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SAMENVATTING

Het fenotype van een micro-organisme wordt bepaald door zowel de genen van het micro-organisme
als zijn omgevingsfactoren. De combinatorische explosie die gepaard gaat met alle mogelijke modi-
ficaties van het genoom van het micro-organisme en zijn omgevingsfactoren, maakt metabolic engi-
neering van micro-organismen in het laboratorium zeer uitdagend. Het optimaliseren van de groei van
micro-organismen of de productie van metabolieten in een laboratorium kan daarom veel tijd en mid-
delen kosten. In silico optimalisatie van het organisme voordat het opgegroeid en getest wordt in het
laboratorium kan daarom helpen om de zoekruimte, gecreéerd door de genen en de omgevingsfactoren,
te exploreren. In deze thesis worden Quality-Diversity evolutionaire algoritmen gebruikt om metabole
netwerken van organismen in silico te evolueren met als doel de organismen te kunnen groeien op
bepaalde substraten, specifieke metabolieten te produceren enz. We focussen ons op het gebruik van
één bepaald Quality-Diversity Evolutionaire Algoritme genaamd Multi-dimensional Archive of Pheno-
typic (MAP)-Elites. Quality diversity Evolutionaire Algoritmen hebben als voordeel dat ze zoeken naar
oplossingen die zowel goed presteren als divers zijn. Dit zorgt ervoor dat er een evenwicht bewaard
wordt tussen exploratie om locale minima te vermijden en convergentie tijdens het zoeken naar een
set van oplossingen die verspreid is over de zoekruimte. Dit contrasteert met traditionele evolution-
aire algoritmen, die op zoek gaan naar slechts één optimale oplossing. Doorheen de thesis worden
genome-scale metabole modellen gebruikt om de organismen in silico voor te stellen. De genome-scale
metabole modellen werden gesimuleerd en gemanipuleerd met behulp van Cobrapy, een Python biblio-
theek die een eenvoudige interface biedt voor metabolische constraint-based reconstructie en analyse.
Het MAP-Elites algoritme maakt het mogelijk om de zoekruimte intelligent te verkennen door het pro-
ces van evolutie in silico te simuleren. OptMAP, het framework dat verkregen wordt door genome-scale
metabole modellen te integreren met het MAP-Elites algoritme, wordt in eerste instantie gebruikt om
uit te zoeken welke gen knockouts het metabool netwerk van Escherichia coli in staat stellen maximaal
succinaat, acetaat, ethanol en flavanonen te produceren. Nadien wordt OptMAP ook uitgebreid om
rekening te houden met verschillende medium samenstellingen die de groei van het micro-organisme
en productie van metabolieten kan beinvloeden. De resultaten verkregen voor de productie van succi-
naat, acetaat, ethanol en flavanonen tonen aan dat OptMAP in staat is om gen knockouts en medium
samenstellingen te vinden die de productie van target-metabolieten maximaliseert. Daarnaast levert
OptMAP ook inzichten in de relaties tussen verschillende karakteristieken van de gevonden oplossingen
aangezien OptMAP gebaseerd is op een Quality-Diversity of Illumination algoritme.

Kernwoorden: Evolutionaire algoritmen, Quality Diversity algoritmen, MAP-Elites, In Silico Metabolic

Engineering, Genome-Scale Metabole Modellen






SUMMARY

The phenotype of a microorganism is determined by both its genes and environmental factors. The
combinatorial explosion associated with all the possible assortments of genome configurations and en-
vironments makes the metabolic engineering of microorganisms in the laboratory a tedious undertak-
ing. Optimizing the growth of microorganisms or the production of metabolites in a laboratory can
thus take up a lot of time and resources. Navigating the search space created by all possible genetic
variants and environmental factors using trial-and-error in the wet lab could therefore be aided by in
silico optimization of the organism before it is grown and tested in the wet lab. In this thesis, Quality-
Diversity Evolutionary Algorithms are used to evolve metabolic networks of organisms towards specific
metabolic engineering goals such as the growth on certain substrates and the production of specific tar-
get metabolites. We focus on the use of one particular Quality-Diversity Evolutionary Algorithm called
Multi-dimensional Archive of Phenotypic (MAP) Elites. The advantage of Quality-Diversity optimization
is that while searching for a well-performing solution, also diversity is promoted. This way, a balance be-
tween exploration and convergence is maintained during the search, escaping local minima and finding
a set of high-performing solutions distributed over the search space. The latter is in contrast with tra-
ditional evolutionary algorithms that search for a single best solution. Throughout this thesis, genome-
scale metabolic models are used to represent microbial metabolism in silico. These models can be sim-
ulated and manipulated using the Cobrapy framework, which provides a simple interface to metabolic
constraint-based reconstruction and analysis. Here, the MAP-Elites algorithm allows for the intelligent
exploration of this search space of all possible variants. OptMAP, the framework obtained by integrating
genome-scale metabolic models with the MAP-Elites algorithm is applied to several case studies. We
will start by exploring the evolution of Escherichia coli to maximize the production of succinate, acetate,
ethanol and flavanones. Afterwards, OptMAP is expanded to consider different medium compositions
that can influence growth and the production of target metabolites. The results obtained for the produc-
tion of succinate, acetate, ethanol and flavanones show that OptMAP is able to discover gene knockouts
and medium compositions that maximize the production of target metabolites. Additionally, OptMAP is
able to illuminate relationships between different dimensions of the feature space and the associated
fitness potential to provide (novel) scientific insights.

Key Words: Evolutionary algorithms, Quality-Diversity algorithms, MAP-Elites, In Silico Metabolic Engi-
neering, Genome-Scale Metabolic Models
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1. INTRODUCTION

Every corner of planet earth is filled with an unimaginable diversity and number of living organisms
(Lecointre and Le Guyader, [2006). Each one trying to stay alive and reproduce. Depending on the con-
ditions the organisms are surrounded by, different inventive solutions to avoid death are discovered via
natural selection (Kimura, [2020). These solutions are the result of simple principles underlying evo-
lution. Evolution is based on a simple variation-selection loop. Variation is created via mutations or
recombination, the new organisms are then selected based on their properties, the niches they occupy
and any competitors that may be present (Castle et al., [2021). This evolutionary process has resulted
in the most complex and sophisticated designs known to mankind and unparalleled diversity (Kimura),
2020). It is therefore obvious that scientists from many different fields look to this process for inspira-
tion to solve many complex problems (Mouret, |2020). This is nothing new as bio-inspired computing,
where biological models are used to solve computer science problems, has been used in many instances
such as neural networks based on our brain, the search for emergence based on ant or bee colonies and
of course evolutionary algorithms based on evolution (Yang, 2010). For example, artificial neural net-
works are part of the machine learning field and are at the center of deep learning algorithms. They
are inspired by the structure of the human brain and mimic the way biological neurons signal each an-
other (Education, [2022). Artificial neural networks can be used for pattern recognition and have been
used for computer vision applications such as face recognition software (Hopfield,|1982). More recently
deep learning has been used to tackle one of the largest problems in biology, namely to accurately pre-
dict protein folding (Senior et al., 2020). Ant or bee colony optimization algorithms are based on the
behaviour of ants or bees to find good paths through graphs (Monmarché et al.l|2010). These types of
search algorithms can often be used for internet routing or finding the shortest route for delivery drivers
(Waldnerl, [2013).

In this thesis, evolutionary algorithms based on natural evolution will be used as a search algorithm to
find out which genetic knockouts optimize specific metabolic engineering objectives. Since the goal is
to discover novel microorganisms for metabolic engineering purposes, microbial evolution can reveal
interesting ideas as to which features should be implemented in such algorithms. Microorganisms have
had the opportunity to evolve for almost 3.5 billion years (Schopf and Packer,1987). During all this time
they have found ways to capture energy from sunlight (Schopf and Packer,1987), use basic chemical ele-
ments found in the ground and oceans to produce extremely complex molecules such as vitamins (Kang
et al.,[2022) and antibiotics (Chandra and Kumar, 2017) and in recent times microorganisms have even
evolved to breakdown synthetic molecules produced by mankind not present for most of the existence
of these microorganisms (Kawai, [1995). Because of the ability of microorganisms to produce and break
down all kinds of molecules, they have been used by mankind for millennia for the production of beer,
wine, bread, cheese etc (Mustafa et al.,[2018). In recent centuries, the use of microorganisms has seen
an explosion of use cases and development. To optimize microorganisms towards performing a specific



task, a lot of manipulating and tuning of the microorganisms is carried out in the wet lab. Metabolic
engineering is the field that is focused on optimizing genetic and regulatory processes within organisms
to increase the production of various target molecules (Yang et al.,1998). Although metabolic engineer-
ing has come very far, especially in the last decades, the optimization of organisms in the laboratory
often takes up a lot of time, effort and resources (Stephanopoulos, |2012). This is the case because of
the combinatorial explosion associated with all the possible assortments of genome configurations and
environments that ultimately contribute to the phenotype of the organism. If the optimal genome and
environmental cues to produce specific products were known before having to grow the microorgan-
isms in the laboratory, the process could be sped up significantly while exploring even more possibilities
(Tomar and De| |2013). Simulating the evolution of microorganisms towards specific metabolic engineer-
ing objectives in the wet lab would be an ideal candidate to design novel microorganisms if it were not
for the large timescales evolution operates at. Gleizer et al. (2019) attempted to convert an Escherichia
coli to generate all its biomass carbon from CO,. The chemostat-based directed evolution led to com-
plete trophic mode change in more than 200 days (Gleizer et al.,|2019). Therefore, this thesis proposes
to simulate the evolution of microorganisms in silico. The organism, its genes, metabolism etc are rep-
resented in silico using mathematical models of the organism called genome-scale metabolic models
(GEMs). They will be evolved using a quality-diversity evolutionary algorithm which is inspired by the
process of macroevolution (King et al., 2016} [Mouret, [2020). Macroevolution is the hypothesis that
life evolves by selecting the fittest individual in each niche as opposed to global selection between all
individuals independent of the niche they occupy (Stanley, [1975).

In the next two chapters, the state-of-the-art regarding metabolic networks, genome-scale metabolic
network models and evolutionary algorithms is described. This insight allows for understanding why
combining evolutionary algorithms with genome-scale modelling can be interesting for metabolic engi-
neering. By combining GEMs and evolutionary algorithms, we want to speed up metabolic engineering.
We will start by exploring the in silico evolution of Escherichia coli to maximize the production of sim-
ple metabolites such as succinate. Afterwards, the production of acetate, ethanol and flavanones in
Escherichia coli is investigated. In order to find out which gene knockouts optimize the production of a
specific compound, the workflow in Figure [4.1is followed. First, the appropriate metabolic model has
to be chosen. This model will then evolve in silico via the MAP-Elites algorithm, to optimize the model
towards the chosen metabolic engineering objectives which might include the production of certain
metabolites or the growth on specific media. Details about the MAP-Elites algorithm are explained in
Section[3land



2. METABOLIC MODELS

2.1 Metabolic networks

2.1.1 Definition

Metabolic networks are interconnected pathways of biochemical reactions within living cells through
which building blocks or compounds necessary for cellular functioning are assembled (anabolism) or
energy and matter are produced by breaking down biomolecules (catabolism) (Walhout et al.| |2012).
Metabolic pathways often form chains or cycles of reactions coupled to each other, in which the prod-
uct of one reaction may serve as the substrate of the next one (Dubitzky et al.l |2013;|Chalancon et al.,
2013). Next to the metabolic pathways, a metabolic network also includes all the regulatory interactions
that constrain the (bio)chemical reactions. These regulatory interactions can include transcriptional and
translational regulation, enzyme kinetics, enzyme inhibition etc (Herrgard et al.,|2006). Additionally,
the metabolic network also describes the interactions between metabolic pathways and environmen-
tal factors such as microorganisms, diet, xenobiotics, etc (Renz et al.,[2021). However, thermodynamic
gradients within metabolic reactions may favour one specific direction. This consequently results in flux
through the metabolic pathways. Furthermore, several parts of the reaction network are temporally and
spatially organized by compartments (Dubitzky et al.,[2013). This is especially obvious in eukaryotic cells
as they have many compartments to separate different processes (Gabaldon and Pittis| [2015). Examples
of such compartmentalization include the endoplasmic reticulum, the Golgi apparatus, the nucleus, mi-
tochondria, endosomes, lysosomes and peroxisomes (Martin, [2010). However, even in bacteria, there
are examples of compartmentalization such as protein-bounded microcompartments for carbon-fixing
carboxysomes and lipid-bounded organelles like photosynthetic membranes in cyanobacteria (Cornejo
et al.,[2014). Metabolic networks are often visualised by a network consisting of nodes that represent
metabolites and edges that represent fluxes of (enzymatic) reactions.

