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1 Abstract

Prediction of the binding between epitopes and T-cell receptors is equivalent to studying the activity
of the adaptive immune response, next to B-cell activity. Thanks to the advanced technology and
experimental setups, it is possible to sequence TCRs and the epitopes, leading to the possibility to
analyse the specificity between the two entities. There are many possible TCRs (thanks to DNA
recombination) and many possible epitopes (viral, bacterial, ...) which still makes it challenging to
determine how the binding between these two proteins is governed. In this project, we aim (1) to
build classifiers that will predict whether there will be a binding, given the TCR and the epitope
and (2) given the epitope, to predict the sequence the TCR should have in order to have a binding.
For the first task, machine learning models such as classification trees, random forest, boosting,
logistic regression and KNN and deep learning models like densely connected neural networks and
convolutional neural networks, are used. For the second task, only random forest models are used.

The code, data set (the version downloaded at March, 2022) and the generated data sets for the
second task can be found at https://github.com/osercik/TCR-Epitope-Prediction.



2 Introduction

The immune system can be regarded as a complex network in the human body with a lot of types
of cells and many types of reactions and responses that can occur. The main aim of the immune
system is to defend the organism from invading pathogens. In case the invading succeeds, the im-
mune system starts a response against the invading pathogen or against the residues (in many cases,
those are proteins) the invader leaves. In this thesis, the focus relies on one type of an immune re-
sponse, mediated by one type of an immune cell. In order to do so, it is important to have a general
overview of the immune system. In this section, a general summary will be given. For the interested
reader who wants to have a broader picture, more advanced textbooks in molecular biology are
recommended, such as Molecular Biology of the Cell by Alberts et al. This introductory section is
based on the content of this book. So are Figure 1, Figure 2, Figure 3 and Figure 5 coming from
the associated chapter about the immune system (Chapter 24: The Innate and Adaptive Immune
Systems).

The immune system can be divided into two parts, namely the innate immune system and the
adaptive immune system. The innate immune system is the collection of the tools for defense that
are present in the human body since birth, whereas the adaptive immune system is the one that is
being updated continuously, as humans grow, become sick, get in touch with new pathogens, etc.
Furthermore, an adaptive immune response can be mediated by two types of cells: B cells and T
cells. Their fundamental biological difference is in the way they fight against the invasion:

e B cells are attacking the invader directly, by means of secretion of specialized proteins, or
antibodies.

e T cells will rather defend the body by killing the already infected cells.

Those four terms - namely innate immune system, adaptive immune system, B cells and T cells -
are important to master as they are key terms for this topic. Let’s look at them in more detail.

2.1 Innate vs. Adaptive Immune System

The difference in the innate and adaptive immune system can already be read through their names.
The innate immune system is that part which is present since the day of birth. It contains primitive
tools to defend the human body against invading pathogens. Nevertheless, co-operation between the
innate and the adaptive immune system is one of the key features which makes the immune system
powerful. This co-operation is summarized in Figure 1. The (new) pathogens will be caught first
by the innate immune system. The activation of the adaptive immune system will be very slow in
these first stages, since the specific B cells and T cells for that (new) pathogen are low in numbers
and concentration. As hours and days proceed, the adaptive immune system will start to learn the
pathogen and produce specific B cells and T cells against it.

The innate immune system contains the following important first catchers: epithelial cells, pat-
tern recognition receptors, phagocytosis and natural killers cells. The very first barrier the invader
will see, are the epithelial cells. Those cells are the boundry between the inner and outer world of
the body. The epithelial cells are physical and chemical barriers and are avoiding the attachement
and entry of the pathogens into a cell. The next tool of the innate immune system are the pattern
recognition receptors (PRRs). Those PRRs are specialized such that they memorize patterns com-
mon to pathogens, called pathogen associated molecular patterns (PAMPs). The PAMPs can be



regarded as the ID of the pathogen, recognized by a PRR. The locations of PRRs are highly vari-
able, but mostly they are found inside cells membranes (transmembrane proteins), freely in cytosol
or associated with the membranes of the endolysosomal system.

PATHOGENS

INNATE
IMMUNE
RESPONSES

ADAPTIVE IMMUNE RESPONSES

Figure 1: The Innate and Adaptive Immune System.

To give an example of the working mechanism of a PRR, let’s consider TLR3, a toll like receptor.
This PRR is located in the endolysosomal system and recognizes the double-stranded RNA of viruses.
Next part of the innate immune system is phagocytosis. This is the proces where pathogens are
seeked, engulfed and destroyed by two main phagocytic cells, namely macrophages and neutrophils.
Also these cells contain PRRs and other receptors responsible for the recognition of pathogens.
Macrophages are the cells that survive the fight against the pathogens, whereas neutrophils will
always die, forming the main component of pus.

The last important part of the innate immune system are the natural killers cells (NKs). NKs
are cells specialized such that they are able to program already infected cells (viral) to do apoptosis.
The molecular pathway is summarized in Figure 2.
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virus —

apoptotic virus-infected host cell

healthy host cell
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Figure 2: Molecular Pathway of NKs.

In Figure 2, both a healthy cell and an infected cell are given. The differences between the two
are the levels of class I MHC and activating proteins on the surface of a normal and an infected cell.



The latter will display a low level of class I MHC proteins and a high level of activating proteins,
causing a molecular signal that leads at the end to apoptosis of the infected cell. This concludes the
summary of the innate immune system.

The main difference in the innate and the adaptive immune system is the level of specificity. The
innate immune system has a low level of specificity. It is the first line an invader will encounter,
whereas the adaptive immune system has a very high level of specificity. This leads to the need of
defining the invader more precisely. However, in the framework of the adaptive immune system, one
has to make clear difference between what type of invader: bacteria, virus, fungi, parasites.
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host cell
innate immune
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antibody T-cell-mediated
response response
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antibody ?v/
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Figure 3: B Cells vs. T Cells.

The adaptive immune system can act in two possible ways:

e Antibody response. Here, the B cells will produce specialized proteins called antibodies (ABs)
after activation. The ABs will bind then to the invader, which are mostly extracellular viruses
and microbial toxins. After the binding of the AB, phagocytic cells will recognize these bound
ABs and start the phagocytosis process.

e T cell mediated immune response. This type of immune response differs fundamentally from
the antibody response. Rather than attacking invaders, T cells will recognize products of
viruses, bacteria, ... that are bound to MHC protein complexes. In many cases, the products
are proteins (viral proteins, for example), also called epitopes. These pMHC (protein - MHC)
complexes will then be displayed on the surface of the infected cells, which will be recognized
by T cells.

Although very complex and extensive, the immune system can be regarded as a chain of commands
for recognition, binding, cleaning or killing. The focus of this project is on T cell mediated immune
response. That’s why as a last part of this introduction, the focus will on T cells and not on B



cells. After the T cell mediated response is explained, the translation will be made to the project
and to the specific research questions. In Figure 3, the working mechanisms of B cells and T cells
are shortly summarized.

2.2 T Cells and pMHC Complexes

Since the focus of this dissertation relies on T cells, let’s focus on the working mechanisms of T cells
in more detail. The generalization is made by using just the terms T cells, MHC and the foreign
peptide (viral, bacterial, ...), but in reality, T cells and MHC complexes exist in different types. In
particular:

e There are a few T cells, differing from each other by means of their functionality:

Cytotoxic T cells, helper T cells and regulatory T cells: these cells become effector T cells
after activation.

— Effector cytotoxic T cells: killing cells infected with a virus or other intracellular pathogen.

— Effector helper T cells: stimulating other immune cells for an immune response, such as
macrophages, dendritic cells, B cells and cytotoxic T cels.

