·10−2), but does result in an insignificant p-value
with respect to the entropy feature (p=1.5 · 10−1). Adding the LASSO feature to
the mixture does not result in a significant gain in classification accuracy, both at
window length 10 s (min(p)=2.0 ·10−1) and at window length 30 s (min(p)=5.8 ·10−1)

As can be seen in figures 8.2a, 8.2b and 8.2c, the increase in accuracy with increasing
window length is fairly monotonic. Only regarding the KLD (based) features and the
LASSO feature, this trend is absent. Moreover, in the figures 8.2a and 8.2c, generally
an increase of ≈ 0.5 · 10−2 − 10−1 in standard deviation is observed when increasing
the window length from a 1 s window to a 60 s window. In figure 8.2b, however, the
reversed trend is displayed, i.e., regarding alpha, beta and all frequency CSP, the
standard deviation becomes smaller with increasing window length.

Discussion

Regarding the first and second research questions, no concrete optimal number of
CCA filters can be found since neither CCA design does significantly differ
with respect to the LS approach. Nevertheless, generally, simpler models
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(a) LS and CCA: CCAx (x ∈ N0) reflects subsequent filters generated by the CCA algorithm.
LS and CCA2 result overall in the highest mean accuracies, although the methods do not
significantly differ at window lengths 10 s and 30 s.
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(b) CSP: All frequency band CSP versions attain performance well above chance level.
Nevertheless, alpha, beta and all frequency band CSP visually attain larger mean accuracies
than delta and theta band CSP. Chance level is not shown since it falls below the lower limit
of the y-axis.
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(c) Combinations of LS, LASSO, KLD and entropy: Accuracies of KLD-entropy combinations
lie generally higher.

Figure 8.2: Classification accuracy of the feature extractors in function of the
window length, given as mean accuracy (line) and standard deviation (shading) on
the Vanthornhout dataset. ’Chance’ denotes the upper bound of a 95% confidence
interval of a binomial distribution with success-rate 0.5. Note that the accuracy
scales (y-axes) differ between figures.

are preferred, such that the LS feature extractor might be favoured. Inter-
estingly, this seems to denote that there is no additional information exploited when
using the more flexible CCA model with respect to the LS methodology. Moreover,
visibly, there does not seem to be a global trend of a decreasing favoured number
of filters with an increasing window length. This can possibly be attributed to the
regularisation mechanisms in the LDA classifier, which makes the regularised LDA
classifier suitable for sparse feature spaces [79].

Regarding the third research question, all CSP frequency bands significantly
outperform chance level. These results are indeed in line with our hypothesis and
the results of section 7.2.9. Nevertheless, the classification results are complementary:
Firstly, as hypothesised, all frequency band CSP does not significantly differ
from alpha and beta band CSP at the 30 s window, whereas significance
is achieved with respect to delta and theta band CSP. Secondly, the high
accuracies (> 85%) are maintained at low window lengths.

Referring to figure 8.2b, CSP seems to benefit from including all frequency bands,
although this combination requires a feature dimension of 8 instead of 2. Possibly,
the regularisation of the LDA classifier mitigates the effect of the increased feature
dimensionality from 2 to 8. In addition, we note that this combination does not
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significantly outperform the alpha and beta band CSP algorithms. Referring to
section 7.2.9, results nonetheless need to be interpreted with care. Due
to the ’black-box’ nature of CSP, it is not (entirely) clear what data
properties CSP is effectively exploiting. In fact, CSP can possibly be artefact
driven, despite muscle and eye blink artefacts being (largely) removed using MWF
filters (see section 2.2).

Regarding the fourth research question, the LS-KLD-entropy combination yields
the highest mean accuracy for 4/6 windows. Nevertheless, this combination
does not significantly outperform the KLD-entropy combination, both at the 10 s and
at the 30 s window. This LS-KLD-entropy combination does however outperform the
individual entropy feature at a window length of 10 s, and the individual KLD feature
at a window length of 30 s. Since simpler models are generally preferred,
the KLD-entropy combination thus seems the favourable combination.
Given that the KLD feature did not result in any significance in section 7.2.6, it
might be surprising to encounter the KLD feature in this favourable combination.
This can be explained by the fact that the KLD metric yields accuracies well
above chance level for smaller window lengths, despite experiencing a
large drop in mean accuracy at larger window lengths (> 20 s). Possibly,
this behaviour is caused by the curse of dimensionality, although given that this drop
in accuracy does not occur for any other feature (combination), there are likely other
(still unknown) factors in play. In addition, we note that the standard deviation
of the KLD (based) features lies somewhat higher (≈ 0.5 · 10−2 − 10−1) than the
standard deviation of the other feature combinations.

Regarding the fifth research question, a tradeoff between decision time and
accuracy is generally observed, i.e., larger window lengths allow to incorporate
more information and hence generally result in higher classification accuracies. Yet,
this trend is not exactly monotonic, possibly due to the interplay of finite data
length, normalisation procedures and the curse of dimensionality. No such trend is
furthermore observed for the LASSO feature since this feature lies around chance
level for every window length. In addition, as mentioned in the previous paragraph,
the KLD feature also does not follow this monotonic behaviour since it experiences a
drop in accuracy at larger window lengths (> 20 s). Furthermore, except for the CSP
metric, the standard deviation is generally seen to increase with increasing window
length, possibly due to the curse of dimensionality.

8.2.2 Validation on the Brouckmans-Dewit-Vanhaelen dataset

To better assess architecture generalisation over different attention conditions, the
proposed KLD-entropy feature combination and the CSP methods are validated on
the Brouckmans-Dewit-Vanhaelen dataset as follows:
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Research questions

1. What classification performance can be attained by the proposed KLD-entropy
combination on the Brouckmans-Dewit-Vanhaelen dataset?

2. What classification performance can be attained by CSP on the Brouckmans-
Dewit-Vanhaelen dataset?

Hypothesis

Regarding the first research question, similar performance to the KLD-entropy
combination on the Vanthornhout dataset (section 8.2.1) might be expected. The
mathematics and text conditions in the Brouckmans-Dewit-Vanhaelen dataset4 do
nevertheless differ from the movie condition in the Vanthornhout dataset, such that
results might differ. Indeed, brain regions could possibly be less or more involved
depending on the distractor condition.

Regarding the second research question, we hypothesise to find similar effects as
in section 8.2.1, namely higher classification accuracies for CSP than for the KLD-
entropy combination and CSP mainly exploiting alpha and beta band properties.
However, CSP could exploit different patterns in the Brouckmans-Dewit-Vanhaelen
dataset than in the Vanthornhout dataset since the distraction conditions differ, and
CSP could possibly be artefact driven.

Experiment

CSP and the KLD-entropy combination are applied to the Brouckmans-Dewit-
Vanhaelen dataset according to the validation procedure, as summarised in figure 8.1.
Within this procedure, the mathematics and text conditions are concatenated and
considered as one inattention condition. We justify this approach since ideally feature
extractors should be able to discriminate the auditory attention condition from any
other condition, although the relative influence of the mathematical distraction
condition is of course limited in this setup.

As in section 8.2.1, this experiment is repeated for window lengths 1, 2, 5, 10, 20, 30
and 60 s. The entropy feature is averaged over both RT and RB groups and the other
hyper-parameters are fixed according to table 6.1. Furthermore, hypothesis tests are
performed using a framework of LME, ANOVA and Benjamini-Hochberg corrections,
and a significance level of 5%. Chance level is computed as the upper bound of a
95% one-sided confidence interval of a binomial distribution with success-rate 0.5.

4Due to a strong baseline drift of the EEG data in this Brouckmans-Dewit-Vanhaelen dataset,
the EEG is firstly linearly detrended, resampled to 256 Hz and highpass filtered (Chebychev type 2
where an attenuation of 80 dB attenuation is attained at the frequency 10% outside the passband)
using a cut-off frequency of 0.5 Hz before being fed into the preprocessing framework of chapter 2.
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Result

Figure 8.3a displays the classification accuracies of CSP. All frequency band CSP
achieves the highest mean accuracy over all window lengths. At the 10 s window,
this all frequency band CSP is slightly insignificant with respect to delta and beta
band CSP (min(p)=8.8 · 10−2), and also insignificant with respect to theta and alpha
band CSP (min(p)=1.3 · 10−1). Similarly, at the 30 s window, all frequency band
CSP is only slightly insignificant with respect to beta band CSP (min(p)=8.8 · 10−2)
and more clearly insignificant with respect to the other individual CSP bands
(min(p)=1.3 · 10−1). Moreover, all frequency band and beta band CSP respectively
achieve standard deviations ≈ 1·10−1 and ≈ 5·10−2 lower than delta, theta and alpha
band CSP, of which the alpha band standard deviation in figure 8.3a is representative.

Similarly, figure 8.3b shows the performance of the KLD-entropy combination, as
well as the performance of the individual features. As before, both features attain
mean accuracies well above chance level. In addition, the KLD-entropy combination
significantly outperforms the individual features both at the 10 s (max(p)=3.0 · 10−2)
and at the 30 s (max(p)=4.7 · 10−2) window. Standard deviations of all methods
yield comparable results of O(10−2).