2.1.2 Origin and evolution of metabolic networks

The study of the origin and evolution of metabolic pathways is one of the most important aspects of
the search for the origin of life. [Fani| (2012) discusses the emergence of metabolic routes in primordial
cells. The RNA world hypothesis proposes that life on Earth started with a simple self-replicating RNA
molecule (Neveu et al.l [2013). In the RNA-protein world hypothesis, RNA can subsequently catalyse
protein synthesis (Fani, 2012). Primordial heterotrophic cells that were able to synthesize amino acids
and other organic molecules had a huge evolutionary advantage, as the exhaustion of the prebiotic sup-
ply of amino acids and other molecules that were most likely present on the primordial Earth imposed



an important selective pressure (Fani, [2012). The ability to synthesize amino acids and other organic
molecules avoided the dependence of primitive life forms on exogenous sources of organic compounds.
Four often referenced hypotheses for the origin of metabolic pathways are the retrograde hypothesis,
Granick’s hypothesis, the patchwork hypothesis and the shell hypothesis (Scossa and Fernie, [2020). The
retrograde hypothesis states that metabolic pathways originate with sequential gene duplications start-
ing from gene catalyzing the last step of current pathways (Fani, |[2012). Once certain compounds were
depleted in the primordial soup, selective pressures originated favouring the survival and reproduction
of the primordial cells able to produce the depleted compounds. Such a process may have been repeated
sequentially, in a backward direction, until the pathways we observe today were established. Granick’s
hypothesis on the other hand states that pathways may have been assembled in a forward direction.
Starting with simple precursors and towards more complex products. This hypothesis assumes that the
older genes across the evolutionary timescale would be represented by those catalyzing the earlier steps
in contemporary pathways (Scossa and Ferniel |2020). The patchwork hypothesis states that ancestral
genes encoding promiscuous enzymes may have expanded the metabolic capabilities of primordial cells
via gene duplication and subsequent divergence. Additionally, subfunctionalization as seen in Figure[2.1]
(c) is an example where the catalytic activities of an ancestral gene are divided among the paralogs.
Lastly, the shell hypothesis proposes that the evolution of metabolism can be traced back to the con-
secutive additions of distinct metabolic pathways. The metabolic network is divided into shells, shell A
- the core central pathway (reductive TCA, fatty acids biosynthesis) - which is predated by the addition
of nitrogen metabolism in shell B. Sulphur and cofactor metabolism were later added as shell C (Scossa
and Fernie, [2020). The difference between the hypotheses can also be observed in Figure[2.1

The Krebs cycle is a central part of the metabolism, is conserved in almost all organisms and is therefore
of particular interest because it can give insight into the origin of metabolic pathways and thus life. Lane
(2015) lays out how and where life might have started. One of the primary aspects in the search for
the origin of life is where and in which forms life initially obtained energy. All cells similarly manage
energy by relying on an electrochemical gradient across a membrane to power the chemical reactions
of life. Lane argues that this electrochemical gradient across a membrane could not have originated in
ordinary conditions like open oceans or in what Darwin called "warm little ponds". Rather, he follows
a similar train of thought as Glinter Wichtershiuser (Huber and Wachtershauser, [1997), that life must
have begun in deep-sea hydrothermal vents because, unlike the open oceans, these hydrothermal vents
contain chemicals that can store energy that could be used by cells, given that the cells have a membrane
to generate the needed gradient by maintaining different concentrations of chemicals on both sides of
the membrane. Some steps of the reverse Krebs cycle can be catalyzed by minerals or by metal ions
such as iron as reducing agents under acidic conditions. This means that the Krebs cycle is not a set of
reactions created by life, but more likely repurposed by primordial cells to synthesize amino acids and
other organic molecules to gain an evolutionary advantage by avoiding the exhaustion of the prebiotic
supply of amino acids (Lane, [2015).

Next to the origin of metabolic networks, their robustness is also of great importance in the quest for
a better understanding of metabolic networks. The robustness of a metabolic network is its capacity
to remain unaffected when perturbed. Perturbations can include genomic mutations, that knockout
certain reactions in the metabolic network, and changes in the environment. The biochemical pathways
in metabolic networks are assembled so that the output of the pathway is relatively insensitive to these
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perturbations. For organisms that are highly adapted to their environment, robustness to mutations
may be lower compared to organisms that are less adapted to their environment. This finding suggests
that there is a trade-off between the efficiency of an organism in one specific niche and its ability to
cope with change, both internal and external (Marashi et al.,[2013).

2.2 Modelling metabolic networks

Metabolic network modelling is a technique that allows for new insights into the molecular mechanisms
of a certain organism. Metabolic network modelling makes use of mathematical models of metabolic
networks to correlate the genome of an organism with its phenotype (Francke et al., |2005). Metabolic
network modelling includes metabolite balancing, which is the basis for metabolic flux analysis (Chris-
tensen and Nielsen, 1999). Flux balance analysis (FBA) is a mathematical tool for the analysis of the flow
of metabolites through a metabolic network. Calculating the flow of metabolites through the metabolic
network allows the prediction of the growth rate of an organism or the rate of production of metabolites
of interest. As seen in Figure[2.2} after metabolic network reconstruction and representing the metabolic
reactions in a mathematical form called the stoichiometric matrix (S matrix), this matrix can be used as
a constraint on the flow of metabolites through the metabolic network. In the most simple case, there
are two types of constraints. Mass balance constraints balance reaction inputs and outputs to ensure
that the total amount of any compound being produced is equal to the total amount that is consumed.
Secondly, each reaction can also have upper and lower bounds. These define the maximum and min-
imum allowable fluxes of the reactions. Both the balances and bounds create allowable space of flux
distributions of a given system. Figure [2.2(d)-(e) shows how the solution space is shrunk by imposing
the constraints. Lastly, the objective function allows to find one or multiple optimal solutions within the
allowable solution space. Acommon example of an objective function is the growth rate, represented by
a biomass function, which is composed of essential metabolites needed for growth (Fang et al., |2020).
The optimal solution(s) are computed via linear programming to solve the set of linear equations formed
by the mathematical representations of the metabolic reaction and the objective function. Simulating
different conditions using FBA can be done by changing the constraints of the model. Environmental
conditions like the availability of certain substrates can be changed by altering the bounds of exchange
reactions. Gene knockouts are simulated by setting the flux of limiting reactions to zero (Orth et al.,
2010).

Metabolic network modelling acts as a scaffold to integrate a lot of different types of (omics) data. FBA
on the other hand act as a tool to use this data to gain new insights into metabolism. For example,
In silico experiments can be done to predict the maximum growth rate of Escherichia coli in the pres-
ence and absence of oxygen. Likewise, the phenotypes and capabilities of organisms can be analyzed
in various other environmental contexts (such as different media) and multiple genetic perturbations
can be explored (Orth et al.,[2010). The absence of kinetic parameters means that FBA cannot predict
metabolite concentrations. It is only capable of determining fluxes at steady state. These fluxes are usu-
ally expressed in mmol.(gDW.h)™" or concentration per gram dry weight of cells and hour. More complex
FBA can take into account regulatory effects, such as activation of enzymes by protein kinases or regu-
lation of gene expression, in order to improve the accuracy of predictions (Orth et al.l 2010). Metabolic
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Figure 2.2: (a) Annotated metabolic genes of interest and metabolic knowledge allow to understand the
metabolic reactions. (b) The metabolic network for the organism of interest is constructed by integrating
all the metabolic reactions and linking shared metabolites. (c) Next, the metabolic network information
is converted into a stoichiometric matrix (S matrix). The rows of the S matrix represent metabolites, the
columns metabolic reactions. Each entry represents the reaction coefficient of a particular metabolite in
areaction. (d) Using linear programming, the S matrix and an objective function for the model, one can
solve for the flux distributions. The solution space consists of all possible solutions of flux distribution.
Each axis represents the metabolic flux of a given reaction. (e) Taking additional constraints into account
will further narrow the solution space. Background knowledge is used to determine these constraints
and include steady-state assumptions and sensible ranges of metabolic flux. (f) The red dot represents
the optimal solution that optimizes the objective function of the model, although there might be multi-
ple optimal solutions (Fang et al., [2020).

networks and regulatory effects should be configured in such a way that allows for the comparison of
predictions of behaviours to experimental observations.

2.3 Genome-scale metabolic models

2.3.1 A systems biology approach

Systems biology connects the study of molecular processes over different scales, from cells to tissues
to organs and even whole populations to the phenotype and physiological functions of an organism via
computational modelling, high-throughput experiments and quantitative logic. Via these computational
and mathematical analyses and modelling of complex biological systems, systems biology can provide
systems-level insights into the dynamics within cells, tissues, organs and organisms and interactions at
the various scales between them (Tavassoly et al., |2018). The systems-level framework allows for the
search for global phenotypic effects of up-and down-regulation of gene expression, gene knockouts



and gene insertion (de Oliveira Dal’Molin et al., |2010). Contrary to the more traditional approach of
reductionism, system biology brings a holistic approach to biological research (Tavassoly et al.,[2018).

Genome-scale metabolic models (GEMs) are networks connecting all metabolic reactions of a specific
organism to their associated metabolites, proteins and genes (Richelle et al., [2020). Genome-scale
metabolic network reconstruction provides a mathematical representation of the metabolism of an or-
ganism. GEMs are built upon the principles of systems biology in order to obtain a global view of how
metabolism works. GEMs are stoichiometric-balanced networks. This implicates a mass balance, en-
ergy balance, reduction and proton balance (Zhang and Hual 2016). The simplest type of GEMs obtain
the gene-reaction-metabolite connectivity via two matrices. One matrix associates metabolites to reac-
tions, while another matrix links reactions to corresponding enzymes and genes (Wang et al.,[2021). They
can subsequently be simulated via flux balance analyses. The two matrices can be seen schematically
in parts (c) and (d) of Figure More complex GEMs can incorporate transcription and translation.
These models are called GEMs of metabolism and macromolecular expression or ME-models and are
elaborated on in Section (Dahal et al.l [2021). GEMs are made up of collections of existing knowl-
edge of the metabolism of a specific organism. Most of the time, it is also assumed that the metabolic
network is complete. Gap finding and gap filling are two functionalities used in software written specif-
ically for GEMs to solve any exceptions. It is also assumed that there is no (unforeseen) accumulation of
metabolites within the metabolism (Zhang and Hual, [2016).
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Figure 2.3: Toy example of the basic structure of a GEM. (a) Schematic toy model showing the genes that
code for enzymes, which in their turn catalyze the biochemical reactions of the metabolic network of
the GEM. (b) The biochemical equations of the toy model. (c) The stoichiometric matrix of the toy model
that associates metabolites with the reactions. (d) The gene-reaction association matrix that links the
biochemical reactions to corresponding enzymes and genes. In (a), the dashed blue, green, and orange
frames are the metabolic reactions, enzymes, and genes, respectively (Zhang and Hual, [2016).
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GEMs can be downloaded from databases such as modelSEED or the Biochemical, Genetic and Genomic
knowledgebase of large scale metabolic reconstructions (BiGG) (Henry et al., 2010} King et al.,[2016). The
BiGG database will be elaborated on further in Section[4l There are also many automated tools to create
genome-scale models such as AutoKEEGRec which makes use of the Kyoto Encyclopedia of Genes and
Genomes (KEGG) databases (Karlsen et al.,|2018).

2.3.2 Potential of genome-scale metabolic models and integration of omics data

The developments of sequencing technologies in the last 20 years have made it possible to sequence
complete genomes of many organisms going from bacteria to humans and subsequently reconstruct
their metabolic networks. This is further aided by the rise of the omics field as a whole. Everything
from genomics, transcriptomics, proteomics, metabolomics, fluxomics, metabolomics, metagenomics
and even thermodynamics can be used to get a better idea of how a metabolic network functions (Zhang
and Hua, [2016)). Simultaneously, the reconstructed network can provide a relevant biological functional
context to the visualization of omics data to improve the interpretation of those data (Francke et al.,
2005)).

The gene-protein-reaction associations within GEMs are composed based on genome annotation data
and information obtained by experiments. Omics data plays a large role in making these models as
accurate as possible with respect to the simulations and predictions of the actual cell metabolism (Zhang
and Hual 2016). Additionally, GEMs can also act as scaffolds for systematic integration and analysis of
omics data and enzyme kinetic data to get a better overview and understand how different observations
correlate to each other (Kim et al.,|2015). The integration of additional biochemical information not only
yields insight into the metabolism of an organism but also provides answers to questions about the
cellular processes within a cell that goes beyond the metabolism and enables the reconstruction of the
relationships among genes, enzymes and metabolism (Zhang and Hual, [2016). Examples of these types
of additional biochemical information that have already been used in GEMs include protein allocation,
cellular macromolecular composition and protein structural information. However, other biochemical
properties, like enzyme-substrate interactions, the structure of protein-protein complexes, and post-
translational modification could be of interest in future developments (Gu et al.,|2019). The integration
of this dataimproves the accuracy of metabolic phenotypes predictions by using omics data as additional
constraints (Kim et al.,[2015). This can be seen in Figure[2.4}

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is one of the best-known metabolic network
databases (Kanehisa and Goto, 2000). In contrast to general metabolic pathway databases such as
KEGG, GEMs allow for system-level metabolic response analyses and flux simulations (Zhang and Hua),
2016)). Because of the evolution of genome sequencing and other omics analyses, the quality of newly
developed GEMs increases and new opportunities to use GEMs open up. Together, genome sequenc-
ing, omics analyses and GEMs have already contributed to an increased understanding of metabolism in
various organisms such as the model organisms Escherichia coli, and Saccharomyces cerevisiae, but also
many multicellular organisms like plant and human metabolic networks have been reconstructed. The
reconstruction of their metabolism has allowed for the construction of a broad spectrum of metabolic
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Figure 2.4: The integration of omics data provides a context-specific genome-scale metabolic network
model (S) under specific genetic and environmental conditions with improved accuracy of metabolic
phenotype predictions by using omics data as additional constraints and thus reducing the space of
possible flux distribution (Kim et al., [2015).

studies by generating model-driven hypotheses and implementing various context-specific simulations
using GEMs (Gu et al.,[2019).

