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SUMMARY  
Major depressive disorder and Alzheimer’s disease are two prevalent and devastating 
disorders, which still lack effective treatment. Evidence is emerging that these two disorders 
are linked, with common pathophysiologies, such as neuroinflammation. In this master’s 
dissertation, a systems biology approach was adopted to compare pathways and their 
regulators, affected in Alzheimer’s disease and major depressive disorder. Gene regulatory 
networks were inferred with GENIE3, CLR and Lemon-Tree, from which an ensemble network 
was retrieved. This was achieved with publicly available RNA sequencing datasets, for each 
disease. The different networks inferred by the methods were compared to each other, 
confirming a small overlap between distinct network inference methodologies. In addition, the 
two ensemble networks were compared to one another. There is approximately a ten percent 
overlap between the edges, and the networks have a similar morphology. Further, publicly 
available single-cell RNA sequencing data was used to infer gene regulatory networks for 
Alzheimer’s disease and depression, with SCENIC. With these results, it was possible to 
further characterize the cell types involved in the two diseases. Aberrations in immune 
pathways and microglial activation were found in both disorders, with several important 
regulators (IKZF1, IRF8, NFATC2, RUNX1, SPI1, and TAL1). All of these transcription factors 
have been implicated in Alzheimer’s disease before, while only TAL1 has been associated with 
depression hitherto. Moreover, mitochondrial and proteasome dysfunctions were discovered 
in both disorders. These results can be used to prioritize targets for future therapy.  

SOCIETAL IMPACT  
Alzheimer’s disease and major depressive disorder are two disorders that have a high impact 
on a large number of individuals, both those who are affected and their acquittances. Moreover, 
for Alzheimer’s disease there are only disease-arresting medications, while for depression, a 
large number of the medications only work for some patients. Hence, new medications for 
these disorders are urgently needed. In addition, with the high-demanding society and 
increasing aging population, these disorders are still increasing in prevalence. An important 
reason for the lack of treatment is because of the limited understanding of the pathophysiology 
and risk factors for both Alzheimer’s disease and depression. Thus, research is still needed to 
better understand these disorders. Moreover, an overlap of pathophysiology in different 
psychiatric and neurodegenerative disorders is emerging, indicating these disorders need to 
be studied together and not one disorder at a time. As such, a new target for the treatment of 
several diseases at a time might emerge. Thus, this research might influence the search for 
future medication and, as a consequence, the quality of life of patients suffering from 
Alzheimer’s disease, depression, or both.  
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1. INTRODUCTION  

1.1 The brain in health and disease  

It is becoming more evident that the immune system is involved in the functioning of the brain, 
both in health and disease. Both the cells in the brain and peripheral immune cells are 
implicated. Microglia are brain-residing macrophages and are crucial for the development and 
functioning of the brain1. They phagocyte, protect against microorganisms, and play a crucial 
role in tissue maintenance and brain injury. On the other hand, microglia can release pro-
inflammatory mediators, such as cytokines, causing neuronal damage2. Furthermore, these 
cytokines can damage the blood-brain barrier (BBB) and recruit pro-inflammatory immune 
cells, which exacerbates this neuroinflammation2. They can also exacerbate inflammation by 
interacting with astrocytes. Next to microglia, there are as well some other immune cells 
present within the central nervous system in physiological conditions, but only in the periphery3. 
More specifically, they are present in the blood vessels, in the meninges and at low levels in 
the cerebrospinal fluid. Next to microglia, the other glial cells are astrocytes and 
oligodendrocytes (see Figure 1). Oligodendrocytes develop and maintain the myelin sheath 
around neurons in the central nervous system. Astrocytes have numerous functions. They 
have fine processes that closely and dynamically enwrap synapses, neurons and blood 
vessels, and they help maintain the BBB4. Furthermore, astrocytes express a wide range of 
receptors that bind neurotransmitters and neuromodulators, and they can release 
gliotransmitters themselves. Hence, they monitor synaptic transmission and plasticity and are 
active players in information integration and processing4. These gliotransmitters also control 
metabolism, energy supply, development and inflammation. Hence, astrocytes have 
immunological functions as well. The different functions and characteristics of astrocytes are 
not constant, but depend on signals from neurons that actively coordinate and determine the 
molecular and functional properties of astrocytes4. Next to this, there are ependymal cells in 
the brain as well, which produce cerebrospinal fluid.  

Figure 1. Overview of the cells in the central nervous system. Oligodendrocytes develop the myelin 
sheath, microglia have supportive and immunological functions and astrocytes have a pleiotropy of 
functions, such as maintaining the blood-brain barrier. (Adapted from Bavisotto et al.5) 

Neuroinflammation is a common characteristic in different neurodegenerative and 
neuropsychiatric disorders such as Alzheimer’s and Parkinson’s disease, multiple sclerosis, 
schizophrenia, major depressive disorder, bipolar disorder and autism spectrum disorders1. 
Neuroinflammation is characterized by infiltrating leukocytes in the central nervous system 
(CNS) and activation of microglia3. Alzheimer’s and Parkinson’s disease are the most and 
second most common neurodegenerative disorders. Alzheimer’s disease is characterized by 
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β-amyloid plaques and hyperphosphorylated tau neurofibrillary tangles. However, it is 
becoming more obvious that microglia and neuroinflammation are key players in the 
pathogenesis6. Many risk genes are known for Alzheimer’s disease, with the majority 
preferentially expressed in microglia. Parkinson’s disease is characterized by the death of 
dopaminergic neurons in the substantia nigra and by Lewy bodies, which are deposits of α-
synuclein7. Neuroinflammation and autoantibodies are also seen in Parkinson’s patients. Major 
depressive disorder is characterized by decreased concentrations of serotonin, dopamine and 
noradrenaline in synaptic clefts8. Additionally, the hypothalamic-pituitary-adrenal axis is 
dysregulated in depression. Moreover, there is dysfunction of astrocytes and microglia, and 
neuroinflammation8. The etiology of schizophrenia is not yet well known, but it is seen that 
there is a strong genetic component9. Abnormalities in the development and differentiation of 
glial cells might contribute to the pathophysiology of schizophrenia. Immune activation of 
microglia during development might contribute to this deficit9. Bipolar disorder arises from 
genetic, environmental and epigenetic influences. Immunological alterations have been found 
regarding microglia, cytokines and T-cells10. Autism spectrum disorders are also caused by a 
combination of genetics, epigenetics and environmental factors11. They have a heterogeneous 
neurodevelopmental etiology. Immune system abnormalities are often seen in patients, next 
to other comorbidities12. Multiple sclerosis (MS) is a complex autoimmune disease. Polygenic 
risk and different environmental factors play an important role. In MS, the myelin sheath is 
attacked by immune cells, which results in damage to neurons and oligodendrocytes13. 
Additionally, microglial immune activation is seen. Next to autoreactive T-cells, pro-
inflammatory TH17 cells, regulatory T-cells and B-cells are as well involved1.  

In conclusion, different factors are shared by different disorders. Most are influenced by genetic 
and environmental factors. Microglia, astrocytes and oligodendrocytes all play a role and are 
as important as neurons. Autism and schizophrenia seem to have a neurodevelopmental 
basis. Moreover, both Parkinson’s disease and MS have an autoimmune aspect. For some 
disorders, especially autism and schizophrenia, maternal immune activation also plays a 
role1,9. Despite being characterized by neuroinflammation, these shared pathophysiological 
mechanisms can result in entirely distinct disorders, indicating there are some specific 
processes as well (Figure 2).  

Figure 2. Common pathophysiological 
mechanisms of immune dysregulation in 
neuroinflammatory disorders and their distinct 
phenotypes emerging from this. (Adapted from 
Pape et al.1) 
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1.2 Alzheimer’s disease  

Alzheimer’s disease (AD) is the most prevalent 
cause of dementia14,15. It is mainly characterized 
by extracellular β-amyloid (Aβ) plaques and 
intracellular neurofibrillary tangles. Β-amyloid is a 
cleaved peptide of the protein amyloid precursor 
protein (APP). The amyloid cascade hypothesis 
(Figure 3) states that by the accumulation of Aβ, 
through oligomers and amyloid fibrils, secondary 
events are induced, such as the 
hyperphosphorylation of tau, inflammation, 
excitotoxicity and oxidative stress14. Excitotoxicity 
is the overstimulation of excitatory neurons, 
resulting in toxicity in the post-synaptic neurons. 
This ultimately leads to neuronal loss and 
cognitive deficits. On the other hand, 
neurofibrillary tangles consist of 
hyperphosphorylated tau. Tau is a cytoskeletal 
protein and in its phosphorylated form, it can 
execute its function less efficiently. The protein 
mainly stabilizes microtubules and is involved in 
axonal transport and modulation of signaling 
pathways14. Hyperphosphorylated tau can lead to 
the impairment of signaling cascades, 
mitochondrial function and axonal transport. 
There is a clear link between tau accumulation 
and cognitive decline14. Even though mutations in 
APP and other genes associated with Aβ 
disposition (PSEN1 and PSEN2) are seen in 
familial forms of AD, Aβ disposition is not sufficient 
to cause AD as disposition is seen in healthy 
brains as well. Similarly, tau mutations alone do 
not cause AD14. However, there are many genes 
associated with a small increased risk to develop 
the disease15.  

Figure 3. An overview of the amyloid cascade hypothesis. Adapted from Lane et al.15. 

The accumulation of amyloid structures normally starts in the neocortex, before spreading to 
the allocortex1 and eventually to the cerebellum2. Neurofibrillary tangles start in the superficial 
layer of the transentorhinal cortex and entorhinal cortex14. Next, it spreads to the hippocampus, 
then into the temporal region, and to the remaining cortex. Furthermore, there is symmetrical 
medio-temporal atrophy. An overview of different brain regions can be found in Figure 4. 
Alongside Aβ and tau and the associated consequences, loss of synaptic plasticity and 
synapses are also seen and lead to cognitive decline. In addition, there is BBB breakdown and 
vascular dysfunction14. One of the strongest risk genes for AD is the APOE gene. 
Apolipoprotein E is involved in lipid transport and metabolism, and in the transport of Aβ from 
the brain’s extracellular matrix to the blood14. The APOEε4 allele results in the highest risk to 
develop AD, and lowers the age of onset, while the APOEε2 allele has a protective effect.  

It is now clear that microglia also have a considerable influence on AD6. Normal functioning 
microglia actually protect against the development of the disease6, as they are essential for 

 
1 The allocortex is small and includes the olfactory bulb, hippocampal formation, and entorhinal 
region16. 



 

9 
 

the clearance of β-amyloid. Microglia eliminate synaptic connections with the help of 
complement. The complement system is normally involved in the innate immune system and 
excessive activation may induce neurodegeneration. It appears that complement acts 
downstream of Aβ. Moreover, β-amyloid aggregates can induce inflammation. Furthermore, 
complement activation seems to exacerbate tau pathology6. On the other hand, microglia can 
help spread neurofibrillary tangles from neuron to neuron. Disease-associated microglia 
(DAMs) have distinct transcriptional programs from homeostatic microglia. The expression of 
homeostatic genes is reduced, while the expression of neurodegenerative genes is induced6. 
DAMs localize to regions with Aβ deposition17. TREM2 is an important pattern-recognition 
receptor, involved in microglial phagocytosis, chemotaxis, survival, proliferation and 
inflammatory response6,17. Microglia lacking TREM2 are not able to fulfill these functions, 
resulting in exacerbation of the disease. Moreover, the majority of identified risk genes for AD 
are preferentially or selectively expressed in microglia and some of the proteins of these genes 
also bind to TREM26. It is seen that the transition from homeostatic microglia to DAMs has an 
initial TREM2-independent phase and a secondary TREM2-dependent phase17. Further, it is 
seen that there is chronic inflammation in older brains and that they suffer from leaky BBB, 
resulting in the possible infiltration of immune cells2. Thus, aging is a risk factor by itself to 
develop AD. Besides the role of microglia, astrocytes are also implicated in AD. More 
specifically, there is astrogliosis. Activated microglia can induce a neurotoxic phenotype in 
astrocytes, leading to neurodegeneration18. This astrocyte subtype is induced by the secretion 
of IL-1α, TNFα and C1q, and cannot promote neuronal survival, outgrowth, synaptogenesis, 
and phagocytosis anymore, and induces the death of neurons and oligodendrocytes18. A large 
part of astrocytes in AD brains have this reactive phenotype, indicating they help drive 
neurodegeneration in the disease.  
 

 
Figure 4. An overview of brain regions mentioned throughout this master’s dissertation. Created with 
BioRender. 

 
There is a difference in the prevalence of AD between men and women: two-thirds of patients 
are women, while one-third are men14. However, this is also driven by the longer life 
expectancy of women. Early symptoms of people with AD include mild cognitive impairment, 
with primary loss of episodic memory14,15. Next, topographical, language and multi-tasking 
difficulties arise14,15. Further in the disease progress, cognitive difficulties become more severe 
and widespread, ultimately interfering with activities of daily life. This is seen as dementia. In 
addition, changes in behavior, impaired mobility, hallucinations, and even seizures are 
possible15. In different neurodegenerative disorders, psychiatric comorbidities are also noticed. 
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In AD, for instance, depression and anxiety are frequently seen, next to sleep disturbances14,15. 
Moreover, aggression and psychosis are also observed, in later stages of AD15.  
 

1.3 Major depressive disorder  

Major depressive disorder (MDD) is a neuropsychiatric disorder. The disorder manifests itself 
in several symptoms such as a low mood, anhedonia, loss of interest, decreased energy, 
suicidal thoughts and aches8. The pathophysiology is still largely unknown, but there are both 
genetic and environmental influences. There is large phenotypic heterogeneity in patients with 
depression. Moreover, it is seen that there is a gender difference in experiencing the disease: 
women are twice as likely to endure MDD, with an earlier onset, longer duration and higher 
severity19.  

There are several hypotheses for the etiology of depression. The first one is the monoamine 
hypothesis. It states that depression is caused by decreased concentrations of the 
neurotransmitters serotonin, noradrenaline and dopamine in synaptic clefts8. These 
neurotransmitters are also called monoamines, hence the monoamine hypothesis. Nowadays 
this hypothesis is seen as an oversimplification of the pathogenesis and it cannot explain why 
there is a latency period in the response of antidepressants20.  Secondly, the neuroplasticity 
and neurogenesis hypotheses have their origin in the effect of stress on the hippocampus20. 
Stress activates the hypothalamic-pituitary-adrenal axis, which results in the secretion of 
glucocorticoids from the adrenal gland. When the levels of glucocorticoids are too high, there 
is negative feedback to the hippocampus to stop the secretion of glucocorticoids. However, in 
MDD, this negative feedback fails, resulting in atrophy of the hippocampus. The neuroplasticity 
and neurogenesis hypotheses agree up to this part, however, the neuroplasticity hypothesis 
states that glucocorticoids induce the atrophy of mature neurons in the hippocampus, while, 
on the other hand, the neurogenesis hypothesis states that there is a reduction of adult 
neurogenesis in the dentate gyrus of the hippocampus20. Both assumptions may be true and 
are interconnected. Noteworthy, depletion of noradrenaline and serotonin also reduces the 
proliferation of neural precursor cells in the dentate gyrus. Noradrenaline has a direct effect on 
proliferation, while serotonin affects neurogenesis in an indirect manner20.  