Appendix D contains tables with the numeric mean accuracies and accompanying
standard deviations for the interested reader.

Discussion

Regarding the second research question, all frequency band CSP classifi-
cation accuracies are in line with the results of section 8.2.1 since a mean
accuracy of 0.98 is attained from a window length of 5 s onwards using
all frequency band CSP. Furthermore, these accuracies are accompanied
by a small standard deviation of O(10−2). CSP seems again to mainly exploit
beta band properties and, as before, the mean accuracy of delta band CSP generally
lies below the other frequency band CSP curves. Yet, the alpha band does not seem
as prominent as in the Vanthornhout dataset. In the hypothesis tests with respect
to all frequency band CSP, beta band CSP nevertheless attains the lowest p-values
(p=8.8 · 10−2), presumably due to lower standard deviations in beta band CSP than
in the other individual CSP bands.

The current setup is interesting from the viewpoint of architecture generalisation:
The CSP architecture with retraining per condition seems to generalise well over
conditions. Indeed, at the 10 s window, all frequency band CSP attains a mean
accuracy of 1 in the Vanthornhout dataset and a mean accuracy of 0.98 in the
Brouckmans-Dewit-Vanhaelen dataset. Repeating the experiment with only the
mathematical distraction condition as inattention data yields a mean accuracy of
0.97 at the 10 s window. Similarly, repeating the experiment when utilising only the
text distraction condition as inattention data yields a mean accuracy of 0.99.
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(a) CSP: All frequency band CSP attains the highest mean accuracy for all frequency
bands, although the accuracies at the 10 and 30 s windows are not significantly different
(min(p)=8.8 · 10−2, max(p)=2.4 · 10−1) with respect to the individual frequency band CSP
methods. Chance level is not shown since it falls below the lower limit of the y-axis.
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(b) Combinations of KLD and entropy: All methods readily outperform chance level. The
KLD-entropy combination significantly outperforms the individual features at window lengths
10 and 30 s (max(p)=4.7 · 10−2).

Figure 8.3: Classification accuracy of the feature extractors in function of the
window length, given as mean accuracy (line) and standard deviation (shading) on
the Brouckmans-Dewit-Vanhaelen dataset. ’Chance’ denotes the upper bound of a
95% confidence interval of a binomial distribution with success-rate 0.5. Note that
the accuracy scales (y-axes) differ between figures.
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While an in-depth generalisation of the model parameters requires a study on
its own, the current setup permits for some intuition: Inspecting the individual mean
accuracies per fold shows that chance level is surpassed for each fold in each frequency
band. This also encompasses the case where CSP is almost exclusively trained on
attention versus text and solely evaluated on attention versus mathematics. The
accuracy in that validation fold nevertheless seems to drop with respect to the other
folds since the mean accuracy in that fold lies a factor 1.07 lower than the mean
accuracy over all folds.

Finding correspondences between the topographic pattern plots of CSP on the Van-
thornhout dataset and the Brouckmans-Dewit-Vanhaelen dataset nevertheless proves
difficult. The interested reader can find these figures in appendix C.

The KLD-entropy combination attains similar performance as in the Van-
thornhout dataset. In fact, the individual entropy and KLD features achieve mean
accuracies well above chance level. Contrary to the Vanthornhout dataset, the KLD
feature achieves similar standard deviations as the entropy feature and there is no
large dip in mean accuracy.

As with CSP, the current setup allows to study architecture generalisation:
• The KLD-entropy combination and individual features surpass chance level in

both datasets, indicating generalisability of the model architecture.
• Regarding the entropy, a regular 10 fold cross validation shows that in all

separate distraction conditions, i.e., movie, text and mathematics, the mean
inattention entropy in the RB and RT groups surpasses the corresponding
auditory attention entropy. This further indicates generalisability of the model
architecture.

Again, although a study of the generalisation of model parameters falls outside
the scope of this study, some intuition can be distilled from the current experimental
setup:

• When solely classifying based on the entropy, the mathematical validation fold
attains an accuracy a factor 1.18 below the mean accuracy over all folds at the
10 s window. Nevertheless, except at the 60 s window, the accuracies of that
mathematical validation fold still surpass chance level.

• Classifying solely using the KLD metric shows classification accuracies not
surpassing chance level from the 20 s window onwards on the mathematical
validation fold. Windows below 20 s nevertheless still outperform chance level.

Moreover, both CSP and the KLD-entropy combination achieve high performance at
low window lengths: All frequency band CSP and the KLD-entropy combination
respectively attain a mean accuracy of 0.96 and 0.74 at the 1 s window length.
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In summary, both the CSP and KLD-entropy combination achieve significant per-
formance on both the Vanthornhout dataset and the Brouckmans-Dewit-Vanhaelen
dataset, which is indicative of well generalising model architectures across attention
conditions. In order to draw general conclusions, these architectures should however
be applied to more types of attention conditions as well. The CSP model parameters
themselves seem in addition to perform less well across different attention conditions,
although CSP still seems to significantly outperform chance level in that case. The
same does not seem to be valid regarding the KLD-entropy feature combination.

8.3 Conclusion
In line with chapter 7, the CSP feature extractor seems to be the most promising.
Both in the Vanthornhout dataset and in the Brouckmans-Dewit-Vanhaelen dataset,
all frequency band CSP attains mean accuracies exceeding 96% over all windows from
1 s to 60 s. Training CSP mainly on the text inattention condition and validating on
the mathematics inattention condition seems to indicate that CSP generalises over
different conditions since classification accuracies surpass chance level. These results
need, however, to be interpreted with caution due to the CSP’s ’black-box’ nature
and the limited scope of this experiment.

Furthermore, no concrete number of CCA filters is seen to be optimal, in the sense
that no number of CCA filters yields a significantly different performance with respect
to the LS feature.

Regarding the LS, LASSO, KLD early fusion and entropy combinations, the KLD-
entropy combination seems the favourable choice since this KLD-entropy model does
not perform significantly worse than any other feature extractor combination on
the Vanthornhout dataset, and it is the simplest model to do so. Validation on
the Brouckmans-Dewit-Vanhaelen dataset seems to confirm that this KLD-entropy
combination performs well above chance level. Model parameters mainly trained on
the text condition do nonetheless not seem to generalise well to the mathematical
condition.

Moreover, a general trend is visible of an increasing accuracy with increasing win-
dow length, although the standard deviation generally also increases. This trend
is, nevertheless, absent regarding the KLD feature extractor on the Vanthornhout
dataset. Moreover, the LDA assumptions do not seem to be entirely satisfied (see
appendix B). Finally, note that the limited number of attention conditions in the
dataset hampers the drawing of general conclusions.

Future work could focus on further investigating the generalisability of the feature
parameters across conditions by, e.g., leveraging the text versus mathematics condition
in the Brouckmans-Dewit-Vanhaelen dataset.
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Chapter 9

Performance unsupervised
algorithms

9.1 Introduction
This chapter presents the experiments, linked to the third high-level objective: How
can the classic machine learning framework be converted into an unsupervised
one? Subject-specific feature extractors generally attain higher performance than
subject-independent ones [8]. However, the performance of these feature extractors
might degrade over time, e.g., due to displacements of the EEG cap, malfunctioning
sensors and changing background EEG activity [13]. In addition, collecting subject-
specific data requires resources, posing practical constraints. In order to mitigate
these problems, we study unsupervised domain adaptation methodologies (CCA-DA,
PCA-DA, SA-DA, TPCA-DA and D-DA) as described in chapter 5.

Section 9.2 details the experiments and section 9.3 the associated conclusions.

9.2 Experiments
Ideally, we would have access to subject-specific source and target EEG data, recorded
at a different time. However, no such dataset is available at present time and could
no longer be recorded within the timeframe of this thesis. Therefore, we will focus
on the adaption of feature extractors, trained on one subject (the source subject)
in which we are currently not interested in but for which we have access to labelled
data, to another subject (the target subject) in which we are currently interested in
but for which we have only access to unlabelled data.

Operation-wise, the CCA-DA methodology requires an equal amount of source and
target domain data due to the application of the QR-SVD based CCA algorithm
as described in [87, 88]. Therefore, the SI-CV approach cannot readily be applied.
To nevertheless cope with this additional constraint, the validation methodology is
altered according to figure 9.1. The availability of labelled EEG data of one subject
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Figure 9.1: Schematic overview of the unsupervised feature extraction evaluation
strategy using N ∈ N0 target subjects.

(source domain) and unlabelled EEG data of another subject (target domain) is
assumed. Using a 2 fold cross validation approach, half of the data are used as a
training set and the other half are used as a validation set. This process is repeated
for different target subjects, such that each source-target subject combination is
endeavoured.

Using this validation methodology, the following experiment is conducted:

Research questions

1. How does the domain adapted feature extractor compare to a supervised feature
extractor, trained on source data?

2. How does the domain adapted feature extractor compare to a supervised feature
extractor, trained on target data?

3. How does the domain adapted feature extractor compare to the state-of-the-
art unsupervised, iterative feature extractor design?