2.3.3 Genome-scale metabolic models of metabolism and macromolecular expression

GEMs are excellent scaffolds for the integration of all different types of data such as omics data, en-
zyme kinetics, regulatory information etc. While models from databases such as BiGG are interesting
because of their standardisation, accessibility and ease of use, sometimes more complex models are
required, as the in silico results may differ from real-world findings. BiGG models and similar models
that focus on their metabolism are often referred to as metabolic (M-)models. These metabolic models
are designed to compute the metabolic states of a metabolic network or organism subject to diverse ge-
netic perturbations and environmental cues. An expansion of M-models towards the prediction of both
metabolic and proteomic states of an organism by the addition of an expression (E-)matrix resulted in
the creation of GEMs of metabolism and macromolecular expression or simply ME-models (Dahal et al.,
2021). The expression matrix is comprised of the macromolecular biosynthesis pathways of transcrip-
tion and translation (Dahal et al.,|2020). The incorporation of multiple levels of knowledge going from
transcription, and translation to macromolecular resource allocation is a clear advantage of ME-models
over the M-models. The additional information allows ME-models to predict the metabolic and protein
expression states and the optimal proteome of a cell under various (growth) conditions. Additionally,
ME-models can also be used to research the metabolic outcomes of changes in membrane proteins
(Dahal et al., [2021). By doing so, ME-models widen the range of applications for GEMs, while simulta-
neously delivering even better predictive capabilities in general and also specifically for gene expression
under numerous conditions such as variation in temperature, external pH and oxygen availability (Dahal
et al.,[2020). Both the GEMs discussed before and ME-models are based upon optimization and compu-
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Table 2.1: Comparison between M- and ME-models for multiple features (Dahal et al.,|2020).

Features

M-models

ME-models

Biological scope

Growth simulation capability
Macromolecular (DNA, RNA, pro-
tein) composition of biomass

Metabolic pathway usage predic-
tion capability

Additional predictive capabilities

Computational time

Metabolism

Nutrient-limited growth

Constant: fixed stoichiometric coef-
ficients in the biomass synthesis re-
action

Unable to distinguish between
pathways that differ in protein
expression cost
Context-/tissue-specific flux states,
flux constraints due to enzyme
mass and catalytic efficiency, dy-
namics of metabolism, gene ex-
pression regulation
Faster: solved
precision solvers

using double-

Metabolism and macromolecular expression
Nutrient- and proteome-limited (batch) growth
Variable: optimal macromolecular composition
is computed by the model

Accounts for cost of expressing pathway en-
zymes to correctly predict pathway usage under
a given condition

Protein translocation, response to thermal
stress, oxidative stress, acid stress, dynam-
ics of metabolism and gene expression,
thermodynamics-compliant intracellular fluxes

Slower: requires quad-precision solvers, or
double-precision MILP solver

tation of the optimal cellular (steady) state of an organism considering all physicochemical constraints
such as mass balance, thermodynamics and data-driven constraints like transcriptional regulation, en-
zyme kinetics etc (Zhang and Hua, [2016). Furthermore, the coupling between metabolic networks and
proteome allocation in ME-models allows the exploration of the molecular mechanisms underlying the
phenotypic alterations of environmental and genetic variations (Dahal et al.,[2020). Moreover, the abil-
ity of ME-models to predict the proteome investment in the metabolism under any given condition is a
significant improvement in the quantitative predictions of gene expression compared to M-models such
as BiGG models (Dahal et al.,[2020). In table[2.1, a comparison between M- and ME-models is made for
multiple features.

Similarly to M-models, ME-models have been applied for extending the knowledge of high throughput
data, expanding the knowledge of biological systems, biomedical applications, metabolic engineering
applications, bioremediation and even interactions between different organisms (Dahal et al., |2020).
Nonetheless, the ability to predict both metabolic and proteomic states opens up many new opportu-
nities. E. coli ME-models have been used to predict deletions of global regulators that lead to proteome
reallocation causing increased fluxes toward metabolic processes and decreased fluxes toward transla-
tion machinery (lyer et al.,|2020). M- and ME-models have been used to find resource allocation trade-
offs for growth-coupled product secretion. After which, in silico solutions were compared to their in vivo
results and a significant amount of common knockout combinations were found. This further indicated
the improved accuracy of ME-models for the prediction of growth-coupled production. Fundamental
trade-offs between growth rate, yield and biological and physical constraints have been explored using
ME-models. Together with experimental data, a set of essential genes was formed to find a minimal set
of genetic manipulations needed to reduce resources of the proteome reserved for nonessential func-
tions. Altogether, the predictions were validated using in vivo experiments that showed significantly
higher production of the target molecule compared to the wild-type strain (Dahal et al., [2021).
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2.4 Applications of metabolic models in metabolic engineering

Some examples that have benefitted from the use of GEMs include strain development for the pro-
duction of bio-based chemicals and materials (Campodonico et al.l |2018), drug targeting in pathogens
(Mienda et al.l |2018), the prediction of enzyme functions (Oberhardt et al.,|2016), pan-reactome anal-
ysis (Kim et al.,[2020), modelling interactions among multiple cells or organisms (Kim et al., [2017) and
understanding human diseases (Mardinoglu et al.,2013). From the list above it is clear that besides the
scientific insight, GEMs can also aid the development of biotechnological applications (Gu et al.,[2019).

This first GEM was developed in 1999 and was a model for Haemophilus influenzae Rd metabolic geno-
type (Edwards and Palssonl, 1999). Since then, more GEMs have been developed for an increasing num-
ber of organisms across the three domains of life: bacteria, archaea and eukarya (Kim et al.,[2017). In the
domain of the bacteria, Escherichia coli, and Bacillus subtilis are two examples of model organisms for
which GEMs have been developed and used for optimizing the production of various enzymes and pro-
teins in industrial biotechnology (Kim et al.,2017). One possible application for industrial biotechnology
is the in silico simulations based on GEMs that guide the rational design of industrial microorganisms
(zhang and Hual [2016). GEMs can be used for in silico metabolic engineering by predicting gene modifi-
cation strategies for the overproduction of desired compounds and in so doing, speed up the metabolic
engineering process as a whole (Kim et al.,2015). Many in silico metabolic engineering methods follow a
similar approach. First, the preferred strain is defined and secondly, approaches that bring the wild-type
strain closer to the desired strain are identified. Examples of approaches that have been used in in silico
metabolic engineering include reaction or gene knockouts (Ruckerbauer et al., 2014), overexpression
and suppression of genes (Chowdhury et al.,[2014), knock-ins of foreign pathways (Pharkya et al.,[2004)
and exchanging co-factors for a chosen enzyme such as NADH to NADPH (King and Feist, |2013). Knock-
out identification in silico is nevertheless easier and therefore more used than up-or down-regulation of
genes (Zhang and Hua, 2016). These software frameworks incorporating similar strategies include Opt-
Gene (Rocha et al., [2008), OptKnock (Burgard et al.l |2003) and OptDesign (Jiang, [2021). Alternatively,
reconstructing metabolic networks of microorganisms can help researchers figure out which media are
best suited for growth or which pathways could improve the production yield of a specific metabolite.
Moreover, studying the metabolic networks of organisms that live today and lived in the past might
help us get closer to figuring out what role chemical networks played in the origin of life as discussed in
Section[2.1.2] (Seckbach 2012).

Although the in silico possibilities seem promising, there is still a big disadvantage over in vivo metabolic
engineering. The production of a target product predicted in silico is rarely achieved in vivo (Zhang and
Hua, 2016)). One possible explanation is the increased complexity of the behaviour of strains in vivo that
is not yet able to be reproduced by GEMs. The key assumption behind every method or model should
never be forgotten and the results obtained should be used as instructions. GEMs are nevertheless quite
suitable for qualitative applications like essentiality analysis and synthetic lethality analysis (Zhang and
Hua, [2016)). Essentiality analysis tries to identify all the essential genes or reactions whose knockout
will disable a specific biological function. It is able to do this through FBA. All single gene or reaction
knockouts are enumerated and for each knockout, the chosen biological objective(s) are checked to see
if they are still operative. Similarly, synthetic lethality analysis searches for combinations of knockouts
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of multiple reactions or genes that lead to a blocked biological function of the target. As GEMs are
considered to be complete metabolic networks, they can be of use for gene or reaction essentiality
analysis (Joyce and Palsson, [2008).

GEMs for Mycobacterium tuberculosis on the other hand have helped in the fight against microbial
pathogens and in understanding the condition-specific metabolism of pathogens. Gaining insight into
the metabolism of a pathogen at specific lifecycle points at a systems-level has been especially valuable
for the discovery of effective drug targets. When the principle of holism from systems biology is ap-
plied to medicine, it is referred to as systems medicine, meaning researchers look at the systems of the
human body as part of an integrated whole, incorporating biochemical, physiological, environmental
interactions and the patient’s genomics in order to gain insight into more complex interactions within
the human body and develop methods to restore impaired functioning of the human body (Federoff and
Gostin, 2009). Moreover, in the domain of the archaea, the GEM of Methanosarcina acetivorans has
proven itself to be a valuable resource for metabolic studies on the unique characteristics of archaea in
an expansive coverage of habitats such as extreme environments e.g. geysers, hydrothermal vents, but
also in the human gut (Gu et al., [2019).

In the domain of the Eukarya, Saccharomyces cerevisiae, which is a model organism for eukaryotic mi-
croorganisms is also used for various biotechnological applications and has multiple GEMs. Eukaryotes
are different from Bacteria and Archaea in the fact that Eukaryotes have multiple compartments in-
cluding the nucleus in which the DNA resides (Gabaldon and Pittis| 2015). Additionally, Eukaryotes are
interesting for the production of proteins with specific post-translational modifications that can not be
produced in Bacteria or Archaea (Amann et al.,[2019). Plants, despite their greater biological complex-
ity, are also being used. Arabidopsis thaliana for example has GEMs that serve as a model for plant
metabolisms (de Oliveira Dal’'Molin et al.l[2010). Maybe the most interesting GEMs are those for Homo
sapiens, as traditional research on humans is limited and gaining insight into the biological mechanisms
behind various human diseases and subsequently designing suitable disease treatments is of great in-
terest to the scientific community and society as a whole (Gu et al., |2019). Another application GEMs
can be used for is to simulate interactions between multiple tissues, multiple (micro)organisms and even
between microbiota and human tissues. This allows for the discovery of anti-cancer, anti-viral and anti-
parasite drugs and discover more about the relationships between different organisms in health and
disease (Zhang and Hua, [2016).
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3. EVOLUTIONARY ALGORITHMS

3.1 Introduction

The evolutionary mechanisms of natural selection are based on the principles of variation, inheritance,
selection and adaptation (Bard, [2016). It is the apparent simplicity of the process of evolution and the
ability to create the most complex and sophisticated designs found on earth that fascinates so many
(Adami et al., [2000). It might therefore also be useful to look at these principles when trying to de-
sign new systems ourselves. Computer algorithms that make use of evolutionary principles are termed
evolutionary algorithms. They belong to the field of evolutionary computation, which in part belongs
to the field of computational intelligence. Evolutionary algorithms are population-based metaheuristic
optimization algorithms that are often used to help a computer learn a specific task from experimen-
tal observations or generated data (Vikhar, |2016). The following three steps are almost always looped
over in evolutionary algorithms. First, the fitness of each individual in the population is evaluated via a
fitness function that measures their performance at the task. Secondly, the individuals are ranked and
afterwards selected using their fitness value. Lastly, variation operators are applied to the best indi-
viduals to create a new population before the loop is started again. The initial population is generated
randomly. This can be seen in the top part of Figure[3.1 The two most used variation operators are mu-
tation and crossover. Mutation means that random variation is added to a single genome, for example.
If the genome is represented as a list of real numbers, mutation can be applied by adding Gaussian noise
to some of the numbers. Crossover on the other hand is obtained by combining two genomes of the
population. The goal of crossover is the merging of the features of the two genomes. For the example
of genomes as a list of numbers, a crossover operation can be implemented by adding a linear combina-
tion of the elements of the two parental genomes. Depending on how genomes are represented in the
algorithm, however, crossover might not be used (Mouret, [2020). There are many different implemen-
tations of evolutionary algorithms including genetic algorithms (Zhi and Liul[2019), genetic programming
(Kovaci¢ and Zuperl, 2020), evolutionary programming (Tian et al., 2020), neuroevolution (Jalali et al.,
2020) and differential evolution (Deng et al., [2021). Most different implementations differ in the way
they represent the genome and the problem they try to solve. For example, in genetic algorithms, the
problem is encoded in a series of bit strings that are subsequently tweaked by the algorithm. In evo-
lutionary algorithms on the other hand, the decision variables and problem functions are used as such
(Systemsl,|2017). Evolutionary algorithms can be applied to many single and multi-objective optimization
problems, but also for scheduling, planning, design, and management problems (Slowik and Kwasnicka),
2020).