Next to these hypotheses, there are as well some disturbed pathways in the brain implicated 
in the pathophysiology of depression. The neurotransmitters glutamate and GABA (γ-amino 
butyric acid) are decreased in depressive patients8. Moreover, this can occur in specific brain 
regions. Astrocytes take up glutamate from the synaptic cleft and convert it into glutamine, 
which is then again transported to neurons. An increase in extracellular glutamate can be 
neurotoxic and is associated with inflammation and stress8. A reduction in the number of 
astrocytes can be caused by chronic stress and increases extracellular glutamate. Several 
studies support that in the case of MDD, there are significant reductions in the number and 
density of astrocytes in several brain regions4. Moreover, there is also astrocyte hypotrophy. 
Additionally, astrocytes promote adult hippocampal neurogenesis20. Another disturbed 
pathway is the catabolism of the amino acid tryptophan. Tryptophan is normally converted to 
serotonin. However, in depression, there is an increased conversion of tryptophan to 
kynurenine, which has pro-inflammatory effects21. Furthermore, brain-derived neurotrophic 
factor (BDNF) is an important factor in depression. Neurotrophins are important for the survival, 
growth, differentiation and plasticity of neurons8. Moreover, neurotrophic factors increase adult 
hippocampal neurogenesis20. proBDNF is its precursor protein, and this protein has several 
functions as well, which retrieve the opposite effect of BDNF. It is seen that the balance 
between proBDNF and BDNF is disturbed in MDD8.  

Next to the role of astrocytes, there is also mounting evidence for the implication of the immune 
system in depression8. Cytokines such as IL-1, IL-6 and TNF-α are overexpressed in the 
central nervous system and periphery of MDD patients. IL-1 and TNF-α lead to the activation 
of microglia and astrocytes, and activated microglia produce IL-6, which influences the process 
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of neuroprotection and neurodegeneration8. Activated microglia can lead to chronic 
inflammation. Moreover, levels of C-reactive protein (CRP) are higher in patients as well19. 
This protein is indicative of inflammation. Higher levels of T-cells and neutrophils are seen as 
well in the disorder19,22. Moreover, there is dysregulation in oxidative and nitrosative pathways, 
and mitochondrial dysfunction19. Increased cytokine levels and reactive oxygen species can 
lead to mitochondrial dysfunction22. Consequently, a neuroinflammation hypothesis is rising. It 
is seen that co-morbid MDD is prevalent in inflammatory conditions such as asthma, arthritis, 
Crohn’s disease, diabetes and obesity19,22. This triggers a sickness behavior, which has similar 
features as MDD, such as anhedonia and fatigue. However, as mentioned before, depression 
can be highly heterogeneous in different patients, and this is the case as well regarding 
neuroinflammation19, with higher inflammatory levels correlating with treatment resistance or a 
more severe phenotype22. An overview of different cells and molecules possibly implicated in 
depression can be seen in Figure 5.  

  

Figure 5. An overview of common alterations in the adaptive and innate immune system seen in patients 
with depression. Figure adapted from Drevets et al.22.  

1.4 Bulk network inference  

In systems biology, cellular systems are often represented by networks. Networks consist of 
nodes and edges. Nodes are biomolecules such as genes, transcripts or proteins. Edges are 
the associations between the nodes, such as co-expression, regulation or binding23. Different 
kinds of networks exist. Protein-protein interaction (PPI) networks, also called the interactome, 
consist of proteins and edges that represent physical binding. Co-expression networks consist 
of transcripts or genes that are expressed at a similar time and in a similar context. Gene 
regulatory networks (GRNs) consist of transcription factors and target genes. The edges 
represent the regulation of the target genes by transcription factors (TFs) (Figure 6). This can 
be either activation or inhibition. Furthermore, networks can be directed or undirected. In 
directed networks, there is a clear flow of information from one node to another, such as in 
GRNs. In undirected networks, on the other hand, there is no causality. This is the case in PPI 
networks and co-expression networks. The edges can also be weighted. This indicates that 
there is a certain confidence that the edge truly exists or it can indicate the strength of the 
relationship23. In unweighted networks, the edge is either present or not. Modules are 
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subnetworks consisting of highly related and densely connected nodes. In GRNs, these are 
mostly co-expressed genes, regulated by the same TFs.  

Figure 6. From transcription factor binding and activation of the expression of a target gene to a gene 
regulatory network. Adapted from Banf and Rhee24. 

GRNs are mostly inferred from transcriptome data. However, using transcriptome data alone 
has its limitations, especially for higher-order organisms. Other regulatory mechanisms are at 
play as well. This includes epigenetic modifications, post-translational modifications, protein 
interactions between different TFs and/or co-factors, non-coding RNA and enhancers. TFs 
need to be active, the transcriptional machinery needs to be active and chromatin needs to be 
accessible. Moreover, causal relationships cannot be defined based on transcriptome data 
alone24. Therefore, a multi-omics approach would be more feasible to infer a more accurate 
GRN, as additional layers of regulatory information, such as TF binding sites in the promotor 
of a possible target gene, are taken into account. However, little multi-omics data is available 
from the same individuals25. In addition, the inference of GRNs generally suffers from a high-
dimensionality problem. There are far more genes than samples, which results in different 
possible solutions for the same data24. There are some properties that eukaryotic GRNs have 
in common26. Mostly, TFs regulate different genes and genes are regulated by different TFs. 
Moreover, TFs are regulated by their own regulators, which in turn are regulated by their TFs. 
GRNs are also modular and scale-free, meaning there are many genes with few edges and 
few hubs. Modular networks consist of highly connected clusters of nodes, with few edges 
connecting the different clusters (Figure 7). 

 Figure 7. A modular network. Adapted from Blondel et al.27. 

It is commonly seen that transcriptional regulation and gene expression is altered in disease28. 
Network inference makes it thus possible to retrieve novel insights into disease mechanisms. 
There are several methods to infer GRNs, which are all based on different assumptions. 
Network inference can be done with correlation methods, information theory, Boolean network 
approaches, Bayesian network approaches, regression-based methods, differential-equation-
based methods, and multi-omics integration methods23,24. They have their advantages and 
limitations, and none of them are perfect. It is actually favorable to combine several 
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approaches, as they complement each other and give better results combined25,29. In 
correlation methods the correlations between the expression profiles of genes are calculated24. 
This can be done for instance with the Pearson or Spearman correlation coefficient. There is 
no directionality, as the retrieved networks are gene co-expression networks23,24. One popular 
method is Weighted Gene Co-expression Network Analysis or WGCNA.  

Information theory is based on mutual information. Mutual information can be defined as ‘the 
amount by which the entropy of the joint distribution is reduced compared to the combined 
individual entropies’23. For these methods, discretization is mostly needed. Here again, no 
directionality can be retrieved23. This method is however able to detect non-linear interactions. 
Examples of algorithms using this method are ARACNE, CLR30 and MRNET. CLR uses mutual 
information as a measure of similarity between expression profiles30. If the mutual information 
score between a regulator and a target gene is above a certain threshold, this is conceived as 
an association. CLR takes the network context into account, resulting in a better distinction 
between indirect and direct regulatory interactions. This is done by constructing a background 
normal distribution of the mutual information values for every gene pair30. Here it is not possible 
to specify the regulators beforehand. 

In Boolean network approaches, genes are assumed to be either active or inactive, which 
results in information loss24. Boolean networks consist of nodes, where each node has a 
Boolean function. These functions indicate direction from one or more nodes to another node. 
Thus, the state of a node (active or inactive) depends on the states of the other nodes. A 
Boolean function is found for each gene. Additionally, Boolean networks are time-dependent24. 
An overview of this approach can be seen in Figure 8. Bayesian network methods are based 
on conditional probabilities23,24. The resulting network is a directed acyclic graph structure. 
Firstly, the structure of the model is learned and then the parameters are learned24. It can 
capture non-linear relationships as well25. This method is computationally expensive and is 
thus hard to implement for large networks23. Differential equation methods are based on rate 
equations; they quantify the rate of change of the gene expression of one gene as a function 
of the expression profiles of the other genes24. Non-linear interactions can be detected. Here 
an example is NonLinearODEs. 

 

Figure 8. General workflow of Boolean network approaches. Gene expression is binarized and the initial 
state is inferred. The states of the different genes are then optimized and a regulatory network is 
retrieved with for every gene a Boolean function. Adapted from Nguyen et al.31. 

Regression-based methods look at the inference of a network as a feature selection problem24. 
They find the most predictive subset of TFs for each target gene. Here, directed edges can be 
retrieved23. There are different approaches for implementing regression. This can be for 
instance linear regression, logistic regression or tree-based ensemble methods. Examples 
here are LASSO and GENIE332. GENIE3 is a tree-based ensemble method. It looks at the 
inferring problem as a feature selection problem: what are the genes that influence the 
expression profile of a specific target gene? As a result, a ranking of regulatory interactions for 
every gene is given32. Two different ensemble methods can be used with GENIE3: random 
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forests and extra-trees. Random forests and extra-trees are both ensemble methods based on 
decision trees. Different trees are grown and combined into one final tree. Bagging (bootstrap 
aggregation) is the method where deep decision trees are made, which are prone to overfitting 
and have a high variance. Moreover, in each iteration, only a part of the data (datapoints and 
features) is used to grow the tree. These iterations, or the forest of trees, are then averaged 
into the ensemble tree. The extra-trees method is based on random forests, however, in 
contrast to random forests, each tree is built from the original sample32. At each split, the tree 
is provided with a random sample of k features, without replacement32. Boosting, on the other 
hand, consists of growing weak learners, or shallow trees, into a strong ensemble. Shallow 
trees have a high bias. There are different methods on how to combine the different iterations 
into one final tree. GENIE3 can predict directionality, but only to some extent32. Other 
advantages are that there is no assumption about the nature of gene regulation, e.g. linear 
interactions, and the computation is relatively fast. Regulators can be specified when inferring 
the network. PoLoBag (Polynomial Lasso Bagging) is based on lasso regression and uses 
bagging as well33. In addition, polynomial features are incorporated to capture higher-order 
interactions (non-linear relationships).  

Multi-omics approaches can be based on one of the methods mentioned above. Instead of 
only using transcriptomic data to infer the networks, multi-omics methods also use other data. 
Some methods use epigenetic and TF binding site data, other interactomics or genomic 
variants data. Examples are Lemon-Tree34, MERLIN-P35 and PANDA/SPIDER. Lemon-Tree is 
a module network inference method34. It separates the learning of modules and the assignment 
of regulators to modules. It can integrate different types of omics data. To find the modules, 
clustering is done with a model-based Gibbs sampler algorithm34. Different clustering 
permutations can be executed and are then combined into a final consensus, using a graph 
clustering algorithm36. The edge weights are equal to the frequency of the pairs of genes 
belonging to the same cluster in the different permutations34. This is done because every 
cluster step can be slightly different. By then taking the genes that consistently cluster together, 
a more robust cluster solution can be retrieved36. Genes that are not assigned to any cluster, 
are omitted. Next, regulators are assigned to each cluster. This is done by fitting an ensemble 
of decision trees. These can be different kinds of regulators, both continuous or discrete34,36.  

MERLIN-P, or Modular regulatory network learning with per gene information plus prior 
network, is a method that learns per-gene regulatory programs, but concurrently the network 
is constrained by a probabilistic graphical model that takes into account the modular structure 
of the network26. Thus, two genes in the same module have similar, but not identical regulators. 
In contrast with Lemon-Tree, the learning of the module membership and the assignment of 
regulators to these modules are not decoupled. In a probabilistic graphical model, there are 
two main components: the graph structure and the parameters35. They use a dependency 
network, where the expression levels of genes are each predicted as a function of its regulators 
(i.e. regression). The algorithm iterates between two steps. In the first step, the graph structure 
is updated, taking the current assignment of modules into account. The second step updates 
the module assignment, taking into account the current graph structure35. It starts with initial 
modules and iterates until convergence. Moreover, it is possible to integrate expression data 
with other types of regulatory data as structure priors35. The algorithm can integrate different 
types of prior networks. The prior networks can be weighted and are subsequentially combined 
to determine the prior probability of each edge35. The integrative network construction is based 
on a Bayesian framework.  

Another multi-omics method that combines different methods to infer GRNs is KBoost37. It is a 
fast and scalable algorithm and uses kernel principal component analysis (PCA) regression, 
boosting and Bayesian model averaging. A prior network is included in the algorithm, which is 
based on ChIP-seq data. Different weights can be given to this prior network. For every gene 
a model is fit that predicts its expression, using the kernel PCA of the expression levels of a 
subset of TFs37. The boosting is implemented by fitting a new model to each gene expression’s 
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residuals and selecting the TFs with the highest posterior probability per gene and then 
updating the predictions. Thus, in different iterations, different TFs are selected. With the 
Bayesian model averaging, different models are compared, and the probability that a TF 
regulates a gene is estimated. This model is then combined with the prior, and as output, the 
probability of each TF regulating each gene is given37.  

CLR and GENIE3 were both included in the benchmark study by Marbach et al. where they 
compared 35 different network inference methods29. This was done with the DREAM5 
challenge. This is a well-known GRN inference challenge where researchers can run their 
algorithms on benchmark datasets. Combining different methods gave as good or better 
results than the top-performing methods in their benchmark29. This was as well more robust 
than using only one method. The performance increased with applying more methods, and 
with increasing the diversity of the used methods.  

1.5 Single-cell network inference 

Single-cell data is increasingly being used to answer research questions. Predominantly 
single-cell RNA sequencing (scRNA-seq) and ATAC-seq (Assay for Transposase-Accessible 
Chromatin using sequencing) are performed, but other efforts are done as well, for example 
single-cell proteomics. Different cells in the same tissue have distinct functions and expression 
patterns. Thus, when doing bulk RNA sequencing (RNA-seq), for example, cell-specific signals 
are averaged and dominated by the bulk signals. When doing a single-cell analysis, cell-
specific signals are picked up. In the brain, it is a large advantage to analyze cell-specific 
signals, as not only do the different glial cells have separate functions, but different neurons 
have distinct functions as well. Another advantage is that fewer patients are needed, as every 
cell is now seen as an individual sample. This can alleviate the high-dimensionality problem. 
A disadvantage of single-cell data is the fact that the signals are not strong, as they only come 
from a single cell. However, the signal can be increased by pseudo-bulk analysis or the 
aggregation of the reads of several cells from the same cell type or state. Because of the 
inherently different kinds of data, new methods had to be developed to analyze scRNA-seq 
data, as the bulk methods are not always convenient to use. Hence, new methods for network 
inference have been developed specifically for single-cell data. Multi-omics integration is as 
well increasingly done with single-cell data. Some researchers have benchmarked the 
performance of different single-cell network inference methods. A first paper has benchmarked 
GRN inference algorithms from scRNA-seq data38. They compared GENIE3, PPCOR, LEAP, 
SCODE, PIDC, SINCERITIES, SCNS, GRNVBEM, SCRIBE, GRNBoost2, GRISLI and 
SINGE. They tested the different methods on simulated datasets from synthetic networks, 
datasets from curated Boolean models from the literature and five experimental scRNA-seq 
datasets38. The results were examined using the area under the precision-recall curve (AUPR), 
early precision (fraction of true positives in the top-k edges), stability of the results, by analysis 
of the network motifs, and scalability. PIDC, GENIE3 and GRNBoost2 were the top-performing 
algorithms38. A substantial number of methods had a performance close to a random predictor. 
Another benchmark paper compared the following GRN inference methods: Boolean 
Pseudotime, BTR, SCNS, Inference Snapshot, SCODE, SCOUP, Empirical Bayes, 
Information Measures, NLNET, SINCERA, SCENIC, LEAP, SINCERITIES, SCIMITAR, and 
SCINGE31. The researchers used stimulation data and studied the AUROC (Area Under 
Receiver Operating Curve) of the different methods with different numbers of genes and with 
different levels of sparsity. Overall, SCENIC has the highest accuracy in most simulation 
studies, while LEAP and NLNET are the fastest methods, and SCOUP is the most stable 
method31. Here again, some methods only performed as well as a random predictor.  