Effector regulatory T cells: suppressing the activity of other immune cells.

e There are two types of MHC (Major Histocompatibility Complex) proteins, called HLA (Hu-
man Leukocyte Antigens) in humans:

— Class I: presenting the foreign molecule to cytotoxic T cells

— Class II: presenting the foreign molecule to helper and regulatory T cells

The high variability in the specificity of T cells, more precisely, in the T cell receptors (TCR) is due to
the possibility of the V(D)J recombination in the chromosome locations encoding for the TCR pro-
tein. TCRs are proteins and like each protein produced in an organism, the origin relies in the DNA.
DNA is read to produce the mRNA (transcription). This mRNA is then read again to produce the as-
sociated protein (translation). Let’s take as a part of DNA X1, Xo, .. Xv,Y1,Y2, ... YD, Z1, 25, ..., Z ;.
Reading this from left to right each time, will deliver each time the same protein. In this case, there
is no diversity. However, recombining (switching places, removing some parts, ...) will cause some
diversity. A possible recombination is schematically given in Figure 4.

Vi V3 * D1 J2

Figure 4: V(D)J recombination.



T cells are proteins consisting of two chains: an « and a 8 chain. The first one is generated
through VJ recombination while the latter from V(D)J recombination (Krangel, 2009). The working
mechanism of TCRs is presented in Figure 5. In short, T cells start an immune response as follows.
As given in Figure 5, an activated dendritic cell contains a foreign protein in it. Still inside this
cell, this protein binds to a MHC protein complex. This bigger complex, called pMHC now, will be

displayed on the surface of the dendritic cell.

receptor for

co-stimulatory ~ foreign peptide

protein (aptigen)
|
|
TR | MHC
| protein
.
L
f
cell—cell co-stimulatory
adhesion protein
proteins
ACTIVATED
TCRL DENDRITIC CELL

Figure 5: TCR-pMHC Binding.

This displayed complex will be recognized by a T cell through its TCR. Binding of the TCR on
this pMHC complex will cause the infected cell to die. As explained earlier, there are two types of
MHCs: class I and class II. Although they share the same working mechanism, the origin of the

immune response differs:

e (Class I: the foreign protein is being produced inside the infected cell itself. For example,
the invader in this case can be a virus. Once inside the cell, it will use the transcription -
translation tools to produce its viral proteins. Those will be recognized by the class I MHC
protein, causing the pMHC formation. This complex will then be transported to the cell
membrane, to be displayed to a TCR.

e (lass II: the foreign protein itself is now the invader. Once this foreign protein has entered
the host cell, the class IT MHC protein will recognize it, causing then again the pMHC binding
and display on the surface.

As it is clear, fundamentally, one has a protein - protein - protein binding. Proteins can be regarded
as a long chain of amino acids. As such, the types of amino acids present in the cell, as well as
their order with respect to each other inside the same chain, and with respect to each other on
different chains, will highly influence the reaction. For some sequences of amino acids, there will be

an immune response (strong binding between TCR, and pMHC). However, for some sequences, this
binding will be weak, or even impossible. This leads to the research questions, discussed in the next

section.
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3 Research Questions

As discussed earlier, the focus of this project will be on T cell mediated responses. T cells will
bind to infected cells, through a TCR-pMHC complex. The TCR, however, only gets in contact
with the foreign protein and not with the MHC. As such, the very starting point of this project
are the sequences of the TCR and the (for example, viral) protein. The first research question is then:

Given the sequence of the TCR and given the sequence of the foreign protein (epi-
tope), what is the probability of having a binding?

This first research question is called the probability prediction (PP) task. Using the sequence
of the two components, the probabilities P(Binding) and P(No Binding) will be determined. The
second research question is:

Given the sequence of the epitope, what should the sequence of the TCR be in or-
der to have an immune response?

This is called the sequence prediction (SP) task. Given the sequence of the epitope, the task is
to determine the sequence of the TCR such that P(Binding) is high.

4 Data

The data set used is the VDJ data base (https://vdjdb.cdr3.net/), which is a publicely available
data base. It contains TCR-epitope pairs ever observered, based on published results of TCR
specificity assays and personal communications and submissions. The TCR component of the pair is
actually only the TCR-f chain. For some pairs, both the oo and 3 chains are available. However, for
most pairs, only information about the 3 chain is available. In this section, two important aspects
of the data will be discussed:

e Data exploration. What information do the raw data give? How many couples are there?
What is the average number a epitopes that a TCR binds to and vice versa? ...

e Graphical assessment of couple clusters. Are there some clusters in the couples? In particular,
a graphical assessment will be done to check if there are epitopes and TCRs that are likely to
interact with each other.

This is an important aspect of the project: it is the very first step to get insight in couples and
interaction among the different entities (TCRs and epitopes).

4.1 Data Expolaration

The data was downloaded in March, 2022. This raw data can also be viewed on the website of the
VDJ data base. There were no missing values and the only cleaning procedure was removing the re-
dundancies in the data. The raw data contain 80717 observations. After removing the redundancies,
65283 observations were left. Table 1 gives a summary of the cleaned data.
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Table 1: Summary of the Cleaned Data.

Number of Observations 65283
Number of Unique Couples 38819
Number of TCR~as 23392
Number of TCR-Ss 36248
Number of Epitopes 461
Mean Number of Epitopes a TCR-3 binds to 1

Mean Number of TCR-fs an Epitope binds to 85

Based on this simple summary, some important conclusions can be made about the nature of the
data set. First of all, one epitope can bind with multiple TCRs and one TCR can bind to multiple
epitopes. However, there is some imbalance in this feature: the mean number of TCRs an epitope
binds to is way higher than the mean number of epitopes a TCR binds to. Also, because of the
fact that not for all couples both chains are present, in all the models only the TCR-/ will be used,
in order to have consistency for each couple. The affinity of the binding between a TCR and an
epitope is governed by both the o and 8 chains (Krogsgaard et al., 2005). However, using only the
[ chain can still lead to high accuracy, but including the « chain will nothing but just improve the
results (Springer et al., 2020).

4.2 Graphical Assessment of Couple Clusters

In Figure 6 (left), a graph is given for the couples in the cleaned data set (only the TCR-f3). As one
can notice, there are groups: some are large, some are small. Also note here that 1 group is just 1
epitope surrounded by the TCRs the epitope binds to. In Figure 6 (right), a more simplified version
is displayed (both graphs are generated by Gephi): the nodes are representing only the epitopes
and an edge between two epitopes is drawn if and only if they share at least one common TCR.
More formally, suppose X and Y are epitopes. Let the sets Sx and Sy be the sets of TCR the
two epitopes bind to, respectively. If Sy NSy # 0, the an edge £ is drawn to connect X and Y.
This is done for each possible pair of epitopes. In Figure 7, a zoomed version of Figure 6 (left) is given.

Based on Figure 6 and Figure 7, it is clear that some groups form cluster. In particular, there
are groups connected with each other by means of a common TCR, forming a cluster. Note again
that 1 group is an epitope and collection of TCRs that this epitope binds to. A cluster is meant to
be a collection of epitopes sharing common TCRs. This implies an important feature, namely the
following. Both TCRs and epitopes are nothing but just proteins. Proteins are characterized by
their amino acids. The amino acid sequence making up the protein is key to its chemical and physical
properties. The fact that there are clusters means that some of these proteins share common or at
least related chemical and physical features, making them being identical or similar from a chemical
and physical point of view. This gives rise to feature engineering, discussed in §5.

12



Figure 6: Graphical Display of Clusters.

Figure 7: Zoom into the Clusters.

5 Methodology

Like mentioned earlier, the project consists of two main tasks. The first task - being PP - is the
prediction of the probability of a binding, given the sequences of the TCR-3 and the epitope. The
second task - SP - is predicting the sequence of the TCR-f, given the sequence of the epitope. For
the first task, both machine learning and deep learning methods are used, whereas for the second
task, only machine learning is considered. An overview of the used methods and models is given in
Table 2.

13



Table 2: Summary of the used Methods and Models.