Hypothesis

Since the domain adaptation methodologies essentially boil down to adding constraints
to the feature extractor design, we hypothesise domain adaption to perform less well
than supervised target design, i.e., subject-specific designs. For the same reason, we
expect the unsupervised iterative design to outperform the domain adapted designs
[75]. However, due to the joint embedding enforcement of domain adaptation, we
hypothesise these domain adapted feature extractors to outperform the source trained
feature extractors.
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Experiment

Although the DA methodologies are inherently not restricted to the LS feature
extractor, we will limit ourselves to it for the sake of clarity and because the LS
feature can be readily transferred to other fields, such as the AAD domain [8, 15].
To this end, the procedure as illustrated in figure 9.1 is repeated for the different DA
methodologies (CCA-DA, PCA-DA, SA-DA, TPCA-DA and D-DA). As a baseline,
LS decoders are trained, in a supervised way, on both labelled source and labelled
target data. As before, these source and target trained decoders are regularised
using PCA as designed on the attention source, respectively, attention target EEG
data. Note however that supervised target training is not feasible in practise since it
requires labelled target data. In addition, the ILS procedure serves as a benchmark
because it is the state-of-the-art unsupervised LS method in the AAD domain [75].
Regarding the hyper-parameters, the reader is referred to table 6.1. Hypothesis
tests are performed using a framework of LME, ANOVA and Benjamini-Hochberg
corrections. A fixed effect on the correlation value and offset, and a random effect
on the subject identifier are assumed. Significance level equals 5%.

Result

Figure 9.2 displays the correlation levels, attained by the baseline and domain adapta-
tion procedures. The CCA-DA approach significantly outperforms the source trained
decoders for the attention case (p=1.6 · 10−2), and does almost so for the movie
case (p=8.2 · 10−2). On the contrary, the PCA-DA and TPCA-DA approaches do
not significantly differ from the source trained designs (min(p)=1.2 · 10−1), and the
SA-DA approach even performs significantly worse (max(p)=3.4 · 10−2) from these
source trained designs. CCA-DA correlation levels additionally significantly exceed
the PCA-DA ones (max(p)=3.7 · 10−2).

The D-DA approach also performs significantly worse than the source trained decoders
(max(p)=1.6 · 10−2). Importantly, these D-DA correlations cannot be interpreted
absolutely, yet only relative to the source correlations. Indeed, referring to section
6.3, the discriminator weight ν has been tuned to only yield a significant direction
of correlation shift. In this light, the source domain correlations exceed the D-DA
correlations for 7/7 subjects in both the attention and the movie state.

In addition, apart from the CCA-DA movie correlations (p=8.4 · 10−2), all domain
adapted correlations prove significantly inferior to their target trained counterparts
(max(p)=2.6 · 10−2).

The ILS baseline procedure significantly outperforms source training (max(p)=2.8 ·
10−6) and does not significantly differ from target training (min(p)=2.8 · 10−1). Cor-
respondingly, the ILS correlation levels significantly exceed the levels of the CCA-DA
procedure (max(p)=2.1 · 10−4).
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Nevertheless, for practical purposes, the difference in attention-movie correlation is
mainly important. As a baseline, the target trained decoders attain a mean correla-
tion difference (attention-movie) 5.37 times larger than the source trained decoders.
This correlation difference is nonetheless insignificant (p=1.7 ·10−1). On the contrary,
the ILS procedure does achieve a significant difference in correlation with respect to
source training (p=3.3 · 10−2), despite only attaining a mean correlation difference,
with respect to this source training, of 2.75. The CCA-DA procedure attains a similar
mean correlation difference of 2.40 with respect to source training, even though this
difference is not significantly different from source training (p=3.1 · 10−1). Finally,
the PCA-DA procedure achieves a worse mean correlation difference by a factor 1.52
in comparison with source training, although this correlation difference does not
significantly lie below source training (p=3.1 · 10−1).

Lastly, we note that the domain adaptation procedures can also be used in conjunction
with the iterative procedure. To this end, a joint framework of CCA-DA and the
iterative procedure further increases the mean correlation difference with respect
to the source domain to a factor 4.40 (compared to a factor 5.37 of target versus
source training). This increase in correlation is furthermore significant with respect
to the difference in correlation for both the ILS method (p=3.3 · 10−2) and the CCA
method (p=3.3 · 10−2).

Discussion

On one hand, the CCA-DA procedure attains significantly lower attention correlations
in comparison to target training, and the CCA-DA mean correlation difference is a
factor 2.24 lower than its target trained counterpart. On the other hand, the CCA-
DA procedure (almost) significantly improves source trained correlations (attention:
p=1.6 · 10−2, movie: p=8.2 · 10−2), and achieves a mean difference in correlation
only a factor 1.15 worse than the state-of-the-art ILS procedure. On the contrary,
PCA-based approaches do not seem to improve performance over source
training: the PCA-DA and TPCA-DA correlation levels do not significantly differ
from source training, and SA-DA1 even performs significantly worse than source
training. The mean difference in correlation for the PCA-DA approach also is a
factor 1.52 worse than source training. Therefore, CCA seems to be the more
appropriate dimensionality reduction mechanism for domain adaptation
and shows the potential to replace PCA as the conventional regularisation
technique.

Nevertheless, given the fact that target training significantly outperforms the CCA
and PCA based domain adaptation methodologies, there still seems to be a loss of
neural-tracking information in the dimensionality reductions. Indeed, CCA tries
to maximise the correlations between source and target domain and PCA tries to
maximise the variance, but these conditions do not guarantee the preservation of

1In [82], it is advised to z-score the data. However, this does not yield any difference in trend in
the current setup such that this z-scoring is neglected.
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Figure 9.2: The spearman correlation of LS decoders, trained on labelled source
data, labelled target data, trained in an iterative manner (ILS) and trained on
labelled source data with domain adaptation (CCA-DA, PCA-DA, SA-DA, TPCA-
DA and D-DA). The CCA-DA methodology significantly improves the attention
source correlations and almost significantly the movie source correlations. PCA-DA
and TPCA-DA do not significantly differ from source training. The SA-DA and
D-DA methodologies perform significantly worse than source domain training.

neural tracking information. Since CCA-DA nonetheless outperforms the source
domain training, relevant neural tracking information seems to be preserved in the
CCA transform. The same does not seem to hold with respect to PCA.

Regarding the discriminator approach, D-DA performs significantly worse than
both source and target decoders. Possibly, the LS feature extractor is not
flexible enough to incorporate the discriminator term, such that both attention and
inattention correlations are forced to zero.

The ILS procedure still significantly outperforms any tested domain adap-
tation methodology and does not significantly differ from target training, for both
the attention and the inattention states (min(p)=2.8 · 10−1). Nevertheless, the
difference in mean correlation between the CCA-DA and ILS approach is
only a factor 1.15. In addition, domain adaptation theoretically provides a general
framework applicable to any feature. On the contrary, the ILS procedure cannot
readily be extended to all other feature extraction methodologies as is. Combining
CCA-DA with the ILS procedure also seems to further boost the mean difference in
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correlation to a factor 4.40.

Finally, we note that the theoretical mitigation for unsupervised classifiers does not
seem to entirely hold regarding the CCA-DA procedure: Validation on the left-out
source fold reveals mean attention and movie correlation levels respectively a factor
2.21 and 2.03 larger than the mean correlations on the left-out target folds. As a
result, classifiers calculated on the source validation set cannot be readily transferred
to the target validation set.

9.3 Conclusion
Although domain adaptation performs worse than target training in terms of mean
correlation difference, the CCA-DA approach outperforms source trained decoders,
both in terms of mean correlation difference and in terms of individual correlation
levels. In addition, the PCA based domain adaptation approaches do either perform
significantly worse than regular source training (SA-DA) or do not significantly
differ from it (TPCA-DA, PCA-DA). This paves the way for CCA based domain
adaptation and for CCA to replace PCA as a regularisation technique. Nevertheless,
there still seems to be a loss in neural tracking information when performing both
CCA and PCA based dimensionality reductions, albeit to a lesser extent regarding
CCA. Concerning the D-DA method, the LS feature extractor possibly is not flexibly
enough to cope with the discriminator term.

Whereas the ILS procedure achieves the highest correlation levels for both the atten-
tion and inattention states, the mean difference in correlation between the CCA-DA
and ILS procedure is only a factor 1.15. In addition, the CCA-DA and ILS procedures
can also be combined, further increasing the mean correlation difference with respect
to source training to a factor 4.40, in comparison with a factor 5.37 in target versus
source training, a factor 2.40 in CCA versus source training and a factor 2.75 in ILS
versus source training.

Finally, note that the drawing of general conclusions is hampered by the limited
number of attention conditions in the dataset.
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Chapter 10

Boosting auditory attention
decoding

10.1 Introduction
This chapter presents the experiments, linked to the fourth high-level objective: Does
the selection of high attention time frames improve the auditory attention
decoding (AAD) framework? Consequently, we will investigate whether a joint
auditory attention selection and AAD framework can improve AAD performance.