SCENIC (Single Cell rEgulatory Network Inference and Clustering) consists of a workflow in 
which the first step is to infer networks with GRNBoost2 or GENIE339. Next, modules are 
identified in which the TF’s binding motif is significantly enriched in the target genes, with 
RcisTarget. Lastly, AUCell scores the activity of these regulons in each cell, which is then 
binarized to be either active or inactive. Cell states are then predicted based on shared activity 
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between the cells. GRNBoost2 is based on GENIE3, but instead of using a bagging method, 
stochastic gradient boosting is used to train a strong model39. Stochastic gradient boosting 
indicates that at each iteration a randomly selected subsample of the data is used, increasing 
the accuracy of the model40. In gradient boosting, the current iteration is built using the error 
from the previous iteration. Thus, in contrast to random forests, the different iterations are not 
independent. 

Another upcoming, promising technology is spatial single-cell analysis. Here, the RNA in the 
cells is sequenced and this can subsequently be coupled back to its position in the sample. 
More and more cells can be sequenced with scRNA-seq and the resolution of spatial analysis 
is still increasing. The single-cell omics field is rapidly evolving. 

1.6 Comparison of networks 

Tantardini et al. have made an overview of different methods that can be used to compare 
networks41. Network characteristics are often used to get a broad overview of the topological 
nature of a network. Examples of network characteristics are the degree, correlation 
coefficient, density, diameter, edge and node betweenness, number of connected 
components, and distance. The average degree indicates the average of the edges each node 
has. The correlation coefficient is a measure of how well the neighbors of a node are connected 
to one another. It is the number of edges between the neighbors of a node divided by the total 
number of possible edges42. The density is the ratio between the edges in the network and the 
total number of possible edges. The diameter indicates the longest shortest path of the network 
between any two nodes. The average edge betweenness indicates the average of all paths 
that pass through a certain edge. Similarly, the node betweenness signifies the number of 
paths that pass through a certain node. This is also called the betweenness centrality42. 
Connected components are the number of components or subgraphs in which each pair of 
nodes is connected with each other via a path. Lastly, the average path length or distance42 is 
the average of all the path lengths between all the nodes in the network.  

GCD-11 was the best performing method amongst the undirected methods41. The method is 
based on graphlets, which are ‘small, connected, non-isomorphic subgraphs of large 
networks’41. Mostly, graphlets contain up to five nodes. Nodes in graphlets are called orbits, 
and each distinct orbit gets a number. In one graphlet, two or more orbits can be the same, i.e. 
there is no possible distinction between them. These are automorphism orbits. For instance, 
in a chain of three nodes, the two outer nodes are the same. The graphlets are numbered as 
well (G0 to G29 for up to five-node graphlets). Moreover, some orbits are redundant, which 
means that their count in the network can be derived from the counts of the other orbits43. GCD 
(Graphlet Correlation Distance) gives the highest accuracy with up to four-node graphlets43. 
This method has eleven non-redundant orbits, and is thus called GCD-11. For each node in 
the network, a graphlet degree vector is created43. This is a vector containing the count for 
each of the possible orbits, for this node. This is then combined into a matrix with the number 
of rows equal to the number of nodes in the network, and the number of columns equal to 
eleven (possible orbits). Next, the Spearman’s correlation coefficient is calculated between all 
pairs of columns43. This results in a symmetrical 11x11 matrix, called the Graphlet Correlation 
Matrix. As such, each network can be represented as an 11x11 matrix. With these matrices, 
the distance can be computed between two networks. This is done by taking the Euclidean 
distance of the upper triangle values of the two Graphlet Correlation Matrices43. This distance 
is termed the Graphlet Correlation Distance. 

1.7 Network inference on omics data from neuroinflammatory disorders  

There is still a lot of research necessary to improve the inference of GRNs, but they are useful 
to generate biological hypotheses and prioritize follow-up experiments. It is important to keep 
in mind that GRNs need to be experimentally validated, as in silico methods are not sufficient 
to prove a certain regulatory pathway. Researchers have already conducted network inference 
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on neuroinflammatory disorders. Chew and Petretto2 have made an overview of transcriptional 
networks inferred from Alzheimer’s samples. They describe several papers where network 
inference was done of gene co-expression networks or GRNs with microarray, RNA-seq, 
scRNA-seq, and some multi-omics data. Probably the most used method until now to infer 
networks is WGCNA. However, with this method co-expression networks are retrieved, not 
GRNs. Moreover, many researchers only infer networks on differentially expressed genes. By 
doing this, a substantial part of the data, that might be interesting, is not used. In another paper, 
researchers have used WGCNA to look at the degree of overlap of transcriptional 
dysregulation between autism (ASD), depression, schizophrenia (SCZ), bipolar disorder (BD) 
and alcoholism44. They used microarray datasets and generated RNA-seq for three of the five 
disorders. They found the largest transcriptome correlation between SCZ and BD. Next to 
doing a differentially expressed genes analysis and WGCNA, they also looked at single 
nucleotide variants (SNPs). They found significant correlations between SNP-based genetic 
correlations between diseases on the one hand and their corresponding transcriptome overlap 
on the other hand44. This indicates that the gene expression changes are partly coupled to 
genetic variation.  

Another research group has implemented WGCNA as well, from samples of individuals with 
SCZ, ASD, Parkinson’s Disease (PD), AD, BD, MDD, pathological aging, and progressive 
supranuclear palsy (PSP)45. They used bulk RNA-seq samples. The number of samples they 
used for each disorder was highly different; 906 for AD versus 29 for PD. They performed 
differential gene expression analysis. With the differentially expressed genes (DEGs), they 
executed gene enrichment analysis. Functions related to the immune response were the only 
recurring results among different disorders45. Here again, the largest overlap was between 
SCZ and BD. The researchers found different overlaps between conditions in different brain 
regions45. There was also a correlation between AD and ASD, and between AD and SCZ. With 
WGCNA, they found that neuronal modules were downregulated in AD, PD, ASD, SCZ, and 
BD. An oligodendrocyte module was upregulated in all conditions except for pathological aging 
and PSP. A microglia-associated module was upregulated in AD, PD, pathological aging, and 
autism. Moreover, it was enriched for genes involved in the immune response45. This is logical, 
as microglia are immune cells. An astrocyte module was upregulated in AD, PD, pathological 
aging, ASD, SCZ, and BD.  

A system-level analysis of different neurodegenerative disorders was executed in another 
paper46. They used microarray data from AD, PD, Huntington’s disease, SCZ, amyotrophic 
lateral sclerosis, and MS patients and control samples. The samples were taken from different 
brain regions for each disease. The number of samples they used was limited; around ten 
patients and ten control samples were used for every disease. They wanted to identify common 
pathways and factors involved in the development and progress of several neurodegenerative 
disorders46. They predicted the core GRNs in each disorder. Firstly, they identified DEGs 
between each disease and control samples. There were few common genes between 
diseases46. Next, they used the DEGs list to make PPI networks with the STRING database. 
Moreover, they used Enrichr to determine the TFs that regulate the DEGs. They constructed 
TF-gene networks and integrated data from STRING into these networks. Subsequently, they 
determined central genes and TFs and used these to construct the core GRNs. Gene Ontology 
(GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) were used for functional 
enrichment analysis. The largest overlap of DEGs was observed between Huntington’s and 
PD. After functional enrichment, they noticed that most genes were involved in cardiovascular 
and metabolic terms, followed by immune, neurological and pharmacogenomics terms46. 
ATF3, SOX2 and JUN were hub TFs for the DEGs of AD. UMPS and CDK1 were two hub 
DEGs in AD. SLC14A1 was found to be implicated in several diseases, both in this study and 
in other literature46. They found a large overlap in their genes and genes in literature, but they 
also found some genes that may be implicated in pathology, but have never been observed 
before.  
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Further, other researchers investigated several psychiatric and neurodegenerative disorders28, 
but did this in another manner than in the previous paper. They reconstructed a GRN for the 
human brain by integrating brain-specific DNase footprinting and TF-gene co-expression28. For 
the co-expression, they utilized microarray expression profiles from the Allen Human Brain 
Atlas. Both Pearson correlation and lasso regression was adopted for co-expression. Then 
they retrieved the DEGs from transcriptomic data (RNA-seq and microarray) from SCZ, BD, 
depression, AD and autism patients and controls28. Here, the samples were all retrieved from 
the prefrontal cortex. Next, they identified TFs whose target genes were enriched in these 
DEGs. Their goal was to predict key TFs that regulate transcriptomic changes in the disorders, 
as well as to look at disease-associated SNPs that disrupt regulator binding sites28. They found 
no key regulators for MDD and 78 for AD. Some key regulators were associated with genetic 
risk for the same disease. These were MEF2C, GLIS3, TFEB, and NR3C2 for AD28. Target 
genes of MEFC2 were enriched for neuron-specific genes. Moreover, they saw that neuronal 
networks were often downregulated, while microglial networks were upregulated in AD28.  

1.8 Aims of this master’s dissertation  

The objective of this master dissertation is to find the distinct and common pathways between 
the neuroinflammatory disorders AD and MDD, and their regulators. AD can be seen as a 
representative of neurodegenerative disorders, while depression can be seen as a 
representative of psychiatric disorders. This has been done by inferring GRNs using different 
methodologies. For each method, the top 100 000 edges were retrieved. Using rank 
aggregation, an ensemble network per disorder was constructed from these networks. The 
ensemble networks of AD and MDD were compared to each other with different metrics, to 
see whether topologically similar networks were retrieved. Next, modules were constructed 
and functionally analyzed. In addition, single-cell RNA-seq data was used to infer GRNs with 
SCENIC and further characterize the cells that are implicated in the disorders, and to compare 
the two disorders. 

The host lab of Prof. dr. ir. Vanessa Vermeirssen (Lab for Computational Biology, Integromics 
and Gene Regulation (CBIGR)) aims to acquire a functional understanding of gene regulation 
and signaling at a systems level in complex diseases. The lab is internationally recognized in 
GRNs and multi-omics data integration; developing and applying high-throughput methods for 
experimental GRN mapping, and benchmarking, and data integration methods for 
computational GRN inference. The host lab has shown that different network inference 
methods reveal complementary aspects of the underlying GRNs, and that integrating different 
omics data provides a more accurate, multi-modal view of gene regulation47,48.  
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2. METHODS  

2.1 Retrieval and preprocessing of data  

Different criteria were taken into account when searching RNA-seq datasets. Firstly, the data 
had to originate from human post-mortem brain samples. Secondly, each dataset had to 
contain at least 20 samples and control samples had to be included as well. The samples may 
not have been enriched for certain cell types. The prefrontal cortex was the favored brain 
region, as a large amount of studies sample from the prefrontal cortex. Moreover, the prefrontal 
cortex has been implicated in several psychiatric, neurodevelopmental and neurodegenerative 
disorders28. Lastly, there needed to be a similar number of samples for each disorder.   

The gene counts and metadata files of the different datasets were loaded into R (version 4.0.3). 
Different datasets of the same disease have been merged to make a compendium per disease. 
The edgeR package was used for preprocessing. Firstly, the features were filtered by only 
keeping the genes with more than one count in at least five samples. Then the trimmed mean 
of M values (TMM) normalization was done49. This method uses a weighted trimmed mean of 
the log expression ratios. For this, gene-wise log fold changes and ‘absolute’ expression levels 
are used. A trimmed mean indicates the mean after removing the upper and lower x% of the 
data49. The weights account for the mean-variance dependency. TMM normalization assumes 
that most genes are not differentially expressed49. Next, the normalized counts were 
logarithmically transformed (prior count of one). Batch effects and outliers were detected with 
multidimensional scaling and hierarchical clustering. For merged datasets, a batch correction 
has been executed, with the removeBatchEffects function from edgeR. Subsequently, highly 
variable genes were selected. Next to the selection of highly variable genes, only protein-
coding genes were selected for further analysis. After the selection of the highly variable genes, 
regulators have been added again. Regulators indicate TFs that bind DNA and regulate the 
expression of their target genes. Lovering et al. have manually curated a list of human TFs, 
using several sources50. This list was used to define the regulators. It contains 1455 TFs in 
total. Lastly, scaling was done.  

2.2 Bulk network inference methods  

Two networks were made with every method, one with the AD dataset, and one with the MDD 
dataset. GENIE332 is implemented in the R package GENIE3. Random forest was used to infer 
the networks. The other parameters were set to default (number of regulators selected at each 
tree node: sqrt(total number of regulators); 1000 trees). CLR is implemented in the minet 
package in R (v.4.0.3)51. It is possible to use different estimators to calculate the mutual 
information. The empirical estimator was the default at the time the paper was written. 
However, they mention that this entropy estimator is biased. The Miller-Madow estimator 
reduces this bias, thus, this estimator was used to infer the networks. These estimators were 
designed to take discrete values. The equal frequency discretization was used for this51. 
Lemon-Tree is implemented in Java as a command-line program34. The latest version (v3.1.1) 
was used to infer the networks. The clustering was done for 100 permutations and there are a 
minimum of ten genes per module. Next, regulators are assigned to each cluster, which were 
TFs here, from the list from Lovering et al.50. MERLIN-P35 was tried as well. It is implemented 
as a command-line program, with code written in C and C++, available on their GitHub. For 
MERLIN-P a prior network is needed, hence, a weighted directed network from Marbach et 
al.52 has been utilized from the adult frontal lobe. They have constructed 394 cell- or tissue-
specific regulatory networks and made them freely available (syn4956655). This region was 
chosen, as the expression datasets are from the prefrontal cortex.  

PoLoBag33 is implemented in Python. A script must be run, where only the file names have to 
be changed, and if desired, different parameters can be changed as well. The default 
parameters were used, except the Lasso regularization parameter was changed to 0.2 instead 
of 0.1. KBoost37 is implemented in the R package KBoost and uses a prior network as well. 
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This prior network is included in the function KBoost_human_symbol, which was used for the 
network inference. In addition, TFs are defined beforehand, but another resource is used than 
the list from Lovering et al. VIPER infers the activity of proteins with the expression pattern of 
its target genes53. VIPER is implemented in the R package viper. In the first step, a prior 
network must be made, which the developers have made with ARACNE (R package minet), 
which was tried as well. In the next step, this prior network has to be changed to a regulon. 
Two groups of samples are compared to each other. Then enrichment of each regulon on the 
gene expression signature of these groups is calculated, using the analytic Rank-based 
Enrichment Analysis algorithm53. This enrichment is then compared to a null model to 
determine statistical significance.  

2.3 Ensemble networks 

From the different methods, an ensemble network was created. This was done by rank 
aggregation. Rank aggregation can be performed with different methods. In the paper from the 
benchmarking with the DREAM5 dataset29, they used average rank aggregation to make the 
ensemble networks. The TopKLists R (v.4.1.3) package was used with the Borda function for 
average rank aggregation, using the results from the different methods. Next, modules were 
retrieved with the Jaccard similarity index and k-medoids clustering. The overlap in the 
predicted regulators of all the genes was calculated using the Jaccard index. These indices 
were then used to allocate each gene to a module with k-medoids. The R package cluster was 
utilized for this, with the pam function. K-medoids clustering is more robust than k-means 
clustering as the median is used instead of the mean of the clusters. Hence, one gene is used 
as a representative of its cluster. In k-means/k-medoids, firstly, the k cluster centroids are 
randomly assigned. Then for every gene, the nearest centroid is calculated and the gene is 
assigned to this cluster. Next, the centroids are updated to be the average/median of the 
assigned cluster points. These steps are repeated until convergence. Further, the regulators 
were assigned to each cluster. A maximum of ten regulators was chosen to be allocated to 
each module. TFs were ordered by the number of genes they regulate in the module. In 
addition, the TFs had to regulate at least half of the genes in the module.  
 