Probability Prediction Task Models/Methods
Machine Learning Tree, Random Forest, Boosting, Logistic Regression, KNN
Deep Learning Densely Connected NN, Convolutional NN
Sequence Prediction Task Models/Methods
Machine Learning Random Forest

For both machine learning and deep learning, the important factor in the process of the building
such models is the way one defines the inputs. It is important from both a statistical and biological
point of view to have enough features and relevant features. That’s why this is the first important
task that was considered in this project: feature engineering.

5.1 Feature Engineering

The very beginning inputs are the amino acid sequences of the TCR-8 and the epitope. Those are
proteins highly characterized by their amino acid sequences. This also implies that their sequences
will have an dramatically large effect on the way they bind with each other. Amino acid sequences
will also have an effect on the chemical and physical nature of these molecules. In R, the software
used to do all the analyses, the package Peptide (Osorio et al., 2021) contains functions, which
take as input an amino acid sequence, and output a chemical or physical feature. For both the
TCR-$ and epitope, the following features are engineered: length of the protein, charge of the pro-
tein, instability index of the protein, hydrophobicity of the protein, molecular mass of the protein,
Boman index of the protein and the aliphatic index of the protein. Those are shortly discussed below.

Length

The length of a protein is the number of amino acids that make up that protein. A protein with
sequence X7 X5...X,, with each X; one of the 20 amino acids, has length n. In R this is easily obtained
by using the nchar () function, which actually takes as input a string and outputs the length of the
input string.

Charge

To calculate the charge, the function charge() is used from the Peptide package. The input is
the amino acid sequence of the protein as a string. The net charge is then computed based on the
Henderson-Hasselbalch equation (Moore, 1985). Note also the returned charge is the one assuming
pH="1.

Instability Index

This is an index indicating the stability of a protein. The function instaIndex() from the Peptide
package is available to calculate this. A protein with an II smaller then 40 is considered as stable.
An IT larger than 40 might be an indication that the protein is unstable (Guruprasad et al., 1990).
Hydrophobicity

Using the hydrophobicity() function, one can also compute the GRAVY hydrophobicity index

14



of the protein. The hydrophobicity of a protein is an important factor in the stabilization of the
protein folding. In order to have a function protein, the folding process should pass correctly: struc-
ture is key in the functioning of a protein.

Molecular Mass

Molecular mass is computed manually using the masses of individual amino acids. However, note
that after a binding between two amino acids, one molecule of water, HoO is released. This implies
that if one wants to calculate the molecular mass of a protein sequence of n amino acids, then the
masses of these n amino acids need to be added. At the end, n — 1 times the molecular mass of
water, which is 18 units, need to be substracted to correct for its n — 1 times releases.

Boman Index

This is another protein index: the function boman() is computing this index. The return value
is an indication for the potential interaction the protein can undergo with other proteins. In partic-
ular, a Boman index above 2.48 indicates a high binding potentian to other proteins (Boman, 2003).

Aliphatic Index

This is calculated with the aIndex() function. It is the relative value occupied by aliphatic side
chains (alanine, valine, isoleucine and leucine). It can be regarded as a positive factor for the increase
of the thermostability of globular proteins (Ikai, 1980).

After having discussed the relevant engineered features, there are still two important aspects to
clearify: generating of negative samples and the split of training and test sets.

5.2 Generation of Negative Samples

The data base used in this project contains TCR-epitope couples that were ever observed in nature.
So all samples in this data base are positive samples. However, the purpose of the models built is
to predict the probability of observing a binding and not observing a binding, given the sequence
(and as such, the chemical and physical features) of the TCR-S and epitope. There are no negative
samples in the data base but those are needed to build the classifiers. This is solved by a method
where random couples are generated. If these randomly generated couples are not in the data base,
then they are considered as negative samples. Figure 8 gives a schematic overview.

No Binding
No Binding

Binding o
- No Binding
Binding o
e Binding
Binding

Binding

Binding

Figure 8: Generation of Negative Samples.
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The reasoning behind this method is rather biological: the binding between a TCR, and epitope -
or in general, between two proteins - has a very high specificity. Besides this, nature has a very high
number of TCRs and epitopes. This implies that the probability of a binding between a randomly
chosen TCR and randomly chosen epitope is very small, which allows one to consider it as a negative
sample (Weber et al., 2021, Moris et al., 2020, Fischer et al., 2020).

After generation of the negative samples, 38819 positive samples and 39850 negative samples were
present in the (final) data.

5.3 Splitting the Train and Test Sets

In general machine learning problems, a model M characterized by parameters (S, ..., %) is built
such that it has a high predictive power. This means that the model should be built such that it
does not only well on the data used to build the model (training data set) but also well on a data set
never seen before (test data set). Therefore, the data set at hand should be splitted in two disjoint
parts: training set and test set. Let the data set at hand be Z and let A/ and M be the training
and test set, respectively. Then:

e Z=NUM
e NNM=10

Then model M = (B, ..., Bx) is built using A/ obtaining M = (Bl, ...,Bk) and the predictive power
of M is evaluated comparing the predictions for M with the true values of M. However, for this
project, the samples are characterized in a different way. The samples are couples Z = XY where
Z is the couple, X is the TCR-f and Y is the epitope. For this type of samples, it might be the
case that a couple indeed does not occur in the training set if it is a part of the test set. However,
the entities (TCR-fs and epitopes) might occur again in the training set, but forming couples with
different entities (epitopes and TCR-8s). So the splitting of training set N and test set M can
happen in different ways. The following splittings are considered.

Let again the total data set be £ and N and M be the training and test set, respectively. A
sample in Z can be written as Z;; = X;Y; where Z;; is the couple, X; the TCR-8 and Y; the
epitope. Then, if Z;; € M then Z;; ¢ N:

e Couple split. Here, it is allowed that the TCR-/ and the epitope can still occur in the training
set, but with different epitopes and TCR-fs: X;Y;, € N with k # j and X;Y; € N with [ # 4.

e TCR split. Here, it is allowed that the epitope occurs in the training set with different TCR-fSs,
but the TCR-f is not allowed to occur in the training set: X;Y; ¢ N,Vk and X;Y; € N with

1 4.

e Epitope split. Here, it is allowed that the TCR-# occurs in the training set with different
epitopes, but the epitope is not allowed to occur in the training set: X;Y;, € N with k # j
and X;Y; ¢ N, VL.

e Full split. Both TCR-/ and the epitope are not allowed to occur in the training set: X;Y} ¢
N, Vk and X;Y; ¢ N, VL.

In Figure 9, these different splitting methods are summarized.
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Figure 9: Different Splitting Methods.
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Before jumping into the results, let’s discuss shortly the models used and the considered metrics
to evaluate the models’ performance.

5.4 Models and Metrics

The PP task is a classication task: the inputs are the generated features of the TCR~5 and the
epitope and the output is whether the two entities (TCR-8 and epitope) will bind. To be more
precise, the output is P(Binding) and P(No Binding) and the model will predict a positive binding
if P(Binding) > P(No Binding) and a negative binding if P(Binding) < P(No Binding). The
metrics to evaluate the PP task are the following:

e Overall accuracy: the proportion of couples assigned to the correct class. In this case, the
classes are Binding and No Binding.

e Sensitivity: the proportion of positive couples that are assigned to the Binding class. In
particular, it is the probability P(Prediction = Binding | True = Binding).

e Specificity: the proportion of negative couples that are assigned to the No Binding class. In
particular, it is the probability P(Prediction = No Binding | True = No Binding).

Let’s now look at the models used in the PP task.

Tree

To be more precise, what is used is rahter a classification tree. The variables to build the clas-
sification tree are - like mentioned earlier - the chemical and physical features generated for the
TCR-$ and epitope. So in total the tree is built using 14 variables. The purpose of a classification
tree is to divide the variable space, which is in this case a 14 dimensional space, into J distinct
regions Ry,..., Ry. Once these regions are created - such that the training error is minimized - a
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test couple can be taken and assigned to a class. Figure 10 gives a very simple example of how a
classification tree works.