In an AAD setup, the goal is to select the attended speaker in a multispeaker en-
vironment. To this end, generally, subject-specific LS decoders are trained on the
attended stream according to the procedure of section 3.3.2 [8, 15]. At inference, this
decoder is applied to the EEG data and compared to the ground truth envelope of all
auditory streams. Referring to section 3.3, attended streams result in higher levels of
envelope tracking and hence result in higher correlation levels. Therefore, attended
and unattended streams are detected based on the magnitude of the correlation levels.

Thus, a subject is instructed to focus on a specified auditory stream. This subject
might, however, not always be effectively attentive to any auditory stream, interfering
with the setup: A subject could be distracted by, e.g., a visual stream. Therefore, it
might be useful to filter out these inattentive periods before AAD decoder training.

Section 10.2 presents the experiments and section 10.3 concludes this chapter.

10.2 Experiments
Ideally, we would have a dataset at our disposal wherein the same subjects attend
both AAD experiments and experiments concerning auditory attention with a variety
of distractor conditions. Such a dataset does, unfortunately, not exist at present time
and could not be recorded within the timeframe of this thesis, such that we utilise
the AAD dataset of [15]. This dataset consists of the EEG data of 16 normal-hearing
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subjects, who were exposed to a two-speaker acoustic environment and instructed to
attend one of the auditory streams while ignoring the other one. In total, approxi-
mately 72 minutes of data is available per subject. The interested reader can find
the details of this setup in [15]. For conformity reasons with the attention data, this
AAD dataset is preprocessed similarly to the scheme detailed in chapter 21.

The closest related experiment is performed in [6]. There, high attention segments
were selected using an entropy based measure. They report increased AAD training
correlations on the high attention training data with respect to the low attention
training data. However, no such effect is reported on the validation set. Our
experiment is nevertheless both more extensive and complementary to [6]: Firstly, we
have investigated a broader range of feature extractors in chapters 7 and 8, although
not all features can be included in the experiment due to the lack of subject-specific
joint AAD and auditory attention versus inattention datasets, as will be detailed
infra. Secondly, we will look explicitly at the correlations between the attended and
unattended track on the validation set to compare decoders solely trained on high
attention data with decoders trained on the entire training set. Therefore, our setup
more closely resembles the true operation of an AAD enhanced framework.

Research questions

Does the AAD performance, i.e., the difference in correlation between attended and
unattended streams, increase when only using high auditory attention segments at
training time?

Hypothesis

We hypothesise to find an increased difference in envelope tracking (i.e. an increased
difference in correlation) between the attended and unattended stream when only
leveraging the high attention segments as a training set. By filtering out the
inattention segments, we expect the AAD decoder to be better tailored towards the
attended stream, hence increasing the correlation difference between the attended
and unattended streams.

Experiment

Subject-specific LS AAD decoders are trained in a 10 fold SS-CV manner. Herein,
an inner 10 fold cross validation is leveraged to select the high attention segments. In
other words, attention features are trained on the left-in inner folds and applied on
windows of 60 s to the left-out inner fold. After completing this inner cross validation,
each 60 s segment has been leveraged once as validation set and has received an
accompanying attention feature value. These feature values can subsequently be

1The EEG data in the AAD dataset are only available after prior downsampling to 128 Hz
and highpass filtering with cutoff frequency 0.5 Hz. To this end, the downsampling blocks in the
preprocessing framework of figure 2.1 were removed. This slightly alters the preprocessing framework
since downsampling blocks and filtering blocks cannot be switched as such [105].
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rank-ordered from high auditory attention (low rank value) to low auditory attention
(high rank value). The 75% segments for which the sum of the associated rank
labels over all features is the lowest form the attention-enhanced dataset. After
the inner fold cross validation, subject-specific AAD decoders are trained on this
attention-enhanced dataset, in a 10 fold SS-CV manner. In addition, training on the
entire left-in outer folds is performed to serve as a practical baseline measure. An-
other baseline is created by 3 times randomly selecting 75% of the training data and
averaging the resulting correlations. This allows to compare the attention-enhanced
trained decoder to a decoder trained on the same amount of data.

Nonetheless, due to the unavailability of an accompanying subject-specific attention
dataset, this experiment setup comes with the following assumptions/limitations:

• The attended stream is assumed to contain sufficient attention segments to
reliably train attention feature extractors that need an attention training set
(e.g. LS, CCA and KLD), although we acknowledge that an iterative procedure
could provide a way out (e.g. [75, 79]): In each iteration a feature extractor
could self-label the training data, on which a new feature extractor could
subsequently be trained. However, since this iterative procedure would require
convergence studies and experiments on its own, this approach is not pursued.

• Validation data are not partitioned in attention versus inattention segments.
Therefore, it is assumed that LS AAD correlations are higher for enhanced
AAD decoders, regarding both attentive and inattentive segments. Referring
to section 3.3 and chapter 7, this assumption seems to hold true.

• The attention metrics all have the same weight in this attention selection
mechanism, which might be suboptimal.

• In the AAD experiment subjects were instructed to attend an auditory stream.
Therefore, some level of auditory attention might still be expected at any
moment in time, whereas in practise subjects might completely ignore any
auditory stream. In addition, in the Vanthornhout dataset, subjects were
instructed to completely ignore the auditory stream. This difference in the
level of auditory attention might interfere with the setup.

• Possibly the features could also be used to discriminate between attended and
unattended segments in an AAD setting (e.g. [75]). Therefore, it might be the
case that segments wherein subjects briefly attend the other auditory stream
are filtered out as well. Whereas removing these segments is not the goal of
our study, the end result of having a feature extractor better tailored to one
subject remains the same and seems subsequently of less practical importance.

Furthermore, due to the unavailability of an accompanying subject-specific attention
dataset, the subset of available features is rather limited. Indeed, such an attention
dataset is required for CSP to be trained accurately (see section 3.4.3). As noted
supra, an iterative procedure could possibly form a way out, although this would
require convergence proofs and experiments on its own, such that CSP is not included
in this experiment. CCA is also not included since this method does not significantly
outperform LS, despite being a generalisation of the methodology (see section 8.2).
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Moreover, LASSO is excluded, since, referring to section 8.2, the LASSO feature does
not add significant information to the feature combinations. Finally, the entropy
feature cannot readily be included: Sections 7.2.10 and 8.2 suggest that the relevant
entropy values in a visual, mathematical and text reading attention state exceed the
relevant entropy values in an auditory attention state when using the RT and RB
groups in the beta band. On the contrary, in [6] and [63], the relevant entropy values
are found to be higher in an auditory attention state than in a passive state when
leveraging respectively alpha and beta bands [6], and delta, theta, alpha and beta
bands [63]. As a result, entropy thresholds seem required to discriminate between
the attention states and these thresholds are currently not available. Therefore, only
KLD early fusion and LS features are included. We refer the reader to table 6.1 for
the hyper-parameters of the respective methods. Hypothesis tests are performed
using a framework of LME, ANOVA and Benjamini-Hochberg corrections, wherein a
fixed effect on the correlation and offset, and a random effect on the subject identifier
are assumed. Significance level equals 5%.

Result

Figure 10.1 shows the Spearman correlations of AAD decoders, trained on the
attention-enhanced subset, the averaged random subset and the entire training set.
Although the attention-enhanced trained decoders result in a higher correlation with
respect to decoders trained on the entire training set in 9/16 attended stream cases
and in 10/16 unattended stream cases, no significant differences in correlation are
observed. Indeed, both for the attended (p=3.0 · 10−1) and unattended (p=3.3 · 10−1)
stream, there is no evidence for the attention-enhanced trained decoders to signifi-
cantly outperform the decoders trained on the entire training dataset. Similarly, the
attention-enhanced trained decoders do not significantly outperform the decoders
trained on a random subset of data for the unattended stream (p=3.0 · 10−1). How-
ever, regarding the attention state, the attention-enhanced trained decoders are on
the verge of significantly (p=5.5 ·10−2) outperforming the randomly trained decoders.

Regarding the practically important difference in correlation (attended-unattended),
the attention-enhanced trained decoders do not significantly outperform the decoders
trained on the entire training data (p=2.8 · 10−1). However, the attention-enhanced
trained decoders do so with respect to the randomly trained decoders (p=1.7 · 10−2).