The modules from the Lemon-Tree networks and the ensemble networks were visualized in 
Module Viewer47. Module Viewer is a Java program in which the expression of different 
modules can be visualized, together with its regulators and annotation data. Network 
visualizations were created with the igraph package in R or with Cytoscape54.  
 

2.4 Functional characterization  

Functional enrichment analysis was done with the enrichR package in R. The databases used 
for the enrichment of the Lemon-Tree modules were Gene Ontology Biological Process (2018), 
GO Molecular Function (2018) and KEGG (2019). For the functional enrichment analysis of 
the ensemble networks, the same databases were used as above, however, the most recent 
versions were used this time. These were from 2021. Moreover, some additional databases 
have been used as well: Reactome_2016 and WikiPathway_2021_Human.   
 

2.5 Comparison of networks  

The different networks retrieved from the different methods were compared with Venn 
diagrams and network characteristics. This was done with the BioVenn and igraph R (v.4.0.3) 
packages, respectively. For each disease, the networks were compared that were retrieved 
from the different methods. The igraph package was used as well for the network 
characteristics of the ensemble network. Here, the network characteristics were used to 
compare the ensemble networks of AD and MDD. Next to this, the ensemble networks were 
compared with distance measures. The first distance measure used was the Jaccard distance. 
The Jaccard similarity index is calculated as the intersection of the edges, divided by the union 



 

21 
 

of the edges41. The intersection indicates the common elements, while the union indicates the 
edges present in either of the two networks. The Jaccard distance is then calculated as one 
minus the similarity. Hence, this is a distance measure that gives a broad overview of the 
number of edges that are shared between two networks. Next to this, the GCD was used, more 
specifically, GCD-11. This was done by utilizing the Python scripts and the orca.exe from the 
authors. However, some changes had to be made to the Python scripts, probably because the 
scripts were written in an older Python version. The networks need to be in Leda format, which 
was done with the write_graph function from the igraph package in R. GCD11 is an undirected 
method. Hence, the ‘duplicated’ edges had to be omitted first (A-B versus B-A), which was 
done in R as well. In the first step, the Graphlet Degree Vector matrix is computed for each 
network. In the next step, the GCD is computed between the networks. 
 

2.6 Further characterization with single-cell RNA-seq data 

Next to using bulk RNA-seq datasets, scRNA-seq datasets were used as well. These had to 
be originating from post-mortem brain samples. Preferably, these had to be from the same 
region as the bulk datasets, i.e. the prefrontal cortex. Both neurons and glial cells had to be 
included, as all cells can be implicated in the pathology. Similarly as in the bulk datasets, 
control samples need to be included and there have to be a similar number of samples (cells) 
for each disorder. The publicly available files were preprocessed in R (v.4.0.3). The Seurat 
package was used for quality control, preprocessing and visualizations. Cells with too low or 
too high UMI (unique molecular identifier) counts were omitted. Too few counts are mostly due 
to empty droplets, while too many counts can indicate there were two cells in one droplet. Next 
to this, only protein-coding genes were selected. Subsequently, the dataset was logarithmically 
transformed (NormalizeData function) and the highly variable genes were selected. Next, the 
regulators were added again. Here again, the list of Lovering et al.50 was used. Lastly, scaling 
was executed to make plots (ScaleData function).  
 

To visualize the cells in a low-dimensional space, firstly PCA was done. This was done with 
fewer genes than the genes selected for further analysis with SCENIC. Next, the number of 
principal components (PCs) to keep was evaluated with an elbow plot. With the selected PCs, 
the cells were visualized with UMAP (Uniform Manifold Approximation and Projection) and t-
SNE (t-distributed Stochastic Neighbor Embedding) plots. Both methods are frequently used 
with single-cell datasets. UMAP is better able to keep the global structure of the dataset. This 
was done by running FindNeighbors, FindClusters, RunUMAP, and RunTSNE. Firstly, a K-
nearest neighbor graph is constructed, based on the Euclidian distance in the PCA space55. 
Next, modularity optimization techniques are used to cluster the cells55. This is done with the 
Louvain algorithm by default. 
 
In addition, SCENIC was used to infer GRNs from the single-cell data. SCENIC can be 
implemented in both R and Python. GRNBoost2 is faster than GENIE339 and can only be used 
in Python for inference. GENIE3 can be run in both Python and R. It was run by Joke 
Deschildre, a PhD student in the lab of Prof. Vermeirssen, as she has experience with this 
method. It was run in Python (pySCENIC). GRNBoost2 was used for the network inference, 
with the arboreto package.  

3. RESULTS  

3.1 Overview of the expression data  

A GitHub repository was made for the scripts executed in this master’s dissertation (see 
Addendum 2). RNA-seq data were mostly retrieved from the NCBI Gene Expression Omnibus. 
GSE174367/syn22130832 contains bulk RNA-seq samples from 48 healthy controls and 47 
patients with AD56. The samples were taken from the prefrontal cortex. In addition, GSE101521 
and GSE80655 contain samples from 53 people with depression and 53 healthy controls. They 
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both contain samples from the dorsolateral prefrontal cortex. GSE101521 contains 30 samples 
of patients with MDD and 29 controls57. GSE80655 contains 23 samples from people with MDD 
and 24 control people58. An overview of the datasets can be seen in Table 1.  

Table 1. Overview of the bulk and single-cell datasets. 

Disorder Accession Data type Brain region Number of 
disease 
samples 

Number of 
control 
samples 

AD GSE174367 

syn22130832 

RNA-seq Prefrontal cortex 47 48 

MDD GSE101521 RNA-seq Dorsolateral 
prefrontal cortex 

30 29 

MDD GSE80655 RNA-seq Dorsolateral 
prefrontal cortex 

23 24 

Healthy  syn4956655 Prior 
network 

Frontal lobe   

AD GSE174367 

syn22130832 

snRNA-seq Prefrontal cortex 8 11 

MDD GSE144136 snRNA-seq Prefrontal cortex 17 19 

 

It is hard to find readily available multi-omics data of the same individuals. Up to today, there 
are still more microarray than RNA-seq datasets available. Subsequently, scRNA-seq datasets 
are even more sparse. Most available epigenetic data, such as ATAC-seq or DNase-seq, has 
been retrieved from healthy individuals and not patient samples. As such, multi-omics data 
were not found for AD and MDD.  
 
In the AD dataset, six outliers out of 95 samples were omitted. These consisted of four AD 
samples and two controls. Similarly, in the first MDD dataset, one outlier sample was deleted. 
This was a depressive sample. After the selection of highly variable genes and protein-coding 
genes, 9210 genes were left in the AD dataset and 8660 in the combined MDD dataset. 514 
regulators were added again to the Alzheimer dataset and 557 to the depression dataset. 
These TFs were expressed in the samples and the list of Lovering et al.50 was used to know 
which genes are seen as TFs. Even though these TFs are not highly variable over the different 
samples, they can still have an important function in the network, for instance by being 
constitutively active. This ultimately resulted in 9724 and 9217 genes in the AD and MDD 
dataset, respectively. There are a total of 1045 regulators in the AD dataset and 1101 in the 
MDD dataset.  
 

3.2 Bulk networks inferred through different methodologies  

Firstly, GENIE3 was used to infer the two networks, one for AD and one for MDD. The list of 
Lovering et al.50 was used to define the regulators. Here, a total of 10.121.643 edges were 
found in the AD network and 10.146.816 edges in the MDD network. Next, the edges were 
filtered to retrieve the top 100 000 edges, because too many edges are not feasible to work 
with. Moreover, these are the most significant edges. Next, CLR was used to again infer two 
networks. After inferring the networks with CLR, the edges were filtered to contain at least one 
regulator. If the edge was between the gene of a TF and a non-TF gene, then only the edge 
from the regulator to its target gene was kept. On the other hand, if an edge connects two TFs, 
then both edges were kept, as the direction is not known. Edges where the weight was zero, 
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were also omitted. Ultimately, this resulted in 5.592.222 regulatory edges in the AD network 
and 5.382.600 in the MDD network. Here the top 100 000 edges were selected as well for 
further analysis.  

In Lemon-Tree, the TF list of Lovering et al.50 was used again to define the regulators. The 
expression of these TFs in the Alzheimer and depression datasets was used as regulatory 
information. In the AD network, 155 modules were found, similar to the 156 modules found in 
the MDD network. The top one percent regulators were used to visualize the modules and their 
regulators with Module Viewer. Next, the modular output of Lemon-Tree was converted to an 
edge list, similar to those retrieved with GENIE3 and CLR. This was done by assigning each 
regulator to each target gene in the respective module. As a default in Lemon-Tree, the top 
one percent regulators are retrieved in the networks. However, when utilizing the top one 
percent regulators (687 for AD, 818 for MDD), there were only 45 161 edges in the AD network 
and 44 653 in the MDD network. Moreover, Lu et al. have dissected Lemon-Tree by assessing 
the network performance using different parameters and data59. In the paper, they recommend 
not using the top one percent regulators, which results in information loss, but to use at least 
the top 30%. As the top 100 000 edges were selected in the previous methods, this was done 
here as well. There were a total of 68 698 (AD) and 81 792 (MDD) regulators assigned to all 
modules. Lemon-Tree also assigns regulators randomly to modules. This can be used to 
compare these scores to the scores of the assigned regulators. However, as Lu et al. mention, 
this random list still has a reasonable performance59. When filtering with the highest random 
score (3.1 for AD and 3.2 for MDD), there were still less than 100 000 edges. As such, a score 
of 2.98 and 2.58 was used to filter the weight in respectively the networks of AD and MDD. 
There were some auto-regulatory edges in the network, because the expression of the 
regulators was used as well when retrieving the modules. As such, some regulators were 
assigned to the module and assigned as a regulator of the same module. Thus, these edges 
were deleted from the network, before selecting the top edges. The other networks have no 
auto-regulatory edges.  

MERLIN-P was tried as well. However, there was only one module made and as such, only 
one regulator was assigned to different target genes. The method was first executed without 
an initial module assignment. Subsequently, an initial module assignment was made with k-
medoids clustering with the R package cluster. The number of clusters was set to the number 
of clusters retrieved by Lemon-Tree (155 for AD, 156 for MDD). However, with the initial cluster 
assignment, the output of MERLIN-P was still not as desired, as it was the same as before. 
There were 5018 genes assigned to one module for AD and only 28 genes to one module for 
MDD. Perhaps the prior network and the datasets were too large for MELRIN-P.  

Next to the methods described above, PoLoBag, KBoost and VIPER were tried as well. 
PoLoBag was too computationally expensive; it was still running after 72 hours. VIPER is 
outdated, many people don’t get it running and there was uncertainty about the output. A prior 
network with ARACNE was made, but it was not possible to convert it to a regulon to use in 
VIPER. KBoost is a fast method. However, the number of retrieved edges was too little 
compared to the other methods. For AD there were 5425 edges inferred and for MDD 3551 
edges. Other possible methods to infer GRNs were either not feasible or were too similar to 
the already used methods. Some were not feasible due to not having enough data (e.g. 
epigenetic data), being implemented in MATLAB, or being too hard to implement e.g. because 
of not enough information provided about how to run the method.  

3.3 Analysis of method-specific networks  

The overlap between the networks retrieved by the different methods was investigated by 
making Venn diagrams of the edges. Next to this, Venn diagrams were made to see the overlap 
in the top 100 regulators of the different networks, for both disorders. These were the top 100 
regulators with the most ‘out’ edges (out-degree). The Venn diagrams were made with the R 
package BioVenn. As seen in the diagrams, there is not much overlap between the edges of 
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the different methods (Figure 9). There are as well some differences between the two 
disorders. It must be noted that the weights of the edges were not taken into account here. 
There is, however, a substantive overlap between the top 100 regulators (Figure 10). There 
are 45 top regulators in common for the AD networks and 40 for the MDD networks. These are 
170 total regulators of all methods for AD and 171 for MDD. Of these, there are 62 regulators 
in common between AD and MDD. To see whether there are any substantive differences 
between the number of nodes and the number of TFs for each network, these were as well 
verified. An overview of the values can be seen in Tables 2 and 3, for AD and MDD 
respectively. There are more regulators and fewer target genes in the MDD networks 
compared to the AD networks. This is because of the input expression data (see 3.1). Lemon-
Tree has a substantive lower number of nodes, due to the modular output. Not every regulator 
could be assigned to regulate a module and not every gene could be assigned to be part of a 
module.  

 

 

 

 

 

 

 

 

 

 

Figure 9. Venn diagrams of the overlap of the edges for the networks retrieved by CLR, GENIE3 and 
Lemon-Tree, for Alzheimer’s disease (left, AD) and depression (right, MDD).  

 

 

 

 

 

 

 

 

 

 

Figure 10. Venn diagrams of the top 100 regulators for each network retrieved by CLR, GENIE3 and 
Lemon-Tree, for Alzheimer’s disease (AD) and major depressive disorder (MDD).  

 



 

25 
 

Table 2. Overview of the number of nodes for the three Alzheimer’s disease networks.  

 CLR GENIE3 LEMON-TREE 

TOTAL NODES 9715 9384 8736 

TARGET GENES 9714 9340 8674 

TRANSCRIPTION FACTORS  1041 994 618 

 

Table 3. Overview of the number of nodes of the three networks for depression.  

 CLR GENIE3 LEMON-TREE 

TOTAL NODES 9183 8871 8012 

TARGET GENES 9182 8859 7934 

TRANSCRIPTION FACTORS  1101 1069 763 

 

Moreover, each network, for each disease, was inspected by topological measures. These 
were the average degree, correlation coefficient, density, diameter, edge betweenness, node 
betweenness, directed edge/node betweenness, connected components, and the (directed) 
average path length. In Tables 4 and 5, the values are indicated for each network 
characteristic, for Alzheimer's and depression, respectively. These network measures were 
calculated with the igraph package in R. The directed measures are similar to the undirected 
measures, with the only difference that only directed paths are considered. The diameter and 
edge betweenness were normalized for the number of nodes in the network.  

Table 4. Network characteristics of the three networks made by CLR, GENIE3 and Lemon-Tree of the 
Alzheimer’s disease dataset.  

Measure CLR GENIE3 Lemon-Tree 

Average degree  0,002119 0,002271 0,002621 

Clustering coefficient 0,063749 0,410084 0,438643 

Density 0,001060 0,001136 0,001310 

Node betweenness 10892,8 10813,3 8459,6 

Directed node betweenness 2432,6 2664,3 1462,2 

Edge betweenness 0,000231 0,000246 0,000222 

Directed edge betweenness 2.5782e-05 3,0266e-05 1,9165e-05 

Diameter 6 0,1358 7 

Connected components 1 1 1 

Average path length 3,2427 3,2393 2,9370 

Directed average path length 3,3395 4,7104 3,8552 
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Table 5. Network characteristics of the three networks made by CLR, GENIE3 and Lemon-Tree of the 
depression dataset.  