Region 1 Region 2 Region 3

Region 4 Region 5

Xl
Figure 10: Example of a Random Tree.

As seen in Figure 10, the predictor space is a 2 dimensional space, which is a plane. This plane
is divided such that the training classification error rate is minimized. How is a never seen test
observation, with features (x1, z2) classified to either the class Blue or Red? What has to be done, is
just determining to which region on the plane the vector (z1,x2) belongs. In case this vector belongs
to Region 1 then that test observation will be assigned to class Blue. If the test observation (z1, z2)
belongs to Region 4 then this test observation will be assigned to class Red.

Random Forest and Boosting

The same principle of a classification trees applies on random forests and boosting. The differ-
ence is now that in stead of building just one classification tree, many trees are built and all of them
are used to make the class prediction. At the end, the class that was predicted the most is taken
as the class assigned to the test observation. The difference between random forests and boosting is
that in random forest, the trees are built independently from each other. In boosting, however, the
trees are grown sequentially.

Logistic Regression
Logistic regression is a modelling approach for a binary classification task. Suppose Y is a bi-

nary categorical variable (0/1 coding) and let’s say there is only one predictor X. What is modelled
here is the probability that an observation belongs to class 1:

=030 +p-X (1)

However, if this model is fitted to a data, then it is possible that for a test observation, a prediction
is made with 7= < 0 if that observation is likely to belong to class 0 or m > 1 if that observation
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is likely to belong to class 1. This is a mathematical issue since probabilities are supposed to be
nonnegative and within the range of [0, 1]. So equation (1) needs to be reformulated such that for
each prediction, it is assured that the predicted probability is inside [0, 1]:

o exp(fBo + f1 - X)
1+ exp(Bo + b1 - X)

(2)

Manipulating further gives:

T = oxp(fo + B - X)

It is the last equation of (3) that is fitted on the data. The coefficients (fp, 81) are estimated using
the maximum likelihood estimating method. Once those are obtained, (Bo, Bl), a prediction can
be made for a test observation xp. Using equation (3) (last equation), with estimates (Bo, Bl) and
X = xp, the probability 7 is estimated. If # > 0.5 then the test observation with feature xp will be
assigned to class 1.

3)

K Nearest Neighbours

KNN is the most basic binary classification approach. Unlike other statistical and machine learn-
ing models, in KNN, no model is actually trained. There are no model parameters needed to be
estimated from the data. In fact, it is about remembering the data and placing a test observation
in the data space. After that, K nearest neighbours are examined and the class with the highest
occurence is assigned to this test observation. An example is given in Figure 11. The training data
is plotted, for example, Y against X or Xs against X;. As it is clear, the possible classes are Red
and Blue. After the training data is remembered (by plotting), a test observation is placed inside
this plot. As example, K = 5 is taken. This means that the 5 nearest neighbours of the black test
observation are examined. 2 of them belong to Blue and 3 of them to Red. This implies that the
black test observation will be assigned to class Red.

Figure 11: KNN Example.
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The larger K is taken, the more observation there are to make the prediction. To be safe, mostly
K is taken as an odd number, to prevent ending up with equal number of (training) observations in
each of the two classes.

Deep Learning

Deep learning is part of machine learning with a lot of applications in data science, especially
in image recognition tasks. Deep learning has the same goal as any other machine learning model,
but from the view point of model architecture, deep learning models are fundamentally different.
A short overview of deep learning will be given. However, for an extensive deep learning training,
Deep Learning with Python by Francois Chollet is highly recommended. To understand how deep
learning models work, the best way is to show it with an example.

=l e,

\

P

Figure 12: Example of a Deep Learning Model.

In Figure 12, a very simple deep learning model (neural network, NN) is shown. As can be seen,
the model consists of 4 compartments, or layers. The very first and very last one is called the input
and output layer, respectively. The two layer between them are called hidden layers. Those are
characterized by the input they receive and the output they return. That output is generated by
the weights and bias terms, which are the intrinsic properties of a layer. The input layer is:

_ |7
X = H (1)
As such, equation (4) is also the input for the first hidden layer. Based on Figure 12, the output of
the first hidden layer and thus the input for the second hidden layer is:

_ -yl
Yr _yJ

_ Wi Wiz T +b;
(W21 W22 |T2
Note that b; € R2. The output of the second layer and so the input for the final layer is then:
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And again, by; € R?. The output layer returns:

y=lon wa] |21] +t0 (7)

Here, bp € R. This is not necessarely the final step for a deep learnig model. Another important
intrinsic property of a NN is the nonlinearity it introduces in the output y. Depending on the task
at hand, different nonlinearities are possible. In this context, namely a binary classification task,
the appropriate nonlinearity on y is the sigmoid nonlinearity:

yr=oy) =1 +e )" (®)

Here, y is as previously shown and yy the very final output of the neural network. The working
principle of the sigmoid nonlinearity can be related to that of the logistic regression: it assigns a
probability to both classes and predicts the class for which the probability is the highest.

6 Results

In this section, the results of both the PP and SP tasks are discussed. First, the results of the
PP task will be considered. Remember that for the PP task, both machine learning (5) and deep
learning models (2) were considered, for each of the 4 possible splits of the data set.

6.1 Probability Prediction
6.1.1 Machine Learning

As mentioned here and also in many other machine learning books, prediction models are all about
building a model and testing its performance by applying it on a never seen data. The prediction
power of the model on the new data set tells something about its performance. However, it is not
always possible to have a test data by hand and as such, the one available to build the model on
should be used efficiently: splitting it in a training part whereon the model is built. Once the model
is built, it is tested on the other part, called the test set. For each possible split (see Figure 9 again):

e Couple split:
— Validation: the data is splitted in two (roughly) equally sized parts. On one part, the
model is built. On the other part, the model is tested.

— 5 fold cross validation: the data is splitted in 5 (roughly) equally sized parts. First, the
first part is left out and the model is trained on the other for parts. Then the model is
tested on the left out part. This is repeated 5 times (each time leaving one part out and
training on the 4 remaining parts). And the end, the average of the 5 performances is
taken.

e TCR split:

— Validation: select 100 TCR-fs randomly. Then split the data into two parts: the first
part is the one for which the TCR-/ is one of the selected 100 TCR-fs and the other part
is the one for which this is not the case. Train the model on the latter one and test it on
the first one.

— 5 fold cross validation: repeat the above 5 times, and take the average of the performances.
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e Epitope split:

— Validation: select 50 epitopes randomly. Then split the data into two parts: the first part
is the one for which the epitope is one of the selected 50 epitopes and the other part is
the one for which this is not the case. Train the model on the latter one and test it on
the first one.

— 5 fold cross validation: repeat the above 5 times, and take the average of the performances.
e Full split:

— Validation: select 200 TCRs and 200 epitopes randomly. Then split the data into two
parts: the first part is the one for which the epitope and/or TCR-f are one of the selected
200 epitopes and/or TCR-fs and the other part is the one for which this is not the case.
Train the model on the latter one and test it on the first one.

— 5 fold cross validation: repeat the above 5 times, and take the average of the performances.
For KNN, the approach is slightly different:

e Couple split: split the data in two (roughly) equally sized parts. One part is the test set. For
each element in the test set (each couple, in the context of this project), a prediction (Binding
or No Binding) is made based on the K nearest couples to this element. It is assigned to the
class for which more than ~ K/2 of the training couples belong to.

e TCR split: select 100 TCR-S8s randomly. Then split the data into two parts: the first part is
the one for which the TCR-f is one of the selected 100 TCR-f8s and the other part is the one
for which this is not the case. The first part of the test set. For each element in the test set
(each couple, in the context of this project), a prediction (Binding or No Binding) is made
based on the K nearest couples to this element. It is assigned to the class for which more than
~ K /2 of the training couples belong to.

e Epitope split: select 100 epitopes randomly. Then split the data into two parts: the first part
is the one for which the epitope is one of the selected 100 epitopes and the other part is the
one for which this is not the case. The first part of the test set. For each element in the test
set (each couple, in the context of this project), a prediction (Binding or No Binding) is made
based on the K nearest couples to this element. It is assigned to the class for which more than
~ K /2 of the training couples belong to.

e Full split: select 200 TCR-fBs and 200 epitopes randomly. Then split the data into two parts:
the first part is the one for which the epitope and/or TCR- are one of the selected 200 epitopes
and/or TCR-fs and the other part is the one for which this is not the case. The first part of
the test set. For each element in the test set (each couple, in the context of this project), a
prediction (Binding or No Binding) is made based on the K nearest couples to this element.
It is assigned to the class for which more than ~ K/2 of the training couples belong to.