From a computer science perspective, artificial evolution is considered to be a mathematical optimiza-
tion algorithm. This implies that the algorithm tries to optimize a given objective. These algorithms can
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therefore be used for many applications in fields such as engineering, bioinformatics, logistics and ma-
chine learning as there are problems in these fields that can be formalized as the maximization or mini-
mization of a numerical objective. The field of optimization algorithms is vast, but one of the advantages
of evolutionary algorithms is that they can be used for functions for which the analytical gradient cannot
be computed. These functions are also referred to as black-box functions (Mouret and Clune, [2015). In
addition, evolutionary algorithms have also been used in the field of Artificial Life (AL) to simulate evolu-
tion based on crossover, mutation and selection for the creation of artificial organisms (Komosinski and
Ulatowski, 1998). If we now look at evolutionary algorithms from the standpoint of biology, they model
natural evolution in that all individuals compete against each other, the fittest can reproduce and the
least individuals fit will disappear (Back, |1996).

Unlike in nature, the repeated variation-selection loop of natural selection leads these algorithms to
converge on a single genome instead of the large variety of genomes that can be observed in nature.
During microevolution, a fitness gradient in one specific niche is followed, while during macroevolution
multiple niches with a variety of species are filled. The process of microevolutionary or intra-niche evolu-
tion is, therefore, more suited when describing the convergence of traditional evolutionary algorithms
where only the fittest individual remains. Microevolution is defined as evolution within a single eco-
logical niche in which all individuals compete together, often until there is only one dominant species.
Macroevolution, however, is the creation of new species that colonise diverse niches (Mouret, [2020).
While global competition governs microevolution, macroevolution is governed by local competition.
During local competition, solutions that are similar to each other compete for particular niches (Clune J,
2019). Macroevolution is able to explain the diversity of species as a consequence of the diversity of
niches found on earth. This also brings us to the point of a new variety of evolutionary algorithms,
namely those that follow the principles of macroevolution instead of microevolution (Mouret, 2020).
Some scientists view that the wonderful creations of biological evolution are less a result of the perfect
optimization of each species and more in the diversity between species. The ability of evolution to cre-
ate such diverse solutions is also the reason that the modern view of artificial evolution is moving away
from microevolution to macroevolution. Macroevolution algorithms have already been successfully ap-
plied to the evolution of gait repertoires (Cully et al.,[2015), diverse designs for aerodynamic bikes (Gaier
et al.l 2018) and designing modular robots (Nordmoen et al.,[2021).

3.2 Novelty search

The fitness function has long been a user-defined input to evolutionary algorithms used as a compass
to guide the algorithms towards the objective. Nonetheless, in some cases, fitness or objective func-
tion may be a false compass, which is called deception. One example of deceptive problems are trap
functions (Deb and Goldbergl 1993). Trap functions are characterized by points in their solution space
with large basins of attraction that correspond to local optimal solutions and by points in the solution
space with relatively small basins of attraction that correspond to global optimal solutions (Blum and
Dorigol [2004). Deception is therefore obviously a fundamental problem in search problems as it can
cause search algorithms to get stuck in attractive local optima (Stanley and Lehman,[2015). Local optima
are solutions that are optimal within a neighbouring set of possible solutions as opposed to a global op-
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Figure 3.1: Schematical representation of the difference between microevolution and macroevolution.
Modified from (Mouret| |2020).

timum, which is the optimal solution between all possible solutions (Lehman and Stanley, [2011a). The
stepping stone problem is the problem of how the intermediate steps during the search for a specific
solution are frequently very different and often seemingly unrelated to the objective (Clune J, 2019).
One of the main questions posed to Darwin was, “What use is half a wing?" (Mouret, [2020). Similarly,
cars were not discovered while searching for a way to improve horses. The main problem is that the
objective function may not recognize the stepping stones in the search space that ultimately lead to the
objective (Lehman and Stanley, 2011a).

As an answer to the stepping stone problem and in order to avoid local optima and deception, a new idea
was proposed, namely novelty search (NS). Novelty search is the idea of looking past the fitness function
and focusing on generating novel solutions, suggesting counter-intuitively that ignoring the objective in
this way could benefit the search for the objective (Stanley and Lehman), [2015). The idea behind the
novelty-driven heuristic is that when evolution has exhausted low hanging fruit, it will have to increase
the complexity of solutions that will create potential stepping stones towards an optimal design (Clune J,
2019).

In terms of computer programming, novelty search proposes to substitute the fitness function with a
novelty score, in order to obtain as many diverse solutions as possible. The novelty score is obtained
by comparing the solutions to all the others or a subset of individuals generated so far. Here, diversity
is characterized by the feature or behavioural space to which the solutions belong. High-dimensional
spaces can also be visualized in low dimensional representations to reveal interesting properties (Mouret
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and Clunel |2015). Counterintuitively, novelty search is able to come up with higher quality solutions or
find solutions faster than objective-based searches (Risi et al.,|2009)). The ability to avoid local optima
during optimization is one of the main benefits of novelty search.

Novelty search has been successfully used to optimize the design of cancer-targeted drug delivery sys-
tems by alleviating the difficulties of deceptive objective function landscapes (Tsompanas et al., [2020).
Additionally, novelty search combined with NeuroEvolution of Augmenting Topologies (NEAT) was used
for the evolution of neural controllers for homogeneous swarms of robots (Gomes et al.,|2013).|Gomes
et al.|(2013) showed that novelty search is able to find solutions with lower complexity compared to tra-
ditional fitness-based evolution and can also find a broad diversity of solutions for the same objective.
The last example of novelty search is the successful creation of diverse and feasible game levels (Liapis
et al.,|2013). |Liapis et al.|(2013) were also able to show that algorithms using novelty search can produce
larger and more diverse sets of feasible strategy game maps than existing algorithms.

3.3 Quality diversity algorithms

As innovations often come from combining existing principles, new optimization methods have been
created that combine novelty search with objective-based optimization. These algorithms enjoy the
benefits of novelty search while still driving the population toward the preferred goal. In doing so, waste-
ful computing is avoided when search spaces are too large to be explored in their entirety. However, it
is still debated how exactly novelty search and fitness functions should be integrated. On the one hand,
it has been demonstrated in experiments that fitness functions can have a detrimental influence on the
evolutionary process of novelty search (Lehman and Stanley, 2011c). On the other hand, most of the
time diversity is not the actual goal, but merely a tool to explore more widely. On top of that, compu-
tational resources are most often limited, so exploring the solution space in all directions using novelty
search is most likely to be infeasible in many interesting problems (Mouretl [2020). Quality diversity
(QD) algorithms or Illumination algorithms are an example of algorithms that combine a novelty search
approach with objective-based optimization. They achieve this by searching for a set of solutions that
are diverse as possible while still being extraordinarily high performing. QD algorithms are therefore
similar to macroevolution as the "ecological" niches are explicitly implemented in the algorithms. Con-
sequently, QD algorithms explore ways of maximizing the objective or fitness function, similarly to how
natural evolution searches for multiple paths to maximize reproductive success or fitness in each distinct
ecological niche. Nevertheless, QD algorithms are still a rough abstraction of macroevolution as they still
require a function to decide to which niche each solution belongs (Mouret,|2020). The main idea is that
sometimes, diversity in how a problem is solved is more noteworthy than simply finding the single most
efficient solution (Clune J,|2019). A downside of QD algorithms compared to real open-endedness is that
it can not observe what it was not designed for initially, it might miss unique innovations (Lehman et al.,
2008). If two-dimensional trajectories of robots are investigated, for instance, a flying robot wouldn’t
be able to be recognized as only the projection of the trajectory to the ground is captured (Mouret,
2020). However, the fact that QD algorithms are modelled after macroevolution instead of microevo-
lutions makes them more capable of generating fascinating stepping stones inspired by the astonishing
creativity of natural evolution (Cully and Demiris|, |2017; [Mouret, 2020).

17



The main difference between traditional optimization algorithms and QD algorithms is that while opti-
mization algorithms search for the highest-performing solution in a search space, QD algorithms search
for the highest-performing solution at different regions of the feature space (Pugh et al.,[2016). QD or
illumination algorithms can illuminate the fitness potential of each region of the feature space. The
illumination of the fitness potential of each region of the feature space in biological terms means the
illumination of the phenotype-fitness map (Mouret and Clunel [2015). QD algorithms can nonetheless
also be used as optimization algorithms in addition to their ability to illuminate the fitness potential of
each region of the feature space.

3.4 MAP-Elites for exploring in silico evolution of organisms

The Multidimensional Archive of Phenotypic Elites (MAP-Elites) algorithm is an example of a Quality
Diversity (QD) algorithm. The MAP-Elites algorithm is based on the following principles. A fitness or
objective function that returns a fitness value. Additionally, solutions are also characterized by an n-
dimensional behavioural descriptor or feature descriptor. Considering solutions with n features, the
feature space is an n-dimensional space that contains all values for your features solutions. Each solution
is characterized by an n-dimensional descriptor, that contains a value for each of the n features. The
solution space however is the feasible region defining the set of all possible solutions. The feature or
behaviour space is divided into behavioural or ecological niches. The feature descriptor describes which
niche the specific solution belongs to. The collection of niches is also called an archive. In each niche,
the best-known solution for that specific niche is stored. This solution is called an elite. In the next step,
elites are randomly chosen from the archive and variation operators such as mutation and crossover
are applied. The new solution now competes with the existing elite in the relevant ecological niche.
An important observation to make is the fact the result of the MAP-Elites algorithm and other Quality
Diversity algorithms is a set of high performing solutions (i.e., a multidimensional archive of phenotypic
elites) and not a single optima solution as is the case with traditional genetic algorithms (Mouret, 2020).
The bottom left part of Figure[3.1visualises the main loop of the MAP-Elites algorithm.

Search algorithms are used in almost all engineering and science domains to automatically explore a
search space to find high-performing solutions (Koziel and Yang, [2011). Traditionally these search al-
gorithms return the single highest-performing solution in a search space (Youssef et al., [2001). MAP-
Elites however provides a global view of how the high performing solutions are distributed in the search
space. The ability for solutions to jump from niche to niche without being the overall best solution al-
lows MAP-Elites to find even better-performing solutions compared to state-of-the-art algorithms for
certain problems (Lehman and Stanley, |2011b). This phenomenon of jumping between niches is also
described as goal switching and is a way for algorithms to capture serendipitous discoveries and allows
for good (fundamental) ideas to spread. New solutions are built upon the fundamental idea to solve
new problems (Clune J,|12019). The MAP-Elites algorithm is an abstract model of the evolution of species
or macroevolution as introduced in Section

Observations in nature show that each individual niche is colonised by a single species (Baquero et al.,
2021). This species is able to outperform all the other species in this specific niche. Tigers don’t compete
with sharks for example. They are elites in their own specific niche. Tigers don't have a higher fitness
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Elite

Performance —*

High-dimensional space

Figure 3.2: The search space of MAP-Elites is often high-dimensional. The MAP-Elites algorithm tries to
find the highest-performing solution for each niche in a low-dimensional feature space. The dimensions
of variation of interest of that low dimensional space are chosen by the user. This type of algorithm is
called an illumination algorithm as it illuminates the fitness potential of each area of the feature space
(Mouret and Clunel, |2015).

value than sharks, they simply occupy a different niche. When considering tigers and lions, however,
they could replace each other in their niche provided that they undergo a few adaptations. Likewise, if
the variation operators in the MAP-Elites algorithm improve the solution without altering the behaviour
of the solution, it will replace the current elite in that niche. Otherwise, if the behaviour or features
and thus their niche becomes different, the solution will compete with the elite in another niche and
replace it if the fitness of the new solution is better than that of the current one (Lehman and Stanley,
2011b). Similarly, as to how different parts of the genome of different organisms are highly conserved,
high-performing solutions of QD algorithms might be concentrated in a specific elite hypervolume in
the genotypic space. This entails that their there genes are similar and makes the cross-over variation
operator particularly effective in the MAP-Elites and other QD algorithms (Mouret, [2020). MAP-Elites
can identify the performance peaks in a vast search space by actively searching for them. Sampling
random solutions is often not a good strategy to find fitness peaks, as the probability of randomly finding
such a peak is very unlikely for extensive search spaces (Mouret and Clune, |2015).

The MAP-Elites algorithm has multiple advantages over the current state-of-the-art search algorithms.
Firstly, the MAP-Elites algorithm is able to create a lot of diversity between possible solutions in the
chosen niches as well as an improved optimization performance compared to the state-of-the-art search
algorithms of today. Searching for better solutions within one niche also helps the parallel search for
better-performing solutions in different niches, as the probability of generating a solution for a given
niche by mutating an elite from another niche or by crossing over two elites from different niches is
larger than generating a random solution. This should result in higher-performing solutions compared
to the case in which a separate search is conducted for each niche. Additionally, the algorithm returns
the archive of phenotypic elites that can illuminate the fitness potential of the whole feature space and
not only the high-performing areas. In doing so, new relationships between dimensions of interest and
performance can be explored. This is why MAP-Elites is also called an lllumination or QD algorithm.

Notably, there is no guarantee that every niche of the archive will be filled. The first reason is that there
may not be a solution that maps to that particular site of the feature space for example. Secondly, even
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if there is a possible solution for that niche, MAP-Elites might fail to produce it. Since there are many
solutions or genotypes that map to a single niche in the feature space it is not feasible to explore directly

in the feature space (Mouret and Clune, [2015).