Measure CLR GENIE3 Lemon-Tree 

Average degree  0,002372 0,002542 0,003117 

Clustering coefficient 0,096489 0,355748 0,443298 

Density 0,001186 0,001271 0,001558 

Node betweenness 10828,6 10936,9 8200,1 

Directed node betweenness 2685,5 2877,3 1925,2 

Edge betweenness 0.000257 0,000278 0,000256 

Directed edge betweenness 3.1857e-05 3,6576e-05 3,0003e-05 

Diameter 6 0,1073 7 

Connected components 1 3 1 

Average path length 3,3587 3,3754 3,0472 

Directed average path length 3,4419 4,1439 3,8248 

 

Most values are similar. However, there is one striking difference, namely in the diameter. For 
CLR and Lemon-Tree, the diameter is two times six and seven, while for GENIE3, it is 0.1. 
Normally the diameter is an integer. This indicates that all nodes are connected in the GENIE3 
network. All the networks consist of one connected component, except for the MDD network 
of GENIE3. This is surprising, as here, the diameter is lower than one. The clustering 
coefficients of the CLR networks are lower than the networks of the other two methods. This 
indicates that the nodes are less clustered together in this network. The node and directed 
node betweenness are lower in the Lemon-Tree networks. These results again illustrate - next 
to the small overlap in edges - that different methods retrieve different networks. A 
representation of the networks can be seen in Supplementary figure S1 (Addendum 3), and 
the degree distribution for every network can be found in Supplementary figure S2.  

For Lemon-Tree, functional enrichment analysis was performed as well. This was most 
convenient with this method, as modules are already constructed by the algorithm. This was 
done with the enrichR package in R. The terms were filtered to have an adjusted p-value equal 
to or smaller than 0.05. Several modules were enriched for immunological functions in the 
Gene Ontology Biological Process terms. In particular, modules sixteen and fourteen from AD 
and MDD respectively were of interest, because of an extensive overlap. An overview of the 
terms can be seen in Figure 11. In module sixteen there are 153 genes, in module fourteen 
111, of which there are 68 in common. An overview of the gene expression of these modules 
can be seen in Addendum 3, Figures S3 and S4. There are eight (AD) (ATOH8, IKZF1, IRF8, 
NFATC2, RUNX1, RUNX2, TAL1, TCF3) and nine (MDD) (FOS, IKZF1, IRF8, MAF, RHOXF2, 
SPI1, TAL1, TFEC, ZNF551) regulators of these modules, with three shared regulators (IRF8, 
IKZF1, TAL1) (see Figure 12). All three are implicated in hematopoietic cell differentiation60. 
Moreover, IRF8 plays a regulatory role in immune cells and is involved in interferon response60. 
TAL1 is highly expressed in microglia61. IRF8 is implicated in microglial activation and 
neuroinflammation in AD mice models62. Several studies have found mutations that interrupt 
the binding of TAL1 in patients with AD61. Further, TAL1 was found to be implicated in MDD in 
two studies63,64, and according to DisGeNET, FOS has been implicated with depression as 
well65. Lastly, TCF3 and SPI1 have been associated with AD as well65. As mentioned in the 
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introduction, there are several cytokines overexpressed in depressive patients. In Figure 4, 
some of these cytokines are indicated. Moreover, neutrophils and T-cells have as well already 
been implicated in the disease22. Neutrophils have also been implicated in the pathology of 
AD66. β-amyloid could be a possible chemoattractant and attract neutrophils and microglia to 
the deposits. Moreover, neutrophils secrete reactive oxygen species, which are harmful to the 
brain. 

 

 

 

 

 

 

 

 

 

Figure 11. Representation of the top twenty terms of functional enrichment analysis by Gene Ontology 
Biological Process of modules 16 (AD) and 14 (MDD), ordered by increasing p-value. The gene count 
is represented on the x-axis.  
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Figure 12. Representation of the 
regulators of modules 14 from the 
depression (MDD) network and 16 
from the Alzheimer’s disease (AD) 
network. IRF8, TAL1 and IKZF1 are 
common regulators. The nodes 
‘AD’ and ‘MDD’ represent the target 
genes in these modules. Created 
with Cytoscape.  

 

 

 

 

 

3.4 Consensus regulatory programs for AD and MDD 

The top 100 000 edges were retrieved from the average rank aggregation for the ensemble 
networks. Thereafter, the overlap in edges between the ensemble networks and the networks 
retrieved by each method was compared. The overlap between the ensemble network and the 
initial networks was around 50 000 edges each time. The largest overlap was found between 
the ensemble network and the networks retrieved by GENIE3, both for Alzheimer's (53029 
edges) and depression (58810). For depression, the overlap of the networks was each time 
higher, compared to the networks of AD. There are 1041 TFs and 9675 target genes 
generating a total of 9685 nodes in the ensemble AD network. In the ensemble MDD network, 
there are 1101 regulators, 9006 target genes and a total of 9021 nodes. Of these, there are 
7042 nodes in common between the AD and MDD networks. For the ensemble networks, the 
same network characteristics were calculated as before, with the igraph package. In Table 6, 
there is an overview of all the characteristics of the two ensemble networks. All values are 
similar to each other, and to the values of the different network inference methods. The directed 
node betweenness is somewhat higher in the ensemble networks, meaning there are on 
average more paths that pass through a node. The diameter of the ensemble MDD network is 
one path longer than the diameter of the AD network. Both ensemble networks consist of one 
connected component. All values are higher for the MDD network, except for the directed 
average path length. Of the top 100 regulators of the ensemble networks, there are 34 in 
common. These can be found in Supplementary table 1 (Addendum 3).  
 
In addition, the networks were compared with distance measures. Firstly, the Jaccard similarity 
index was calculated between the two networks. The similarity was low, i.e. 0.0554. The 
Jaccard distance is then calculated as one minus similarity, thus 0.9446. This indicates that 
there are few edges in common between the two networks. This was visualized as a Venn 
diagram, see Figure 13. There are only 10500 common edges. However, looking at the number 
of edges each network contained, this is about ten percent of the edges the networks have in 
common. To see where these common edges are situated in the two networks, histograms 
were made from the rank of these common edges in both networks (Figure 14). Most of the 
edges are situated in higher ranks, thus with higher confidence. The ranks are higher in the 
AD network, with about 3500 shared edges in the highest 10 000 ranks. In the MDD network, 
there are about 2900 shared edges in the highest 10 000 ranks.  
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Table 6. An overview of the network characteristics of the ensemble networks of Alzheimer’s disease 

(AD) and major depressive disorder (MDD).  

Measure Ensemble AD Ensemble MDD 

Average degree 0,002132 0,002458 

Clustering coefficient 0,313963 0,350065 

Density 0,001066 0,001229 

Node betweenness 10033,5 10182,4 

Directed node betweenness 2916,2 2955,6 

Edge betweenness 0,000214 0,000250 

Directed edge betweenness 3,1020e-05 3,6331e-05 

Diameter 6 7 

Connected components 1 1 

Average path length 3,0722 3,2577 

Directed average path length 3,9606 3,8846 

 

Figure 13. Venn diagram of the edges of the two 

ensemble networks of Alzheimer’s disease (AD) and 

depression (MDD). There are 10500 edges in common.  

 

 

 

 

 

Figure 14. Histograms of the rank of the shared edges (10500) between the two ensemble networks, 
from the Alzheimer’s disease network (left), and the depression network (right).  

Further, the GCD43 was calculated. The GCD between the AD and MDD ensemble networks 
was 1.063. This distance measure is not that informative, as only two networks are compared. 
It is more informative if more than two networks are compared between each other. Looking 
at supplemental Figure S843, a measure of around one is quite different, but not excessively 
different. Additionally, heatmaps were made with the Graphlet Correlation Matrixes. This was 
done by using the output of the first step (see methods) and calculating the Spearman 
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correlation between the eleven non-redundant orbits43. In Figures 15 and 16, the heatmaps 
are plotted for AD and depression, respectively.  

 

Figure 15. Heatmap of the graphlet correlation matrix of the Alzheimer’s disease ensemble network. 
Only non-redundant orbits from up to four-node graphlets are depicted. Dark red indicates a high 
Spearman correlation, while white indicates no correlation.  

 

Figure 16. Heatmap of the graphlet correlation matrix of the depression ensemble network. Only non-
redundant orbits from up to four-node graphlets are depicted. Dark red indicates a high Spearman 
correlation, while white indicates no correlation.  

Orbits one, six and nine are characteristic of the existence of many degree-one nodes43. These 
orbits are clustered together in the AD network. Orbits two and seven, just like zero and five 
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are characteristic of hubs43. These are seen to cluster together in both the AD and the MDD 
networks. In the AD heatmap, there is no correlation between the orbits two and seven, and 
six and nine (white tiles). Moreover, the correlation between the two orbits two and seven and 
the orbits one, four, six, eight, nine and ten is lower than the correlation between these two 
orbits and the orbits zero, five and eleven. This indicates that nodes are either peripheral nodes 
or clustered nodes43. In the MDD heatmap, there is as well a low correlation between orbit six, 
and orbits zero, two, seven, and eleven. This is reasonable, as hubs have a large degree (not 
degree-one nodes). Orbits one and six also form a small cluster in the MDD network (peripheral 
nodes). Hence, similar clusters are found between the different orbits within the two ensemble 
networks. This indicates they have a similar structure, but there are still some differences, 
looking at the GCD. The two ensemble networks were as well visualized with igraph, see 
Supplementary figure S5 (Addendum 3).  

3.4.1 Module generation with k-medoids 
As mentioned in the methods, modules were retrieved with the Jaccard similarity index and k-
medoids clustering. The number of clusters to choose with k-medoids can be hard, especially 
for a large dataset. One possible method is to keep the number of clusters that were retrieved 
with Lemon-Tree, i.e. 155 for AD and 156 for MDD. However, it is possible that more clusters 
would be a better fit for the data. With 155 and 156 clusters for k-medoids, there was for both 
the AD and the MDD network one cluster with more than 1000 genes, and nine modules with 
more than 100 genes. As such, the optimal number of clusters was calculated using different 
indices, which were found in the paper by Saelens et al.67. In the supplementary material of 
the paper, they refer to the NbClust package in R. In the package, the function NbClust was 
used to retrieve the optimal number of clusters. The average silhouette width, Calinski-
Harabasz index and Davis-Bouldin index were used to estimate the optimal number of clusters 
with the scaled counts datasets. Firstly, the median method was used to cluster the data and 
find the optimal number of clusters. Next, k-means was used as a method. It was not possible 
to use k-medoids in the NbClust function. For the median method, the optimal number of 
clusters for the AD dataset was 189 for the Calinski-Harabasz index and Davis-Bouldin index. 
For the average silhouette width, this was 156. For the MDD dataset, all indices indicated 150 
as the optimal number. 150 was the lower border value for which the indices were calculated. 
When using k-means as a method, the Calinski-Harabasz index and average silhouette width 
indicated 150 and the Davis-Bouldin index signifies 243, for the AD dataset. Similarly, for MDD, 
the Calinski-Harabasz index pinpointed 150, average silhouette width 152, and Davis-Bouldin 
index 246. As the Davis-Bouldin index retrieved around 245 modules for both datasets with 
the k-means method, the clustering with k-medoids – with the Jaccard index – was done with 
k equal to 243 for AD and 246 for MDD. Here again, there was for each network a module with 
more than 800 genes and one module with more than 100 genes. As most indices indicated 
the optimal number of clusters around 150, and a similar large module was retrieved in the two 
clustering solutions, the solution with 155 and 156 modules was selected. The two large 
modules were briefly inspected and then omitted. They both contained genes of which the 
significant (adjusted p-value ≤ 0.05) functional enrichment terms indicated regulation of 
transcription and DNA binding, indicating the modules contained mostly TFs and co-factors. 
An explanation for this large module could be that these TFs were themselves regulated by 
few or by very different TFs in the networks, as the modules were based on the Jaccard 
similarity between the shared regulators for every gene. Hence, it would be hard to add them 
to a module. Another explanation could be that all these genes are regulated by the same or 
similar TFs, but this would be rare.  

In addition, regulators were added to each module. Each module had at least one regulator in 
the AD network and at least two in the MDD network, except for the large modules in both 
networks. The fact that these large modules have no regulator assigned, confirms the 
hypothesis that few and/or very different TFs were assigned to these genes. Next, the modules 
and regulators were visualized in Module Viewer, as was done with the Lemon-Tree network 
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before. The two large modules were not visualized. The figures can be found on the GitHub 
repository (see Addendum 2).  

3.4.2 Functional enrichment analysis 
All modules were inspected for functional enrichment using GO Biological Process, GO 
Molecular Function, KEGG, Reactome and WikiPathways. Here again, the terms were filtered 
to have an adjusted p-value of 0.05 or lower. For AD, there were some modules with 
predominantly immune functions, while some other modules were enriched for the ‘Alzheimer’s 
disease’ term from KEGG. For the MDD network, there were as well some modules with 
enriched terms related to the immune system. In addition, there were also some modules with 
the ‘Alzheimer’s disease’ term from KEGG, indicating an etiological overlap. Moreover, there 
was one module with nervous system development terms such as ‘nervous system 
development’, ‘glial cell development’, and ‘astrocyte differentiation’ from GO Biological 
Process. However, none of these modules had a very clear difference in expression between 
patients and controls. Thus, many of the retrieved modules are unchanged in AD and MDD, 
compared to controls. Moreover, when there is a difference, this difference is not pronounced, 
perhaps because of the heterogeneity of the disorders.  

Module 22 from the AD network contains immune-related terms (see Figure 17). Even though 
there is not a substantive difference between the expression in the Alzheimer’s patients and 
the controls, there seems to be a trend in which the control individuals have a lower expression 
(see Figure 17). The TFs of this module are IKZF1, NFATC2 and RUNX1. These three 
regulators were also regulators of module 16 from the Lemon-Tree AD network. All three genes 
are regulators of immune functions. IKZF1 is involved in hematopoietic cell differentiation60. 
Altered binding sites of IKZF1 have been implicated in risk genes for AD68. This has been seen 
for the ABCA7 and INPP5D genes, of which the latter is also a part of this module. INPP5D 
encodes for the SHIP1 protein, which is involved in several pathways. It acts as a negative 
regulator of myeloid cell proliferation/survival and chemotaxis, immune cells homeostasis, it 
regulates macrophage programming, phagocytosis and activation, and neutrophil migration60. 
The gene has been implicated in several disorders, such as AD, cancers, systemic lupus 
erythematosus, and inflammatory bowel disease65. NFATC2 induces the expression of 
cytokines in T-cells60. Interestingly, this gene was found to be implicated in the activation of 
microglia in a mouse model of AD69. RUNX1 is essential for normal hematopoiesis and is 
mainly involved in T-cell functioning60. This gene has as well been associated with AD before70.  
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Figure 17. Overview of module 22 from the AD network, which contains 47 genes. The expression of 
the module was visualized with Module Viewer, with the corresponding annotation data diagnosis, 
neuropathology, plaque stage, tangle stage, and sex (see legend). The upper panel represents the 
regulators of this module. In addition, the functional enrichment plots from the databases GO Biological 
Process, Reactome and WikiPathways are pictured. The top twenty terms are depicted, ordered by 
increasing p-value. The number of genes from the module belonging to the terms is represented on the 
x-axis.  