Discussion

Since the difference between attended stream and unattended stream
correlations using the attention-enhanced data subset significantly differs
from random selection (p=1.7 · 10−2), leveraging high attention segments
seems beneficial. As hypothesised, auditory attention selection seems to result
in AAD decoders better tailored to the attended stream. However, while this
comparison is fair in terms of training data size, it is not a practical one: In practise,
one would use either the attention-enhanced trained decoders or decoders trained
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Figure 10.1: Spearman correlation for AAD decoders, trained on the attention-
enhanced dataset (Attention-enhanced), trained on a random 75% partitioning of
the training data (Random) and trained on the entire training dataset (Regular).
This attention-enhanced training does not result in a significant improvement in
attended stream or unattended stream correlations with respect to either a random
partitioning or entire dataset training, although it is on the verge of achieving so
regarding the random attention state.

on the entire dataset. In this light, solely training on the attention-enhanced
subset does not result in a significant increase in correlations with respect
to decoders trained on the entire training set. Nonetheless, training on
the attention-enhanced dataset could still be beneficial since it seems
to reduce the amount of training data and accompanying computational
cost of AAD training, without significant loss of AAD performance. The
attention mechanism of course still has a computational cost itself. Finally, the
higher defined assumptions (see supra) should also be taken into account, such that
the attention selection does likely not achieve its full potential in the current setup.

10.3 Conclusion
Attention selection results in a significant increase in the correlation difference
between attended and unattended streams with respect to random selection. This
suggests that auditory attention selection results in AAD decoders better tailored to
the attended stream. However, auditory attention selection does not significantly
improve correlation differences in comparison with training on the entire dataset.
This auditory attention selection could nevertheless be beneficial in that case since it
seems to allow for a training set size reduction without significant loss in performance.
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Chapter 11

Conclusion and future work

11.1 Conclusion
The general goal of this thesis dissertation was to decode whether a subject is in
a state of auditory attention. To this end, different features have been investi-
gated. Furthermore, the conversion of these features into unsupervised ones and
the application of the features in an auditory attention decoding (AAD) framework
have been studied. For this purpose, a dataset concerning auditory versus visual
attention has been leveraged, as well as a dataset concerning attention towards audio,
mathematical exercises and texts for validating final performance.

As a first objective, the performance of different feature extractor method-
ologies has been investigated. To this end, two feature extractor combinations
are ultimately proposed: the combination of the novel Kullback-Leibler divergence
(KLD) based feature with the entropy, and common spatial pattern (CSP).

The novel KLD based feature exploits neural envelope tracking properties and seems
complementary to the entropy with respect to a linear discriminant analysis (LDA)
classifier. Adding, the established least squares (LS) feature to this combination,
however, does not result in a significant increase in performance, although LS and
its generalisation canonical correlation analysis (CCA) individually are able to dis-
criminate between attention and inattention to an auditory stream.

On the other hand, common spatial pattern (CSP) seems to be the most promising
feature, yielding the highest classification accuracies with respect to other feature
extractors. Results need, nevertheless, to be interpreted with caution. Although
artefacts were (largely) removed, CSP could still be artefact driven, or CSP could
exploit other dataset-specific properties.

Importantly, both the KLD-entropy combination and CSP architectures seem to
generalise well across the datasets. Other feature explorations, involving band-power
(BP) and least squares decoder sparsity using a least absolute shrinkage and selection
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operator (LASSO) penalty, did not result in a proof for discriminating capabilities
between attention and inattention to an auditory stream.

As a second objective, the conversion of the feature extractors to unsu-
pervised ones has been investigated. To this end, the least squares feature
extractor was focused upon due to its applicability in other domains. It was proposed
to leverage domain adaptation methods, with the goal to adapt a supervised trained
LS decoder (source subject) to another subject (target subject), in order to mitigate
the need for subject-specific data collection while alleviating the performance gap
between source trained and target trained feature extractors. A combination of CCA,
as an instance of this domain adaptation method, with the state-of-the-art iterative
least squares (ILS) design is suggested to this end.

Individually, the CCA method does achieve significantly worse correlation levels
than the ILS method. Nevertheless, the practically important mean difference in
attention-inattention correlation reaches similar levels, with only a difference of a
factor 1.15 between both methods. The addition of CCA to the ILS method still
seems beneficial. Indeed, the proposed combination significantly outperforms the
mean attention-inattention difference in correlation with respect to both individual
methods, indicating their complementarity.

Apart from CCA, also PCA-based approaches were explored to create a joint EEG
subspace. These PCA based methods did not prove to significantly outperform the
unadapted decoders, whereas CCA did. This result paves the way for CCA based
domain adaptation and shows potential for CCA to replace PCA as the default
regularisation technique.

Another flavour of domain adaptation was explored as well, namely a procedure
consisting of a discriminator term, i.e., adding a source-target classifier to the feature
extractor design in order to create a subspace at the feature value level. This has
resulted in a novel expression for a discriminator LS-LDA based method. However,
the adapted LS decoder did perform significantly worse than the unadapted decoder.
The least squares feature extractor is possibly not flexible enough to cope with this
discriminator adaptation method. Nevertheless, this methodology could still prove
its worth combined with other features.

As a third objective, the application of the attention selection in an AAD
framework has been investigated. Training AAD LS decoders solely on the
highest attention segments did seem to significantly outperform decoders trained on
a random subpart of the data in terms of differences in correlation between attended
and unattended streams. Furthermore, no proof was found for a significantly different
attended-unattended stream correlation difference with respect to regular training on
the entire dataset. This seems to pave the way for data reduction possibilities, whilst
not compromising on performance. However, this setup did not allow to readily
apply subject-specific CSP and entropy features, such that this experiment possibly
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did not attain its full potential.

Finally, note that results need to be interpreted with caution since the utilised
datasets do not contain all possible attention states, such that results might be
difficult to generalise. Nevertheless, overall, this thesis dissertation has taken a step
towards the ultimate goal of combining an unsupervised auditory attention selection
and an unsupervised AAD framework with applications in neurosteered hearing
devices.

11.2 Future work
Foremost, future research could be focused on collecting larger datasets with more
attention states in order to better generalise conclusions, although the Brouckmans-
Dewit-Vanhaelen dataset could be further explored as well. In addition, an attention
dataset could be recorded, wherein subjects are exposed to different environments to
allow for the validation of unsupervised subject-tailored methodologies. Accompany-
ing subject-specific AAD datasets could be acquired as well.

In addition, future work could further investigate the generalisability of the feature
extraction methods over different inattention conditions.

Regarding the features, we identify three directions of possible future research: Firstly,
lexical and linguistic features, such as phoneme onset, cohort entropy and word
onset, show great potential within the attention context [106, 107, 108]. Indeed, in
[106], it has been demonstrated that only the phoneme onset and cohort entropy of
the attended stream are tracked in an AAD setup. Secondly, features from chaos
theory [109, 110] (e.g. correlation dimension [111] and Lyapunov exponents [110])
and features from fractal theory [110, 112] (e.g. detrended fluctuation analysis [113]
and boxcounting dimension [114]) could be interesting to explore. These metrics are
popular in, e.g., sleep applications (e.g. [115, 116]) and could be utilised to assess
whether certain brain regions exhibit fractal or chaotic properties in an auditory
attention state. Finally, deep learning based approaches form another direction to
explore. To this end, existing networks, relating EEG and auditory streams, could
serve as a starting point [117, 118, 119].

Regarding the classification stage, the classifiers could also be seen as a hyper-
parameter to tune. The LDA assumptions indeed do not seem to be entirely satisfied
(see appendix B). To this end, the support vector machine (SVM) classifier could be
explored since this classifier transforms the features before linearly separating the
feature space [52, 120]. In addition, neural network based classifiers exhibit great
flexibility to separate feature spaces [64].

Regarding the conversion to unsupervised algorithms, the proposed unsupervised
methodologies of chapter 5 could be applied to other features (e.g. see 3). Further-
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more, other domain adaptation methodologies could be explored [76]. In this light,
e.g., unsupervised neural network approaches could be leveraged [76, 78].

Regarding the combination of auditory attention selection and AAD, ultimately,
unsupervised auditory attention selection and unsupervised AAD could be combined
in a practical neurosteered hearing device.
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Appendix A

Non-convexity proofs

Convex optimisation problems are desired since each local minimum of such a problem
corresponds to a global minimum [44]. It is thus useful to assess the convexity of
the novel data-driven, early fusion KLD approach and the novel least squares-linear
discriminant analysis discriminator-domain adaptation (D-DA) method. We will
first review some convexity properties (section A.1) and thereafter leverage them to
show that the KLD early fusion optimisation problem is in fact non-convex (section
A.2). Similarly, we prove that the least squares-linear discriminant analysis D-DA
approach is non-convex in section A.3.

A.1 Convexity properties
The following theorems define convexity and describe its properties [44]:

Theorem A.1.1 (Convexity optimisation problem) An optimisation problem
is convex if and only if the constraints form a convex set and the cost function is a
convex function.

Theorem A.1.2 (Convex set) A set C is convex if it satisfies the following con-
dition:

θx + (1− θ)y ∈ C, ∀x, y ∈ C, θ ∈ [0, 1].

Theorem A.1.3 (Convex function) A function f: C → R is convex if it satisfies
the following condition:

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀x, y ∈ C, θ ∈ [0, 1].

Theorem A.1.4 (Positive semidefinite Hessian and convexity) If the Hessian
∇2f(x) of a function f(x) is positive semidefinite ∀x ∈ C, then f(x) is convex over
C.