KNN is applied for varying K. For each K, KNN is performed 5 times and at the end of the Kth
loop, the average of these 5 is taken. Furthermore, for all machine learning models, the inputs are
the engineered chemical and physical features, denoted as:

Xlla"';X17aX21)"';X27 (9)

Here, Xi1,..., X17 are length, charge, instability index, hydrophobicity, molecular mass, Boman in-
dex and aliphatic index of the TCR-3, respectively, and, Xo1, ..., Xo7 are length, charge, instability
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index, hydrophobicity, molecular mass, Boman index and aliphatic index of the epitope, respectively.
Classification Tree

are given. The test approach is the validation
results are way better than those of the epitope

In Figure 13, the results of the classification tree
approach. For the couple split and TCR split, the
split and full split.
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Figure 13: Classification Tree: Validation.
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Figure 14: Classification Tree: 5 Fold CV.
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Also note that the validation approach was performed 20 times. After each validation, the overall
accuracy (red), the sensitivity (blue) and the specificity (green) are computed. Next, Figure 14 gives
the result of the classification tree for which a 5 fold cross validation was performed. Compared
to the validation approach, the curves are smoother. But the same comments apply also here: the
results of the couple split and TCR split are way better than the results of the epitope split and full
split.

Random Forest
The same approach is also taken for the random forest model. In Figure 15, the validation re-

sults are displayed and in Figure 16, the 5 fold CV results. The same comments also apply here:
the couple split and TCR split are doing way better than the epitope split and full split.
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Figure 15: Random Forest: Validation.
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Couple Split: Random Forest TCR Split: Random Forest
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Figure 16: Random Forest: 5 Fold CV.

Note in both the classification tree and the random forest the very low sensitivity and very high
specificity in the epitope split and full split. Especially for random forest, it is clear that the models
don’t do a good job for epitope split and full split: every test couple has a very high probability to
be assigned to the No Binding class, regardless the true class.

Boosting

Boosting is another tree based method used in this project. Figure 17 gives the validation re-
sults and Figure 18 gives the 5 fold CV results. And also here, the same comments made for the
previous models apply here. It is also clear that for the epitope split and full split, again, every test
couple has a high chance to be assigned to the No Binding class, whether or not the couple actually
binds.
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Figure 17: Boosting: Validation.
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Figure 18: Boosting: 5 Fold CV.

This concludes the tree based models. Next, logistic regression will be discussed.

Logistic Regression

Logistic regression is another classification model, though it is not a tree based method like the
three above mentioned methods. In this case, a model is fitted. This means that some parameters
will be estimated, using the data. To have an idea about what features are of significance, a logistic
regression model is fitted to the whole data base. In particular, the following model is fitted to the
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full data:

iy
1H< _W):504‘51'X11+ﬂ2'X12+53'X13+54'X14

1
+ 85 - Xi5 + Be - X16 + 87 - Xu7 + Bs - Xon (10)
+ Bo - Xoa + Bio - Xag + P11 - Xoa + P12 - Xos
+ P13 - Xog + Bia - Xov

With X;; like in equation (9). The parameter estimates are displayed in Table 3.

Table 3: Logistic Regression on Full Data.

Coefficient Estimate Standard Error  z value  P(Z > |z|)

Bo 2.244 9.473-1072 23.684 <2-10°1'°
B1 7.592.1073 1.257-1072 0.604 0.54576
B2 2.136-1072 8.309-1073 2.570 0.01016
B3 9.784-107° 3.297-1074 0.297 0.76662
Ba —8.646-102 4.238.1072 —2.040 0.04135
Bs —3.290-1074 1.210-10~* —2.718 0.00657
Be 2.321.1072 1.856-1072 1.251 0.21103
B7 1.686-1073 6.033-1074 2.795 0.00519
Bs 5.378.107* 1.110-1072 48.466 <2107
Bo 5.028-1071 7.131-1073 70.514 <2-10716
B1o 1.173-1073 2.530-107* 4.638 3.52:1076
P11 1.423-107* 2.469-1072 5.763 8.24.107°
B2 —7.286-1073 1.000-1074 —72.835 < 2-1071¢
Bi3 5.894-1072 1.270-1072 4.641 3.47-1076
Bra 3.116-1072 3.012.107* 10.344 < 2-1071¢

It is not of interest to do a model selection procedure and so on. The model in equation (10)
is fitted to the whole data just out of interest. However, Table 3 does contain some important
messages:

e The probability of having binding between the TCR-S and epitope is mainly dominated by
the epitope: all the parameter estimates fs, ..., 814 are highly significant.

e The features of the TCR-f that effects the binding significantly are the charge, hydrophobicity,
the molecular mass and the aliphatic index of the TCR-3: (2, 84, 85 and B respectively.

This is an important notification from both a statistical and biological point of view. The binding
between a TCR-f3 and an epitope is mainly determined by the chemical and physical features of the
epitope.

In Figure 19 and Figure 20, like the previous models, the validation and 5 fold CV results are
given, respectively. Also here the couple split and TCR split are doing better than the epitope split
and full split. However, the epitope and full split are doing better than the epitope and full split of
the previous models, especially when one is looking at the sensitivity of the epitope and full split.
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Figure 19: Logistic Regression: Validation.
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Figure 20: Logistic Regression: 5 Fold CV.

This concludes actually the last model. Next, KNN is discussed. But like mentioned earlier, in
KNN, actually there is no model that is trained. In particular, there are no parameters estimated
using a training set and tested on a test set. It is just about remembering the data and using that
to do predictions for test observations.

KNN

In Figure 21, the results of KNN are displayed. Unlike the previous machine learning models,
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here there are some differences in the results. First of all, like earlier, the couple split and TCR split
are doing way better. However:

e For couple split and TCR split, the higher K the worse the test results.
e For epitope split, the higher K the better the test results.
e For full split, K hasn’t a large effect on the results at all.

Because it was observed in Figure 21 that K had a positive effect on the test results of the epitope

split, K was enlargened further till K = 490. These results are given in Figure 22.
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Figure 21: KNN.

In Figure 22, it can be seen that K has a positive effect further till K = 460. After this value,
the results aren’t changing that much. The irony is clear here: till now, all the models were doing
worse for epitope split. However, KNN, which is a very naive and simple machine learning tool,
beats the previous models for epitope split.
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Epitope Split: KNN
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Figure 22: KNN for Epitope Split: K > 400.

This also concludes the machine learning models for the PP task. To wrap up, it was all about
splitting the data, building a model using one part of it (training set) and testing it on the other
part of it (test set). For each model, each split, validation was performed 20 times and 5 fold CV
was performed 10 times. It is a good place here to summarize all these results. This is done in Table
4. For each approach (validation or 5 fold CV) for each split, the mean across the 20 validations or
10 5 fold CV is computed. Except for KNN: here, the best result is given with the associated K
value. For example, for TCR split, the best overall accuracy was reached at K = 10 with a value
of 0.86944494, the best sensitivity at K = 10 with a value of 0.8998198 and the best specificity at
K = 20 with a value of 0.8406022.
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Table 4: Overall Summary of the Machine Learning Models.