Similarly, module 24 of the MDD network contains immune-related terms (see Figure 18). 
However, here the expression of the depressive patients seems to be lower than the 
expression of the controls (see Figure 18). The regulators of this module are IKZF1, RUNX1 
and TFEC. Hence, there are two regulators in common between this module and module 22 
from the AD network. However, NFATC2 is part of this module 24. In addition, IKZF1 and TFEC 
were as well regulators of module 14 of the Lemon-Tree MDD network. Despite having similar 
regulators, there are only six genes in common between the two ensemble modules: ABCC4, 
CPVL, FCGR1A, GPSM3, IL10RA, and SLC7A7. ABCC4 and FCGR1A have been implicated 
in AD, while CPVL has been implicated in psychosis and AD65. CPVL is a protease that is 
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involved in the cleaving of phagocytosed particles in the lysosome, in an inflammatory protease 
cascade, and in pruning of peptides for antigen presentation60. Further, IL10RA has been 
associated with schizophrenia and multiple sclerosis65. In addition, IL10 has been associated 
with a worsening plaque load and reduced Aβ phagocytosis by microglia in mouse models of 
AD71. Looking at the functional enrichment analysis, there are some similar terms, and some 
differences between the two immune-related modules, so it is not entirely the same pathway. 
Both modules do have the ‘TYROPB causal network in microglia’ as the most enriched term, 
and Microglia Pathogen Phagocytosis Pathway’ as the fourth and third term, respectively, from 
WikiPathways. TYROBP is an adaptor protein that associates with activating receptors of 
immune cells60, and has been implicated in AD before65. It associates with TREM2, and both 
are required for phagocytosis in microglia. However, both TYROBP and TREM2 are not part 
of these modules. As both modules contain immune-related terms and terms related to 
microglia, these modules are probably active in microglia and the majority of the reads are 
probably coming from these cells. As the gene expression tends to be higher in Alzheimer’s 
patients, there is more activation of microglia or there are more microglia in AD, compared to 
control. On the other hand, as the expression of these genes tends to be lower in depressive 
patients, there is less activation or less microglia in this disease, compared to the controls. 
However, there are some terms with ‘negative regulation of’ in the MDD module, which might 
indicate that inhibitors of immune functions are downregulated in depression.  
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Figure 18. Overview of module 24 from the MDD network, which contains 54 genes. The expression of 
the module is visualized in Module Viewer, with the corresponding annotation data diagnosis and sex 
(see legend). The division between ‘Major depression non-suicide’ and ‘Major depression suicide’ is 
from the dataset GSE101521, while ‘Major depression’ is from the dataset GSE80655. ‘Control’ is from 
both datasets. The upper panel represents the regulators of this module. In addition, the functional 
enrichment plots from the databases GO Biological Process, Reactome and WikiPathways are pictured. 
The top twenty terms are depicted, ordered by increasing p-value. The number of genes from the module 
belonging to the terms is represented on the x-axis. 

Further, module 40 from the MDD network contained the term ‘Alzheimer’s disease’ from the 
KEGG database. The gene expression of the control individuals seems to be lower than the 
gene expression of the depressive individuals (see Figure 19). Terms from GO Biological 
Process include ‘mitochondrial respiratory chain complex assembly’, ‘NADH dehydrogenase 
complex assembly’, ‘mitochondrial electron transport, NADH to ubiquinone’, ‘aerobic electron 
transport chain’, and ‘mitochondrial ATP synthesis coupled electron transport’, which are all 
terms related to the mitochondrial respiratory chain. As mentioned in the introduction, there is 
mitochondrial dysfunction in MDD19,22 and AD14. As the genes seem to be upregulated in 
depression here, this might indicate a homeostatic reaction to counteract the dysfunction. The 
regulators of this module are CREB3, HEY1, IKZF4, PLAGL2, THAP11, USF1, ZNF532, and 
ZNF576. CREB3 and IKZF4 are as well involved in immune functions60. The genes that are 
enriched in the ‘Alzheimer’s disease’ term are NDUFA8, NDUFA6, PSMA1, NDUFA12, 



 

36 
 

PSMA2, NDUFS4, NDUFB3, NDUFS3, NDUFB2, and UQCRFS1. The NDUF genes and 
UQCRFS1 are involved in the mitochondrial respiratory chain, and the PSMA genes encode 
parts of the proteasome60.  

Figure 19. Overview of module 40 from the MDD network, which contains 49 genes. The expression of 
the module is visualized in Module Viewer, with the corresponding annotation data diagnosis and sex 
(see legend). The division between ‘Major depression non-suicide’ and ‘Major depression suicide’ is 
from the dataset GSE101521, while ‘Major depression’ is from the dataset GSE80655. ‘Control’ is from 
both datasets. The upper panel represents the regulators of this module. In addition, the functional 
enrichment plots from the databases GO Biological Process and KEGG are pictured. The top twenty 
terms are depicted, ordered by increasing p-value. The number of genes from the module belonging to 
the terms is represented on the x-axis.  

In addition, there are some other modules with a subtle difference in the gene expression 
between diseased patients and healthy controls. The visualizations of these modules can be 
found in the supplementary figures (Addendum 3). According to the functional enrichment 
analysis, module 26 (Figure S6) of AD is involved in cholesterol biosynthesis and intracellular 
protein transport, and module 60 (Figure S7) of the AD network is involved in mitochondrial 
pathways, such as mitochondrial protein import and the citric acid cycle, and metabolism of 
proteins. There are as well seven genes of this module (PSMB7, PSMC6, MAPT, CYC1, 
COX6A1, GAPDH, RTN4) enriched in the ‘Alzheimer’s disease’ term of the KEGG database. 
PSMB7 and PSMC6 are part of the proteasome, and MAPT encodes the tau protein. CYC1 is 
part of the Cytochrome C family, COX6A1 is involved in the mitochondrial respiratory chain, 
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while GADPH is involved in glycolysis. Lastly, RTN4 is a neurite outgrowth inhibitor. Module 
93 of the MDD ensemble network (Figure S8)  has terms related to oligodendrocytes, GABA 
receptor signaling, ‘mBDNF and proBDNF regulation of GABA neurotransmission’, and kinase 
activity.  

3.5 Single-cell analysis 

3.5.1 Single-cell RNA-seq datasets and preprocessing  
Similarly to the bulk RNA-seq datasets, single-cell RNA-seq datasets were retrieved from the 
prefrontal cortex. For depression, the single-nucleus dataset GSE144136 was found72. 
However, all samples were male. The dataset consists of seventeen and nineteen depressive 
patients and control individuals, respectively (see Table 1). This dataset contains 78 886 cells 
and 30 062 genes. For Alzheimer's, the single-nucleus dataset GSE174367 was utilized56. 
Here, there are eleven patients with AD and 8 controls, and nine female and ten male 
individuals. In this dataset, there are 61 472 cells and 36 114 genes. The raw counts were 
preprocessed with the Seurat package in R (see methods). Firstly, quality control was done. 
As such, it was decided for which value to filter the UMI counts in a cell. For the AD dataset, 
this was set to be between 200 and 7500, while for MDD it was set between 200 and 4000. 
Thereafter, 59 968 cells were remaining in the AD dataset and 73371 cells in the MDD dataset. 
The top 8000 genes were retrieved as highly variable features. After filtering for highly variable 
genes, adding the regulators again, and filtering for protein-coding genes, there were 8654 
genes left in the AD dataset and 8631 genes in the MDD dataset. There were 654 and 631 
regulators added again, to the AD and MDD dataset, respectively.  

In addition, UMAP and t-SNE plots were made. Firstly, PCA was executed with the top 2000 
highly variable genes and the function RunPCA from Seurat. Next, the elbow plot was used to 
determine the best number of PCs to work further with. This was thirteen for the AD dataset 
and twenty for the MDD dataset. These PCs were then used to plot the UMAP and t-SNE plots 
(Figures 20 and 22). In addition to the retrieved clusters visualized on the plots, the cell types 
that the researchers annotated were visualized as well. The clusters are not identical, as there 
are some clusters with other cell types in them (see Figures 21 and 23). The clusters from the 
AD dataset are more similar to the ones called by the researchers than the clusters from the 
MDD dataset. The fact that the cell types don’t overlap the clusters here completely indicates 
that a different clustering method can retrieve different results and annotate some cells to a 
different cell type. In the MDD paper, they used unsupervised graph-based clustering to identify 
the different cell types72. They refer to a previous version of Seurat. So the principle was the 
same, but the method was perhaps somewhat different. In the pbmc3k_tutorial from Seurat, 
they state themselves that ‘our approach to partitioning the cellular distance matrix into clusters 
has dramatically improved’ since the previous version. Moreover, the researchers used the top 
50 PCs, while here the first twenty were used. In the AD paper, they used the Leiden algorithm 
for clustering56. In the t-SNE plot of AD with the cell types (Figure 21), the excitatory neurons 
are divided into several clusters, while in the UMAP plot this is approximately one cluster. This 
confirms that UMAP is better able to keep the global structure of the data.  
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Figure 20. UMAP and t-SNE plots of the single-nucleus Alzheimer’s disease dataset, with twenty 
clusters. The clusters were retrieved with the Louvain algorithm. The plots were made with the first 
thirteen principal components, retrieved from the top 2000 highly variable genes.  

Figure 21. UMAP and t-SNE plots of the single-nucleus AD dataset. The plots are the same as above, 
however, the annotation is different. Here, the cell types that were annotated by the researchers are 
plotted56. Abbreviations: ASC astrocytes; EX excitatory neurons; INH inhibitory neurons; MG microglia; 
ODC oligodendrocytes; OPC oligodendrocyte precursor cells; PER.END pericytes/endothelial cells. 

 

 

 

  

 

 

 

Figure 22. UMAP and t-SNE plots of the single-nucleus major depressive disorder dataset, with 29 
clusters. The clusters were retrieved with the Louvain algorithm. The plots were created with the first 
twenty principal components, retrieved from the top 2000 highly variable genes.  
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Figure 23. UMAP and t-SNE plots of the single-nucleus MDD dataset. The plots are the same as above, 
however, the annotation is different. Here, the cell types that were annotated by the researchers are 
plotted72. Abbreviations: Astros astrocytes; Ex excitatory neurons; Inhib inhibitory neurons; Micro/Macro 
microglia/macrophages; Oligos oligodendrocytes; OPCs oligodendrocyte precursor cells; Endo 
endothelial cells; Mix mix of cells.  

3.5.2 Network inference with SCENIC 
SCENIC was run in Python, with help from Joke Deschildre. As output, a table of the regulons, 
together with the activity scores of the different regulons in different cell types, and boxplots 
indicating the number of regulons per cell and number of cells per regulon were retrieved. A 
regulon signifies a TF together with its target genes. The table indicates which TF motif is found 
in association with which target gene, from RcisTarget. The boxplots are depicted in 
Supplementary figure S9 (see Addendum 3). The heatmaps with the activity scores of the 
regulons for each cell type can be seen on GitHub (see Addendum 2), as they are too large to 
paste into this document. In Table 7, an overview of the highly active regulons in each cell 
type, from the AD and MDD networks, can be found. A large part of the regulons that are highly 
active in a certain cell type of one of the two networks, is also active in the same cell type in 
the other network (dark red in Table 7).  

Table 7. Overview of the highly active regulons in different cell types of the brain. Transcription factors 
in dark red are also active in the other network, in the same cell type.  

Cell type Alzheimer’s disease Major depressive disorder 

Excitatory neurons AHR, HLF, MEF2C, ZEB1, 
ZMAT4 

FOXP1, NFAT5, PBX1, RFX3, 
TEAD4, ZMAT4, ZNF282, 
ZNF699 

Inhibitory neurons HLF, MEF2C, PKNOX2, 
ZEB1, ZMAT4 

DLX1, DLX2, DLX5, FOXN3, 
HIVEP3, LHX6, MAFB, 
NR2F2, TCF4, ZMAT4, 
ZNF282 

Microglia  ELF1, ELK3, ETS2, ETV6, 
FLI1, IKZF1, IRF8, MAF, 
NFATC2, RUNX1, SPI1, 
STAT6  

FOXN3, IRF8, RUNX1 

Oligodendrocytes  MXI1, NFIX, SREBF2, 
ZNF536 

FOXN2, SOX10 

Oligodendrocyte 
precursor cells  

PRRX1, PRRX2, SOX6, 
VSX1, ZEB1, ZNF227 

FOXN3, PBX3, PRRX1, 
SOX13, SOX4, ZEB1 

Astrocytes  FOXO1, RFX2, SOX5, 
TCF7L1, TCF7L2 

FOXO1, PAX6, RARG, RXRA, 
SOX2, SOX9, TCF7L2 
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3.5.3 Further analysis of the single-cell networks 
The regulons of RUNX1, NFATC2 and IKZF1 are highly active in the microglia in the single-
cell AD network, which confirms the hypothesis that the immune-related bulk ensemble 
modules (module 22 from AD and 24 from MDD) represent modules from microglia. The 
regulon of RUNX1 is highly active and the regulon of IKZF1 is active in the microglia in the 
single-cell MDD network. The regulon of TFEC is not present in both single-cell networks, and 
the regulon of NFATC2 is not present in the single-cell MDD network. In addition, when looking 
at the regulators of the two selected modules from Lemon-Tree, the regulons of IRF8 and TAL1 
are most operative in the microglia in both single-cell networks. Moreover, the MAF regulon is 
most viable in the microglia of the single-cell AD network, while on the other hand, the TCF3 
regulon is most active in the microglia of the MDD network. The regulon of SPI1 is most 
functional in the microglia in the single-cell MDD network, while it is more active in the 
oligodendrocytes of the AD network.  

As the regulons of IKZF1, IRF8, NFATC2, RUNX1, and TAL1 are highly active in microglia and 
there is a difference between the activation of these cells in Alzheimer's and depression in the 
bulk networks, these were further investigated. In the single-cell networks, IKZF1 has 1520 
target genes in the AD network, while it has 227 target genes in the MDD network. IRF8 has 
938 target genes in the AD network and 142 in the MDD network. NFATC2 has 541 target 
genes in the AD network, while it is no regulator in the MDD network. RUNX1 has 1016 target 
genes in the AD network and 314 in the MDD network. Lastly, TAL1 has 401 target genes in 
the AD network and 89 in the MDD network. As the number of target genes is too large to 
represent in a network, a core GRN has been retrieved with only these five TFs (Figure 24). 
They are all connected to each other, however, there are more edges in the AD network, 
compared to the MDD network. IRF8 only regulates itself and the other regulators, but is not 
regulated by any of the other TFs. In addition, in the MDD network, NFATC2 is only regulated 
by other TFs, but does not regulate any target genes, as this gene was not retrieved as a 
regulator in the single-cell MDD network. As the regulon of TAL1 of the MDD network was the 
smallest, this regulon was visualized as well (see figure 25). In addition, functional enrichment 
analysis with GO Biological Process, Molecular Function, KEGG, Reactome and 
WikiPathways was performed on this regulon. Most terms are related to microglia and cytokine 
response. As mentioned above, TAL1 has been implicated before in both AD and MDD.  

Figure 24. Microglial core gene regulatory networks with five regulators. The single-cell Alzheimer’s 
disease network is depicted on the left, the single-cell depression network is depicted on the right. This 
figure was created with Cytoscape.  
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Figure 25. Visualization of the TAL1 regulon in the single-cell depression network, together with the 
functional annotation from Gene Ontology Biological Process and WikiPathways. The top twenty terms 
are depicted, ordered by increasing p-value. The number of genes from the regulon belonging to the 
terms is represented on the x-axis. Some of the target genes are transcription factors as well, such as 
RUNX1, NFATC2, TFEC and NKZF1. The graph was created with Cytoscape.  

In addition to the regulators per cell type that were compared to some modules from the bulk 
ensemble networks, the single-cell networks were also compared to the bulk ensemble 
networks. Firstly, the edges were compared between the networks of the same disease with 
Venn diagrams (see Figure 26). The two disorders have a similar number of edges in common, 
but the single-cell network of MDD has fewer edges than the single-cell network of AD. More 
specifically, the single-cell network of AD consists of 37 070 edges, while the network of MDD 
has 22 544 edges. Secondly, the networks were compared through the Jaccard index. The 
Jaccard similarity index of the bulk and single-cell AD networks is 0.0138, resulting in a Jaccard 
distance of 0.9862. On the other hand, the Jaccard similarity index between the single-cell and 
bulk MDD networks equals 0.0153, resulting in a Jaccard distance of 0.9847. Thirdly, the 
number of regulators shared between the bulk and single-cell networks for the same disease 
was verified. There are 258 regulators in common between the AD networks, and 238 
regulators in common between the MDD networks.  
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Figure 26. Venn diagrams for the comparison between the edges of the ensemble bulk networks and 
the single-cell networks of Alzheimer’s disease (AD) and major depressive disorder (MDD). 