106



A.2. Early fusion Kullback-Leibler divergence

A.2 Early fusion Kullback-Leibler divergence
The cost function of the early fusion KLD feature extractor can be found in equation
3.21 (section 3.3), but is repeated here for the sake of clarity:

min
a

KLD

 ∑C
c=1 a(c)P̄Xc,n(f)∑f2

f=f1

∑C
c=1 a(c)P̄Xc,n

(f)||P̄Y,n(f)


s.t. a ≥ 0C×1

||a||2 = 1.

(A.1)

We leverage theorem A.1.4 and derive the Hessian of the KLD early fusion cost
function to evaluate its positive semidefiniteness. In fact, we will show that equation
A.1 is non-convex by means of a counterexample. To ease the derivation, the following
notation is introduced:

C =
f2∑

f=f1

h(f)log2

(
h(f)
P̄Y,n(f)

)
;

h(f) =
∑C

c=1 a(c)P̄Xc,n(f)∑f2
f=f1

∑C
c=1 a(c)P̄Xc,n(f)

;

α(f) =
C∑

c=1
a(c)P̄Xc,n(f);

β =
f2∑

f=f1

α(f).

(A.2)

By applying the chain rule to the cost function of equation A.1, the first and second
order derivatives of the cost function are retrieved:

∂C

∂a(i) =
f2∑

f=f1

∂h(f)
∂a(i) log2

(
h(f)
P̄Y,n(f)

)
+ ∂h(f)

∂a(i)
1

log(2) , ∀i = 1..C;

∂2C

∂a(i)∂a(j) =
f2∑

f=f1

∂2h(f)
∂a(i)∂a(j) log2

(
h(f)
P̄Y,n(f)

)
+ ∂h(f)

∂a(i)
∂h(f)
∂a(j)

1
h(f)log(2)+

∂2h(f)
∂a(i)∂a(j)

1
log(2) , ∀i, j = 1..C.

(A.3)

Herein, the first and second order derivatives of the intermediate variable h(f) ∈ R
can be calculated as follows:

∂h(f)
∂a(i) = P̄Xi,n(f)β − α(f)

β2 ;

∂2h(f)
∂a(i)∂a(j) =

P̄Xi,n(f)− P̄Xj ,n(f)
β2 −

2
(
P̄Xi,n(f)β − α(f)

)
β3 .

(A.4)
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Using these expressions, the non-convexity of the KLD early fusion cost function can
be proven by means of a counterexample. Assume the following values:

C = 2;

P̄X1,n =
[

2
6

4
6

]⊤
;

P̄X2,n =
[

3
8

5
8

]⊤
;

P̄Y,n =
[

4
5

1
5

]⊤
;

a =
[
cos

(
π
6
)

sin
(

π
6
)]⊤

.

(A.5)

Using these values, the Hessian of the cost function possesses eigenvalues 8.65 · 10−2

and −4.86 · 10−2, resulting in an indefinite (i.e. not positive semidefinite) matrix.
Referring to theorems A.1.1 and A.1.4, the early fusion KLD method is consequently
non-convex.
□

A.3 Least squares-linear discriminant analysis
discriminator-domain adaptation (D-DA)

This appendix studies the convexity of equation 5.5, which is repeated here for the
sake of completeness:

min
d

− d⊤rxS,Ay + ν

NS + NT

∑
l={S,T }

Nl∑
n=1

zl(n)σ(β0 + βcl(n))+

(1− zl(n))(1− σ(β0 + βcl(n)))
s.t. d⊤RxS,AxS,A

d = 1
cl(n) = ρ(Xl(n)d, yl(n)), n = 1..Nl, l = {S, T }

Σ̄ = 1
NS

NS∑
n=1

(cS(n)− µ̄S)2 + 1
NT

NT∑
n=1

(cT (n)− µ̄T )2

µ̄S = 1
NS

NS∑
n=1

cS(n)

µ̄T = 1
NT

NT∑
n=1

cT (n)

β = Σ̄−1(µ̄T − µ̄S)

β0 = −1
2β(µ̄T + µ̄S).

(A.6)

Referring to theorems A.1.1-A.1.4, the non-convexity of equation A.6 can be proven
by means of a counterexample: Finding a feasible point, wherein the Hessian is
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not positive semidefinite. To this end, firstly, an expression of the Hessian of the
cost function needs to be derived. To simplify calculations, the −d⊤rxS,Ay term
is further on neglected since its second order derivative is zero. Furthermore, the
feature dimension is assumed to equal one and the decoder d ∈ RC×1 is assumed
to only leverage spatial information. The remaining cost term is symbolised by the
notation BCEm. Its first order derivative can be written as follows:

∂BCEm

∂d(i) = ν

NS + NT

∑
l={S,T }

Nl∑
n=1

(−1 + 2zl(n))(σ(β0 + βcl(n))−

σ(β0 + βcl(n))2)
(

∂β0
∂d(i) + β

∂cl(n)
∂d(i) + cl(n) ∂β

∂d(i)

)
;

∂β

∂d(i) = 1
Σ̄

(
∂µ̄T
∂d(i) −

∂µ̄S
∂d(i)

)
− 1

Σ̄2 (µ̄T − µ̄S) ∂Σ̄
∂d(i) ;

∂β0
∂d(i) = −1

2

[
∂β

∂d(i) (µ̄S + µ̄T ) + β

(
µ̄S

∂d(i) + ∂µ̄T
∂d(i)

)]
;

∂Σ̄
∂d(i) =

∑
l={S,T }

1
Nl

Nl∑
n=1

2(cl(n)− µ̄l)
(

∂cl(n)
∂d(i) −

∂µ̄l

∂d(i)

)
;

∂µl

∂d(i) = 1
Nl

Nl∑
n=1

∂cl(n)
∂d(i) ;

∂cl(n)
∂d(i) =

∑T −1
t=0 xl,n(t, i)yl,n(t)(∑T −1

t=0 yl,n(t)2
)1/2

1(∑T −1
t=0

(∑C
c=1 d(c)xl,n(t, c)

)2
)1/2 +

−1

2
(∑T −1

t=0 yl,n(t)2
)1/2

(∑T −1
t=0 2

(∑C
c=1 d(c)xl,n(t, c)

)
xl,n(t, i)

)
(∑T −1

t=0

(∑C
c=1 d(c)xl,n(t, c)

)2
)3/2 ·

(
T −1∑
t=0

yl,n(t)
C∑

c=1
d(c)xl,n(t, c)

)
;

∀l ∈ {S, T }, ∀i = 1..C.

(A.7)

Herein, xl,n(t, c) ∈ R is shorthand notation for the tth (t = 0..T − 1) EEG sample
in the cth channel (c = 1..C) of the nth (n = 1..Nl, l = {S, T }) window. Similarly,
yl,n(t) ∈ R is shorthand notation for the tth (t = 0..T − 1) audio sample in the nth
(n = 1..Nl, l = {S, T }) window. In other words, these values form the elements
of the EEG data Xl(n) ∈ RT ×C , in window n, and the accompanying audio data
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yl(n) ∈ RT ×1:

Xl(n) =


xl,n(0, 1) xl,n(0, 2) . . . xl,n(0, C)
xl,n(1, 1) xl,n(1, 2) . . . xl,n(1, C)

...
... . . .

...
xl,n(T − 1, 1) xl,n(T − 1, 2) . . . xl,n(T − 1, C)

 ;

yl(n) =
[
yl,n(0) yl,n(2) . . . yl,n(T − 1)

]⊤
.

(A.8)

The second order derivative takes the following form:

∂2BCEm

∂d(i)∂d(j) = ν

NS + NT

∑
l={S,T }

Nl∑
n=1

(−1 + 2zl(n))
[(

σ(β0 + βcl(n))−

σ(β0 + βcl(n))2
) ∂2β0

∂d(i)∂d(j)+(
∂σ(β0 + βcl(n))

∂d(j) − 2σ(β0 + βcl(n))∂σ(β0 + βcl(n))
∂d(j)

)
∂β0

∂d(i)+(
σ(β0 + βcl(n))− σ(β0 + βcl(n))2

)
·(

β
∂2cl(n)

∂d(i)∂d(j) + ∂β

∂d(j)
∂cl(n)
∂d(i)

)
+(

∂σ(β0 + βcl(n))
∂d(j) − 2σ(β0 + βcl(n))∂σ(β0 + βcl(n))

∂d(j)

)
β

∂cl(n)
∂d(i) +(

σ(β0 + βcl(n))− σ(β0 + βcl(n))2
)
·(

cl(n) ∂2β

∂d(i)∂d(j) + ∂cl(n)
∂d(j)

∂β

∂d(i)

)
+(

∂σ(β0 + βcl(n))
∂d(j) − 2σ(β0 + βcl(n))∂σ(β0 + βcl(n))

∂d(j)

)
·

cl(n) ∂β

∂d(i)

]
;

∂σ(β0 + βcl(n))
∂d(j) = σ(β0 + βcl(n))(1− σ(β0 + βcl(n)))·(

∂β0
∂d(j) + β

∂cl(n)
∂d(j) + cl(n) ∂β

∂d(j)

)
;