Multiple variations have been suggested to improve the MAP-Elites algorithm or adapt it for new appli-
cations, such as Covariance Matrix Adaptation MAP-Elites (CMA-ME) for derivative-free optimization in
single-objective continuous domains for applications including design, testing and reinforcement learn-
ing (Fontaine et al.,[2020). While currently only one solution is stored per niche, the elite, storing mul-
tiple per niche might promote diversity even more. Additionally, instead of choosing random elites to
produce new mutants or crossovers, a bias could be implemented towards high- or low- performing

areas or niches with empty neighbours (Mouret and Clune, [2015).

Even though QD algorithms such as MAP-Elites try to steer evolutionary algorithms towards open-ended
evolution as is present in the natural world, MAP-Elites does not create new niches over time not present
in the original feature space. It is therefore by definition, not open-ended evolution (Mouret and Clune),
2015). In nature, however, new niches can be created by organisms that occupy an existing niche. One
of the best examples is all the new niches on earth for oxygen-consuming organisms that were created
when oxygen began accumulating at a global scale thanks to photosynthetic microorganisms (Berkner
and Marshall, [1965; [Baquero et al., [2021).
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4. MATERIALS AND METHODS

In the following paragraphs, we describe how the MAP-elites algorithm was adapted for in silico evolu-
tion of metabolic networks. First, a toy problem concerning feature selection is examined, in order to
illustrate the benefit of MAP-elites to offer a diverse set of high performing solutions to a combinatorial
optimization problem. Next, the MAP-Elites algorithm is applied for simulating evolution in the context
of metabolic engineering. First, the optimization of succinate production in E. coli by executing combi-
natorial gene knockouts will be tackled. Next, we elaborate on the case of acetate overproduction and
ethanol overproduction. Lastly, the case where a heterologous pathway for the production of flavones
is virtually introduced in E. coli is discussed. Most code is written in Python 3.9.1, except for a small
number of scripts which are written in Julia 1.7.1. All the code used in this master thesis is available on
GitHubfl

4.1 MAP-Elites for feature selection as a toy example

Feature selection is a combinatorial optimization problem, where the number of input variables of a
predictive model is optimized for obtaining a maximal predictive performance for a minimal number of
input variables (Kuhn et al.,|2013). Here, we use MAP-Elites for the task of feature selection, to serve as
an alternative to statistical tests and standard genetic algorithms (Hussein et al.,|2001). This toy example
is meant to illustrate how MAP-Elites can provide a diverse set of solutions with varying complexity to
a combinatorial optimization problem. While the original MAP-Elites algorithm from|Mouret and Clune
(2015) was designed for real valued inputs, this implementation deals with binary input variables.

4.1.1 MAP-Elites implementation

Each solution, consisting of an optimal feature set, is represented as a vector with the indices of the
selected features. The number of selected attributes in a given solution is used to determine the niche
of each solution. The MAP-Elites for feature selection takes as input the training and test data, together
with the number of iterations (I) and the number of initial random solutions (G). The algorithm is ini-
tiated by randomly generating G solutions and determining the performance and niche of each one.
Those solutions are then placed into the correct niche of the feature space. If multiple solutions map to
the same niche, the highest-performing solution - also called the elite - is retained. The following part is
repeated I times. In each iteration, two random niches in the archive are selected and the elites in those
niches are used to create new offspring using variation operators such as crossover and mutation. The
niche of the new offspring is determined based on the number of features. If the new offspring performs
better than the current elite in its specific niche, the new offspring will become the current elite in its
niche. If the niche is empty, the new offspring will automatically become the current elite in that niche.

'https://github.com/shvhoye/0ptMAP
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The archive with the best solution found for each niche in the feature space and their corresponding
fitness values are ultimately returned (Quinonez et al., [2019).

4.1.2 Data sources

Datasets were obtained from (Lopez et al.,|2006) and (Dua and Graff,|2017). The data was preprocessed
and split into a training and test dataset for the MAP-Elites algorithm. Four datasets were used, the first
three for classification and the last one for regression. The lonosphere dataset contains radar data, which
is used to predict a binary "Good" or "Bad" signal. "Good" radar returns are those showing evidence of
some type of structure in the ionosphere, while "Bad" returns are those that do not. "Bad" signals pass
through the ionosphere. The Glass dataset is a set of physical characteristics such as refractive index and
weight percent of Sodium, Magnesium, Aluminum etc. of seven different glass types. The type of glass
is predicted based on its characteristics. The attributes of the Cancer dataset are real-valued features
computed for each cell nucleus obtained from a fine needle aspirate of a breast mass, including radius,
texture and smoothness. The breast mass is classified as either malignant or benign. The Parkinsons
dataset is made up of information about patients suffering from Parkinson’s disease such as age and
gender and multiple biomedical voice measurements to predict the patients’ Unified Parkinson’s Disease
Rating Scale (UPDRS) score. UPDRS can be used for remote symptom progression monitoring.

4.2 OptMAP: MAP-Elites for in silico metabolic engineering

MAP-Elites was implemented for in silico evolution of the metabolic network of E. coli towards specific
metabolic engineering goals, i.e., the production of target metabolites. An overview of the workflow
can be seen in Figure[4.1

4.2.1 Genome-scale metabolic models

Genome-scale metabolic models of E. coli were downloaded from the University of California San Diego’s
BiGG database of GEMs. BiGG is short for Biochemical Genetic and Genomic knowledgebase of large
scale metabolic reconstructions. BiGG is a collection of genome-scale metabolic network reconstruc-
tions comprised of more than 70 published genome-scale metabolic networks. They are grouped into a
single database with BiGG IDs which are a set of standardized identifiers. Mapping of the genes in the
BiGG models is done using NCBI genome annotations. The metabolites are linked to multiple external
databases such as KEGG, PubChem etc (King et al.,|2016). High quality curated BiGG metabolic models
are accessible via the BiGG website. One can browse the website to search for specific metabolites, re-
actions, genes or organisms related to GEMs, visualize metabolic pathway maps and export models as
an SBML file for further analysis by external software packages. BiGG brings data uniformity and ease
of use to the table at a time of increasing numbers of reconstructions and analysis methods. Published
genome-scale metabolic networks are integrated into BiGG with standard nomenclature. This allows for
the comparison of components across different organisms (Schellenberger et al.l[2010).

BiGG models are also compatible with the Cobrapy software. The Cobra Python library is used to sim-
ulate and manipulate GEMs (Ebrahim et al.,|2013). Existing genes or reactions in the metabolic models
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In silico evolution of metabolic networks using quality diversity algorithms:

WORKFLOW
Select a metabolic model + define @ MAP-Elites to explore in silico @ Optimized metabolic model
metabolic engineering objective(s) evolution

- (&),

Modified E. coli model o @ g
009

A quality diversity evolutionary [ N ] @
algorithm
Random mutations and crossover (z») Simulate modified metabolic (29 Place the elites in their appropriate
models + Evaluate objective(s) niche and create a new generation
y, "’"E"’""' N

An in silico population of
modified E. coli organisms

Figure 4.1: A proposed workflow for in silico evolution of metabolic networks.

can be knocked out and new reactions can be knocked in for example. Cobra provides a simple interface
to metabolic constraint-based reconstruction and analysis.

Visualisation of BiGG models is achieved via Escher pathway maps. Escher is a tool for building and
visualizing biological pathways. Escher maps are an excellent way to contextualize metabolic data (King
et al.,12015). One can visualise metabolites, reactions and labels. In this thesis, Escher is used to visualise
knockouts and show how they affect downstream reactions. Curated metabolic maps are available for
various organisms and BiGG models (Schellenberger et al.,[2010).

For the case studies of succinate, acetate and ethanol production, the e-coli-core model for Escherichia
coli str. K-12 substr. MG1655 was employed. This GEM contains 72 metabolites, 95 reactions and 137
genes. Flavanone production modelling was performed by adding the heterologous pathway manually
in the iML1515 genome-scale model for Escherichia coli str. K-12 substr. MG1655. The heterologous fla-
vanone pathway in Escherichia coli is shown in Figure A1) and is mainly made up of 4-coumarate-CoA
ligase (4CL), Chalcone synthase (CHS) and Chalcone isomerase (CHI). The specific reactions that make
up the heterologous flavanone pathway that are added to the GEMs are also visualized in Table
Next to 4CL, CHS and CHI, there are also exchange reactions for coumaric acid (cma) and naringenin
(narg) namely EX_cma_e and EX_narg_e respectively. These two reactions are exchange reactions and
are conceptual reactions, created only for modelling purposes called pseudoreactions (Courtot et al.,
2011). These reactions do not have a physical correspondence, but allow for matter influx or efflux to a
model (Courtot et al.,|2011). Even though the reactions CMAt and NARGt are also not chemical or en-
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Table 4.1: The reactions of the heterologous flavanone pathway added to GEMs iML1515 and iJR904.

Abbreviation reaction name Reaction formula Subsystems

EX_cma_e cma_e & Flavonoid biosynthesis
CMAt cma_e < cma_c Flavonoid biosynthesis
4CL cma_c + atp_c + coa_c => amp_c + cmcoa_c + pi_c Flavonoid biosynthesis
CHS 3 malcoa_c + cmcoa_c => 4 coa_c+chal_c+3co2_c Flavonoid biosynthesis
CHI chal_c = narg_c Flavonoid biosynthesis
NARGt narg_c < narg_e Flavonoid biosynthesis
EX_narg_e narg_e < Flavonoid biosynthesis

zymatic reactions, they do have a physical correspondence as they represent the transport of coumaric
acid or naringenin across a membrane into a different compartment or across the cell membrane as
is the case here. The iML1515 is the latest genome-scale metabolic model for Escherichia coli str. K-
12 substr. MG1655 and contains 1877 metabolites, 2712 reactions and 1516 genes. The e-coli-flavanone
model, which is the iML1515 genome-scale model with the heterologous flavanone pathway, contains
1883 metabolites, 2720 reactions and 1521 genes. The later optimization for malonyl-CoA as a major
building block for flavanones was done using the iJR904, model which also represents Escherichia coli
str. K-12 substr. MG1655 and has 761 metabolites, 1075 reactions and 904 genes. iJR904 was used for
further optimization and troubleshooting as this is a smaller version of iML1515. The increase in size from
the e-coli-core GEM directly results in a more computationally intensive and longer runtime. This is true
for both OptMAP and existing python packages aiding the strain design process in metabolic engineering
projects such as OptGene. OptMAP is run multiple times during troubleshooting, so it was better to use
the smaller iJR904 model as runtimes were shorter.

4.2.2 Representation of organisms in silico

We consider L to be the number of genes that is eligible for genetic modification, i.e., the number of
genes that can be knocked out during the in silico evolution procedure. While GEMs are used to model
E. coli and predict its fluxes in silico, the genotype of E. coli is represented as a binary string of length L,
in which each position is linked to a specific gene. Positions with zeros indicate unmodified genes and
positions with ones correspond to gene knockouts. Therefore, the initial metabolic network of the in
silico organism is composed of all genes set at the value of zero in the genotype string.

4.2.3 Representation of evolutionary processes in silico

Evolutionary processes in the MAP-Elites algorithm are based on the scheme in the bottom part of Fig-
ure[3.1 Individuals are randomly selected from the archive. Elites from these different niches are then
used to generate offspring. The variation operators mutation and crossover are used to model the evo-
lutionary processes within MAP-Elites. In k percent of the cases, two elites are randomly selected from
the archive and a crossover of the two elites is made. A random position p in the binary string of length
L is chosen. The crossover event will then result in a mutant whose first p values are the same as for
the first elites, while its remaining values are the same as for the second selected elite. In (100 — k)
percent of the cases, however, the binary string of length L of a selected elite is mutated to generate a
new mutant. The event of a mutation in a gene of the metabolic network is modelled as converting the
value of a specific gene in the binary string from 0 to 1 or from 1 to 0. A random position in the binary
string corresponding with one specific gene is selected. If the current value in that position is 0, it will
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be changed to 1. The latter corresponds to that knocking out a specific gene. If the current value at the
random position is a 1, it will be changed to 0, which reverses the knockout of the gene. Both variation
operations are visualised in Figure[4.2] By changing values in the binary string of length L, we adapt the
metabolic network of E. coli. All genes that correspond to 1 in the binary string will be knocked out in
the GEM. Afterwards, the fluxes are predicted using Cobra for the given metabolic network. The best
mutant in each niche is selected in the variation-selection loop of evolution, to end up with an archive
with elites that each is the best performing mutant in their niche.

In k percent of the cases:
Mutation point
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Figure 4.2: Schematical representation of a mutation- and crossover event in MAP-Elites.

4.2.4 Specific implementation of the MAP-Elites algorithm for the combinatorial
optimization of metabolic networks

Niche definition

Niches are defined as specific regions in the feature space. The feature space is formed by two be-
havioural dimensions as visualized in Figure[3.1 The first dimension is the number of knockouts. The
number of knockouts is simply obtained by taking the sum of the binary string of length L. The second
dimension is the type of metabolism that is influenced by the knockouts. In order to know which type
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of metabolism is affected by a gene knockout, a parser was built to search for the gene in the Ecocyc
database (Keseler et al.,|2017) and to extract Gene Ontology (GO) numbers link to the gene. Next, the
GO knowledgebase is consulted to check how many times keywords related to metabolism type such
as "sugar", "nucleotide" and "lipid" are mentioned in relation to each GO term (Ashburner et al.,|2000;
knowledgebase, [2021). The keyword that occurs the most for a specific solution determines the type
of metabolism that is most affected by executing the gene knockout, defining the second behavioural
dimension of the niche that the solution belongs to. After OptMAP was validated for multiple case
studies, it was expanded to incorporate medium compositions as niches. Six different minimal media
compositions are considered and shown in Table[5.10] These media mainly differ in carbon source, but
also the presence of ammonium and oxygen for example. The medium compositions considered here
are calculated by Cobrapy to be minimal media, but one could also use different medium compositions

used in the wet lab for specific applications if the medium compositions are known.