Furthermore, the number of nodes of the single-cell networks was determined. An overview of 
the number of nodes, target genes and regulators of the single-cell networks can be seen in 
Table 8. The number of nodes is substantially less in the MDD network compared to the AD 
network. The single-cell networks were as well compared to each other through the number of 
overlapping edges (see Figure 27) and the Jaccard index. There are 3663 edges in common, 
which is about ten percent of the total edges of the networks. The Jaccard similarity index 
equals 0.0655, resulting in a Jaccard distance of 0.9345. Thus, the Jaccard similarity index 
between the two single-cell networks is larger than the Jaccard similarity indices between the 
bulk and single-cell networks of the same disorder. This could be explained by the fact that the 
single-cell networks were retrieved by a different method than the ensemble bulk networks. 
Moreover, the number of regulators is substantially less in the single-cell networks compared 
to the bulk networks. SCENIC makes use of RcisTarget, which cannot predict regulons for a 
TF with an unknown motif. Further, the number of edges is not equal in the bulk and single-
cell networks. In comparison, the Jaccard similarity index of the ensemble networks was 
0.0554.  

Table 8. Overview of the number of target genes, regulators and the total number of nodes of the single-
cell networks of Alzheimer’s disease and depression.  

 ALZHEIMER’S DISEASE DEPRESSION 

TOTAL NODES 6360 4814 

TARGET GENES 6001 4549 

TRANSCRIPTION FACTORS  359 265 

Figure 27. Venn diagram of the edges of the single-cell 
networks of Alzheimer’s disease (AD) and major 
depressive disorder (MDD). There are 3663 edges in 
common.  
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4. DISCUSSION  
The purpose of this master’s dissertation was to find common and distinct pathways and 
regulators between AD and MDD. This was done by inferring GRNs with different methods 
(GENIE3, CLR and Lemon-Tree). There was only a small overlap in the results retrieved from 
the different methods, highlighting the different underlying assumptions and algorithms. In the 
next step, ensemble networks were made from each disorder, from which modules were 
retrieved. Given the small overlap in the different network inference methods, creating an 
ensemble provides a broader view of the true underlying network. The modules were used to 
perform functional enrichment analysis with GO, KEGG, Reactome, and WikiPathways. Some 
modules were prioritized, with a subtle difference in gene expression between patients and 
controls. Two of these modules contained immune-related terms (module 22 from the AD 
network and module 24 from the MDD network). Interestingly, despite having a small overlap 
in genes between these modules, there was an overlap in the regulators. IKZF1 and RUNX1 
were common regulators, while one of the regulators of the AD module, NFATC2, was also a 
member of the MDD module. Similar modules had as well been found in the networks inferred 
by Lemon-Tree. Here again, there was overlap between the regulators of the Lemon-Tree AD 
and MDD modules: IRF8, KZF1 and TAL1 were shared. Interestingly, TAL1 has been 
associated with both AD and MDD before. Furthermore, the gene expression of module 22 
was increased in AD patients compared to controls, while it was decreased in MDD patients 
(module 24) compared to controls, indicating a distinct disruption of these pathways in the two 
disorders. This is as well confirmed by the small overlap in genes in the two modules.  
 
Further, networks were inferred with SCENIC, with scRNA-seq data. As such, cell-type-specific 
regulons were retrieved for both AD and MDD. By also inferring GRNs with single-cell data, it 
was possible to further characterize the results. The main drawback of bulk RNA-seq is the 
fact that all reads are averaged over the cells, and that the results are influenced by the number 
of cells of each cell type present in the sample. To investigate the regulators of the immune-
related modules from the bulk network inference further, the activity of these regulators (IKZF1, 
IRF8, NFATC2, RUNX1 and TAL1) was investigated in the different cell types. Most of the TFs 
had regulons that were most active in microglia, in both AD and depression. These regulons 
were further inspected in the single-cell networks, and it was seen that all TFs regulate each 
other (see Figure 24). Thus, a large part of the genes in the immune-related bulk modules are 
probably coming from reads from microglia. It is already known that microglia play a pivotal 
role in AD. As mentioned above, the module of the AD network had a higher gene expression 
in patients compared to controls, indicating activation of microglia in AD. In a mouse model of 
AD, NFATC2 was found to be implicated in the activation of microglia69. The researchers have 
crossed AβPP/PS1 mice with NFATc2-/- mice, which resulted in mice with diminished cytokine 
levels, reduced microgliosis and reduced astrogliosis, but with no effect on plaque load, 
compared to AβPP/PS1 mice. In addition, IRF8 contributes to microglial activation by 
regulating microglial immune responses and chemotaxis62. The expression of IRF8 was found 
to be increased in the brains and microglia of an AD mouse model62. Moreover, Aβ was 
discovered to promote the expression of IRF8, while overexpression of IRF8 aggravated 
microglial activation.  
 
In module 22 of the AD network (Figure 17), there was an enrichment of several terms related 
to cytokines, with several specific terms of cytokine production of IFN-γ, IL-2, IL-6, IL-8, and 
TNF. NFATC2 is a regulator of cytokine release60. In addition, there were terms related to 
phagocytosis. TYROBP is required in microglia for phagocytosis, together with TREM2. There 
were as well some terms related to T-cells, such as ‘regulation of T cell activation via T cell 
receptor contact with antigen bound to MHC molecule on antigen presenting cell’, ‘TCR 
signaling’, ‘Costimulation by the CD28 family’ and ‘Phosphorylation of CD3 and TCR zeta 
chains’. NFATC2 and RUNX1 are both involved in T-cell functioning60. Mutations in RUNX1 
have been associated with increased risk for AD70. Lastly, there were some terms related to 
Toll-like receptor (TLR) signaling. On the other hand, in module 24 of the MDD network (Figure 
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18), the cytokine response (IFN-γ, IL-10) was not dominant, but rather neutrophil activation 
stood out. Neutrophils and IFN-γ are increased in depression, while IL-10 is decreased (Figure 
5)22. The α-subunit of the IL-10 receptor (IL10RA) was one of the genes shared in the two 
modules. In addition, there were some enriched terms related to B- and T-cells. B-, TH2 and 
Treg cells are decreased, while TH1 and TH17 cells are increased in depression22. As there were 
some terms with negative regulation, it is hard to determine which cells and/or pathways are 
decreased or increased here. Hence, this needs further research. Phagocytosis was recurring 
in this module as well. Despite TYROBP not being a part of modules 22 and 24 in the bulk 
ensemble networks, it was regulated by the TFs IKZF1, IRF8 and RUNX1 in the AD single-cell 
network and by IKZF1 and IRF8 in the single-cell MDD network. TYROBP plays an important 
role in signal transduction in microglia and has been found to be significantly upregulated in 
the brain of patients with AD73. TYROBP is important for the phagocytic activity of microglia, 
together with TREM2, which is a well-known risk gene for AD. In addition, TYROBP can also 
suppress cytokine production and secretion. Thus, TYROBP deficiency could to lead to 
aberrant phagocytosis and increased cytokine release, which the AD brain tries to counteract 
by increasing the expression levels of TYROBP. Further, altered binding sites for IKZF1 have 
been found in AD68. IKZF1 is an important TF in hematopoietic cell differentiation60. It is known 
to regulate INPP5D, which is involved in several pathways and is as well an AD risk gene68. 
This gene was part of module 22 of the AD network. INPP5D is a negative regulator of myeloid 
cell proliferation and of chemotaxis, it is involved in immune cell homeostasis and regulates 
macrophage phagocytosis and activation, and neutrophil migration. Functional enrichment 
analysis of the TAL1 regulon in the single-cell MDD network (Figure 25) was as well performed, 
where cytokine response and microglial activation and phagocytosis were recurring themes. 
TAL1 is as well a regulator of hematopoietic differentiation60. It was found to regulate six 
circular miRNAs dysregulated in MDD and was associated with a higher risk to develop 
MDD63,64. In addition, disrupted binding sites for TAL1 were found in AD61.  
 
In addition to the immune-related modules, one module (module 40, Figure 19) of the MDD 
network was prioritized as well. This module was regulated by the TFs CREB3, HEY1, IKZF4, 
PLAGL2, THAP11, USF1, ZNF532, and ZNF576. All of these TFs were part of the top 100 
regulators of the MDD module (Supplementary table 1). THAP11 was the top one, USF1 the 
second, CREB3 the sixth, and HEY1 the seventh regulator. This module contained genes 
related to the mitochondrial respiratory chain complex. Mitochondrial dysfunction has been 
implicated in both AD and MDD before14,19,22. In addition, there were some genes of which the 
proteins are part of the proteasome complex, which has been implicated in AD and treatment-
resistant MDD74. Moreover, the proteasome system has been associated with psychosis, BD 
and SCZ as well. Module 60 of the AD network (Supplementary figure S7) also contained 
genes involved in mitochondrial pathways and parts of the proteasome. In addition, the gene 
encoding tau (MAPT) was part of this AD module.  
 
Of the top 100 regulators of the AD and MDD ensemble networks, MEF2C and TFEB were 
two common regulators. Interestingly, in Pearl et al. these two regulators were found as well 
as hub regulators in AD28 (see introduction). In the AD network, TFEB was a regulator of 
modules 12, 18 and 126, while MEFC2 was a regulator of 34 modules, including module 26 
(Supplementary figure S6). MEFC2 was the second top regulator in this network, indicating 
this TF had a broad function in the AD network. In the MDD network, MEFC2 was a regulator 
of 13 modules, while TFEB was a regulator of modules 15, 38, 127, and 140. Here, MEF2C 
was the fifth top regulator. In the AD network, module 12 contained genes involved in 
myelination by oligodendrocytes, similarly to module 15 from the MDD network. Modules 38 
and 127 from the MDD network were related to endocytosis, cytoskeleton reorganization, 
extracellular matrix organization, and Notch signaling. TFEB is involved in lysosomal 
degradation and autophagy. It is also involved in the immune response against bacteria and 
in T-cell-mediated antibody responses60. MEF2C is essential for hippocampal-dependent 
learning and memory by suppressing the number of excitatory synapses, and for normal 
neuronal development60. The regulon of MEF2C was highly active in both the excitatory and 
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inhibitory neurons in the single-cell network of AD, while MEF2C was not inferred as a TF in 
the MDD network. TFEB was not a regulator in both single-cell networks. In addition, in this 
paper from Pearl et al., microglial networks were upregulated as well28.  
 

The paper from which the AD bulk and scRNA-seq datasets were utilized, has profiled the 
chromatin accessibility and transcriptome of AD patients and controls56. They performed bulk 
RNA-seq, single-nucleus (sn) RNA-seq, and snATAC-seq from the prefrontal cortex of 
postmortem brains. snATAC-seq and snRNA-seq data was integrated. They identified several 
TF motifs with an increased enrichment in AD, in astrocytes, excitatory neurons and 
microglia56. Multiple neuronal and glial subpopulations were found and the composition of each 
cluster was examined in the context of AD. Moreover, differentially accessible chromatin 
regions and DEGs were identified in AD for each cell cluster. The researchers indicate this 
may signify the dysregulation of particular biological pathways in distinct cell populations in 
AD56. Furthermore, they constructed cell-type-specific GRNs for microglia and 
oligodendrocytes. They identified candidate target genes of a given TF by looking at the 
accessibility of the promoters and other cis-regulatory elements and whether they contain the 
TF’s binding motif, in the cell type of interest. In these GRNs, they found multiple genes located 
at known AD genome-wide association studies (GWAS) loci. They also introduced scWGCNA 
to infer gene co-expression networks with both snRNA and bulk RNA-seq data. Additionally, 
they performed pseudo-time trajectory analysis in oligodendrocytes, microglia and astrocytes. 
The researchers have found both cis- and trans-gene regulation disruption in AD. SPI1 was 
prioritized as a transcriptional repressor in microglia in AD56. Interestingly, the regulon of SPI1 
was highly activated in the microglia of the single-cell AD network (see Table 7). Disruption of 
SPI1 binding sites were also found in AD patients in another paper68.  
 

Pantazatos et al.57 have profiled the transcriptome of individuals with depression and controls. 
They made a distinction between suicides and non-suicides. The data comes from the 
dorsolateral prefrontal cortex of postmortem brains. This dataset was used for bulk network 
inference in this master’s dissertation. Additionally, small RNA-seq was also performed to 
examine miRNA expression. They choose the dorsolateral prefrontal cortex because it is 
‘involved in the regulation of impulsivity, decision-making, cognitive control of mood and other 
executive functions related to suicidal behavior’57. None of the individuals took any recent 
psychotropic medication. DEG analysis was executed between controls, non-suicide 
depressive patients and suicides. Thus, they looked at both the effects of depression and 
suicide. In addition, they also looked at differential exon usage. Humanin-like 8 (MTRNR2L8 / 
HN8) was overexpressed in depression and suicide57. This gene has neuroprotective, anti-
apoptotic and anti-inflammatory effects. This could be a compensation for the chronic stress 
in MDD57. Furthermore, they executed GO functional enrichment analysis. The expression of 
genes involved in immune-related and microglial cellular functions was decreased in both the 
depression and suicide groups. Further, they examined some specific pathways. As such, they 
found lower expression of genes related to ‘oligodendrocyte differentiation’ in depression and 
to ‘astrocyte cell migration’ in depression and suicide57. Lower expression of transcripts 
involved in ‘regulation of synaptic transmission, glutamatergic’ was found as well. Their 
findings of lowered immune-related functions contradict other studies and indicate that MDD 
is a highly heterogeneous disorder. However, as they mentioned themselves, this lower 
expression might also be indicative of lower levels of microglia and astrocytes57. Brain region 
differences may also have an effect. The researchers indicated the limitations of their study, 
which are the modest sample sizes, the examination of only one brain region, and not making 
a distinction between neurons and glial cells57. The first limitation was attempted to overcome 
in this master’s dissertation by using two different datasets. The latter limitation can be 
overcome with scRNA-seq.  
 

The second dataset for depression originates from a paper where they analyzed the 
transcriptome of patients diagnosed with SCZ, BD and MDD, and controls58. The RNA 
originates from the anterior cingulate cortex, the dorsolateral prefrontal cortex and the nucleus 
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accumbens. These regions are often associated with mood alterations, cognition, impulse 
control, motivation, reward, and pleasure58. The data from depressive patients and control 
individuals from the dorsolateral prefrontal cortex was used in this dissertation. Next to 
transcriptional profiling, they also did metabolic profiling of the anterior cingulate cortex with 
mass spectrometry. Similarly as in the previous paper, they executed DEG analysis within 
each brain region. No genes were significantly differentially expressed between MDD and 
control samples, in any brain region. The largest number of DEGs were found in SCZ samples 
in the anterior cingulate cortex. GO enrichment analysis was performed on the genes, and 
altered metabolites and genes were analyzed for enrichment with KEGG58. Moreover, they 
deconvoluted the expression data into cell types. As such, they found a significant decrease 
in neuron-specific gene expression and an increase in astrocyte-specific expression in the 
anterior cingulate cortex, in SCZ and BD compared to controls58. Metabolite levels of MDD 
were similar to control samples. As most changes were found for SCZ, the study largely 
focused on this disease. The limitations of this study were that women are underrepresented 
and that there is no information about the smoking status or patient drug use. Some toxicology 
reports were positive in patients. Another limitation they mention is the RNA quality coming 
from post-mortem brains58.  
 