Classification Tree: Validation Overall Accuracy Sensitivity Specificity
Couple Split 0.8150482 0.7298446 0.8979584
TCR Split 0.8152281 0.7473084 0.8817116
Epitope Split 0.544526 0.07850809 0.9061205
Full Split 0.5118133 0.1169892 0.9227894
Classification Tree: 5 Fold CV Overall Accuracy Sensitivity Specificity
Couple Split 0.8135062 0.7289017 0.896371
TCR Split 0.7995548 0.7318406 0.8667098
Epitope Split 0.5844105 0.06040861 0.9253473
Full Split 0.5225675 0.1274053 0.9020948
Random Forest: Validation Overall Accuracy Sensitivity Specificity
Couple Split 0.9053622 0.9045359 0.9061675
TCR Split 0.9135992 0.9142624 0.9134359
Epitope Split 0.6105673 0.03103918 0.9916374
Full Split 0.5148326 0.02801767 0.9896988
Random Forest: 5 Fold CV Overall Accuracy Sensitivity Specificity
Couple Split 0.9076062 0.9086823 0.9065563
TCR Split 0.8941355 0.8922518 0.8971301
Epitope Split 0.6826154 0.02892883 0.9933588
Full Split 0.5161582 0.02578254 0.9876092
Boosting: Validation Overall Accuracy Sensitivity Specificity
Couple Split 0.8616152 0.801117 0.9204967
TCR Split 0.8550022 0.789033 0.9197636
Epitope Split 0.6231994 0.1085707 0.9371842
Full Split 0.5522293 0.1589395 0.9428394
Boosting: 5 Fold CV Overall Accuracy Sensitivity Specificity
Couple Split 0.8612563 0.7982842 0.9224232
TCR Split 0.8738907 0.8176934 0.9316371
Epitope Split 0.6595764 0.1211394 0.9348453
Full Split 0.5658854 0.0909858 0.9388287
Logistic Regression: Validation Overall Accuracy Sensitivity Specificity
Couple Split 0.7264165 0.7428696 0.7104416
TCR Split 0.716704 0.7423419 0.6921754
Epitope Split 0.6062556 0.4271195 0.7138515
Full Split 0.5683752 0.3842602 0.7399126
Logistic Regression: 5 Fold CV Overall Accuracy Sensitivity Specificity
Couple Split 0.7277538 0.745389 0.7105909
TCR Split 0.7411175 0.7684695 0.7143444
Epitope Split 0.5822667 0.4056686 0.7065091
Full Split 0.5325604 0.336069 0.7739058
KNN Overall Accuracy Sensitivity Specificity
Couple Split 0.8302258 (K = 10) 0.8545392 (K = 10) 0.8064460 (K = 10)
TCR Split 0.8694494 (K = 10) 0.8998198 (K = 10) 0.8406022 (K = 20)
Epitope Split (1) 0.6820125 (K =40)  0.6820125 (K =400)  0.8250659 (K = 30)
Epitope Split (2) 0.7813236 (K = 470) 0.7780726 (K = 470) 0.8018179 (K = 460)
Full Split 0.6911866 (K = 100) 0.4889432 (K = 100)  0.8622801 (K = 50)

Next, the results of deep learning models for the PP task will be discussed.
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6.1.2 Deep Learning

For the PP task, also deep learning models were considered. The aim is the same as previous models.
The data is divided according to the split of interest. A neural network is trained on the training
set and this NN is then tested on the other set. So the output is the same: class prediction, which is
either Binding or No Binding. However, for deep learning, the input differs. For machine learning,
the input were the engineered features of both the TCR and epitope. Here, the input is the amino
acid sequence of both the TCR and epitope, encoded to a numerical representation according to the
function:

A {1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15,16, 17, 18,19, 20} (11)

With 4 = {A,R,N,D,C, QE, G H I, L, K, M, F, P, S, T, W, Y, V}, the collection of all
possible amino acids. An important note to be made is the following. The length of the TCR-f3s
and epitopes changes through the data, but the maximal length of an epitope and TCR-3 is 20 and
38, respectively. For deep learning models, it is of importance that all the couples have the same
length. Because of this all epitopes are translated to a numerical representation (vector) with a
length of 20 and, for example, if the epitope has a length of 14, then till position 14 the function
in equation (11) will be used. After that, the other remaining position will be filled with Os, till a
length of 20. The same is done for a TCR-3, but a length of 38. So the smart reader will conclude
now that the input is a vector of length 58. For each split, two models are being considered. First,
a densely connected neural network and after that, a convolutional neural network. Again, for an
extensive description of the difference, the book of mr. Chollet is highly recommended. Here, rather
a short description will be given. Deep learning models are built using Tensorflow and Keras in
Python.

A densely connected neural network will be trained such that it will be looking at patterns in
the input that are rather global. Note that the input is actually a translated amino acid sequence.
While a densely connected neural network is being trained, it will look at the sequence each time
and search for global patterns. A convolutional neural network is rather looking for local patterns.
For example, it will look for whether there are group of amino acids emerging in specific positions
inside the amino acid chain. Before giving the test results of the neural networks for each split,
Figure 23 and Figure 24 are summarizing the model architectures of the densely connected network
and the convolutional neural network, respectively.

The densely connected neural network is the one looking for global patterns in the amino acid
sequences of both the TCR-/3 and the epitope. As it is clear from the figure, the architecture is such
that each time the units in the layers are increasing. Just like in machine learning, where the model
performance is being improved when more covariates are added, for a neural network, the model
performance can also be improved by adding more and more layers and introducing more and more
units inside the layers.
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Figure 23: Densely Connected Neural Network.

Input

In Figure 24, where the convolutional neural network is summarized, a lot of unknown terms
might occur. The detailed description will be skipped over, but let’s go through the architecture and
discuss shortly what is happening anyway. When the input is arriving in the 1D Conv. layer, what
is happening is that the network is scanning the input and it looking for emerging local patterns,
specific patterns in specific locations inside the input. After that, as it might be clear, the dimension
is reduced by a factor of 2. From all the saved patterns in the 56 x 32 convolution, only the most
important ones are kept, giving a dimension of 28 x 32. This is done further and further until a
convolution of 7 x 128 is reached. This final convolution is vectorized at the end and being connected
with the output again, which is the same as the densely connected neural network.

Flatten
Input 1D Conv.

Max Pooling 1D Conwv.

Max Pooling 1D Conv. 1D Conw. 1D Conv.
Sigmoid
output
Relu Relu Relu Relu Relu Relu Relu Relu

JEdEJEIEIE TR

13x64 11x128 9x128 7x128

28x32 26x64

58 56x32

Figure 24: Convolutional Neural Network.
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The only aspect not discussed yet is the relu operation, standing for rectified linear unit function,
which is:
relu(z) =0 for x < 0

(z) (12)

=gforz>0

In Table 5, the test results of the densely connected NN and ConvNet for each split are given. The

same overall conclusion can also be made here: the results of the couple split and TCR split are
better than the results of the epitope split and full split.

Table 5: Overall Summary of the Deep Learning Models.

Densely Connected NN  Accuracy Sensitivity AUC-ROC

Couple Split 0.8674 0.8757 0.9321
TCR Split 0.8647 0.8704 0.9421
Epitope Split 0.6064 0.0520 0.4004
Full Split 0.6792 0.2449 0.5494
ConvNet Accuracy  Sensitivity AUC-ROC
Couple Split 0.8722 0.8725 0.9130
TCR Split 0.8889 0.8796 0.9217
Epitope Split 0.6127 0.0818 0.4881
Full Split 0.7008 0.1323 0.5249

In all the machine learning and deep learning models, couple split and TCR split results are way
better than the results of the epitope split and full split. In §7, this will be discussed in more detail.