∂2β

∂d(i)∂d(j) = 1
Σ̄2

[(
∂2µ̄T

∂d(i)∂d(j) −
∂2µ̄S

∂d(i)∂d(j)

)
Σ̄− ∂Σ̄

∂d(j)

(
∂µ̄T
∂d(i) −

∂µ̄S
∂d(i)

)]

− 1
Σ̄4

[
∂2Σ̄

∂d(i)∂d(j)(µ̄T − µ̄S)Σ̄2 + ∂Σ̄
∂d(i)

(
∂µ̄T
∂d(j) −

∂µ̄S
∂d(j)

)
Σ̄2−
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2Σ̄ ∂Σ̄
∂d(j)(µ̄T − µ̄S) ∂Σ̄

∂d(i)

]
;

∂2β0
∂d(i)∂d(j) = −1

2

[
∂2β

∂d(i)∂d(j)(µ̄S + µ̄T ) + ∂β

∂d(i)

(
∂µ̄S

∂d(j) + ∂µ̄T
∂d(j)

)
+

∂β

∂d(j)

(
∂µ̄S
∂d(i) + ∂µ̄T

∂d(i)

)
+ β

(
∂2µ̄S

∂d(i)∂d(j) + ∂2µ̄T
∂d(i)∂d(j)

)]
;

∂2Σ̄
∂d(i)∂d(j) =

∑
l=S,T

1
Nl

Nl∑
n=1

2cl(n) ∂2cl(n)
∂d(i)∂d(j) + 2∂cl(n)

∂d(j)
∂cl(n)
∂d(i) −

2∂cl(n)
∂d(j)

∂µ̄l

∂d(i) − 2cl(n) ∂2µ̄l

∂d(i)∂d(j) − 2 ∂µ̄l

∂d(j)
∂cl(n)
∂d(i) −

2µ̄l
∂2cl(n)

∂d(i)∂d(j) + 2µ̄l
∂2µ̄l

∂d(i)∂d(j) + 2 ∂µ̄l

∂d(j)
∂µ̄l

∂d(i) ;

∂2µ̄l

∂d(i)∂d(j) = 1
Nl

Nl∑
n=1

∂2cl(n)
∂d(i)∂d(j) ;

∂2cl(n)
∂d(i)∂d(j) =

∑T −1
t=0 xl,n(t, i)yl,n(t)(∑T −1

t=0 yl,n(t)2
)1/2

(−1
2

) 1(∑T −1
t=0

(∑C
c=1 d(c)xl,n(t, c)

)2
)3/2 ·

(
T −1∑
t=0

2xl,n(t, j)
C∑

c=1
d(c)xl,n(t, c)

)
+

−1

2
(∑T −1

t=0 yl,n(t)2
)1/2

(∑T −1
t=0

(∑C
c=1 d(c)xl,n(t, c)

)2
)3 ·

{[(
T −1∑
t=0

2xl,n(t, j)xl,n(t, i)
)(

T −1∑
t=0

(
C∑

c=1
d(c)xl,n(t, c)

)
yl,n(t)

)
+

(
T −1∑
t=0

2xl,n(t, i)
C∑

c=1
d(c)xl,n(t, c)

)(
T −1∑
t=0

xl,n(t, j)yl,n(t)
)]
·

T −1∑
t=0

(
C∑

c=1
d(c)xl,n(t, c)

)23/2

− 3
2

T −1∑
t=0

(
C∑

c=1
d(c)xl,n(t, c)

)21/2(
T −1∑
t=0

2xl,n(t, j)
(

C∑
c=1

d(c)xl,n(t, c)
))
·

(
T −1∑
t=0

2xl,n(t, i)
(

C∑
c=1

d(c)xl,n(t, c)
))(

T −1∑
t=0

yl,n(t)
C∑

c=1
d(c)xl,n(t, c)

)}
;

∀l ∈ {S, T }, ∀i = 1..C.
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Let ν = 1, T = 1, NS = NT = 2 and C = 2, and assume the following values:

XS(1) =
[
1.0 1.1
2.0 1.0

]
;

XS(2) =
[
2.0 1.9
2.2 0.7

]
;

XT (1) =
[
1.5 1.7
2.3 0.9

]
;

XT (2) =
[
3.0 2.8
1.7 2.7

]
;

yS(1) =
[
1.0 0.2

]⊤
;

yS(2) =
[
2.0 1.3

]⊤
;

yT (1) =
[
0.5 0.8

]⊤
;

yT (2) =
[
3.0 3.2

]⊤
;

d =
[
1.2 · 10−1 6.2 · 10−2

]⊤
.

(A.9)

Using these values, the second order derivatives can be computed. These derivatives
result in a Hessian with eigenvalues −1.8 and 2.8. Since both eigenvalues differ in sign,
the Hessian is indefinite and the optimisation problem is subsequently non-convex.
□
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Assessment of the linear
discriminant analysis
assumptions

The linear discriminant analysis (LDA) classifier assumes normality of the feature
space and equal covariance matrices for the class conditional distributions. Although
the LDA method can still prove its worth if these assumptions are not satisfied
[52], it is insightful to check them. To this end, section B.1 details Mardia’s test
for normality assessment and section B.2 details Box’s M test for equal covariance
assessment. Thereafter, both tests are applied to the Vanthornhout dataset features
in section B.3.

B.1 Normality assessment using Mardia’s test
To confirm multivariate normality, Mardia’s test is used [90]. This test assumes the
null-hypothesis that the N ∈ N0 observations of F -dimensional (F ∈ N0) feature
vectors fn ∈ RF ×1, n = 1..N are normally distributed. Define the sample mean
µ̄ ∈ RF ×1 and sample covariance matrix Σ̄ ∈ RF ×F as follows:

µ̄ = 1
N

N∑
n=1

fn;

Σ̄ = 1
N

N∑
n=1

(fn − µ̄)(fn − µ̄)⊤.

(B.1)

Then, Mardia’s test compares the sample kurtosis ∈ R [121]:

Kurtosis = 1
N

N∑
n=1

[
(fn − µ̄)⊤Σ̄−1(fn − µ̄)

]2
, (B.2)
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to the expected kurtosis of a normal distribution, namely F (F + 2). Similarly, the
sample skewness ∈ R [121]:

Skewness = 1
N2

N∑
n=1

N∑
n′=1

[
(fn − µ̄)⊤Σ̄−1(fn′ − µ̄)

]3
, (B.3)

is compared to the expected skewness of a normal distribution, namely 0.

This translates to the following statistics under the null-hypothesis that the data is
normally distributed: Statistic A ∈ R tests the skewness and is (asymptomatically)
χ2 distributed with 1

6F (F + 1)(F + 2) degrees of freedom. Statistic B ∈ R tests the
kurtosis and is (asymptomatically) standard normal distributed [90]:

A = 1
6N

N∑
n=1

N∑
n′=1

[
(fn − µ̄)⊤Σ̄−1(fn′ − µ̄)

]3
;

B =
(

N

8F (F + 2)

)1/2
[

1
N

N∑
n=1

(
(fn − µ̄)⊤Σ̄−1(fn − µ̄)

)2
− F (F + 2)

]
;

µ̄ = 1
N

N∑
n=1

fn;

Σ̄ = 1
N

N∑
n=1

(fn − µ̄)(fn − µ̄)⊤.

(B.4)

B.2 Equal covariance assessment using Box’s M test
To study the assumption of equal covariance matrices of both classes, Box’s M test is
used [91]. This test, solely applicable to normally distributed data, assumes the null-
hypothesis that the covariance matrices of F -dimensional features Σ̄1, Σ̄2 ∈ RF ×F ,
corresponding to classes K1 and K2, are equal. Assume respectively N1 ∈ N0 and
N2 ∈ N0 observations of features f1 ∈ RF ×1 and f2 ∈ RF ×1 corresponding to classes
K1 and K2. The following F-statistics F + ∈ R and F − ∈ R can subsequently be
computed [91]:

F + =
M
(
1− c1 − df1

df2

)
df1

;

F − = df2M

df1

(
df2

1−c1+ 2
df2
−M

) ;

df1 = F (F + 1)
2 ;

df2 = df1 + 2
|c2 − c2

1|
;

c1 = 2F 2 + 3F − 1
6(F + 1)

[ 2∑
i=1

( 1
Ni − 1

)
− 1

N1 + N2 − 2

]
;

(B.5)
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B.3. Application of Mardia’s and Box’s M tests

c2 = (F − 1)(F + 2)
6

[ 2∑
=1

( 1
(Ni − 1)2

)
− 1

(N1 + N2 − 2)2

]
;

M = (N1 + N2 − 2)log(det(S))−
2∑

i=1
(Ni − 1)log(det(Σ̄i));

S = 1
N1 + N2 − 2

2∑
i=1

(Ni − 1)Σ̄i;

µ̄1 = 1
N

N1∑
n=1

f1,n;

µ̄2 = 1
N

N2∑
n=1

f2,n;

Σ̄1 = 1
N

N1∑
n=1

(f1,n − µ̄1)(f1,n − µ̄1)⊤;

Σ̄2 = 1
N

N2∑
n=1

(f2,n − µ̄2)(f2,n − µ̄2)⊤.