The snRNA-seq data for depression originates from a paper where they used snRNA-seq from 
MDD cases and psychiatrically healthy controls to identify cell-type-specific DEGs72. All 
samples were from male individuals and all MDD patients died from suicide. The toxicological 
reports were positive for some of the samples. Three control samples and eight MDD samples 
contained residues of alcohol/drug use, while three MDD individuals had taken psychiatric 
medication72. The samples originate from the dorsolateral prefrontal cortex. The researchers 
found 96 DEGs in sixteen different cell clusters. This signifies the complex interplay between 
different cell types in the pathophysiology of MDD. Most DEGs were found in the clusters of 
immature oligo-precursor cells and deep layer excitatory neurons72. Oligodendrocyte precursor 
cells are believed to function as a distinct cell type in the brain and have as well been implicated 
in depressive-like behavior72. Functional enrichment analysis of the DEGs implicated terms 
related to synaptic plasticity, ‘kinesins’, ‘HSP90 chaperone cycle for steroid hormone receptors’ 
and the ‘innate immune system’72. Next, they also did a network analysis with STRING. From 
this, dysregulated pathways including cytoskeletal function, immune system function and 
chaperone cycling were found. In addition, they also used WGCNA with averaged gene 
expression profiles and the percentages of the contributions of the cell types as correlates72. 
They found five modules significantly associated with depression, of which four were strongly 
associated with the deep layer excitatory neurons. The researchers indicate some limitations 
of their study, which were the use of only male individuals, technical limitations of droplet-
based snRNA-seq of human brain samples and retrieving a much greater proportion of 
neurons compared to glial cells72.  
 

Interestingly, a recent study investigated the shared genetic etiology between AD and MDD 
using GWAS datasets75. The researchers found a moderate level of polygenic overlap between 
the two disorders. Noteworthy, they found a stronger overlap when the SNPs in the APOE 
region were excluded from the analysis. This is because there is a very strong association 
between SNPs in this region and AD, with a change in p-value of up to 227 orders of 
magnitude, compared to the other SNPs75. An enrichment of SNPs was found on chromosome 
eleven, which were linked to expression regulation in myeloid cells, such as microglia. The 
associated SNPs were mapped to 40 genes (in closest proximity) when studying enrichment 
for AD, given MDD GWAS association, of which nine genes (BIN1, CELF1, CR1, FERMT2, 
MS4A6A, PICALM, PTK2B, SORL1, and SPI1.) were already known as AD risk genes75. These 
nine genes are involved in two major pathways; immune response (CELF1, CR1, MS4A6A, 
and SPI1) and regulation of endocytosis (BIN1, FERMT2, PICALM, PTK2B, and SORL1). This 
indicates that indeed MDD and AD both have an immunological compound, and that there is 
some genetic overlap in immune aberrations. Next, they also did a gene set enrichment 
analysis, where one interesting term was ‘leukocyte transendothelial migration’75. SPI1 was 
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part of module 24 from the ensemble MDD network (Figure 18), and its regulon was highly 
active in microglia in the single-cell AD network (Table 7). This gene was as well prioritized in 
the single-cell analysis of AD in a paper above56. Similarly, in a new GWAS of AD, the most 
significantly enriched gene sets were related to tau and amyloid, lipids, endocytosis and to 
immunity76. The endocytosis pathway might be related to microglial phagocytosis, which is 
impaired in AD76. In addition, they found several genes implicated in the TNF-α signaling 
pathway.  
 
To predict cell-type disease genes and GRNs of neurodegenerative and neuropsychiatric 
diseases, researchers have developed scGRNom (single-cell Gene Regulatory Network 
prediction from multi-omics)77. It consists of integrating multi-omics data for predicting GRNs 
and identifying disease genes and regulatory elements. In the first step chromatin interactions 
are discovered with, for instance, Hi-C data, between enhancers, promotors and genes. Then, 
TF binding sites are inferred in the interacting regions, outputting a reference GRN linking 
these TFs, enhancers and promotors of the target genes. In the last step, the final GRN is 
predicted by TF-target gene expression relationships inferred through elastic net regression77. 
It is also possible to provide open chromatin regions inferred from ATAC-seq to refine the 
network. To determine the cell-type-specific disease genes and regulatory elements, the cell-
specific GRN is needed together with a list of SNPs associated with the disease. The 
interruption of TF binding sites by the SNPs is investigated and the linked genes and 
enhancers/promotors are given as output. The researchers applied the pipeline to SCZ and 
AD and found that enhancers in cell-type-specific GRNs are enriched with GWAS SNPs. When 
linking these SNPs to genes, they found cross-disease and disease-specific functions at the 
cell-type level77. They used healthy brain multi-omics data with disease-specific SNPs.  

In the following paragraph, some limitations of the used method in this master’s dissertation 
will be indicated. Firstly, only TFs were used as regulators, without taking into account co-
factors or regulatory RNA molecules such as lncRNA and miRNA. As such, GRNs were 
inferred, and not regulatory networks. In addition, only transcriptomics data was used to infer 
the networks, without additional information. However, Merlin-P and KBoost were tried as well, 
but the output was not as desired. In both methods, a prior network was used, integrating 
additional data. SCENIC uses additional data as well from RcisTarget. Further, k-medoids was 
used to assign the genes into modules from the ensemble network. As a consequence, a gene 
can only belong to one module. In reality, however, genes mostly belong to different pathways. 
Next, by using publicly available data, there is less control over the samples that are used. For 
instance, it is not always known if the patients took medication, which might influence the 
results. Additionally, two different datasets were used for the depressive samples, for which 
batch effects had to be accounted for. This will always influence the results. Another limitation 
is the fact that, overall, research is still focused on white individuals. As a consequence, the 
available samples are mostly from people of European descent. This might influence the 
results as well, as the genetic diversity is limited. Using samples from individuals of African or 
Asian descent, for instance, would result in a larger genetic diversity and a better possibility to 
extrapolate findings to the whole human population, instead of a minority. Lastly, post-mortem 
brain samples are prone to degradation, which might result in the degradation of RNA 
molecules78. In addition, these samples only represent one snapshot of the patient’s lifetime78.  
 
In conclusion, different pathways have been found that are dysregulated in both AD and MDD. 
These are the activation of microglia, the mitochondrial respiratory chain and the proteasome 
system. Especially regarding the activation of microglia, different regulators were found that 
were implicated in both AD and MDD. Of particular interest were the TFs IKZF1, IRF8, 
NFATC2, TAL1, RUNX1, and SPI1. All of these TFs have been implicated with AD, but only 
TAL1 has been implicated with MDD before. In addition, INPP5D, TYROBP and TREM2 have 
been linked with the activation of microglia in the AD bulk network, and they have been 
implicated in AD before as well. TYROBP and TREM2 have been linked with the MDD bulk 
network as well. Moreover, TFEB and MEF2C were two hub regulators in AD and MDD that 
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were also found to be hub regulators in AD before. All these genes and pathways need to be 
further investigated, especially in MDD, and can be prioritized when searching for new 
medication.  
 

4.1 Future perspectives  

In future research, more neuroinflammatory disorders should be compared to each other using 
regulatory network inference. Ideally, this would include different kinds of methods and multi-
omics data. These different networks can be combined into an ensemble network and by using 
distinct methods, a more comprehensive network will be retrieved, for each disorder. As the 
brain is a heterogeneous organ, not only different brain regions should be studied, but also 
different cell types and even cell states. Hence, single-cell data should be used to determine 
the cells and regulators in these cells that play a key role in the disease. With the increasing 
amount of data becoming available, this should be feasible in the near future. scGRNom could 
be utilized as one of the methods, using disease-specific single-cell omics data. This will result 
in a better understanding of the pathophysiology of different psychiatric and neurodegenerative 
disorders, and might lead to new medication.  
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ADDENDUM 2: LAB NOTEBOOK  
For the lab notebook, I used GitHub: https://github.ugent.be/vermeirssenlab/neuro_Hanne. More 
specifically, the scripts and images are saved in the Code tab, while the Wiki tab was used to write 
everything out. The same directory as last year was used. The repository is part of the page of the 
lab of Prof. dr. ir. Vanessa Vermeirssen. The repository is made public, so everyone with a UGent 
account can reach it. The lab notebook on the Wiki tab starts at 2.0 for the Master’s dissertation. 
The pages are in chronological order and there is frequently referred to the code script, which can 
be reached by clicking the links. I have tried to make the titles of the Code folders as informative 
as possible, but I sometimes included some additional information with a README file. For R 
Markdown (Rmd) files, the HTML and PDF files were added as well. I recommend reading the Wiki 
pages first and then looking at the code and additional figures of the respective page.  
  

https://github.ugent.be/vermeirssenlab/neuro_Hanne
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Supplementary figure S1. Representation of the different method-specific networks of Alzheimer’s disease 
(AD) and major depressive disorder (MDD). The graphs were made with the igraph package in R. The broad 
topological characteristics are distinct in the networks from the different methodologies.  



 

 
 

   

   

   

Supplementary figure S2. Degree distributions of the different method-specific networks, for Alzheimer’s 
disease (AD) and depression (MDD). The x-axis represents the degree and was set to a limit of 100 because 
of visualization purposes. Most nodes have a degree of less than twenty, while few nodes have a large 
degree. The maximal degree of all networks were: GENIE3 AD 2003, GENIE3 MDD 992, CLR AD 562, CLR 
MDD 478, Lemon-Tree AD 1954, and Lemon-Tree MDD 1077. The maximal degree of the AD networks were 
consistently higher than the maximal degree of the MDD networks.   



 

 
 

Supplementary figure S3. Module Viewer 
figure of the gene expression of Module 14 
from the MDD Lemon-Tree network. In the 
upper panel are the regulators of this 
module. The annotation data diagnosis and 
sex are included as well (see legend). The 
division between ‘Major depression non-
suicide’ and ‘Major depression suicide’ is 
from the dataset GSE101521, while ‘Major 
depression’ is from the dataset GSE80655. 
‘Control’ is from both datasets. 
 

 
  



 

 
 

 



 

 
 

Supplementary figure S4. Module Viewer figure of the gene expression of Module 16 from the AD Lemon-
Tree network. In the upper panel are the regulators of this module. The annotation data diagnosis, 
neuropathology, tangle stage, plaque stage and sex are included as well (see legend).  
 

Supplementary table 1. Top 100 regulators of the ensemble Alzheimer’s disease and depression networks. 

The transcription factors are ordered according to their out-degree.  
ALZHEIMER’S DISEASE 

NETWORK  

CSRNP3, MEF2C, PEG3, HLF, SATB1, PRDM2, THRB, ZNF25, NKRF, MYT1L, 

ZNF814, DACH2, ZNF483, STOX2, ZNF26, MEF2D, ZNF480, EGR3, ZBTB11, 

HIVEP2, CDC5L, ZSCAN30, ZNF777, HINFP, ZNF552, ZNF512, STAT4, 

BCL11A, POU5F2  TCF7, ZNF280B, ZNF621, ATMIN, ZNF587B, ZNF204P, 

ZBTB37, ZNF471, ZNF711, ZNF184, ATF2, MEF2A, CREB5, SOX10, PROX1, 

SOX8, ST18, NFIX, MYRF, ATF7, ZNF528, ZNF536, NFIA, LHX6, ZNF345, 

CTCF, BBX, TBR1, ARNT2, NEUROD6, ZBTB45, NFE2L3, STAT3, TCF12, 

RBPJ, NKX6-2, ZNF833P, POU2F1, ZNF317, PLSCR1, FOXJ3, TFEB, 

CREB3L2, ZBTB4, FOXN2, ZNF652, RFX4, ZBED3, OLIG1, SOX9, ZNF382, 

ZNF99, EPAS1, ZNF322, VEZF1, ELF1, ZNF217, KLF6, RUNX1, SP1, PPARA, 

ZGPAT, ZNF692, CREB3, ZBTB17, NR2C2, ZFP1, ZNF562, ZBED6, ZNF492, 

IKZF3 

MAJOR DEPRESSIVE 

DISORDER NETWORK 

THAP11, USF1, MLXIP, ATF2, MEF2C, CREB3, HEY1, HLF, CSRNP3, ZFHX2, 

ZNF576, ZBTB18, HSF1, NR2F6, ZNF787, ENO1, ZNF316, ZBTB22, SOX9, 

ATF7, ZNF25, HIVEP2, ATF4, ZNF711, PEG3, THRB, ST18, CIC, IRF3, MESP1, 

WIZ, RXRB, MAFG, MYRF, NPAS3, PPARA, SALL1, GLI3, RFX1, MEF2A, 

PLAGL2, SOX10, RXRA, NR2E1, ZHX2, MLXIPL, NKX6-2, DEAF1, KLF15, 

CC2D1A, ZNF532, SKI, TFEB, NR1H2, ZNF552, IKZF4, PAX6, SOX21, ZBTB11, 

ZNF518B, ZNF660, RFX4, NFKB2, ZNF536, POU5F2, TRPS1, KLF16, ZFP57, 

TEAD1, FOXO1, ZNF579, ATMIN, SREBF1, PLSCR1, RREB1, SOX2, SOX8, 

STOX1, SATB1, GLI4, VEZF1, USF2, ZFP1, ZNF204P, ZNF322P1, ZNF282, 

ZNF512B, MEIS3, RELA, ZNF444, CDC5L, MAZ, OLIG2, NKRF, ZNF783, 

ZNF865, HIVEP3, RARB, TCF12, HSF4 

SHARED TRANSCRIPTION 

FACTORS  

CSRNP3, MEF2C, PEG3, HLF, SATB1, THRB, ZNF25, NKRF, ZBTB11, HIVEP2, 

CDC5L, ZNF552, POU5F2, ATMIN, ZNF204P, ZNF711, ATF2, MEF2A, SOX10, 

SOX8, ST18, MYRF, ATF7, ZNF536, TCF12, NKX6-2, PLSCR1, TFEB, RFX4, 

SOX9, VEZF1, PPARA, CREB3, ZFP1 

 

   
Supplementary figure S5. Visualization of the ensemble graphs of Alzheimer’s disease (AD) and depression 
(MDD). Created with igraph.  



 

 
 

 
Supplementary figure S6. Module Viewer figure of the gene expression of module 26 from the Alzheimer’s 
disease ensemble network. The upper panel represents the regulators of this module. The annotation data 
diagnosis, neuropathology, tangle stage, plaque stage and sex are included as well (see legend). There is a 
trend of higher gene expression in control individuals.  
 



 

 
 

 
Supplementary figure S7. Module Viewer figure of module 60 from the Alzheimer’s disease ensemble 
network. The upper panel represents the regulators of this module. The annotation data diagnosis, 
neuropathology, tangle stage, plaque stage and sex are included as well (see legend). There is a trend of 
increased gene expression in the control individuals.  



 

 
 

 
Supplementary figure S8. Module Viewer figure of the gene expression of module 93 of the depression 
ensemble network. The upper panel depicts the regulators of this module. The annotation data diagnosis 
and sex are included as well (see legend). The division between ‘Major depression non-suicide’ and ‘Major 
depression suicide’ is from the dataset GSE101521, while ‘Major depression’ is from the dataset GSE80655. 
‘Control’ is from both datasets. The gene expression tends to be lower in depressive patients, compared to 
controls. 



 

 
 

Supplementary figure S9. Boxplots from SCENIC with the number of cells per regulon and the number of 
active regulons per cell. The left figure is from the single-cell Alzheimer’s disease network, while the right 
figure comes from the single-cell major depressive disorder network. A regulon is a transcription factor with 
all its inferred target genes. 
 