6.2 Sequence Prediction

In this part of the project, called the SP part, given the sequence of the epitope, the appropriate
sequence of the TCR-S will be predicted. This is a challenging task in both computer science and bi-
ology (targeted immunotherapy): building a (virtual) TCR-# such that this TCR-S will bind to the
given epitope. The approach here is highly different than that of the PP task, though the main idea
remains the same: a training set is used to build models and these built models are used on a test set.
The test set is generated by picking one epitope randomly from the data. The other part remains as a
training set and the set with the randomly selected epitope with its TCR-fs is considered as the test
set. In particular, it is that randomly selected epitope for which a TCR-8 will be built. The inputs
in this SP task are both the sequence of the epitopes and the chemical and physical features of them.

In Figure 25, the SP task method is summarized. As mentioned several times throughout this
report, the maximal length of the TCR-$ in the total data is 38. This means that the random forest
models built using the training observations will predict a sequence of length 38. Also, because pre-
dicting just one string will have an evaluation metric with only the option correctly predicted
or falsely predicted, rather a matrix will be predicted with the number of rows equal to 21 (20
amino acids and X, standing for no amino acid) and number of columns equal to 38, being the
position inside the TCR-3 chain. Therefore, if this matrix called M, then m;; is standing for the
probability to have amino acid ¢ on position j, with the amino acids ordered in a vector like given
in the deep learning section, with additional X as the 21th element of this vector. Note that one
epitope binds with multiple TCR-f3s, which means that such a matrix can also be generated using
the true TCR-fs of this epitope which it binds to. This will also allow to compare the predicted
probability matrix with the true matrix, leading to a metric called the position wise error, which is
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defined as the absolute value of the column difference of the predicted matrix and the true matrix.
More formally, if M is the predicted matrix and N the true matrix, then jth error rate is defined
as:

21
1
€ =51 > [Mij — Nij| (13)
1=1

For j =1,...,38. As a last comment, the following is very important to note.

. » Random Forest Models
Comparing
.
l 0 : 0
.
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. . Predicted TCR}

EEEE
\ 4
0o

Figure 25: Summary for the SP task.

A random forest model will be built for each position and for each amino acid. In particular,
for position j, for each amino acid, a random forest model will be built. Out of that model, the
probability of having that amino acid on position j and not having that amino acid on position j will
be determined. This is implying that, to build a TCR-f3, 21 x 38 = 798 random forest models are
used! This requires some computational power. However, because of the long run time, 4 randomly
selected epitopes will be evaluated. Note that it is not that these 4 epitopes are selected as a test
set: these will be selected one by one so for each epitope the training set will contain 460 epitopes,
and this set will be used to build a TCR-S for the randomly selected epitope. As a consequence,
Zfil M;; =1 is not necessarly true, whereas Zfil N;; =1 is true, for all j.

This method is summarized in Figure 26. The 4 randomly selected epitopes are TTDPSFLGRY,
KLFEFLVYGV, LSLRNPILV and KRWIIMGLNK. To compare the probability matrices (predicted
vs true), the matrices are converted to a heatmap and these two heatmaps are then compared. This
is given in Figure 27. From left to right each time the predicted and true probability matrices are
given. From top to bottom, one has the epitope TTDPSFLGRY, KLFEFLVYGV, LSLRNPILV and
KRWIIMGLNK. Note that the highest variability in amino acids is seen between positions 2 and
16. This is due to the fact all TCR-(s are starting with the amino acid C and only a few TCR-fs
have a long length. Comparing the heatmaps based on color and color differences won’t be that
informative. That’s why the position wise error rate is defined as mentioned earlier.
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Figure 26: Building a TCR-3 using Random Forest Models.

The position wise error rates for the 4 randomly selected epitopes are given in Figure 28. The
high variability between the position 2 and 16 is also reflected on this graph. For all the epitopes,
the error rate shows an increasing trend starting from position 2 and reaching a maximum value
around position 10. After position 10, the error rate is decreasing to a value of 0. Note again that
each position wise error is the mean absolute difference of the predicted and true probabilities of

having each amino acid at that position.
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Figure 28: Position Wise Errors for the Epitopes.

Next in §7, the results will be discussed and interpreted furhter.

7 Discussion and Interpretation

7.1 PP Task

In the PP task, the metrics overall accuracy, sensitivity and specificity were used to evaluate the
model’s performance on the test set. In general, the best test results were obtained for couple split
and TCR split, whereas the results for the epitope split and full split were dramatically bad. The
following is hypothesized as the reason for this.

In the full data, the number of couples is 78669. From this, 38819 are positive and 39850 are
negative. This is no magic at all: 38819 is coming from the cleaned raw data and 39850 are the cre-
ated negative samples. The mean number of epitopes a TCR binds to and doesn’t bind to are both
1. The mean number of TCR-fs an epitope binds to and doesn’t bind to is 84 and 86, respectively.
Given the TCR-Ss or epitopes, no imbalances are seen in positive versus negative samples. Will this
be conserved for each split? The danger exists that this balance can be disturbed because of the
imbalances between the TCR-fs and epitopes. Check Table 6: this summarizes the discussed ones
for each split.

So for the full data, two aspects were noted:

e There is a balance between positive and negative samples (50/50 balance). Let’s call this the
marginal balance.

e This is conserved for both TCR-fs and epitopes. However, when one compares TCR-fs and
epitopes, some imbalance is introduced. So there is also conditional balance (i.e. balance given
only TCR-fs or epitopes), but this conditional balances differ.
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When looking at the CS (couple split) and TS (TCR split), for both training and test sets, it is
seen that the both the marginal balance and conditional balances are preserved. However, for the
ES (epitope split) and FS (full split), it is seen that this is disturbed: the marginal balance doesn’t
exist anymore and the conditional balance for the epitopes is gone too. Through all the splits, the
conditional balance of TCR-S is 50/50 whereas for the epitope, this 50/50 dissapears. It is this
imbalace that is hypothesized being responsible for the bad results.

Table 6: Evaluation of the Different Splits.

CS Train / Test Number of Couples 40000 38669
Number of Positives 19751 19068
Number of Negatives 20249 19601
Mean number of Epitopes a TCR binds to 1 1
Mean number of Epitopes a TCR doesn’t bind to 1 1
Mean number of TCRs an Epitope binds to 43 42
Mean number of TCRs an Epitope doesn’t bind to 44 43
TS Train / Test Number of Couples 78435 234
Number of Positives 38708 111
Number of Negatives 39727 123
Mean number of Epitopes a TCR binds to 1 1
Mean number of Epitopes a TCR, doesn’t bind to 1 1
Mean number of TCRs an Epitope binds to 84 1
Mean number of TCRs an Epitope doesn’t bind to 86 1
ES Train / Test Number of Couples 57009 21660
Number of Positives 21507 17312
Number of Negatives 35502 4348
Mean number of Epitopes a TCR binds to 1 1
Mean number of Epitopes a TCR doesn’t bind to 1 1
Mean number of TCRs an Epitope binds to 53 346
Mean number of TCRs an Epitope doesn’t bind to 87 87
FS Train / Test Number of Couples 51511 27158
Number of Positives 29235 9584
Number of Negatives 22276 17574
Mean number of Epitopes a TCR binds to 1 1
Mean number of Epitopes a TCR doesn’t bind to 1 1
Mean number of TCRs an Epitope binds to 112 32
Mean number of TCRs an Epitope doesn’t bind to 86 57
Full Data Number of Couples 78669
Number of Positives 38819
Number of Negatives 39850
Mean number of Epitopes a TCR binds to 1
Mean number of Epitopes a TCR doesn’t bind to 1
Mean number of TCRs an Epitope binds to 84
Mean number of TCRs an Epitope doesn’t bind to 86

Through the logistic regression model that was fitted on the full data, it was seen that all
the chemical and physical features of the epitope were highly significant. The model was fitted
on a balanced data which means that all differences seen are not by accident, but caused by the
covariates, in this case the ones of the epitope (and some of the TCR-3). Splitting the data such
that the marginal and conditional balances aren’t disturbed might be a computationally challenging
task. A good way to avoid this is finding a data set with balanced number of TCR-f8s and epitopes.
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To get such a data set, one could try data ensembling: collecting lots of such data sets and merging
them into one big data. Such an approach might also have the benefit that the train and test sets
get larger.