(B.6)

If c2 > c2
1, F + is F-distributed with parameters df1 and df2, else this F-distribution

holds for F −.

B.3 Application of Mardia’s and Box’s M tests
Both tests are applied to all combinations of LS, LASSO, KLD and entropy, CCA
with 1− 5, filters and delta, theta, alpha, beta and all frequency band CSP with one
filter maximising the attention state and one filter maximising the inattention state.
Indeed, these feature combinations are attained in the classification experiments of
chapter 8 and should therefore be tested for LDA assumption violations. Features
are extracted using a 10 fold cross validation, wherein the validation segments are
partitioned into windows of 1, 5 and 10 s. Mardia’s test and Box’s M test are
performed for each subject, window and attention-inattention state separately, and
p-values are corrected for multiple comparisons using a Benjamini-Hochberg correc-
tion. Significance level equals 5%.

Tables B.1a-B.1c display the minimum p-values for each group (LS-LASSO-KLD-
entropy combination, CCA and CSP) over the different subjects, windows and
attention states. Regarding Mardia’s skewness test also the maximum skewness, the
mean skewness and the standard deviation of the skewness over the group results
are shown. Similar measures are extracted from the ratio between the calculated
kurtosis and the expected kurtosis for a normal distribution F (F + 2): the maximum
and minimum ratio in absolute value, the mean ratio and its standard deviation. An
identical approach is taken regarding the maximum absolute value of the elementwise
ratio of the attention over inattention covariance matrices.
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B.3. Application of Mardia’s and Box’s M tests

Mardia’s test results in a rejection of the normality assumption, both regarding
the skewness test (min(p)=0.0 · 100) and the kurtosis test (min(p)=0.0 · 100) in
a worst case scenario. Nevertheless, the mean skewness of the groups lies around
O(10−2)−O(10−1) and the maximum value lies around 1, which indicate moderate
skewness. The ratio of the kurtosis shows more extreme values since the minimum
ratio for the LS-LASSO-KLD-entropy combinations and CCA equals 0 and the
maximum kurtosis ratio for the LS-LASSO-KLD-entropy and CSP combinations is
O(100)-O(101). The mean kurtosis ratios are more moderate since these ratios are
O(10−1)-O(100). Furthermore, the best case scenario attains a p-value 1.0 · 100, both
regarding the skewness and the kurtosis test, such that not for all cases evidence is
found against the normality assumption.

Box’s M test results in a rejection of the equal covariance assumption (min(p)=0.0·100)
in a worst case scenario. This result needs to be interpreted with caution since
Box’s M test is also sensitive to deviations from normality, such that this test might
not truly check the equal covariance assumption [122]. We can nonetheless justify
our approach since deviations from normality also violate the LDA assumptions,
and the ratios of covariance matrices can furthermore be studied in conjunction
with performing statistical tests. To this end, the maximum elementwise ratio is
O(101) for KLD-LASSO-LS-entropy combinations and O(102) for CSP. In fact, the
mean covariance ratio of CSP is O(101). The mean covariance ratio regarding the
KLD-LASSO-LS-entropy combinations on the other hand is closer to the expected
value of 1 since it is O(100). In addition, the best case scenario achieves a p-value
1.0 · 100, such that not in all cases evidence is found against the equal covariance
assumption.

In conclusion, there is found evidence in the data for departure from normality and
for inequality of covariance matrices, such that the LDA assumptions are not satisfied
in the worst case scenario. The mean cases nevertheless seem to satisfy the LDA
assumptions to a higher degree since the order of magnitude of skewness, kurtosis
and covariance matrix ratio corresponds to the expected value. In addition, in the
best case scenario, no evidence is found against these assumptions.

116



B.3. Application of Mardia’s and Box’s M tests

Minimum
P-value

Maximum
absolute skewness

Mean
skewness

Standard deviation
skewness

LS-LASSO-
KLD-entropy
combinations 0.0 · 100 1.0 · 100 1.3 · 10−1 2.6 · 10−1

CCA 1.2 · 10−4 1.0 · 100 4.2 · 10−1 3.3 · 10−1

CSP 0.0 · 100 8.6 · 10−1 7.5 · 10−2 1.9 · 10−1

(a) Skewness test.

Minimum
P-value

Maximum
absolute
kurtosis

ratio

Minimum
absolute
kurtosis

ratio

Mean
kurtosis

ratio

Standard
deviation
kurtosis

ratio
LS-LASSO-

KLD-entropy
combinations 0.0 · 100 7.3 · 100 0.0 · 100 1.4 · 100 1.4 · 100

CCA 0.0 · 100 9.5 · 10−1 0.0 · 100 1.2 · 10−1 1.5 · 10−1

CSP 0.0 · 100 1.5 · 101 3.2 · 10−2 2.3 · 100 2.9 · 100

(b) Kurtosis test.

Minimum
P-value

Maximum
absolute

covariance
ratio

Minimum
absolute

covariance
ratio

Mean
absolute

covariance
ratio

Standard
deviation
covariance

ratio
LS-LASSO-

KLD-entropy
combinations 0.0 · 100 8.4 · 101 1.6 · 10−1 2.2 · 100 5.3 · 100

CCA 2.4 · 10−4 2.8 · 100 6.4 · 10−1 1.1 · 100 2.6 · 10−1

CSP 0.0 · 100 2.5 · 102 9.4 · 10−1 7.3 · 101 2.5 · 101

(c) Equal covariance test.

Table B.1: LDA assumption tests: normality and equal covariance using Mardia’s
and Box’M tests. Evidence is found for the rejection of the normality and equal
covariance null-hypotheses. In addition, the maximum deviations are about an order
of magnitude larger than the expected values for two normal distributions with equal
covariance matrices. The mean cases nevertheless seem to have the desired order of
magnitude.
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Appendix C

Common spatial pattern
topographic plots

Figures C.1-C.4 display the delta, theta, alpha and beta band CSP patterns using
an SI-CV approach on the Vanthornhout dataset. Likewise, figures C.5-C.8 show the
CSP patterns on the Brouckmans-Dewit-Vanhaelen dataset. For further explanation,
regarding the neurological interpretation and experiment specifics, the reader is
referred to chapters 3, 7 and 8.
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(a) Attention pattern 1 (b) Attention pattern 2

(c) Movie pattern 1 (d) Movie pattern 2

Figure C.1: SI-CV pattern topographic plot on the Vanthornhout dataset of delta
band CSP. Structuring around the temporal lobes seems apparent.
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(a) Attention pattern 1 (b) Attention pattern 2

(c) Movie pattern 1 (d) Movie pattern 2

Figure C.2: SI-CV pattern topographic plot on the Vanthornhout dataset of theta
band CSP. No clear, joint structuring seems apparent across the topographic plots.
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(a) Attention pattern 1 (b) Attention pattern 2

(c) Movie pattern 1 (d) Movie pattern 2

Figure C.3: SI-CV pattern topographic plot on the Vanthornhout dataset of alpha
band CSP. No clear, joint structuring seems apparent across the topographic plots.
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(a) Attention pattern 1 (b) Attention pattern 2

(c) Movie pattern 1 (d) Movie pattern 2

Figure C.4: SI-CV pattern topographic plot on the Vanthornhout dataset of beta
band CSP. No clear, joint structuring seems apparent across the topographic plots.
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(a) Attention pattern 1 (b) Attention pattern 2

(c) Movie pattern 1 (d) Movie pattern 2

Figure C.5: SI-CV pattern topographic plot on the Brouckmans-Dewit-Vanhaelen
dataset of delta band CSP.
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(a) Attention pattern 1 (b) Attention pattern 2

(c) Movie pattern 1 (d) Movie pattern 2

Figure C.6: SI-CV pattern topographic plot on the Brouckmans-Dewit-Vanhaelen
dataset of theta band CSP.
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(a) Attention pattern 1 (b) Attention pattern 2

(c) Movie pattern 1 (d) Movie pattern 2

Figure C.7: SI-CV pattern topographic plot on the Brouckmans-Dewit-Vanhaelen
dataset of alpha band CSP.
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(a) Attention pattern 1 (b) Attention pattern 2

(c) Movie pattern 1 (d) Movie pattern 2

Figure C.8: SI-CV pattern topographic plot on the Brouckmans-Dewit-Vanhaelen
dataset of beta band CSP.
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Appendix D

Feature extractor-classifier
performance

Tables D.1-D.3 display the mean classification accuracies and standard deviations
of the CCA, CSP, LS, LASSO, KLD, entropy feature extractors and combinations
thereof on the Vanthornhout dataset. Correspondingly, tables D.4 and D.5 show the
mean classification accuracies and accompanying standard deviations of respectively
CSP and the KLD-entropy combination on the Brouckmans-Dewit-Vanhaelen dataset.
These results need to be seen in conjunction with the results of chapter 8. The
highest mean accuracy per window length is marked in red.
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