Fitness criteria

The fitness or performance of a mutant is determined by (1) the flux through the metabolic reaction
that yields the target metabolite, (2) biomass production and (3) the carbon source that is consumed.
All three are calculated using Cobrapy, performing a flux balance analysis on the genome-scale model
of the organism in which the reactions that correspond to a gene knockout are deleted. The resulting
fitness function is equal to the Biomass-product coupled yield (BPCY) and is defined as:

[Biomass] * [Succinate]
[D-Glucose]

BPCY =

or

BPCY = production yield * growth rate

where BPCY is expressed in gram product per gram glucose per hour. BPCY is a widely used fitness
function in in silico microbial strains optimization used in for example OptGene, OptKnock and now
OptMAP (Choon et al.,[2014).

Input parameters

MAP-Elites has four input parameters: the number of generations (I), the genome-scale metabolic model,
the metabolite for which the production should be maximized and k the percentage of variation opera-
tions that should be crossover. The probability that a variation consists of mutations is therefore 100—k
percent. Suppose exploration is more important than finding a solution as close to the optimum as pos-
sible. In that case, one might opt to choose a larger k compared to when finding the optimal solution is
most important. In all further results, a value of 0.05 is used for k to keep a balance between the explo-
ration crossover provides and a gradual approach of the optimum due to mutations. Figure[4.3]illustrates
that the performance increases when the algorithm is run for more generations, up until a certain point
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after which the performance stagnates. Depending on which metabolite should be maximized and the
model that is used, the exact number may vary.

Performance vs the number of generations
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Figure 4.3: An illustration of how the performance evolves with an increasing number of generations.
The performance illustrates the BPCY and is measured in gram product per gram glucose per hour.
Initial population

Unlike MAP-ELites for feature selection, OptMAP does not take an input (G) for the number of initial
random solutions. Rather, the initial population is generated by executing all possible single-gene knock-
outs, after which they are evaluated and compete in their respective niches.

4.2.5 Experimental setup

OptMAP was run on a MacBook with a 2.7 GHz dual-core Intel Core i5-processor and 8 GB RAM. The
scripts used to connect genes to the type of metabolism they affect, by searching the EcoCyc and GO
database were run on Kaggle (Kagglel|2022).
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5. RESULTS AND DISCUSSION

Metabolic engineering in the wet lab is limited by the number of possible combinations of knock-ins,
knockouts, media compositions etc. that can be tested (Lawson et al.L[2021). The search or design space
created by all the possible combinations of manipulations that are possible in metabolic engineering is
so large that navigating it in the wet lab is a long and resource consuming journey (Lawson et al.,[2021).
Therefore, in this thesis, we introduce a novel computational tool, called OptMAP, which makes use
of the quality diversity evolutionary algorithm called MAP-Elites to predict strain design strategies for
microbial production of target metabolites. First, a demonstration of the MAP-Elites algorithm applied
to feature selection is given as a toy example. Later, four case studies are discussed where OptMAP is
applied to the production of industrially relevant compounds.

5.1 MAP-Elites for feature selection as a toy example

The MAP-Elites algorithm can be used for many applications involving combinatorial optimization, as
discussed in Section 3.4} A simple example that can illustrate the strengths of MAP-Elites is the feature
selection problem. Feature selection is considered to be a combinatorial optimization problem which
seeks to reduce the number of input variables when creating a predictive model (Kuhn et al.| |2013).
Feature selection allows for both a decrease in computational cost associated with modelling and an
increase in the performance of the model, which is crucial, particularly with the increasing amounts
of data that are becoming available (Brownlee| |2020). A simple brute force algorithm that tests every
possible subset of features to find the one that minimizes the error rate is not desirable especially for
large datasets, as there are 2" solutions for n attributes.

Given the combinatorial complexity of the feature selection problem, a variation on the Map-Elites algo-
rithm was implemented for feature selection (Quinonez et al., 2019). This implementation both serves
as an example to show the usefulness of the Map-Elites algorithm, but also as a step up to the problem of
(in silico) metabolic engineering which can also be considered as a combinatorial optimization problem.
Four experiments were conducted using different datasets from real scenarios obtained from (Lopez
et al.,[2006) and (Dua and Graff, 2017). Table [5.1shows the performance of the Map-Elites algorithm
where solutions were evaluated using Bayes Classifier for classification problems or linear regression for
regression problems. For classification, fitness is defined as accuracy, which means the percentage of
correctly classified data points. For regression, on the other hand, fitness is defined as the mean squared
error (MSE) between a test dataset and the predicted values. The results show that the Map-Elites algo-
rithm is able to find high performing solutions in a large search space while simultaneously reducing the
number of features to a minimum. The difference in performance between datasets is most likely due
to the datasets themselves as the results are consistent with the findings of Quinonez et al.[ (2019). As
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Table 5.1: Map-Elites results for feature selection

Dataset Application All features Fitness Number of selected features
lonosphere classification 34 0.91 14

Glass classification 9 0.57 6

Cancer classification 30 0.97 10

Parkinsons regression 21 30808 19

the search spaces and feature spaces become more complex, as is the case with metabolic engineering,
the advantage of Map-Elites is expected to grow compared to other search algorithms. Additionally,
MAP-Elites is able to create a wide variety of high performing solutions, which are diverse by design as
they are each optimized in their respective niches. This advantage becomes especially interesting when
searching for novel metabolic strains as you could test a batch of potentially high performing strains.
This results in a higher possibility that at least one of the in silico suggested strains also perform well in
the wet lab. While having a diverse batch of high performing results thus creates a buffer to increase
the chance of success, the MAP-Elites also allows for the user to control the degree of complexity of the
solutions. If resources in the wet lab are quite limited, one might opt to test in silico suggested strains
with a low number of knockouts in the wet lab. The same is true for the feature selection problem, if
resources are available, more features might be selected for regression applications as it would likely
increase the performance as discussed before. However, MAP-Elites returns a variety of solutions with
different complexities which allows users to select the solution that fits their situation. Figure [5.1illus-
trates that, as expected for regression, selecting more attributes leads to a lower MSE. By illuminating
the search space using MAP-Elites, we can conclude that thirteen attributes might be almost as good
as twenty-one attributes. For very large datasets, this kind of additional information on top of high per-
forming solutions returned by the algorithm could prevent the unnecessary use of extra resources that
does not improve the performance significantly.
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Performance vs Complexity for the Parkinsons results
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Figure 5.1: A visualisation of the relationship between the complexity of solutions (the number of se-
lected attributes) and the inverse of the performance of those solutions (MSE).
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5.2 OptMAP: MAP-Elites for in silico metabolic engineering

OptMAP is a novelty search based framework that combines quality diversity evolutionary algorithms
with genome-scale modelling for intelligent in silico metabolic engineering. The main algorithm is in-
spired by the QD algorithm called MAP-Elites and aims to predict strain design strategies for the maximal
production of specific compounds. We use an evolutionary algorithm in order to model the evolution of
metabolic networks in silico in the hope to discover novel high performing strains. Metabolic engineering
manipulations suggested by OptMAP include gene knockout strategies for microbial strain optimization
and later on also medium compositions, with the possibility to expand to up-and down-regulation of
genes, the addition of heterologous pathways and much more.

The OptMAP framework was validated by identifying metabolic manipulations for the production of four
industrially relevant biochemicals using the genome-scale metabolic models for Escherichia coli str. K-12
substr. MG1655. OptMAP was applied to the overproduction of succinate, acetate and ethanol and the
production of flavanones. In this thesis, we seek to answer multiple research questions.

Some questions pertain to the inner workings of the algorithm itself, how it is able to find sets of high
performing solutions and which role the addition of niches plays in search algorithms. Additional ques-
tions refer to the optimization of the production of specific compounds as discussed in the case studies.
The main questions posed in the case studies are which gene knockouts increase the production of
compounds of interest, which reactions these genes are involved in, which media are best for produc-
tion and how the results compare to existing software frameworks for predicting metabolic engineering
strategies.

5.2.1 Succinate overproduction

Succinate overproduction was chosen as the first case to test the OptMAP algorithm as succinate is
both relevant as a product that is used as a supplement for example and is also intricately involved in
the central part of the E. coli metabolism namely the Krebs cycle. Specifically, we aim to discover which
genes are good knockout targets and how these knockouts are distributed in the metabolic network.
Figure [5.2] visualises the archive that is returned by the MAP-Elites algorithm. This archive contains all
the elites in the various niches created by the number of knockouts and the type of metabolism the
knockouts influence. The performance, measured in gram succinate per gram glucose per hour, of each
elite, is shown using a colour gradient. When analysing the archive and Figure[A.2]in the appendix, it can
be observed that performance increases with an increasing number of knockouts up until six knockouts.
The knockouts do seem to be spread somewhat equally over the different types of metabolism, as is

shown in Figure[A.3|

Next, we compare OptMAP with OptGene, a framework for in silico metabolic engineering developed
previously by |Rocha et al.| (2008). OptGene uses traditional Evolutionary Algorithms (EAs) and Simu-
lated Annealing to search for gene knockouts in specific microorganisms to maximize the production of
a given compound (Rocha et al.,|2008). OptGene is an established framework to suggest gene knockouts
that has been used in the past for multiple applications including enhancing sesquiterpene productionin
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Figure 5.2: The archive containing the elite in each niche returned by OptMAP for the overproduction
of succinate. Performance is measured in gram succinate per gram glucose per hour.

Saccharomyces cerevisiae (Asadollahi et al.,[2009)), biofuel production by Synechocystis (Shabestary and

12016), improving I-phenylacetylcarbinol production in Saccharomyces cerevisiae
and the improved production of vanillin in baker’s yeast (Brochado et al.}[2010). It is there-
fore interesting to compare the results for the overproduction of succinate obtained with OptMAP to

those obtained via OptGene. When running OptGene for the overproduction of succinate using the
e-coli-core model for Escherichia coli str. K-12 substr. MG1655, four solutions are returned and are visu-
alized in Table[5.2] Previously, it was mentioned that OptGene uses traditional EAs, which return only
one optimal solution. However, in Tabel multiple results are shown, this is because OptGene runs
its algorithm multiple times to come up with various solutions. It is able to do this because the algo-
rithm uses randomly generated mutations which then result in different solutions. However, as seen in
Tabel [5.4] and [5.] this often results in solutions that are very similar to each other, while OptMAP

Table 5.2: OptGene results for succinate overproduction.

Solution Genes Reactions Target Flux  Biomass Performance
flux [h] [g.(g.h)"]
1 b1852, b0722, b1852, b0721 SUCDI9, G6PDH2r?  10.62 0.62 0.66
2 b2029, bo721, b2029, bo724, SUCDi, GND® 10.62 0.62 0.66
b2029, bo722, b2029, b0723
3 bo767, bo722, bo767, bo724 sucDi, PGLY 10.62 0.62 0.66
4 b2029, b4015, bo726 AKGDHE€, GND, ic  10.62 0.62 0.66

@ Succinate dehydrogenase, b Glucose 6-phosphate dehydrogenase, ¢ Phosphogluconate dehydrogenase,
d 6-phosphogluconolactonase, € 2-Oxogluterate dehydrogenase,f Isocitrate lyase
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Table 5.3: The best three elites in the archive returned by OptMAP for succinate overproduction.

Solution Genes Reactions Target Flux  Biomass Performance
flux [h'] [g.(g.h)"]
1 b3733, bo902, b3952, ATPS4rd, PFLP, PTArC 128.20 0.37 4.80
b2297, b2458
2 b3733, b1603 ATPS4r, NADTRHDd, THD2¢  s51.22 0.37 1.92
3 b3734, b3919 ATPS4r, TPV 109.34 013 1.47

a ATP synthase, b Pyruvate formate lyase, ¢ Phosphotransacetylase
9 NAD transhydrogenase, € NAD(P) transhydrogenase,f Triose phosphateisomerase

is able to provide a diverse set of solutions as seen in Table[5.3/and Figure[5.2] Additionally, this way of
running the traditional algorithm for multiple cycles is also less efficient than running MAP-Elites once.
MAP-Elites is usually also able to return more solutions compared to OptGene, but only the three best
performing solutions are shown to keep everything comprehensible. Table shows the best three
elites in the archive returned by OptMAP for succinate overproduction. The resulting performance of
OptGene and OptMAP can be compared directly as they implement the same fitness function. When
comparing these two outputs, we can conclude that at least for succinate overproduction, OptMAP is
able to find better solutions than OptGene. Not only is OptMAP able to find higher-performing solutions,
but it is generally also done with fewer gene knockouts than the solutions of OptGene. A possible ex-
planation for this is that neither OptGene nor OptMAP directly minimize the number of knockouts, but
since OptMAP has defined the number of knockouts as part of the niches and the solutions of OptMAP
are optimized within each niche, we can select the best performing solutions that occupy the niche with
the smallest number of knockouts that result in that performance. While the fitness of the OptMAP
solutions are higher, the biomass flux is significantly lower compared to the OptGene solutions.