7.2 SP Task

Like mentioned earlier in the SP task, the noteworhty aspect here is the fact that the highest error
rate was seen around position 10. Also note that that this is maximal for the epitope KLFEFLVYGYV,
the second row in Figure 27 and the blue curve in Figure 28. When looking at Figure 27 at the true
matrix of this epitope, the color pixel are more discrete compared to the other three true probability
matrices. This is due to the fact that this epitope has a low number of TCR-fs it binds to:

e TTDPSFLGRY: binds to 244 TCR-fs.
¢ KLFEFLVYGV: binds to 3 TCR-fs.
e LSLRNPILV: binds to 130 TCR-fs.
¢ KRWIIMGLNK: binds to 66 TCR-f3s.

For the other three, because these bind to more TCR-fs compared to the KLFEFLVYGYV | there is
larger variety of possible amino acids, which reduces the error probability. However, overall, because
for all epitopes the TCR-s have more variety of amino acids around position 10, the error rate will
around this position always higher compared to the other positions.

8 Possible Drawbacks

Let’s summarize the whole project and the tasks performed. There were two aims here:

e Given the sequence of the TCR-S and given the sequence of the epitope, what is the probability
that these two proteins will have a succesful binding?

e Given the sequence of the epitope, what is the appropriate sequence the TCR~3 should have
in order to have a binding?

The data at hand was the data set available on the website of VDJDB. The first challenge has
emerged here already. This data contains only positive samples: couples ever observed. For the
first task, actually, the goal is to build a classifier that will assign a (test) couple to the class of
Binding or No Binding. To build this classifier, during the building process, both positive samples
and negative samples should be seen. The negative samples were generated by randomly picking a
TCR-$ and an epitope out of the data. If they weren’t a couple, they were assigned to be a negative
couple. This approach is also discussed in the literature. However, this approach can be validated
by building a classifier built using a data set with positive and negative samples, both proven in a
biological lab for example. Such a data set (by preference, large enough) can then be used to train
a classifier and test it on the randomly generated couples, which are hypothesized to be negative.

Another aspect to keep in mind is that, while all information is available of the epitope, for the
TCR, only the sequence of the TCR-f is used. This simplification is done because the TCR-/ chain
(and also the « chain) of the CDR3 region of the TCR is that part of the whole TCR, that is coming
in contact with the epitope (Jorgensen et al., 1992). However, by using this approach, one makes
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the strong assumption that the 3D structure of the TCR doesn’t matter at all, and the probability
of having a binding between the TCR and the epitope is highly determined by this region only. As
one can realize this is a very strong assumption and maybe not valid at all. The two components
discussed here are proteins. Like mentioned in every biology book about proteins, the amino acid
sequence determines the 3D structure of the protein, which in its turn determines the functionality
of the protein. Proteins have specific 3D structures, highly related to their function they have to
perform. A mismatch in the amino acid sequence can lead to the protein’s disability to perform its
task. To conclude the comments on the PP task, a good classifier should be built using:

e a data set containing positive and negative samples (balanced), both validated biologically,
e the sequence of the components and
e the 3D structure of the components.

For the last one, a mapping is needed: the 3D structure information should be mapped to a vector
as an input for the machine learning or deep learning models.

For the SP task, to determine what amino acid ¢ should be on the jth position, random forest
models were built for each amino acid, for each position, leading to the 798 random forest models.
However, it must be noted that the inputs are actually chain of categorical values. For example, an
epitope of length 8 can be written as X1 X5 X3...Xg. The method explained in Figure 25 and Figure
26 leads to the assumption that for each sequence (chain) the positions are independent from each
other:

P(X;]X;, Vi # j) = P(X;) (14)

To what extend is this true? Is it indeed true that X; is independent of the other positions? Or
is there some dependency? For the latter one, then, the framework of Markov modelling is needed.
And if the two chains (epitope and TCR-3) will have an effect to each other, then one needs bivariate
Markov modelling.

9 Ethics, Societal Relevance and Stakeholder Awareness

Working with sequenced TCRs brings a number of ethical concerns with it. First of all, knowing
the TCR is equivalent to knowing the part of the DNA of the patient that encodes for the TCR, of
interest. Many articles can also be found in the literature about this issue, one of them being Morris
et al., 2006, making a clear distinction between the individual issues and population issues. Indi-
vidual issues are the release of such data bases and the identifiability, adecaucy of the content and
the reporting the results. Population issues are of broader sense, like stereotyping and stigmatiza-
tion, inclusion and differential benefits and community and culturally specific issues. Like they also
mention in their conclusion, those ethical issues should be clearly addressed by developing effective
strategies to inform a much broader set of issues in the ethics of a (medical) research.

On the other hand, however, the societal relevance and the possible stakeholders are very clear.
Like also mentioned in §11, prediction of an immune response using machine learning and deep
learning (or other AT tools) can be of great help during emergencies like epidemics or pandemics.
Big stakeholders here are pharma industries, but also other companies, since a pandemic can lead to
measures, leading to a reduced economic activities. Being able to make predictions for an immune
response can be of great help during vaccine development, which can accelarate the development.

41



10 Conclusion

In this project, the probability of having a binding between a TCR and an epitope was discussed.
Also the sequence of the TCR-8 was determined, given the sequence of the epitope. The models
used were the classification tree, random forest, boosting and KNN. The software used here was R
and the required packages for this models were tree, randomForest, gbm and class, respectively.
Also logistic regression was used, but no special packages were required for this. The metrics were
overall accuracy, sensitivity and specificity for the PP task and position wise error rate for the SP
task. For the PP task, for CS and TS, the overall accuracy, sensitivity and specificity were showing
that model is performing well on the test set. A sensitivity of 0.8 means, given all the positive
couples, the model will assign 0.8 of them to the Bindig class, whereas a specificity of 0.8 means,
given all the negative couples, the the model will assign 0.8 of them to the No Binding class. Each
time for each split, the overall accuracy lies nicely between the sensitivity and specificiy, because of
the 50/50 balance of positives/negatives. The results of ES and FS were worse than those of CS
and TS.

11 Future Research and Challenges

What is the future of this project and other projects related to this? Remember the very recent
pandemic caused by the corona virus. Because of this pandemic, some measures were taken, leading
to a restricted social life and a reduced economic activity. However, to what extend can the world
of the 21st century allow such a measure again, and for how long? The history shows already one
thing: it was not the first pandemic, and it won’t be the last one.

Reducing down the economic activity is something the governments allow in extreme circumstances.
However, the best thing to do, is avoiding this. Let’s take the corona virus as an example and
keep the terminology as easy as possible. Once in the body, the corona virus will code for its spike
proteins. In order to get immunized against this virus, it should be recognized by the immune
system. In particular, the spike protein can be seen as the ID of the virus and it is this ID that
should be recognized in order to start an immune response. The immune system should code for
another protein that has to recognize this ID: specialized antibodies. The good reader might notice
immediately that in this case, it is about antibody response and not about T-cell mediated immune
response. The principle remains the same: the spike protein is now the equivalent to the epitope
and the antibody is the equivalent to the TCR-/.

Given that this won’t be the last pandemic (as currently the media are talking about monkeypox
virus), having a pandemic is actually equivalent to having the following problem:

e The sequence of the disease causer is known. How to fight against this?

Further analysis of this question leads actually to the SP task of the project. Furthermore, if some
experiments were done with this disease causer or other ones, and one wants to check if some new
antibodies or TCRs will work or not, this leads to the PP task (TCR split or couple split). Having
a classifier with maximal sensitivity and maximal specificity will be of great help in order to develop
vaccines. Vaccines will accelerate the worldwide immunization against the disease causer. That’s
why data bases like VDJDB and experiments leading to such data bases are of great value, not only
for biology and medicine, but also for statistics, computer science, mathematics and (statistical)
physics.
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