While at first glance the gene knockout suggestions obtained with OptMAP might seem different from
those suggested by OptGene, previous studies have also shown that the knockout genes that result in
the deletion of the enzymes pyruvate formate lyase (PFL), phosphotransacetylase (PTAr) (Wahid et al.|
2016)), periplasmic ATP synthase (ATPS4rpp) (Jiang, [2021), triose phosphate isomerase (TPI) (Burgard
et al.l |2003), NAD transhydrogenase (NADTRHD) and NAD(P) transhydrogenase (THD2) (Mienda and
Shamsir, 2015) could be beneficial for the overproduction of succinate. By comparing different in sil-
ico frameworks for metabolic engineering, Wahid et al.| (2016) has shown that there are multiple ways
to achieve overproduction of succinate, with some resulting in higher production than others. Impor-
tantly, it should be noted that every run of the OptMAP algorithm results in slightly different solutions.
In Figure[5.3} the gene knockouts of the best three elites in the archive of one specific new run are visual-
ized under the form of a Venn diagram. While some gene knockouts return, e.g., b3733 and b3734 which
block ATPS4rpp, b3952 and bo9o2 which blocks PFL, b1602 which blocks NADTRHD and THD2 and b3919
which blocks TPI, also new knockouts are proposed, e.g., b3956 which blocks Phosphoenolpyruvate car-
boxylase (PPC), b3212 which blocks Glutamate synthase (GLUSy), b1101 which blocks D-glucose transport
via PEP:Pyr PTS (GLCpts) and b1817 which blocks GLCpts and Fructose transport via PEP:Pyr PTS (f6p
generating) (FRUpts2). The latter knockouts suggestions have also been put forward in previous studies
(Oh et al., 12009) directly or indirectly. For example, knocking out FRUpts2 might lead to an increased
availability of PEP, which has been shown to increase succinate production (Mienda et al.,[2016). Inter-
estingly, here OptMAP suggests the knockout of PPC, while other studies have put forward PPC as an
up-regulation target for increased succinate production (Mienda et al.}[2016). Figure[s.4] visualises the
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b3956 b3212
b3919
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Figure 5.3: A Venn diagram of the gene knockouts in the three best elites in a second run op OptMAP
for succinate overproduction.

phenotypic phase plane (PhPP) or production envelope of the best performing mutant, compared to the
wild type. The production envelope is actually a specific type of PhPP between growth and a product of
interest (Cardoso et al.,[2018). This allows for the inspection of the limitations of the suggested mutants
compared to the wild type. The production envelope can also show the coupling between growth and
production. Figure[5.4]illustrates that the best performing mutant is not a growth-coupled mutant as
there is no stoichiometric coupling between growth and production of succinate in this example. Here,
succinate production is completely decoupled from growth and it is theoretically possible to produce
more succinate by decreasing the growth rate. The production envelope thus represents the trade-off
between the production of the desired product and growth. Figure [5.5]shows some suggested design
strategies identified by OptMAP that are likely to improve succinate production in the wet lab.
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Figure 5.4: Phenotypic phase planes or production envelopes of the most performant mutant suggested
by OptMAP for succinate overproduction. The production envelope illustrates the minimum and max-
imum production rates a production strain can achieve at different growth rates compared to the wild
type. The blue production envelope belongs to the wild type model, while the green production enve-
lope belongs to the mutant. In this particular mutant, the genes b3733, b0902, b3952, b2297 and b2458
are knocked out. Reaction names are consistent with the e-coli-core model for Escherichia coli str. K-12
substr. MG1655.
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Figure 5.5: Reaction knockouts suggested by OptMAP to improve succinate production visualized on
the metabolic network of the e-coli-core model for Escherichia coli str. K-12 substr. MG1655. The green
circles point to the reaction and metabolite of interest, while the red circles indicate possible knockout

targets. Modified from the e-coli-core map from Escher (King et al., .

36



CHAPTER 5. RESULTS AND DISCUSSION

5.2.2 Acetate overproduction

Acetate overproduction was chosen as a second case to test the OptMAP algorithm. Although acetate
production is often minimized during E. coli fermentations such as for the production of recombinant
proteins, it is an example often used in tutorials for OptGene or OptKnock (Heirendt et al.,[2019). The
archive returned by OptMAP for acetate overproduction is visualized in Figure[5.6]
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Figure 5.6: The archive containing the elite in each niche returned by OptMAP for the overproduction
of acetate. Performance is measured in gram acetate per gram glucose per hour.

When comparing the three highest performing elites to the results obtained by OptGene for acetate pro-
duction, respectively seen in Table[5.5|and Table[s.4] we see that both OptMAP’s and OptGene’s highest
performing solutions perform the same, although different gene knockouts are suggested. Similarly as
before, OptMAP seems to be suggesting high performing solutions, obtained via fewer knockouts than
OptGene even though OptMAP does not directly minimize the number of gene knockouts. Although
software frameworks such as OptMAP can suggest interesting and helpful strain design choices, critical
reflection of the results is still necessary. For example, the knockout of gene s0o001 does result in an
improved acetate flux while also maintaining biomass flux, but when looking at the affected reactions,
we see that reactions such as O2t, are not enabled by enzymes and thus not encoded in real genes. O2t
is the reaction that allows for O, transport via diffusion, this is not a gene or reaction which be turned
off in the wet lab. However, these results might suggest that anaerobic growth of E. coli could improve
the production of acetate. Creating conditions with limited oxygen availability is something that can
be achieved in the wet lab. The gene knockouts suggested by OptMAP for the highest performing elite
have previously been shown to improve acetate production using various in silico techniques (Long and
Antoniewicz, [2019).

37



Table 5.4: OptGene results for acetate overproduction.

Solution Genes Reactions Target Flux  Biomass Performance
flux [h™] [g-(g-h)"]
1 b1852, bo722 SUCDI?, G6PDH2r?  10.62 0.62 0.66
b2029, bo721, b2029, b0722, b2029, b0723  GND€, SUCDI 10.62 0.62 0.66
3 b3738, b3733, b3734, b3736, b3731, b3737, ATP54rd 13.98 0.37 0.52
b3735

@ Succinate dehydrogenase, b Glucose 6-phosphate dehydrogenase, ¢ Phosphogluconate dehydrogenase,
d ATP synthase

Table 5.5: The best three elites in the archive returned by OptMAP for acetate overproduction.

Solution Genes Reactions Target Flux  Biomass Performance
flux [h] [g.(g-h)"]

1 b2029, b4015, b0728 GNDY, ICLP, SUCOASE 10.62 0.62 0.66

2 b3734 ATPS4r9 14.31 0.37 0.53

3 50001 ACALDt, CO2t, H20t, NH4t, O2t 8.32 0.21 0.18

@ phosphogluconate dehydrogenase, bisocitrate lyase, ¢ Succinyl-CoA synthetase, d ATP synthase

Figure visualises the PhPP of the best performing mutant, compared to the wild type for acetate
production. In contrast to the previous example, OptMAP was able to discover a growth-coupled mutant
for acetate production. In for the mutant visualized in Figure[5.7} an increase in acetate production can
be achieved simultaneously with an increase in biomass production. These types of phenotypes are
called growth-coupled phenotypes.

38



CHAPTER 5. RESULTS AND DISCUSSION

Phenotypic phase plane (flux)

20.0 1 — Wild type
—— Mutant

17.5

~15.0

<

ey

—

¢ 125

=

5
10.0

EX_ac_e [mmol
~
(6]

N wu
wn o

o
o

0.0 0.2 0.4 0.6 0.8
BIOMASS_Ecoli_core_w_GAM [h~-1]

Figure 5.7: Phenotypic phase planes or production envelopes of the most performant mutant suggested
by OptMAP for acetate overproduction. The production envelope illustrates the minimum and maximum
production rates a production strain can achieve at different growth rates compared to the wild type.
The blue production envelope belongs to the wild type model, while the green production envelope
belongs to the mutant.
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5.2.3 Ethanol overproduction

Ethanol overproduction was chosen as a third case to test the OptMAP algorithm. Figure [5.8]visualises
the archive that is returned by the MAP-Elites algorithm for ethanol production by E. coli.
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Figure 5.8: The archive containing the elite in each niche returned by OptMAP for the overproduction
of ethanol. Performance is measured in gram ethanol per gram glucose per hour.

Table[5.7]illustrates the gene knockouts and affected reactions suggested by OptMAP. When compared
to the results given by OptGene in Table [5.6] we conclude that both algorithms are able to find simi-
larly performing solutions even though OptMAP is generally able to do this by implementing fewer gene
knockouts compared to OptGene. This observation is consistent with the results for succinate and ac-
etate overproduction. The gene knockouts and subsequent reaction knockouts offered by OptMAP can
also be found throughout the different solutions of OptGene. Additionally, similar results have been
reported both for the gene knockouts and the resulting fluxes using other bio-inspired algorithms for

the optimization of ethanol production as discussed by |Liew et al.|(2016).

Figure|s.9|visualises the phenotypic phase plane or production envelope of the best performing mutant,
compared to the wild type. Similarly to the example of acetate production, OptMAP was able to discover
a growth-coupled mutant for ethanol production. In for the mutant visualized in Figure[5.9] an increase
in ethanol production can be achieved by increasing biomass production. Figure[5.10)shows which genes
are conserved between the solutions found by OptMAP.
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Table 5.6: OptGene results for ethanol overproduction.

Solution Genes Reactions Target Flux  Biomass Performance
flux [h™] [g.(g.h)"]
1 b2029, bo729, b2287, SUCOASY, NADH16P, ATPSarC, 15.35 0.19 0.30
b3731 GNDY
2 boyé7, b2287, b3731, PGLE, NADH16/, ATPSar, SUCDIY 15.35 0.19 0.30

bo722, bo7é7, b2287,
b3731, bo723

3 b2029, b3956, b2287, PPCh, NADH16, ATPS4r, GND 15.11 0.20 0.30
b3731 .
4 b1852, b3737, b2281, b1852, NADH16, ATPS4r, G6PDH2r! 14.09 0.20 0.28

b2284, b3737
@ Succinyl-CoA synthetase, b NADH dehydrogenase, ¢ ATP synthase, d Phosphogluconate dehydrogenase,
€ 6-phosphog|uconolactonase,f NADH dehydrogenase 9 Succinate dehydrogenase, h Phosphoenolpyruvate carboxylase,
{ Glucose 6-phosphate dehydrogenase

Table 5.7: The best three elites in the archive returned by OptMAP for ethanol overproduction.

Solution Genes Reactions Target Flux  Biomass Performance
flux [h] [g.(g-h)"]
1 b3732, b2286, boyé7, ATPSar®, NADH16P, PGLS, PPCY, 15.51 0.19 0.30
b3956, b4301, b0728 RPE€, SUCOAS
2 bo727, b3732, b1852,b2286  AKGDHY,  ATPS4r, G6PDH2rh, 15.35 0.19 0.30
NADH16
3 b3734, b2286 NADH16, ATPS4r 14,20 0.20 0.29

@ periplasmic ATP synthase, b NADH dehydrogenase, ¢ 6-phosphogluconolactonase, d Phosphoenolpyruvate carboxylase,
€ Ribulose 5-phosphate 3-epimerase,f Succinyl-CoA synthetase, 9 2-Oxogluterate dehydrogenase, h Glucose 6-phosphate dehydrogenase
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Figure 5.9: Phenotypic phase planes or production envelopes of the most performant mutant suggested
by OptMAP for ethanol overproduction. The production envelope illustrates the minimum and maxi-
mum production rates a production strain can achieve at different growth rates compared to the wild
type. The blue production envelope belongs to the wild type model, while the green production enve-
lope belongs to the mutant.
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Mutant 1

Mutant 2

Mutant 3

Figure 5.10: A Venn diagram of the gene knockouts in the three best elites in a second run op OptMAP
for ethanol overproduction.
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5.2.4 Flavanone production

Once multiple positive results from OptMAP were achieved for relatively simple metabolites such as
succinate, acetate and ethanol that are naturally produced by E. coli, we decided to optimize the het-
erologous production of the flavanone naringenin. Recently, yet another in silico metabolic engineering
framework was built called OptDesign. OptDesign is a two-step strain design strategy in which regu-
lation candidates that have a noticeable flux difference between the wild type and production strains
are selected, after which the optimal design strategies with limited manipulations (combining regula-
tion and knockout) that lead to high production of a metabolite of interest are computed (Jiang, [2021).
The OptDesign paper from Jiang| (2021) also discussed three cases namely succinate, naringenin and ly-
copene production using the iML1515 genome-scale model for Escherichia coli str. K-12 substr. MG1655.
While OptMAP found similar results for succinate as described by OptDesign, we were unable to find
gene knockouts for naringenin. As this came as a surprise after the success of OptMAP with the previous
challenges, the gene knockouts suggested by OptDesign were manually tested on iML1515 to check the
improvement in naringenin production. To our surprise, even though the suggested knockouts seemed
sensible and were suggested in the OptDesign paper, they did not result in improved naringenin pro-
duction in our scripts. As described in Section[4] the same iML1515 model from BiGG was used and the
same homologous flavanone pathway was added. These findings were checked multiple times, yet it
is still unclear as to what could explain the difference between our results and the findings reported
by lJiang (2021). On the other hand, there are some discrepancies in the Supplemental Information of
the OptDesign paper (Jiang, [2021) where they state that the reaction NARGt is defined as chal_c <
narg_e while another paper from [Fowler et al.| (2009) defined the reaction as narg_c < narg_e. We
also implemented the NARGt reaction as is done by|Fowler et al.|(2009) and assume that the difference
compared to lJiang (2021) is due to a typographical error. Alternatively, OptDesign is coded and run in
MATLAB while we work in Python which might also account for a difference in outcomes. Interesting
however is also that the knockouts suggested by OptDesign seem to decrease the flux towards malonyl-
CoA as opposed to increasing the flux toward that major building block for naringenin, which we found
to be quite remarkable. In this thesis, there was no further investigation into whether the differences
could be due to the programming language used or other possible explanations, as the main focus was
to test OptMAP. Therefore, OptMAP was applied to the search for gene knockouts that increase the main
precursor of naringenin namely malonyl-CoA. As seen in Table[5.9|and Table[5.8] both OptMAP and the
previously mentioned OptGene found the same gene knockout that increases flux through the ACCOAC
reaction, which produces malonyl-CoA.

Table 5.8: OptGene results for malonyl-CoA overproduction.

Solution Genes Reactions Target Flux  Biomass Performance
flux [h] [g.(g-h)"]
1 b1091 KAS159, ACOATAb 2.42 0.92 2.22

@ Beta-ketoacyl-ACP synthase, b Acetyl-CoA ACP transacylase

Table 5.9: The best elite in the archive returned by OptMAP for malonyl-CoA overproduction.

Solution Genes Reactions Target Flux  Biomass Performance
flux [h] [g.(g-h)"]
1 b1091 KAS15%, ACOATAP 2.42 0.92 2.22

@ Beta-ketoacyl-ACP synthase, b Acetyl-CoA ACP transacylase
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5.2.5 Incorporating medium compositions as niches

Until now, the same default medium composition has been used to search for gene knockouts that opti-
mize the production of a specific compound. However, the media composition might also influence the
production of a given metabolite and a specific gene knockout could also result in different outcomes
depending on the substrate the microorganism grows on. OptMAP is therefore expanded to consider
medium compositions as one of the behavioural dimensions that make up the feature space and thus
also influences the niches. The six different minimal media compositions that are considered are shown
in Table[5.10] This added feature of optimizing strains on different media is something that is not often
explored in other strain design frameworks such as OptKnock, OptGene or OptDesign. OptCouple is a
framework that can predict medium modifications, but is mostly focused on strategies for coupling pro-
duction to growth. The expanded version of OptMAP is validated for the overproduction of succinate.
While you could in theory run another type of software package like OptGene for all medium composi-
tions, this is much more tedious. Furthermore, OptGene only takes in one substrate such as glc__D_e,
so multiple carbon sources and other substrates can not be adjusted in OptGene. When we tried to
optimize E. coli on substrates other than glc__D_e using OptGene, no solutions were found. The op-
posite is true for OptMAP as even more and better-performing solutions were found when compared
to Section[5.2.1 Figure[5.11 visualizes the archive returned by the expanded version of OptMAP for the
overproduction of succinate, with the performance value for each elite.
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Figure 5.11: The archive containing the elite in each niche returned by the expanded version of OptMAP
which includes media as niches for the overproduction of succinate. Performance is measured in gram
succinate per gram carbon source per hour.
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Table 5.10: Six medium compositions used to expand MAP-Elites to consider media as niches. The upper
bound for each import flux are given and expressed in mmol.(gDW.h)™".

Components Medium a Medium b Medium ¢ Medium d Medium e Medium f
EX_fru_e 0.00 0.00 520.11 309.46 228.41 0.00
EX_glc_D_e 0.00 520.11 0.00 0.00 0.00 0.00
EX_gIin_L_e 0.00 0.00 0.00 218 0.00 0.00
EX_glu_L_e 278.65 115.54 115.54 0.00 0.00 4.4
EX_mal__L e 0.00 0.00 0.00 0.00 0.00 206.01
EX_nh4_e 0.00 0.00 0.00 0.00 4.36 0.00
EX_o2_e 500.00 0.00 0.00 0.00 0.00 0.00
EX_pi_e 47.39 55.67 55.67 2.94 2.94 2.94

A first observation that can be made is that while the wild type did not produce any succinate on the
default medium, it does produce some succinate on media b and f. Moreover, we can conclude that
while the maximal BPCY found in Section [5.2.1was 4.80 g.(g.h)", here we find various higher values of
6.2, 10, 12 and 22 g.(g.h)". This immediately shows the importance of the medium on the production
and growth of an organism and illustrates the added benefit of using media as niches in which organisms
are evolved towards the chosen metabolic engineering objectives.

Table 5.11: The best three elites in the archive returned by the extended version of OptMAP that includes
media as niches for succinate overproduction.

Solution Medium Genes Reactions Target Flux  Biomass Performance
flux [h] [g-(g-h)"]

1 a b3734 ATPS4r9 1000 6.23 22.35

2 f b3734, b2280, b0728 ATPS4r, NADH16P, SUCOASE 0372 o1 11.62

3 f b3734, b2280 ATPS4r, NADH16 0.64 o.M 10.43

a ATP synthase, b NADH dehydrogenase, € Succinyl-CoA synthetase

Table shows the genes that are knocked out in the best three elites. Overall, the suggested gene
knockouts are situated in the same parts of the metabolism as the knockouts suggested in Section[5.2.1]
While some gene knockouts such as b3734 are exactly the same, knockouts that affect the reactions
NADH dehydrogenase (NADH16), Succinyl-CoA synthetase (SUCOAS) are not suggested in Section|5.2.1,
but also play a role in the succinate and NADH metabolism, similar to knockout suggestions found in

Table[5.3l

5.2.6 OptMAP compared to existing strain design frameworks

On top of OptMAP’s ability to predict gene knockout targets and predict growth-coupled production
phenotypes, it also has multiple more interesting features. OptMAP utilizes novelty search and niches
to maximally explore the search space and return a diverse archive of high performing elites, it can il-
luminate the fitness potential of each region of the feature space to provide (novel) scientific insights
and it optimizes strains on different medium compositions. Additionally, there are also some function-
alities seen in other tools that are not (yet) present in OptMAP such as the ability to suggest up-and
down-regulation of genes and the ability to predict heterologous pathways via knock-ins. Table[5.12]il-
lustrates the differences and similarities between OptMAP and various in silico metabolic engineering
frameworks for the prediction of strain design strategies for microbial production of target metabolites.
We can conclude that even though OptMAP has some interesting features compared to existing frame-
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works and has proven that it can discover high performing design strategies with various characteristics,
further development is still possible to improve OptMAP.

Table 5.12: A comparison of OptMAP with similar in silico metabolic engineering frameworks for the
prediction of strain design strategies for microbial production of target metabolites.

OptGene OptKnock OptDesign OptCouple OptMAP

Novelty Search % % ® % v
Illuminate the fitness potential of each region of the feature space % % % % v
Predict medium modification E 3 E 3 % v v
Predict gene knockout targets v v v v v
Predict growth-coupled production phenotypes v v v v v
Predict up- and down-regulation targets % v v e not yet
Predict heterologous pathways via knock-ins ® v v v not yet
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6. CONCLUSION

The search space created by all the possible combinations of manipulations that are possible in metabolic
engineering such as gene knockouts is so large that navigating it in the wet lab is a long and resource
consuming journey. To that end, multiple software tools have been created to aid that search. In this
thesis, OptMAP, a novel computational tool to predict strain design strategies for metabolic engineering
is developed. OptMAP is based on the Quality Diversity evolutionary algorithm called MAP-Elites as the
main optimization algorithm. OptMAP is mainly made up of an adapted version of the MAP-ELites algo-
rithm, combined with genome-scale metabolic modelling. The main goal was to build a framework that
predicts strain design strategies for metabolic engineering as a tool to explore more possible solutions
compared to metabolic engineering in the wet lab. OptMAP has the unique ability to return a diverse
set of high performing solutions which can be tested in the wet lab as opposed to other frameworks that
usually provide one optimal solution or multiple solutions that are very similar. The fact that OptMAP
makes use of various niches in the feature space allows it to find both better-performing solutions as
well as more diverse ones. In the current version, OptMAP is able to predict gene knockout strategies
to maximize the production of various metabolites.

OptMAP was validated using four case studies, namely the production of succinate, acetate, ethanol and
flavanones. As observed in the obtained results, we were able to create a working version of OptMAP
which is able to provide solutions that are as good or better than comparable in silico metabolic frame-
works. Our initial goal of further aiding the explorations of all possible solutions for the development
of strains with specific characteristics has been achieved. This indicates that the OptMAP could be a
useful tool to help researchers in the wet lab. It reduces unnecessary resource allocation by limiting the
number of experiments that should be run in the wet lab and provides an improved computational tool
to do so.

One of the most interesting emergent features of the MAP-ELites algorithm and a likely explanation for
the increased performance is that elites are able to jump from one niche to another. This allows elites
to explore many different roads towards a high performing solution, while not having to be the absolute
best-performing mutant throughout the whole search. This is in contrast to a traditional evolutionary
algorithm as the one on which OptGene is based, where only the best mutants are kept to search for
a single best solution. Novelty search has therefore shown its potential in the search for strain design
strategies. Additionally, since OptMAP returns an archive with the elite in each niche and their perfor-
mance, OptMAP is able to illuminate the relationship between performance and dimensions of interest
in solutions. These additional insights could be of help both for rethinking the niches as they are cur-
rently still defined by the user and not emergent and to make better-informed decisions when selecting
a set of mutants to test for specific properties in the wet lab.
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CHAPTER 6. CONCLUSION

Finally, we can conclude that the further development of software frameworks based on Quality Diver-
sity algorithms for the prediction of strain design strategies is likely to help discover new mutant strains
for a range of different applications, not only for the production of certain metabolites, but also the
production of recombinant proteins when ME-models are used or creating microorganisms able to me-
tabolize novel toxic compounds or developing microorganisms for microbial therapeutics. As Quality
Diversity algorithms have been proven to return a set of high-quality solutions and additionally also im-
prove the state-of-the-art for finding a single, best solution for applications including designing robots
and now designing novel strains, it would be interesting to how these types of algorithms would allow
for new advances throughout different scientific and engineering domains. Drug design, protein engi-
neering and plant breeding are just some examples of possible applications where a framework similar
to that of OptMAP could be used to create new breakthroughs using the principles of Quality Diversity
algorithms.
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7. FUTURE PERSPECTIVES

While OptMAP has shown to be helpful for predicting gene knockouts that maximize the growth-coupled
production of multiple metabolites, there are a variety of additions that would improve OptMAP. While
currently only knockouts are predicted, predicting regulation targets for the up-or downregulation of
certain genes would help to broaden the flexibility of the algorithm to find high performing solutions.
Sometimes the knockout of a reaction might allow for an increase through another reaction, but it does
not improve the production because the knockout target might be essential for growth. Down-regulation
of that gene could therefore be a way to increase production while still allowing for biomass growth.
Additionally, as upregulation of genes is a technique that is an option to use in the wet lab, it would be
ideal to incorporate this in OptMAP. Predicting heterologous pathways via knock-ins is a great addition
for OptMAP for applications such as searching for mutant strains that are able to metabolise certain toxic
compounds for bioremediation proposes for example. Furthermore, ME models should be integrated
both for more accurate predictions, but also to predict strain development strategies for the production
of (recombinant) proteins.

In order to gain even more insight into the way the algorithm is able to find its solutions, the phylogeny
of elites could be recorded. One obvious conclusion this kind of information could provide would be
that as a phylogenic tree covering a large part of the feature space, it could be interpreted as having a
large number of different stepping stones (Nordmoen et al., [2021).

Another interesting idea would be to try and find a synthetic metabolism for a given metabolic engi-
neering objective similar to retrosynthesis in chemistry. An in silico synthetic metabolism could be cre-
ated by adding enzymes to the metabolic network to improve the production or breakdown of certain
compounds on top of the existing chemical dynamics. This way, minimal metabolic networks could be
discovered for a variety of applications. This is also becoming increasingly relevant in the industry as
cell-free production of (biological) compounds is gaining traction. For example, FabricNano is a com-
pany designing high spatial precision DNA scaffolds combined with enzymes in flow reactors (Burns,
2021; [FabricNanol 12022).

In addition to the further development of OptMAP, new applications for Novelty Search and Quality
Diversity algorithms could improve current search strategies. Problems in various scientific and engi-
neering domains such as drug design, protein engineering and plant breeding could be formulated in
such as way that Quality Diversity algorithms can find novel solutions and additional insights.
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A.1  MAP-Elites for in silico metabolic engineering

A.1.1  Materials and methods
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Figure A.1: A partial view of the metabolic network of Escherichia coli str. K-12 substr. MG1655 with
the reactions making up the heterologous flavanone pathway circled in green. These reactions include
4-coumarate-CoA ligase (4CL), Chalcone synthase (CHS) and Chalcone isomerase (CHI). Modified from

|Fow|er et aI.| (]2oo9|).
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A.1.2 Results and discussion

Performance vs the number of knockouts
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Figure A.2: Plot showing the relation between the number of knockouts and the maximum performance
over all the different types of metabolism in the case of succinate overproduction. The performance
illustrates the BPCY and is measured in gram product per gram glucose per hour.
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Figure A.3: Plot showing the relation between the type of metabolism the genes are related to and the
average performance over all the number of knockouts in the case of succinate overproduction. The
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